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Abstract

The wealth of multimedia items and their increasing complexity make data organization and search
essential. Without efficient storage, accurate search and informative retrieval it is hard to explore
a multimedia repository to its full potential.

The multimedia items present strong connections between the content data and their metadata.
The content can offer by itself, or upon automatic content analysis, important low-level informa-
tion about colors, shapes or sounds which is called content metadata. But there are more metadata,
that are unlikely to be automatically extracted from content which are equally important. The com-
mon set called contextual metadata includes title, author, date, origin details or annotations.

It is a fact that both content and metadata are essential in multimedia information retrieval.
There are plenty of standardization efforts that embed metadata in text wrappers in order to help
on its processing throughout the multimedia item life cycle.

By far the most important problem in multimedia retrieval is the so-called “semantic gap”. It
expresses the lack of a direct semantic channel between object features such as color, texture or
shape and the concepts that one has in mind when formulating a query. Besides the “semantic gap”,
the multimedia retrieval systems must also tackle the problems that come from the heterogeneity
of the metadata standards and the nature of the datatypes that they introduce. Rising from different
multimedia communities and embodying different perspectives, the metadata standards define sets
of concepts for their domains of activity. However, it is not easy to find mappings between the
sets of concepts, even in the cases where overlapping exists. Indexing a wide range of metadata
datatypes is another challenge. The vectorial datatypes, although embedded in text, are numeric in
nature. For instance, the Scalable Color Descriptor defined by the MPEG-7 standard, is a vector
of 256 values that requires high-dimensional indexing methods.

We argue that the problems of managing large and heterogeneous multimedia repositories
can be alleviated by bringing improvements in several aspects: storage model, high-dimensional
indexing, and retrieval. Three main contributions are proposed: a database model, a high-dimen-
sional indexing method and a faceted retrieval system.

The proposed database model accounts for content organization and its association to meta-
data. It is a hybrid relational-XML database model. The model allows content segments and sub-
segments to be arranged in configurable hierarchical structures. The associations between content
and metadata are based on a set of concepts from archival description and multimedia standards.
Context metadata together with the structure of the multimedia items are stored in the relational
part of the model. The metadata descriptors that contain high dimensional data are stored into the
XML part of the model.

For search within the high-dimensional descriptors, an indexing method called BitMatrix is
proposed. It constructs bit signatures that can be efficiently processed with bitwise operations.
Our experiments have shown that the use of the BitMatrix as a high-dimensional indexing method
is beneficial for the retrieval process.
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Finally, the MetaMedia retrieval system was developed. Built as a web application, MetaMe-
dia has a user-interface (the client) and a server that hosts the retrieval system itself; the proposed
database model and the BitMatrix index are instantiated in MetaMedia.

In a first set of experiments, MetaMedia has been implemented in two case studies. The first
one is a historic documentation center of “Santa Maria da Feira” that allows the visualization and
search of its documents based on their textual content and contextual metadata. The other one
is “Enthrone”, a multimedia distribution framework that has used MetaMedia as a multimedia
repository. The main functionalities have been storing and searching multimedia items based on
contextual metadata.

MetaMedia has also been evaluated in TRECVID, a well-known video retrieval benchmark, as
an automatic and interactive video retrieval system that combined content features such as color,
texture, shape and audio features with annotations. The queries included natural language, image
and video components. The comparative results illustrate satisfactory performance. Separate eval-
uations of the BitMatrix index were performed in a custom-designed multidimensional indexing
evaluation framework.



Resumo

A riqueza dos itens multimédia e a sua crescente complexidade torna essenciais operações de
organização e pesquisa de dados. Sem armazenamento eficiente, precisão nas pesquisas e recupe-
ração informativa é difícil explorar um repositório multimédia no seu pleno potencial.

Os itens multimédia apresentam ligações fortes entre conteúdo e meta-informação. O con-
teúdo pode oferecer, por si próprio ou mediante análise automática, descritores de baixo nível
sobre cores, formas, ou sons, que são chamados meta-informação de conteúdo. Mas há outra
meta-informação, que dificilmente é extraída automaticamente a partir do conteúdo, e que é igual-
mente importante. A chamada meta-informação de contexto inclui habitualmente título, autor,
data, detalhes de origem ou anotações.

É um facto que tanto os conteúdos como a meta-informação são essenciais em recuperação
de informação multimédia. Vários esforços de normalização propõem formatos textuais para a
meta-informação, a fim de ajudar o processamento desta ao longo de todo o ciclo de vida dos itens
multimédia.

O maior problema na recuperação multimédia é o chamado “fosso semântico” que se revela
na falta de um canal semântico directo entre propriedades dos objetos como côr, textura ou forma
e conceitos que um utilizador qualquer tem em mente ao formular uma pergunta. Para além do
“fosso semântico”, os sistemas de recuperação multimédia têm também de resolver os problemas
que provêm da heterogeneidade das normas de meta-informação e da natureza dos tipos de dados
que estas introduzem. Tendo origem em diversas comunidades com diferentes perspectivas, as
normas definem conjuntos de conceitos para os seus domínios de actividade. No entanto, não é
fácil encontrar mapeamentos entre os conceitos, mesmo nos casos em que existem sobreposições.
Um outro desafio vem da vasta gama de tipos de meta-informação a indexar. Os tipos vectoriais,
embora embebidos no texto, são de natureza numérica. O “Scalable Color Descriptor”, por exem-
plo, definido pela norma MPEG-7, é um vector de 256 valores que exige métodos de indexação
multidimensional.

Defendemos que os problemas da gestão de repositórios multimédia grandes e heterogéneos
podem ser minorados com melhorias em diversos aspectos: o modelo de armazenamento, a index-
ação multidimensional e a recuperação de informação. Propõem-se três contribuições principais:
um modelo de dados, um método de indexação multidimensional e um sistema de recuperação
facetada.

O modelo de dados contribui para a organização dos conteúdos e a sua associação à meta-
informação. O modelo é híbrido, tendo uma parte relacional e outra XML e permite representar
partes do conteúdo, chamadas segmentos, em estruturas hierárquicas configuráveis. As associ-
ações entre conteúdo e meta-informação são baseadas num conjunto de conceitos usados nas nor-
mas arquivísticas e de multimédia. A meta-informação contextual juntamente com a estrutura dos
itens multimédia são armazenados na parte relacional do modelo. A meta-informação de con-
teúdo, normalmente descritores de natureza multidimensional, são armazenados na parte XML do
modelo.
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Para a pesquisa nos descritores multidimensionais, propomos um método de indexação de-
signado BitMatrix. O método baseia-se na construção de assinaturas de bits que podem ser efi-
cientemente processadas com operações ao bit. As experiências realizadas mostram que o uso do
BitMatrix como método de indexação multidimensional é benéfico para o processo de recuper-
ação.

A terceira contribuição é o sistema de recuperação MetaMedia. Desenvolvido como uma
aplicação web, o MetaMedia tem uma interface de utilizador (o cliente) e um servidor que integra
o sistema de recuperação em si; o modelo de dados proposto e o índice BitMatrix são instanciados
no MetaMedia.

Num primeiro conjunto de experiências, MetaMedia foi implementado em dois casos de estu-
dos. O primeiro é um centro de documentação histórica —“ Santa Maria da Feira”— que permite
a pesquisa e a visualização dos seus documentos com base nos conteúdos e na meta-informação
contextual. O outro é o “ Enthrone”, uma plataforma de distribuição multimédia que usou o Meta-
Media como repositório multimédia. As principais funcionalidades são armazenar e pesquisar
itens com base na meta-informação contextual.

O MetaMedia foi também avaliado no TRECVID, um “benchmark"internacional de recupe-
ração vídeo, onde funcionou como sistema automático e interativo combinando características
de conteúdo tais como cor, textura, forma e áudio com anotações. As interrogações incluiram
componentes de linguagem natural, imagem e vídeo. Os resultados comparativos ilustram um
desempenho satisfatório. Foram também realizadas avaliações do índice BitMatrix num ambiente
criado especialmente para o efeito.



Résumé

La richesse des données multimédia et leur complexité croissante rend l’organisation des do-
nnées et la recherche essentiels. Sans efficacité de stockage, de recherche précise et informative,
il est difficile d’explorer totalement le potentiel de basées de données multimédia.

Les données multimédia présentent des rapports étroits entre le contenu des données et leurs
métadonnées. Le contenu peut offrir, par lui-même ou à partir d’une analyse automatique, des
descripteurs de bas niveau de couleurs, formes, ou sons, qui sont appelés métadonnées de con-
tenu. Mais il y a d’autres métadonnées peu susceptibles d’être extraites automatiquement d’un
contenu, mais qui sont tout aussi importantes. Elles sont appelées métadonnées contextuelles et
comprennent le titre, l’auteur, la date, les détails d’origine ou les annotations.

Il est un fait que le contenu et les métadonnées sont essentielles dans la recherche d’informa-
tion multimédia. Il y a beaucoup d’efforts de normalisation qui intègrent les métadonnées dans des
formats textuels, afin d’aider à leur traitement tout au long du cycle de vie des données multimédia.

De loin le problème le plus important dans la recherche multimédia est ce qu’on appelle l’
“écart sémantique”. Il exprime l’absence d’un canal sémantique direct entre les caractéristiques
d’objets telles que la couleur, la texture ou la forme, et les concepts que chaque utilisateur a à l’e-
sprit lors de la formulation d’une question. Outre l’ “écart sémantique”, les systèmes de recherche
multimédia doivent aussi résoudre les problèmes qui proviennent de l’hétérogénéité des normes
des métadonnées et la nature des types de données qu’ils fournissent. Provennant de différentes
communautés avec des perspectives différentes, les normes définissent des ensembles de concepts
pour leurs domaines d’activités. Toutefois, il n’est pas facile de trouver des correspondances entre
les ensembles de concepts, même quand un certain chevauchement existe.

Un autre défi vient du large éventail de types de métadonnées à indexer. Les types vecteur, bien
que intégrés dans le texte, sont de nature numérique. Par exemple, le “Scalable Color Descriptor”
défini par la norme MPEG-7, est un vecteur de 256 valeurs qui nécessite de méthodes d’indexation
multidimensionnelles.

Nous soutenons que les problèmes de la gestion des basées de données multimédia grands
et hétérogènes peuvent être atténués par des améliorations dans plusieurs aspects : le modèle de
stockage, l’indexation multidimensionnelle et la recherche d’information. Trois principales con-
tributions sont proposées : un modèle de données, une méthode d’indexation et un système de
recherche multi-facettes.

Le modèle de données contribue à l’organisation du contenu et de son association avec des
métadonnées. Le modèle est un hybride, relationnel et XML, qui permet aux parties du contenu
appellées segments d’être organisées en structures hiérarchiques configurables. Les associations
entre le contenu et les métadonnées sont basées sur un ensemble de concepts utilisés dans les
normes arquivistes et du multimédia. Les métadonnées contextuelles, ainsi que la structure des
éléments multimédia sont stockés dans la partie relationnelle du modèle. Les métadonnées de
contenu, généralement les descripteurs de nature multidimensionnelle, sont stockées dans la partie
XML du modèle.
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Pour rechercher les descripteurs multidimensionnels, nous proposons une méthode d’indexa-
tion appelée BitMatrix. La méthode est basée sur la construction de signatures de bits qui peuvent
être traitées efficacement avec les opérations binaires. Les expériences montrent que l’utilisation
de BitMatrix comme une méthode d’indexation multidimensionnelle est bénéfique pour le proces-
sus de récupération.

La troisième contribution est le système de récupération MetaMedia. Développé comme une
application Web, le MetaMedia a une interface utilisateur (le client) et un serveur qui intègre le
système de récupération en soi ; le modèle de données proposé et l’indice BitMatrix sont instanciés
dans MetaMedia.

Dans une première série d’expériences, MetaMedia a été mis en place dans deux études de
cas. Le premier est un centre de documentation historique, “Santa Maria da Feira”, permettant
de chercher et de consulter les documents en fonction de leur contenu et leurs métadonnées con-
textuelles. L’autre est “ ENTHRONE”, une plate-forme de distribution multimédia qui a utilisé le
MetaMedia comme référentiel. Les principales caractéristiques ont été le stockage et la recherche
basée sur les métadonnées contextuelles.

Le MetaMedia a également été évalué dans TRECVID, un “benchmark” international en
vidéo, ou il a fonctionné comme un système automatique et interactif, combinant les éléments
de contenus tels que la couleur, la texture, la forme et audio, avec des annotations. Les questions
ont été composées du langage naturel, l’image et la vidéo. Les résultats comparatifs montrent
une performance satisfaisante. Des évaluations de l’indice BitMatrix dans un environnement créé
spécialement à cet effet ont également été faites.
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Chapter 1

Introduction

Multimedia data is currently generated by all sorts of devices. Meaningful chunks of data such as
pictures, videos or sounds can be designated as multimedia items, and the ability to manage them
is essential for people and organizations. In areas such as news broadcast or entertainment, multi-
media items are the product itself, but in most areas of activity the processes within organizations
give rise to information which incorporates complex components.

1.1 Context

Multimedia repositories display a large diversity both in the nature of stored items and in the
application domains. They may include:

• objects which have been collected and appropriately described, as in a digital library;

• heterogeneous information assembled and dynamically modified in a Web site;

• the result of the production process of a publisher or a broadcaster.

Repository managers and users need to easily incorporate new items, to make them available in
well-established formats and, the most important, to search them [Tes04]. Research in Multimedia
Information Retrieval (MIR) has produced increasingly sophisticated search methods [DJLW08,
LSDJ06, SW05, Bim99, YI99, GJ97], with techniques that range from the exploration of content
features in specific domains [FSN+95, ORC+97, SC96] to the migration of techniques developed
for text to image or video [ZG02].

Multimedia items are intrinsically complex, and the analysis of their content uses heavy com-
puting processes. Excepting the case of text, multimedia content analysis do not result in the
high-level concepts required by the generality of the search tasks. This brings about the so-called
“semantic gap”, clearly identified as the main issue in multimedia retrieval [GR95]. Text is a form
of communication based on concepts, expressed in the user’s language and close to the way he
thinks. Searching text items may require a number of processing techniques like pattern match-
ing, stemming, finding synonyms, translating, natural language analysis. Supposing that the user
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expresses his information need through words, the set of retrieved documents includes those con-
taining exact word matches and can be continuously enlarged to more and more semantically
related documents. Although a “picture is worth a thousand words” a text-like semantic channel
between a pictures repository and the information need does not exist. The automatic analysis of
a picture may produce many descriptors related to the contents, also called low-level descriptors,
but hardly produces an accurate descriptive sentence close enough to the query words. Of course,
one way to reduce the semantic gap when searching image repositories is to start with a picture
example and establish a similarity measure between its automatically obtained descriptors and the
ones corresponding to the images in the repository. But this is not a true solution because most of
the times the users think and express themselves in concepts and words.

The multimedia items present strong connections between the content data and their metadata.
The content can offer by itself, or upon automatic content analysis, important information about
text statistics of word usage, automatic speech recognition, colors, shapes, sounds, which is called
content metadata. But there is a lot more that is unlikely to be automatically extracted from content
such as the title, author, date, origin details or annotations. Such information is generally called
context metadata. It is debatable whether or not some metadata can be considered content or
context-related and it may to some extent depend on the application domain. For instance, in
domains such as broadcasting or video on demand, the title, author or date are considered closer to
content while in the archival domain the same attributes are clearly considered “context metadata”.
However, we follow the criterion presented above: if metadata can be extracted automatically
from content it is considered content-related, otherwise it is contextual. Depending on the domain
activity of a multimedia community, metadata can also enclose terms of use, copyrights, unique
identifiers, technical details such as format or size, adaptation and re-purposing instructions.

Content and context metadata are both essential. If content metadata such as color and shape
may completely satisfy a designer, an archivist wishing to certify the authenticity of a document
may consider the context metadata as important as the content itself. Many existing and emerg-
ing metadata standards are relevant for managing multimedia information, both for the objects
themselves and for the corresponding metadata. The standardization efforts define descriptors
for embedding metadata in text or Extensible Markup Language (XML) wrappers in order to
help on its creation, exchange and automatic processing throughout the multimedia life cycle
[DE06, KBD+05, Kos03]. It has however been noted that the engagement in standards develop-
ment might be hindering the efforts to develop operational multimedia retrieval systems [Bul04].
The metadata standards development has contributed to clarify concepts and to promote interop-
erability, but their goal is not to provide models for the representation of objects in operational
systems nor strategies for retrieval [ETM04].

The MIR systems must now tackle the problems that come from the heterogeneity of the
metadata standards and the nature of the datatypes they introduce [TLS04]. Rising from different
multimedia communities and embodying different perspectives, the metadata standards define sets
of concepts for their domains of activity. However, it is not easy to find mappings between the sets
of concepts, even in the cases where overlapping exists.
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The nature of the metadata datatypes is another challenge. Vectorial datatypes with hundreds
of dimensions such as the Scalable Color Descriptor, a 256-sized vector defined by the MPEG-7
standard, have to be indexed for an efficient use in retrieval.

1.2 Proposal

The goal of this work is to build a multimedia retrieval system on the substantial existing results
concerning the analysis of multimedia items and on the concepts and descriptors identified by
the standards. Towards achieving this goal, we will present three main contributions. First, a
multimedia database model is proposed as a unifying solution for the diversity and complexity of
the multimedia items. The model is intended for implementation in a retrieval system supporting
preprocessing of the multimedia objects, management by repository managers and search by sev-
eral kind of users. The MetaMedia model [RD01] accommodates descriptive and content analysis
metadata and sets the ground for their integration in search.

The motivation for designing a model is twofold: flexibility and evolution. First, specialists
from diverse areas create and need descriptors of different nature. As repositories get more het-
erogeneous, objects with different creation contexts and different associated metadata must be
managed together and we want to keep as much as possible of their original attributes. Second,
the effort involved in developing a system for repository management and search is considerable,
but new technologies tend to make them obsolete very fast. If the underlying model correctly cap-
tures the main concepts, it is possible to incorporate new features and even to redesign the system
without starting all over.

The second contribution comes as a consequence of the data model implementation into a real
database. More exactly, trying to model the various metadata descriptors for a better search ex-
perience, we have encountered the special case of high-dimensional descriptors. Such descriptors
are known to be difficult to search with the traditional databases [BBK01, TBM03]. We pro-
pose the BitMatrix [CRD06] indexing method and test it using an especially developed evaluation
framework called “Multidimensional Multimedia Descriptor Indexing” (MMDI) [GCRD07].

The motivation for a high-dimensional indexing method is the following. As computing power
is cheap, it is viable to have image and video processing algorithms analyzing object features and
generating large amounts of descriptor data. We want to adopt indexing methods that, besides
accommodating the expected diversity of descriptors, can be effective in the basic retrieval op-
erations [Tes04]. Multidimensional indexing requires assumptions on the nature of data and the
algorithms to search it. Several requirements from the application domain may condition the
choice of the indexing method. A common requirement is that updates to the object database
are allowed. This will lead to indexing methods able to incrementally update their data struc-
tures. Another important aspect is the ability to add new descriptors. To meet this requirement,
it is necessary to allow varying dimensionality in descriptors, and again to be able to extend the
indexing structure piecemeal. Handling a large number of multidimensional descriptors may be
inconvenient in some parts of the retrieval process. Being able to search on a chosen subset is
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therefore a desirable feature. The search is usually based on a distance between the query and the
candidate items. Useful metrics can take many forms, and the choice of a specific one influences
the retrieval process [Agg02, AHK01]. Supporting a wide range of metrics is therefore another
important requirement.

The third contribution is a multimedia retrieval system, called MetaMedia which integrates
the proposed data model and the BitMatrix index. MetaMedia has been developed as a common
platform for loading and exploring multimedia repositories using state-of-the-art technologies for
data storage, content rendering and user-interface design.

MetaMedia has been used in the context of two applications with requirements for multi-
level structuring, integration of high-level and low-level descriptors, and content-based retrieval.
Both applications make use of metadata but they are quite different in nature. The Enthrone
case is focused on quality of service for news broadcasting and video on demand scenarios in
heterogeneous networks. The Santa Maria da Feira document center aims at an integrated view
of digitized heritage documents, archival descriptions and transcription texts produced by scholars.

Retrieval on video collections has been tested with queries combining text, image and video
and the prototype system has been subject to evaluation in the TRECVID [SOK06, SOK04] ini-
tiative.

1.3 Overview

The dissertation is organized as follows. The following two chapters offer a presentation of the
MIR field. In Chapter 2 we give an overview of multimedia retrieval and present a generic MIR
architecture, detailing all the involved components. The chapter starts with a discussion on the
current issues in MIR and then surveys multimedia items, queries, databases, retrieval systems and
evaluation. The discussion about multimedia items underlines their heterogeneity of presentation
formats and justifies the need of a dedicated data model. In Chapter 3 we focus our survey on
the essential matters regarding multimedia retrieval: features, similarity measures and indexing
methods. The features selection, their quality and the similarity measures are essential aspects of
effective multimedia retrieval. At the same time, efficiency is equally important and can only be
obtained with indexing techniques that are able to speed-up the overall search process. Chapter
4 introduces MetaMedia’s architecture and functionalities. From the architectural point of view,
several distinct components are gathered under the MetaMedia name. To illustrate each one’s place
we instantiate the generic MIR architecture presented in Chapter 2. Then we show that from the
point of view of the functionalities, MetaMedia offers browsing, search, administration, content
analysis and annotation. Among MetaMedia’s components, two are especially important: the data
model and the BitMatrix index. The data model is presented in detail in Chapter 5, where we
discuss the principles, concepts, classes and the attributes that characterize the model. In Chapter
6 the focus is on high-dimensional indexing in general, and on the BitMatrix index in particular.
The chapter has two main parts. In the first one, the BitMatrix index is proposed along with an
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appropriate similarity criterion. In the second part, we tackle the problem of evaluation for high-
dimensional indexing approaches and propose an extensible framework for the observation of such
methods, called MMDI (Multidimensional Multimedia Descriptor Indexing). We have observed
the time performances, the effect of metric substitutions and the number of distance computations,
comparing the BitMatrix index with similar approaches.

While Chapters 4, 5 and 6 are presenting the MetaMedia’s architecture detailing the data
model and the indexing method components, in Chapter 7 the discussion is focused on the search
and retrieval processes. The complex nature of the multimedia items leads to dedicated retrieval
approaches that target different parts of them. The MetaMedia’s search strategies are integrated in
a common user interface accounting for: search on textual content, search on structured contextual
metadata and search on image and video features. Chapter 8 presents two case studies that make
intensive use of metadata and are both implemented on top of MetaMedia. Very different in nature,
the two case studies illustrate the successful use of the data model and of the basic search tasks.
Chapter 9 focuses on the retrieval system evaluation. The experiments have measured the quality
of MetaMedia as a video retrieval system and took place in the public TRECVID 2007 evaluation
[CRD+07]; the final results are reported.
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Chapter 2

Multimedia Retrieval

This chapter makes an overall presentation of the multimedia retrieval field. The discussion starts
with a presentation of the current state and issues in multimedia retrieval. In the sequel, Section 2.2
presents a generic retrieval system —a three-layered architecture— with components for storage,
indexing, similarity assessment, query formulation and visualization. Then, in the next three sec-
tions we give details on some retrieval aspects such as multimedia items, queries and multimedia
databases. The presence of both content and metadata, strongly connected within multimedia
items is important and at the same time challenging for the retrieval systems designers. Metadata
plays an increasingly important role in the items life cycle, becoming as important as the content
itself. We detail the item-related aspects in Section 2.3. The search queries, detailed in Section
2.4, can be formulated in several ways, including keyword-based, natural language, by example,
by sketch, or combinations of them. The answer sets for this range of queries consist of retrievable
item parts such as contents, metadata fragments or combinations of them. With such a diversity of
retrievable parts and query modalities, ensuring effectiveness and efficiency in retrieval requires
proper database technologies. In Section 2.5 we discuss their role in multimedia retrieval. Sections
2.6 and 2.7 review the existing retrieval methods and systems. The final section of this chapter
covers multimedia retrieval evaluation aspects.

2.1 Issues in Multimedia Retrieval

Multimedia information retrieval is about searching in information sources available in any modal-
ity: text, image, audio, video. Among all modalities, text is a privileged one. With text we are
able to precisely express what we mean, either when we produce documents or when we look for
them. It is not surprising that research in the IR field has been successful in providing effective
methods for searching large volumes of textual data [Sal89, FO95, DDL+90, Sal71].

Beside text documents, we increasingly produce large amounts of audiovisual items such as
personal pictures and video recordings, for which we want to ideally have search tools at the level
of the text-based ones. But the search in audiovisual datasets is a much more complex problem
due to the lack of a direct semantic connection between our information needs and the items.

7
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Some systems adapt the text-based approaches to the audiovisual datasets [SWRS06, HC04].
That is, to index any available text information. For example, in [HC04], speech transcripts
[HOdJ07], closed captions, Optical Character Recognition (OCR) and text wrapped around im-
ages have been used with satisfactory results. However, such text features do not always capture
the semantics of the non-text items. For a web image for example, the text wrapped around it may
not be necessarily related to that image.

There are plenty of multimedia items, such as the ones we often create with our electronic
devices, that have neither closed captions, nor speech transcripts nor other text information. In
such cases, text metadata can only be obtained with annotations, either automatic by means of
especially trained concept detectors, or manual [SBD06, YSLH03]. There are problems with both
the annotation types, however. While the automatic annotators provide low accuracy, the manual
annotation of multimedia content is a subjective and culturally-biased task whose cost makes it
not viable for informal or large repositories.

Beside gathering any available text material, multimedia retrieval needs effective methods
of using the objects themselves. Such methods, also referred to as Content-based Information
Retrieval (CBIR) methods, have the goal of retrieving the objects upon analysis of their actual
content features. For image and video objects, automatic analysis of the content features results in
low-level descriptors for color, shape, texture or motion. Their use in CBIR systems is discussed in
[LSDJ06, SLZ+03, GJ97]; many of the systems reviewed in these works can be found in Section
2.7.

Two main CBIR issues have been identified. First, is the difference between the multimedia
items —as digital representations of some real world objects— and the objects themselves. It is
important to realize that there is always a degree of fidelity of the representation process which
introduces a so-called “sensory gap”. Mistaking the items low-level features for the real object
features may have important consequences. For example, a search based on a real object feature
values may not find any pictures of it. This issue is even more important in critical application
domains such as medicine, where —due to illumination variance for example— the digital repre-
sentations may be significantly different than the real objects.

The second issue in CBIR is the difficulty of establishing a semantic connection between the
low-level features and the concepts that humans provide in their queries. This mismatch is often
referred to as the “semantic gap” [GR95, ZG02]. For example, searching with a query such as
“find red cars”, by means of color, shape and texture feature values does not uniquely identifies
the red cars; several other red objects with car-like shapes such as wagons, trains, toys or buildings
are retrieved. Things get more difficult when multimedia items containing “persons walking up
stairs” or highly-subjective concepts such as “entertainment” are requested.

2.2 Multimedia Retrieval Architecture

As in conventional Information Retrieval (IR), the MIR tasks are run over a document repository
and their purpose is to retrieve all the relevant ones with respect to a given query. To ensure their



2.2 Multimedia Retrieval Architecture 9

Figure 2.1: Multimedia Retrieval Architecture

functioning, the multimedia retrieval systems glue a wide range of components. The document
repositories for instance, require data modeling and storage components. The answer compu-
tations are generally performed with similarity assessment and indexing components. From the
user perspective, query formulation, query analysis, and results visualization components are also
required. Figure 2.1 is an overview of components and tasks in a generic multimedia retrieval
system having a three-layer architecture, namely Database, Middleware and User, with typical
components and functionalities in each of the layers. There is a loose separation between layers
because in concrete retrieval systems, some components may be part of a different layer than the
one presented in the figure. For instance, as database systems evolve, more and more middle-
ware functionalities are built into the database layer; for example, some components for similarity
assessment may become available directly in the database system.

A different separation, marked by the vertical line in the figure, is between off-line and on-line
components. The off-line components are used before the system is up and running, or periodi-
cally, while the on-line components are used during retrieval sessions. Typical examples of off-line
and on-line components are the ones related to the indexes; their construction and maintenance
normally take place off-line, while the search and update are on-line operations.

The Database layer is generally responsible for the storage and indexing of the multimedia
objects. Its design requires analysis with respect to aspects such as the datatypes, the data model,
and the indexing strategies (Section 3.4 reviews the most used indexing methods). For example,
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it is known that content metadata is of high-dimensional nature and the typical index structures,
such as the “R-tree” [BKSS90] do not behave well in such situations; dedicated high-dimensional
indexing components could be added to the Database layer. Figure 2.1 shows that the Database
layer has two types of components: storage and indexes. For both there are off-line operations such
as the index creation and data model instantiation, and on-line operations such as index search,
index update, uploads and deletes.

The Middleware layer typically contains components that are neither storage, nor user-related.
Nevertheless, middleware components such as similarity models, feature extraction and query
analysis are equally important as any other component in a different layer. Among them, the
similarity assessment components are especially important because they offer the means for com-
monly representing the objects and, according to a specific model, to compare them. The most
used similarity model, the geometric model, requires metric functions [AHK01] over a vector
space [BBK01, HAK00], also called feature space. However, it has been argued that human sim-
ilarity judgment cannot always be captured by metrics. Alternative models like feature contrast
model [Eid03, SJ97] and preference relations model [Cho02, BCOO05] have also been proposed;
we discuss about them in Section 3.3. Figure 2.1 illustrates the Middleware layer with its typical
on-line and off-line operations.

