

Relatório de Estágio

Determinação de Trihalometanos em Águas de Piscinas por Cromatografia Gasosa

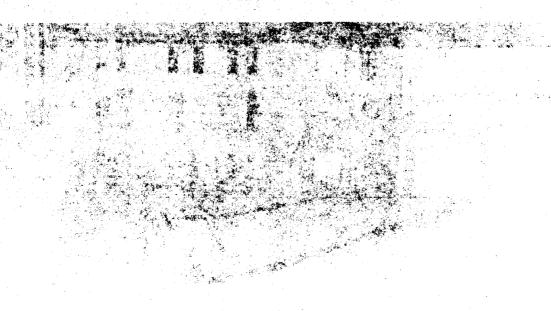
> Realizado por: Cristina Esteves

66(047.3) LEQ 2003/ESTc

Julho de 2004

Relatório de Estágio

Determinação de Trihalometanos em Águas de Piscinas por Cromatografia Gasosa


Realizado por: Cristina Esteves

Julho de 2004

Relatório de Estágio

ección de deimispos em equación de la especial por la considera de la consider

66(047.3) / LEQ 200	3/ESTL
Universidade do Pato (Faculdade de Engenharia	
Nº 88338	
CDU	
Data 33/04 [200]	•

Julho de 2004

Agradecimentos

A realização deste Projecto de Investigação só foi possível devido ao contributo de algumas pessoas que, pela sua disponibilidade e conhecimentos o tornaram possível.

Engº Rui Boaventura, meu orientador e que me proporcionou a realização deste projecto.

Dra Ana M. Heitor, coordenadora do meu estágio, pela ajuda e disponibilidade, sem as quais a realização deste projecto não teria sido possível.

Queria deixar um agradecimento especial à Sara Pacheco, por todo o apoio e disponibilidade prestada e que me permitiu ultrapassar todos os obstáculos que foram surgindo, bem como a todos os membros do Centro de Qualidade Hídrica do Instituto Nacional de Saúde Dr. Ricardo Jorge.

Índice

Capitulo 1	
Introdução Geral	5
Processos de desinfecção com base no cloro	6
Trihalometanos	7
Capitulo 2	
Procedimento Laboratorial	10
Tratamento e colheita das amostras	10
Preparação dos padrões	10
Determinação das amostras	11
Modo de controlo do Procedimento	11
Capitulo 3	
Resultados e Discussão	13
Capitulo 4	
Conclusão	21
Bibliografia	23

O trabalho em curso tem por objectivo avaliar a formação de trihalometanos em águas de piscinas.

O estudo incidiu num grupo de piscinas onde se procedeu à determinação dos valores característicos em trihalometanos e outros parâmetros, possíveis indicadores da formação destes compostos.

O Estudo está ainda incompleto, necessitando de ser continuado de modo a poder estabelecer-se algumas conclusões definitivas, embora se possa desde já tirar algumas observações. Assim a formação de trihalometanos em águas de piscinas é uma realidade e estes compostos podem mesmo aparecer em concentrações altas.

1-Introdução Geral

A desinfecção da água tem sido praticada durante milénios, embora não sejam conhecidos os princípios envolvidos no processo. Pensa-se que o uso de água fervida já era utilizado desde 500 a.C., mas alguns historiadores julgam que esta pratica era adoptada desde o começo da civilização (laubush, 1971). Até que a teoria dos microorganismos fosse estabelecia (Louis Pasteur, 1880), havia a crença de que as doenças eram transmitidas através de odores. A desinfecção da água e dos esgotos surgiu como uma tentativa de se controlar a propagação das doenças através dos odores.

Os processos de desinfecção têm como objectivo a destruição de organismos patogénicos, capazes de produzir doenças, ou de outros organismos indesejáveis. A sobrevivência destes organismos na água depende não só da temperatura, mas também de factores como o pH, turbidez, oxigénio e nutrientes.

Durante muitos anos a preocupação da desinfecção residiu principalmente ou unicamente nas águas de consumo, embora que por volta da década de 70 alguns estudos em águas de piscinas começaram a ser realizados e desde então tem havido uma certa preocupação e interesse nesta área.

