Abstract

This work has been developed under the Dissertation Project discipline from the 5th year of the Integrated Master in Industrial Engineering and Management of the Faculty of Engineering of the University of Porto, in collaboration with the Bristol Institute of Technology from the University of the West of England. Its objective is to contribute to the development of production planning methods, focusing the Capacitated Lotsizing and Scheduling Problem (CLSP), a problem that tries to fulfill market demand while minimizing the total cost of production plans, heavily dependent on the production lots sequence and size.

Two approaches have been considered: a theoretical approach, to improve existing representation models, and a practical approach, to develop efficient solving methods.

In the theoretical field, a novel model for the CLSP was developed, which correctly handles two situations: on one hand, when setup times and costs do not respect the triangular inequality, a situation may occur where the optimal solution includes more than one batch of the same product in a single period - in other words, at least one sub-tour exists in the production sequence of that period. On the other hand, by allowing setup crossovers, flexibility is increased and better solutions can be found. In tight capacity conditions, or whenever setup times are significant, setup crossovers are needed to assure feasibility. This work has originated an article, submitted to a scientific journal and currently awaiting for revision.

In the practical field, a hybrid metaheuristic that relies on the improvement of existing solutions was developed and implemented. By taking information from incumbent solutions provided by the branch-and-cut algorithm, simplified sub problems that potentially lead to better solutions are constructed. Preliminary tests suggest that the method quickly improves the first incumbent candidates found. This is useful not only because good solutions
are quickly found, but also because upper bounds are quickly set in the branch-and-cut algorithm, thus pruning branches and decreasing the size of the explored tree. However, the proposed method fails to increase the overall efficiency of the branch-and-cut algorithm, raising several hypothesis. Still, important insights on hybrid metaheuristics were gained, benefiting further research.
Resumo

O presente trabalho foi realizado no âmbito da disciplina de Projecto de Dissertação do 5º ano do Mestrado Integrado em Engenharia Industrial e Gestão da Faculdade de Engenharia da Universidade do Porto, em parceria com o Bristol Institute of Technology da University of the West of England. Tem como objectivo contribuir para o desenvolvimento dos processos de planeamento de produção, focando o Capacitated Lotsizing and Scheduling Problem (CLSP), problema que visa satisfazer a procura e optimizar o custo total do plano de produção, fortemente influenciado pela sequência e dimensão dos lotes de produção.

Foram consideradas duas abordagens essenciais: uma abordagem teórica, com vista a melhorar os modelos de representação existentes, e uma abordagem prática, com vista a desenvolver métodos de resolução eficientes.

Do ponto de vista teórico, foi desenvolvido um novo modelo para o CLSP capaz de lidar simultaneamente com duas situações distintas: Por um lado, quando os custos e tempos de setup não respeitam a desigualdade triangular, pode aparecer uma situação onde a solução óptima inclui mais do que um lote de produção de um mesmo produto num único período - por outras palavras, existe pelo menos um sub tour na sequência de produção desse período. Por outro lado, ao permitir setup crossovers, aumenta-se a flexibilidade, permitindo a descoberta de melhores soluções. Em condições de capacidade apertada, ou quando os tempos de setup são muito significativos, os setup crossovers são necessários para garantir a existência de uma solução admissível. Deste trabalho resultou um artigo que presentemente se encontra submetido a uma revista científica da especialidade, aguardando revisão.

Do ponto de vista prático, foi desenvolvida e implementada uma metaheurística híbrida, assente no melhoramento de soluções existentes. Recorrendo à informação fornecida por soluções incumbentes provenientes do algoritmo branch-and-cut, são gerados sub proble-
mas simplificados que potencialmente originam melhores soluções. Resultados preliminares mostram que este método melhora rapidamente as primeiras soluções incumbentes encontradas. No entanto, não se verifica um aumento geral de eficiência do algoritmo branch-and-cut, ainda que a nova solução reduza o número de ramos explorados. Mesmo assim, várias observações pertinentes foram realizadas no âmbito das metaheurísticas híbridas, contribuindo para futuros trabalhos de pesquisa nesta área.