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Abstract. Following Linchenko and Montgomery’s arguments we show that
the smash product of a semiprime module algebra, satisfying a polynomial iden-

tity and an involutive weak Hopf algebra is semiprime. We get new insight into

the existence of non-trivial central invariant elements in non-trivial H-stable
ideals of subdirect products of certain H-prime module algebras satisfying a

polynomial identity by considering an adapted version of Kaplansky’s theorem
and by introducing a Brown-McCoy radical for module algebras. We extend

Puczylowski and Smoktunowicz’s description of the Brown-McCoy radical of

a polynomial ring to module algebras and apply our result to left bialgebroid
measurings, gradings and involutions. The paper finishes with an extension of

results by Bergen et al. and Cohen at al. on irreducible module algebras to

weak Hopf actions.

1. Introduction

Group actions, Lie algebras acting as derivations and finite group gradings are
typical examples of Hopf algebra actions which have been studied for many years.
Several generalizations of Hopf algebras have emerged in recent years, like weak
Hopf algebras (or quantum groupoids) introduced by Böhm et al. [6]. The action
of such objects on algebras, as given by quantum groupoids acting on C∗-algebras,
[29] or weak Hopf algebras arising from Jones towers [14] are particularly interesting.
New examples of weak Hopf algebras arose from double groupoids [3], which were
also used to find new weak Hopf actions (see [29]).

A long-standing open problem in the theory of Hopf action is to show that the
smash product A#H of a semiprime module algebra A and a semisimple Hopf
algebra H is again semiprime (see [10]). The most recent partial answer to this
problem has been given by Linchenko and Montgomery in [17] where they prove the
semiprimness of A#H under the condition of A satisfying a polynomial identity.
We will see that their result carries over to actions of weak Hopf algebras. We
reach more generality by considering actions of linear operators that satisfy certain
intertwining relations with the regular multiplications on the algebra.

In the fourth section we will consider weak Hopf action H on algebras A satisfying
a polynomial identity and prove that any non-zeroH-stable ideal contains a non-zero
central H-invariant element if A is a subdirect product of H-compressible module
algebras. For that we consider a kind of Brown-McCoy radical for algebras relative
to the action of an algebra of linear operators. We will show an analogous description
of the Brown-McCoy radical of a polynomial ring as given by Puczylowski and
Smoktunowicz. We also adept a version of Martindale’s central closure relative to
an operator action and consider strongly prime algebras. In the fifth section we
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apply the previously obtained results to measurings of left bialgebroids, gradings
and algebras with involutions.

In the final section we consider weak Hopf actions on irreducible algebras ex-
tending some results of Cohen et al. to this setting.

2. Linear operators acting on algebras satisfying a polynomial
identity.

The aim of this section is to extend a recent solution to the semiprimness problem
for smash products to weak Hopf actions.

2.1. Let k be a field and let A be an associative unital k-algebra. For any a ∈ A
define two linear operators La and Ra in Endk(A) given by 〈L(a), x〉 = ax and
〈R(a), x〉 = xa for all x ∈ A. We identify A with the subalgebra L(A) of Endk(A)
generated by all left multiplications L(a) and denote the subalgebra generated by
all operators L(a) and R(a) by M(A), which is also sometimes referred to as the
multiplication algebra of A. As a left L(A)-module, A is isomorphic to L(A) since
we assume A to be unital.

Let L(A) ⊆ B ⊆ Endk(A) be any intermediate algebra. Then A becomes a
cyclic left B-module by the evaluation pairing 〈 , 〉 : Endk(A) × A → A with
ψ · a := 〈ψ, a〉 = ψ(a). A subset I of A is called B-stable if B · I ⊆ I. The B-stable
left ideals are precisely the (left) B-submodules of A.

2.2. The first technical Lemma generalizes a corresponding result of Linchenko [16,
Theorem 3.1] for Hopf actions and Nikshych [23, Theorem 6.1.3] for weak Hopf
actions. Recall that an ideal whose elements are nilpotent is called a nil ideal.

Lemma. Let L(A) ⊆ B ⊆ Endk(A) and suppose that for all ψ ∈ B there exist
m ≥ 1 and elements ψ1

1, . . .,ψ1
m, ψ2

1, . . ., ψ2
m ∈ B such that

L(〈ψ, a〉) =
m∑
i=1

ψ1
i ◦ L(a) ◦ ψ2

i and
n∑
i=1

ψ2
i ◦ ψ1

i ∈ L(A) (1)

for any a ∈ A. If A is finite dimensional over a field of characteristic 0 and if I is
a nil ideal, then B · I is nil. In particular the Jacobson radical of A is B-stable.