Existem diferentes métodos para a desinfecção da água, os de maior relevo devido a sua frequente utilização são:

- Tratamento por calor
- Radiação

Uso de produtos químicos

O uso de produtos químicos é sem sombra de duvida o mais utilizado, dentro destes podemos classifica-los como:

- Oxidantes
- Não Oxidantes

Não oxidantes

Actuam geralmente como um envenenador lento das células, alterando o seu metabolismo, alguns exemplos deles são, sulfato de cobre, fenóis clorados organosulfatos, etc.

Oxidantes

Estes agentes interferem com a síntese de proteína das células, resultando na morte dos microorganismos, são exemplos:

- Cloro
- Bromo
- Iodo
- Dióxido de cloro
- Ozono

Estes agentes são usados para tratamento de águas potáveis, piscinas, controlo de algas em lagoas, água para indústria farmacêutica, etc...

Para a escolha do agente é necessário ver o meio em que vão ser utilizados e dependendo do tipo de microorganismos que se pretende neutralizar. Factores como o pH, estabilidade das soluções, temperatura, pontos críticos do sistema têm de ser tomados em conta na escolha do agente.

Em Portugal o cloro foi e continua a ser o desinfectante mais utilizado no que diz respeito ao tratamento de águas. O uso do cloro tem muitas vantagens, pois é bastante tóxico para os microorganismos, é mais barato que os outros desinfectantes e pode ser preparado no sitio, não é muito sensível ao pH nem a temperatura. No entanto a grande reactividade do cloro produz alguns problemas dado que as reacções com os compostos orgânicos presentes na água permitem a formação de compostos halogenados, muitos destes compostos enquadram-se na denominação de trihalometanos (THM's).

Processos de desinfecção com base no Cloro

Os processos que tem por base o cloro são os mais usados no que diz respeito ao tratamento de águas de piscinas quer estas sejam piscinas fechadas ou piscinas de ar livre. Geralmente utiliza-se sob a forma de hipoclorito de sódio ou de cálcio. Quando o hipoclorito é adicionada a água forma-se o ácido hipocloroso, este por sua vez dissocia-se de acordo com a seguinte reacção,

$$HOCl_{(aq)} \leftrightarrow H^{+}_{(aq)} + OCl^{-}_{(aq)}$$
 (1)

o grau de dissociação desta reacção depende do pH, para um pH≤6 a dissociação é muito pequena já para um pH=6,5-8,5 a dissociação é praticamente completa. O ácido hipocloroso é um desinfectante bastante forte.

È necessário ter alguns cuidados no que diz respeito ao uso do hipoclorito de sódio ou de cálcio, o hipoclorito de sódio por exemplo não pode ser misturado com ácidos pois liberta um gás altamente tóxico, principalmente se se encontrar sob a forma de pó.

A formação de produtos associados a desinfecção das águas de piscinas varia consoante o químico utilizado. Estes produtos podem ser inorgânicos, aquando da presença de iões bromo (que podem ser encontrados nas piscinas de água salgada), e orgânicos como é o caso dos aminoácidos e das proteínas. A formação dos produtos orgânicos é dependente do número de utilizadores da piscina, que contribuem com urina, óleos, cosméticos e resíduos insolúveis.

Uns dos principais produtos são os trihalometanos, e é sobre estes que vai incidir o nosso estudo.

Trihalometanos

Os trihalometanos são compostos monocarbonados halogenados, bastante tóxicos, de fórmula geral CHX_3 , em que X_3 pode representar F, Br, Cl, ou I. Estes compostos formam-se durante o tratamento da água, quando o cloro livre usado como desinfectante se combina com a matéria orgânica presente, matéria essa que é composta por materiais húmicos que estão presentes em todas as águas.

Dentro dos trihalometanos destacam-se:

- Clorofórmio
- Bromodiclorometano
- Dibromoclorometano
- Bromofórmio

O clorofórmio é o que existe em maior quantidade e o mais nocivo, o bromofórmio e o dibromoclorometano são líquidos incolores não inflamáveis de aroma doce, são compostos solúveis em água e bastante voláteis. A maior parte do bromofórmio e do dibromoclorometano que existe no ambiente é um produto secundário que se forma quando entra em contacto com o cloro existente na água tratada. Quando estes compostos se evaporam degradam-se lentamente reagindo com outras substâncias químicas, a quantidade que permanece na água é lentamente degradada por bactérias.

