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I 

Abstract 

For wind-excited vibration of long-span bridges, flutter and buffeting are the most concerning 
problems. Flutter is a aeroelastic instability phenomenon of bridges under a certain wind speed; while 
buffeting is the random vibration of bridges induced by the turbulence in the wind. Unlike flutter, the 
buffeting response does not generally lead to catastrophic failure. This is probably the reason why less 
attention has been paid to this aspect in the last several decades. However, with the record-breaking 
span lengths of modern suspension bridges, buffeting response has greatly increased which may cause 
serious fatigue damages to structural components and connections instability of vehicles traveling on 
the bridge deck and discomfort. Buffeting analysis is one of the most important aspects of structural 
reliability under turbulent wind. The classic buffeting analysis method is mainly in the frequency 
domain. This method cannot reflect the entire response procedure of bridge motions, and hence cannot 
consider the effects of instantaneous relative velocity, effective angle of attack, and structural 
nonlinearity. 

This thesis adopts autoregressive (AR) model to simulate the wind velocity of spatial three 
dimensional fields, based on the built MATLAB programming. After that, time domain buffeting 
analysis methods are proposed to analyze the buffeting response of large-span bridges under turbulent 
wind and implemented in the commercial finite element package ANSYS. The unsteady self-excited 
forces are approximately represented by the quasi-steady theory. Aeroelastic damping and stiffness 
matrix for a spatial beam element are derived and incorporated into the structural finite element by 
using through Matrix27 element in ANSYS. After that, self-excited force is formulated as a full 
expression, based on Scanlan’s classic buffeting theory. At the end all these methods are applied to the 
Qingzhou Bridge, and the validity of presented method is verified. 
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SYMBOLS AND ABBREVIATIONS 
  

 

)(tU , )(tV ,  )(tW  - The longitudinal, vertical and transverse components of the time dependent wind 

velocity vector. 

( )tu  - Fluctuation part of wind velocity in longitudinal dimension  

U  - Mean wind velocity   

δ  - Boundary-layer depth  

0z  - Roughness length 

k  - Von Karman’s constant 

*u  - Friction velocity 

uI  - Turbulence intensity 

( )zσ  - Standard derivative of ( )zu  

Lu
x, Lu

y and Lu
z - Integral scales of turbulence for x, y and z direction 

( )nSii  - Auto spectra of the longitudinal velocity fluctuations at points i  

)(nSij  - Cross-spectra of longitudinal velocity fluctuations 

[ ]kψ  - regressive coefficient matrix 

)( fCohij - coherence function of longitudinal fluctuations at points i and j  

zyx CCC ,,  - Decay coefficient 

p – Rank of AR model 

)(tFy  - Drag force in the mean wind velocity direction y 

)(tFz  - Lift force in the direction z perpendicular to the mean wind velocity 

( )tM θ  - Torsional moment 

F  - Mean wind force 

( )tFb  - buffeting forces 

 B - deck width.  

Riχ  ( wuiMLDR ,;,, == ) - Complex aerodynamic admittance functions (CAAFs) which are 

functions of reduced frequency 

aeC  - Matrix of the aerodynamic coefficients 

( )θDC  ( )θLC  ( )θLC - Derivatives of the static coefficients with respect to the attack angle θ  

 

( )βDC ′ , ( )βLC ′ , ( )βMC ′  - Derivatives of the static coefficients with respect to the attack angle β  
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e
aeK  - Aeroelastic stiffness matrix for the element e 

e
aeC  - Aeroelastic damping matrix for the element e 

α  and β - Proportionality coefficients for Rayleigh damping 

)(tLse  - Self-excited component of lift force 

)(tDse  - Self-excited component of drag force 
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C  - Modified damping matrix  
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ω  - Angular Frequency 
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1 
  INTRODUCTION  

 

 

1.1 General  

In 1940, the four-month-old TACOMA bridge was smashed by wind, which immediately shocked the 
whole world. Since then the research of wind-excited vibration of bridges have received 
unprecedented attention, and developed rapidly. Particularly in the recent twenty years, when very 
long and slender bridges have been continuously built, for which the safety under wind attack has 
attracted much concerns. 

Turbulence induced buffeting response is one of the important concerns in the design of large span 
bridges. To predicate buffeting responses, Davenport [1.1] proposed a quasis-teady method and 
introduced aerodynamic admittance function, g(w), to consider unsteady effects. Because of the 
complexity of various cross-section shapes of bridge decks, Scanlan [1.2] suggested that wind tunnel 

test of bridge decks be performed to determine the aerodynamic derivatives ( *
iA , *

iH , *
iP , i=1,…,6) , 

which are used for the expression of self-excited force. More recently, Scanlan [1.3] further interpreted 
the aerodynamic admittance function and gave its inherent relationship with aerodynamic derivatives. 
These contributions found the basis for conventional buffeting analysis. The dynamic motion 
equations of bridge decks are generally solved by means of response spectrum theory in frequency 
domain, which is estimated typically using a mode-by-mode approach that ignores the aerodynamic 
coupling among modes. In general, the frequency domain approach is restricted to linear structures 
excited by the stationary wind loads without aerodynamic nonlinearities. That is a limitation readily 
acceptable for design considerations under serviceability conditions but not under ultimate strength 
calculations. 

 In a time domain calculation procedure non-linear load effects or partial structural plastification 
may be included to provide a better and more comprehensive background for the evaluation of the 
safety margin at extreme load events. In order to consider the effects of instantaneous relative velocity, 
effective angle of attack, and structural nonlinearity, the time domain buffeting analysis is necessary. 

 In time domain simulation, buffeting forces are often considered through the quasi-steady 
formulation due to its simplicity, without considering unsteady fluid memory effects. To improve that, 
self-excited force is expressed in terms of convolution integrals between bridge deck motion and 
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impulse response functions, with flutter derivatives identified from wind tunnel test. However, the 
flutter derivatives and admittance functions are frequency related. As an alternative, a time domain 
approach using indicial functions is suggested by Y. K. Lin[1.4]. In this thesis both these two approach 
for time domain buffeting analysis are introduced and applied to the Qingzhou Bridge, and the time 
domain buffeting response is obtained. 
 
1.2 Contents and objectives of the study  

The research contents are as follow: 

1. Based on the built MATLAB programming, an autoregressive (AR) model is adopted to simulate 
the wind velocity of three dimensional fields in accordance with the time and space dependent 
characteristics of the 3-D fields. Then a numerical example shows the stability and reliability of this 
method. 

2. Introduce the general idea of the buffeting and self-excited forces acting on a rigid segment of a 
bridge deck, starting from simplified expressions valid in the quasi-steady. The unsteady buffeting is 
then introduced in the form proposed by Lin, which self-excited force is related with the history of 
motion at earlier times 

3. Time domain buffeting analysis methods are proposed to analyze the buffeting response of 
large-span bridges under turbulent wind and implemented in the commercial finite element package 
ANSYS. Firstly the unsteady self-excited forces are approximately represented by the quasi-steady 
theory. Aeroelastic damping and stiffness matrix for a spatial beam element are derived and 
incorporated into the structural finite element by using through Matrix27 element in ANSYS. After 
that, self-excited force is adopted in the form proposed by Lin. An iterative process is presented for the 
nonlinearity of self-excited force, and implemented by developing the program in APDL language 
based on ANSYS system. . 

4. Both of these two methods are applied to the Qingzhou Bridge, and the time domain buffeting 
response is obtained.  

5. By comparing time domain buffeting response of two model, the effect of different self-excited 
force formulations on the result and the characteristic of buffeting response of large-span bridge are 
then analyzed,.  
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2 
LITERATURE REVIEW ON BRIDGE 

WIND ENGINEERING  

 

Wind engineering analyses effects of wind in the natural and the built environment and studies the 
possible damage, inconvenience or benefits which may result from wind. In the field of structural 
engineering it includes strong winds, which may cause discomfort, as well as extreme winds, such as 
in a tornado, hurricane or heavy storm, which may cause widespread destruction. Wind engineering 
draws upon meteorology, fluid dynamics, mechanics, Geographic Information System and a number of 
specialist engineering disciplines including aerodynamics, and structural dynamics. The tools used 
include atmospheric models, atmospheric boundary layer wind tunnels and computational fluid 
dynamics models. 

2.1 History of the development of wind engineering 

The history of dynamically wind-sensitive suspension bridges from the nineteenth century onwards, 
including the periodic failures that have occurred, has been well documented (e.g. [2.13] [2.14]). Most 
of the early interest was in the drag, or along-wind forces, and Baker [2.15], Kernot [2.16] and others, 
noted that the peak wind forces acting on large areas, such as a complete bridge girder, were 
considerably less than those on a small plate or board. However, the great American engineer of 
suspension bridges John Roebling, was aware of the dynamic effects of wind as early as 1855. 

  In the period 1900s-1940s, the industrial revolution led to attempts to construct more and more 
challenging structures—such as the first high-rise structures, and ever longer suspension bridges. This 
era saw the birth of three of the main wind engineering tools. Firstly there was the development of the 
wind tunnel. In 1893 Irminger measured pressure distributions on a variety of shapes using the flow 
through a chimney. Eiffel made his first wind tunnel measurements in 1909. In the 1930s Irminger 
made measurements on building models in low turbulence wind tunnels. Secondly there was the 
development of codes of practice with the realization of the need to provide engineers with practical 
guidance on design to enable environmental loads such as wind to be properly defined. The first UK 
code of practice was published in 1944 (British Standards Institution, 1944). Thirdly this period saw 
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the beginnings of full-scale measurements of wind loads on structures. It is in the interaction between 
wind tunnel and full-scale tests that most progress was made in the field of wind engineering during 
this period. 

In the other hand, in 19th and early 20th centuries, a considerable number of medium-span 
suspension bridges were constructed. Many of these displayed instability in the wind, and there were 
collapses also. The first recorded is the 1818 crash of the Scottish Oryburgh-Abbeg suspension bridge. 
In 1879, the United Kingdom Tay Bridge (Fig1.1) accident not only caused the destruction of the 
bridge structure, but also so that 75 people were killed. 

 

Fig. 2.1 First Tay Bridge 

On November 7, 1940, the first Tacoma Narrows suspension bridge (Fig1.2) collapsed due to 
wind-induced vibrations in a 40 mph wind，just 1 yr after its completion. This led to changes in bridge 
construction ever after.[2.11] 

 

Fig. 2.2 Collapse of Tacoma Narrows Bridge   

At the end of 1950s, Van der Hoven carried out the full-scale wind measurements that enabled him 
to derive the van der Hoven spectrum which, because of the existence of the spectral gap, allowed the 
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concepts of independent small and large scale wind fluctuations to be formulated, which is of 
fundamental importance to the developments that followed over the coming decades [2.1]. 

In the following 20 years, between 1960 and 1980, because of the economic development and the 
white heat of technology, large-span bridges and other large infrastructure projects were constructed. 
As the spans increase, wind actions become more critical in bridge design. During this period 
computer technology began to develop at an accelerating pace, and there were massive developments 
in the design of scientific instruments and in data acquisition technology.  

During this period, there were of course many others involved in the development of the discipline, 
Davenport play a major role that cannot be over emphasized. In 1961, Alan Davenport elucidated the 
concept of the wind loading chain, which gave a conceptual framework to the study of wind effects on 
structures [2.2]. His concept of the wind loading chain, which he applied in the frequency domain, led 
to a range of spectral methods for calculating the loads and displacements of high rise buildings, 
bridges, etc. These have become very widely used throughout the discipline, and indeed have become 
the dominant class of analytical method, although by their nature they implicitly assume linear 
structural behavior. 

These decades saw the development of the boundary layer wind tunnel from an essentially research 
tool, into a reliable and robust tool for commercial design purposes, with the increasing realization of 
the need to model the turbulence spectrum as accurately as possible and with the routine use of small 
pressure transducers with carnivalves, and the introduction of the base balance techniques. Techniques 
for the measurement and prediction of atmospheric pollutants also advanced rapidly, and in 1961 
Pasquil developed his classification of atmospheric stability that was to remain in use for many 
decades. Around the world a number of ground breaking full-scale experiments took place—the 
Aylesbury house experiment and the mobile home measurements in the USA. And a significant 
number of codes were developed by National Standards Organizations—for example the updated UK 
code (British Standards Institution, 1972) and the Australian Code (Standards Association of Australia, 
1973 Standards Association of Australia, 1973). 

  As the time comes to the contemporary period, the spans of the long-span suspension and 
cable-stayed bridges have been extended to new limits. The longest span bridge in the world is the 
suspension across the Akashi-Kaikyo Straits in Japan (Fig. 2.3), which has and overall length of 3910 
m, with a main span of 1991 m. The design of this bridge was dominated by its aerodynamic 
characteristics. The longest span cable-stayed bridge is the Sutong Bridge in China, with a overall 
length of 32.4 km , and a main span of 1088 m (Fig. 2.4). 



TIME DOMAIN BUFFETING ANALYSIS OF LARGE-SPAN CABLE-STAYED BRIDGE 

6 

 

Fig. 2.3 Akashi-Kaikyo Bridge, Japan 

 

Fig. 2.4 Sutong Bridge, China 

As the spans increase, wind actions become more critical in bridge design, and for the longest 
suspension or cable-stayed bridges, extensive wind studies are normally undertaken.  

In this period, wind tunnel testing techniques have developed very fast and show significant 
advances, particularly in terms of instrumentation, with the use of large number of simultaneously 
monitored pressure transducers and the increasingly frequent use of Laser Doppler Anemometry (LDA) 
and Particle Image Velocimetry (PIV) techniques for velocity measurements. Similarly the development 
of the three component sonic anemometer has revolutionized full-scale wind measurements. Further 
major full-scale experiments were carried out in South Africa and at Texas Tech. At the time of writing 
an extensive project is underway in the USA to measure wind conditions and full-scale structural 
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loading during hurricanes, which should yield a very considerable quantity of information that will be 
of significant use in design. All these developments have of course been underpinned by the rapid 
growth in IT techniques and computer power which makes high-speed data acquisition and the 
analysis of large amounts of experimental data possible. It has also led to the increasing use of what is 
now the fourth fundamental tool of wind engineering—Computational Fluid Dynamics (CFD) 
techniques. Computational fluid dynamics has progressed immensely over the past two 
decades–through the use of inviscid panel methods; then simple k–ε techniques, which were 
afterwards refined in various ways to make them more suitable for wind engineering application; and 
now increasingly through unsteady flow methods such as Lager Eddy Simulation (LES), Detached 
Eddy Simulation (DES) and discrete vortex modeling. For a full review of CFD developments in Wind 
Engineering, see Murakami and Mochida (1999) [2.3]. The last 20 years have also been extremely 
busy in terms of code development and revision across the world. These are well summarized in the 
recent series of papers produced by the IAWE Codification Initiative [2.4]. In conceptual terms the 
period has seen an increasing application of modern analytical methods to wind 
engineering—particularly advanced probabilistic techniques, wavelet analysis, orthogonal 
decomposition, etc.[2.5]. Of particular significance has been the gradual trend towards using time 
domain methods in the design process. This will be discussed further below. 