Proof. Denote the trace of a k-linear endomorphism f of A by Tr(f). Let ψ ∈ B,
a ∈ A. Using Tr(fgh) = Tr(hfg) and the hypotheses we get:

Tr(L(〈ψ, a〉)) = Tr

((
n∑
i=1

ψ2
i ◦ ψ1

i

)
◦ L(a)

)
= Tr(L(y) ◦ L(a)) = Tr(L(ya))

for some y ∈ A. Suppose that a ∈ I with I a nil ideal, then ya ∈ I is nilpotent,
hence Tr(L(〈ψ, a〉)) = Tr(L(ya)) = 0. For any k > 0 set zk := 〈ψ, a〉k. Then

zk = 〈L(〈ψ, a〉), zk−1〉 =
n∑
i=1

〈ψ1
i , ai〉

for ai = a〈ψ2
i , z

k−1〉. Since I is an ideal, ai ∈ I. Hence

Tr
(
L(z)k

)
= Tr

(
L(zk)

)
=

n∑
i=1

Tr
(
L(〈ψ1

i , ai〉)
)

= 0

Since A is finite dimensional, char(k) = 0 and the trace of all powers of L(z) is
zero, L(z) is a nilpotent operator, i.e. z = 〈ψ, a〉 is nilpotent. Thus B · I is a nil
ideal. Since the Jacobson radical of an Artinian ring is the largest nilpotent ideal,
we have B · Jac(A) = Jac(A). �
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2.3. The last Lemma, which had been proven first by Linchenko for Hopf actions
and then by Nikshych for weak Hopf actions allows us to show the stability of the
Jacobson radical of an algebra A which satisfies a polynomial identity and on which
act some operator algebra B which is finitely generated over A. The hypotheses of
the following Theorem allow the reduction to finite dimensional factors.

Theorem. Let L(A) ⊆ B ⊆ Endk(A) over some field k of characteristic 0 with B
being finitely generated as right A-module. Suppose that for all ψ ∈ B there exist
n ≥ 1 and elements ψ1

1 , . . . , ψ
1
m, ψ

2
1 , . . . , ψ

2
m ∈ B satisfying

L(〈ψ, a〉) =
m∑
i=1

ψ1
i ◦ L(a) ◦ ψ2

i and
m∑
i=1

ψ2
i ◦ ψ1

i ∈ L(A) (2)

for any a ∈ A. If A satisfies a polynomial identity or if k is an uncountable alge-
braically closed field, A countably generated and all left primitive factor rings of A
are Artinian, then B · I ⊆ Jac(A) for all nil ideals I of A.

Proof. Let I be a nil ideal. It is enough to show that (B · I)V = 0 for all simple
left A-modules V , then B · I ⊆ Jac(A). Let V be a simple left A-module and
P = AnnA(V ) be its annihilator. If k is an uncountable algebraically closed field and
A is countably generated, then it satisfies the Nullstellensatz, hence Endk(V ) = k
(see [20, 9.1.8]). If primitive factors of A are Artinian, then by the Weddeburn-Artin
Theorem A/P ' Mn(k) for some n, hence V is a finite dimensional simple left A-
module. On the other hand, if A satisfies a polynomial identity, then A/P 'Mn(D)
where D is a finite dimensional division algebra over F = Z(A/P ) by Kaplansky’s
Theorem [20, 13.3.8]. Tensoring A by F yields an F -algebra Ã := A ⊗ F with
F -action on the right. Then

L(Ã) = L(A)⊗ F ⊆ B ⊗ F ⊆ Endk(A)⊗ F ⊆ EndF (A⊗ F ) = EndF (Ã).

Moreover V is a finite dimensional simple left Ã-module since Ann eA(V ) = P ⊗F =:
P̃ and Ã/P̃ ' Mn(D) is finite dimensional over F . Note also that the nil ideal I
extends to a nil ideal Ĩ := I ⊗ F since by [15, Theorem 5] I is a locally nilpotent
algebra and hence any element

∑m
i=1 ai ⊗ fi lies in a nilpotent finitely generated

subalgebra generated by the ai’s and F .
To summarize, our hypothesis on A allows us to consider V to be a finite di-

mensional simple left A-module, where A and B are algebras over some field k of
characteristic 0. Denote by W = B⊗AV the induced left B-module. Since BA is
finitely generated and V is finite dimensional, W is finite dimensional. Note that
the left B-action on W is given by ψ ·(φ⊗v) := (ψ◦φ)⊗v. Let Q = AnnA(W ). Then
Q is B-stable, because if a ∈ Q and ψ ∈ B, then by hypothesis there exist elements
ψ1

1 , . . . , ψ
1
m, ψ

2
1 , . . . , ψ

2
m ∈ B satisfying equation (2). Thus for any w = φ ⊗ v ∈ W

we have

〈ψ, a〉·(φ⊗v) = (L(〈ψ, a〉)◦φ)⊗v =
m∑
i=1

ψ1
i ◦L(a)◦ψ2

i ◦φ⊗v =
m∑
i=1

ψ1
i ·(a·(ψ2

i ·w)) = 0,

since ψ2
i · w ∈W and a ·W = 0. Hence B ·Q ⊆ Q. Let QB = AnnB(A/Q). Then

A/Q ' L(A/Q) ⊆ B/QB ⊆ Endk(A/Q).