Devido a sua elevada volatilidade os trihalometanos também têm que ser medidos no ar, o transporte da fase liquida para a fase gasosa depende de vario factores:

- Pressão de vapor da substância
- A sua concentração na água
- Area de contacto água/ar
- Temperatura da água

Eficiência do sistema de ventilação

Quanto maior for a pressão de vapor e a sua concentração na água mais rapidamente eles se volatilizam. A difusão dos trihalometanos é inversamente proporcional a sua massa molar relativa e directamente proporcional a turbulência da água gerada pelos banhistas.

Como já foi referido anteriormente a quantidade de trihalometanos existentes na água depende também da quantidade de matéria orgânica. A maior parte da matéria orgânica que nela existe provem dos nadadores. Um grande número de compostos nitrogenados é libertado através da pele mas também através da urina. O nitrogénio aparece sob a forma de ureia, amónia e também sob a forma de aminoácidos. A amónia reage rapidamente com o ácido hipocloroso dando origem a mono, di e tricloraminas.

Todos os estudos realizados em volta dos trihalometanos e toda a preocupação que existe em elimina-los, deve-se ao facto de estes compostos serem nocivos para a saúde sendo alguns cancerígenos.

Existem várias vias de transmissão dos trihalometanos, sendo apenas três de importante relevo:

- Inalação
- Contacto dermal
- Ingestão

Estes factores tendem a agravar-se mais no caso das piscinas fechadas do que nas que estão ao ar livre. Põe exemplo o contacto dermal, este será função da área do corpo em contacto com a água, da permeabilidade da pele, bem como da concentração de compostos existentes na água. Quanto a inalação é necessário ter em conta factores como a intensidade do esforço realizado pelo nadador, bem como a turbulência e as propriedades de transferência de massa.

Outros parâmetros, como o caso do pH, a dureza, podem afectar a saúde dos nadadores, causando irritações na pele e/ou nos olhos.

Procedimento Experimental

Este procedimento tem por objectivo descrever o método analítico para a determinação por cromatografia gasosa do teor de trihalometanos nas águas de consumo e de piscinas.

A presença de trihalometanos em águas resulta das reacções entre o cloro ou dos compostos de cloro usados nos processos de pré-oxidação e de desinfecção com substâncias orgânicas existentes na água e designadas por percursores como já foi referido anteriormente.

Para a determinação dos trihalometanos, foi utilizada uma técnica de microextracção em fase sólida (SPME), para extrair os compostos da amostra. É uma metodologia não poluente de adsorção/desadsorção que elimina a necessidade de solventes e outros meios complicados de concentração de compostos.

É uma técnica compatível com a cromatografia gasosa e que permite obter resultados consistentes.

Tratamento e colheita das amostras

Para a colheita das amostras não é necessário efectuar nenhum tratamento prévio, pois as colheitas são efectuadas directamente no local. Deve-se ter um cuidado expecial com o material a utilizar.

As amostras devem ser colhidas preferencialmente em vials de vidro e é necessário verificar se as vials ficam completamente cheias e bem tapadas, para que se evite entradas de ar bem como perdas de amostra.

A análise deve ser realizada num curto espaço de tempo, sendo o tempo máximo de espera 7 dias. Caso a amostra tenha que esperar para ser analisada, deve então ser conservada num local fresco a cerca de 4°C aproximadamente.

Preparação dos Padrões

Como a análise das amostras é feita por cromatografia gasosa é necessário proceder a uma calibração com a finalidade de se criar uma curva de calibração.

A calibração é feita com padrões, que são preparados a partir de uma solução mãe.

A solução mãe é uma solução mista e é constituída por 100µl de clorofórmio e 50µl de bromofórmio, dibromoclorofórmio e bromodiclorofórmio em 10ml de agua ultrapura. Usa-se para preparar esta solução um frasco de 14 ml, e cada trihalometano é introduzido individualmente por uma seringa de 100µl.

Com a solução mãe preparada podemos então fazer os padrões, para estes padrões usam-se frascos de 20ml e estes possuem as seguintes concentrações $100\mu l$, $200\mu l$, $400\mu l$, $600\mu l$, $800\mu l$ e $1000\mu l$.