At the User layer we find components for query formulation, results visualization, relevance
feedback [HLJ06, CFB04, IA03, TM03], browsing and manual annotation. The queries, detailed
in Section 2.4, can be natural language queries such as “find persons walking up stairs”, query-
by-keyword queries such as “tennis + court”, or query-by-example. The visualization interface
is another typical component belonging to the user layer. Minimum functionalities for such an
interface include zoom, overview and filter [SBD06]. Another trend in multimedia visualization
is faceted retrieval, which allows the user to navigate along conceptual dimensions that are found
in the datasets [YSLH03].

2.3 Multimedia Items

Metadata is currently used to assist creation, search, consumption and management activities in a
broad range of domains. For some tasks metadata may have a secondary role, but for the others
metadata becomes as important as the objects themselves. For example, an image may loose
a major part of its relevance for a specific use if is deprived of contextual information such as
the authors, terms of use, or technical details. Moreover, metadata itself can be a stand-alone
retrievable object [vONH04, NvOH05].

In this section we introduce the multimedia items as objects that comprise the raw multimedia
contents as well as their metadata. Multimedia items typically have a complex structure. It is
common for objects to encapsulate parts in different media, to have references to components
they do not directly include, and to have complex relationships among them. This is reflected in
the models for multimedia objects adopted in one of the most used metadata standards, MPEG-7
[SKP02].
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2.3.1 Metadata

The concept of metadata itself –the data about the data– is hard to define due to the different roles
it plays in various communities [KBD+05, Nac04]. The borders between data and metadata are
difficult to establish in environments that include technologies with complex interrelationships. In
a library for example, the title, the author and publication date of a book are considered meta-
data. In the context of a video distribution network these attributes are considered data, while
network bandwidth and adaptation parameters are metadata. As another example for the vari-
ety of data/metadata definitions, the P/Meta [SS06] standard introduces the “essence” concept for
the raw data, the “meta-essence” concept for keyframes and video regions, the “content” concept
designates the bundle of essence and contextual metadata, and the “asset” concept designates the
content together with its usage rights.

Metadata is used to describe the context in which the multimedia items have been created, are
stored or can be used, or to describe aspects of the object content. It addresses several aspects of
multimedia items and includes:

• context information such as title, date and authors;

• content analysis regarding details about the content of a multimedia object such as color,
texture, shape, or motion activity;

• technical details such as identification issues, size of objects;

• terms of use such as digital rights;

• administrative such as transport, adaptation or custody.

Metadata can be further classified as low-level metadata, such as the color histogram of an
image, and high-level or semantic metadata that is concerned with abstractions such as people,
animals or buildings.

Another classification of metadata accounts for its source: automatic or manual. There is
currently a great interest in automatizing the metadata extraction process [JCLZ05, ZC03].

Finally, metadata is domain dependent. For instance, there may be some specific descriptions
concerning the land cover and the relief, that are useful only in geographical applications. Simi-
larly, descriptions such as the number of goals or number of passes are relevant only in sports
domain.

2.3.2 Standards

Information communities need to effectively access and share their resources. Metadata standards
emerged from digital libraries, audiovisual production and distribution and knowledge representa-
tion communities. They address the need to catalog and retrieve on large collections of documents,
to interchange and re-purpose content produced in different contexts and to deal with the increas-
ing complexity of the technological platforms used to create, manage and view objects.
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In the sequel we will be looking at some well-known standards and identify key aspects from
the point of view of a metadata model. This includes considering the application domains, the
coverage in terms of descriptive and content-analysis metadata, and the way the concepts relevant
for multimedia repositories are captured.

• Dublin Core (DC) [Dub07], a document-centered standard, defines a set of 15 attributes
including title, creator, date and subject. DC does not tackle issues related to the structure
of documents or collections and considers mostly descriptive information.

• ISAD, ISAAR, EAD [ISA99, ISA04, EAD07] are focused on archival description. They
relate documents to the institutions and people involved in their creation and include de-
scriptions for sets of documents, capturing the hierarchical structure of collections.

• MPEG-7 [SKP02], a product of the ISO/IEC, is aimed at providing means for the descrip-
tion of multimedia content that be can of use for search engines, multimedia archives and
metadata production tools. It standardizes the Description Definition Language (DDL) for
the definition of schemes for the description of media and the descriptors (D) for different
audio-visual low-level features such as color, texture, shape, motion, melody contour. It
also introduces a semantic layer of description schemes (DS) for structural and conceptual
representations of D and DSs.

• TV-Anytime [TV-07] provides a metadata framework for building Electronic Program Guides
geared toward broadcast and on-line services. It introduces description elements for pro-
grams, parts of programs, groups of programs and real-time information.

• NewsML [New07] is a standard whose aim is to represent and manage the electronic news
life cycle: production, delivery and archiving.

• MPEG-21’s goal [BdWH+03, MPE02] is to provide a complete framework for the multi-
media delivery chain. The standard uses the “Digital Items” as the objects to be packed
and distributed. MPEG-21 contains parts such as Digital Item Declaration (DID), Digital
Item Identification (DII), Intellectual Property Management and Protection (IPMP), Rights
Expression Language (REL), Digital Item Adaptation (DIA) and Digital Item Processing
(DIP).

• Material eXchange Format (MXF) is an open file format for the interchange of audio-visual
material. It has been designed with the aim of improving interoperability in a content-
independent fashion.

• Resource description framework (RDF) and RDF Schema (RDFS) [Con04] represent the
W3C’s proposals for the general description of information on the Web. RDF is designed to
express statements about resources, and constitutes an elementary language for Web meta-
data interoperability. Concrete descriptors come from vocabularies such as Dublin Core
or any of the above. RDFS is a type system for RDF, making the connection to ontology
languages.
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Table 2.1: Concepts and metadata categories in standards

Dublin Core RDF/OWL ISAD/EAD MPEG-7 MPEG-21 TV-Anytime P/META MXF
General

Structure N Y Y Y core Y Y core
Domain any any archives AV AV TV TV TV

Metadata Categories
Descriptive core N core marginal S core S S

Content N N N core N N N
Technical Y N N Y Y N Y

Administrative N N Y N S S Y N
Main Concepts

Item Resource Resource Unit of
Description

Multimedia Content Digital Item Content Program content

Segment Segment Component Essence Essence
Creator Creator Creator Creator N Y
Archive N N Y Y Y

User N N N Y Y Y Y
Distributor N N N Y Y N Y

• Web Ontology Language (OWL) [AAHH03] is also part of the W3C semantic web archi-
tecture concerned with description of information and ontologies. OWL it is also a type
system, with similar goals as RDFS.

• P/Meta [SS06], developed by the European Broadcasting Union, addresses the exchanging
process of TV programs in industries domains. It defines a business process model with four
entities: content creators, content distributors, content repositories(archives) and content
consumers. However, only the first three of them are effectively addressed in P/Meta. The
fourth, content consumers such as personal video recorders (PVRs), are defined in TV-
Anytime which addresses the TV and broadcast industries.

Although comparing standards from different domains is hard, Table 2.1 highlights some of
the issues we will be discussing and how they are addressed in the selected standards. The table has
separate columns for each of the selected standards and is split horizontally in three parts. The first
one treats the general nature of the standard, saying whether it provides constructs for structuring
the objects and identifying the domain for which it has been proposed. DC, for instance, does
not prescribe structure for the objects while structure is the core of MPEG-21. RDF/OWL are not
domain-specific, but MPEG-7 is centered on audiovisual objects and TV-Anytime on television.

The second part of the table analyzes the presence and dominance of some metadata cate-
gories. Descriptive metadata, available in most of the standards, is at the core of ISAD, marginal
in MPEG-7 and supported (S) by MPEG-21, P/Meta and MXF; these standards do not define
descriptive metadata models but assume there will be metadata associated to the objects.

The third part of the table takes the main concepts for generic multimedia repositories and
identifies their presence and the adopted terminology in the standards. The basic ‘Item’ is given
different names in the standards. The concept of ‘Segment’ comes from MPEG-7 but corresponds
to the ‘Essence’ in the TV standards. The concepts of ‘User’ and ‘Distributor’ appear in the AV
and TV standards and not in the archival standards.
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Figure 2.2: Structure and Description Providers

Globally, the table shows that standards from the archival areas provide detailed models for
descriptive metadata, and those from the AV and TV areas concentrate on content description
and distribution. Standards originated in the television industry are either focused on the file
formats, like MXF, or on the business process, such as P/META. Coding aspects have not been
considered in the table. They are not central in multimedia databases, where it is assumed that
format conversions are needed at import and export time. Currently most standards are supported
on XML or provide some XML format as well.

2.3.3 Items

Standards are geared towards the consistent use of a description model and the ease of data in-
terchange. It is important to characterize the elementary objects introduced by standards and to
investigate the relations between similar concepts across the main standards.

The expression multimedia item will be used to capture what is described by different terms
in different domains. In the information science area, ‘document’ is the chosen term. ‘item’,
‘object’, ‘content’ and ‘resource’ are used on more technological contexts to denote the subject of
description.

An elementary item may be a written text, a photo, a video or audio record. Items may be
more complex and aggregate parts that might be different in nature and in media: a bundle of
video and sound records, a news item composed of text and photos. In the sequel we will deal
with multimedia items that can have a complex structure, possibly aggregating other items; both
complex items and their fragments have associated features that can be captured as descriptors.

To account for the structure of complex items and for their atomic description we consider
that each multimedia item has a structural part and a description part. Based on this, we classify
metadata standards as structure providers and description providers.
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In Figure 2.2 a generic multimedia item is represented as a structure in the spirit of the MPEG-
7 Description Scheme, with an associated set of descriptors to capture specific features. Standards
such as ISAD, MPEG-21 DID, TV-Anytime, MPEG-7 (DS) and RDF can provide structure, while
Dublin Core, MPEG-7 (D), MPEG-21 (DII, DIP, REL, IPMP) can provide the specific descriptors.
Within the set of available descriptors, some can be applied to an entire item as well as to segments
(parts) thereof, while other descriptors can only be applied to segments.

Given the breadth of the description standards, the same type of information may be available
from two or more standards. Dublin Core, MPEG-7, or TV-Anytime can provide a Title description
for an MPEG-21 Digital Item. The choice of one of these standards as the metadata source is left
for the content provider or metadata authoring tool.

Figure 2.3: Combination of MPEG-21 and TV-Anytime

The multitude of standards creates potential for combinations and this is already being ex-
plored. Standards such as MPEG-7, MPEG-21 or TV-Anytime allow the inclusion of meta-
data from other standards. For example, the MPEG-21 Digital Item declaration Schema, allows
Statement elements, intended for the insertion of descriptions from other standards. Simi-
larly, the TV-Anytime Phase 1 Schema incorporates metadata from MPEG-7 namespace, while
TV-Anytime Phase 2 incorporates MPEG-21 elements as well. Figure 2.3 shows a Descriptor ex-
cerpted from an MPEG-21 digital item which includes a TV-Anytime ProgramInformation
element.

2.4 Queries

The first step toward satisfying an information need is to express it as a query into the search
interface of a multimedia retrieval system. Depending on the search modalities available in the
search interface, the multimedia queries can be expressed with keywords and natural language
topics, but they can also be image examples, video samples, audio files or even combinations of
these modalities [CDES05, FSN+95, ISF98, LH04, RTL02, RVM06, RSB+04]. Some systems
offer visual interfaces that help the users “sketch” their examples.
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Unfortunately, a standard multimedia query language similar, to what Structured Query Lan-
guage (SQL) is for the data retrieval field, does not exist yet. The complex nature of the infor-
mation needs, the variety of media modalities and the heterogeneous data models are possible
reasons for this situation. In order to illustrate the complexity of query formulations, we take the
example of a multimedia query asking for video shots of tennis players on the court, with both
players visible at the same time. Such a query can be formulated in several ways. As a keyword
query for example, it could look like “tennis +players+court”. As a natural language query, its
formulation can be “Find shots of tennis players on the court –both players visible at the same
time”. As a query-by-example, the query can be either a picture that captures two tennis players
on the court or a video sequence of a tennis match or an audio file containing racket hits. Finally,
a bundle that includes a natural language formulation, a video shot (with or without the audio
track) and an image can also be regarded as a query. The last query type —a bundle of data in
several modalities— represents the query format that has been adopted in the recent video retrieval
benchmarks [SOK06].

Due to the nature of the information retrieval task, there is always a certain gap between the
users information need and what the queries really express. It may be caused by subjective factors
such as the users ability to express their needs, or the users experience with search systems, or
more objective factors such as interface constraints or lack of meaningful examples. In interactive
multimedia search systems, the gap can be overcome by helping the user refine the initial queries
with the help of relevance feedback techniques [CFB04, HLJ06]. In automatic search systems, i.e.
without human interaction during the search, a technique called pseudo-relevance feedback can be
applied [Sal71]. That means that the top k documents in the result set are assumed relevant and are
used to refine the initial query. Otherwise, if query refinement is not performed, the assumption is
that queries are as close as possible to what the users want.

The queries expressed at the interface level have to be analyzed and transformed in order to
make them compatible with the internal representation of the multimedia items. In practice, the
query analysis process implies almost the same operations that have been done at indexing time,
for each of the multimedia items. That means the query analysis processes and therefore their
results —the internal query representations — are highly dependent on the retrieval system that
they are part of. The best places to look for types of query representations are the presentations of
the various retrieval models [Jag06, NNT05, UJ04, ETM04, AAG02, Sal71].

2.5 Multimedia Databases

In this section we talk about multimedia databases and their role in retrieval systems. We start
with a set of requirements from the application domains.

2.5.1 Requirements

Retrieving multimedia data efficiently, requires proper storage and indexing strategies. Such con-
cepts are quickly associated with databases mostly because of the out of the box functionalities that
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they offer: centralized persistence, guaranteed integrity, concurrent access, security constraints
and efficient indexes for the common datatypes.

Building reliable multimedia databases is a hard task because of the large variety of modal-
ities (text, video, audio, image) and encoding formats (MP3, MPEG-2/4, MPEG-21) for both
the content and the metadata. Often what is consumed, is not only the raw content (an image or a
video), but complex items that also contain text and XML metadata. Hybrid databases built to sup-
port combinations of relational, XML and generic binary large objects are required. An efficient
access to multimedia items also requires indexing structures, generally datatype-oriented, such as
numeric indexes, text indexes, XML indexes and high-dimensional indexes. Some datasets require
special preprocessing efforts in order to become indexable. Metadata often appears in text/XML
format, but the nature of it is rather non-textual, containing numeric feature vectors. For exam-
ple the MPEG-7 descriptors are embedded in XML but their nature is numerical. In such a case
an XML index is useless. The data must be converted to numerical datatypes and indexed with
high-dimensional methods [Agg02, GPB04, DN05, CRD06].

2.5.2 Databases

Multimedia databases can be built with different database technologies including relational data-
bases, object databases, object relational databases, native XML databases, hybrid relational and
XML databases.

Most of the currently used database systems are based on the relational model [Cod83]. Struc-
turing classical data types based on relations has a sound theoretical background and has proved
intuitive and well supported. The data is structured in a set of tables which have rows representing
objects and columns representing their attributes. The Structured Query Language, developed for
the relational model, permits optimized processing of data by means of insert, update, query and
delete operations. The trade-off between execution speed and data redundancy gives the degree of
normalization of the relational model. SQL queries on a highly normalized database i.e. having
no redundant data, may run slower than on a database that allows some degree of redundancy. The
Relational Database Management Systems (RDBMS) provide a natural setup for highly structured
data, efficient implementation for the most common data operations, a standard query language,
and respond well to the scalability and search flexibility criteria. However, with the ever evolving
XML-based formats, frequent changes in the metadata models are expected. The relational model
by itself, lacks such a dynamism, extensibility and even portability.

Object-oriented databases [DDB91] store the information as persistent objects which are in-
stances of user-defined classes. This gives the programmer the possibility to encapsulate the data
in specific, user-defined ways. Recent data-types such as audio, image, video or other user-defined
types can be stored in the database in the same format that the application requires, thus avoiding
unnecessary conversions. However, scenarios which require different views and different func-
tionalities on top of the same data might still be difficult to implement.
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Taking the best of the relational and object-oriented approaches, the object relational databases
[SM95] are suitable for situations where an existing relational model needs to be enriched with
object-oriented facilities.

XML databases [WK03] appeared as a natural storage solution to the increasing quantities of
data that are being stored and interchanged in XML format [XML07]. There are two categories
of XML databases: native XML databases and XML extensions. The Native XML databases
[FS04, JAKC+02] use especially designed data types and manipulate data only by means of XML.
Although internally they can be built on a relational, or object-oriented database, or a proprietary
storage format, no other datatypes are made available: XML documents go in, XML documents
go out. On the other hand, the XML extensions enrich the functionalities of the existing database
systems by storing XML data either in a text format [Ora04], or through a mapping of XML to
relational schema [CCB07, CCB04].

2.5.3 Databases for Multimedia items

Ideally, we look at the databases for multimedia items as typical databases on one side, that is
with their standard queries, backup, integrity and security facilities, and on the other side as
supporting imprecise IR tasks. A recent research domain, called DB&IR, tackles these issues
[Wei07, CRW05]; the results will hopefully contribute to the MIR field.

Since the majority of the multimedia items are represented as XML documents, an XML stor-
age system that supports the current XML Schemas could be preferred. We have already seen the
existing XML storage approaches: native XML databases [FS04, JAKC+02] and XML extensions
of RDBMS [BCJ+05, CCB07, Ora04]. The native XML databases generally do not support typed
representations of the data, other than XML. An array of integers for example, is treated as one
string and it is not straightforward to access the individual elements. As multimedia content de-
scriptors, such as the MPEG-7 descriptors presented in Section 3.1, heavily use vector/matrices
datatypes, the native XML solutions are not yet prepared for supporting multimedia items.

Another possible approach is to store multimedia XML documents in relational databases. For
this, we need to map XML Schemas to database models. The available RDBMS-based XML stor-
age solutions can be classified into two major categories according to their mapping approaches:
schema-conscious approach and schema-oblivious approach. In schema-conscious approach, de-
sign of the database schema is based on the understanding of XML Schema. [DKD+02] for
example, defines a relation for each element and uses primary-keys and foreign-keys to describe
the parent-child relationships between elements. In schema-oblivious approach, a fixed database
schema is used to store the structure and the data of any documents without the assistance of
the XML Schema. There are arguments for and against both the schema-conscious and schema-
oblivious approaches. On one hand, it is generally accepted that the schema-conscious approach
has better query performance than the schema-oblivious approach since the data is already par-
titioned based on the XML Schema. On the other hand, the schema-oblivious approach is more
efficient for re-constructing data back into XML. The use of custom data types, which is essential
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to multimedia retrieval, is only supported by the schema-conscious mapping approach. Impos-
ing a fixed model, the schema-oblivious approach does not have such a feature. The work in
[CCB07, CCB04] proposes an approach that combines the two mapping types. Based on the ob-
servation that the data values are held in leaf nodes, it uses schema-conscious mapping for them.
For the internal nodes, schema-oblivious mapping is used.

A hybrid relational and XML database, similar to what has been proposed in [BCJ+05], seems
to be the closest to the nature of the multimedia items and can be identified as a possible storage
solution. However, the idea of a hybrid relational and XML database by itself is not of much help,
unless we define a proper data model for multimedia items and we develop indexing strategies for
high-dimensional data.

2.6 Multimedia Retrieval Methods

This section gives an overview of the retrieval strategies that can be found behind the various
implementations. Considering the generic retrieval architecture presented in Section 2.2, the real-
world multimedia retrieval systems appear as particular cases with various degrees of fidelity to
it.

The fact that MIR systems are meant to cope with complex multimedia items and not text-
only documents, increases the complexity at each of the architectural levels: user, middleware
and database. At user level, beside keyword and natural language-based queries, there can be
more query types such as by-example or by-sketch. At middleware and database levels there
can be dedicated similarity and storage models, respectively. The number of retrieval strategies
could be equal to the number of functional combinations between user, middleware and database
components. For example, any of the possible query types could be combined with a similarity and
a storage component. However, in practice we have identified three main categories of retrieval
methods.

The methods in the first category follow text-based techniques exclusively. They extract from
the multimedia objects everything that can be indexed by textual means. Given this approach, the
middleware and database layers incorporate text similarity models and text storage, respectively.
At the user-interface level the queries are also formulated by textual means: keyword-based or
natural language queries. Among the real-world multimedia systems that apply pure text retrieval
methods there are “Google”, “Yahoo” and “Microsoft” image search engines and the “mSpace”
[SWRS06].

A second category of multimedia retrieval methods are the ones supporting solely query-by-
example or by-sketch queries. In these cases, the query expressivity is limited to whatever the
examples can offer. For example, in systems that support query-by-sketch, such as [FSN+95,
MHH99], the user is requested to transpose its information need into a shape, or a simplistic
drawing which is then matched against the items in the database. In systems such as [CTB+99,
ORC+97, SC96, MM99, PPS96, CMM+01, EB03b, PBG04, LH04], the query-by-example paradigm



20 Multimedia Retrieval

is used, but the user must also specify the criterion for the similarity assessment: color, shape, tex-
ture or spatial location.

A third category of MIR methods are hybrid. The systems that implement such methods typ-
ically start from natural language, or keyword-based queries, and seek relevant multimedia items
by using any information available. Quite often, the only available information are the automati-
cally extracted low-level descriptors. In such cases, mapping natural language queries to custom
combinations of low-level descriptors becomes the main problem to solve. For example, how can
a query such as “Find persons talking on a telephone", be translated into color, texture or shape
feature values? Systems such as [RVM06, HW97, IBM08, Moj04] try to overcome such difficul-
ties by applying machine learning techniques with which high-level concepts such as “portrait”,
“animal”, “outdoor image” or “building” are automatically extracted. Similarly, [SWG+06] fo-
cuses on the automatic detection of concepts, where the concepts are taken from a fixed lexicon
[Lar08, NST+06]. However, the main problem with these systems is that their accuracy is quite
low; concepts such “entertainment” are especially difficult to annotate. Moreover, the number of
possible concepts used by humans largely surpasses the number of available detectors [HYL07].

2.7 Multimedia Systems

In this section a review of the most used multimedia retrieval systems is presented. Surveys on
this topic can be found in [DJLW08] and [SW05].

QBIC Developed by IBM [FSN+95], it is one of the earliest image retrieval systems with CBIR
query facilities. QBIC supports the retrieval of images based on a number of features including
color, texture, and shape. The search interface allows the user to compose a query by drawing
the rough shapes and choosing the color of objects according to what the retrieved image should
convey. The similarity computation uses a weighted Euclidean distance and the indexing is im-
plemented by using R*-trees [BKSS90]. The resulting images are displayed in a grid sorted by
decreasing similarity scores to the query features.

NEC AMORE In this system [MHH97, MHH99] the query process starts by selecting a cate-
gory of images. An initial set of images can be selected at random or by keyword. Of these images,
visually similar images can be retrieved. The images are segmented into at most eight regions of
homogeneous color, and downsized to 24×24 pixels. The regions in this picture are directly used
for matching either by shape or color. The matching implies a correspondence between regions
in the query and target image. The shape similarity between two regions is based on the number
of pixels of overlap, while the color similarity between two regions is the distance in HLS space
between the colors of the regions.

Blobworld In Blobworld, the images are previously categorized [CTB+99] and the user must
start by choosing one of the categories. The features used for querying are the color, texture,
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Figure 2.4: Blobworld: queries and results

location, and shape of blobs and of the background. The color is represented by histograms.
Texture is represented by mean contrast and anisotropy. Shape is represented by (approximate)
area, eccentricity, and orientation. The user selects a blob (an image region), and indicates the
importance of the blob with qualifiers such as ‘somewhat’, ‘very’. The user must also indicate the
importance of the blob’s color, texture, location, and shape. Figure 2.4 is taken from [CTB+99]
and illustrates pairs of queries and their best matches.

MARS [ORC+97] supports queries on combinations of low-level features such as color, texture
and shape. The desired features can be specified either by example, or by choosing colors or
textures from some available pallets. The color feature is represented using 2D histograms over
the HS coordinates of the hue, saturation, value (HSV) space. Texture is represented by two
histograms, one measuring the coarseness and the other the directionality of the image, and one
scalar defining the contrast. The shapes are represented by means of Fourier Descriptors (FD).
Interactive query refinement is made possible through relevance feedback.

NETRA [MM99] works on a query-by-example paradigm and targets image regions. For this
goal, all the images in the database (the Corel dataset) are segmented into regions for which color,
texture, shape and spatial location features are derived. The query images must also come from
the database and the criteria must be chosen from color, spatial location, texture, or shape.

Photobook [PPS96] is designed for specific types of content: faces, shapes and textures. It uses
separate representations for each of them. To perform a query, the user selects some images from
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a grid of still images displayed and/or enters an annotation filter.

PicHunter [CMM+01] is designed for image retrieval, based on features such as color his-
tograms and color spatial distributions. The search process starts with a query-by-example paradigm
and the similarity is assessed with the L1 distance (see Section 3.3.3) between individual feature
vectors. PicHunter uses a Bayesian framework as the relevance feedback mechanism. It tries to
predict the target image the user wants based on the history of the session. The history records
the images displayed by the system and user’s selections in the previous iterations. A vector re-
taining each image’s probability of being the target is updated at each iteration and the images are
displayed in the decreasing order of probability.

VisualSEEK [SfC97] supports text-based and color-based queries through a catalog of images
and videos collected from the Web. Color is represented by means of a normalized 166-bin his-
togram in the HSV color space. The user initiates a query by choosing a subject from the available
catalogue or entering a topic. The results of the query may be used for a color query in the whole
catalogue or for sorting the result list by decreasing color similarity to the selected item. Also, the
user has the possibility of manually modifying an image/video color histogram before reiterating
the search.

MIRROR [Po05] is a content-based image retrieval system that offers query-by-example, hi-
erarchical and random browsing; relevance feedback is also supported. It uses several MPEG-7
visual descriptors: Dominant Color, Scalable Color, Color Layout, Color Structure, Edge His-
togram and Homogeneous Texture. A new similarity measure, the Merged Color Palette approach,
is developed for the Dominant Color descriptor.

IBM-Marvel [IBM08] applies machine learning techniques to detect high-level concepts in
video data from automatically extracted audiovisual features. It automatically associates confi-
dence scores to the assigned concepts and organizes semantic concepts using ontologies. Keyword
and natural language queries are supported.

Google, Yahoo, Microsoft These image retrieval systems support keyword-based queries and
the answer computation is based primarily on the text metadata.

Vizir [EB03b] is an MPEG-7 based visual information retrieval framework which focuses on
similarity measurement with application-specific features (color, texture, shape and motion) and
query acceleration based on R-tree indexes [Eid03, Eid02].

ImageGrouper is a CBIR system with an interaction strategy [NMH02]. The emphasis lies
on group-based search, as this system combines the tasks of searching, annotating, and organizing
images by groups. By dragging images around a workspace, i.e. in and out of groups, and selecting
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different groups as negative or positive examples, the user gives relevance feedback information
without having to think in terms of the system’s internal representation.

CalPhotos In [Cal] there are a number of alphanumerical attributes available for querying, such
as the collection, keywords, location, county, photographer. The colors of each image are quan-
tized into 13 colors bins. Six values are associated with each color bin: the percentage of the
image with colors in that bin, and the number of “very small”, “small”, “medium”, “large”, and
“very large” dots of that color found. Image features are stored as text strings. For example, a
picture of a sky with clouds might have a few large white regions, and a large amount of blue, and
would have a feature text string “mostly blue, large white few”. Search is performed by sub-string
matching.

Informedia The Informedia system [HW97, WKSS96] offers content-based multimedia re-
trieval based on the analysis of the entire spectrum of modalities: native text, texts results of
speech recognition, image, audio and video. The search process is a collaborative interaction of
image, speech and natural-language queries, which has the advantage of compensating erroneous
or ambiguous formulations that may appear if a single query modality would be used.

2.8 Multimedia Retrieval Evaluation

The merits and usefulness of a retrieval system can only be revealed by proper evaluation method-
ologies. A first objective of the evaluation efforts could be to measure the user satisfaction, but
this would require an expensive and exhaustive test scenario. For instance, in such an experimental
setup, a large set of users would have their behaviors monitored. The multitude of variables such
as execution speed, user’s search skills and the learning effects are a serious impediment for such
an evaluation scenario. However, recent efforts such as the Video Olympics [SWdR+08] might
represent a step toward measuring user satisfaction. An alternative to the multitude of variables is
to create evaluation systems at smaller scales, where the possible sources of variability are easily
controlled.

Another evaluation direction could be towards measuring the execution speed, i.e the effi-
ciency. However, no such tests exist because the efficiency was considered marginal in the IR
world. But with the growth of multimedia mass production, scalability problems do appear, and
we expect that retrieval evaluation will focus on efficiency issues also.

The current evaluation efforts are towards measuring the quality of retrieval, i.e the effective-
ness. In [TS92] and then in [Wes04], the authors distinguish between system-oriented tests and
task-oriented tests. System-oriented tests measure if a system works properly given a specific
similarity criterion and task-oriented tests evaluate the usefulness of a system functionality for a
given task. Considering for example, the case of similarity with respect to the “DominantColor”
descriptor for the image retrieval task. A system-oriented test will evaluate if the retrieved images
are really similar based on color information, while a task-oriented evaluation will try to find how
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useful the images is for a specific information need. Both the system-oriented and task-oriented
evaluations take place in the same environment which is defined by 4 components: a fixed num-
ber of multimedia objects to be searched on (dataset), a fixed number of topics from which the
queries will be chosen, evaluation criteria such as the precision/recall measure, and the relevance
judgments or ground truth. Each of these components need to be tuned for a successful evaluation
and have been subjects of research. Regarding the collection’s content nature, it makes sense to
use datasets with relevant provenance. For example, retrieval systems dedicated to medical im-
ages should be tested on datasets of medical provenance, but no one imposes that. It is not known
what is the optimum size of the collection of multimedia objects. There are also no specifications
on what the number of topics should be. Regarding the evaluation measures, they depend on the
existence of relevance judgments (ground-truth). Such judgments may not come from an objective
authority (and usually don’t), therefore they are influenced by subjective assumptions.