 
2.2 Research methods of bridge wind engineering 

The modern analysis process of bridge wind engineering needs the use of a variety of theoretical, 
experimental and numerical methods.  

 

2.2.1 Theoretical analysis  

In the field of wind-excited vibration of bridges, A.G Davenport studied the analysis method of 
buffeting response of suspension bridges early in 1961. Based on the single-mode method (i.e. SRSS 
method) established by Davenport, R.H.Scanlan [2.8] [2.9] and R.H.Gade(1977) [2.10] accounted for 
the effect of the self-excited forces by introducing the aerodynamic derivatives, previously used by 
them in the flutter research, into the mixed time-frequency domain equations of motion, and took the 
correlation formula for the fluctuation wind-speed spectrum as the correlation formula for the 
aerodynamic-force power spectrum. As the aerodynamic derivatives and wind-speed spectrum are 
both frequency domain functions obtained from direct measurements, the application of frequency 
domain methods in the buffeting analysis has been regarded as a natural selection. The linear flutter 
theory based on Scanlan’s aerodynamic derivatives is not only readily acceptable by engineers, but is 
also backed up by a great deal of experimental results. Therefore it has been the prevailing means for 
bridge designs up to date. 

 

 

2.2.2 Experimental method  

Although the science of theoretical fluid mechanics is well developed and computational methods 
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are experiencing rapid growth in the area, it remains necessary to perform physical experiments to 
gain needed in sights into many complex effects associated with fluid flow. This is the well-established 
field of aeronautics, for which wind tunnels were first developed and to an even greater extent, in the 
practical study of bridges that stand in the earth’s boundary near-surface atmospheric layer. 

There are two kinds of wind tunnel model: full model and sectional model. The full model is a 
reduced scale geometric facsimile of the entire prototype bridge that includes all structural elements, 
the towers, the suspension cables, the road deck and the road deck hangers. For dynamic studies, it is 
necessary, as well, to model the mass, the mass distribution and the elastic characteristics of the 
prototype according to well-established scaling principles. And rather than model the complete bridge, 
the aerodynamics of the bridge road deck can be studied by constructing a model that represents a 
short, mid-span section of the deck. The model spans the test section and is supported rigidly at the 
wails if force measurements are to be made or is mounted on pairs of springs for dynamic 
measurements (Fig. 2.6) in which case the mass, the mass distribution and the elastic properties must 
be modelled according to scaling criteria as is done with the full model. The bending mode natural 
frequency is controlled by the spring stiffness and the ratio of the bending to torsional mode 
frequencies is controlled by the spacing between the pairs of springs. If necessary the horizontal 
stiffness can be modeled by the addition of a spring constraint in the lateral direction. 

 

Fig.2.5 Full model 

There are many advantages in wind tunnel testing techniques for studying wind effects on bridges, 
but many critical phenomena can still only be revealed by full-scale experiments. It has been 
recognized that the most reliable evaluations of dynamic characteristics and wind effects are obtained 
from experimental measurements of a prototype bridge. In fact, measurements of wind effects on 
prototype structures are very useful to improve the understanding of wind-resistant structural design. 
Meanwhile, the experimental results can also be used to examine the adequacy of wind tunnel test 
techniques and to refine the numerical models for structural analysis.  
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Fig.2.6 Sectional model 

 

2.2.3 Numerical methods 

Furthermore, recently, the computational fluid dynamics (CFD) technique hare gradually become a 
popular tool for engineers and has been widely used for the prediction of wind pressures and wind 
forces on various buildings and structures. Now, it can be concluded that in case of very large 3D 
computations with a large number of grid points, the aerodynamic characteristics for a simple shape 
can be successfully simulated with satisfactory accuracy in the limitation of the averaged physical 
quantities, such as the drag and the lift coefficients. While, the spatial correlation characteristics is still 
difficult for computational prediction because the flow structures with high frequency have a 
important role to determine the values. 

 

2.3 Cable-stayed bridges  

A typical cable stayed bridge is a continuous girder with one or more towers erected above piers in the 
middle of the span. From these towers, cables stretch down diagonally (usually to both sides) and 
support the girder. Cable-stayed bridges carry the vertical main-span loads by nearly straight diagonal 
cables in tension. The towers transfer the cable forces to the foundations through vertical compression. 
The tensile forces in the cables also put the deck into horizontal compression. The towers form the 
primary load-bearing structure. A cantilever approach is often used for support of the bridge deck near 
the towers, but areas further from them are supported by cables running directly to the towers. This has 
a disadvantage, compared to suspension bridges. The cables pull to the sides as opposed to directly up, 
requiring the bridge deck to be stronger to resist the resulting horizontal compression loads. But has 
the advantage of not requiring firm anchorages to resist a horizontal pull of the cables, as in the 
suspension bridge. All static horizontal forces are balanced so that the supporting tower does not tend 
to tilt or slide, needing only to resist such forces from the live loads. 

Key advantages of the cable-stayed form are as follows: 

• much greater stiffness than the suspension bridge, so that deformations of the deck under live 
loads are reduced  



TIME DOMAIN BUFFETING ANALYSIS OF LARGE-SPAN CABLE-STAYED BRIDGE 

10 

• can be constructed by cantilevering out from the tower - the cables act both as temporary and 
permanent supports to the bridge deck  

• for a symmetrical bridge (i.e. spans on either side of the tower are the same), the horizontal forces 
balance and large ground anchorages are not required  

There are two major classes of cable-stayed bridges: In a harp design, the cables are made nearly 
parallel by attaching cables to various points on the tower(s) so that the height of attachment of each 
cable on the tower is similar to the distance from the tower along the roadway to its lower attachment. 
In a fan design, the cables all connect to or pass over the top of the tower(s). 

The cable-stay design is the optimum bridge for a span length between that of cantilever bridges and 
suspension bridges. Within this range of span lengths a suspension bridge would require a great deal 
more cable, while a full cantilever bridge would require considerably more material and be 
substantially heavier. Of course, such assertions are not absolute for all cases. 

In recent years, the popularity of cable-stayed bridges has greatly increased. The following list 
includes the bridges with a main span of at least 600 meters. 

Table 2.1 List of largest cable-stayed bridges 

Rank Name Location Country Longest span Complete 

1 Sutong Bridge Suzhou, Nantong China 1088m 2008 

2 Stoneecutters Bridge Rambler Channel Hong Kong 1018m 2009 

3 Tatara Bridge Seto Inland Sea Japan 890m 1999 

4 Pont de Normandie Le Havre Fance 856m 1995 

5 
Third Nanjing Yangtze 

Bridge 
Nanjing China 648m 2005 

6 
Second Nanding 
Yangtze Bridge 

Nanjing China 628m 2001 

7 Baishazhou Bridge Wuhan China 618m 2000 

8 Qingzhou Bridge Fuzhou China 605m 2001 

9 Yangpu Bridge Shanghai China 602m 1993 

10 Bandra-Worli Sea Link Mumbai India 600m 2009 

 

2.4.  Wind induced vibration of bridges  

In the design and analysis of cable-stayed bridges, aerodynamic effects play an important role because 
of the flexibility. Cable supported systems may be subjected to potentially large dynamic motions 
induced by wind forces. There are several mechanisms of interaction between wind and structure that 
produce a vibration in the structure; the mechanisms that are important to the bridge design are flutter, 
buffeting, turbulence, vortex shedding and galloping. By treating the bridge deck section as an airfoil, 



TIME DOMAIN BUFFETING ANALYSIS OF LARGE-SPAN CABLE-STAYED BRIDGE 

11 

the research and knowledge of aeronautics and aerodynamics were brought to bear on the bridge 
problem. [2.10] 

 

2.4.1. Flutter 

Suspension and cable stayed bridges are long slender flexible structures which have potential to be 
susceptible to a variety of types of wind induced vibrations, the most serious of which is the 
aerodynamic instability known as flutter. At certain wind speeds aerodynamic forces acting on the 
deck are of such a nature so as to feed energy into for oscillation structure, so increasing the vibration 
amplitudes, sometimes to extreme levels where the basic safety of the bridge is threatened. The wind 
speed at which flutter occurs for completed bridges depends largely on its natural frequencies in 
vertical blending and torsion, and on the shape of the deck section which determines the aerodynamic 
forces acting. The Tacoma Narrows Bridge collapsed because of the flutter phenomenon [2.11]. For 
flutter stability, the lowest wind velocity inducing flutter instability of a bridge must exceed the 
maximum design wind velocity of that bridge.  

 

2.4.2. Buffeting  

Buffeting is defined as the unsteady loading of a structure by velocity fluctuations in the oncoming 
flow. It causes irregular motions in the bridge structure. The bridge response to buffeting depends on 
the turbulence intensity, shape of the structural elements and its natural frequencies. Buffeting does not 
usually endanger the safety of the structure, but can result in discomfort for the users and lead to 
fatigue of structural elements. 

 

2.4.3. Vortex shedding 

Vortex shedding is an unsteady flow that takes place in special flow velocities (according to the size 
and shape of the cylindrical body). In the flow, vortices are created at the back of the body and detach 
periodically from either side of the body.  

Vortex shedding is caused when a fluid flows past a blunt object. The fluid flow past the object 
creates alternating low-pressure vortices on the downstream side of the object. The object will tend to 
move toward the low-pressure zone. 

Eventually, if the frequency of vortex shedding matches the resonance frequency of the structure, 
the structure will begin to resona lock-in and the structure's movement can become self-sustaining. 
Tall chimneys constructed of thin-walled steel tube can be sufficiently flexible that, in air flow with a 
speed in the critical range, vortex shedding can drive the chimney into violent oscillations that can 
lead to fatigue and also collapse of the chimney. These chimneys can be protected from this 
phenomenon by installing a series of fences at the top and running down the exterior of the chimney 
for approximately 30% of its length. The fences are usually located in a helical pattern. The fences 
prevent strong vortex shedding with low separation frequencies. 
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Vortex shedding was one of the causes proposed for the failure of the original Tacoma Narrows 
Bridge (Galloping Gertie) in 1940, but was rejected because the frequency of the vortex shedding did 
not match that of the bridge. The bridge actually failed by aeroelastic flutter [2.11].A thrill ride, 
"Vertigo" at Cedar Point in Sandusky, Ohio suffered vortex shedding during the winter of 2001, 
causing one of the three towers to collapse. The rode was closed for the winter at the time. [2.12] 

 

2.4.4. Galloping 

Galloping is an instability phenomenon found for slender structural members with a bluff section and 
also in some cases for cables covered with ice. Galloping is characterized by vibrations perpendicular 
to the wind direction and with much lower frequencies than that found for vortex-induced vibrations. 
The structure exhibits large amplitude oscillations in the direction normal to the flow. The galloping 
occurs when the sum of the aerodynamic damping and mechanical damping value of the structure 
becomes negative. The conditions for the stability and instability of the system for galloping are as 
follows [2.10]: 

0<+ D
L C

d
dC
α

  For instability                                       

                       0>+ D
L C

d
dC
α

  For stability    

where, 

LC ， DC  are aerodynamic lift and drag coefficients 

α  is angle of attack of the flow 
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3 
CHARACTERISTICS OF WIND FIELD 

 

 

3.1. Introduction 

Wind is the motion of air with respect to the surface of the earth, and is fundamentally caused by 
variable solar heating of the earth’s atmosphere. The longitudinal, vertical and transverse components 
of the time dependent wind velocity vector at a given location can be expressed as a sum of a constant 
term and a time dependent function with zero mean:  

)()( tuUtU +=           (3.1a) 

)()( tvtV =           (3.1b) 

)()( twtW =            (3.1c) 

 

3.2 Mean wind velocity profiles 

The surface of the earth exerts upon the moving air a horizontal drag force the effect of which is to 
retard the flow (Fig.3.1). The effect of this force upon the flow decreases as the height above ground 
increases and becomes negligible above a height δ , known as the height of boundary layer of the 
atmosphere. The depth of the boundary layer normally ranges in the case of neutrally stratified flows 
from a few hundred meters to several kilometers, depending upon wind intensity, roughness of terrain, 
and angle of latitude. Within the boundary layer, the wind speed increases with elevation, and 
mathematically expressed with ‘logarithmic law’ and ‘power law’.  
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Figure 3.1 The atmospheric boundary layer 

 

3.2.1 The ‘logarithmic law’ 

For the variation of the mean or time averaged wind speed with height above the ground near the 
surface (say in the first 100–200m – the height range of most structures), in strong wind conditions, 
the most accurate mathematical expression is the logarithmic law. The usual form of the logarithmic is 
defined as: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

0

*

ln
z
z

k
uzU           (3.2) 

where 

)(zU  is the mean wind velocity at the height z 

0z    is the roughness length 

k     is the Von Karman’s constant, and has been found experimentally to have a value of about 0.4. 

*u    is the friction velocity, and is expressed as au ρτ 0
* = , in which 0τ  is the surface shear 

stress and aρ  is the density of air. 

 

3.2.2. The ‘power law’  

The power law has no theoretical basis but is easily integrated over height – a convenient property 
when wishing to determine bending moments at the base of a tall structure, for instance.  

To relate the mean wind speed at any height, z, with mean wind speed at a standard height, 

Boundary-layer 

depth δ  
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sz (normally, mzs 10= ), the power law can be written [3.1]: 

( ) α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ss z
z

U
zU           (3.3) 

The exponent α  changes with terrain roughness, and also with the height range, when matched to the 

logarithmic law. A relationship that can be used to relate the exponent to the roughness length, 0z , is 

as follow: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
ln

1

z
zref

α           (3.4) 

where refz  is a reference height at which the two laws match. 