Determinação das amostras

A metodologia usada para este tipo de determinação envolve duas etapas, sendo estas a SPME e a detecção cromatografia. Nesta ultima é utilizado um cromatografo gasoso VARIAN modelo 3400 com as seguintes especificações:

- Coluna -é uma coluna capilar BD-624 30x0,330mm, com espessura de 1,8µm, com um patamar de 3min com temperatura inicial de 80°C, seguida de uma rampa de aquecimento de 10°C/min até atingir a temperatura de 150°C à qual permanece durante 4min.
- Injector é um injector split/splitless e encontra-se a uma temperatura de 240°C.
- **Detector** é um detector de captura de electrões (ECD) e esta a temperatura de 260°C.
 - Fibra é de polidimetilsiloxano (PDMS), com espessura de 100μm.
 - Gás de arraste: Hélio Bip.
 - Gás de "maque up": Azoto Bip

A determinação das amostras é processada em duas fases distintas:

≥ 1ª Fase:

• Primeiro introduzem-se os padrões para traçar a curva de calibração, estes são introduzidos por ordem crescente de concentrações.

> 2ª Fase:

• Seguidamente são introduzidas as amostras usando seringas de 500µl. É necessário ter o cuidado de não colocar no cromatografo muitas amostras ao mesmo tempo, pois devido à elevada volatilidade dos trihalometanos estas alteraram-se.

Mesmo à temperatura ambiente, forma-se uma fase gasosa onde é introduzida a fibra durante 10min para adsorção dos compostos. Posteriormente a fibra é retirada da vial e introduzida no injector do cromatografo gasoso durante 10min onde ocorre a dessorção térmica seguindo-se a separação e quantificação.

Não há interferências relevantes para esta determinação, nem tão pouco são necessários quais quer tipo de cálculos e os resultados são expressos em µg/l e traduz a soma de todas as concentrações dos trihalometanos.

Modo de controlo do procedimento

Por cada grupo de amostras analisado deve-se incluir um padrão de controlo de concentração intermédia e de modo a que esteja enquadrado na recta de calibração.

Resultados e Discussão

Como já vimos no capítulo 2, para a realização do nosso estudo foi necessário levar em conta os parâmetros que influenciam a formação dos trihalometanos. Após uma pesquisa a estudos já realizados sobre este tema verificou-se que o cloro e a matéria orgânica eram dos factores determinantes.

Os outros parâmetros igualmente relevantes são o pH e a condutividade. Existem contudo muitos parâmetros que ficaram por avaliar, por falta de informação aquando as recolhas. Por exemplo um parâmetro bastante determinante, no que diz respeito a quantificação da matéria orgânica, é o nº de banhistas. A temperatura da água bem como as condições ambientais também são factores que deveriam ter sido levados em conta, isto devido a instabilidade e volatilidade dos THMs.

A pesquisa foi realizada em 6 piscinas da área metropolitana do Porto, e os valores de alguns factores encontram-se descritos nas seguintes tabelas.

Piscina	Α	
Local	Região Norte	
Ponto de colheita	Tanque pequeno – saída + superficie	

	19-05-2004	04-06-2004	16-06-2004	01-07-2004
Condutividade (µS/cm)	299	314	330	319
Oxidabilidade (mgO ₂ /L)	1.92	1.72	1.64	1.56
TC (mg/L)	10.78	7.807	-	8.866
IC (mg/L)	3.211	0.751	_	0.094
TOC (mg/L)	7.564	7.056	8.94	8.771
Cloretos (mg/L)	42	28.7	47.3	40.9
Cloro combinado(mgCl/L)	0.23	0.04	0.34	0.26
pН	7.52	7.51	7.42	7.51
THMs	**	**	*	*

^{* -} Valores não determinados

^{** -} Valores determinados em fase experimental

Piscina	Α	
Local	Região Norte	
Ponto de colheita	Tanque grande – saída + superfície	

	19-05-2004	04-06-2004	16-06-2004	01-07-2004
Condutividade (µS/cm)	299	-	380	319
Oxidabilidade (mgO ₂ /L)	1.48	-	1.72	1.56
TC (mg/L)	11.86	7.201	-	8.961
IC (mg/L)	5.007	0.244	-	0.039
TOC (mg/L)	6.856	6.957	8.94	8.922
Cloretos (mg/L)	42.1	-	47.5	40.9
Cloro combinado(mgCl/L)	0.18	-	0.26	0.26
рН	7.49	-	7.42	7.51
THMs	**	**	*	*

^{* -} Valores não determinados

^{** -} Valores determinados em fase experimental

Piscina	<u>B</u>	
Local	Região Norte	
Ponto de colheita	Tanque pequeno – saída + superficie	