We observe that there are still many variables, although fewer that in an user satisfaction eval-
uation. Therefore, it is natural to question the reliability of the current evaluation tests [HL05].
Especially developed significance tests show that the current evaluations are still dependent on
datasets, queries and ground truths [HL05, SZ05]. Most of the multimedia retrieval systems pre-
sented in Section 2.7, claimed successful in their times, were tested on datasets such as COREL,
BRODATZ, BENCHATHLON or COLUMBIA which cover specific domains. Such datasets are
clearly clustered into subsets such as buildings, buses, beach, mountains, red flowers, white flow-
ers, and it is relatively easy to retrieve objects belonging to one of the subsets. Flowers, for
example, are difficult to be mistaken for mountains, even if the retrieval processes uses basic low-
level features. Little can be said about the performance of such systems in broader and more
heterogeneous datasets.

The current MIR evaluation efforts, such as the TREC/TRECVID [SOK06, Wes05, OLIG04]
and CLEF/IMAGECLEF, consist of task-oriented tests that measure retrieval performances from
large and heterogeneous collections. TRECVID for instance, consists of a fixed set of video shots,
a fixed set of topics (queries), a fixed set of relevance judgments and performance measures.
Different retrieval approaches are submitted by various participants, and have their relative perfor-
mances measured. Each of the approaches produces a ranked list of documents for each topic. The
quality of each ranked list is measured per-topic, based on the positions of the relevant documents
in it. For this, the Average precision (AP) is used, where the precision is measured at every rank
at which a relevant document is obtained and then averaged over all relevant documents to obtain
the average precision:

AP = ∑
N
r=1 P(r)× relevant(r)
size o f ground truth

.

r is the rank, N is the number of retrieved documents, relevant() is a binary function on the
relevance at a given rank, and P() is the precision at that rank. If a score for the whole retrieval
system is needed, then mean average precision (MAP) is generally used, where MAP is the mean
of the AP scores for all topics.



Chapter 3

Multimedia Analysis

In this chapter we continue the state of the art in the MIR field by giving more insight on three as-
pects, namely feature extraction, similarity models and multidimensional indexing. We consider
these three aspects essential for a successful retrieval. The feature extraction and the similarity
models are important for the accuracy (effectiveness) of the retrieval, while the multidimensional
indexing account for efficiency. It is important to note however, that although we present them
jointly, these aspects are not always tightly coupled. Each one contributes to several distinct
application domains, among which multimedia retrieval is just one of them. For example, multi-
dimensional indexing, as a database-related aspect, is required in data retrieval, on-line analytical
processing (OLAP), and recently in multimedia retrieval. Similarly, feature extraction is required
in recognition, diagnostics or classification tasks, and examples exist for the similarity models as
well.

The first section of this chapter covers the feature extraction aspect as the process of obtain-
ing properties from multimedia items. We show that there can be directly obtained properties,
also called low-level features [Bob01, DKN04, HR05a, MM96, MFKMT+00], such as color or
texture, and high-level features obtained with automatic analysis of the low-level feature data
[JNY07, JCLZ05]. The feature extraction results are typically incorporated as descriptors, which
according to the feature types, can be low and high-level. The low-level descriptors, consisting
predominantly of vectorial data, have little or no meaning for the human perception. The high-
level ones are human concepts from any knowledge domain.

In the second section we show that the similarity models are used with the purpose of discrimi-
nating between multimedia items. As the items cannot be directly used, the similarity is computed
based on some common representations [ML, EB03a, FKS03, FTCTF01, LLL01].

The final section reviews the multidimensional indexing methods which are required when
high-dimensional datasets have to be searched. In the case of multimedia datasets, with descriptors
easily surpassing hundreds of dimensions, the high-dimensional indexes have been increasingly
required. Various approaches [BBK01, CNBYM01, HS03] have been proposed, but they have
limiting data pre-processing requirements and they work with some fixed metrics only. The most
versatile, but time consuming technique, is the sequential scan. Searching efficiently on these
datasets is still a difficult task.

25
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3.1 Features and Descriptors

Feature extraction is the process of obtaining properties from multimedia items. When the items
are digitized versions of some real world objects, it is important to note that the items properties
are not necessarily the properties of the objects in the world. Section 2.1 has briefly explained
that the digitizations are obtained by sensory means and the sensors limitations introduce a so-
called “sensory gap”. For example, due to lighting conditions, a red car can appear as white in
an image item. It is easy to imagine, that a color-based search for multimedia items that contain
red cars would not find that digital item. Although this is a trivial example, in plenty of critical
domains such as medicine, the “sensory gap” must be seriously taken in consideration. However,
throughout this section we are not concerned with this issue; no relationships between real world
objects and multimedia items are assumed.

In a first, and most referred categorization, the features can be either low or high-level. The
low-level features are the ones directly obtained from the multimedia items, such as color, texture,
shape, motion and audio features [DKN04]. They are used in several application domains namely
object recognition, surveillance, diagnostics and content-based retrieval. The high-level features
consist of human concepts from any knowledge domains. They are either manually obtained with
human annotation efforts, or with automatic annotators that are trained on the low-level feature
data [JCLZ05, ZC03].

Beside the low/high-level categorization, the features can also be local/global and variant/in-
variant. If the feature extraction targets specific item regions, the features are called local and if
the whole item is analyzed, the features are called global. A feature is considered either variant
or invariant if the feature values are sensitive or not to item transformations. For example, if
the shape feature values of an image are insensitive to rotation, such a feature is called rotation-
invariant. The variance/invariance can be judged with respect to any other distortions, such as
scaling, location change, illumination variation, viewpoint transformations, or occlusions.

The feature representations are typically incorporated as descriptors. According to the fea-
ture types presented above, the descriptors can be considered low/high-level, local/global or vari-
ant/invariant. Between features and descriptors there is a one to many relation. Thus, a feature can
be represented in multiple ways. For example, DominantColor, ColorStructure and ScalableColor
descriptors [MOVY01] are all color descriptors. The low-level descriptors consist predominantly
of vectorial data. The DominantColor descriptor for example, consists of an RGB-tuple (red,
green, blue). The color histogram descriptors are even larger vectors of 128 or 256 values. The
entire set of descriptors induces a vectorial space, also called the feature space, which generally
has hundreds or thousands of dimensions.

A possible question to address in this section is: what descriptors should be extracted that
would help finding relevant multimedia items [JNY07, DKN04]? As an answer to such a question,
one may expect a set of descriptors that guarantees up to some degree of confidence that a proper
retrieval system can be built on top of it. Such an answer is difficult to obtain, because the retrieval
quality is a problem that surpasses the choice of descriptors. However, we know that retrieval
based on low-level features is already mature [FSN+95, SC96, RSB+04, WKSS96], but inferring
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high-level features is still a challenging task [Han06, XZTT06, GS04, HOdJ07, SWS+00]. As the
high-level feature extraction depends, up to some extent, on the low-level features, we expect that
the use of low-level features will only grow.

3.2 High- and low-level descriptors

As representations of the high-level features, the high-level descriptors consist of keywords or
more complex natural language formulations that capture human concepts. For the text-based mul-
timedia items, high-level descriptors can be directly extracted from the contents themselves, but for
the other modalities a direct semantic connection to human concepts does not exist. In the second
situation, high-level descriptors can be obtained by means of either automatic [JCLZ05, ZC03]
or manual annotations. Whatever the annotation type, there are arguments for and against their
use. For instance, the manual annotations are considered subjective and expensive to obtain, but
if domain experts validate the annotations, their accuracy is valuable [SBD06, YSLH03]. An
argument in favor of automatic annotations is that are cheaper to obtain when trained concept
detectors already exist. However, such detectors are available only for a small number of con-
cepts and often provide low-accuracy rates. If concepts such as “water”, “sky”, “cars”, “faces” or
“outdoors” are relatively well-detected, concepts such as “entertainment”, preferences [BCOO05]
or moods [Han06] are far from being correctly identified. To cope with the automatic con-
cept detection challenges, the multimedia communities are currently establishing concept lexi-
cons [NST+06, SWvG+06], focusing on the concepts that are feasible for automatic detection
[HYL07, SWG+06, YH06]. Even though the detectors have low accuracy rates, the use of large
concept sets of approximately 5000 concepts has proved beneficial for video retrieval [HYL07].

The remaining part of the current section presents low-level descriptors. Most of them are
included in the MPEG-7 standard. MPEG-7 can describe still pictures, graphics, 3D models,
audio, speech, video and their combination. It is also possible to describe content that is not
audio, nor visual such as the taste or smell [SKP02]. Beside the MPEG-7 descriptors, there are
other types of descriptors such as color anglogram, gabor texture, tamura texture or SIFT (scale-
invariant feature transform) descriptors.

3.2.1 Color Descriptors

DominantColor The “DominantColor” descriptor specifies up to eight colors of an image and
their spatial coherency parameter which is useful for similarity matching. Dominant colors can be
specified for a whole image or an arbitrarily local region. The next sample shows a “Dominant-
Color” descriptor:

<VisualDescriptor xsi:type="DominantColorType">

<ColorSpacetype="RGB"/>

<ColorQuantization>

<Component>R</Component>

<NumOfBins>8</NumOfBins>

<Component>G</Component>
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<NumOfBins>8</NumOfBins>

<Component>B</Component>

<NumOfBins>8</NumOfBins>

</ColorQuantization>

<SpatialCoherency>31</SpatialCoherency>

<Value>

<Percentage>15</Percentage>

<Index>255 255 255</Index>

<ColorVariance>1 1 1</ColorVariance>

</Value>

</VisualDescriptor>

ColorLayout This descriptor specifies the spatial distribution of colors. To calculate the color
layout of an image, the image is separated into 64 equal parts using a 8x8 raster. For each segment
the most representative color is determined. The Euclidean difference of each color is used for
image matching. The next sample shows a “ColorLayout” descriptor:

<VisualDescriptor xsi:type="ColorLayoutType">

<YDCCoeff>27</YDCCoeff>

<CbDCCoeff>20</CbDCCoeff>

<CrDCCoeff>49</CrDCCoeff>

<YACCoeff5>12 9 13 21 13</YACCoeff5>

<CbACCoeff2>10 12</CbACCoeff2>

<CrACCoeff2>24 16</CrACCoeff2>

</VisualDescriptor>

The “ColorLayout” descriptor uses the YCbCr color space with quantization to 8 bits using a
Discrete Cosine Transform (DCT) algorithm. In the YCbCr color space format, luminance infor-
mation is stored as a single component (Y), and chrominance information is stored as two color-
difference components (Cb and Cr). Cb represents the difference between the blue component and
a reference value. Cr represents the difference between the red component and a reference value.
A more detailed description of the “ColorLayout” descriptor and how its parameters are calculated
can be found in [SKP02].

ScalableColor The “ScalableColor” descriptor specifies a color histogram in the HSV color
space, which is encoded by a Haar transform. Typical applications of the “ScalableColor” are im-
age search. The descriptor also forms the basis of the group of frames/ group of pictures descriptor
[MFKMT+00]. A sample is presented below:

<VisualDescriptor xsi:type="ScalableColorType"

numOfBitplanesDiscarded="0" numOfCoeff="64">

<Coeff>-202 71 27 54 -7 -1 7 14 6 13 11 22 -2 3 10 14 0 1 0

2 -1 5 0 0 -6 -2 1 5 -15 5 1 -4 0 0 0 1 0 0 1 2 1 1

1 3 1 2 4 5 1 -3 2 -2 -3 -3 -9 -7 0 -15 -15 -15 -14

-15 -18 -15
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</Coeff>

</VisualDescriptor>

Color Structure The “Color Structure Descriptor” is a histogram which aims at identifying
localized color distributions using a small structuring window. It counts the number of times a
specific color is contained within the structuring window, as this visits the entire image. The size
of the structuring window scales with the image size. For images smaller than 256x256 pixels, an
8x8 raster is used and than grows according to a predefined rule [MOVY01].

<VisualDescriptor xsi:type = "ColorStructureType" colorQuant = "4">

<Values>

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 65 117 119 112 104 104 106 109 116 120

122 121 124 124 124 122 117 113 113 115 114 105 89 73

45 8 2 2 0 0 0 0

</Values>

</VisualDescriptor>

3.2.2 Texture Descriptors

Texture features are intended to capture the granularity and repetitive patterns of surfaces within
a picture. For instance, grass, land, brick walls, and flower petals have each different texture
patterns. The texture features are important in domain-specific image retrieval, such as aerial and
medical imaging. For the latter, they are especially close to the underlying semantics. MPEG-7
includes at this time, three texture descriptors, namely the “Texture Browsing”, the “Homogeneous
Texture” and “Edge Histogram”. Beside these we also present the Gabor and Tamura texture
descriptors [MOVY01].

Texture Browsing This is a compact descriptor that requires only 12 bits (maximum) to charac-
terize a texture’s regularity (2 bits), directionality (2 bits), and coarseness (2 bits). A texture may
have more than one dominant direction and associated scale. For this reason, the specification
allows a maximum of two different directions and coarseness values. The regularity of a texture
is graded on a scale of 0 to 3, with 0 indicating an irregular or random texture. A value of 3
indicates a periodic pattern with well-defined directionality and coarseness values. The direction-
ality is quantized to six values ranging from 0◦ to 150◦ in steps of 30◦. Coarseness is related to
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image scale or resolution. It is quantized to four levels, with 0 indicating a fine grain texture and 3
indicating a coarse texture [MOVY01].

Homogeneous Texture The “Homogeneous Texture” descriptor [KIR+01] applies to images
and is obtained from both the images themselves and their Fourier transforms. First, the mean
and standard deviation values of the original images are obtained. Then, the frequency space (the
Fourier transform of the images) is partitioned into 30 channels, for which energy and energy
deviation values are calculated. The final form of the descriptor is:

[Imean, Isd ,e1,e2, ..,e30,ed1,ed2, ..,ed30],

where the Imean and Isd represent the mean and standard deviation values of the original image
pixels and the ei, edi, i ∈ {1, ..,30} are the energy and energy deviation values obtained from the
ith frequency channel. A sample is presented below:

<Descriptor xsi:type = "HomogeneousTextureType">

<Average>56</Average>

<StandardDeviation>196</StandardDeviation>

<Energy>

240 228 227 239 198 206 216 187 196 212

202 193 190 173 154 206 161 173 162 136

127 176 144 136 161 122 97 144 112 124

</Energy>

<EnergyDeviation>

242 228 224 238 197 205 203 177 192 207

186 183 178 166 135 195 143 166 157 110

121 163 138 132 157 104 81 141 88 113

</EnergyDeviation>

</Descriptor>

Edge Histogram The “Edge Histogram” descriptor captures the spatial distribution of edges.
The computation of this descriptor is fairly straightforward. A given image is first sub-divided
into sub-images, and local edge histograms for each of these sub-images is computed. Edges are
broadly grouped into five categories: vertical, horizontal, 45 diagonal, 135 diagonal, and isotropic
(non-orientation specific). Thus, each histogram has five bins corresponding to the above five cate-
gories. The image partitioned into 16 sub-images results in 80 bins. These bins are non-uniformly
quantized using 3 bits/bin, resulting in a descriptor of size 240 bits. A sample is presented below:

<Descriptor xsi:type = "EdgeHistogramType">

<BinCounts>

0 1 1 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 3 2 6 1 0 3 1 3 2 0 4 0 0 1 0 4 2 0 1

3 4 2 3 2 4 3 3 4 4 3 3 2 4 3 3 6 4 3 3

0 6 4 4 3 1 6 4 4 3 1 5 5 5 4 0 6 5 5 3

</BinCounts>
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</Descriptor>

The “Edge Histogram” is especially useful for image matching when the underlying texture is
not homogeneous [MOVY01].

Gabor texture descriptor It is obtained from an original image by applying the Gabor wavelet
transform at several scales and orientations [MM96]. Two values are calculated at each transform:
the mean and standard deviation values of each transform coefficients. For example, for an input
image, four possible scales and six possible orientations, the descriptor will be a vector of length
4×6×2:

[µ11,σ11,µ12,σ12, ..,µ46,σ46].

More details about the Gabor texture descriptor can be found in [MM96].

Tamura texture descriptor Tamura [TMY78] devises texture features that, according to the au-
thors, correspond to human visual perception. Six textural values namely the coarseness, contrast,
directionality, line-likeness, regularity, and roughness are calculated [HR05a].

3.2.3 Shape Descriptors

Region Shape The region-based shape descriptor expresses pixel distribution within a 2-D ob-
ject region; it can describe complex objects consisting of multiple disconnected regions as well
as simple objects with or without holes. It uses a complex 2-D Angular Radial Transformation
(ART) [RCB05], defined on a unit disk in polar coordinates. The default region-based shape uses
35 coefficients quantized to 4 bits/coefficient [Bob01]. A sample is presented below:

<Descriptor xsi:type = "RegionShapeType">

<MagnitudeOfART>

15 15 11 13 13 15 7 15 10 11 8 8 2 7 12 7

9 13 4 10 7 6 8 8 1 8 7 2 5 10 5 8 9 4 3

</MagnitudeOfART>

</Descriptor>

3.2.4 Motion Descriptors

Camera Motion This descriptor characterizes 3-D camera motion parameters. It is based on
3-D camera motion parameter information, which can be automatically extracted or generated by
capture devices. The camera motion descriptor consists of the following camera parameters: fixed,
pann, track, tilt, boom, zoom, dolly, and roll [JD01].

Motion Activity The “Motion Activity” descriptor captures the intuitive notion of intensity of
action or pace of action in a video segment. The intensity of activity is encoded as an integer
lying in the 1-5 range. A value of 5 indicates a high level of activity and the value of 1 indicates
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the lowest level of activity. This descriptor [JD01] is useful for applications such as video re-
purposing, surveillance, fast browsing, dynamic video summarization, content-based querying
etc.

3.2.5 Audio descriptors

The list of most used sound descriptors includes: Spectral Centroid, Spectral Roll-of Point, Spec-
tral Flux, Compactness, Spectral Variability, Root Mean Square, Fraction of Low Energy Win-
dows, Zero Crossings, Strongest Beat, Beat Sum, Strength of Strongest Beat, MFCC (Mel Fre-
quency Cepstral Coefficient), LPC (Linear Predictive Coding) and Area Method of Moments.
Some examples are show below. More can be found in Appendix A.

<feature>

<name>Spectral Centroid Overall Standard Deviation</name>

<v>8.81E-1</v>

</feature>

<feature>

<name>Spectral Flux Overall Standard Deviation</name>

<v>1.363E-4</v>

</feature>

<feature>

<name>Root Mean Square Overall Standard Deviation</name>

<v>4.869E-3</v>

</feature>

<feature>

<name>MFCC Overall Standard Deviation</name>

<v>1.538E0</v>

<v>2.536E-1</v>

<v>2.873E-1</v>

<v>4.181E-1</v>

<v>2.302E-1</v>

<v>2.241E-1</v>

<v>2.108E-1</v>

<v>2.2E-1</v>

<v>1.853E-1</v>

<v>1.798E-1</v>

<v>1.889E-1</v>

<v>3.092E-1</v>

<v>1.908E-1</v>

</feature>

3.2.6 Miscellaneous descriptors

Anglograms The main idea is to extract image regions and represent them as feature points. The
regions can be identified either by means of shape or color. The anglograms are obtained in two
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phases. First, the Delaunay triangulation for the set of feature points is computed and then, from
the angles of the Delaunay triangles an angle histogram is computed [ZG02].

Keypoint features It is a particular type of feature which identifies image keypoints which are
expected to be invariant to geometric changes such as scale and rotation and photometric changes
such as addition of noise and change in illumination. Details about the keypoints selection can be
found in [Low04]. The keypoint features have been successfully used to obtain descriptors such
as the bag of features (BoF) [JNY07]. The idea behind BoF is to gather all the keypoints across
the dataset and cluster them. The cluster centroids are treated as “visual words” in a “visual vo-
cabulary”. By mapping the images to the “visual word-space”, vector representations are obtained
for them.

3.2.7 Discussion

There are several parallel descriptor categorizations, namely low/high-level, local/global, and vari-
ant/invariant. There can be descriptors that are in the same time low-level, local and invariant, or
high-level and global, or any other combination. Recent years have been marked by a shift from
global and variant descriptors, such as color histograms and global shape descriptors, to local
invariant ones, such as keypoints, region-based, and local shape characterizations. This shift is ex-
plained by the complexity of the multimedia items. The semantics covered by a whole item is too
deep for global descriptors to cope with. It has been observed that local descriptors correspond
better to item parts such as objects or persons. Invariance also became increasingly important
because it helps identifying objects under various circumstances.

3.3 Similarity Models

The similarity models are the means by which the multimedia items can be compared. Although
the choice of a specific similarity model is generally dependent on the available feature types, in
this section we look at the similarity models independently of this type of dependency. The main
question has a general nature: how can one discriminate among multimedia items? In order to find
out, we start with a preliminary discussion on what similarity is, and then continue with a review
of several similarity models.

3.3.1 About similarity in MIR

The similarity between two multimedia items can be seen generically as a relationship between
them. There are domains, such as geometry, in which the similarity is precisely defined: two geo-
metrical objects are called similar if one is congruent to the result of a uniform scaling (enlarging
or shrinking) of the other. With this definition we can easily asses the similarity between geometric
objects. For example, two circles are always similar to each other, two squares are always similar
to each other, and two triangles are similar if and only if they have the same three angles. But
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unlike geometry, in the MIR field it is not clear yet how to precisely define the similarity between
multimedia items.

In [KZB04], the authors stress the difference between similarity and matching applications,
stating that they imply different approaches. Matching is a simple comparison between two items,
—a binary operator— that checks whether the items are identical or not; it is used for copy iden-
tification, for example. But similarity, although it sometimes uses matching techniques, is a more
complex process, requiring knowledge from very diverse domains like biology and psychology.
In their efforts for modeling the similarity, the authors of [SJ97, Gen88] observe that the similar-
ity judgments are many times based on subjective features grouping which yield user-dependent
degrees of similarity.

Currently, in MIR systems the similarity is evaluated by some sort of comparison between
the items feature values (descriptors). The features that can be checked for relatedness range from
low-level ones such as color or shape, to high-level and subjective ones such as a feelings or moods
[Dim04, Han06]. Suppose, for instance, that the “Color Layout” descriptor (see Subsection 3.2.1)
has been extracted and the items are described by vectors with the following form: [YDCCoeff,
CbDCCoeff, CrDCCoeff, YACCoeff5, CbACCoeff2, CrACCoeff2]. Based on this assumption,
the similarity can be regarded as the distance between the points in a six-dimensional space. Note
that this assumption requires the use of a distance metric (see Appendix B). It is not clear how-
ever, whether the similarity relationship should be of metric nature or not [SJ97]. There can be
other similarity assessment methods, such as the feature contrast model [EB03a], that capture in
differently the relationships between multimedia items.

The similarity assessment methods are typically called similarity models. Although they are
sometimes called “text similarity models” or “image similarity models”, the similarity models are
not restricted to specific modalities. The adoption of a specific model depends on the capacity of
representing the multimedia items in that model. However, simply being able to represent images
into a text similarity model for example, does not automatically guarantees good retrieval results.
Whether the model is effective or not, can only be determined with evaluation tests. In the sequel
we present the most used models for similarity.

3.3.2 Text retrieval models

The first two similarity models that we present, namely the vector space and probabilistic models,
are often referred to as “text retrieval models” because they have been widely used with text
datasets [YH07]. Assuming a text retrieval context, the goal for each of these models is to find
text documents that are relevant for a given, usually keyword-based query.

The vector space models In Vector Space Models (VSM) [FO95, VR79, Sal71] both the queries
and the documents are represented in high-dimensional vector spaces, often called term spaces. In
such vector spaces each dimension represents a term, where the terms are features that characterize
the documents at content level; often (but not necessarily) the terms are the equivalent to the
words in the documents. For example, in a term space with N dimensions, document Dk would
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be represented by vector Dk = [dk0,dk1, ..,dkN ] and query Q vectors Q = [q0,q1, ..,qN ], where
the dki and qi are weights for the ith term. The collection of all the document vectors can be
arranged into what is often called a document-by-term matrix which contains rows corresponding
to documents and columns corresponding to the terms. The simplest representations are binary
vectors, dki,qi ∈ {0,1}, representing whether the terms are present or not in the corresponding
document or query. More complex vector representations can be obtained by assigning positive
real weights that encode term frequency information [Sal71]. One of the most popular weighting
schemes is called tf.idf [Sal89], and proposes that term weights should be proportional to the
frequency of the term occurrence within a document, and inversely proportional to the number of
documents where the terms appear. The similarity between query and documents can be computed
using the cosine similarity: sim(Q,Dk) = Q•Dk

|Q||Dk| .

Latent Semantic Indexing Inspired from the VSM, the Latent Semantic Indexing (LSI) [MKS]
starts also with a term space representation of the documents, followed by a dimension reduction
technique, called Singular Value Decomposition (SVD). As the term spaces are high-dimensional,
the intuition is that the data contains dependencies and can be approximately represented in a
space with fewer dimensions. Co-occurrence of terms in various text documents is assumed as an
indication of dependence, or synonymity. LSI projects co-occurring words onto the same dimen-
sion, and independent terms onto different dimensions. Thus, the synonyms get clustered (actually
projected) in the same dimension. By selecting a subset of dimensions of the projected space, LSI
obtains an approximation of the original term space; the more dimensions, the better the approxi-
mation. The query is also treated as a document, thus it has a corresponding vector in the reduced
dimensional space. The similarity between a query and any of the documents sim(Q,Dk) is com-
puted also with the cosine similarity, where Q and D are the query, respectively the document
vectors in the reduced space. The result set, i.e. the relevant documents, are obtained by sorting
the vectors in decreasing order of cosine similarity values.

The VSM-based models in general, and LSI in particular, were widely used in text retrieval
systems such as [Fol90, LB97], and with further enhancements in [Dum90, Dum91]. However,
there are also problems with the VSM models. The main issue is that there is no real theoretic
basis for the assumptions of the term spaces and weighting schemes. Moreover, once a term space
is chosen, its term dimensions are not really orthogonal. That happens because the terms are not
independent of all the other terms.

Probabilistic Models The Probabilistic Models (PM) try to overcome the problems observed
in the VSM such as the reliability of the term space and the choice of term weighting schemes.
The idea of PM is to predict the probability that a given document will be relevant to a given
query. They rely on the assumption that the distribution of terms throughout the collection, or
within some subset of it, may tell something about the likely relevance of any given document.
With this assumption, accurate estimates of the probabilities can be obtained and the documents
can be ranked according to this probability of relevance. This technique is called the Probability
Ranking Principle (PRP) [Rob97]. More precisely, the PRP suggests sorting documents by the
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log-odds of relevance, where the relevance is estimated given the distribution of terms in relevant
and irrelevant documents. For a given document D and a query Q the log-odds of relevance R can
be expressed like

logodds(P(R = 1|D,Q)) = log
P(R = 1|D,Q)

P(R =−1|D,Q)
,

where P(R = 1|D,Q) is the probability that D is relevant to Q and P(R = −1|D,Q) is the proba-
bility that D is irrelevant to Q. Probabilistic models have been used in [MO06, LMO+96, H.R91].

Language-based models A special category of probabilistic models, the Language-based Models
(LM) [Kra05, ZL01, PC98] attempt to statistically model the use of language in a collection in or-
der to estimate the probability that a query is generated from a particular document. The main
idea is that, if the query could have come from the document, then that document is likely to be
relevant. The LM approach practically consists in associating each document with a language
model which is a probability distribution over all the terms in the collection. Formally, for a query
Q, given the language model of document D, the conditional probability is defined as:

P(Q|D) = P(q1,q2, ..,qn|D) =
N

∏
j=1

P(q j|D j).

The document ranking is then obtained by computing the conditional probabilities of Q given the
language model of each document.

3.3.3 Geometric model

Like in VSM, the multimedia items are represented by their coordinates in a vector space and the
the similarity between them is computed with metrics, i.e. distance measures, that satisfy the four
metric axioms: (1) self-similarity, (2) minimality, (3) symmetry and (4) triangle inequality. The
detailed metric axioms can be found Appendix B. The vector space, here called feature space, is
induced by the feature types. Assuming a number of F features, each feature contributing with fi

coordinates (dimensions), the total dimensionality of the feature space is N = ∑
F
i=1 fi; an item x in

such a space is represented as [x1,x2, ..,xN ].

A large number of distance metrics have been proposed in the literature on multimedia re-
trieval. That is explained by the fact that the choice of similarity measure has proved critical to
retrieval performance [AKJ02], which justifies the efforts towards finding “better” metrics. Given
two items x=[x1,x2, ..,xN ] and y=[y1,y2, ..,yN ], several ways for computing the distance d(x,y) are
presented in the sequel.

Quadratic Distance Is given by

d2
A(x,y) = (x− y)A(x− y)T =

√√√√ N

∑
i=1

N

∑
j=1

(xi− yi)ai j(x j− y j), (3.1)
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where A is a similarity matrix, with components ai j representing cross-similarity weights for di-
mensions i and j in the underlying vector space. By specifying appropriate weights in the A
matrix, the similarity distance functions are adapted to specific application requirements or user
preferences. Adaptive similarity with the help of quadratic distance has been used in [BKS01a,
ISF98, CTB+99].