 

3.3 Wind turbulence  

Wind speeds varies randomly with time. This variation is due to the turbulence of the wind flow. 
Information on the features of atmospheric turbulence is useful in structural engineering. First, rigid 
structures and members are subjected to time-dependent loads with fluctuations due in part to 
atmospheric turbulence. Second, flexible structures, such as cable-stayed and suspension bridges, may 
exhibit resonant amplification effects induced by velocity fluctuations. Third, the aerodynamic 
behavior of structures depends strongly upon the wind turbulence.  

  The following features of the atmospheric turbulence are of interest in various applications: the 
turbulence intensity; the integral scales of turbulent velocity fluctuations; the spectra of turbulent 
velocity fluctuations; and the cross-spectra of turbulent velocity fluctuations. 

 

3.3.1 Turbulence intensity 

The simplest descriptor of atmospheric turbulence is the turbulence intensity. The ratio of the standard 
deviation of each fluctuating component to the mean value is known as the turbulence intensity of that 

component. Let ( )zu  denote the velocity fluctuation parallel to the direction of the mean speed. The 

longitudinal turbulence intensity is defined as 

( ) ( ) ( )zUzzI uu /σ=           (3.5) 
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where ( )zU  is mean wind speed at elevation z and ( )zσ  is the standard derivation of ( )zu . Vertical 

and lateral turbulence intensity may be similarly defined. 

  Near the ground strong wind produced by large scale depression systems, measurements have found 

that the standard deviation of longitudinal wind velocity, uσ  is equal to *5.2 u  to a good 

approximation, where *u  is the friction velocity. Then the turbulence intensity, uI , is given as 

follow: 

( ) ( ) ( )00*

*

/ln
1

/ln4.0/
5.2

zzzzu
u

Iu ==         (3.6) 

  Thus the turbulence intensity is simply related to the surface roughness, as measured by the 

roughness length, 0z . 

  The lateral and vertical turbulence components are generally lower in magnitude than the 
corresponding longitudinal value. However, for well-developed boundary layer winds, simple 

relationships between standard deviation of lateral velocity, vσ , is equal to *2.2 u , and for the 

vertical component, wσ  is given approximately by 1.3 to *4.1 u . Then vI  and wI  can be derived: 

                            ( )0/ln
88.0

zz
I v ≅           (3.7) 

                            ( )0/ln
55.0

zz
I w ≅           (3.8)                          

 

3.3.2. Integral Scales of Turbulence  

Integral scales of turbulence represent the average size of the turbulent eddy of the flow. There are 
altogether nine integral scales of turbulence, corresponding to three dimensions of the eddies 
associated with the longitudinal, transverse, and vertical components of the fluctuating velocity, u, v 
and w. For instance, Lu

x, Lu
y and Lu

z are respectively, measures of the average longitudinal, transverse 
and vertical size of the eddies related with the longitudinal velocity fluctuations. Mathematically, the 
longitudinal integral scales of turbulence should be defined as: 

( )dxxRL uu
u

x
u ∫

∞
=

02 21

1
σ

          (3.9) 
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where x is the direction in witch the fluctuation is measured and of the longitudinal velocity, and 

( )xR uu 21
is the cross correlation function of the longitudinal velocity components.  

   

3.3.3 Spectra of longitudinal velocity fluctuations   

To describe the probabilities distribution of turbulence with frequency, a function called the spectral 
density usually abbreviated to ‘spectrum’, is used. It is defined so that the contribution to the variance 

( 2
uσ , or square of the standard deviation), in the range of frequencies from n to n+dn, is given by 

dnnSu ⋅)( , where )(nSu is the spectral density function for u(t). Then integration over all 

frequencies, 

∫
∞

=
0

2 )( dnnSuuσ           (3.10) 

  There are many mathematical forms that have been used for )(nSu for structural design purposes. 

In Eurocode 1 [3.2] wind distribution over frequencies is expressed by the non-dimensional power 

spectral, ( )nzS L , , which is determined as follows: 

( )nzS L , = ( ) ( )
( )( ) 352 ,2.101
,8.6,

nzf
nzfnzSn

L

L

v ⋅+

⋅
=

⋅
σ

          (3.11) 

where ( ) ( )
( )zv

zLnnzf
m

L
⋅

=,  is a non-dimensional frequency determined by the frequency n=n1,x, the 

natural frequency of the structure in Hz, by the mean velocity vm(z) and the turbulence length scale 
L(z).  

  The main frequency of the spectrum is n=0, and corresponding peak value is: 

( ) ( )
m

v

v
zL

S
⋅

=
2

max
8.6

0
σ

          (3.12) 

The American code [3.3]Kaimal form: 

( )
( ) 352 302.101

868.6
x

xnSn

v ⋅+

⋅
=

⋅
σ

          (3.13) 
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in which 
z

z

v

nL
x = ; zv  is the mean hourly wind speed at equivalent height, z ( hz 6.0= , h is the 

height of the structure). Transform the mean hourly wind speed into 10min mean wind speed: 

smvv h /3094.0 110 ==  

smv h /91.311 =           (3.14) 

The main frequency of the spectra is n=0, and corresponding peak value is: 

( )
z

zv

v

L
S

⋅
=

2

max

868.6
0

σ
          (3.15) 

In this study the Davenport (1961) form [3.4] is used: 

( )
( ) 342

2

2
10 1

4

x

x

vK

nnS

+
=           (3.16) 

in which 
10

1200
v

nx = ; n is the frequency and expressed in Hertz; K is a factor relate to the terrain 

roughness, varies from 0.003 to 0.03; 10v  is the 10min mean wind speed, in meters per second, at 

z=10m. Eq.(3.16) was obtained by averaging results of measurements obtained at various heights 
above ground and does not reflect the dependence of spectra on height. 

The corresponding main frequency and peak value are: 

Hzvn 4
10 104550.6 −×=  

( ) 10max 1986 vKnS =           (3.17) 

In Fig.3.2, all these three spectra are shown at a height z=100m, smv /3010 = . 

From Figure 3.2, we can find that in American code and Eurocode the spectra of velocity 
fluctuation are monotonic decreasing and reach the maximum value at the frequency n=0. In Chinese 
code at n=0, the spectra S(0)=0, and reaches the maximum value at n=0.02Hz (in case of z=100m, 

smv /3010 = ). In the low frequency domain the value is smaller than that of American code and 

Eurocode, while in high frequency domain the value of the spectra is larger than that of that of 
American code and Eurocode. The nature frequencies of practical engineering structures are, generally, 
between 0.10Hz and 5Hz. In this range, the value of Davenport spectra is the largest. 
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Figure 3.2 Comparison of spectra of velocity fluctuation (z=100m, smv /3010 = ) in different codes 

 

3.3.4 Cross-spectra of longitudinal velocity fluctuations 

When considering the resonant response of structures to wind, the correlation of wind velocity 
fluctuations from separated points at different frequencies is important. For example the correlations 
of vertical velocity fluctuations with span-wise separation at the natural frequencies of vibration of a 
large-span bridge are important in determining its response to buffeting. 

  The cross-spectrum of two continuous records is a measure of the degree to which the two records 
are correlated and is defined as 

( ) =nrS cr
ij , ( ) +nrS C

ij , ( )nriS Q
ij ,           (3.18) 

in which 1−=i . The real and imaginary parts in Eq.3.18 are known as the co-spectrum and the 

quadrature spectrum, respectively. The subscripts i  and j  indicate that the two different points, the 
distance between which is r. 

  The coherence function is defined as 

( )[ ] ( ) ( )nrqnrcnrCoh ijij ,,, 222 +=           (3.19) 

where  

EN1991-1-4.6 

ASNI/ASCE7-95 

GB5009-2002 
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2
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, =         (3.20b) 

and ( )nSii , ( )nS jj  are the spectra of the longitudinal velocity fluctuations at points i  and j . 

  The following expression for the coherence function was proposed by Davenport [3.7] 
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where ix , iy , iz  and jx , jy , jz  are the coordinates of point i and j. zyx CCC ,,  are 

appropriate decay coefficients, normally determined experimentally. 

  In homogeneous turbulence, the quadrature spectrum can be neglected [3.8]. For engineering 
purposes, and based on wind tunnel tests, the cross-spectrum is assumed as  

)()()()( nCohnSnSnS ijjjiiij ⋅⋅=           (3.22) 

 

3.3.5 Spectra and cross-spectra of vertical velocity fluctuations 

It was suggested by Panofsky [3.8] that the spectra of vertical fluctuations up to about 50m may be 
estimated by the formula 
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0H , mean height of building in the field. 

  According to measurements reported in [3.6], the cross-spectrum of vertical fluctuations at two points, 
may be written as 

( ) ( ) ( )zUyn
wij enzSnyS /8,, ∆−=∆          (3.24) 

where y∆  is the horizontal distance between the two points. 
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4 
SIMULATION OF STOCHASTIC 
WIND VELOCITY FIELD ON 
LARGE-SPAN BRIDGES  

 

 

4.1. Introduction  

With the development of large span bridges, wind effects become more and more prominent; hence, 
analysis of wind-induced buffeting of long-span bridges is presently considered necessary. The 
nonlinear responses of long-span bridges can be computed with sufficient accuracy by time-domain 
analysis. Simulation of the stochastic wind velocity field on a bridge deck appears currently to be the 
first step in time-domain analysis of nonlinear buffeting. 

  The fluctuating wind loads, which are related to the shape and height of the structure, are 
multiple–points random loads and one of the main dominating excitations of large structures in civil 
engineering. In the study of buffeting analysis of the structure, the wind velocity is indispensably 
considered, but an accurate wind velocity model usually requires expensive cost through a full ruler 
observation or a wind tunnel experiment. Therefore, it is significant to study the wind effects 
simulation by numerical simulation methods. 

The AR model was applied widely to forecast the time series in wind engineering, because of its 
many merits: simple algorithm and rapid calculation; besides, it can consider not only the space 
dependent characteristic, but also the time dependent characteristic of the wind history, also, those 
advantages can be facile to implement by computer programming. Though the autoregressive moving 
average (ARMA) is superior to the AR model [4.1, 4.2, 4.3, 4.4], the parameter estimation for the 
ARMA model is much more difficult than the AR model [4.5]. Hence, this chapter still concerns with 
the issues of the AR model while using it to simulate the natural wind velocity processes. 

  Before 1980, simulation techniques were primarily adopted to forecast single wind history. However, 
the single wind history could not meet the requirements of the structure with a great number of 
degrees of freedom. 

Iwatani (1982) proposed the use of an AR model (multidimensional AR process) to simulate 
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multiple wind velocities firstly [4.6]. The author built a FORTRAN program and gave out two 
examples, simulation of shear flow in the vertical direction and simulation of two-dimensional 
homogenous flow at many points in the horizontal direction[4.6], to validate the availability of the AR 
model. Iannuzzi and Spinelli (1987) compared the methods of simulating both single and multiple 
wind velocities [4.7]. Huang and Chalabi (1995) used an AR model which could produce 
non-stationary Gaussian random processes to simulate the wind velocity for the greenhouse and 
adopted a Kalman filter to estimate the parameters of the AR model [4.8]. All these above researchers 
used algorithms of iteration and recursion which usually result in accumulative errors while 
calculating the model parameters. 

  Stathopoulos, Kumar and Mohammadian (1996) established a first-order AR model to simulate the 
fluctuating wind loads of monoslope roofs with different geometrics [4.9]. Though the first-order AR 
model was not enough for the complex structures, the study showed that the AR model could be used 
to analys the wind-induced responses of the engineering structures. Facchini (1996) used a hybrid 
model to simulate wind velocity and pointed that the AR model could be calculated directly from the 
spectral densities without solving the Yule-Walker equations, but it needed huge calculation to obtain 
covariance functions integrated from the spectral densities of the target processes. [4.10] 

  Li and Dong (2001) introduced a matrix method to determine the parameters of the AR model 
without the iteration and recursion, which effectively avoided the accumulative errors in the 
simulation [4.11]. Although the improved method was applied in the simulation of the wind velocity of 
the double-layer reticulated shell of Chinese National Grand Theater, there was still some 
incorrectness in reasoning the covariance matrix and some incorrect descriptions of the formula 
parameters. 

  Poggi (2003) used an AR model to simulate wind speed in Corsica and compared to the 
experimental data to check the correction of the simulated wind speed [4.12]. Roy and Fuller (2001) 
and Kim (2003) discussed the bias of estimators for AR model parameters and evaluated the effects of 
bias-correction for AR model parameter estimation [4.13, 4.14]. 

  The wind velocity simulated by numerical simulation methods needs to be as close to the real 
situation as possible and the simulated method ought to be efficient and general. In the past research, 
though the AR model was constantly improved, it is not enough for the application of the AR model 
widely. The drawbacks of poor simulated accuracy of the AR model have not been resolved 
completely yet. Therefore, this chapter attempts to deduce the AR model by matrix form and solves 
the raised issues of the AR model in simulating the wind velocity of the spatial 3-D fields 
systematically, and presents the corresponding solving methods whose computing programs are 
implemented in MATLAB. 

 

4.2. Simulation of stochastic wind velocity field on long span bridges based on 
auto-regressive (AR) model 

The fluctuating wind velocity is a random time series in essence. The basic formula of the wind 
velocities [ )(tu ] at M spatial points, idealized as stationary Gaussian multivariate stochastic processes, 
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can be expressed as [4.6, 4.7, 4.11]: 

( )[ ] [ ] ( )[ ] ( )[ ]tNtktutu
p

k
k +∆−=∑

=1

ψ           (4.1) 

where ( )[ ] ( ) ( )[ ]TM tNtNtN ,,1 L= , ( )[ ]Ti tN is the thi  normally distributed stochastic process with 

zero mean and unit variance, pi ，L,1=  is the rank of AR model, and t∆  is the time step of the 

series. 

  The process of the simulation can be realized as follows. 