	26-05-2004	09-06-2004	23-06-2004	07-07-2004
Condutividade (µS/cm)	314	321	321	299
Oxidabilidade (mgO ₂ /L)	1.40	1.36	1.36	1.72
TC (mg/L)	8.012	*	7.178	11.29
IC (mg/L)	0.809	*	0.043	2.998
TOC (mg/L)	7.203	*	7.135	8.296
Cloretos (mg/L)	35.8	34.5	33.9	31.8
Cloro combinado(mgCl/L)	0.45	0.32	0.33	0.25
pН	7.83	7.90	7.94	7.90
THMs	**	**	*	*

^{* -} Valores não determinados

^{** -} Valores determinados em fase experimental

Piscina	<u>B</u>	
Local	Região Norte	
Ponto de colheita	Tanque grande – saída + superficie	

	26-05-2004	09-06-2004	23-06-2004	07-07-2004
Condutividade (µS/cm)	339	356	381	380
Oxidabilidade (mgO ₂ /L)	1.56	1.76	1.68	1.88
TC (mg/L)	15.17	118.8*	16.35	18.11
IC (mg/L)	0.056	25.65*	0.034	0.007
TOC (mg/L)	15.12	93.15*	16.32	18.11
Cloretos (mg/L)	68.5	70.4	72.6	78.2
Cloro combinado(mgCl/L)	0.44	0.37	0.35	0.42
рН	6.99	6.91	7.19	6.84
THMs	**	**	*	*

^{* -} Valores não determinados

^{** -} Valores determinados em fase experimental

Piscina	<u> </u>	
Local	Região Norte	
Ponto de colheita	Tanque pequeno – saída + superfície	

	26-05-2004	09-06-2004	23-06-2004	07-07-2004
Condutividade (µS/cm)	396	412	397	395
Oxidabilidade (mgO ₂ /L)	1.60	2.24	1.84	2.12
TC (mg/L)	18.70	*	16.54	18.17
IC (mg/L)	0.000	*	0.718	0.081
TOC (mg/L)	18.70	*	15.82	18.08
Cloretos (mg/L)	82.5	87.6	78.4	83.5
Cloro combinado(mgCl/L)	0.41	0.47	0.36	0.65
pН	7.19	7.05	7.34	7.22
THMs	**	**	*	*

^{* -} Valores não determinados

^{** -} Valores determinados em fase experimental

Piscina	<u>C</u>	
Local	Região Norte	
Ponto de colheita	Tanque Grande – saída + superficie	

	26-05-2004	09-06-2004	23-06-2004	07-07-2004
Condutividade (µS/cm)	323	332	330	311
Oxidabilidade (mgO ₂ /L)	1.60	1.60	1.44	1.64
TC (mg/L)	-	*	11.71	8.994
IC (mg/L)	-	*	3.393	0.929
TOC (mg/L)	18.46	*	8.318	8.064
Cloretos (mg/L)	43.8	41.4	42	42.6
Cloro combinado(mgCl/L)	0.28	0.31	0.26	0.32
pН	7.92	7.87	8.08	8.03
THMs	**	**	*	*

^{* -} Valores não determinados

^{** -} Valores determinados em fase experimental

Piscina	<u>D</u>	
Local	Região Norte	
Ponto de colheita	Tanque pequeno – saída + superficie	

	19-05-2004	02-06-2004	16-06-2004	01-07-2004
Condutividade (µS/cm)	305	341	347	341
Oxidabilidade (mgO ₂ /L)	1.04	2.24	2.72	2.12
TC (mg/L)	14.14	12.65	*	13.57
IC (mg/L)	0.066	0.868	*	0.114
TOC (mg/L)	14.08	11.78	*	13.46
Cloretos (mg/L)	47.2	54.6	57.5	50.5
Cloro combinado(mgCl/L)	0.24	0.27	0.53	0.52
pН	7.55	7.40	7.42	7.44
THMs	**	**	**	*

^{* -} Valores não determinados

^{** -} Valores determinados em fase experimental

Piscina	<u>D</u>	
Local	Região Norte	
Ponto de colheita	Tanque grande – saída + superficie	