Minkowski Distance of order p Frequently called the Lp norm, this distance metric is given
by:

d(x,y) = {
N

∑
i=1

(xi− yi)p}
1
p . (3.2)

Its special cases, namely L1 (the absolute distance) and L2 (Euclidian distance), have been widely

used in multimedia retrieval. L1, given by d(x,y) =
√

∑
N
i=1 |xi− yi|, has been considered one of

the most effective metrics in practice [YH07]. However, when used with high-dimensional visual
descriptors, L1 and L2 are outperformed by the Lp norm with fractional values for p (p ∈ (0,1))
[HR05c, AHK01].

Chebyshev Distance
d(x,y) = maxi|xi− yi| (3.3)

Canberra Distance

d(x,y) =
N

∑
i=1

(
|xi− yi|
xi + yi

) (3.4)

Cosine Correlation

d(x,y) = ∑
N
i=1 xiyi√

∑
N
i=1(xi)2

√
∑

N
i=1(yi)2

(3.5)

Cosine Correlation is widely used in text retrieval models such as the VSM and LSI. An example
of an LSI-based image retrieval method can be found in [ZG02].

Earth Mover’s Distance It has been initially proposed for transportation problems. For exam-
ple, given the distribution of a mass of earth and a collection of holes, the EMD measures the least
amount of work needed to fill the holes with earth. The adaptation of this metric to image retrieval
[RTG00] treats similarity as a signature matching problem. A similarity match between two items
x,y is calculated by transferring the values of the N dimensions of x to those of y. (x would be
the distribution of earth mass and y the distribution of holes). Similarly to the quadratic distance,
the EMD metric requires a cost matrix C = [ci, j] to describe distances between dimensions. The
matrix elements ci, j reflect the distances between dimensions i and j, also called ground distances.
Formally, the computation of the EMD between x and y finds a flow F = [ fi j] that minimizes the



38 Multimedia Analysis

overall cost of transportation:

Transportation(x,y,C) = min
N

∑
i=1

N

∑
j=1

ci j fi j. (3.6)

Once the optimal flow is found, the EMD is defined as the transportation cost normalized by
the total flow:

EMD(x,y,C) =
∑

N
i=1 ∑

N
j=1 ci j fi j

∑
N
i=1 ∑

N
j=1 fi j

. (3.7)

This metric was used for image retrieval based on color and texture [RTG00, WB04]. Its
benefits were observed also in [DJLW08].

Localized Similarity Functions The goal of this type of functions is to examine only a small
percentage of the data. The similarity between two items x and y (Sim(x,y)), is obtained by
considering only the locality of x in each dimension, where the locality is defined dimension-wise,
either as the set of k nearest neighbors, or points in the same range with xi. The similarity measure
formalized in [HR05b] is defined only for the set of dimensions i that contain yi in the locality of
xi:

Sim(x,y) = ∑
i∈K(x,y,k)

(1− d(xi,yi)
z

), (3.8)

where the set K(x,y,k) represents the set of dimensions i where yi lies in the same locality with
xi; K is called a proximity set [AY00]. The function d is a local distance function that is applied
dimension-wise (only for the dimensions in K), while z is a normalizing factor. The metric defined
above is in fact a generalization of the metrics that have been used in [AY00, Cha03] and showed
improved ability in using only a small fraction of the dataset.

3.3.4 Feature Contrast Model

The Feature Contrast Model (FCM), also known as Tversky’s model [Tve77], is a similarity model
that appeared from observations that questioned the metric nature of the human perception and
especially the triangle inequality and symmetry axioms.

Unlike the geometric similarity model, which represents the items as points in a vector space,
Tversky treats them as sets of binary predicates. Let X and Y be two feature sets corresponding
to items x and y. The contrast model obtains the similarity of the two items by combining the
common features (X ∩Y ) and the distinctive features (X \Y and Y \X):

Sim(x,y) = f (X ∩Y )−α f (X \Y )−β f (Y \X). (3.9)

It can be observed that the formula in equation 3.9 is not a metric, because the symmetry
axiom does not hold. Tversky’s view on similarity assessment was extended in [SJ97] and [SJ99]
to geometric, respective fuzzy feature contrast models. Comparisons with the Euclidean distance
[EB03a], and with various other metrics for MPEG-7 descriptors [Eid03] have shown that in many
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cases the FCM performs better. However, in [RMBB89] the FCM has been criticized for not
capturing relationships between features.

3.3.5 Aggregation model

In this model the assumption is that several independent rankings with respect to a query object
already exist and they have to be merged into a single results list. An example of a situation often
encountered in practice, is when several high-dimensional descriptors are involved in the similarity
computation and metrics adapted to each descriptor are required; we end up with separate rank lists
for each descriptor.

Generic aggregation algorithms The common approach for the aggregation of several rank
lists is to use scoring functions, such as min or average in order to compute overall scores. There
are two phases:

1. the first phase is common to all of the algorithms in this category, and produces several
ranked lists.

2. the second phase combines these ranked lists using various score aggregations; a termination
condition is checked.

Depending on the aggregation function and the termination condition, several aggregation algo-
rithms such as Fagin’s Algorithm, Threshold Algorithm, medrank [FKS03] and Quick-Combine
[GBK00], have been proposed.

Kendall-optimal and Footrule-optimal aggregations Considering λ the list of all item iden-
tifiers and N a number of independently produced rank lists λi, i ∈ {1, ..,N}, the idea behind the
Kendall-optimal aggregation [FA] is to find the optimal λoptimal that could have generated the
λ1,..λN lists. The items order in λoptimal is considered the final similarity order, i.e the item placed
first would be the most similar, the item placed second would be the next similar, and so on.

The problem of finding λoptimal, as the closest list to λ1,..λN , is put in the following way:
λoptimal is the list that minimizes the

N

∑
i=1

d(λoptimal,λi), (3.10)

where d is a distance metric between any two lists. Given that λoptimal and λi, i ∈ {1, ..,N}, are
all permutations of λ , a distance metric between permutations, such as the Kendall tau metric
(detailed in Appendix B), can be used to estimate d(λoptimal,λi). In such a case, the computation
of λoptimal is referred to as the Kendall-optimal aggregation [DKNS01].

If the Kendall tau distance is replaced with the Spearman footrule distance [DB82, FKS03],
the computation of λoptimal is referred to as the Footrule-optimal aggregation.
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(a) Before o1 removal (b) After removing o1

Figure 3.1: Preference Diagram

Aggregating fuzzy information In some cases the items feature values are assigned in a fuzzy
fashion. For example, the degree of redness can vary between 0 (not at all red) and 1 (totally
red). Similarly, the items roundness attribute can follow a fuzzy degree assignment. Under the as-
sumption that sorted lists, also called graded sets, for attributes such as redness and roundness are
obtained independently, their aggregation is obtained with fuzzy aggregation functions [Fag99],
which are rules that combine them and assign overall scores [Fag02, RNS02].

3.3.6 Preference Relations Model

The scoring functions used in aggregation models are quantitative approaches that assign scores
to multimedia items based on their feature values. When multiple rankings exists, the user prefer-
ences for one or another result set is modeled with weights. However, the scores and weights have
a limited expressive power, since not all the user preferences can be translated into quantitative
expressions. The preference-based similarity model appeared as an alternative to this limitation.

Figure 3.1(a) illustrates a first example. A small database composed of five objects is assumed,
where object o1 is preferred to object o2 and o3 is preferred to o4. There is no preference between
o1, o3 and o5. If we try to capture these preferences with a scoring function, the object scores can
be assigned in the following manner:

S(o1) = S(o3) = S(o5) > S(o2) = S(o4). (3.11)

Let’s assume now that object o1 is deleted from our database (Figure 3.1(b)). Looking at the
preferences we see that in the absence of o1, o2 should be retrieved, but looking at the scores we
have S(o3) = S(o5) > S(o2) = S(o4), which do not place o2 among the top objects. That happens
because the scoring function evaluates the similarity only by quantitative means, not accounting
for the relations with the other objects in the database.

As an alternative to scoring functions, in [Cho03, Cho02] the authors propose a similarity
approach based on qualitative preference relations. This technique requires that, given two objects
oi and o j, there must exist a binary relation —the preference relation— that states whether oi

is preferred to o j (oi � o j) or not (oi � o j). If oi � o j we also say that oi dominates o j. If
neither oi � o j nor o j � oi, then we have that oi ∼ o j, which represents the indifference relation.
Assuming that queries are expressed by means of preference relations, it is possible to define
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an operator, called skyline-operator [BKS01b] or winnow [Cho02], that computes the answer by
picking the most preferred objects, i.e. all the objects that are not dominated by the others. The
skyline operator is defined as:

skyline(DB) = {o ∈ DB|@p ∈ DB, p� o}. (3.12)

In the previous example, after the deletion of o1, o2 becomes a skyline object, i.e. is not
dominated by any other object. A second example, illustrated in table 3.1, consists of set of books
described with three attributes, namely Id, Description and Price. Let us assume that between

Id Description Price
772691 Being and Time 20
772691 Being and Time 15
772691 Being and Time 18
820591 The metamorphosis 5
374164 Descartes’ Error 25

Table 3.1: A collection of books

any of these books —represented as tuples (Id,Description,Price)— the following preference
relation is defined:

(Id,Description,Price)� (Id1,Description1,Price1)≡ Id = Id1∧Price < Price1 (3.13)

This preference relation can be also regarded as a query and states that if we find books hav-
ing the same identifier, then we prefer the ones that have a smaller price. However, it does not
state anything about the books having different identifiers. According to the preference we have
exemplified (Equation 3.13), books such as “The metamorphosis” and “Descartes’ Error” find
themselves in an indifference relation with the any of the “Being and Time” copies. If the skyline-
operator (Equation 3.12) is used to answer this preference-based query, the set of “best books”
shown in Table 3.2 is obtained. From the three copies of “Being and Time”, the one with the
smallest price is picked. Further, if we iterate the skyline operator on the remaining books, a set

Id Description Price
772691 Being and Time 15
820591 The metamorphosis 5
374164 Descartes’ Error 25

Table 3.2: The skyline books

of “second-best books”, shown in Table 3.3, is obtained.

Although we have illustrated only two iterations, in preference-based MIR applications such
as [BCOO05, LK02], several skyline iterations can be performed and the partial object sets can
be ranked: the set of skyline objects, followed by the skyline of the remaining objects, and so on.
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Id Description Price
772691 Being and Time 18

Table 3.3: The set of second-best books

Although it is a ranking without scores, also called a qualitative ranking, the interest in having re-
trieval systems that take into account the user preferences led to an increasing adoption of skyline-
based similarity models [GSG05, YLL+05, PJET05, PTFS05, BC05, BG04, KRR02, TEO01].

3.3.7 Generative Model

In this model, every object is considered as the outcome of a process that generated it. The idea is
to include in the similarity assessment knowledge about the likelihood of existence of the objects
to be compared. In [KBT05] it is argued that the generative processes are important since they help
the selection of critical features for similarity comparison. As an example, in [KBT05] the authors
ask which is more similar to a given nutritious mushroom: a mushroom identical except for its
size, or a mushroom identical except for its color? They suggest that knowing how mushrooms
are formed, i.e. their generative process, we can be sure that mushrooms grow from small to large
and their final size depends on the amount of sunlight and soil fertility. Therefore, it is more likely
that the differently-sized mushroom is more similar than the differently-colored.

When applied to multimedia retrieval, the generative models follow probabilistic approaches
(see Section 3.3.2). Under the assumption that each item was obtained from some specific gener-
ative process, the similarity is assessed through the probability that the query is an outcome of the
item’s process [Wes04].

The range of applicability for the generative models is not very large for the time being, but
they seem to be promising for high-level similarity judgments. For instance we can consider two
images, each containing a human face. Based on common features such as shape, color or salient
points they may appear very different, but analyzing their “history” or the processes that produced
those faces we may find out that they capture the same person.

3.3.8 Network Model

The idea behind this model is to represent the items as nodes in a network, with part-Of or isA rela-
tions between items. The most representative class for network models are the semantic networks,
where the nodes of the network are concepts, eventually coming from predefined ontologies. Such
a representation mode is often referred as a conceptual graph [NC06]. The measure of similarity
between two nodes(concepts), is the length of the shortest path between them. Usually the seman-
tic neighborhood of radius r of a concept C is defined as the set of all the concepts that have the
distance to C smaller than r.

The work in [ETM04] proposes a semantic model dedicated to video retrieval with entities and
relations between them. Instantiations of this model are graphs, allowing for graph-based queries,
while the similarity is obtained by graph-based matching. In [RMBB89] the authors propose a
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metric on semantic nets and in [RE03] similarity between concepts from different ontologies is
investigated. As ontology-based similarity has been increasingly used, there are already database
systems that provide embedded support for it [DCES04, CDES05].

3.3.9 Structure-mapping Model

Similarity between objects is some times revealed through analogies. People make analogies that
help them show similarity in some respect, like the processor-brain analogy for example. Fea-
tures like color, size, shape or material could hardly bring some relevance for the processor-brain
analogy, but the fact that processors and brain both coordinate and maintain the main activities
represents the essence of this analogy. Another example from [Gen88] considers the simple arith-
metic analogy 3 : 6 and 2 : 4. The authors state that is not the overall number of features that 3 has
in common with 2, nor 6 with 4 that is relevant for the analogy, but the relation “twice as great as”
that exists between 3 and 6 and also between 2 and 4.

In [Gen88] the authors suggest that the similarity, seen as analogy, is a process of structural
alignment and mapping. In their similarity model the items are treated as sets of atomic entities.
Further, the model captures the structural representation of the objects by observing various re-
lations between the atoms. The similarity between two objects is obtained by aligning the atoms
and the relations across the two objects. The structure mapping engine in [FFG89] is used as a
similarity model.

3.3.10 Hybrid Models

Many similarity assessment approaches combine techniques from several models in an effort to
improve the MIR quality. In [Sch05] the authors introduce a hybrid model for semantic similarity
that combines the network model, in the form of semantic network, with the geometric model.
The resulting model becomes a network of vector spaces, where each node of the net represents
a concept, and each concept is further mapped to a vector space. The similarity is obtained in
two phases: first the query concepts are aligned with the concepts available in the model using
semantic networks techniques and then a metric is applied on the corresponding vector spaces. A
similar approach can be found in [Rau04].

3.4 Multidimensional Indexing Methods

We have seen in the previous section that the similarity between multimedia items can be eval-
uated with a wide range of models. In this section we will assume a geometric model, where
the multimedia items are modeled as points in a vector space and the similarity between them is
assessed with metric-based search operations. Given a query object q from a universe of objects
O and a metric function d, particular sets of objects are of special interest:

• the Nearest Neighbor Set NN(q), defined as {o ∈ O|∀v ∈ O,d(q,o)≤ d(q,v)};
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• the k- Nearest Neighbors Set NNk(q), defined as the set of k elements closest to q in O , i.e.
a set objects A⊆O , such that | A |= k and ∀o ∈ A,v ∈ O−A,d(q,o) < d(q,v);

• the approximate Nearest Neighbor Set (NNA(q)), which is the set of objects {o∈O|d(q,o)≤
(1+ ε)∗d(q,NN(q)),ε > 0}.

The computation of these neighbors sets becomes challenging when dimensionality increases,
a problem often referred to as the “curse of dimensionality” [BGRS99, IM98]. In practice, simply
comparing the query vector to all feature vectors —an approach considered näive and inefficient—
has proved comparable, sometimes even more efficient than especially designed indexing methods
such as the “R-tree” [BKSS90]. Due to the increasing importance of search in high-dimensional
spaces, a great diversity of indexing methods have been proposed in recent years. However, in spite
of their diversity, a common philosophy can be observed. That is, to avoid looking at every object
by creating groups of objects with common properties. Under the assumptions that the grouped
objects are requested or pruned together, checking the groups instead of objects saves time. For
example, the objects in a distance range can be pruned or not just by checking the range’s mini-
mum and maximum distance limits. In the following we review the most used multidimensional
indexing methods.

3.4.1 Spatial Access Methods

Spatial Access Methods (SAM), also called feature-based methods, partition the space based on
the values of the vectors along each independent dimension. When a feature space does not exist,
one can be constructed in order to make SAM applicable. For example, when the only available
information is the distance between the objects, also called distance-only data, a feature space
can be built by deriving “features” purely based on the inter-object distances. Such methods are
called embedding methods [FL95, FO95]. On the other hand, when the feature space is high-
dimensional —which is often the case in practice— dimensionality reduction techniques can be
applied [Jol86, SZZ07].

Spatial Access Methods (SAM) are based on tree data structures with two types of nodes: data
nodes (the leaves) and directory nodes. The information stored in directory nodes describe space
regions obtained with various partitioning strategies. There can be strategies such as data parti-
tioning (DP) which uses minimum bounding regions (MBR) such as R-tree, R∗-tree [BKSS90],
X-tree [BKK96], bounding spheres such as SS− tree [WJ96], MBR and bounding spheres such
as SR− Tree, generic minimum bounding regions (hyper rectangle, cube, sphere) such as the
TV−tree, the BBD−tree [AMN+98] and space partitioning methods (SP) such as the kDB−tree,
Hybrid− tree, SH− tree [BBK01].

We illustrate here the R-tree, a representative for data partitioning approaches, that has proved
efficient for low-dimensional spaces (2, 3, 4 dimensions). The left-hand side of Figure 3.2 was
obtained by running a Java implementation of R-tree found at [Had]; the MBRs around 10 data
points s1, ..,s10 can be observed. The tree structure on the right-hand side of Figure 3.2 follows
the containment hierarchy obtained from the data partitioning.
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Figure 3.2: An R-Tree example

The nodes of the SAM trees contain information, such as coordinates, about the MBRs that
they cover. This kind of information grows exponentially when increasing the dimensions, lead-
ing to the growth of each tree node and of the index itself. The bigger the nodes are, the fewer
can be stored in a disk page. Note that the disk pages have fixed amounts of space set by the
operating system. The number of nodes per disk page is called the fan-out of the tree. As the
fan-out decreases with the dimensionality, accessing such an index becomes more difficult. An-
other important issue is the high-overlapping between the MBRs stored at the same level in the
tree. Although they cannot be observed in our example because we have few data points and few
dimensions, the overlappings lead to an increased number of branches to be searched. The costs
of maintaining SAM structures cover aspects such as space, index re-creation, updates, insertions
and MBRs split managements.

Figure 3.3: Ball and Hyperplane partitioning; figure taken from [HS03]
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Figure 3.4: An M-Tree example

3.4.2 Metric Access Methods

Like, SAMs, the Metric Access Methods (MAM) are also based on tree-structures, but they work
with relative distances between the objects rather than their absolute positions in space. MAM
[HS03, CNBYM01] have gained an important role due to the fact that conventional spatial ap-
proaches stop being efficient in high-dimensional data. They are also required for search in
distance-only data sets, i.e. that cannot be mapped to vectors spaces. An example thereof, is a
set of text documents that use the edit metric (see Appendix B) to measure the distance between
documents.

MAM build their tree-structures by recursively partitioning the data set into subsets at each
node level [CNBYM01]. Two main partitioning schemes have been denoted by Hjaltson and
Samet [HS03]: ball partitioning and generalized hyperplane partitioning. Figure 3.3, taken from
[HS03], illustrates them. With the ball partitioning approach, the data set is partitioned based on
the distance from one specified object, called vantage point or pivot; two subsets are generated:
the first subset inside the ball around the pivot, and the second subset outside the ball. Among ball
partitioning trees the most referenced are Vantage-Point Tree (VP-tree), Multi-Vantage Point Tree
(MVPT) [BO99], Vantage-Point Forest (VPF), Burkhard-Keller Tree (BKT), Fixed Queries Tree
(FQT). With the hyperplane partitioning approach, at each step two points p1 and p2 are selected.
The elements closer to p1 than to p2 go into the left sub tree and those closer to p2 go into the right
sub tree. Among hyperplane partitioning structures we enumerate Bisector Tree (BST), Generalize
Hyperplane Tree (GHT), Geometric Near-neighbor Access Tree (GNAT). and the M-tree[CPZ97].

An M-tree example for a small set of 10 objects is shown in Figure 3.4. The objects are stored
in the leaf nodes, while the internal nodes, also called routing objects, store pointers to child nodes
and the covering radius for the children they “enclose”. The applicability of the MAM methods
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ranges from “native” distance-only datasets to high-dimensional datasets for which conventional
SAM are no longer efficient [DN05]. Their advantage is that the relative distances between objects
can be pre-computed at index creation time, avoiding heavy distance computations at search time.
However, this advantage is also a constraint because the distance measure used at creation time
must be also used at search time. Given that the distance measure must be established in advance,
searching with user-defined metrics that capture personalized criteria becomes difficult. It has
been shown, however, that metrics from certain classes of parameterizable distance functions can
be used [CP02].

3.4.3 Single-Dimension Mapping

Single-dimension mapping approaches map the points in the high-dimensional space to single-di-
mensional values for which efficient techniques such as the B-tree [BM72] exist.

Querying high-dimensional data in single-dimensional space is proposed in [YBOT04] and
[OTYB00], by considering the smallest and largest values among all the dimensions of each data
point. Another single dimensional mapping method sorts the data points according to their posi-
tions on a space filling curve (Hilbert or z-curve) [LLL01]. The list obtained in this way is stored
in a B-tree structure. In practice, several shifted copies of the data points (maximum N +1, where
N is the space dimensionality) are used. Each copy of the data points produces a separate, dif-
ferently ordered list, which is stored in a separate B-trees. The left part of Figure 3.5 illustrates a

Figure 3.5: Space filling curve; figure taken from [LLL01]

space filling curve that touches the original data points. On the right part, the same curve touches
the shifted data with one unit up and one to the right.

In “iDistance” [JOT+05] a data partitioning (see Section 3.4.1) technique is initially applied,
followed by a single-dimensional mapping within each region. The mapping process consists of
sorting the objects in each region on the distance to a specific reference point, such as the region’s
center. The reference points are then indexed in a B+− tree structure. In [SZZ07], the “iDistance”
is applied on local subspaces previously obtained with principal components analysis [Jol86].
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3.4.4 Aggregation Methods

These methods treat each dimension as a separate list, and their goal is to obtain the answer of the
query by accessing a minimum number of lists and as few objects as possible in each of the visited
lists.

Branch and Bound on Vertically Decomposed Data (BOND) [AMNK02], adopts vertical de-
composition as storage organization. That means it decomposes the data into multiple tables, one
for each dimension. Therefore, the information for a specific object is distributed into multiple
tables. The algorithm accumulates the distances between the query object and all data vectors,
by scanning the dimensional projections one-by-one. After processing a few dimensions, partial
distances of k-nearest neighbors are exploited to discard safely from further consideration those
vectors that cannot possibly participate in the result. This process is graphically illustrated in Fig-
ure 3.6. It can be observed that groups of 8 dimensions are successively scanned. After reading
each group, based on partial distances, a set of objects is pruned. The iterative application of this
process quickly reduces the candidate set (the upper part of the figure) to just a small database
sample.

3.4.5 Data Approximation Structures

The methods described here are based on a result obtained in [WSB98], which states that the
MAM and SAM are outperformed by a simple sequential scan whenever the dimensionality is
above 10. Therefore, their initial assumption for high-dimensional data is that a sequential scan is
inevitable. Under this assumption, the VA-file method [WSB98, TM03] constructs a vector of ap-
proximations, significantly smaller than the original data and sequentially scans it. The vector of
approximations is the result of a space division in a number of cells; all the objects contained in a
cell are represented by a common approximation. When searching for nearest neighbor for exam-
ple, the entire vector of approximations is scanned. Based on their minimum/maximum distance
to the query the majority of approximations are filtered. For the remaining ones the corresponding
exact data points have to be accessed. The critical factor of the VA-file’ performance is the filtering
step. If too many approximations remain, a lot of objects have to be accessed and the advantage of

Figure 3.6: Example of BOND technique; figure taken from [AMNK02]
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an approximation file is lost. Discussions and improvements of the VA-file pruning strategy have
been reported in [WY06].

Also using a grid of cells, the IGrid [AY00] maintains separate lists for the objects in each cell.
The similarity between any two objects uses only the set of dimensions for which the two objects
lie in the same range (the proximity set). The number of objects that are accessed is kept small as
the dimensionality increases, but the storage overhead is 100% because all the objects are copied
into the indexing structure. Bitmap IGrid variants have been proposed [Cha03, GPB04].

The process of partitioning a high-dimensional space is itself a specific problem requiring
dimension-wise discretization strategies. A discussion on discretizing continuous-valued attributes
can be found in [FI92]. In [Jag06] dimension-wise histograms of the distance values from the
points to the data center are created. The number of bins in each dimension’s histogram gives
the number of intervals. [AWY99] is also a data approximation technique where the partitioning
strategy is based on a graph model.

3.4.6 What indexing method to use?

We have seen in this section that the high-dimensional indexing methods such as SAM and MAM
divide the search space in a set of minimum bounding regions (MBR) hierarchically organized
in tree structures. At search time, the MBR that don’t overlap the query region are filtered. As
dimensionality increases, the distances from a query object to the nearest and the farthest objects
are almost in the same range. Practically, the nearest neighbor becomes indistinctive [KS01] from
other neighbors, loosing its meaningfulness [Agg02, BGRS99]. In such conditions, the smallest
query region that contains the nearest neighbor will overlap most of the MBR, making them non-
prunable. The consequence is that the search methods end up accessing all the nodes of their
structures in a pseudo-random fashion, which is more time consuming than a simple sequential
scan —a problem often referred to as the “curse of dimensionality” [BGRS99, IM98].

To overcome this problems, in [KS01] the authors propose a distinctive-sensitive approach for
tree-based structures. That is, to test the distinctiveness of the nearest neighbor in the course of
search operation. Then, when it finds the nearest neighbor to be indistinctive, it quits the search
and returns a partial result. Other indexing methods, such as the ones presented in Section 3.4.3,
resort to single-dimension mapping. Another approach, presented in Section 3.4.4, uses specific
aggregations with the goal of visiting only a fraction of the dataset. Finally, the data approximation
methods sequentially access a compressed version of the data.

Choosing the proper index for a given situation should be the result of especially designed tests
that consider various methods. A badly chosen indexing method may compromise efforts aimed
at an effective use of the features and similarity measures. The behavior of the high-dimensional
indexing methods depend on multiple parameters and data models. An indexing approach could
behave well in some situations and worse in others. The metrics could be an example of a param-
eter that varies from method to method. For example, in [WY06] an important improvement over
the original method in [WSB98] has been reported just by using a different metric.
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To our knowledge, test frameworks for the whole range of high-dimensional indexing methods
are not yet publicly available. The currently available frameworks, such as GIST [HNP95], SP-
GIST [AI01] and XXL [dBBD+01] provide only a subset of the existing indexing methods. GIST
provides a tree-based template indexing structure. XXL, while also offering tree-based indexing
templates, focuses on implementations of advanced database queries (cursors, iterators) indepen-
dent from the underlying data types and data structures. As a consequence, many of the available
approaches that cannot be tested in GIST or XXL are only compared to the sequential scan.

An infrastructure for the evaluation of the various indexing methods is essential to support
the work at the higher levels in a complete retrieval chain. In Chapter 6 we propose an indexing
method and a test framework for multidimensional search, allowing the configuration of various
types of indexing methods, not only tree-based.



Chapter 4

The MetaMedia platform

This chapter introduces the MetaMedia retrieval platform, a solution for the management and
search of multimedia databases. We present MetaMedia’s architecture and functionalities that
help us achieve such a goal. The platform integrates several components, namely a data model, an
indexing method and an user interface. To illustrate the role of each component we instantiate the
generic multimedia retrieval architecture presented in Chapter 2, showing that the data model and
the indexing method belong to the database layer while the retrieval interface is at the user level.
In between the database and the user layers, MetaMedia has a middleware layer with components
for query analysis, answer computation, and metadata extraction.

Beside the architecture, this chapter also presents MetaMedia from the point of view of func-
tionalities such as browsing, search, administration, content analysis and annotation.

4.1 Architecture

MetaMedia’s three-layer architecture depicted in Figure 4.1 is as an instance of the generic archi-
tecture presented in Figure 2.1. The motivation for a layered architecture is that such an approach
separates the components by their functionalities and demands well-defined interfaces between
them. The system becomes more manageable, the parts can be developed independently and re-
placements are easier to make. To better understand each layer’s role and the natural separation
between them, is enough to image a simplified version of a retrieval system. The data storage
component for example, can be modeled and built independently for simple data retrieval pur-
poses. At the same time, a user interface component with browsing and simple search capabilities
is required. In order to ensure the communication between the user interface and the database, a
component in between, dedicated to query translation is required. A first separation can already be
observed: the database and the user interface as stand-alone modules and the middleware, highly
dependent on the first two. Placing new components in one of the database, middleware or user
layers, is a matter of observing the data flow and their degree of independence. For example,
an independent component that translates a natural language query into SQL queries would be
generally placed between the user and the database layers, thus in the middleware.
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Figure 4.1: MetaMedia retrieval platform
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MetaMedia started with a simple three-layer architecture, such as the one imagined earlier, that
allowed the development of new components piecemeal. The availability of complex data such
as the high-dimensional descriptors, and the plethora of standard presentation formats, brought
advanced storage and search capabilities. This led to improvements in the data model and the
development of specific indexing structures, both located in the database layer. Naturally, the
middleware also became more consistent, hosting the business logic behind the answer computa-
tion, software for automatic content analysis and more complex query analysis.

An important separation, marked by the vertical lines in Figure 4.1, is between off-line and on-
line components. Components such as the content analysis, the index creation and configuration
that are used for off-line tasks are separated at each level from components such as the query
analysis and the index search that are used for on-line tasks.