 

4.2.1. Calculation of coefficient matrix [ ]kψ  

After multiplying the two sides of Eq.4.1 by ( )[ ]tjtu ∆− and calculating the expectation, we can get 

the following formula: 

( )[ ] ( )[ ]{ } [ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]{ }tjtutNEtjtutktuEtjtutuE
p

k
k ∆−+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∆−∆−=∆− ∑
=1

ψ         (4.2) 

  Since the covariance between stochastic process ( )tu  and ( )tjtu ∆−  can be expressed as 

( ) ( ) ( )[ ]{ } ( ) ( )[ ]{ }[ ] ( ) ( )[ ]tjtutuEtjtuEtjtutuEtuEtjRu ∆−=∆−−∆−−=∆ , and the stochastic process 

( )tN  is independent to stochastic wind velocity ( )tu , then, the relationship between the covariance 

( )tjRu ∆  and the regressive coefficient [ ]kψ  can be written as:      

( ) [ ] ( )[ ]∑
=

∆−=∆
p

k
uku tkjRtjR

1

ψ           (4.3) 

in which pj ,,2,1 L= . After transpose, Eq. (4.3) can be rewritten in the matrix form: 

[ ] [ ][ ]ψRR =           (4.4) 

where 

[ ] ( ) ( )[ ]TuuMpM tpRtRR ∆∆=× ,,L , 
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According to random vibration theory, the relationship between the power spectral density and the 
correlation function accords with the Wiener-Khinchin theorem [4.15]: 

( ) ( ) ( )dftjffStjR ik
u

ik
u ∆⋅⋅=∆ ∫

∞
π2cos

0
          (4.7) 

where f is the frequency, ( )fS ik
u  is the auto-power spectral density if ki = , the cross-power 

spectral density if ki ≠ . Mki L,2,1, = , pj L,1= . The study of this term may be simplified by 
assuming that the imaginary component of the cross-spectrum is negligible for the purposes of the 
study that is to be carried out: 

)()()()( fCohfSfSfS ijjjiiij ⋅⋅=           (4.8) 

where )( fCohij  represents the coherence function of longitudinal fluctuations at points i and j of the 

plane orthogonal to the mean wind direction. As described in Chapter 3, the three-dimension 
expression of the coherence function is: 
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=
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222222

ji

jizjiyjix
ij zUzU

zzCyyCxxCf
fCoh           (4.9) 

where, zyx CCC ,,  are appropriate decay coefficients. In  present study, the following values were 

adopted: 8=xC  (longitude direction), 16=yC  (transverse direction), and 10=zC  (vertical 

direction). 
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4.2.2. Calculation of the normally distributed random processes ( )tN  

The normally distributed random processes ( )tN  can be obtained from:            

( )[ ] [ ] ( )[ ]tnLtN =           (4.10) 

where ( )[ ] ( ) ( ) ( )[ ]TM tntntntn ,,, 21 L= , ( )tni  is the thi  independent normally distributed random 

process with zero mean and unit variance, in which Mi L,2,1,= ; [ ]L  is from the Cholesky 

decomposition of [ ] [ ] [ ]TN LLR = , in which [ ]NR  is calculated from the following equation obtained 

by multiplying two sides of Eq. (4.1) with ( )[ ] ( ) ( )[ ]TM tututu ,,1 L=  

[ ] ( )[ ] [ ] ( )[ ]tkRRR u

p

k
kuN ∆−= ∑

=1

0 ψ           (4.11) 

 

4.2.3. Calculation of the fluctuating wind velocity 

  Using the results of Eq. 4.2 and Eq. 4.8, with the presumption of ( ) 0=tu i , while 0<t , Eq. 4.1 

can be dispersed and rewritten as  

( )
[ ]

( )[ ]

( )[ ]

( )

( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆

∆
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆−

∆−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆

∆

∑
= thN

thN

tkhu

tkhu

hu

thu

M

p

k M
k

M

MMM

1

1

11 )(
ψ , 

pk
h

,,1
,2,1,0

L

L

=
=

          (4.12) 

in which t∆  is the discrete time step. 

 

4.2.4. Calculation of the final wind velocity 

  The final wind velocity can be generated by: 

( ) ( )tuUtU +=           (4.13) 

where U  is the mean component of wind velocity. 
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4.2.5. Selection of the AR model rank 

  Iwatani point out that the low rank of the AR model can meet the requirement in general 
engineering with the permitted error [4.6]. But, for large and complex structures, it is not credible to 
solve the rank of AR model based on the empirical analysis only. However, much work has already 
been done and many experimental results have been given. Ref [4.17, 4.18, 4.19] proposed a new 
method to select the AR model order by translating the n-variate AR model equations into state-space 
form. Different from those former works ref [4.23] developed a new method of resolving the rank of 
AR model based on the principle of the AIC (Akaike Information Criterion). The AIC can be 
expressed as [4.18] 

NppAIC 2ln)( 2 += ασ           (4.14) 

where N is the sample time length, 2
ασ  is the variance. 

  With the increasing rank of the AR model initially, the value of the variance 2
ασ  and )( pAIC  

decrease. However, the value of )( pAIC  will increase with the rising rank. Hence, 0p  is taken as 

the best rank of the AR model if it is determined by the formula for a special rank m  

( )pAICpAIC
mp

∑
≤≤

=
1

0 min)(           (4.15) 

  It is a huge job to calculate the variance 2
ασ  for a multidimensional sequence. In this study, it is 

proposed that the variance 2
ασ  can be replaced by the absolute of the maximum eigenvalue of the 

matrix [ ]NR . 

 

4.2.6. Implementation of the AR model  

  There are two important points in the implementations of the AR model based on the MATLAB 
programming: (Fig 4.1) [4.23] 

  

4.2.6.1. Solving the ill-posed Eq. 4.4 resulting from the increasing degrees of freedom of the structure 

Eq. 4.4 can be solved by a general iterative method for a structure with a few degree freedoms 

However, the large dimension of the coefficient matrix [ ]R , which results from a large number of 

degrees of freedom, will make the Eq.4.4 an ill conditioned equation. Therefore the complicated 
method with better accuracy is needed for resolving the problem. Here, over-relaxation iteration [4.20] 
is used to calculate the large sparse matrix equation. 
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The iteration formula of the algorithm is  
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ψψωψωψ            (4.16) 

where ω  is the relaxation factor which controls the convergent rate of the iteration algorithm, 

.,...,2,1 Mi =  With the condition of positive definite matrix [ ]R , the formula would be convergent 

with 21 <<ω . It is suggested that the relaxation factor value should be within the range of 1.01~1.05 
in this study. 

 

4.2.6.2. Solving the numerical integral equation 4.7 which contains oscillating function 

The integral function of Eq. 4.7 contains the oscillating function ( )tjf ∆⋅⋅π2cos . With the growth 

of the variable tjf ∆⋅⋅⋅π2 , the integral function will have more points of zero value on x-axis 
coordinate. Then a general numerical interpolation can not meet the requirement of accuracy, and 
neither can the compound integral method. In this study, the Gauss-Lobatto formula improved from 
the Gauss formula is used to solve the integral of oscillation function. The formula can be expressed as 
[4.21] 

( ) ( ) ( ) ( )∑
−

=

−+++=
1

2

22
1

n

k

n
nkknu fKxfAbfAafAR ξ                  (4.17) 

where a, b are the end points of each range, nAA ⋅⋅⋅,1 , nK are 1+n  parameters. 
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Fig. 4.1 Flow chart of implementing wind velocity by AR model in MATLAB 

 

4.3. Case study and wind field evaluation 

  Using those methods mentioned above, one can simulate the wind velocity at four-space points as 

shown in Fig 4.2. The parameters used in the simulation are: the roughness length mz 4.00 = , the 

Solve Eq. (4.4) by 
over-relaxation iteration 

Calculate matrix [ ]nR  by making 

use of Eq. (4.9)

Calculate a new 

model rank 1p  

Unequal to 0p  

Obtain coefficient matrix [ ]ψ  

Obtain covariance matrix [ ]uR  

Input initial parameters: ,,, 100 tvz ∆  

coordinates of space points etc 

Assume initial rank of the AR model 0p

Solve Eq. (4.7) by 
Gauss-Lobatto formula 

calculate ( )fS ik
u  

Use new model rank [ ]1p  

equal to 0p  

Calculate matrix [L] in Eq.(4.8) by 
Cholesky decomposition 

Calculate random numbers 
matrix [n(t)] 

Obtain matrix [N(t)] 

Calculate wind velocities [v(t)] by Eq.(4.1) 
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standard mean component of the wind velocity smv /2510 = , the discrete time st 1.0=∆ . The wind 

velocity power spectrum is the Davenport spectrum. The results of the simulation are shown in Figs. 
4.3 to 4.5.   

 

Fig. 4.2 Four-space points (unit: m) 

Fig. 4.3 shows the fluctuating components of wind velocities at the four-space points, with the rank 
of the AR model 4=p . The wind velocity curves also illuminate that the wind velocity is a random 
process accompanying the varieties of time, and the fluctuating components of the wind velocity 
which displays by the fluctuant curve in Fig. 4.3 will results in the vibration of the structure, even 
strengthens the resonance effect of the flexible structure. 

  Good agreement between the simulated and the target power spectra are shown Fig.4.4. The 
fluctuant phenomena of the calculated curves result from the fluctuating components of the wind 
velocity. The beginning and the ending of the theoretical values depend on the lower and upper cutoff 
frequencies respectively.  

The auto- and cross-correlation functions in Fig. 4.5 present the spatial correlation characteristics of 
the wind velocity at the spatial four points. The auto-correlation function 1 is the auto-correlation 
function of node A; the cross-correlation function 2 is the cross-correlation function between node A 
and node B; the cross-correlation function 3 is the cross-correlation function between node A and node 
C; the cross-correlation function 4 is the cross-correlation function between node A and node D. As 
shown in Fig. 4.5, the fluctuating curves indicate that the closer points in distance have the stronger 
corresponding properties, in contrast, the farther distance, the weaker corresponding properties. 

Fig.4.5 also reveals that the relativity among the spatial points with the same height is quite similar. 
With the fall of height, the maximum value of the correlation function decreases and translates in the 
positive direction on the time-axis. 

)20,0,25(−A

)10,25,0(C

)10,25,0( −D

)20,0,25(B
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a. node A 

0 20 40 60 80 100 120 140 160 180 200
-10

-5

0

5

10

Time (s)

W
in

d 
ve

lo
ci

ty
  v

(t)
(m

/s
)

 

b. node B 
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c. node C 
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d. node D 

Fig 4.3 Wind velocity curves of nodes of the example 
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a. node A 

b. node B 

c. node C 

d. node D 

Fig. 4.4 Wind velocity power spectral density curves of nodes of the example  
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Fig. 4.5 Correlation functions 

 

  In the above simulation, the rank of the AR model is calculated in Table 4.1. As shown by the data 
in Table 4.1. the rank of the AR model 3=p  is the most suitable value of the wind velocity 
simulation. 

Table 4.1 Ascertain of AR model rank 

Model rank Values of AIC 

1=p  1.9032 

2=p  1.6241 

3=p  1.5722 

4=p  1.5903 

5=p  1.6489 
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Fig.4.6 Normal distribution probability function of wind velocity simulated by AR model 

  

 Fig. 4.6 shows the normal distribution probability functions of wind velocity simulated by AR 
model. The lines in the Figures mean the data come from the normal distribution strictly, the “+” 
symbols display the discrete points of simulated wind velocity. As we known, the real wind velocity is 
subjected to standard normal distribution in nature. From Fig.4.6 we can see that, the wind velocity 
simulated by AR model fits the line well. 

 

4.4. Conclusions  

  The methods discussed the simulation of wind velocity using the AR model meliorate the accuracy 
of AR model and can also be easily adopted in other similar problems. The method of ascertaining the 
rank of AR model is proved to be effective and credible for the wind velocity simulation of the spatial 
3_D fields in terms of the example taken in this chapter. 

  The results of the comparison among power spectral densities are found to be in a very close 
agreement. The correlation functions reveal the spatial and time correlation characteristics of the wind 
velocity well. 

  The programs can simulate the wind velocity of the spatial 3-D fields for all kinds of wind velocity 
power spectra and spatial corresponding coefficients, and afford the fluctuating wind load in the wind 
induced oscillation numerical analysis of large structures in civil engineering. 
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5 
TIME DOMAIN BUFFETING 

SIMULATION FOR WIND-BRIDGE 

INTERACTION  

 

 

5.1 Introduction 

Buffeting is the vibration motion induced by turbulent wind. As natural wind is not steady but 
turbulent in character, wind fluctuations in the vertical and horizontal directions are random in space, 
and thus the wind pressures along the bridges are random in space and time. Depending on the spectral 
distribution of the pressure vectors, certain modes of vibration on the whole bridge may selectively be 
excited. In fact, these wind-induced buffeting actions are related not only to wind speed but also to the 
shape of the cross-section of the bridge deck and the interaction between the bridge and wind motion 
[5.1]. Significant buffeting may occur for the long-span bridges in strong wind area and may cause 
serious strength and fatigue problems of structural components and instability of the vehicles traveling 
on the bridges.  

  There are mainly two analytical approach for buffeting analysis: time domain approach and 
frequency domain approach.  

To predicate buffeting responses, Davenport [5,3] proposed a quasis-teady method and introduced 
aerodynamic admittance function, g(w), to consider unsteady effects. Because of the complexity of 
various cross-section shapes of bridge decks, Scanlan [5.14] suggested that wind tunnel test of bridge 

decks be performed to determine the aerodynamic derivatives ( *
iA , *

iH , *
iP , i=1,…,6) , which are used 

for the expression of self-excited force. More recently, Scanlan [1.3] further interpreted the 
aerodynamic admittance function and gave its inherent relationship with aerodynamic derivatives. 
These contributions found the basis for conventional buffeting analysis. The dynamic motion 
equations of bridge decks are generally solved by means of response spectrum theory in frequency 
domain, which is estimated typically using a mode-by-mode approach that ignores the aerodynamic 
coupling among modes. In general, the frequency domain approach is restricted to linear structures 
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excited by the stationary wind loads without aerodynamic nonlinearities. That is a limitation readily 
acceptable for design considerations under serviceability conditions but not under ultimate strength 
calculations. In a time domain calculation procedure non-linear load effects or partial structural 
plastification may be included to provide a better and more comprehensive background for the 
evaluation of the safety margin at extreme load events. In order to consider the effects of instantaneous 
relative velocity, effective angle of attack, and structural nonlinearity, the time domain buffeting 
analysis is necessary. 

 In time domain simulation, buffeting forces are often considered through the quasi-steady 
formulation due to its simplicity, without considering unsteady fluid memory effects. To improve that, 
self-excited force is expressed in terms of convolution integrals between bridge deck motion and 
impulse response functions, with flutter derivatives identified from wind tunnel test. However, the 
flutter derivatives and admittance functions are frequency related. As an alternative, a time domain 
approach using indicial functions can be used [5.18] [5.19] [5.20].  