	19-05-2004	02-06-2004	16-06-2004	01-07-2004
Condutividade (µS/cm)	313	318	321	321
Oxidabilidade (mgO ₂ /L)	1.04	1.24	1.24	0.88
TC (mg/L)	9.590	6.834	*	7.601
IC (mg/L)	2.374	0.534	*	0.033
TOC (mg/L)	7.216	6.300	*	7.568
Cloretos (mg/L)	47.5	42.1	41.7	40.6
Cloro combinado(mgCl/L)	0.20	0.28	0.25	0.20
pН	7.65	7.63	7.62	7.66
THMs	**	**	**	*

^{* -} Valores não determinados

^{** -} Valores determinados em fase experimental

Piscina	E	
Local	Região Norte	
Ponto de colheita	Tanque pequeno – saída + superficie	
	• •	

	19-05-2004	02-06-2004	16-06-2004	01-07-2004
Condutividade (µS/cm)	490	600	719	711
Oxidabilidade (mgO ₂ /L)	2.24	1.32	1.24	1.96
TC (mg/L)	12.13	5.086	*	8.005
IC (mg/L)	0.000	0.317	*	0.169
TOC (mg/L)	12.13	4.769	*	7.836
Cloretos (mg/L)	92.5	110.2	149	138
Cloro combinado(mgCl/L)	0.16	0.32	0.31	0.44
рН	7.52	7.46	7.60	7.61
THMs	**	**	**	*

^{* -} Valores não determinados

Estágio Prodep

^{** -} Valores determinados em fase experimental

Piscina	<u>E</u>	
Local	Região Norte	
Ponto de colheita	Tanque grande – saída + superfície	

	19-05-2004	02-06-2004	16-06-2004	01-07-2004
Condutividade (µS/cm)	435	483	565	587
Oxidabilidade (mgO ₂ /L)	1.36	1.24	1.24	1.24
TC (mg/L)	8.519	5.312	*	5.519
IC (mg/L)	0.047	0.669	*	0.115
TOC (mg/L)	8.472	4.643	*	5.804
Cloretos (mg/L)	79.2	85.2	108	103
Cloro combinado(mgCl/L)	0.22	0.27	0.33	0.36
pН	7.70	7.56	7.77	7.58
THMs	**	**	**	*

^{* -} Valores não determinados

^{** -} Valores determinados em fase experimental

Piscina	<u> </u>	
Local	Região Norte	
Ponto de colheita	Tanque pequeno – saída + superficie	

	26-05-2004	09-06-2004	23-06-2004	07-07-2004
Condutividade (µS/cm)	-	818	594	-
Oxidabilidade (mgO ₂ /L)	-	2.44	2.08	-
TC (mg/L)	*	*	15.33	3.464
IC (mg/L)	*	*	0.037	0.099
TOC (mg/L)	*	*	15.29	3.366
Cloretos (mg/L)		181	124.5	_
Cloro combinado(mgCl/L)	-	0.54	0.47	-
pН	_	7.39	7.17	-
THMs	**	**	*	*

^{* -} Valores não determinados

^{** -} Valores determinados em fase experimental

Piscina	<u>F</u>	
Local	Região Norte	
Ponto de colheita	Tanque grande – saída + superficie	

	26-05-2004	09-06-2004	23-06-2004	07-07-2004
Condutividade (μS/cm)	-	578	567	-
Oxidabilidade (mgO ₂ /L)	-	0.96	0.88	-
TC (mg/L)	*	*	3.034	12.77
IC (mg/L)	*	*	0.294	0.808
TOC (mg/L)	*	*	2.740	11.96
Cloretos (mg/L)	-	105	92.9	-
Cloro combinado(mgCl/L)	-	0.32	0.22	-
pН	-	7.25	7.47	-
THMs	**	**	*	*

^{* -} Valores não determinados

Pela análise dos valores apresentados podemos verificar que, na generalidade, estes encontram-se dentro das gamas estabelecidas e respeitam a legislação.

No entanto verifica-se que em alguns casos, e para a mesma piscina, ocorrem variações significativas no que diz respeito aos valores de condutividade, bem como para o TOC. Esta variação poderá estar associada ao nº de banhistas que se encontrassem a utilizar a piscina.

As tabelas acima apresentadas permitem concluir que os resultados são satisfatórios, embora apresentem alguns desvios.

Estágio Prodep

^{** -} Valores determinados em fase experimental

Conclusão

O uso de cloro na água tem como objectivos, a desinfecção, a oxidação ou ambas as acções ao mesmo tempo.