The database layer is responsible for data storage and maintenance (creation, deletion, up-
date) of the various index structures. At this level we distinguish between storage and indexing
components. The storage components handle the input/output operations, such as uploads, deletes
and updates for all the data and metadata types: text, image, video and high-dimensional XML
descriptors. A first storage component is a hybrid relational-XML database containing all the
metadata and the structuring information. Its organization is based on the MetaMedia data model,
described in detail in Chapter 5. The second storage component is a file system in which all the
raw content is gathered. Physically, the file system can be placed on a local disk or across network.
The exact file locations are managed with the relational database.

Also parts of the database layer, the indexing components are redundant structures that speed
up the search process. MetaMedia uses three types of indexes: BitMatrix high-dimensional in-
dexes [CRD06] (detailed in Chapter 6), Lucene [Apa06] text indexes (detailed in Section 7.2)
and relational indexes. The relational indexes are natively embedded in the database implemen-
tation that we use [Ora08] and are automatically created and consulted. The other two indexing
structures are not native; we create them separately and also store them in the relational database.
Figure 4.1 illustrates the database layer with its internal separation between storage and indexing;
the available index types are shown as well.

The MetaMedia middleware layer accommodates software components dedicated to query
analysis, similarity computation, and content analysis. The similarity computation and query anal-
ysis components, described in detail in Chapter 7, are responsible with the answer computation.
For example, for a multimedia query that involves multiple descriptors, per-descriptor result lists
are obtained by consulting BitMatrix indexes at database level and then aggregating them accord-
ing to a configurable strategy. Several parameters such as the type of aggregation, the descriptor
weights, or search parameters can be tuned at this level. Regarding the content analysis compo-
nents, they are built on third-party software, namely the MPEG-7 reference software, also called
MPEG-7 XM.

The user layer is represented by interfaces for collection management, query formulation,
visualization of results and manual annotation. The MetaMedia user interface is built on a portal
framework [Fou]. The framework makes use of reusable components, called portlets. We have
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Figure 4.2: Browse interface

built such portlets for several search and visualization scenarios. Possible types of portlets include
search portlets for experts and novice users, portlets that can display configurable degrees of detail
or annotation portlets. For example, one of the portlets offers to novice users the possibility of
taking a tour of the whole multimedia repository.

4.2 Functionalities

A multimedia retrieval system must support a large set of functionalities such as search, explore,
administer, analyze and annotate. MetaMedia sums up the functionalities for the kind of applica-
tions we intend our framework to be used in. They are presented in the sequel.

4.2.1 Browser for multimedia repositories

Most of the current multimedia repositories can hardly be regarded as statical. The MetaMedia
has been designed with a dynamic view of the repositories in mind. New multimedia items are
often added and the existing ones are being updated. This can happen both with the content itself
and the metadata. As a repository browser, MetaMedia uses components only from the User and
the Database layers. Figure 4.2 is a screenshot of the browse interface used in the “Santa Maria da
Feira” case study (see Chapter 8). On the left, from top to bottom, there are panels for navigation,
simple text search and display of results. On the right part there are panels for the visualization
of images and their transcriptions. The browse experience can be enhanced by maximizing or
suppressing specific panels. For example, the parchment in the Figure 4.2 can be visualized in
full-screen mode avoiding frequent use of the scroll bars.



4.2 Functionalities 55

Figure 4.3: The keyword search interface

4.2.2 Search

MetaMedia currently supports natural language queries, queries-by-keyword, structured queries,
queries by low-level features and exploratory search. The queries by low-level features generally
require efficient indexing of high-dimensional spaces. MetaMedia handles various dimensional
spaces, arbitrary combination of features, specialized metrics and user-defined combinations of
weights. For the search functionality, components from the three layers are involved. Two of
the available search interfaces, namely the query-by-keyword and video search interfaces, are
illustrated in Figures 4.3 and 4.4 respectively. Figure 4.3 is from the “Santa Maria da Feira” case
study and illustrates a query-by-keyword. From the search fields in the left panel the “Title” and
“Cargo” are filled with search terms and the results are displayed on the right panel. The interface
in Figure 4.4 illustrates a video search session that took place in the context of a public video
retrieval evaluation benchmark, called TRECVID; further details are given in Chapter 9.

Figure 4.4: The video search Interface
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4.2.3 Content Analysis

Dynamic addition of new items implies also integration of their automatically extracted content
metadata in order to turn them searchable. If in the case of text items the content is naturally mean-
ingful for the humans, the audiovisual content analysis produces low-level descriptors that lack a
direct semantic link. Nevertheless, the low-level descriptors are useful for content-based similarity
search, i.e query-by-example and the training of automatic concept detectors. MetaMedia offers
content analysis for audiovisual data by incorporating third party software components. Their
integration takes place at the level of middleware and database layers. An example of a Dom-
inantColor descriptor (see Section 3.1) obtained with the MPEG-7 XM tool is presented below.

<VisualDescriptor xsi:type="DominantColorType">
<ColorSpacetype="RGB"/>

<ColorQuantization>
<Component>R</Component>
<NumOfBins>8</NumOfBins>
<Component>G</Component>
<NumOfBins>8</NumOfBins>
<Component>B</Component>
<NumOfBins>8</NumOfBins>

</ColorQuantization>
<SpatialCoherency>31</SpatialCoherency>
<Value>

<Percentage>15</Percentage>
<Index>255 255 255</Index>
<ColorVariance>1 1 1</ColorVariance>

</Value>
</VisualDescriptor>

4.2.4 Annotation

Manual annotation is the process of enriching the content with concepts that are considered rel-
evant. Although are known to be subjective, error prone and expensive, the manual annotations
are useful for datasets such as historic archives or for training automatic concept detectors. Meta-
Media allows the manual annotation of multimedia items with concepts coming form concept sets
such as locally controlled vocabularies, thesauri or ontologies. The choice of a specific concept
set is dependent on the application domain. For example, in the video retrieval domain, the use of
especially developed ontologies, namely LSCOM [Lar08, NST+06] and MediaMill [SWvG+06]
have been considered more appropriate.

The annotation functionality requires components from the user and database layers. Figure
4.5 illustrates some highlighted regions of a fragment of a text document that was subject to the
process of annotation. The collection of text documents from which the example in Figure 4.5
has been taken, was digitally preserved with MetaMedia and the annotation played an important
role [RDB06]. We have included a detailed case study on this matter in Chapter 8. Some of the
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Figure 4.5: The annotation process

highlighted words in the figure are marked as names, where the name concept comes from a locally
defined controlled vocabulary. Similarly, other highlighted words were marked as locations.

4.2.5 Administration

The MetaMedia administration has two facets. One is the application administration which covers
user management, maintenance and security issues. The other facet is the content administration.
With respect to it there are three types of users, namely guests, editors, and archivists, which
are granted different roles. For example, the guest users can browse and search the data but
cannot insert or update it. The editors have enhanced roles, being allowed to edit context metadata
or manually annotate contents. The archivists are the most privileged being, allowed to alter
the structural organization of the data collections. For example, a task strictly reserved for the
archivists is the design of the repository structure.



58 The MetaMedia platform



Chapter 5

The MetaMedia Data Model

The chapter describes the MetaMedia data model. Built with the goal of supporting current stan-
dards, the model accommodates content and context analysis metadata and provides the ground for
their integration in search. We start by discussing some preliminary aspects concerning multimedia-
oriented data models. The discussion is continued with a presentation of the main principles and
from them the concepts that were identified in the metadata audiovisual standards and are under-
lying the proposed data model. Finally the data model is introduced.

5.1 Preliminary aspects

What data is there Multimedia databases display a large diversity both in the nature of stored
objects and in the application domains. The database may be a repository of multimedia items
which have been collected and appropriately described, as in a digital library; it may consist of the
heterogeneous information assembled and dynamically modified in a Web site; or still result from
the production process of a publisher or a broadcaster. In order to support such a diversity of appli-
cations, a multimedia data model must be designed for “any type of data”, which currently means
text, image, video, structured metadata (descriptive), unstructured metadata (content descriptors)
and semi-unstructured data such as the annotations.

Focusing on metadata Standards such as Dublin Core can be applied to traditional descriptive
metadata, MPEG-7 to content metadata and MPEG-21 to the various aspects of assembling com-
ponents, handling digital rights, or adapting the content to specific players. The existing metadata
standards help to clarify concepts and promote interoperability, but they are currently not appro-
priate as data models in a multimedia database [Bul04, ETM04]. There is no direct link between
the metadata format, which is generally text/XML and the operationally effective representation
required in practice for the data. A color histogram descriptor for example, is a high-dimensional
vector embedded in XML format.

Among the aspects that have to be considered when building a metadata data model we empha-
size here the need for integration of low- and high-level descriptors. The low-level descriptors, that
correspond to features such as color, texture, shape or motion activity [DN04, MOVY01, Bob01,
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KIR+01], are radically different from the descriptive metadata such as “title”, “author”, “date”,
also available for the objects. They are specific metadata in terms of representation, requiring
specialized data structures for handling huge quantities of numeric values.

The recent manual and automatic annotation efforts tag the contents with high-level concepts
that cover a wide range of semantics. This metadata category, called high-level content meta-
data, is different from the low-level content metadata or from the descriptive metadata. A mul-
timedia data model must integrate the existing low-level descriptors with the high-level metadata
[WvGC+05]. Queries such as “red cars”, or “portraits” imply both the low-level features such as
color, texture or shape and the higher-level concepts such as “cars” or “faces”.

The model must also account for two kinds of separations. First, between the actual content
and its description and second, between high- and low-resolution versions of the multimedia items.
This model must also be able to incorporate materials from diverse sources, with various input
formats and also to export them.

To fulfill this requirements, a clear identification of the main concepts underlying standards
in different domains in required. The following sections introduce the central concepts of the
MetaMedia model and the data model itself.

5.2 MetaMedia, from Principles to Concepts

The diversity of multimedia items requires the identification of abstractions that might be simul-
taneously useful for different kinds of objects and meaningful for the user when interfacing to the
database.

The model is governed by three main principles. The first one is that multimedia objects are
usually represented in a part-of hierarchical manner, allowing sets of items to be treated as objects
that can have associated descriptions. This comes from the observation that multimedia items,
have important semantics hidden in their tree-like structures. It is therefore essential to capture
this kind of relationships in the model. There are other relations between items, but the part-of
relationship is common and relatively easy to extend from the digital items themselves. It is also
useful when exploring collections.

The second principle is that of uniform description, meaning that the same attributes are used
for an individual object and for a set of related objects, allowing attributes to be inherited from
a collection to a sub-collection down to individual items. This principle has been adopted in the
standards for archival description such as ISAD [ISA99], ISAAR [ISA04] and EAD [EAD07]
and proves itself very useful when it comes to the representation of large collections: metadata
is frequently available for sets of items rather than individual ones, and inheritance can make it
useful further down the hierarchy.

A hierarchy suited for one kind of collection may be of little use in a different one. It is
therefore essential to offer flexible hierarchical structures with variable depths, and this is made
possible by the principle of uniform description: introducing a new level in the hierarchy does not
require the design of new descriptors. As an example, consider a collection of MPEG-21 items as
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Figure 5.1: Simple Scheme Example

an item at collection level. If all the items in the collection share the same digital rights, those can
be specified at collection level only.

The third principle identifies segments as content-only parts of multimedia items. They can
be independently analyzed using content analysis techniques and specialized descriptors can be
obtained for each of them. Segment can be given a very flexible representation, where descriptors
coming from diverse feature extraction tools will fit. The definition of descriptors should be left as
open-ended as possible. For example, the video track of a specific multimedia item may require
motion activity and color descriptors, while the audio track of the same item may require a melody
contour descriptor. Multimedia description standards such as [SKP02] have already identified a
large set of such descriptors.

Following the principles of the model, three main concepts are used. The first one, the De-
scription Unit (DU), corresponds to the concept of Description Units used in archival description
[ISA99] and to Digital Items in the audiovisual standards. It captures the notion of an object or
collection of objects that can be given a context in terms of creation and relationship with other
objects. At the level of DUs we capture aspects such as creation context, terms of use and technical
details. Such contextual information may become as important for the user as the content itself.

The second concept is the Segment, following the MPEG-7 vocabulary, capturing the notion
of some part of a multimedia item that can be independently analyzed in terms of content and be
manipulated independently, such as a part of a video sequence that is reused in a new documentary
work. A segment has no context of its own, getting it from the DU of the object it belongs to.

In terms of structure both DUs and Segments are organized as part-of hierarchies. A DU is
either a root unit or is a part of another DU, the collection where it belongs. The same applies to
a Segment, which may be a part-of another Segment. Any item that can be individually retrieved
has an associated context in its own DU.

The hierarchies of DUs can have various topologies and different semantics for their levels.
Such hierarchies can be created for new collections or can be extracted from existing ones. In both
cases they must capture the nature of the datasets. A Scheme that defines the possible levels, their
semantics and their interconnections is required.

The mechanism that controls the structure of the hierarchies is incorporated in the model with
the Scheme Level concept. Figure 5.1 illustrates a simple Scheme with only three Scheme Levels:
Video Dataset, Video and Shot. Such a Scheme could belong to a test dataset, such as TRECVID,
where a collection of videos is simply bundled and segmented. The right part of the figure, shows
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Figure 5.2: Scheme Instance Example

299 DU instances aligned with the Video Scheme Level that are part of the parent DU, “TRECVID
Dataset”. Furthermore, DUs for each of the video shots are instantiated and linked to the corre-
sponding parent DUs.

Figure 5.2 shows a different Scheme example and part-of hierarchy. This example shows an in-
creased number of Scheme Levels and different ways of connecting them. On the left part we have
the Scheme Levels, which in this example include Archive, Entertainment and News, News Series,
Programme, and News Item. On the right, some DU instances are aligned with their respective
levels. Thus, the DU called “8’oclock news” is a News Series, while the DU called “14/04/2007”
is a Programme. The News Item on “Biological Weapons” is part of the “14/04/2007” Programme
of the “8’clock news” News Series. After having specified an hierarchical model with the help of
schemes, we can enable constraints related to it. For example, in Figure 5.2 the scheme allows
News Item to be a child of News Series. Based on this permission, the specific DU “tsunami” (a
News Item) can be directly linked to the “8’oclock news” DU (a News Series).

The third concept is that of a Descriptor. The sense in which Descriptor is used is the one
established by the MPEG-7 standard—a representation of a feature [NL99]. In the model, a De-
scriptor is regarded as the result of a Segment analysis. An image Segment, for example, can be
associated to its corresponding instance of the DominantColor descriptor, a video Segment can be
associated to its MotionActivity descriptor and an audio Segment to its MelodyContour.

5.3 Data Model

Figure 5.3 illustrates the data model. The applicability of the MetaMedia concepts for a given
dataset requires a previous analysis of the datasets’ nature and the usage scenarios. Upon analy-
sis, the hierarchical structures are establishes as well as the amounts of uniform and specialized
descriptions.

As an example, consider again the hierarchy of DUs in Figure 5.2. Attributes such as title,
author, date and copyright are likely to apply both at a fine grain level such as the News Item
Scheme Level and at a coarse grain level such as the Archive Scheme Level. If this is confirmed
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Figure 5.3: The MetaMedia Model

by the analysis, the attributes will be part of each DU’s attribute set, thus uniformly present at all
the levels.

The Scheme Level class is used to control the DUs hierarchy. For example in Figure 5.2 a
DU that is an instance of a News Item Scheme Level can be a direct descendant of instances of
Programs or News Series but not of instances of News or Archive.

The Segment class models independent content parts. The association between DUs and Seg-
ments, made through the Contents class, places each Segment in its own context —in a DU—
and is interpreted as following: the Segments are the DUs’ contents. The Segments can belong to
several DUs at the same time and can be further categorized in text, image, video and audio types.

The Descriptor class models the specialized descriptors. The association Segment-Descriptors
is modeled with the Descriptor Instance class. The descriptive information that is present at the
level of Descriptors complements the description that exists in the DUs.

The proposed model was first tested in a prototype multimedia database [RDC04], which later
became part of the MetaMedia’s database layer [CAA+07, RDC07a, RDC07b] (see Section 4.1).
Its use has shown that different collections, with different usage scenarios, can be supported if the
model offers flexibility in both the structure of the collection and metadata association.
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Chapter 6

Data Indexing

In this chapter we present the BitMatrix index which has been our approach for multidimensional
descriptor indexing. BitMatrix has been developed in the context of a broad high-dimensional
indexes evaluation process which is also presented here.

It is generally recognized that automatically extracted descriptors are a cheap source of in-
formation on the media content, and current research focuses on exploring them in retrieval
[LSDJ06, Moj04]. However such data is often high-dimensional in nature and difficult to in-
dex. Most of the indexing methods presented in Section 3.4 fail to handle datasets with hundreds
or thousands of dimensions—the so called curse of dimensionality [BGRS99]. In this chapter,
we will not be concerned with descriptors at semantic levels higher than the one of automatically
processed features such as color or texture. We concentrate only on the specific task of retrieving
objects that satisfy some (sharp) similarity criterion in a database of multidimensional descriptors.

One of the difficulties encountered in the evaluation of various high-dimensional indexing
methods in general, and of the BitMatrix [CRD06] in particular, was the lack of a common plat-
form on which they can be objectively tested. Indexing methods depend on parameters and storage
models, which make them better suited for some situations and not as good in others. This makes
them difficult to compare, and many of the proposed high-dimensional retrieval methods are only
compared to the basic sequential scan. However, high-dimensional indexing methods follow com-
mon steps such as preprocessing the object data, partitioning the search space, index construction,
query processing, searching the index, accessing the objects. We have developed a framework,
called Multidimensional Multimedia Descriptor Indexing (MMDI), for the integration and bench-
mark of various indexing methods [GCRD07]. Indexing methods such as Sequential Scan, Bond
[AMNK02], VA-File [WSB98], GridBitmap [Cha03], and the proposed BitMatrix have been in-
cluded in the framework and compared.

The discussion is structured in four sections that cover two main aspects. In the first two
sections the BitMatrix index is proposed along with an appropriate similarity criterion, while in
the next two sections we present the MMDI evaluation framework and detail the BitMatrix results
within it.

65
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6.1 BitMatrix

Given the high cost of random disk access as compared to sequential access, the idea is to construct
a collection of signatures that can be sequentially analyzed and used to effectively prune the search
space. If such a structure is small enough to fit the main memory, than the I/O gain is of several
orders of magnitude.

In the following, we assume a high-dimensional space with dimensionality N. We will also
consider a dataset O , containing |O| multimedia items (objects), each item being represented as a
point is the high-dimensional space.

For each of the dimensions, the BitMatrix method follows a data approximation approach in
the spirit of VA-File [WSB98] and IGrid [AY00]. Such an approach implies partitioning each of
the N dimensions in k ranges.

A partition of a dimension D is a set of kD ranges

πD = {ri = [li,ui] , i = 1 . . .kD} ,

where li, ui are the lower and upper bounds of range i.

Considering the possibility of having separate partitions for each dimension we define a partition-
ing scheme.

The partitioning scheme is the tuple (k1,k2, . . . ,kN)

The partitioning scheme is used to obtain bit signatures for all the objects in the dataset ar-
ranged as lines in a matrix.

Signature Given a partitioning scheme (k1,k2, ..,kN), an object’s signature is a bitmap of length
ΣN

D=1kD. For each dimension the signature contains 1 for the range where the object belongs and
0 for the other ranges.

The bit signatures can be characterized by their cardinality.

The cardinality of a signature is the number of bits set to 1.

With the concepts of partition, partitioning scheme, signature and cardinality explained we
can now see how a BitMatrix is effectively constructed.

6.1.1 Building the BitMatrix

The first step in the construction of the BitMatrix is to choose dimension-wise partitioning schemes
such as equi-width, equi-depth or k-means partitioning. In the case of equi-width partitioning
the ranges have the same length, while in the case of equi-depth the ranges contain an equal
number of objects. The k-means partitioning requires a k-means clustering step. Because the k-
means computation takes place dimension-wise, the k centroids can be sorted: C1 < C2 < .. < Ck.
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The bounds of the k ranges are obtained from the centroids: the lower bound for range i is li =
(Ci−1 +Ci)/2 and its upper bound ui = (Ci +Ci+1)/2.

After partitioning all the dimensions we proceed to create the object signatures. As stated in
the signature’s definition, for each object we check dimension-wise the ranges where it lies. Those
ranges are assigned 1s and in the rest 0s. Note that the cardinalities of all the |O| objects are N,
since every object signature has one and only one bit set to 1 per dimension.
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Figure 6.1: BitMatrix

The example in Figure 6.1 has 10 objects in a two-dimensional space (N = 2) and 3 ranges per
dimension (k1 = k2 = 3). On the right part of the figure, the corresponding BitMatrix structure is
illustrated; for simplicity, only the 1s are shown for each object signature.

Object o2 has signature 001010 as the object lies in range 2 for dimension 1, and in range 1
for dimension 2. Arranging each signature as a line in a matrix we obtain the BitMatrix with |O|
lines and ΣN

D=1kD columns.

6.2 Searching with the BitMatrix

We now propose two algorithms for approximate nearest neighbor, exploring the sequential access
to the BitMatrix. The naïve approach selects objects based on the cardinality of the bitwise AND
between object and query signatures, as follows.

Naïve search

• Step 1: Given a query object q = [q1, . . . ,qN ], obtain it’s signature, i.e. find for each dimen-
sion D the range in which the query coordinate qD lies.
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• Step 2: Iterate through the objects, performing bitwise AND between their signatures and
the query object’s signature. If the cardinality of the resulting bitmap is above a predefined
cardinality threshold(ct) the object is retained for the next phase.

• Step 3: Access the full vector values of the remaining objects, compute their exact distance
to the query object and rank them.

We will use cardinality of an object in the sequel to refer to the cardinality of the bitmap resulting
from the bitwise AND between the signatures for the object and the query. In Figure 6.1, the
signature qnaive=010010 of the query object is AND’ed with the signatures of all the other objects
o1,o2, ..o10. With the cardinality threshold set to 2, only objects o1 and o3 remain for Step 3.

The example in Figure 6.1 shows that the naïve approach prunes object o2 which happens to
be the nearest neighbor. This effect, known as the edge-effect [AY00], appears because for all
dimensions D, only the objects in the same range as qD are considered. The range expansion
heuristic is a modification of the naïve approach affecting Step 1: for a dimension in which the
query object is close enough to one of the edges, the query’s signature is set to 1 for both the
query’s range and the range next to it. Assuming that qD lies in range i for dimension D, the
expansion takes place to the left if ‖qD− li‖< eti ‖ui− li‖ or to the right if ‖qD−ui‖< eti ‖ui− li‖,
where eti, the expansion threshold, takes values in [0,0.5].

Thus, the range expansion search is:

• Step 1: Given a query object q = [q1, . . . ,qN ], obtain it’s expanded signature. That is,
for each dimension D set to 1 the qD’s range. If ‖qD− li‖ < eti ‖ui− li‖ or ‖qD−ui‖ <

eti ‖ui− li‖ also set to 1 the range next to qD.

• Step 2: Same as Step 2 in the naïve search.

• Step 3: Same as Step 3 in the naïve search.

Figure 6.1 also illustrates the effect of range expansion. The cardinalities column (with expan-
sion) shows that with the query signature qexp=011010 and the same cardinality threshold, objects
o2 and o10 are not pruned, as their cardinalities are now 2.

6.2.1 Subspace selection

The increase of dimensionality makes the task of finding the nearest neighbor harder because the
distances between objects become very similar. For the majority of the high-dimensional search
methods, the nearest neighbor becomes indistinguishable from the rest of the objects [BGRS99,
HAK00]. In order to improve the quality of the nearest neighbor selection, we have considered the
subspace selection approach, where subsets with smaller dimensionality are successively explored
using the BitMatrix algorithms.

Let s be the number of dimensions of the subspace to be processed in the current iteration. The
subspace selection search is:
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• Step 1: Apply Step 1 and 2 of the naïve or expansion search approaches on the selected s
dimensions (Σs

D=1kD columns of the BitMatrix).

• Step 2: Combine (intersection, union) the result set obtained from this subspace with the
previous result set. If the stop condition is false repeat Step 1 on the next subspace.

• Step 3: Same as Step 3 of the naïve approach.

Figure 6.2: Subspace selection

The stop condition becomes true if enough dimensions have been processed or enough ob-
jects have been pruned. Figure 6.2 illustrates a space with total dimensionality 256 from which
subspaces of s=86 dimensions are sequentially searched. The BitMatrix search is applied inde-
pendently in each of the subspaces.

In the left part, a low cardinality threshold is used and intersection between the result sets is
performed. Even though the low cardinality threshold acts like a low-pass filter, i.e large result
sets remain, their intersection contains few objects. The objects remaining after intersection are
illustrated in the dark region of each subspace, with the pruned ones in the rest. Thus, it can be
observed that after searching the 0-86 subspace, a large set of objects remained. The search in 86-
172 subspace produces a similar result (with respect to the size) set. However, after the intersection
with the 0-86 result set, fewer remain as shown in the dark region of the 86-172 subspace. The
final subspace, 172-256, produces by itself a relatively large results set, comparable in size to the
0-86 and the 86-172 ones. But after intersection, an even smaller set of objects remains.

In the right part of Figure 6.2, a high cardinality threshold is used and the union of the results
sets is performed. Again, the dark regions show the remaining objects. In this case the cardinal-
ity threshold acts like a high-pass filter, thus few objects remain. The set of remaining objects
increases with each subspace due to the union of the partial result sets.

The subspace selection feature is useful for speeding up the search in at least in two situations.
First, when the dimensions of the original search space are not of equal importance. For example
they may be ordered decreasingly by their importance and only a first subset of them used in the
search. The second situation is when sufficient objects have been pruned after analyzing only some
of the subspaces. The analysis of the remaining subspaces can thus be avoided and the search can
stop earlier.
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6.2.2 Insert, Update, Delete

The insertion of a new object in the BitMatrix, accounts for computing its signature and adding it
as a new line in the matrix. The size of the BitMatrix grows linearly with the number of objects
for a fixed dimensionality and linearly with the dimensionality for a fixed number of objects. The
precise size of the BitMatrix is (ΣN

D=1kD)∗ |O| bits. To update an existing object its signature has
to be modified with bitwise operations. To delete an object, the corresponding line is removed
from the matrix.

6.3 Testing Multimedia Indexing Methods

The MMDI framework [GCRD07] that we propose is a step toward a systematic evaluation for the
high-dimensional indexing methods. Each of the indexing methods presented in Section 3.4 brings
specific implementation details and initial assumptions. They can only be tested in a flexible and
robust framework. Several well-known methods have been already implemented in MMDI. The
BitMatrix indexing method, also implemented on top of this framework, is compared to the other
methods illustrating how new methods can be integrated and tested.

6.3.1 Application Requirements

Indexing methods are designed with efficiency in mind, and the associated data structures may
become hard to use in some application domains. We have identified characteristics of the indexing
methods which may not be widely taken into consideration, but which are central in our application
domain. The MMDI framework is designed to allow testing for good performance in all the aspects
below.

• Preprocessing: the amount of preprocessing work like normalization of the feature vectors
and dimensional reduction, is an important factor when dealing with heterogeneous descrip-
tors.

• Frequent updates: even if a substantial part of multimedia databases are regarded as statical
in nature, as is the case with archives where append is the common operation, there are
cases when updates are quite often. For instance, if the quality of some feature extraction
tool improves, the results of applying it to an existing object will be incorporated as an
update.

• Varying dimensionality: the dimensionality of our search space is directly related to the
number of descriptors, meaning that each descriptor contributes with a number of dimen-
sions. Adding a histogram descriptor, for instance, increases the dimensionality by the
number of bins the histogram has been quantized (8, 16, 32, 166).

• Any dimensional subspace: at query time the user must be able to choose any subset of
features.
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• Support for different metrics: searching by different components of the feature space of-
ten implies using different metrics for each component. The aggregation may be done in
different ways: arithmetic aggregate functions or fuzzy aggregate functions.

• Support for weighted queries: weights are used whenever the user want to stress the rele-
vance of some features.

• Multiple query objects: the query may be specified as a composite of various query ob-
jects. In the case of relevance feedback, for example, the user selects multiple objects as
positive/negative examples.

6.3.2 Framework Overview

The objective of the framework is to create a common platform for the evaluation of the high
dimensional methods. The effort was mainly oriented towards the identification of the common
operations of these methods that allow their integration in the framework.

Figure 6.3: Framework overview

The framework structure emerged from the observed stages of the various retrieval methods.
All methods require an initialization phase including normalization, space partitioning and index
creation. The framework allows the definition of several types of partitions, such as equi-depth,
equi-width and k-means. The search phase includes sub-tasks like loading the index (or fragments
thereof), searching the index, loading the remaining object’s data and searching them. The search
flow for a generic method, illustrated in Figure 6.3, shows that tasks such as Load Index, Search
Index, Load Object’s Data and Search Objects allow variation in the way they are pipelined. For
each indexing method only some of these paths will be required.

Evaluation using the framework can use facets like time, memory or disk space, quality of the
retrieved objects and range of applicability. The comparisons can be done at method level or at
specific sub-task level.

6.3.3 Framework Components

The concepts involved in the retrieval process are captured in the main components that will be
described in the sequel.
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Descriptor A descriptor represents an object’s feature. It may contain information such as color
histogram, dominant color or motion activity. It also specifies the number and the order of dimen-
sions to be processed. A descriptor is captured as an object of class Descriptor with:

• descriptor id—the database identifier;

• name—the complete name;

• size—the number of dimensions;

• ranges—for each dimension, a set of ranges in which the data is to be partitioned;

• dimension order—the order by which descriptor dimensions are processed.