In this thesis both these two approaches for time domain buffeting analysis are introduced. 

 

5.2 Buffeting force  

  In this section, the forces per unit length acting on a fixed rigid deck section immersed in a turbulent 
wind flow (Fig. 5.1) are defined. In Fig. 5.1, y0 and z0 are the initial axes of the section. The mean 
wind velocity U is directed along the x-axis rotated β  with respect to x0. The turbulent flow is 

characterized by the two fluctuating components ( ) ( )tMutu ,=  and ( ) ( )tMwtw ,= , M  being a 

point representative of the deck section. The mean wind velocity U  is assumed to be normal with 
respect to the longitudinal axis of the deck. 

 

 

Fig.5.1. Fixed deck section immersed in a turbulent flow 

 

  Due to the wind action, surface pressures arise on the contour of the section. The resultant of these 

pressures is commonly schematized as a vector ( ) ( ) ( ) ( ){ }Tyxz tMtFtFtF ,,=  of (generalized) forces, 

where )(tFx  is the drag force in the mean wind velocity direction y,  )(tFz  is the lift force in the 

direction z perpendicular to the mean wind velocity, and ( )tM y  is the torsional moment. 
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  First the validity of the slender body and quasi-steady hypotheses is assumed, then the quasi-steady 
hypotheses are removed and the aerodynamic admittance functions are introduced when the 
quasi-steady hypotheses holds.   

 

5.2.1. Slender body and quasi-steady hypotheses   

  It is assumed that the bridge deck can be considered as a slender body with respect to its 
longitudinal axis and that the quasi-steady hypothesis holds. Such hypotheses [5.3] [5.5] hold if the 
characteristic size of the section is small when compared with the turbulence length scale so as to 
consider the turbulent eddies as perfectly correlated around the body and if the harmonic content of the 
signature turbulence is located in correspondence with frequencies higher than those characterizing the 
undisturbed turbulence so that the signature and the undisturbed turbulence can be considered as 
uncorrelated and the forces due to these two phenomena can be defined separately. Under this 
circumstance, the forces due to undisturbed turbulence can be defined as a function of turbulence 
components in one point representative of the section and can be evaluated defining an instantaneous 
velocity corresponding to the resultant of the mean wind velocity and of the turbulence components. 

  Holding the two hypotheses previously introduced, and assuming that the turbulence components 

are small with respect to the mean wind velocity ( ( ) Utu <<′  and ( ) Utw <<′ ), the forces can be 

separated into a mean vector F  and a fluctuating part ( )tF ′ : 

( ) ( )tFFtF ′+=           (5.1) 

  The mean forces vector is given by: 
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where ρ  is the air density, B  is a characteristic size of the deck section (usually the deck width), 

DC , LC , and MC  are the steady coefficients evaluated at the angle of attack β . 

  In principle, the fluctuating forces should comprehend two contributions, i.e. ( ) ( ) ( )tFtFtF stut +=′ , 

where ( )tFut  is due to the undisturbed turbulence and ( )tFst  signature turbulence. It is worth 

observing that the contribution to buffeting forces associated with signature turbulence effects is 
usually neglected in the literature and the buffeting forces take only into account the contribution of 

the undisturbed turbulence: ( ) ( ) ( )tFtFtF utb ≅=′ . 

  Based on such hypothesis, the vector of the buffeting forces is commonly expressed as a function of 
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the turbulence vector ( ) ( ) ( ){ }TtwtutV ,=  by [5.21]:  
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where aeC  is the matrix of the aerodynamic coefficients and DC ′ , LC ′ , MC ′  are the derivatives of 

the steady coefficients with respect to the attack angle, and B is the deck width. 

 

5.2.2 Aerodynamic admittance functions 

  Since bridge deck sections are usually very elongated, the characteristic size of the section cannot 
be considered as small if compared with the length scales of the turbulence components [5.3, 5.5]. 
Thus, the turbulence field surrounding the section cannot be considered as perfectly correlated and the 
forces acting on the deck segment derive from an integration of the pressure field around the section. 
Despite the three-dimensional nature of the problem, span-wise and chord-wise correlations of the 
turbulent field around the deck are usually treated as independent. 

  Moreover, since deck sections are not always streamlined and are characterized by low Strouhal 
numbers, and the signature turbulence involves a harmonic content overlapping with the harmonic 
content of the undisturbed turbulence. Differently from the case analyzed in last section, the forces 
arising on the section as a consequence of these two kinds of turbulence cannot be considered 
separately. 

  Under these circumstances, the buffeting forces represent the effects of the undisturbed turbulence 
and of the signature turbulence together, and can be typically expressed as follows [5.2]: 
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where ( ) ( ) ( ){ }TtwtutV ′′=′ , , and Riχ  ( wuiMLDR ,;,, == ) are the six complex aerodynamic 

admittance functions (CAAFs) which are functions of reduced frequency.  

  In this study all the aerodynamic admittance functions are assumed to be unit. This assumption may 
lead to overestimation of the bridge buffeting response.  
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5.3 Self-excited forces 

Let us consider a moving rigid deck section immersed in a laminar wind flow (Fig. 5.2). The wind 

flow is characterized by a mean wind velocity U  inclined β  with respect to the 0x  inertial axis of 

the section. The mean wind velocity U  is assumed to be normal with respect to the longitudinal axis 

of the deck. The motion of the section is described by the components ( )tp  in the along wind 

direction, ( )th  in the crosswind direction and the torsional rotation ( )tα , listed by the vector 

( ) ( ) ( ) ( ){ }Ttthtptq α,,= . The forces that act upon a body as a consequence of its motion are commonly 

called aeroelastic or self-excited forces.  

 

Fig. 5.2 Moving deck section immersed in a laminar flow. 

At first the validity of the quasi-steady hypothesis is assumed (Section 5.3.1), then this hypothesis is 
removed and the flutter derivatives are introduced (Section 5.3.2). 

 

5.3.1. Quasi-steady hypothesis 

Let us assume that the quasi-steady hypothesis holds. If this circumstance is verified, the aerodynamic 
forces on the body depend on its motion at the same time, and are independent of the history of motion 
at earlier times. More precisely, the forces acting on the section depend on the instantaneous relative 
velocity between the flow and the body. 

Holding the quasi-steady hypothesis, and assuming that the velocities of the deck section are small 

with respect to the mean wind velocity ( ( ) Utp <<& , ( ) Uth <<& and ( ) UtR <<α&0 ), the forces acting on 

the section can be expressed as the sum of the mean steady forces ( )tF ,  given by Eq. 5.2, the forces 

associated to the signature turbulence ( )tFst  and the self-excited or aeroelastic components ( )tFse , 

given by [5.21]: 

( ) ( ) ( )tqKtqCtFse 00 −−= & ,          (5.5a) 

h(t) p(t) 
( )tα
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where 0C  and 0K  are called aerodynamic damping and stiffness matrix, respectively; 0R is the 

characteristic radius of the section, which represents the distance between the center of aerodynamic 

forces and deck mid chord and normally 4/0 BR = .  

  Referring to Fig. 5.3, a three-dimensional spatial frame element oriented in its own member axes 

(Xe , Ye , Ze) has the following 12 degrees of freedom ix , where i=1, 2, …, 12. Based on the finite 

element method, the displacements )(),(),( ttzty θ  within the element are expressed as  

( ) ( ) ( )[ ] [ ] eT
zy

T NNNxxzxy Χ= θθ           (5.6) 

 

 

Fig. 5.3 Space frame element of member an global coordinate system. 

where { }Te xxx 1221 ,...,,=Χ is the displacement vector of the element e, as shown in Fig.5.3. The 

shape functions for a three-dimensional spatial frame element are 
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where  
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L
xN −= 19           (5.8e) 

L
xN =10           (5.8f) 

where x is the distance from a point within the element to node i  and L is the element length. 

  The equivalent loadings at the element ends are given by the integration of the distributed 
self-excited forces in Eq. 5.5 over the element length, as 

∫=
L

ae
Te

ae dxPNF
0

          (5.9) 

where 

[ ]TT
z

T
y

T NNNN θ= , { }Txzyae aeaeae
MFFP =           (5.10) 

aeyF , 
aezF  and 

aexM  being self-excited forces in Eq. 5.5. It is straightforward to obtain 

ee
ae

ee
ae

e
ae CKF Χ+Χ=           (5.11) 

where e
aeK  and e

aeC  are the elemental aeroelastic stiffness matrix and aeroelastic damping matrix 

for the element e, respectively, and their expressions in the form of consistent formulation are given in 
the Appendix 1. 
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Fig. 5.4 Finite element model formulated in ANSYS to account for self-excited forces 

 

Hua et al.[5.6] developed a hybrid finite element model that uses Matrix27 elements to model the 
flutter-derivative-based aeroelastic forces in ANSYS, and used it for flutter analysis in frequency 
domain. The user-defined element in ANSYS, Matrix27, represents an arbitrary element whose 
geometry is undefined but whose elastic kinematic response can be specified by stiffness, damping, or 
mass coefficients. The element is assumed to relate two nodes, each with six degrees of freedom per 
node: translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z axes [5.7]. 
It’s noted that one Matrix27 element can only model either an aeroelastic stiffness component or an 
aeroelastic damping component instead of both of them simultaneously. To incorporate the aeroelastic 
effect of bridge in buffeting analysis an integrated finited element model can be developed which 
consists of a particular structural element e and two fictitious Matrix27 elements. As shown in Fig. 5.4, 
a pair of Matrix27 elements are attached to each element e of the bridge to simulate the aeroelastic 
forces acting on two nodes. The two Matrix27 elements are separately plotted in the figure for clarity. 
Element e1 is employed to model aerodynamic stiffness and element e2 is used to model aerodynamic 
damping. Elements e, e1 and e2 share the same nodes, i and j. 

Assembling all elementary matrices into global aeroelastic stiffness and damping matrices leads to 
(5.14) 

Χ+Χ= &
aeaeae CKF           (5.12) 

where aeK  and aeC  denote the global aeroelastic stiffness and damping matrices, respectively.  

  The equations of motion for a bridge in the turbulent flow can be expressed as  

baes FFFKCM ++=Χ+Χ+Χ &&&           (5.13) 

where M, C and K re the global mass, damping and stiffness matrices, respectively;  

  Substituting Eq. 5.12 into Eq. 5.13 results in the governing equations of motion for the structure, as 

( ) ( ) bsaeae FFKKCCM +=Χ−+Χ−+Χ &&&           (5.14) 

where C  is the modified damping matrix and aeC  is the modified aeroelastic damping matrix. 

They are expressed as 

i j 

e1 e2 

e 
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( )aeKKMC −+= βα           (5.15a) 

aeaeae KCC β−=           (5.15b) 

where α  and β  are the proportionality coefficients for Rayleigh damping. 

 

5.3.2 Unsteady buffeting. 

Since for bridge deck sections the quasi-steady hypothesis does not usually hold, the forces acting on 
the section as a consequence of its motion cannot be considered as depending only on the 
instantaneous motion of the section. Under these circumstances, the self-excited forces are 
conventionally expressed in the frequency domain as follows: 

Self-excited loads are traditionally expressed in the form of indicial functions as suggested by 
Scanlan [5.8]. However, Lin [5.9] considered that there are some redundancies in the classical 
formulations. Based on the assumptions that the self-excited loads are generated by linear mechanism, 
Lin suggested another simple mathematical model for self-excited forces for investigation of the 
aerodynamic stability of long-span suspension bridges. The self-excited loads are expressed in terms 
of convolution integrals between bridge deck motion and impulse response functions which is shown 
to be equivalent to the classical indicial function type representation. Lin's model can be summarized 
as: 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫∞− ∞−
−+−=+=

t t

DDphse dttfdtptftDtDtD τατττ αα)( ,          (5.16a) 
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( ) ( ) ( ) ( ) ( ) ( )∫ ∫∞− ∞−
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t t

MMhhse dttfdthtftMtMtM τατττ αα)( ,          (5.16c) 

where ( )tf Dp , ( )tf Dα , ( )tfLα , ( )tf Lh ( )tf Mα  and ( )tfMh  are response functions due to unit 

impulse displacement α , h and p. From these equations, it is seen that the aerodynamic coupling of 
the modes is induced by Da(t), La(t) and Mh(t).   

Applying the Fourier transform to equations (5.16) and then comparing it with Scanlan's model in 
terms of aerodynamic derivatives, the relationship between transfer functions and aerodynamic 
derivatives can be obtained as: 
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*
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( ) [ ]*
2

*
3

23 iHHBFL += ωρωα ,   ( ) [ ],*
1

*
4

22 iHHBFMh += ωρω           (5.17 c,d) 

( ) [ ]*
2

*
3
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22 iPPBFDh += ωρω           (5.17 e,f) 
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where A*
i and H*

i (i=1,2,3,4) are non-dimensional flutter derivatives obtained by wind tunnel tests on a 
cross-section of the deck. 

  As for the introduction of the aerodynamic admittance functions, the definition of the self-excited 
forces on a deck section owes its origin to the studies made earlier on airfoils and thin-plates. 
Theodorsen [5.10], applying the potential flow theory, determined analytically the self-excited forces 
acting on a thin airfoil undergoing crosswind and torsional complex sinusoidal motions. Following this 
approach, Scanlan and Tomko [5.11] defined the lift and the moment acting on a bridge deck section 
undergoing crosswind and torsional motions, as functions of suitably defined coefficients, called 
flutter derivatives. In the case of bridge deck sections, which have to be considered as bluff bodies, the 
flutter derivatives have to be determined experimentally by wind tunnel tests or by Computational 

Fluid Dynamics. Only six flutter derivatives ( *
iA , *

iH , i=1,2,3 ) appeared in the original Scanlan and 

Tomko [5.11] formulation. With increasing spans, the importance of flutter derivatives associated with 
the motion in the alongwind direction was emphasized [5.12] and the complete set of the 18 flutter 

derivatives ( *
iA , *

iH , *
iP , i=1,…,6) is considered in recent works[5.22]. 