Quando existe na água amónia e compostos amoniacais, com a adição de cloro são formados compostos clorados activos, denominados de cloraminas. Ao cloro presente sob a forma de cloraminas dá-se a designação de cloro residual combinado.

O cloro residual combinado inicialmente aumenta com o aumento do cloro aplicado, passando por um máximo, e, em seguida diminui até um mínimo, a partir deste mínimo o cloro residual, agora sob a forma de cloro residual livre, aumenta proporcionalmente com a quantidade de cloro aplicada. Ao ponto de inflexão encontrado designamos de breakpoint.

Com o início da cloração, o nitrogénio amoniacal consome o cloro para a formação das cloraminas, sendo o ponto máximo atingido quando toda a amónia disponível se combinou com o cloro para a formação das cloraminas.

A continuação da adição de cloro significara um aumento do cloro residual livre, já que toda a demanda de cloro já foi satisfeita.

A reacção do cloro com compostos orgânicos leva a formação dos trihalometanos (THMs). Embora pelas análises dos resultados não se possa verificar, sabe-se que o trihalometano mais detectado é o clorofórmio. Sendo o cloro livre o que possui maior poder de formação de THMs.

Em relação ao tempo, a formação de trihalometanos em condições naturais não é instantânea, quanto maior o tempo de contacto entre o cloro e os percursores, maior é a probabilidade de formação dos trihalometanos.

Quanto a temperatura, seria de esperar o aumento desta implica-se significativamente um aumento de THMs, embora também não se possa concluir pela análise resultados.

Do mesmo modo o aumento pH também favorece a formação dos THMs, isto devido a sua acção catalítica.

Uma elevada concentração de matéria orgânica implica igualmente uma elevada concentração de THMs formados.

No decorrer do estudo foi-se verificando que os resultados não correspondiam nem se ajustavam bem. Com a finalidade de obter melhores resultados, foi-se tentando uma optimização dos procedimentos e das técnicas utilizadas. Dai que alguns parâmetros tenham sido acrescentados e outros retirados, bem como alguns protocolos que foram alterados, tendo sempre em mente um aperfeiçoamento do método.

Em conclusão pode-se dizer que o objectivo foi satisfeito. No entanto o estudo em causa necessita de ser continuado de modo a que se possam estabelecer conclusões mais definitivas.

Bibliografia

- [1] MEYER, Sheila T. Chlorine use in water disinfection, trihalomethane formation, and potential risks to public health. Cad. Saúde Pública, Jan./Mar. 1994, vol.10, no.1, p.99-110. ISSN 0102-311X.
- [2] Guidelines for safe Recreational-Water Environments
 Vol.2: Swimming Pools, Spas and Similar Recreational-Water Environments
- [3] Maria de Fátima Alpendurada, Maria Raquel Mourão. Determinação de trihalometanos na água distribuída no concelho do Porto pelo método de injecção aquosa directa. Ver. Port. Farm., XLIV, nº4, 1994
- [4] Pistes (Projets d'Intégration dês Sciences et des Technologies en Enseignement au Secondair) / Communauté de pratique / OPUS (Droits de reproduction autorisés avec la mention de la source), marzo / abril 2003: Vol.3, n°2
 Castro, Eng.Ernesto. Principios de Control Microbiológico con Oxidantes
- [5] H Chu, M J Nieuwenhuijsen. Distribution and determinants of trihalomethane concentration in indoor pools, 17 October 2001
- [6] B. C. Nicholson, D. B. Bursill and D. J. Couche, Stat Water Laboratory, Engineering and Water Supply Department, c/o Privet Mail Bag, Salisbury 5108 Australia. Rapid Method for de Analysis of Trihalomethane in Water.
- [7] Maria T. Almeida and Maria F. Alpendurada, Preservation of Water Samples Containing Trihalomethanes. Laboratório de Hidrologia da Faculdade de Farmácia do Porto IAREN Water Institut of the Northen region,
- [8] Diário da República I Série B, Decreto-lei Nº 75 31-03-1997
- [9] APHA, AWWA, WEF (1992), Standar Methods Foe examination of water and wastewater, (Eds: Greenberg A. E., Clesceri L. S., Eaton A. D), 18^a edição Washington DC.

Estágio Prodep