Query A query is captured as an object of class Query specifying one or more query objects, the
descriptors that are used in the query process and the number of objects to be retrieved. The frame-
work allows the definition of several query types, such as nearest neighbor, k-nearest neighbors
and range query. Some of the query properties are optional depending on the query type and the
method used to perform the retrieval.

Similarity Measure The similarity measure is used to analytically determine the similarity de-
gree between a query object and a set of multimedia objects. The majority of the retrieval ap-
proaches use metrics (distance functions that satisfy the metric axioms), but the similarity measure
is not necessarily a metric.

Similarity can be the result of grouping perceptual features, an action referred to in the litera-
ture as feature alignment [HK], or it can be estimated with models such as the Tversky’s Feature
Contrast Model [SJ97, Gen88].

The Metric abstract class in the framework allows the introduction of user-defined similarity
formulas. When a multi- descriptor query is performed one must supply an aggregation method
for combining the methods provided for each descriptor.

Figure 6.4: Scan method
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Multimedia Object Objects are represented by the MMObject class. An object of this class
stores a collection of values for each object descriptor. The same object structure is used through-
out the retrieval process.

Scan Retrieval methods inherit from the Scan class and implement the abstracts methods named
init() and search(Query query, Metric metric), as shown in Figure 6.4. The search method receives
a query where all options such as the query objects, the number of objects to retrieve and the query
type are defined. A metric for retrieval is also supplied. In the retrieval process the indexing tech-
nique is used to prune the search space according to the specified options. After the pruning stage
a sequential scan is performed to sort the remaining objects. The framework currently supports
the following methods:

• Sequential Scan,

• Branch-and-bound ON Decomposed Data (BOND)[AMNK02],

• VA-File [WSB98],

• Grid Bitmap [Cha03],

• BitMatrix [CRD06].

ScanTest The ScanTest provided in the framework is a class developed on top of the JUnit
[JUn05] testing library and is the part of the framework where tests are configured and results are
collected.

6.3.4 Technological platform

MMDI is implemented in Java taking advantage of portability and the richness of its associated
technologies. As XML-based standards like MPEG-7 [SKP02] are the most common languages
for the representation of the descriptors, the framework assumes XML as its input format. Nev-
ertheless, user-defined methods for acquiring data in different formats can be easily integrated.
XMLBeans [Apa05] is used for dealing with XML inputs, Weka [WF05] is used for the cluster-
ing facilities, and COLT [Ope05] for the base implementations of the Bitmatrix and Bitvector
classes.

6.3.5 Integrating Indexing Methods

For the BOND [AMNK02], VA-File [WSB98] and Grid Bitmap [Cha03] methods, the basic oper-
ations for loading and searching the index, as well as loading and searching the objects, have been
identified and adapted to the common platform.

BOND works directly on the original data, i.e. it does not use an index structure. It loads
dimensions one by one and, after processing a few dimensions, the objects that cannot further
participate in the result are discarded. The iterative application of this procedure leads to a small
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(a) The BitMatrix (b) BOND (c) VA-File

Figure 6.5: Search flows for various retrieval methods

remaining subset of objects which are exhaustively scanned. The only framework tasks that were
identified in BOND were therefore loadObjects’s Data and searchObjects.

A similar analysis on VA-File and Grid Bitmap methods show that both have the complete
chain: loadIndex, searchIndex, loadObjects’s Data and searchObjects.

6.3.6 The BitMatrix in MMDI

To give more insight on how new indexing methods can be used in the framework, we will now
use the BitMatrix [CRD06], the method we have presented in Section 6.1. It has been said that the
BitMatrix method follows a data approximation approach partitioning each dimension in ranges.
The partitioning scheme is then used to obtain bitmap signatures for all the objects. The search
algorithm consists of the bitwise ANDs between object and query signatures. Figure 6.1 illustrates
a two-dimensional space having each dimension partitioned in three ranges.

To integrate this method in MMDI, a new BitMatrix class is derived from the Scan class,
inheriting the general behavior from its parent. The set of methods in the newly created BitMatrix
class is the same as in the BOND or Sequential Scan; the methods are illustrated in Figure 6.4.
The init() method, through the helper classes DBInserter and RangeAnalyser, takes care of pre-
processing, space partitioning and index construction. The partitioning method can be equi-width,
equi-depth or k-means. For the k-means partitioning, a previous k-means clustering is performed
using the Weka library [WF05]. The resulting BitMatrix structure has been implemented with the
help of the COLT library [Ope05], a library that is prepared for bit operations by having imple-
mented dedicated classes such as the BitVector.

The integration also requires the implemention of the search(Query q, Metric m) method for
the BitMatrix class and overloading as needed the loadIndex(), searchIndex(Query q,Metric m),
loadObjects(Collection objectIDs) and searchObjects(Query q, Metric m) methods.

6.3.7 Search Flows in MMDI

Figure 6.5 illustrates the search flows of some of the methods that are already integrated in the
framework. The search flow for the BitMatrix loads the index, i.e. the BitMatrix, searches the
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(a) Manhattan metric (b) Euclidian metric

Figure 6.6: Varying the metric on i300

index (Search BitMatrix) and then loads and sorts the remaining objects. The search flow for
BOND includes only the loadObjects and the searchObjects methods. The shaded boxes indicate
that in fact BOND does not use an index. The VA-File loads the index, i.e the approximations file,
then sequentially analyzes all the approximations; finally the remaining objects are loaded and
sorted.

In order to test the newly integrated BitMatrix, a BitMatrixTest class derived from the ScanT-
est class was implemented in order to accommodate test scenarios with several parameters: num-
ber of iterations, number of objects, number of distance computations, number of dimensions
processed at each step and several threshold values.

6.3.8 Method comparisons with MMDI

In this section we show the kind of results that can be obtained with the MMDI framework. From
the set of indexing methods presented in Section 3.4, the SAM’s, MAM’s and single-dimension
mapping were not implemented in the framework. This is due to a set of initial requirements
that we have identified and which the above mentioned methods do not satisfy: we only keep the
high-dimensional indexing methods that retain most of the sequential scan’s flexibility with as few
assumptions as possible on the metric, dimensionality and structure of descriptors. However, their
integration in our framework would have been straightforward as well; such methods have already
been implemented in frameworks like GIST [HNP95] and XXL [dBBD+01].

The experiments reported were run over two datasets. The first dataset, i300, is a small dataset
of 300 images with 256-dimensional histograms and 3 ranges per dimension. The second, i9000,
consists of 9908 image with 256-dimensional histograms and 7 ranges per dimension.
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Figure 6.7: Distance computations; i9000 dataset

The time results in Figure 6.6 illustrate the search times as sums of the times for the various
sub-tasks: load index, search index, load object’s data, search objects. Figure 6.6 shows the time
results for the i300 dataset, using the Manhattan and Euclidian metrics. The time for the VA-
File does not do justice to the method as it is obtained using the same partitioning scheme as
GridBitmap and BitMatrix. For the case of i300, the partitioning scheme makes 3 ranges in each
of the 256 dimensions, thus 3256 cells. With the non-empty cells containing at most one object the
pruning efficiency of the VA-File (search index time in Figure 6.6) is severely reduced. Sequential
Scan and BOND load the whole dataset sequentially in memory, while the other methods load
(pseudo- randomly) a much smaller subset representing the objects that are not pruned. Even so,
in the case of i300 the time values for the load object’s data task are very similar, confirming the
advantage of the sequential access over the random access.

It is also interesting to study the effects of metric change. In Figure 6.6 (a) the Manhattan
metric is used while Figure 6.6 (b) shows the same results for the Euclidean metric. It can be
observed that with the Euclidean metric the search time for BOND decreases, leading to a better
general score.

The number of distance computations performed by each of the evaluated methods is another
result that can be obtained with the MMDI. For this purpose, the i9000 dataset has been used.
The statistics of distance computations are illustrated in Figure 6.7. It can be observed that the
Sequential Scan and the VA-File perform distance computations for each object, i.e 9908 distance
computations, while the other methods compute the exact distances only for the set of objects
remaining after their pruning phases.

The implementation of the MMDI framework has shown that changes in the partitioning sys-
tem and in the metrics can significantly influence the performance of a method. Rather than
choosing a single indexing method, the goal of MMDI is to observe the behavior of the multidi-
mensional indexing methods at a fine-grained level.
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(a) No Expansion (b) Exp threshold=0.01

Figure 6.8: Histogram of cardinalities

6.4 Evaluation of the BitMatrix Method

The BitMatrix is an approximate search method and trades precision for speed by means of param-
eters such as cardinality threshold, range expansion threshold, partitioning scheme and subspace
selection, as presented in Section 6.1. Note that BitMatrix deals with objects represented as bit
signatures. Such signatures are derived from partitioning schemes, i.e. each dimension is divided
into intervals (ranges). For the ranges in which the objects are located, the bit signatures con-
tain 1s, and 0s otherwise. The similarity between two objects is given by the cardinality of the
bitwise AND between their signatures, where the cardinality represents the number of bits set to
1. In other words, this similarity measure counts the number of dimensions where the objects
coincide (share the same range). In some dimensions however, two objects can be close to each
other but located in different ranges, which means they are both close to the common edge. This
“edge-effect” depends on the object distribution and the dimension partitioning method.

The BitMatrix evaluation has been performed on two datasets: the dataset mentioned earlier
of 9908 real images with 256-dimensional histograms —the i9000 dataset and a synthetic dataset,
i10000, of 10000 objects uniform independent identical distributed (IID) in all of its 80 dimen-
sions.

6.4.1 Range expansions evaluation

To illustrate the effect of range expansions in k-nearest neighbors search NNk(q), we consider a
subspace of 86 dimensions from the original 256-dimensional i9000. The histograms of cardinali-
ties in Figure 6.8 show the cardinalities (horizontal-axis) and the number of objects with the same
cardinality (the frequency axis): on the left-hand side without expansion and on the right with an
expansion threshold et = 0.01. The cardinalities (the bins) of the first 10 nearest neighbors (NN10)
are illustrated as dark bins in both the left-hand and right-hand histograms. It can be observed that
after expansion, all the 10 nearest neighbors have cardinalities larger than 40.
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i9000 N = 256, kD = 7, i = 1 . . .256(k−means partitioning)
NN(q) NN10(q)

ct Naïve(et=0) et=0,01 Naïve(et=0) et=0,01
Recall accessed Recall accessed Recall accessed Recall accessed

0.73 0.6 0.2% 0.7 0.4% 0.39 0.2% 0.48 0.4%
0.67 0.78 0.8% 0.87 1.0% 0.61 0.8% 0.68 1.0%
0.55 0.93 2.9% 0.95 3.8% 0.86 2.9% 0.9 3.8%
0.47 0.97 6.0% 0.99 7.4% 0.91 6.0% 0.94 7.4%
0.40 1.0 10.9% 1.0 13.5% 0.93 10.9% 0.96 13.5%

i10000 N = 80, ki = 7, i = 1 . . .80(k−means partitioning)
NN(q) NN10(q)

Naïve (et=0) et=0,01 Naïve (et=0) et=0,01
0.60 0.24 0.19% 0.25 0.21% 0.08 0.19% 0.09 0.21%
0.50 0.55 1.99% 0.57 2.31% 0.33 1.99% 0.35 2.31%
0.40 0.78 8.16% 0.84 9.32% 0.57 8.16% 0.62 9.32%
0.35 0.90 17.0% 0.93 19.2% 0.77 17.0% 0.80 19.2%
0.30 0.90 32.2% 0.94 34.21% 0.85 32.2% 0.87 34.21%

Table 6.1: Testing the BitMatrix on two datasets

6.4.2 Recall Performance

The next set of experiments was geared towards observing the BitMatrix performance for nearest
neighbor search (NN(q)) and k-nearest neighbors search (NNk(q)). To illustrate the NNk(q) search
performance, we compare the approximate BitMatrix results with the exact k-nearest neighbors.
We use the recall rate for this purpose.

Assuming R as the NNk(q) set and A as the set of approximate neighbors obtained with Bit-
Matrix, the recall rate is

|A∩R|
|R|

.

This measure has been proposed to evaluate retrieval in a context where user relevance judgments
are available. Here it is used in a more formal evaluation. Therefore we assume that the relevant
objects (the R set) are only the first k neighbors obtained with a sharp similarity criterion, such as
the euclidean metric.

Beside the recall rate scores, we also record the percentage of objects that are effectively
accessed, i.e that remain after the pruning phase. This is expressed as the ratio of |A| to the size of
the dataset.

Table 6.1 shows average values of the two measures (recall rate, and % of objects accessed)
with respect to NN(q) and NN10(q) across random sets of 100 queries. The cardinality thresholds
are in the first column. With a cardinality threshold of 0.55 for instance, less than 3% of i9000
is accessed, the average recall rate is 0.93 (relative to NN) and 0.86 (relative to NN10). The
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experiments have shown that the trade-off between quality of retrieval and speed can be tuned
with the expansion mechanism. For example, with the cardinality threshold 0.47, about 6% of
i9000 is accessed, and the recall rate relative to NN10 is 0.91. If range expansion is performed the
NN10 recall becomes 0.94 at 7.4% accessed objects, while for a smaller cardinality threshold (ct
= 0.4) the NN10 recall is 0.93 at 10.9% accessed objects. With an increase in recall (0.94 vs 0.93)
and less 3.5% (7.4% vs 10.9%) objects accessed, expansion should be preferred in this case.

The results for the synthetic uniform IID distributed i10000 are presented in the second half
of Table 6.1. The numbers indicate lower performance than on i9000. Much larger amounts of the
i10000 have to be analyzed in order to obtain acceptable recall rates. Note however, that i10000 is
a synthetic dataset independent and identically uniform-distributed across all the dimensions, thus
not a realistic one. The expansion mechanism clearly improves the recall rate in this case as well.

Figure 6.9: Comparing methods that use the euclidean metric

6.4.3 Time performance

Another set of experiments have been designed to observe the time performance of the BitMatrix
as a memory-based indexing method. They have been performed on i9000. The time columns in
Figure 6.9 have four components: the time to load the index in memory (if such an index exists),
the time to search it, the time to load objects data, and the time to search them. The total time for
the BitMatrix is clearly smaller than the values for Sequential Scan and Bond [AMNK02] and is in
the same range as the GridBitmap [Cha03]. The VA-file’s [WSB98] time again is not favorable to
the method as it is tested using the same partitioning scheme as GridBitmap and BitMatrix; with 7
ranges in each of the 256 dimensions, there are 7256 approximation cells, with the non-empty ones
having at most one object. Thus, VA-file has to access much more cells than real objects.
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Chapter 7

Retrieval Method

In this chapter the discussion is focused on MetaMedia’s search and retrieval processes. The
complex nature of the multimedia items lead to the development of several search approaches that
target different parts of them. MetaMedia integrates search on textual content, search on structured
contextual metadata and search on visual features for image and video segments; each of them is
presented independently in the sequel. Then, the retrieval method will be described as faceted way
of integrating several search engines in a powerful and flexible user interface.

7.1 Search Modalities

Taking advantage of the data model, MetaMedia proposes a hybrid search approach where queries
can be formulated in several ways:

• Query by keyword is the most straightforward mode, allowing the exploration of the collec-
tion by users with no special skills.

• Structured queries are aimed at more specialized users, who have some background on the
domain covered by the contextual descriptors and understand the structure of the collection.

• Query by content uses audio-visual features. It is essential when items are mostly images
and videos and the users want to provide example items or express image features.

• Exploratory search allows users to browse the entire collection in a navigation mode.

All these search modalities will be detailed in the following sections. However, at this point,
two general observations can be made. The first one concerns the relationship between search
modalities and index types. Each search modality relies on dedicated indexing structures that
are targeted for specific types of data. Thus, the keyword-based search uses text indexes, the
structured and exploratory search modalities use relational indexes, and the content-based search
uses high-dimensional data indexes.

A second observation concerns the relationship between the index types and the data model.
On one side, the fact that the indexes can store only certain types of data, forces a separation of the
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Figure 7.1: Text Indexing & Keyword Queries

searchable information into text, relational, image, video and high-dimensional data. On the other
side, the data model described in Chapter 5, is not datatype-oriented. The information’s place
in the model is acquired based on the relationship with the digital items. There can be content
parts —the Segments– of any modality, for example. Similarly, there are no datatype restrictions
for Description Units or Descriptors. The conceptual separation induced by the data model is
orthogonal to the datatype-centric separation that is required for indexing. It is therefore natural
to simultaneously index, for example text information, from Segments, DUs, Descriptors, or any
other part of the model.

7.2 Query by keyword

The first search modality is query-by-keyword; it requires a full-text indexing system. The Lucene
engine [Apa06] has been used to index all the textual information of the digital items which, ac-
cording to our data model, is located in Segments (text segments), DUs (descriptive information)
and Descriptors. The Lucene indexing system works internally with so-called Lucene documents,
where a Lucene document is a collection of fields. A field is a pair composed of a name and value:
< name,value >. The indexing and search operations are mostly taken care by the Lucene pro-
gramming interface through its IndexWriter, QueryParser and IndexSearcher classes. The user’s
only responsibility is to construct valid Lucene documents from the available text information.
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public Document makeLuceneDocument(TextDigitalItem tdi){
//new Lucene Document

Document doc = new Document();
//fields from DU

doc.add(new Field(‘‘path’’, tdi.path));
doc.add(new Field(‘‘DU_code’’, tdi.DU_code));

//fields from the text segment
doc.add(new Field(‘‘título’’, tdi.title));
doc.add(new Field(‘‘cargo’’, tdi.cargo));
.
.
doc.add(new Field("content", tdi.content));
return doc;

}

Figure 7.2: Building Document representation in Lucene

Figure 7.2 illustrates the process of creating one Lucene document from a digital item. The
fact that the function makeLuceneDocument accepts a “TextDigitalItem” parameter, suggests that
only text data from the digital items is indexed. The upper part of Figure 7.1 shows that in general,
such text data can be located in every part of the data model such as the Segments, the DUs
or Descriptors. In practice however, the main sources of text information are the DUs and the
Segments. Figure 7.1 also illustrates that the Lucene documents are written to the index file with
the help of the Lucene’s IndexWriter class.

Figure 7.3: The keyword search interface

The search process, schematically illustrated in Figure 7.1, starts with a keyword-based query
introduced in the dedicated user interface that is shown in Figure 7.3. The interface has been
constructed in the context of a case study, called Santa Maria da Feira, which will be detailed in



84 Retrieval Method

Chapter 8. The keyword queries are passed from this interface to the Lucene QueryParser which
in turn issues Lucene queries. For example, a query for documents containing the term titulo of
value “rex” or the term cargo of value “escrivao”, is put by the QueryParser into the following
Lucene syntax: “titulo:rex OR cargo:escrivao”. The Lucene’s scoring system —IndexSearcher—
is then used to obtain the search results.

7.3 Structured queries

The second search modality takes advantage of the fact that the descriptive metadata, i.e the DUs,
are highly structured. The specialized users, for which detailed contextual metadata is valuable,
can benefit from this fact when searching for multimedia items. Such metadata can be easily
indexed with the state-of-the-art indexes available in any relational database. MetaMedia has a
dedicated interface for structured queries which is presented in Figure 7.4. The query values input
in this interface are used to form traditional SQL queries. For example, a query made by an expert
user, such as an archivist, wishing to find a DU dated on the “first of June 1250” that reached the
digital archive via “Arquivo Distrital do Porto” would look like in the Figure 7.5.

Figure 7.4: The structured search interface

SELECT * FROM description_units WHERE
(earliestdate > to_date(’1250/06/01’,’yyyy/mm/dd’))
and upper(source) LIKE upper(’%Arquivo Distrital%’)

Figure 7.5: An SQL query example

Given that some of the DUs data are also indexed with text indexes, as shown in Section 7.2,
the relational indexes are redundant for the common set of data. However, having a set of basic
data accessible with different query modalities it is beneficial for the retrieval efficiency. On one
hand, it is a common pattern of use, even for non-specialized users, to first obtain some answer
with keyword-based search and then to refine their needs by means of specific fields. On the
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Figure 7.6: The Content-based Search Process

other hand, for some datatypes (from the common set of data) such as the numeric and date, the
relational indexes such as B-trees, perform much better than text indexes. Therefore, indexing
such datatypes with relational indexes is justified.

7.4 Query by content

The third search modality is query-by-content using audio-visual features. It relies on query-by-
example and relevance feedback search paradigms. The search starts with a collection of query
examples and the goal is to retrieve similar items. The similarity/dissimilarity evaluation can be
computed with respect to some descriptor or to combinations of them. We have used a large set
of low and high-level features. The low-level features include color, texture, shape and audio
features, while the high-level features are concepts resulted from automatic annotation processes.

Figure 7.7: Answer computation

The color features are captured by several MPEG-7 descriptors, namely ColorLayout, Col-
orStructure, ScalableColor and ColorMoments; the texture is represented with EdgeHistogram,
Homogeneous Texture, Wavelet texture and Haralick Texture descriptors, and the shape with the
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Figure 7.8: The audio-visual search Interface

RegionShape descriptor. We have also used keypoints, or local interest points, which are captured
by the Scale Invariant Feature Transform (SIFT) descriptors [Low03]. Beside image features,
we have used a set of automatically extracted descriptors for audio: Spectral Centroid, Spectral
Rollof Point, Spectral Flux, Compactness, Spectral Variability, Root Mean Square, Fraction of
Low Energy Windows, Zero Crossings, Strongest Beat, Beat Sum, Strength of Strongest Beat,
MFCC (Mel Frequency Cepstral Coefficient), LPC (Linear Predictive Coding) and Area Method
of Moments.

Figure 7.9: Exploratory search

The high-level features, such as the concepts automatically obtained with special detectors
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[JCLZ05, JNY07], are used to create a high-level descriptor, from now on referred to as the “Con-
cepts” descriptor. Similarly to the work in [Rau04], we first create a concept space —a vector space
where each concept is a dimension. Our concept space can be formalized as Cn = {c1,c2, ..,cn},
where ci is a qualitative dimension corresponding to the ith concept and n is the total number of
concepts. Given this formalization, each of the annotated objects can be represented as vectors:
(v1,v2, ..,vn), where each vi represents the value for the ith corresponding conceptual dimension.
The advantage of the “Concepts” descriptor is that it can be indexed it with multidimensional tech-
niques. That allows us to use the BitMatrix — the multidimensional indexing technique that was
presented in Chapter 6— for the entire range of low and high-level descriptors.

The content-based search starts with image or video examples and a set of descriptors to be
used in the similarity computation. For example, it can start with an image of a natural scene and
expect similar images with respect to the ColorLayout and ColorStructure (color), and EdgeHis-
togram (texture) descriptors. Figure 7.6 illustrates the overall process. The first step is to extract
the desired descriptors from the example image, obtaining its feature vectors. In the sequel, the
vectors are translated into bit signatures and passed to the BitMatrix-based answer computation
step, which is illustrated in Figure 7.7.

Our answer computation strategy is to construct descriptor-wise BitMatrix indexes. At search
time, depending on the selected descriptors, the corresponding BitMatrix indexes are searched,
obtaining partial result lists which are then aggregated. The aggregation strategy is a configurable
aspect of the content-based search. It can be either one of the aggregation strategies presented in
Section 3.3.5, or a BitMatrix-based aggregation. The latter assumes that the partial result lists are
binary, stating whether the objects are above a similarity threshold, or not. The descriptor-wise
binary lists are aggregated with bitwise operations, as shown in Figure 7.7. As the case in the
figure shows, all the lists have 1 for the object in the third position, thus the bitwise AND yields a
1 in the final list. Therefore, the third object will be among the retrieved objects.

The results are displayed on a wide scrollable surface as depicted in Figure 7.8 and can be
marked for subsequent relevance feedback iterations. The interface also allows the customization
of the descriptor set used in each search iteration. For example, the search can start with color and
texture and then switch to audio descriptors.

7.5 Exploratory search

The last search modality is called exploratory search; its dedicated interface is illustrated in Figure
7.9. On the left-hand side, a tree-based control reflecting the hierarchical structure of the DUs can
be observed. The user starts the DB exploration by browsing the tree and choosing a desired DU.
With tree node expansions/collapses the user can further zoom in or out over the entire collection.
Once a DU is selected, its sibling DUs can be sequentially accessed. This type of exploration is
especially efficient when combined with the other search techniques presented up to now in this
chapter.
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Figure 7.10: The content view

7.6 Faceted retrieval

We have seen several search modalities supported by MetaMedia. Each of them returns hetero-
geneous item parts. For example, some text results of a keyword search may represent an item’s
content, while others may be metadata. It is important to distinguish and display them in an in-
formative manner. From the point of view of the relationship with the items, the search results
can be content, context metadata and structure information. We regard these categories as facets
of any multimedia item. Retrieving multimedia items from this content-description-structure per-
spective requires a previous identification, or categorization of data as being content, description
or structure. This happens when the items are stored in the database, as a consequence of using
the MetaMedia database model.

For each of the facets, MetaMedia offers dedicated views that are populated with data that
comes from corresponding parts of the data model. Thus, the structural view displays hierarchies
of DUs, the content view displays Segments and the description view displays the metadata stored
in DUs. Note that the views follow the conceptual separation induced by the data model, which is
orthogonal to the datatype-centric separation that is required for indexing. In this way, the search
engines continue to index specific data types (structured data, text, image, video) but at retrieval
time the results are properly displayed in the corresponding view using their location in the the data
model. For example the text, image and video data that are stored in the database as Segments are
all displayed in the content view, while the text stored in the DUs are displayed in the description
view.

The faceted retrieval process starts with any of the available search modalities —keyword,
structured, audio-visual or exploratory, and a first set of results is obtained. Based on the data
model and independently of their media type, the results can be either content parts — Segments
or descriptive metadata — DUs. The selection of a result identifies the multimedia item to which
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Figure 7.11: The compact description view

it belongs and updates all the views of the MetaMedia interface. Thus, the selected item can be
analyzed simultaneously in its several facets: content, description and structure. The item context
is maintained across all the views. For example, after displaying the content in content view, the
user can switch to structure view or descriptive view and observe the hierarchy of the same item.

Figure 7.10 illustrates the content view interface for a collection of historic documents ( de-
tailed in Chapter 8). On the left-hand side, there is a viewer for image segments and on the
right-hand side the text segments are displayed. Both visualization areas can be maximized to
allow the focus on the selected piece of content.

Figures 7.11 and 7.12 illustrate the description view. This view has a remarkable feature.
Given the uniform description of the DUs hierarchy, the same descriptive attributes are found at
all the levels. The user can visualize the attributes of a selected DU in two modes. The first one
presents only the non-empty attributes at the DU level, while the second mode illustrates the full
set of attributes, filling the unspecified ones with values inherited from upper levels. In Figures
7.11 and 7.12 capture both the compact and full visualization modes.

The structural view is a panel where the hierarchical organization of the items can be visual-
ized. Illustrated on the left part of Figure 7.9, this view is especially useful for the visualization of
complex items, i.e items that contain sub-items. The user can navigate down to sub-items (zoom)
or up to the root obtaining an overview of the entire archive.

7.7 Discussion

We have presented in this chapter the retrieval approach that MetaMedia offers. There are search
methods for text, structured, image, video and high-dimensional data, each one having its own
search interface. Besides specialized search interfaces, there are three facets, also called views,
which have been designed to display data from specific parts of the data model. The content
view displays Segments, which are also considered the multimedia items content. The description
view displays the items contextual metadata (Description Units) and the structure view reflects
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Figure 7.12: The full description view

the hierarchical structure of the items as it is introduced by the relationship between Description
Units.

The set of interfaces allow the user to combine operations such as overview and zoom by
interacting with the tree visualization structure and perform filter operations by resorting to the
several search types. Once entered in a retrieval session, the retrieval experience is user dependent.
For a novice user for example, perhaps overview has more importance than to an expert. The latter
could quickly use filter and zoom to find the desired documents.



Chapter 8

Case Studies

This chapter presents two case studies, “Enthrone” and “Santa Maria da Feira”. Both case studies
make intensive use of metadata and are implemented on top of the same MetaMedia data model.
However, they provide different perspectives on the datasets bringing challenges from the point of
view of structural organization, visualization and search.

Metadata standards have been proposed at a fast pace [SS06], but their adoption in practical
systems has not followed the same trend. Some argued that it is time to stop developing metadata
standards and build systems based on the existing models even if they are not perfect [Bul04]. We
need examples of systematic use of the metadata standards, where the specificity of the application
domains gives insight on the appropriateness of the concepts used. The case studies presented here
are two examples of such systems.

8.1 Structure of the case studies

The two case studies are quite different in nature. The “Enthrone” case study is focused on qual-
ity of service for news broadcasting and video on demand scenarios in heterogeneous networks,
while “Santa Maria da Feira” aims at an integrated view of digitized heritage documents, archival
descriptions and transcription texts produced by scholars. The following two sections cover the
“Enthrone” and “Santa Maria da Feira” case studies, respectively. Each of them is structured in
three subsections that present the nature of the multimedia items, how are they mapped to our
data model and the retrieval methods. The items are regarded as instances of the generic multime-
dia items, previously presented in Section 2.3.3. Then, based on items analysis, we identify the
amount of data that goes into the relational and XML parts of the model, and the proper indexing
strategies. Finally, the “Retrieval” sections specify which of the retrieval methods presented in
Chapter 7 have been applied in each case.
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8.2 Enthrone, news broadcasting and video on demand

The MetaMedia content-management solution has been adopted in news broadcasting and video
on demand scenarios in the context of the ENTHRONE (End-to-End QoS through Integrated Man-
agement of Content, Networks and Terminals) project [The, CAA+07].