  From classical air foil theory, the transfer functions may be reasonably approximated by rational 
functions, specifically for transfer functions of first order linear filters. The transfer functions can, 
therefore, be expressed as: 
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Comparing equations (5.17) with equations (5.18), the flutter derivatives can be obtained as 
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In the above equations, K  is the reduced frequency and is defined as
U
BK ω

= . The unknown 

parameters LhkC , Lhkd , kLC α , kLd α , MhkC , Mhkd , kMC α and kMd α , can be obtained from 

least-squares fitting of equations (5.19).  

By taking the inverse Fourier transform of the transfer functions, the time domain expression of 
impulse response functions can be obtained. Substituting these impulse response functions into 
equation (5.18) yields 
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in which, for k=3, 4: 
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Regarding the motion history parts, it can be seen that the items involve convolution integrals of 
velocities. These series integrals can be summarized as: 

( )( )[ ] ( ) ττδτ dtBUdI jt

jij
&∫ ∞−

−−= /exp           (5.22) 

It can be seen that for calculating their values, the integral jI  must be evaluated at every time step 

jt , which is quite time consuming. Besides the motion history for all elements must be stored, thus 

occupying a large computer memory. To tackle these difficulties, a recursive algorithm for evaluating 
the integral is derived as follows [5.23]: 

( )( )[ ] ( )( )[ ] 1111 /exp/exp −−−− ∆−−+−−= jjjijjjij ttBUdIttBUdI δ           (5.23) 

From the above equation, it can be seen that only the quantities involving 1−jI  and 1−jδ  at time 

1−jt  need to be stored for evaluating jI . 
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5.3.3. Implementation in ANSYS 

Because the self-excited forces are dependent on the unknown motion (Eq.20 and Eq.21) they should 
be calculated iteratively at each time step until the required convergence criterion is satisfied. [5.13] 

Step 1: Use ( )1−tu  and ( )1−tu& at time t-1 to generate the self-excited forces t
seF  term in Eq.(5.20). 

(i is the number of iteration)  

Step 2: by solving Eq.(5.13), the movement of the structure (displacement ( )tu  and velocity ( )tu& ) can 

be obtained.  

Step 3: By substituting ( )tu  ( )tu& , which obtained in last step, into Eq.(5.20), the self-excited forces 

1+t
seF  can be obtained. 

Step 4: Check convergence of self-excited forces. If convergent, go to the next time step 1+t . If not, 
repeat step 2-4. 
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Fig. 4.1 Flow chart of implementing wind velocity by AR model in MATLAB 
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6 
APPLICATION TO QINGZHOU 

BRIDGE  

 

 

6.1. Bridge description and the main parameters. 

The Qingzhou cable-stayed bridge, as shown in Fig. 6.1, is one of the bridges on Luo-Chang Highway 
over the Min River in Fuzhou, Fujian Province, China. The bridge has a composite-deck system 
consisting of five spans with an overall length of 1186.34 m (41.13 m + 250 m + 605 m + 250 m + 
40.21 m). At the time, its 605 m main span was the longest span length among the completed 
composite-deck cable-stayed bridges, and ranks the fifth among the all types completed cable-stayed 
bridges all over the world. The bridge was completed in the year of 2000, but it was officially opened 
to the traffic in the year of 2002 due to the construction delay of approach spans. Fig. 6.2 shows the 
schematic plan, elevation and deck cross-section views of the Qingzhou cable-stayed bridge. The 
bridge, having six lanes, carries two roadways with 29 m wide. The main structural features of the 
bridge are briefly described as follows. 

 

 



TIME DOMAIN BUFFETING ANALYSIS OF LARGE-SPAN CABLE-STAYED BRIDGE 

52 

 

 

 

Fig. 6.1 Qingzhou cable-stayed bridge 

 

The composite-deck system of the bridge has an open-section consisting of two main I-type steel 
girders, steel floor beams and 25 cm thickness concrete slab. The slender steel girder is 2.45 m high 
and its maximum plate thickness reaches 80 mm. The ratio of girder height to span length is about 
1/202. One steel stringer is designed in the middle of the cross-section. There are in total 257 steel 
floor beams with a spacing of 4.5 m. The precast concrete slab is connected to the steel girders and 
floor beams by shear studs.  

The two diamond-shaped towers are of reinforced concrete. The height of the towers is 175.5 m 
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with 145.5 m above the bridge deck. The clear navigation is 43 m. The towers are erected on a group 
of concrete filled steel tube piles. The length of longest pile is 71.6 m.  

The cable arrangement is of fan type in both planes. There are in total 168821 =× stay cables. The 
longest cable is over 312 m. The cables are composed of a number of strands varied from 27 to 85 per 
cable in eight groups. One strand includes 7 high strength wires with the diameter of 5 mm (7B5 high 
strength wires). 

 

(a) 

 

(b) 

Fig.6 .2 Schematic representation of Qingzhou cable-stayed Bridge (Unit: m) 

 (a) elevation (b) typical cross-section of composite deck. 

 

6.2 Finite element modeling of Qingzhou Bridge 

The three-dimensional finite element modeling of Qingzhou bridge is completed by Wei-Xin Ren and 
Xue-Lin Peng [6.1] [6.2] in 2004, and achieves a good correlation with the measured natural 
frequencies and mode shapes identified from field ambient vibration tests.  

 

6.2.1 Simplified three-dimensional finite element models of cable-stayed bridges 

Contemporary cable-stayed bridges are complex, efficient and aesthetically pleasing structures which 
are appearing in various exotic forms. They involve a variety of decks, towers and stay cables that are 
connected together in different ways. To reduce the degrees of freedom and simplify the dynamic 
analysis, several simplified three-dimensional finite element models of cable-stayed bridges were 
developed using elastic beam elements to model the towers and deck, and truss elements to model the 
cables.  

The single-girder (spine) model is probably the earliest three-dimensional finite element model of 
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cable-stayed bridges in structural dynamics. The bridge deck was modeled using a single central spine 
with offset rigid links to accommodate cable anchor points. The deck stiffness was assigned to the 
spine, and mass (translational and rotational) was assigned to the spine nodes. This simplified model 
neglects the floor beam stiffness and girder torsional, so it is suitable for a box section girder with 
relatively large pure torsional stiffness but small torsional stiffness. 

  To take the torsional stiffness of the bridge deck into account in the single-girder beam element 
model, Wilson and Gravelle [6.3] presented a Π type model where the deck stiffness and mass were 
separately treated. Due to the distribution of lumped mass on both sides, the rotation effect of deck 
mass can be automatically included. This model may produce coupling between torsional and lateral 
motions of the deck using an equivalent pure torsional stiffness. 

  For cable-stayed bridges with double cable planes and open-section deck systems, the double-girder 
model seems more natural. The double-girder beam element model consists of two girders located in 
each cable plane coupled to floor beams. This model may include part of torsional stiffness through 
the opposite vertical bending of the two girders. Nazmy and Abdel-Ghaffar [6.7] [6.8] successfully 
applied the model to the three-dimensional nonlinear earthquake-response analysis of long-span 
cable-stayed bridge. 

  The torsional stiffness of the open-section decks is one of the most difficult parameters to estimate 
in developing a model of cable-stayed bridges. Zhu et al. [6.4] presented a triple-girder beam element 
model consisting of one central girder and two side girders to include the torsional stiffness properly. 
If deck stiffness and mass are correctly equalized and distributed to three girders, the torsional 
stiffness can be effectively considered. The model was verified through a comparison with the 
measured dynamic results of the Nanpu cable-stayed bridge. 

  The modeling of deck system is relatively ambiguous by using simplified beam element models. 
The adequacy of the simplified models is particularly questionable when representing the bridge deck 
system in the lateral and torsional vibration. The lateral vibration modes may be distorted to some 
extent if the deck stiffness equivalence is treated improperly. A dynamic study on the composite-deck 
system of an arch bridge has shown that the first lateral frequency of the triple-girder model is twice 
that of the double-girder model. Relatively large differences of torsional frequencies were also found 
between two models. Ren et al.[6.5] verified the stiffness contribution of the concrete slab through 
finite element analysis and field ambient vibration tests on a steel arch bridge with a composite-deck 
system. The concrete slab may have lass effect on the vertical bending stiffness, but may be a large 
contribution to the lateral bending stiffness of the deck. To represent the bridge dynamic behavior well, 
instead of simplified beam element models, a full three-dimensional finite element model is required 
with several types of elements such as beam elements, truss elements, shell elements, solid elements 
and link elements representing different components of cable stayed bridges. Some of them are 
introduced as follow, assuming the use of ANSYS system [6.6]: 

6.2.1.1 BEAM 4  

BEAM4 is a uniaxial element with tension, compression, torsion, and bending capabilities (Fig.6.3). 
The element has six degrees of freedom at each node: translations in the nodal x, y, and z directions 
and rotations about the nodal x, y, and z axes.  
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Fig.6.3 BEAM 4 element 

 

6.2.1.2 BEAM 44 

BEAM44 is a uniaxial element with tension, compression, torsion, and bending capabilities. The element 
has six degrees of freedom at each node: translations in the nodal x, y, and z directions and rotations about 
the nodal x, y, and z-axes. This element allows a different unsymmetrical geometry at each end and permits 
the end nodes to be offset from the centroidal axis of the beam. If these features are not desired, the uniform 
symmetrical beam BEAM4 may be used. 

 

Fig.6.4 BEAM 44 element 

 

6.2.1.3 LINK 8 

LINK8 is a spar which may be used in a variety of engineering applications. The 3-D spar element is a 
uniaxial tension-compression element with three degrees of freedom at each node: translations in the 
nodal x, y, and z directions. 
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Fig. 6.5 LINK 8 element 

 

iv) LINL 10 

LINK10 is a 3-D spar element having the unique feature of a bilinear stiffness matrix resulting in a 
uniaxial tension-only (or compression-only) element. With the tension-only option, the stiffness is 
removed if the element goes into compression. 

 

Fig.6.6 Link 10 element 

 

6.2.2 Full three-dimensional finite element modeling of the Qingzhou cable-stayed bridge 

Aimed at establishing a baseline finite element model for the long-term health monitoring of the 
Qingzhou cable-stayed bridge, a full three-dimensional finite model was conceived in ANSYS [6.1] 
because of the program significant capability to account for the initial cable tension and pre-stressed 
modal analysis capability.  

 

6.2.2.1 The modeling of each part of bridge 

1. Two steel girders and one central stringer are modeled as the 3-D elastic beam elements 
(BEAM4), since they are the structural members possibly subjected to tension, 
compression, bending and torsion. There are in total 968 elements of this type.  

2. The side spans include T-type concrete beams that are also discreterized by the BEAM4 
element that results 499 elements. 
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3. The floor beams are of variable sections and thus they are modeled by the BEAM44 
elements. 554 elements of this type are used in the current model.  

4. Towers consist of both equivalent and variable sections so they are discreterized by both 
BEAM4 and BEAM44 elements with a total number of 140. 

5. All piers and platforms are modeled by the solid elements (SOLID45), of which there are 
193.  

6. The concrete slab is divided into 508 shell elements (SHELL63). 

7. 210 concentrated mass elements (MASS21) are used to include the mass of equilibrium 
blocks, parapet and anchors that are nonstructural members.  

8. Modeling of the stay cables is possible in ANSYS by employing the 3-D tension-only 
truss elements (LINK10), and utilizing its stress-stiffening capability. With this element, 
the stiffness is removed if the element goes into compression, thus simulating a slack 
cable. No bending stiffness is included, whereas the pre-tensions of the cables can be 
incorporated by the initial strains of the element. The stress-stiffening capability is needed 
for analysis of structures with a low or nonexisting bending stiffness as is the case with 
cables. The cable sagging effect can be considered with the stress-stiffening capability. 
The element is nonlinear and requires an iterative solution. Each stay cable is modeled by 
one element, which results in 168 tension-only truss elements in the model. 

 

6.2.2.2 The modeling of bridge boundary conditions 

The modeling of bridge boundary conditions is an important issue in the dynamic analysis. Two types 
of bridge bearings are used in the Qingzhou cable-stayed bridge. Fixed bearings are applied to Pier 2, 
while expansion bearings are used for the other piers. In the current model, bridge bearings are 
modeled by a set of rigid link elements connecting the superstructure and piers. 

To simulate the actual behavior, the fixed and expansion bearings are simulated by coupling the 
corresponding translational and rotational degrees of freedom at both end nodes of the link elements. 
In addition, there are expansion joints at Pier 0 and Pier 5. Longitudinal springs (COMBINE14) are 
then applied to account for the restraining action in the longitudinal direction. 

 

6.2.2.3 Material properties of structural members 

168 cables are divided into eight groups. Their material and geometric properties are listed in Table 
6.1. The basic material properties of other structural members are summarized in Table 6.2.  
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Table 6.1 Properties of stay cables 

Cable No. 
Number of 

strands 
Area(cm2)

Linear Mass 
(Kg/m) 

E(MPa) ( )MPaσ  

C1-C4, S1-S4 27- 15φ  37.80 32.79 

C5-C6, S5-S6 34- 15φ  47.59 41.39 

C7-C9, S7-S8 37- 15φ  51.79 44.94 

C10-C12, 
S9-S10 

43- 15φ  60.19 52.22 

C13-C14, 
S11-S13 

48- 15φ  67.19 58.30 

C15-C18 55- 15φ  76.99 66.80 

C19-C20 73- 15φ  102.19 88.66 

C21,S20-S21 85- 15φ  118.93 103.23 

51095.1 × 1860 

 

Table 6.2 Material properties of structural members 

Materials E(MPa) Volumic mass 
(Kg/cm3) 

Structural members 

Steel 51010.2 ×  7850 Girders, floor beams, 
stringer 

Concrete C30 41000.3 ×  2550 Platform of piers 

Concrete C40 41025.3 ×  2550 Piers 

Concrete C50 41045.3 ×  2550 Tower, T-beams 

Concrete C60 41060.3 ×  2550 Concrete slab 

 

6.2.2.4 Full three-dimensional finite element model of the Qingzhou cable-stayed bridge 

The full three-dimensional finite element model of the Qingzhou cable-stayed bridge is shown in 
Fig. 6.7. The complete model consists of 1840 nodes and 3238 elements resulting in 9193 active 
degrees of freedom (DOFs). The model represents the bridge in its current as-built configuration and 
structural properties. 
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Fig. 6.7 Finite element model of Qingzhou Bridge 

 

6.2.2.5 Initial equilibrium configuration 

One of the important features of a large span cable-stayed bridge is that the dead load (self weight) 
is often dominant. The pre-tensions in the stay cables control the internal force distribution in the deck 
and towers as well as the bridge alignment. The initial equilibrium configuration of cable-stayed 
bridges is therefore the equilibrium position due to dead load and tension forces in the stay cables. The 
initial equilibrium configuration is important in cable-stayed bridges since it is a starting position to 
perform the succeeding analysis. 