Figure 8.1: Enthrone

The goal of the project is to provide integrated management for the access to multimedia
content with end-to-end quality of service (QoS) in heterogeneous networks and terminals. That
is to make available any multimedia content to the ever increasing number of different users with
different preferences who access it through a plethora of devices and over heterogeneous networks.
End devices range from mobile phones to high definition TVs, access networks can be as diverse
as GSM and broadband networks, and the various backbone networks are different in bandwidth
and QoS support. Moreover, the users have different content/presentation preferences and intend
to consume the content at different locations, times, and under varying circumstances.

Figure 8.1 presents a high-level view of the actors involved in Enthrone: content providers,
metadata providers, Integrated Management Supervisor (IMS) and consumers. IMS is the core
system that takes care of the integration, comprising several sub-systems dedicated to the manage-
ment of the network, the terminals (consumers) and the content. The IMS needs to be aware of the
entire audio-visual service distribution chain including content generation and protection, search,
adaptation, distribution across networks and reception at user terminals. IMS includes a Con-
tent Manager sub-system used to efficiently store, search, retrieve and adapt the set of metadata
descriptions that accompany the whole distribution chain.
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Figure 8.2: The Levels of the Hierarchy

8.2.1 Items

Broadcasting and video on-demand are the main services that ENTHRONE offers. The consum-
able items range from simple audiovisual fragments to structured collections thereof. For example,
an item can be a piece of news about traffic conditions, including its text, audio and video tracks,
or a video obtained from a video-on-demand provider. Collections of items, such as a news pro-
gram from a broadcaster, are also perceived as items. The Enthrone’s processing chain must hand
a large variety of metadata. Accompanying collections of raw content with descriptors that cover
identification, search, digital rights, user-terminals and adaptation, produces complex multimedia
items that we call Enthrone digital items.

The Enthrone digital items are well-formed XML files, with the overall structure imposed by
the MPEG-21 DID Schema [MPE04]. The DID Schema, is an MPEG-21 XML Schema which
defines the Digital Item Declaration Language (DIDL), i.e. the set of rules necessary for the
definition of the MPEG-21 Digital Items. Below we present some of the elements:

• DIDL: is the root element of a DID.

• Container: groups more Items and/or sub-Containers.

• Item: contains Components and/or sub-Items. Item is seen in MPEG-21 as the lowest level
of granularity transacted by users.

• Component: binds resources to a set of descriptions.

• Descriptor: associates information with the enclosing element (Item, Container, Compo-
nent, Descriptor).

The Enthrone digital items follow in fact a profile of the MPEG-21 DID Schema. We call it a
profile because, we have introduced additional constraints to the generic MPEG-21 DID Schema
by defining the number of child elements allowed at specific description levels and the identifi-
cation rules. For the example the root element DIDL must contain one and only one direct child
which must be of type Container. An MPEG-21 Digital Item Identification descriptor containing
an unique URI is mandatory at the level of Container. The Item and Component types have sim-
ilar restrictions. Descriptor can be applied to any Container, Item or Component, but not to an
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Figure 8.3: The Enthrone digital items

enclosing Descriptor. The structure of the Enthrone digital items is illustrated in Figures 8.2 and
8.3.

Figure 8.3 illustrates the Enthrone digital items by particularizing the generic structure that
has been illustrated in Figure 2.2.a. It can be observed that MPEG-21 DID plays the role of the
structure provider for the Enthrone dataset, while TV-Anytime, MPEG-21 and MPEG-7 are de-
scription providers. The most used descriptors with provenance in the description providers are:
“ProgramInformation” and “Schedule” descriptors from TV-Anytime, “Digital Item Identifica-
tion”, “Digital Item Adaptation” and “Rights Expression Language” descriptors from MPEG-21
and “ColorHistogram”, “MelodyContour” and “MotionActivity” from MPEG-7.

8.2.2 Model

The data model proposed in Chapter 5 has been instantiated in the Enthrone case study [CAA+07].
We present in this section how the previously presented Enthrone digital items have been mapped
to the database model. Given the concepts behind the data model, Figure 8.4 shows how such
items are captured in DUs, Segments and Descriptors. The DUs capture the structural organization
which is given by the items structure provider (Figures 8.2 and 8.3). The left part of Figure 8.4
illustrates an Enthrone digital item in XML format as it appears before being stored in the database,
while the right part of the same Figure shows what data is explicitly stored in the database.

For each of the Container, Item or Component elements there will be a corresponding DU,
i.e a corresponding entry in the “Description Units” table. The part-of relations between DUs are
established by the code and parent_code attributes, which have their values assigned from the
id attributes of each element.

The content resources of the Enthrone digital items appear below the Component elements.
They are mapped to Segments in the data model and in general are not independently consumed;
their identifiers are stored in the “Segments” table. The Segments contextual metadata is taken
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Figure 8.4: Storing Enthrone digital items

from their corresponding DUs. The association between a Segment and a DU, is made explicit
with the “Contents” table. That is, the “Contents” table must contain a record with two codes: the
segment code (seg_code) and the DU code (du_code). The Segments can also be hierarchically
organized. This happens when the content resources require further analysis at even more fine-
grained levels. For example, a video resource from a digital item which is a Segment in our
data model, is selected for analysis at frame level. The frames become sub-segments and inherit
their context metadata from the DU of their parent Segment. The Segments hierarchies are also
modeled with code and parent_code attributes.

The Descriptors part of the model hosts information provided by the standards identified as
description providers (see Figure 8.3). In Figure 8.4, the “Descriptors” table contains references to
all the descriptor types that appear in the example digital item. The “Descriptor_Instances” table
accounts for the associations between Segments and Descriptors, similarly to the role played by
the “Contents” table for DUs and Segments.

The identifiers are required to differentiate elements of the same type within an Enthrone
digital item and to uniquely identify them in the database. Generally, the identifiers are derived
from two mandatory identification elements: the MPEG-21 DII descriptor and the id attributes.
The code column of the “Description Units” table in Figure 8.4 shows the identifiers for the
example Enthrone digital item. For example the identification code “crid:uid_i1” that corresponds
to the first Item is formed by the concatenation of the top level DII value “crid:uid” and the id
attribute “i1”.
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(a) A search request in XML format (b) A result set in the MPEG-21 DID format

Figure 8.5: Query and Results in Enthrone

Figure 8.4 shows that the data model combines two storage types: relational and XML. The
hierarchical structure of the example digital item, together with the contextual metadata are stored
in the relational part of the database: “Description Units”, “Segments” and “Contents” tables.
The descriptor types also go in the relational part, namely in the “Descriptors” table. But the
instances of the descriptors are stored in XML. The “Descriptor_Instances” table with its column
of “XMLType” is the place in the model that accommodates the XML descriptors, as illustrated in
Figure 8.4.

8.2.3 Retrieval

The search and retrieval tasks in Enthrone are initiated through API calls by other sub-systems
such as Consumers, Content Providers or Metadata Providers (see Figure 8.1). There have been
no specifications for a dedicated retrieval interface.

Figure 8.4 shows that each data type, namely relational, text/XML, and high-dimensional,
are handled by proper indexing methods. However, given that the queries are mostly focused
on contextual metadata, which is located in the “Description Units” table, the relational and text
indexes are the most important.

The queries are keyword-based and are sent to the query engine in XML format. There is
a fixed list of search keywords taken from the TV-Anytime “ProgramInformation” descriptor. It
contains the “title”, “genre”, “synopsis”, “date” and “summary” keywords.

An example of a query requesting all the items having title “Matrix” and language “German”
is presented in Figure 8.5(a). After parsing the query XML, the sequence of keywords is obtained
and a query is effectively issued to the query engine. The initial phase of the answer computation
is to obtain the set DUs identifiers that match the given query. Next, the metadata located in
these DUs is returned in MPEG-21 compliant format — a “virtual” Digital Item obtained from the
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Figure 8.6: The Levels of the Hierarchy

results. Figure 8.5(b) details the answer format. The important MPEG-21 DID elements are Item,
which appear for each of the matching DUs and the Container, in which all the Items are bundled.

8.3 Santa Maria da Feira, a historic documentation center

The Santa Maria da Feira case study [RDC07a, RDC07b] has archivistic requirements, thus with
great concern for authenticity, organization and preservation of documents. The original docu-
ments are parchments and the documentation center is a virtual archive based on digitized versions
and their associated transcriptions.

We outline the process of producing the dataset which has been quite complex, requiring the
participation of experts from the History, Archival, Linguistics and Information Retrieval domains.
A first work thread was the digitization of the original parchments, which produced high-definition
electronic versions thereof. In parallel, the historians had the task of producing the parchment tran-
scriptions in either Latin or archaic Portuguese, and to annotate them. A dedicated annotation tool
[RDB06] has been developed and a thesaurus has been defined in order to assist the transcriptions
annotation process. Enriched transcriptions with labels such as “person”, “place”, “institution” or
“date” have been thus obtained.

The archivists have focused on the organization of the dataset. Built according to the ISAD/-
ISAAR standards, the dataset structure is based on the provenance of the individual documents.
For example, documents resulting from the activity of a specific office, such as the king’s chancel-
lor’s office, are kept together and grouped in description units. Beside structural organization, the
description units contain also important amounts of contextual metadata, such as title, short title,
date of creation, size, scope, accruals, arrangement and materials. However, not all the descrip-
tion units have detailed archival description. According to the archivists, there can be objects for
which context metadata generation can be afforded, due to their importance, while many others
will not justify such an investment. In any case, some minimal description is required. This can be
achieved through hierarchical organization of the documents, where the descriptive information
present at the collection level can be assumed for the individual items as well, with little or no
effort. The hierarchical organization of the documents allows items to inherit descriptions created
at collection level, in case they do not have specific ones already defined.
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Figure 8.7: The Santa Maria da Feira items

Summarizing, after all the experts contributions, the information for each of the documents
in the repository comprised four parts: the digitized parchment, its transcription, its annotated
transcription and the archival description according to the ISAD/ISAAR standards. Towards mak-
ing the digitizations and transcriptions publicly available, the development of a dedicated retrieval
system has been identified as a mandatory task.

Items

All the electronic information available for a document which, as stated before, comprises the
digitization, transcription, annotated transcription and the archival description, is regarded as a
Santa Maria da Feira digital item. However, given the part-of hierarchical organization, sets of
items can be grouped at higher descriptive levels. The results of such groupings are also seen as
items.

Unlike the Enthrone case study, in Santa Maria da Feira the digital items do not come pre-
packaged in single files. The various information parts belonging to a digital item are introduced
independently in the database. However, after having the items in the database, they could be
exported in a specific format such as XML, joining all the metadata in one file.

The structure provider for this set of items is ISAD, the norm on which the archive has been
organized. Figure 8.6 show that the items structure is composed of the Group of Fonds, Sub-Group
of Fonds, Fonds, Sub-Fonds, Collection, Series, Process and Document levels.

The descriptive metadata come from two description providers. First, a set of attributes from
the ISAD(G) norm has been used to convey contextual metadata. Attributes such as “code”, “title”,
“author”, “date”, “copyright”, “material”, “scope”, “language”, “notes” are uniformly present at
each of the hierarchical levels presented before. The second category of descriptive information,
content-related in this case, has been provided by the manually annotated transcriptions. We
remind here that the annotations have been obtained from the clean transcriptions which have
been enriched in the sequel by archivists with concepts such as “person”, “noble title”, “date”
or “institution”. The enriched transcriptions, are XML documents and have been incorporated as
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Figure 8.8: Storing Santa Maria da Feira digital items

descriptors; we call them “Transcription” descriptors. The XML Schema that such descriptors
comply has been locally defined, thus non-standard. This is particularly important because it
marks the use of a user-defined description provider.

Figure 8.7 illustrates the structural and descriptive parts of the Santa Maria da Feira’s mul-
timedia items. The Figure follows the generic items structure that has been illustrated in Figure
2.2.a. It can be observes that ISAD(G) appears both as a structure and as a description provider.
Also as description providers there are the enriched transcriptions.

Model

Each level of the hierarchy presented in Figure 8.6 has a corresponding DU. The “Description
Units” table in Figure 8.8 contains separate instances for each of the DUs. Attributes such as
“code”, “title”, “author”, “date”, “copyright”, “material”, “scope”, “language”, “notes” that uni-
formly apply at all the description levels, are also stored in the “Description Units” table. The DUs
identifiers are being derived in this case from the reference codes established by archivists for the
original parchments

The content-only parts of item are conceptualized as Segments and are stored in the table with
the same name. Their association to the DUs is implemented with the help of the “Contents”
table, by joining in each of the records a Segment and its corresponding DU code. Valid Segments
examples are the digitizations and the transcriptions.

The enriched transcriptions, are incorporated in the model as instances of the “Transcription”
descriptor. The association of Segments to Descriptors is made through the “Descriptor Instances”
table as illustrated in Figure 8.8.
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Figure 8.9: The content view

Retrieval

Search and retrieval can be performed by both specialized and lay users with the help of the
MetaMedia portal interface. The various parts of Santa Maria da Feira’s items, namely the digiti-
zations, the transcriptions, the archivistic descriptions and the structure become retrievable facets
of the items and have dedicated search methods.

The retrieval process relies on previous indexing steps that were taken type-wise. Figure 8.8
shows that each data type, namely relational data, text/XML and high-dimensional, are handled
by proper indexing methods [CRD06].

Figure 8.10: Descriptive Metadata for an Item in the Santa Maria da Feira Collection
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Figure 8.11: Multimedia space

The text Segments parts, i.e the transcriptions, can be searched with keyword-based queries
and rely on text indexes. The results are Segments identifiers, allowing the user to quickly reach
the desired content parts: digitizations and transcriptions. Figure 8.9 illustrates a “content-only”
visualization of a parchment and of its transcription. The contextual metadata, stored in the DUs
can be searched both with structured queries and with keyword-based queries. Visual exploration
of the DUs hierarchy is also possible. These search modalities return Description Units identifiers
which are used to reach “descriptive-only” visualization interfaces. Figure 8.10 illustrates the
visualization of a Description Unit.

The support of multiple search modalities offers in practice a faceted retrieval of the items.
Even though “structure-only”, “descriptive-only” or “content-only” facets are used at a moment,
the retrieval system behind them works at the level of the whole item. Whatever entry point is
used, the context of the item is maintained by bringing in parallel, in separate tabs, the images, the
transcriptions, the structure and the descriptions belonging to that item.

8.4 Discussion

A unified view of the multimedia items from the two case studies is shown in Figure 8.11. It can
be observed that the multimedia items in the Enthrone case study have a relatively small structural
component (3-4 levels) but a strong descriptive component including many types of descriptors
from very diverse sources. On the other hand, the multimedia items in the Santa Maria da Feira
case study have a stronger structural component (8 levels) but a descriptive component which is
more uniform and comes from only two sources: one standard and one user-defined.

The two case studies presented in this Chapter helped us to empirically evaluate the required
effort of implementing the MetaMedia data model in new application domains. We have identi-
fied a set of questions whose answer give insight on the appropriateness of the model. First, the
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application requirements must be carefully understood:

• digital items: are they simple objects, or complex documents gathering information in sev-
eral modalities? What is the relationship between items and collections thereof?

• metadata: are metadata retrievable also, or just assist the content retrieval?

• standards: what metadata standards are involved?

Then, we check whether the MetaMedia data model concepts apply to the new dataset:

• is there a clear separation of content from its metadata, similar to how MetaMedia distin-
guishes Segments from Description Units and Descriptors?

• is it important to distinguish between context and content metadata, similar to what Meta-
Media does with Description Units and Descriptors?

• is contextual metadata uniformly applied to all items?



Chapter 9

Evaluation

This chapter presents the evaluation results for MetaMedia, the retrieval system that we have
proposed. The tests described here have been carried out to observe the MetaMedia’s retrieval
performance in the context of TREC Video Retrieval Evaluation (TRECVID), which measures the
retrieval performance in a set of so-called task-oriented tests (see Section 2.8).

Although MetaMedia is built on components such as the BitMatrix index, the data model and
the user interface, the results presented in this Chapter are not relevant for any of them; they
reflect the performance of the retrieval system as a whole for the TRECVID set of tasks. However,
component-wise evaluations have already been presented. The BitMatrix evaluation has been
presented in Sections 6.3 and 6.4 and the data model and the user-interface have been successfully
implemented in the case studies (Chapter 8). With positive evaluation results for the individual
components, testing the whole MetaMedia system has been a natural step to be taken.

Before joining the public TRECVID benchmark evaluation [CRD+07], we have conducted
one independently evaluated CBIR experiment on the COREL dataset. The COREL dataset was
used mostly for system-oriented tests. We remind here that Section 2.8 explains what the system-
oriented and task-oriented tests are. We have tested the retrieval performance of several low-level
descriptors for color and texture. Using query-by-example scenarios, the goal was to find similar
images based on Color Layout, Color Structure, Scalable Color, Edge Histogram, Homogeneous
Texture and Region Shape. These descriptors were extracted with the MPEG-7 XM software and
indexed with BitMatrix. The ground truth was provided together with the COREL dataset and the
evaluation metrics were precision and recall.

The TRECVID benchmark however, as a task-oriented evaluation, represented a much more
interesting challenge. With complex query topics, a large number of participants and a common
evaluation platform, TRECVID has been the most important retrieval benchmark of recent years.
In the following sections we describe the TRECVID setup and the search strategy which includes
aspects such as feature extraction, query topics analysis, indexing, search, and the results obtained.

103
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9.1 The TRECVID setup

The TRECVID 2007 edition provided the context of an international video retrieval benchmark in
which we could measure the MetaMedia’s performances in an open, metric-based way. The de-
velopment (training) and test datasets, the ground truth and evaluation measures [SOK06, Wes05]
have all been provided by NIST, the organizers of TRECVID.

9.1.1 Datasets and tasks

While the previous four editions of TRECVID carried on broadcast news, the 2007 edition has
accommodated its tasks on new, related, but different video genres taken from a real archive - news
magazine, science news, news reports, documentaries, educational programming, and archival
video.

Four tasks have been proposed:

• shot boundary determination: identify the shot boundaries with their location and type (cut
or gradual) in the given video clip(s);

• high-level feature extraction (automatic annotation): automatically annotate the video shots
with concepts such as "Indoor/Outdoor", "People", "Speech". The full concept list can be
found in the Appendix C;

• search (interactive and/or fully automatic): given the search test collection, a multimedia
statement of information need (topic), and the common shot boundary reference for the
search test collection, return a ranked list of at most 1000 shots from the test collection,
which best satisfy the need;

• rushes summarization: rushes are the raw material (extra video, B-rolls footage) used to
produce a video. Given a video from the rushes test collection, to automatically create
an MPEG-1 summary clip less than or equal to a maximum duration (to be determined)
that shows the main objects (animate and inanimate) and events in the rushes video to be
summarized. The summary should minimize the number of frames used and present the
information in ways that maximizes the usability of the summary and speed of objects/event
recognition.

Our TRECVID participation covered mainly the search task with a small contribution to the anno-
tation task. The datasets —common for the search and annotation tasks— consisted of 100 hours
of videos from the BBC and the Danish national television, and have been divided into develop-
ment and test subsets. The videos have been segmented into 36282 shots, 18140 for development
and 18142 for test, and shot-wise keyframes have been extracted. In the context of the automatic
annotation task, the development dataset has been manually annotated with a set of 39 LSCOM-
Lite concepts [NST+06] (see Appendix C). The goal was to obtain annotated datasets that would
help the development of automatic concept detectors. Such detectors have been used in the sequel
to automatically annotate the test dataset on which the search tasks had to be accomplished.
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9.1.2 The topics

The topics are complex multimedia statements of information need provided as bundles of 3 dis-
tinct modalities: text, image and video. The text parts of the topics, which can be consulted in the
Appendix D, are natural language queries such as "Find shots of a person talking on a telephone".
The other two parts are sets of image and video examples closely related to the scene described in
the text part.

9.1.3 The evaluation metric

TRECVID consists of a fixed set of video shots, a fixed set of topics, a fixed set of relevance
judgments and performance measures. The answer sets contain ranked lists of documents for each
topic. The quality of the ranked lists is measured based on the positions of the relevant documents
in the list. The average precision (AP) metric is used, where the precision is measured at every
point at which a relevant document is obtained and then averaged over all relevant documents to
obtain the AP value for a given topic. The score of the whole retrieval system is the mean average
precision (MAP), where MAP is the mean of the AP scores for all topics (see Section 2.8).

9.1.4 The submitted runs

We have participated in the search task of TRECVID with three answer sets, also called system
runs. Although our submission contained only three runs, a maximum of 6 was allowed per
participant. The TRECVID statistics show that from the 24 TRECVID participants in all tasks,
namely shot boundary detection, high-level feature extraction, search and rushes summarization,
only 17 have participated in the search. The 17 submissions contained a total of 82 automatic
search runs and 36 interactive search runs.

Of the two types of runs, the automatic runs seem more important for the MIR community
due to their practical implications. It is believed that an user would rather perform several auto-
matic searches than understand the relevance feedback mechanisms of a system. The MAP scores
obtained in automatic runs are more reliable than the ones obtained with interactive ones. For ex-
ample, it is known that the interactive scores can be improved not only by the relevance feedback
technique itself, but by as yet uncontrollable factors such as user-interface quality, familiarization
with the dataset or increased number of iterations.

9.1.5 The schedule

The target dates for the annotation and search tasks of the TRECVID 2007 edition were:

• 2. Feb NIST sends out Call for Participation in TRECVID 2007

• 20. Feb Applications for participation in TRECVID 2007 due at NIST

• 1. Apr Guidelines complete

• May-June Download of feature/search development data
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• 18. June Download of feature/search test data

• 3. Aug Search topics available from TRECVID website.

• 10. Aug Feature extraction tasks submissions due at NIST for evaluation. Feature extraction
donations due at NIST

• 17. Aug Feature extraction donations available for active participants

• 20. Aug - 5. Oct Search and feature assessment at NIST

• 10. Sep Search task submissions due at NIST for evaluation

• 12. Oct Results of search evaluations returned to participants

• 22. Oct Notebook papers due at NIST

• 29. Oct TRECVID 2007 Workshop registration closes

• 5,6 Nov TRECVID Workshop at NIST in Gaithersburg, MD(Registration, agenda, etc)

9.2 Features

We have not proposed new descriptors for the feature extraction task. Our effort was on the
efficient aggregation of the low and high-level features after having them extracted with third-
party tools. In the sequel we enumerate the features that were used and the methods to obtain
them.

High-level Features The high-level features come from an automatic annotation process of the
TRECVID test dataset, where the annotators have been trained on a separate development set. The
annotation process has been part of the feature extraction task which took place before the search
task. Being a separate TRECVID task and subject to a separate evaluation process, we did not have
access to a ground truth annotation, but only to the various annotation versions submitted by the
participants. In the absence of a ground truth annotation we have aggregated all the participants
versions and obtained our “reference annotation”.

The participants in the feature extraction task have annotated the test dataset with 39 concepts
from the LSCOM-Lite lexicon. Each participant has been allowed to produce up to 6 annotation
versions, which resulted in a total of 163 versions. Each annotation version consisted of a list in
which 2000 relevant shots for each of the concepts have been bundled. Given the 39 concepts,
the length of each annotation list was at most 39∗2000. No degree of relevance has been present,
only binary judgments: the concept was present or not in the shot. Our annotations aggregation
strategy has been: for a given shot and a concept determine whether the concept was found or not
in more than 30% of the lists. If the condition held, we would associate the concept to the shot.

After having obtained the reference annotation, a high-level descriptor, called “Concepts” has
been created. Its construction details have already been presented in Section 7.4.
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Low-level Features

Color The color feature was represented by several descriptors. We have used: “Color Layout”,
“Color Structure”, “Scalable Color” and “ColorMoments”. The “ColorLayout”, “ColorStructure”
and “ScalableColor” have been extracted with the MPEG-7 XM software, while the “ColorMo-
ments” descriptor was provided by the City University of Hong Kong [JNY07].

Texture For the texture feature we have obtained “EdgeHistogram” and “Homogeneous Tex-
ture” descriptors with the MPEG-7 XM software. The “Wavelet texture” descriptor has been
provided by the City University of Hong Kong and “Haralick Texture” was locally implemented
based on an ImageJ version [Bai06].

Shape We have used the MPEG-7 “RegionShape” descriptor also extracted with the MPEG-7
XM reference software.

Local features Keypoints or local interest points, also known as “Scale Invariant Feature Trans-
form” (SIFT) descriptors [Low03] have been provided by the City University of Hong Kong
[JNY07].

Audio We have processed the audio tracks of the shots to obtain a set of audio features with
the help of the jAudio [MMF06] software. The features are “Spectral Centroid”, “Spectral Rollof
Point”, “Spectral Flux”, “Compactness”, “Spectral Variability”, “Root Mean Square”, “Fraction of
Low Energy Windows”, “Zero Crossings”, “Strongest Beat”, “Beat Sum”, “Strength of Strongest
Beat”, “MFCC” (Mel Frequency Cepstral Coefficient), “LPC” (Linear Predictive Coding) and
“Area Method of Moments”.

9.3 Topic Processing

The TRECVID topics consisted of a natural language formulation and several image and video
examples. The process of translating these topics into the bit signatures used for answer com-
putation is described in the sequel. Figure 9.1 illustrates graphically how each topic component
is translated into BitMatrix-ready signatures. The text parts of the topics have been subjected to
a natural language processing (NLP) step that offered a preliminary set of TRECVID concepts,
followed by a concept expansion step. The NLP step has been driven independently of the test
dataset and was the result of a collaboration with a NLP group [Lab07]. The concept expansion
has been applied on the set of concepts obtained after the NLP step. It had the goal of finding
related concepts by analyzing the relative distances between concepts, distances that were com-
puted specifically on the test dataset. While the NLP step has been taken independently of the
dataset to be searched, the concept expansion step tried to capture the semantic “relatedness” for
the particular test dataset.
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Figure 9.1: Topic Processing

9.3.1 Natural Language Processing

The goal of the NLP step was to translate the natural language queries into a set of TRECVID
concepts. For example, a query such as as: “Find shots with one or more emergency vehicles in
motion (e.g., ambulance, police car, fire truck, etc.)” resulted in the following list of TRECVID
concepts: [car, walking, boat, disaster, airplane]. To achieve this goal we have relied on the
WordNet [G. 95] lexical database and the natural language parser VISL (Visual Interactive Syntax
Learning) [VIS08b, VIS08a].

Linking the TRECVID Concepts to WordNet A first step withing the NLP approach was to
connect the TRECVID concepts to WordNet. WordNet is a lexical database for sets of synonyms,
called synsets, with a set of semantic relations defined between them. In our approach we have
used only the semantic relations between nouns, namely: hyponym (kind of), meronym (part of),
instance, and synonym.

Linking the TRECVID concepts to WordNet means manually identifying for each TRECVID
concept one ore more corresponding WordNet synsets. For example, the TRECVID concept “Veg-
etation” has been manually associated to synsets identifying concepts of botany and flora in Word-
Net. In Figure 9.2 the A region, illustrates the process of obtaining synsets for the TRECVID
concepts.

Obtaining keywords from NL Queries The textual component of the topics have been pro-
cessed in order to extract sets of keywords. This specific part is illustrated in the B region of the
Figure 9.2. As an example we take the following sentence: “Find shots with one or more emer-
gency vehicles in motion (e.g., ambulance, police car, fire truck, etc.)”. The keyword extraction
process had two steps. First we have obtained the syntactic structure of the sentence using VISL
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Figure 9.2: Processing Natural Language Queries

[VIS08b, VIS08a]. The detailed syntactic structure obtained after running VISL can be consulted
in the Appendix E. Then in a keyword selection process, common and proper nouns have been
extracted. This process looks for nouns such as “truck” or “car”, nouns preceded by a “no” such
as “no clouds”, compound nouns such as “police car” and names such as “Condoleezza Rice”,
that exist in WordNet. For the example sentence the result is the list: [emergency, vehicle, motion,
ambulance, police car, truck].

From keywords to TRECVID concepts The last step of the NLP was to map keywords to
TRECVID concepts. For each keyword we have computed the distance from its WordNet synset
to all the synsets that were previously built for the TRECVID concepts. We have chosen the
nearest synsets and from them the corresponding TRECVID concepts [Lab07].

9.3.2 Concept Expansion

The NLP analysis is a process based on the natural language queries and the WordNet lexi-
cal database. For a given NLP formulation, such an approach always produces a fixed set of
TRECVID concepts, which is independent of the dataset to be searched. However, we felt the
need of obtaining a set of concepts adapted to the test dataset. This intuition was also supported
by the results in [CV07], where the authors argue that words acquire meaning from the way they
are used in a specific context and their relative similarity could vary from one context to another.
The authors propose the Google Similarity Distance (GSD), a similarity relation between concepts
that can be quantified just by using the numbers of documents in which they occur singly and
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jointly. For example, a type of distance between the “horse” and “rider” terms can be computed if
we know how many items contain the term “horse”, how many items contain the term “rider” and
how many items contain both of the terms. Given that for the TRECVID concepts we already had
a reference concept annotation (previously obtained by aggregating all the annotation versions) we
could easily obtain such statistics for each pair of concepts. Thus, a dataset-dependent distance
matrix containing the relative distances between the 39 TRECVID concepts has been computed
using the GSD [CV07] approach. For example, we have found out that in the context of the test
dataset, the “Building” concept is close to the “Court” and the “Flag-US” concepts. Therefore
these concepts could also be used in queries that ask for buildings. Figure 9.1 shows that at query
time, the GSD matrix is consulted after the NLP-based translation of the topics into TRECVID
concepts. For each TRECVID concept in the NLP list we have added another TRECVID concept
that was the closest in the GSD matrix. The final concept list is the expanded list of TRECVID
concepts.

9.3.3 Examples Processing

Beside the textual part, the topics include query examples in two modalities: image and video.
From them we have extracted the features enumerated in Section 9.2, in the same way we have
done it for the test dataset. In the case of the image examples, the features have been directly
extracted, while in the case of video examples we have identified keyframes and from them we
have obtained the features. The audio features have been extracted from the audio tracks of the
video examples. The middle and right columns of Figure 9.1 show the examples processing steps.

9.4 Indexing and Search

Our search strategy consisted in combining high-level features resulting from the automatic an-
notation task, with a large set of low-level descriptors capturing color, texture, shape, and audio
features, in a way that closely follows the query-by-content method described in Section 7.4. We
have combined one BitMatrix index for the high-level “Concepts” descriptor with several BitMa-
trix indexes for the low-level descriptors. A notable difference between our approach and some
other participants approaches is the number of high-level concepts used in the search. While we
have relied only on the 39 TRECVID concepts resulted from the feature extraction task, other
systems have used independently built lexicons of around 1000 concepts.

First, such a strategy allowed us to independently analyze several similarity facets and evaluate
experimentally each one’s contribution to the retrieval tasks. For example, the answer of a query-
by-example with respect to the color feature can be obtained with several color descriptors, each
one showing a different facet of color similarity. Their usefulness for the search topics had to be
evaluated empirically.

Second, we have experimented with combinations of descriptors. In this case there are two
important aspects to be taken in consideration. One is the quality of results and it will be detailed
in the “Results” section (Section 9.5). The other is the time-efficiency. The aggregation at query
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time of large sets of descriptors requires efficient handling of high-dimensional feature vectors.
Otherwise such a process becomes time consuming. In order to speed up the search process we
handled both automatic and interactive search tasks from a database indexing perspective. At
the heart of the indexing and search mechanisms has been the BitMatrix index. After having
decided on the descriptors set to be used (see Section 9.2), separate BitMatrix indexes have been
constructed for each one. A sample retrieval session is available on CD (Appendix G).

9.5 Results

Given the 24 topics enumerated in the Appendix D, three answer sets, called runs, have been
submitted:

• Run1: an automatic search, without interactivity, based on color, texture and the “Concepts”
descriptors;

• Run2: an interactive run using all the available descriptors: color, texture, shape, keypoints,
audio and “Concepts”;

• Run3: an automatic run using only textual information obtained from speech recognition
followed by machine translation.

The evaluation of the automatic search Run1 is presented in Figure 9.3, which illustrates the
average precision (AP) scores. For each of the 24 topics —represented on the horizontal axis
with numbers from 197 to 220— the AP are drawn as follows: the dots represent our AP values,
the boxes represent the maximum AP values and the dotted line represents the median average
precision. The results show that our approach performs above the median, in spite of using mostly
low-level descriptors.

Figure 9.3: Average precision for Run1

The BitMatrix indexes used for automatic answer computation also support quick relevance
feedback iterations. This feature allowed us to submit a second set of results, the interactive Run2.
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All the available descriptors, enumerated in Section 9.2, have been used in this run. The AP scores
of this run is presented in Figure 9.4. The significance of the dots, boxes and dotted line are same
as before.

Figure 9.4: Average precision for Run2

The third set of results, Run3, has been obtained automatically. It has has been obtained by
searching in the text data resulting from automatic speech recognition (ASR). As the native lan-
guage used in videos was Danish, the text obtained by ASR had to be automatically translated into
English (except for the native Danish speakers). The overall quality of these processes (ASR +
machine translation) was quite poor. No other information such as high-level or low-level descrip-
tors has been used. Run3 results, illustrated in Figure 9.5, show that we have performed close to
the median.

Figure 9.5: Average precision for Run3

A first observation regarding the previous three figures is that the performance varied signifi-
cantly from topic to topic. There have been topics for which our system performed well, topics for
which our scores were just above the median and topics were the performance was not satisfactory.
A similar performance behavior has been observed for all the participants. That is, in Figures 9.3,
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(a) Automatic (b) Interactive

Figure 9.6: Topic 198

9.4 and 9.5 the maximum average precision (AP) scores (the boxes) were not all obtained by the
same system.

A second observation is that presenting the system performances by just referring to the maxi-
mum and the median AP scores may not be informative enough. To better understand the system’s
behavior, we detail the results corresponding to some specific topics. The complete list of topics
and their results can be found in the Appendix D and Appendix F respectively.

Each of the following four figures corresponds to a different topic. They present in parallel
the AP scores of the automatic and the interactive runs. Each vertical bar represents a run. The
left-hand sides, namely in Figures 9.6(a), 9.8(a), 9.7(a) and 9.9(a) contain the scores for all the
82 automatic runs, including our Run1 and Run3. The right-hand sides of the figures, namely
Figures 9.6(b), 9.8(b), 9.7(b) and 9.9(b) show the scores of the 36 interactive runs, including our
Run2. Another detail about these figures is related to the significance of the bars. We have grouped
the runs by participant (maximum 6 runs were allowed) and used alternate dashed/white type of
bars for each group; our runs have solid black fill. Therefore, consecutive bars with the same fill
indicate runs coming from a common participant.

Figure 9.6 illustrates the AP scores for topic number 198: Find shots of a door being opened.
On the left, in 9.6(a) the scores for our automatic runs Run1 and Run3 are presented. This topic is
an example where our automatic search Run1 performed well: with an AP of 0.014 our score is the
fifth from the total of 17 participants. Note that consecutive bars with the same color indicate the
same participant and only the best run per participant was taken in consideration. The interactive
run Run2, illustrated in the Figure 9.6(b) shows that the relevance feedback improved the AP score
up to 0.052.
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(a) Automatic (b) Interactive

Figure 9.7: Topic 209

(a) Automatic (b) Interactive

Figure 9.8: Topic 199
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(a) Automatic (b) Interactive

Figure 9.9: Topic 210

Another example is presented in Figure 9.7. This one illustrates the topic 209: Find shots with
3 or more people sitting at a table. This is also an example where the Run1 scores (on the left-hand
side) indicate a good performance for our automatic search. The scores for the interactive runs can
also be observed in Figure 9.7(a).

Figure 9.8 illustrates the AP scores for the topic 199: Find shots of a person walking or riding
a bicycle. This topic is an example for which the automatic score of the Run1 (Figure 9.8(a)) was
above the median. However, in this case the impact of our relevance feedback mechanism (Figure
9.8(b)) seemed more efficient comparative to the other systems.

Figure 9.9 illustrates the topic 210: Find shots with one or more people walking with one or
more dogs. For this one, we didn’t perform well neither in the automatic nor in the interactive
searches.

Of the three runs that we have submitted, the AP scores of the interactive Run2 have been
generally better than the ones obtained with the automatic Run1 and Run3. It is a normal behavior
reflecting improvements due to relevance feedback steps. For the four topics presented above
(Figures 9.6, 9.7, 9.8 and 9.9), this could be observed by comparing the AP scores in the left-
hand sides with the ones on the right-hand sides. For the entire set of topics however, the AP
scores of Run1,Run2 and Run3 are compared in Figure 9.10. It can be observed that even with
interactivity, the AP scores of the topics 204, 208, 209 and 210 do not improve significantly.
Possible explanations for this may be:

• some of the other systems had richer high-level annotations; larger sets of around 1000
concepts, covering broader semantic domains have been used.
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Figure 9.10: The three runs

• we have extracted features from a single representative key-frame per shot. Improvements
can be obtained by using more frames for each shot.

• relevance feedback was also based on key-frames but not on shot visualization.

• we have not incorporated descriptors that apply to the whole shot such as GroupOfFrames/-
GroupOfPictures or MotionActivity which may capture better the nature of the shot.

• possible familiarization with the dataset, meaning that from previous experiences, one gets
accustomed to the criteria, to the effect of picking specific objects, and to the weights.

A different kind of results, illustrating the diversity of the systems involved, are presented in
Figure 9.11. The figure shows all the participants that found at least one unique relevant shot. The
“INESC-Porto” bar in this figure illustrates that there has been a relevant shot retrieved only by
our system.

Overall, the results were encouraging, given that it was our first TRECVID participation and
the 2007 dataset was much more complex that the ones in the previous years. While in the previous
years the data consisted mostly of news videos in English, in 2007 the data contained educational,
cultural, youth-oriented programming, news magazines and historical footage videos. Beside the
greater variety of subject matter, the video material has been primarily in Dutch, without repetitive
parts such as commercials, repeated news footage. It has been easy to index low and high-level
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Figure 9.11: Unique shots

features with the same index type —BitMatrix— and then aggregate the separate rankings in order
to experiment novel search strategies.
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Chapter 10

Summary and Conclusions

Multimedia repositories support a range of applications which are essential in science, industry,
security, entertainment and personal management. From surveillance for security purposes for
example, to the management of personal photo archives, all this range of applications rely on
functionalities such as organization and search. This work explored several aspects that can im-
prove the management of large and heterogeneous multimedia repositories. In particular, we have
studied the data organization, the search and the retrieval aspects, being motivated by the following
question:

1. How to improve multimedia retrieval in large databases of multimedia items?

To answer this question we have carried a comprehensive literature review and identified specific
requirements which yielded two other particular questions:

2. Given the heterogeneity of description standards, is it possible to define a common metadata
model that can be applied to both collections and multimedia items?

3. High-dimensional descriptors are often used to characterize multimedia contents. Is it pos-
sible to design a versatile indexing structure for them?

For the first question we had to understand the relation between the databases and informa-
tion retrieval fields. Since the early years these fields have developed independently as distinct
domains. The databases have been used mostly in the so-called data retrieval, thus for precise
retrieval tasks for which efficiency is the main constraint. On the other hand, dealing with the im-
precise task of finding relevant documents, the information retrieval tasks are more concerned with
the effectiveness (the quality of the results) than with efficiency. For instance, in the well-known
TRECVID benchmark, the response times are not yet considered, although they are logged.

Nowadays, an integration effort between the databases and information retrieval fields is re-
quired. For efficiency reasons, the growth of multimedia mass production requires a shift from a
simple collection paradigm to well-organized databases. At the same time, for effectiveness rea-
sons, multimedia search problems such as the semantic gap require IR techniques. Studying how
to improve multimedia retrieval in large databases of multimedia items —our first question— we
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have identified a list of requirements. Among them, two have been considered the most impor-
tant and have raised the other two motivating questions presented above. First, at the heart of a
multimedia database is the data model. Such a model should be versatile enough to support multi-
ple multimedia applications and, in particular, should focus on capturing heterogeneous metadata.
Second, the search engine of a multimedia database should be prepared for high-dimensional data.
Flexible ranking mechanisms that capture user preferences, support for diverse similarity models,
and efficiency, are also important requirements for a multimedia search engine.

Our answers to the second and third questions are proposed in Chapters 5 and 6. The proposed
solutions are integrated in a multimedia retrieval system — MetaMedia— whose architectural
and functional properties are presented in Chapter 4. We have also illustrated two real-world cases
studies which are instantiations of the MetaMedia retrieval system in different domains: Enthrone,
focused on quality of service for news broadcasting and video on demand in heterogeneous net-
works and the Santa Maria da Feira documentation center, a digital archive containing digitized
documents, archival descriptions and transcription texts produced by scholars.

10.1 Data Model

In order to establish a data model that would be applicable to heterogeneous multimedia applica-
tions we have identified the main principles and from them the concepts that underlie the metadata
standards in the audiovisual areas. The data models main concepts are:

Description Units, Segments and Descriptors: Our review of the current standards revealed
that the multimedia items are generally hierarchically organized, possessing an amount of descrip-
tive attributes which are uniformly meaningful at any level. We have conceptualized the set of
attributes as a Description Unit, a term that comes from the standards in the archival domains.
The multimedia items have been be modeled as hierarchies of Description Units. However, there
are content parts of the multimedia items such as a raw video sequence or an image, that may be
independently analyzed resulting in metadata that are locally applicable. We have conceptualized
such content parts as Segments and the results of the Segments analysis as Descriptors.

Flexibility and control: The hierarchies of Description Units can have various topologies and
different semantics for their levels. Such hierarchies can be created for new collections or can be
extracted from existing ones. However, in many cases the hierarchy itself captures the nature of
the datasets. Therefore, a scheme that introduced constraints on the possible levels, their semantics
and their interconnections were established. We have enriched our data model with the Scheme
and Scheme Level concepts.

10.1.1 Data model evaluation

The success of the two case studies shows the appropriateness of the model in domains with
very different requirements, a video-on-demand platform for content distribution and a historic
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documentation center. The model has proved robust and the configurable hierarchy has been
useful both for capturing the structure of items in a digital environment and for representing the
structure of an archive where digitized versions of ancient documents are organized according to
archival criteria. Other features of the model are:

• Simplicity: we kept the number of concepts, classes and attributes as small as possible.

• Implementation independent: although we have chosen a particular database system, the
data model can be implemented straightforwardly in any other relational database.

10.2 Indexing High-dimensional Data

The third question addressed the problem of indexing high-dimensional data. To answer it, we
have proposed the BitMatrix indexing structure. It is a highly parameterizable index structure
offering a large space for experimentation: similarity threshold, number of dimensions processed
in each step, and dimension processing order for the case of weighted dimensions. It also supports
weighted queries and accommodates query feedback mechanism. The BitMatrix index retains
most of sequential scans flexibility with good quality of the approximations and a much better
time performance. It can be conveniently arranged for efficient sequential access and optimized
bitwise operations. It can also be broken into segments for distributed or parallel processing.

Our experiments were driven on top of a especially developed framework for integration of
high-dimensional indexing methods, called MMDI. The MMDI allowed us to test a set of 5 meth-
ods: Sequential Scan, Bond, VA-File, GridBitmap, and BitMatrix. BitMatrix has been also eval-
uated in an independent multimedia retrieval test [AAYK08], where it outperformed a slim-tree
index.

10.3 MetaMedia

Beside the data model and the indexing structure, the MetaMedia retrieval system builds the tech-
nological structure required to incorporate them. MetaMedia supports the representation of the
multimedia items and retrieval tasks such as importing and exporting items and sets of items
according to common standards, browsing the repositories, and searching. The user interface is
flexible enough to adapt to different kinds of repositories and allows faceted search in the structure
of the items, their contents and their metadata.

10.4 Conclusions

The diversity of increasingly complex multimedia standards for both content and metadata intro-
duces an overload of concepts and properties that must be taken in consideration by the designers
of retrieval engines. Two requirements are of central importance and solutions have been proposed.
The first one is the need for a data model that accommodates the wide range of standard formats
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and handles both text and high-dimensional numerical data. With the proposed data model, we
have succeeded in identifying a set of concepts that apply to all the metadata standards that have
been analyzed. However, the data model does not adapt automatically to new standards; a certain
analysis step is required to map a new standard to the data model concepts. The second require-
ment is for a search engine that combines heterogeneous information efficiently and effectively.
Putting it closer to search engines terminology, the problem is how to cope with the trade-off be-
tween flexible scoring and ranking on one side, and query execution speed on the other side. To
alleviate this pressure, we have proposed the BitMatrix index which, for the sake of efficiency,
prunes the majority of objects by quickly analyzing their bit signatures, while ranking the few
remaining ones with any mechanism available.

10.4.1 Future work

A first work direction is towards MetaMedia improvement. Feature extraction at upload time and
a better user-interface have been already identified as short term tasks. A second direction for
future work includes the study of the BitMatrix adaption to the distributed and parallel paradigms.
It seems to be easily adaptable to software frameworks for parallel computations over large data
sets, such as “MapReduce” [DG08]. MapReduce allows to split an application among a set of
machines by dividing the job into two parts: a Map, and a Reduce. We think that the BitMatrix
search algorithm could also have a Map phase, which would take the initial bit matrix, split it into
smaller bit matrices, and send the parts to different machines —so all would be searched at the
same time. A Reduce would combine the partial results to get a single answer set. We expect that
the BitMatrix adaption to “MapReduce” will allow even larger amounts of high-dimensional data
to be efficiently searched.
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Appendix A

Audio descriptors

<feature>

<name>Spectral Centroid Overall Standard Deviation</name>

<v>8.81E-1</v>

</feature>

<feature>

<name>Spectral Rolloff Point Overall Standard Deviation</name>

<v>1.137E-2</v>

</feature>

<feature>

<name>Spectral Flux Overall Standard Deviation</name>

<v>1.363E-4</v>

</feature>

<feature>

<name>Compactness Overall Standard Deviation</name>

<v>3.742E1</v>

</feature>

<feature>

<name>Spectral Variability Overall Standard Deviation</name>

<v>1.328E-4</v>

</feature>

<feature>

<name>Root Mean Square Overall Standard Deviation</name>

<v>4.869E-3</v>

</feature>

<feature>

<name>Fraction Of Low Energy Windows Overall Standard Deviation</name>

<v>0E0</v>

</feature>

<feature>

<name>Zero Crossings Overall Standard Deviation</name>

<v>2.354E0</v>

</feature>
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<feature>

<name>Strongest Beat Overall Standard Deviation</name>

<v>0E0</v>

</feature>

<feature>

<name>Beat Sum Overall Standard Deviation</name>

<v>0E0</v>

</feature>

<feature>

<name>Strength Of Strongest Beat Overall Standard Deviation</name>

<v>0E0</v>

</feature>

<feature>

<name>MFCC Overall Standard Deviation</name>

<v>1.538E0</v>

<v>2.536E-1</v>

<v>2.873E-1</v>

<v>4.181E-1</v>

<v>2.302E-1</v>

<v>2.241E-1</v>

<v>2.108E-1</v>

<v>2.2E-1</v>

<v>1.853E-1</v>

<v>1.798E-1</v>

<v>1.889E-1</v>

<v>3.092E-1</v>

<v>1.908E-1</v>

</feature>

<feature>

<name>LPC Overall Standard Deviation</name>

<v>5.342E-3</v>

<v>7.414E-3</v>

<v>7.732E-3</v>

<v>1.35E-2</v>

<v>2.414E-2</v>

<v>2.129E-2</v>

<v>2.484E-2</v>

<v>1.561E-2</v>

<v>1.387E-2</v>

<v>0E0</v>

</feature>

<feature>

<name>Method of Moments Overall Standard Deviation</name>

<v>1.664E-2</v>

<v>3.046E-3</v>

<v>7.762E-1</v>
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<v>1.977E2</v>

<v>5.037E4</v>

</feature>

<feature>

<name>Spectral Centroid Overall Average</name>

<v>2.988E1</v>

</feature>

<feature>

<name>Spectral Rolloff Point Overall Average</name>

<v>2.702E-1</v>

</feature>

<feature>

<name>Spectral Flux Overall Average</name>

<v>1.112E-3</v>

</feature>

<feature>

<name>Compactness Overall Average</name>

<v>1.614E3</v>

</feature>

<feature>

<name>Spectral Variability Overall Average</name>

<v>3.064E-3</v>

</feature>

<feature>

<name>Root Mean Square Overall Average</name>

<v>1.293E-1</v>

</feature>

<feature>

<name>Fraction Of Low Energy Windows Overall Average</name>

<v>0E0</v>

</feature>

<feature>

<name>Zero Crossings Overall Average</name>

<v>7.715E1</v>

</feature>

<feature>

<name>Strongest Beat Overall Average</name>

<v>0E0</v>

</feature>

<feature>

<name>Beat Sum Overall Average</name>

<v>0E0</v>

</feature>

<feature>

<name>Strength Of Strongest Beat Overall Average</name>

<v>0E0</v>
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</feature>

<feature>

<name>MFCC Overall Average</name>

<v>-9.665E1</v>

<v>1.837E-2</v>

<v>4.196E0</v>

<v>3.599E-1</v>

<v>4.397E-1</v>

<v>8.297E-1</v>

<v>-7.187E-1</v>

<v>4.434E-1</v>

<v>-1.094E0</v>

<v>-3.221E-1</v>

<v>2.238E-6</v>

<v>3.451E-1</v>

<v>-1.33E-1</v>

</feature>

<feature>

<name>LPC Overall Average</name>

<v>-8.624E-1</v>

<v>4.964E-1</v>

<v>-6.798E-1</v>

<v>4.896E-1</v>

<v>-3.648E-1</v>

<v>2.661E-1</v>

<v>2.201E-2</v>

<v>-1.149E-1</v>

<v>1.266E-1</v>

<v>0E0</v>

</feature>

<feature>

<name>Method of Moments Overall Average</name>

<v>4.129E-1</v>

<v>1.536E-2</v>

<v>3.916E0</v>

<v>9.981E2</v>

<v>2.545E5</v>

</feature>
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The metric axioms

Definition: A metric on a set X is a function d : X × X → R (where R is the set of real numbers),
which is required to satisfy the following conditions for all A,B and C in X :

• d(A,A) = d(B,B) = 0 Constancy of Self-Similarity

• d(A,B) > d(A,A) = 0, if A <> B Minimality (Positivity)

• d(A,B) = d(B,A) Symmetry

• d(A,B)≤ d(A,C)+d(B,C) Triangle Inequality

The d(A,B) is also called the distance or dissimilarity between A and B.

Kendall tau distance

From the set of N permutations of λ , let σ and τ be two of them. The Kendall tau distance K(σ ,τ)
between σ and τ is defined to be the number of item pairs (x,y) such that either σ(x) > σ(y) but
τ(x) < τ(y) or σ(x) < σ(y) but τ(x) > τ(y). The Kendall tau distance can be also seen as the
number of pair-wise adjacent transpositions needed to transform one list into the other.

The edit metric

The edit distance between two strings S and T is defined as the minimum number of delete, insert,
and substitute operations needed to transform S into T.
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Appendix C

LSCOM-Lite concepts

1. Sports: Shots depicting any sport in action

2. Entertainment

3. Weather: Shots depicting any weather related news or bulletin

4. Court: Shots of the interior of a court-room location

5. Office: Shots of the interior of an office setting

6. Meeting: Shots of a Meeting taking place indoors

7. Studio: Shots of the studio setting including anchors, interviews and all events that happen
in a news room

8. Outdoor: Shots of Outdoor locations

9. Building: Shots of an exterior of a building

10. Desert: Shots with the desert in the background

11. Vegetation: Shots depicting natural or artificial greenery, vegetation woods, etc.

12. Mountain: Shots depicting a mountain or mountain range with the slopes visible

13. Road: Shots depicting a road

14. Sky: Shots depicting sky

15. Snow: Shots depicting snow

16. Urban: Shots depicting an urban or suburban setting

17. Waterscape_Waterfront: Shots depicting a waterscape or waterfront

18. Crowd: Shots depicting a crowd
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19. Face: Shots depicting a face

20. Person: Shots depicting a person (the face may or may not be visible)

21. Government-Leader

22. Corporate-Leader

23. Police_Security: Shots depicting law enforcement or private security agency personnel

24. Military: Shots depicting the military personnel

25. Prisoner: Shots depicting a captive person, e.g., imprisoned, behind bars, in jail or in hand-
cuffs, etc.

26. Animal: Shots depicting an animal, not counting a human as an animal

27. Computer_TV-screen:Shots depicting a television or computer screen

28. Flag-US: Shots depicting a US flag

29. Airplane: Shots of an airplane

30. Car: Shots of a car

31. Bus: Shots of a bus

32. Truck: Shots of a truck

33. Boat_Ship: Shots of a boat or ship

34. Walking_Running: Shots depicting a person walking or running

35. People-Marching: Shots depicting many people marching as in a parade or a protest

36. Explosion_Fire: Shots of an explosion or a fire

37. Natural-Disaster: Shots depicting the happening or aftermath of a natural disaster such as
earthquake, flood, hurricane, tornado, tsunami

38. Maps: Shots depicting regional territory graphically as a geographical or political map

39. Charts: Shots depicting any graphics that is artificially generated such as bar graphs, line
charts, etc. (maps should not be included)
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The TRECVID topics

There have been 24 TRECVID topics expressing various information needs. Numbered from 197
to 220, the topics are bundles of text formulations, image and video examples. The table below
contains only the text parts of the topics.

Table D.1: The TRECVID topics

Topic number Text Description

197 “Find shots of one or more people walking up stairs”
198 “Find shots of a door being opened”
199 “Find shots of a person walking or riding a bicycle”
200 “Find shots of hands at a keyboard typing or using a

mouse”
201 “Find shots of a canal, river, or stream with some of

both banks visible”
202 “Find shots of a person talking on a telephone”
203 “Find shots of a street market scene”
204 “Find shots of a street protest or parade”
205 “Find shots of a train in motion”
206 “Find shots with hills or mountains visible”
207 “Find shots of waterfront with water and buildings”
208 “Find shots of a street at night”
209 “Find shots with 3 or more people sitting at a table”
210 “Find shots with one or more people walking with

one or more dogs”
211 “Find shots with sheep or goats”
212 “Find shots in which a boat moves past”
213 “Find shots of a woman talking toward the camera

in an interview - no other people visible”
Continued on Next Page. . .
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Table D.1 – Continued

Topic number Text Description

214 “Find shots of a very large crowd of people (fills
more than half of field of view)”

215 “Find shots of a classroom scene with one or more
students”

216 “Find shots of a bridge”
217 “Find shots of a road taken from a moving vehicle

through the front windshield”
218 “Find shots of one or more people playing musical

instruments such as drums, guitar, flute, keyboard,
piano, etc.”

219 “Find shots that contain the Cook character in the
Klokhuis series”

220 “Find grayscale shots of a street with one or more
buildings and one or more people”



Appendix E

Obtaining the syntactic structure of an
NLP query

An output example of the VISL (Visual Interactive Syntax Learning) parser for a given natural lan-
guage input, such as “Find shots with one or more emergency vehicles in motion (e.g., ambulance,
police car, fire truck, etc.)”, is presented below.

coord(’0173’,1,1,w(’Find’,’find’,’<mv>’,’V’,’IMP’,’@FS-COM’,

’#1->0’)).

coord(’0173’,1,2,w(’shots’,’shot’,’N’,’P’,’NOM’,’@<ACC’,’#2->1’)).

coord(’0173’,1,3,w(’with’,’with’,’PRP’,’@<ADVL’,’#3->1’)).

coord(’0173’,1,4,w(’one=or=more’,’[one=or=more]’,

’ADJ’,’POS’,’@>N’,’#4->8’)).

coord(’0173’,1,5,w(’emergency’,’emergency’,’N’,’S’,’NOM’,

’@>N’,’#5->8’)).

coord(’0173’,1,6,w(’vehicles’,’vehicle’,’N’,’P’,’NOM’,’@>A’,

’#6->7’)).

coord(’0173’,1,7,w(’in’,’in’,’ADJ’,’POS’,’@>N’,’#7->8’)).

coord(’0173’,1,8,w(’motion’,’motion’,’N’,’S’,’NOM’,

’@P<’,’#8->3’)).

coord(’0173’,1,9,w(’e.g.’,’[e.g.]’,’ADV’,

’@ADVL>’,’#10->17’)).

coord(’0173’,1,10,w(’ambulance’,’ambulance’,’N’,’S’,’NOM’,

’@SUBJ>’,’#12->17’)).

coord(’0173’,1,11,w(’police’,’police’,’N’,’S’,’NOM’,

’@>N’,’#14->15’)).

coord(’0173’,1,12,w(’car’,’car’,’N’,’S’,’NOM’,’@SUBJ>’,

’#15->12’)).

coord(’0173’,1,13,w(’fire’,’fire’,’<mv>’,’V’,’IMP’,’@FS-<ADVL’,’fire’,

’<mv>’, ’V’,’PR’,’-3S’,’@FS-<ADVL’,

’#17->1’)).

coord(’0173’,1,14,w(’truck’,’truck’,’N’,’S’,’NOM’,

’@<ACC’,’#18->17’)).
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Appendix F

The TRECVID results per topic

Each of the following pairs of figures correspond to a different TRECVID topic. The figure pairs
are presented in the topic order. They present in parallel the AP scores of the automatic and the
interactive runs.

(a) Automatic (b) Interactive

Figure F.1: Topic 197
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(a) Automatic (b) Interactive

Figure F.2: Topic 198

(a) Automatic (b) Interactive

Figure F.3: Topic 199
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(a) Automatic (b) Interactive

Figure F.4: Topic 200

(a) Automatic (b) Interactive

Figure F.5: Topic 201
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(a) Automatic (b) Interactive

Figure F.6: Topic 202

(a) Automatic (b) Interactive

Figure F.7: Topic 203
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(a) Automatic (b) Interactive

Figure F.8: Topic 204

(a) Automatic (b) Interactive

Figure F.9: Topic 205
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(a) Automatic (b) Interactive

Figure F.10: Topic 206

(a) Automatic (b) Interactive

Figure F.11: Topic 207



The TRECVID results per topic 161

(a) Automatic (b) Interactive

Figure F.12: Topic 208

(a) Automatic (b) Interactive

Figure F.13: Topic 209
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(a) Automatic (b) Interactive

Figure F.14: Topic 210

(a) Automatic (b) Interactive

Figure F.15: Topic 211
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(a) Automatic (b) Interactive

Figure F.16: Topic 212

(a) Automatic (b) Interactive

Figure F.17: Topic 213
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(a) Automatic (b) Interactive

Figure F.18: Topic 214

(a) Automatic (b) Interactive

Figure F.19: Topic 215
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(a) Automatic (b) Interactive

Figure F.20: Topic 216

(a) Automatic (b) Interactive

Figure F.21: Topic 217
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(a) Automatic (b) Interactive

Figure F.22: Topic 218

(a) Automatic (b) Interactive

Figure F.23: Topic 219
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(a) Automatic (b) Interactive

Figure F.24: Topic 220
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Appendix G

A sample retrieval session

A video is available on CD.
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