In this cable-stayed bridge, the initial deformed equilibrium configuration of the finite element 
model should be identical to the completed initial geometry alignment of the bridge deck. This can be 
realized by manipulating the initial tension force in each stay cable that is specified as an input 
quantity in the cable elements. The design cable tensions are first applied to each stay cable and the 
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static analysis under dead load is carried out to compare the calculated deck alignment with the 
measured deck alignment. The cable tensions are then adjusted until the best match is achieved. The 
adjustment of each cable tension is within 9% compared with the design cable tensions, which can be 
acceptable considering the real construction of the bridge. 

The comparisons of modal analysis with (case 1) and without (case 2) initial tension are shown in 
Table 6.3. The modal analysis on this bridge was performed by the general structure analysis software 
ANSYS [20]. The result shows that the natural frequencies of the bridge are very closely spaced 
together. Its first 14 natural frequencies range from 0.222 to 0.746 Hz, including 7 vertical modes, 1 
lateral mode, 3 torsional modes and 3 coupling modes between lateral vibration and torsional 
vibrations. The descriptions on the first 14 modes can be found in Fig. 6.8. 

 

Table 6.3 Comparisons of modal analysis with (case 1) and without (case 2) initial tension 

Order 
Case 1 

 (Hz) 

Case 2 

(Hz) 

Deference

(%) 
Nature modes of vibration 

1 0.222 0.217 2.3 1st vertical bending 

2 0.266 0.252 56 2nd vertical bending 

3 0.267 0.264 1.1 1st lateral bending 

4 0.415 0.405 2.5 3rd vertical bending 

5 0.454 0.442 2.7 4th vertical bending 

6 0.478 0.468 2.1 5th vertical bending 

7 0.526 0.516 1.9 6th vertical bending 

8 0.535 0.538 0.6 
First towers transversal bending 

(including torsion) 

9 0.538 0.532 1.1 
First towers transversal bending 

(including torsion) 

10 0.551 0.548 0.5 1st torsion 

11 0.571 0.566 0.9 7th vertical bending 

12 0.622 0.606 2.6 2nd torsion 

13 0.712 0.701 1.6 3rd torsion  

14 0.748 0.746 0.3 2nd lateral bending (including torsion) 
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1st vertical bending mode                         2nd vertical bending mode 

  

1st lateral bending mode                          3rd vertical bending mode 

 

             4th vertical bending mode                          5th vertical bending mode 

  

6th vertical bending mode                        First towers transversal bending  

 (including torsion) 
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        First towers transversal bending                          1st torsion mode 

                (including torsion) 

        

 

7th vertical bending mod                              2nd torsion mode 

 

  

3rd torsion mode                              2nd lateral bending mode  

(including torsion) 

Fig. 6.8 Typical mode shapes 

 

6.3 Time domain wind velocity generated by auto-regressive method 

The wind velocity field on the bridge deck is assumed to be composed of 87 wind velocity waves at 87 
different points distributed along the deck of the bridge. According to the original design document， 
the main data of the bridge and of the time domain wind velocity generation conditions are as follows: 



TIME DOMAIN BUFFETING ANALYSIS OF LARGE-SPAN CABLE-STAYED BRIDGE 

64 

• Height of the deck above ground: mz 0.55=  

• Ground roughness: mz 01.00 =  

• Average wind velocity on the deck: smU /42=  

• Number of simulated points: 87=N  (Fig. 6.9) 

• Time interval: dt = 0.1 s 

• Period: T0 = 409.6 s 

• Target wind spectrum: 

Along wind direction: Davenport spectrum 

( )
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n, frequency of the turbulence wind; 
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10U , mean velocity at a height of 10m. 
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0H , mean height of building around the bridge. 
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Fig. 6.9 Location of points corresponding to the generation of wind speed time series 

 

Fig.6.10 shows the simulated wind velocities at points 33 (quarter-span), 43 and 44(mid-span). It 
can be seen that the wind velocities at points 43 and 44 have a rather strong correlation between them, 
since they are close to each other, whereas the wind velocities at points 33 and 44 have a much weaker 
correlation, since they are far apart. Correlation functions of simulated wind velocities at points 33, 43, 
and 44 are shown in Fig. 6.12 (function 1 is the auto-correlation function of node 44; function 2 is the 
cross-correlation function between node 44 and node 33; function 3 is the cross-correlation function 
between node 44 and node 43). 
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(c) 

Fig.6.10 Simulated horizontal wind velocities at point 44(a), 43(b), 33(c) 
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(c) 

Fig. 6.11 Horizontal wind velocity power spectral density curves at point 44(a), 43(b), 33(c) 
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Fig. 6.12 Correlation functions 
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(c) 

Fig.6.13 Simulated vertical wind velocities at point 44(a), 43(b), 33(c) 
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Fig. 6.14Vertical wind velocity power spectral density curves at point 44(a), 43(b), 33(c) 

 

6.4 Buffeting responses of the Qingzhou Bridge  

The buffeting responses of the Qingzhou Bridge are calculated in two cases: (i) self-excited forces are 
approximately represented by the quasi-steady theory (ii) self-excited forces are formulated with 
flutter derivatives based on aerodynamic theory, as in Eq.(5.16). Only the aerodynamic forces acting 
on the bridge deck were considered, and the variations of the aerodynamic characteristics with the 
static rotation were ignored here for simplicity and without loss of generality.  

The aerodynamic parameters are 365.1=DC , 116.1=′DC , 042.0=MC , 116.1=′MC , 

179.0−=lC , 14.4=′lC (Appendix 2). The Newmark- β  step-by-step numerical integration 

algorithm was used to calculate the buffeting response of the Qingzhou Bridge.  

  The steady aerodynamic forces which are determined by Eq.5.2, can be directly inputted as external 
loads in ANSYS for time-domain buffeting analysis. Buffeting load can be expressed as Eq. 5.4 with the 
aerodynamic admittance functions are taken as 1, because of the lack of corresponding data from wind 
tunnel test. 
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6.4.1 Case 1,  

The unsteady self-excited forces are approximately represented by the quasi-steady theory (Eq. 5.5). 
Following this, aerodynamic stiffness and aerodynamic damping matrices in the consistent 
formulation for a spatial beam element were derived and incorporated into the structural finite element 
model through Matrix27 element in ANSYS to consider the aeroelastic effect on buffeting responses. 

  In fact, the steady-state wind loads which contribute only to the determination of the bridge 
equilibrium position were found to be insignificant in buffeting responses. Hence, the whole analysis 
process can be divided into two steps. The first step is to establish a static analysis to update the 
equilibrium positions of the bridge and the second step is to develop a time domain analysis evaluating 
the buffeting response according to the updated equilibrium position in step 1. 

The corresponding vertical, lateral and torsional responses at the mid-span and quarter-span under a 
mean velocity of smU /42=  are shown in Fig. 6.15- Fig.6.20. 
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Fig. 6.15 Vertical response at mid-span (case 1) 
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Fig. 6.16 Vertical response at quarter-span (case 1) 
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Fig. 6.17 Lateral response at mid-span (case 1) 
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Fig. 6.18 Lateral response at quarter-span (case 1) 
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Fig. 6.19 Rotational response at mid-span (case 1) 
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Fig. 6.20 Rotational response at quarter-span (case 1) 
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Fig.6.21 Spectrum of vertical displacement at mid-span (a) and quarter-span (b) 
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    (a)                                    (b) 

Fig.6.22 Spectra of lateral displacement at mid-span (a) and quarter-span (b) 

Fig.6.21 and Fig.6.22 plots the spectra of vertical and lateral displacements at the mid-span and 
quarter-span. The identified frequency is in accordance with the 1st vertical bending and 1st transverse 
bending nature frequency of the structure, respectively. 

Fig.6.23 and Fig.6.24 show the distributions of the maximum vertical deflections and the lateral 
displacements of the bridge deck along its span under a mean wind velocity smU /42= . It is seen 
that the fluctuating wind components have stronger influence on the lateral displacement than on the 
vertical deflection. Fig.6.25 and Fig.6.26 show the distributions of vertical and lateral displacement 
under the static wind forces 

-400 -200 0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

Span (m)M
ax

im
um

 v
er

tic
al

 d
is

pl
ac

em
en

t (
m

)

 

Fig. 6.23 Maximum vertical displacement along the span 
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Fig. 6.24. Maximum lateral displacement along the span 
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Fig. 6.25 Vertical displacement along the span under static wind forces 
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Fig. 6.26. Lateral displacement along the span under static wind forces 

6.4.2 Case 2 

In this case, self-excited force were evaluated with Lin’s model (Eq.5.20, Eq.5.21). In this study, due 

to the lack of wind tunnel data on the lateral aerodynamic derivatives 4,3,2,1, =iPi , only the vertical 

bending and the torsional motions were taken into account. Six flutter derivatives (Appendix 2) 
obtained from wind tunnel test (at State Key Laboratory for Disaster Reduction in Civil Engineering, 
Tongji University, Shanghai, China) are shown in Fig. 6.27 as well as the fitting curves respectively.  
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     Fig.6.27. a Flutter derivatives *
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Fig. 6.27 Six flutter derivatives obtained from wind tunnel test 

The relationships between *
2A , *

4A , *
2H  and *

4H  are given by [6.9] [6.10]: 

*
2

*
4 kAA −= ,  *

2
*
4 kHH −=           (6.2) 

From least-squares fitting of equations (5.19), the indicial function coefficients LhkC , Lhkd , kLC α , 

kLd α , MhkC , Mhkd , kMC α and kMd α , can be obtained as follows: 

235.11 −=LhC , 5059.02 −=LhC , 105.23 =LhC , 105.24 =LhC , 356.13 −=Lhd , 

356.14 −=Lhd  

216.31 −=αLC , 857.12 −=αLC , 892.13 −=αLC , 892.14 −=αLC , 615.23 −=αLd , 

615.24 −=αLd  

01811.01 −=mhC , 2638.02 =mhC , 1405.03 =mhC , 1405.04 =mhC , 101.23 =mhd , 

101.24 =mhd  

514.21 −=αmC , 1034.02 −=αmC , 518.23 =αmC , 3434.04 =αmC , 03091.03 =αmd , 

02517.04 −=mhd  
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  The dynamic displacement responses of the bridge at mid span and quarter span under a mean wind 
velocity smU /42=  are shown in Fig6.28-6.33. 
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Fig. 6.28 Vertical response at mid-span (case 2) 
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Fig. 6.29 Vertical response at quarter-span (case 2) 
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Fig. 6.30 Lateral response at mid-span (case 2) 
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Fig. 6.31 Lateral response at quarter-span (case 2) 
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Fig. 6.32 Rotational response at mid-span (case 2) 
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Fig. 6.33 Rotational response at quarter-span (case 2) 
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Fig.6.34 Variation of RMS of vertical displacement at mid span 

 

Fig.6.34 shows the RMS of vertical displacement responses at mid span obtained in case 1 and case 
2 comparing with the result without considering self-excited forces, at mean wind velocities 

smU /36,32,28,24= . It is shown that the results obtained with considering self-excited forces are 
smaller than those obtained without considering self-excited forces. The reason is that the aeroelastic 
damping has often a mitigating effect caused by positive aerodynamic damping at lower wind 
velocities, and the mitigating effects of aerodynamic damping. The results obtained in case 2 are about 
7% smaller than in case 1. 
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7 
CONCLUSIONS 

 

 

This thesis centered on the time domain buffeting analysis of large-span cable stayed bridge. Five 
issues were pursued: (i) understanding of wind induced buffeting theory; (ii) simulation of wind speed 
time series; (iii) time domain buffeting analysis based on quasi-steady hypotheses (iv) time domain 
buffeting analysis based on aeroelastic hypotheses (v) comparison the results of different method. 

In the first three chapters, firstly the development history and research method of bridge wind 
engineering are introduced to get a general idea of wind engineering. Then the characteristics of 
cable-stayed bridge, the characteristics of wind field and wind induced vibration of bridges are studied 
to prepare for the large-span cable-stayed bridge buffeting analysis in the following steps. 

In Chapter 4, autoregressive (AR) model is used to simulate the wind velocity of three dimensional 
fields in accordance with the time and space dependent characteristics of the 3-D fields. Based on the 
built MATLAB programming, this chapter discusses in detail the issues of the AR model induced by 
matrix form in the simulation and proposes the corresponding solving methods: the overrelaxation 
iteration to solve the large sparse matrix equation produced by large number of degrees of freedom of 
structures; the improved Gauss formula to calculate the numerical integral equations which integral 
function contain oscillating functions. This chapter also follows the method of ascertaining the rank of 
the AR model. At the end of this chapter, a four-node numerical model is presented, The results of the 
comparison among power spectral densities are found to be in a very close agreement. The correlation 
functions reveal the spatial and time correlation characteristics of the wind velocity well. 

Chapter 5, introduced the method of time domain buffeting analysis as well as the related concepts, 
and the specific implementation method in ANSYS. Under quasi-steady hypotheses, the buffeting 
forces simulated based on the span-wise coherence of buffeting forces and also considering the 
aerodynamic admittance functions, together with the steady aerodynamic forces are applied as external 
loads to the structural model to analyze the buffeting responses in time domain. In order to account for 
self-excited forces, elemental aeroelastic stiffness and aeroelastic damping matrices for spatial beam 
elements are derived following the quasi-steady theory and are incorporated in buffeting analysis 
through the user-defined Matrix27 element in ANSYS. In aeroelastic hypotheses, to take into account 
unsteady fluid memory effects, self-excited force is expressed in terms of convolution integrals 
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between bridge deck motion and impulse response functions, with flutter derivatives identified from 
wind tunnel test. The frequency-related flutter derivatives are transformed into indicial functions, 
using Lin’s approach. An iterative process is presented for the nonlinearity of self-excited force, and 
implemented by developing the program in APDL language based on ANSYS system. . 

In Chapter 6, a numerical model of Qingzhou Bridge, China, was introduced. Then The wind time 
velocity series on the bridge deck was generated to be composed of 87 wind velocity waves at 87 
different points distributed along the deck of the bridge, using AR model. After that both of these two 
approaches are applied on Qingzhou Bridge. It is showed that the analysis results by two methods are 
basically consistent with each other. And the approach based on quasi-steady theory get a result bigger 
than that of the other approach. 
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Appendix 1 
THE EXPRESSION FOR 

AEROELASTIC STIFFNESS AND 

AEROELASTIC DAMPING MATRIX   
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Appendix 2 
AERODYNAMIC COEFFICIENTS 

FROM WIND TUNNEL TEST 
 

 

Flutter derivative 

a) Flutter derivatives with a attack angle o3  

fBU /  *
1A  fBU /  *

2A  fBU /  *
3A  

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1.87603 0.01318 0.82759 -0.00412 0.84401 0.00674 

3.70443 0.0626 1.66174 -0.04119 1.69294 0.0309 

5.54516 0.25206 2.50082 -0.03954 2.54926 0.06067 

6.45484 0.21334 2.92939 -0.03954 2.97783 00.07022 

7.38095 0.15568 3.36782 -0.03954 3.42282 0.11292 

8.3119 0.37479 3.80378 -0.0313 3.87521 0.15787 

8.75944 0.48847 4.4803 -0.00659 4.30952 0.17135 

9.2578 0.35502   4.80542 0.27753 

9.74138 0.46623   5.25287 0.27921 
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fBU /  *
1H  fBU /  *

2H  fBU /  *
3H  

0.00000 0.00000 0.00000 0.000 0.00000 0.00000 

1.87603 -0.06613 1.008 -0.085 0.82759 -0.02984 

3.70443 -0.96613 2.024 -0.749 1.66174 -0.08306 

5.54516 -2.34113 3.046 -0.609 2.50082 -0.30726 

6.45484 -2.83387 3.568 -0.306 2.92939 -0.57742 

7.38095 -3.67097 4.102 -0.204 3.36782 -0.80806 

8.3119 -4.10645 4.633 -0.044 3.80378 -1.11452 

8.75944 -4.24597 5.181 -0.084 4.02463 -1.1629 

9.2578 -4.15645 5.457 0.070 4.25369 -1.36774 

9.74138 -4.60806   4.4803 -1.60403 

 

b) Flutter derivatives with a attack angle o0  

fBU /  *
1A  fBU /  *

2A  fBU /  *
3A  

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1.87274 0.09143 0.82841 -0.00165 0.83333 0.02303 

3.72167 0.15404 1.66667 -0.01153 1.67077 0.04213 

5.57718 0.32537 2.48358 -0.01153 2.50493 0.03539 

7.50575 0.61944 3.34565 -0.05601 3.36535 0.09213 

9.43021 0.4827 4.2266 -0.07496 4.24795 0.16292 

11.40805 0.58814 5.13218 -0.05107 5.1486 0.23876 

12.47619 0.85091 5.81363 -0.02801 6.07964 0.33764 

12.87274 0.8196   7.04516 0.44213 

    8.03284 0.58596 
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fBU /  *
1H  fBU /  *

2H  fBU /  *
3H  

0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 
1.87274 0.00887 0.82841 -0.09758 0.82841 -0.03548 
3.72167 -0.90968 1.66667 -0.39839 1.66667 -0.6532 
5.57718 -2.08871 2.48358 -0.41048 2.48358 -0.75484 
7.50575 -3.63306 3.34565 -0.55726 3.34565 -1.23629 
9.43021 -4.48548 4.2266 -0.6121 4.2266 -1.76452 
11.40805 -5.59919 5.13218 -0.49839 5.13218 -2.60968 
12.87274 -6.69758 5.81363 -0.523 5.59442 -3.02097 

    5.81363 -3.27339 
 

c) Flutter derivatives with a attack angle o3−  

fBU /  *
1A  fBU /  *

2A  fBU /  *
3A  

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1.86946 0.08484 0.82841 0.00082 0.83498 0.132891 

3.72906 0.1112 1.66502 0.014 1.6798 0.267348 

5.6092 0.26606 2.49097 -0.00247 2.51487 0.400254 

5.60509 0.34926 2.49179 -0.00247 3.37028 0.536397 

7.57061 0.23641 3.33333 -0.04366 4.24384 0.675428 

9.48522 0.39951 4.18883 -0.06343 5.13465 0.817205 

11.40722 0.45881 5.07061 -0.06013 6.05501 0.963685 

13.49097 0.60626 5.97783 -0.05107 6.54433 1.041562 

15.60591 0.79077 7.35057 -0.04448 7.0353 1.119703 

16.76026 0.63591 7.87767 -0.03295 7.49261 1.192486 

17.87767 0.96211   8.0353 1.278858 
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fBU /  *
1H  fBU /  *

2H  fBU /  *
3H  

0 0 0 0 0 0 

1.86946 -0.05645 0.82841 -0.06855 0.82841 -0.03065 

3.72906 -0.96855 1.66502 -0.17903 1.66502 0.01935 

5.6092 -1.98306 2.49097 -0.39435 2.49097 -0.72903 

5.60509 -1.91532 2.49179 -0.38226 2.49179 -0.73629 

7.57061 -1.9871 3.33333 -0.84274 3.33333 -1.3629 

9.48522 -2.60403 4.18883 -1.9919 4.18883 -1.79032 

11.40722 -2.64919 5.07061 -1.62097 5.07061 -2.275 

13.49097 -3.81935 5.97783 -1.8879 5.97783 -2.90242 

15.60591 -3.77581 6.89409 -2.29274 6.89409 -3.64758 

16.76026 -4.03871 7.35057 -2.48629 7.35057 -3.93548 

17.87767 -4.94758 7.87767 -2.8 7.87767 -4.38629 
 

Static coefficients evaluated at the angle of attack 0=β . 

365.1=DC , 042.0=MC , 179.0−=lC ,  

Derivatives of the static coefficients at the angle of attack 0=β . 

116.1=′MC , 14.4=′lC  
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Appendix 3 
MATALAB BASED PROGRAM 

FORAUTO-REGRESSIVE METHOD TO 

GENERATE WIND VELOCITY TIME 

SERIES 

 

 

tic  
P=4; 

v10=36; 

N=90; 

n=0.01:0.01:10;  

xn=1200*n./v10;  

k=0.00215;   

ti=0.1; 

s1=4*k*v10^2*xn.^2./n./(1+xn.^2).^(4/3); 

syms p l f; 

 

fr = fopen('coor.txt', 'rt'); 

for i=1:N  

    x(i)= fscanf(fr,'%f',[1,1]); 

end  

for i=1:N 
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    z(i)=fscanf(fr,'%f',[1,1]);  

    v(i)=(z(i)/10)^0.16*v10; 

end 

A=zeros(P*N); 

         

for p=1:P 

      

        R=zeros(N);  

        for i=1:N  

            for j=i:N 

                
H=inline('(4*k*v10^2*(1200*f/v10).^2)./f./(1+(1200*f/v10).^2).^(4/3).*(exp(-2*f*sqrt(8^2*dx.^2+10^2*d
z.^2)/vt)).*cos(2*pi*f*(p-1)*ti)','f','k','dx','dz','ti','v10','vt','p');  

                vt=(v(i)+v(j)); 

                dx=x(i)-x(j);  

                dz=z(i)-z(j);  

                R(i,j)=quadl(H,0.01,10,0.001,0,k,dx,dz,ti,v10,vt,p);  

                R(j,i)=R(i,j);  

            end  

         end  

      

    for l=1:P-p+1    

        A(((l-1)*N+1):(l*N),((l+p-1-1)*N+1):((l+p-1)*N))=R; 

    end 

   

end 

 

for i=1:P*N 

    for j=1:i 

        A(i,j)=A(j,i); 

    end 

end 
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R=zeros(N);  

        for i=1:N  

            for j=i:N 

H=inline('(4*k*v10^2*(1200*f/v10).^2)./f./(1+(1200*f/v10).^2).^(4/3).*(exp(-2*f*sqrt
(8^2*dx.^2+10^2*dz.^2)/vt)).*cos(2*pi*f*P*ti)','f','k','dx','dz','ti','v10','vt','P');  

                vt=(v(i)+v(j)); 

                dx=x(i)-x(j);  

                dz=z(i)-z(j);  

                R(i,j)=quadl(H,0.01,10,0.001,0,k,dx,dz,ti,v10,vt,P);  

                R(j,i)=R(i,j);  

            end  

         end  

B=A(1:N,(N+1):(N*P)); 

B=[B,R]; 

B=B'; 

X=A\B;  

R0=A(1:N,1:N); 

RN=R0; 

for i=1:P 

    RN=RN-(X(((i-1)*N+1):(i*N),1:N))'*B(((i-1)*N+1):(i*N),1:N); 

end 

L=chol(RN);  

L=L'; 

a=zeros(N,1024);  

for i=1:N   

    a(i,:)=normrnd(0,1,1,1024);   

end  

 

V(1:N,1)=L*a(:,1); 

for i=2:p 
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    V(1:N,i)=L*a(:,i); 

    for j=1:i-1 

        V(1:N,i)=(X(((j-1)*N+1):(j*N),:))'*V(1:N,(i-j))+V(1:N,i); 

    end 

end 

 

for i=(P+1):1024 

    V(1:N,i)=L*a(:,i); 

    for j=1:P 

        V(1:N,i)=(X(((j-1)*N+1):(j*N),:))'*V(1:N,(i-j))+V(1:N,i); 

    end  

end  

toc 

 

V1=V(60,:); 

t=(1:1024)*ti;  

figure  

subplot(2,1,1);  

plot(t,V1,'b-');  

xlabel('t(s)');  

ylabel('v(t)');  

 

[power,freq]=psd(V1,1024,10,boxcar(1024),0,'mean'); 

power=power*2/10; 

subplot(2,1,2);  

loglog(freq,power,'r-',n,s1,'g-');  

 

maxlags=1024; 

cx = xcorr(V1(1,:),V1(1,:),maxlags,'biased'); 

plot(cx) 
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fid=fopen('windv.dat','a'); 

for i=1:1:90 

    for j=1:1:1023 

        fprintf(fid,'%e \b \b \b',V(i,j)); 

         

    end 

    fprintf(fid,'%e \n',V(i,1024)); 

end 

fclose(fid); 
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Appendix 4 
ANSYS COMMAND STREAM FOR 

BUFFETING ANALYSIS BASED ON 

QUASI-STATIC THEROY 
 

 

/prep7 

/config,NRES,5000 

*set,t1,0.1 

*set,t2,409.6 

*set,t3,0.1 

*set,t4,40 

*set,lou,1.237 

*set,B,32 

*set,H,2.69 

*set,Cl,-0.179 

*set,dCl,4.14 

*set,Cm,0.042 

*set,dCm,1.116 

*set,Cd,1.365 

*set,dCd,0 

*set,ml,8                                              

*set,M,87 

al=0.001779 
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be=0.02743  

amum=(t2-t1)/t3+1  

*dim,v,table,M,amum,                              

*tread,v,windv,txt,,                                   

*dim,w,table,M,amum 

*tread,w,windw,txt,, 

*dim,nodal,table,M,1 

*tread,nodal,nodal,dat 

*dim,Xx,array,M,1 

*dim,YC,array,M,1  

*dim,U,array,M 

*dim,Qq,array,M 

!********************************************************************** 

 

/solu 

antype,0 

acel,0,9.8,0 

pstres,on 

nlgeom,on 

slove 

save 

*do,j,1,M,1 

*get,Xx(j,1),node,nodal(j,1),loc,x 

*get,YC(j,1),node,nodal(j,1),loc,y 

*enddo 

*do,j,1,M,1 

U(j)=36*(YC(j)/10)**0.16                  

    Qq(j)=0.5*lou*U(j)*U(j)*B 

*enddo 

finish 
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!************************************************************************** 

/solu 

antype,0 

acel,0,9.8,0  

pstres,on 

*do,j,1,M,1 

 Lst=Qq(j)*Cl                    

 Dst=Qq(j)*Cd    

 Mst=Qq(j)*B*Cm 

 *if,j,eq,1,then                   

    Length=abs(Xx(j+1,1)-Xx(j,1))/2   

 *elseif,j,eq,M                    

    Length=abs(Xx(j,1)-Xx(j-1,1))/2   

 *else                             

    Length=abs(Xx(j+1,1)-Xx(j-1,1))/2 

 *endif 

  

 F,nodal(j),fz,lst*length 

 F,nodal(j),fy,Dst*length 

 F,nodal(j),mx,Mst*length  

*enddo  

solve 

save 

finish 

!************************************************************************* 

 

/solu 

ANTYPE,MODAL 

MODOPT,unsymm,15 

MXPAND,10, 

Prttes,on 
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solve 

finish 

!************************************************************************** 

 

/solu   

antype,trans                    

prtres,on 

trnopt,full 

ALPHAD,AL 

BETAD,BE 

!mdamp,6,0.00037,0.000358,0.000355,0.000516,0.000364,0.000347 

nsubst,1 

timint,on 

*dim,Lb,array,M,amum 

*dim,Db,array,M,amum 

*dim,Mb,array,M,amum 

 

*do,i,t1,t2,t3 

    time,i  

    *do,j,1,M,1 

    *if,j,eq,1,then                   

    Length=abs(Xx(j+1,1)-Xx(j,1))/2   

    *elseif,j,eq,M                    

    Length=abs(Xx(j,1)-Xx(j-1,1))/2   

    *else                             

    Length=abs(Xx(j+1,1)-Xx(j-1,1))/2 

    *endif                            

    

 Lb(j,i/t3)=Qq(j)*(2*Cl*v(j,i/t3)/U(j)+(dCl+Cd)*w(j,i/t3)/U(j))      
Mb(j,i/t3)=-Qq(j)*B*(2*Cm*v(j,i/t3)/U(j)+dCm*w(j,i/t3)/U(j)) 

    Db(j,i/t3)=Qq(j)*(2*Cd*v(j,i/t3)/U(j)+(dCd-Cl)*w(j,i/t3)/U(j)) 
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    F,nodal(j),fz,(Db(j,i/t3))*length 

    F,nodal(j),fy,(Lb(j,i/t3))*length 

    F,nodal(j),mx,(Mb(j,i/t3))*length  

    *enddo                                

    

KBC,0                                 

    acel,,9.8 

    OUTRES,ALL,ALL   

    solve    

*enddo     