Since W is finite dimensional, A/Q is finite dimensional. Note that V is a simple
left A/Q-module. Any nil ideal I of A yields a nil ideal (I+Q)/Q of A/Q. Moreover
every element ψ + QB ∈ B/QB satisfies (2). By Lemma 2.2, ((B · I) + Q)/Q =
B/QB · (I +Q)/Q is included in Jac(A/Q). Thus

(B · I)V = (B/QB · (I +Q)/Q) · V ⊆ Jac(A/Q) · V = 0.

Hence B · I ⊆ Jac(A) for any nil ideal I of A. �
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3. Weak Hopf actions on algebras satisfying a polynomial identity

Before we apply the results from the previous section, we first recall the definition
of weak Hopf algebras (or quantum groupoids) as introduced by G. Böhm et al. in
[6].

Definition. An associative k-algebra H with multiplication m and unit 1 which is
also a coassociative coalgebra with comultiplication ∆ and counit ε is called a weak
Hopf algebra if it satisfies the following properties:

(1) the comultiplication is multiplicative, i.e. for all g, h ∈ H:

∆(gh) = ∆(g)∆(h). (3)

(2) the unit and counit satisfy:

(∆⊗ id)∆(1) = (∆(1)⊗ 1)(1⊗∆(1) = (1⊗∆(1))(∆(1)⊗ 1) (4)

ε(fgh) = ε(fg1)ε(g2h) = ε(fg2)ε(g1h) (5)
(3) there exists a linear map S : A→ A, called antipode, such that

h1S(h2) = (ε⊗ id)(∆(1)(h⊗ 1)) =: εt(h) (6)

S(h1)h2 = (id⊗ ε)((1⊗ h)∆(1)) =: εs(h) (7)
S(h) = S(h1)h2S(h3) (8)

Note that we will use Sweedler’s notation for the comultiplication with suppressed
summation symbol.

3.1. The image of εt and εs are subalgebras Ht and Hs of H which are separable
over k ([24, 2.3.4]) and their images commute with each other. Those subalgebras
are also characterized by Ht = {h ∈ H : ∆(h) = 11h⊗ 12} respectively Hs = {h ∈
H : ∆(h) = 11 ⊗ 12h}.

3.2. A left H-module algebra A over a weak Hopf algebra H is an associative unital
algebra A such that A is a left H-module and for all a, b ∈ A, h ∈ H:

h · (ab) = (h1 · a)(h2 · b) and h · 1A = εt(h) · 1A (9)

3.3. Let A be a left H-module algebra over a weak Hopf algebra H and let λ be
the ring homomorphism from H to Endk(A) that defines the left module structure
on A, i.e. 〈λ(h), a〉 := h ·a for all h ∈ H, a ∈ A. Property (9) of the definition above
can be interpreted as an intertwining relation λ(h) ◦L(a) = L(h1 · a) ◦ λ(h2) of left
multiplications L(a) and left H-actions λ(h).

The following properties are now deduced from the axioms:

Lemma. Let A be a left H-module algebra over a weak Hopf algebra H. Then
(1) ∀z ∈ Ht : λ(z) = L(z · 1A) and ∀z ∈ Hs : λ(z) = R(z · 1A);
(2) ∀h ∈ H, a ∈ A : L(h · a) = λ(h1) ◦ L(a) ◦ λ(S(h2))
(3) If S2 = id, then λ(S(h2)) ◦ λ(h1) ∈ L(A) for all h ∈ H.

Proof. (1) Let z ∈ Ht. Since ∆(z) = 11z ⊗ 12, we have for all a ∈ A:

z · a = z · (1Aa) = (11z · 1A)(12 · a) = 1H · ((z · 1A)a) = (z · 1A)a

The proof of the second statement is analogous.
(2) For h ∈ H, a, x ∈ A we have

(h · a)x = (h1 · a)(εt(h2) · 1A)x
= (h1 · a)(εt(h2) · x) = (h1 · a)(h2S(h3) · x) = h1 · (a(S(h3) · x))

(3) Suppose S2 = id, then S(εs(h)) = S(h2)h1 and as S(Hs) ⊆ Ht, we have
using (1):

λ(S(h2)) ◦ λ(h1) = λ(S(εs(h))) = L(S(εs(h)) · 1A) ∈ L(A).

�
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3.4. We say that a weak Hopf algebra H is involutive if its antipode is an involution.
Say that H acts finitely on a left H-module algebra A if the image of λ : H →
Endk(A) is finite dimensional. The following statement follows from the last Lemma
and Theorem 2.3

Theorem. Let H be an involutive weak Hopf algebra over a field k of characteristic
zero acting finitely on a left H-module algebra A. If A satisfies a polynomial identity
or if k is an uncountable algebraically closed field, A is countably generated and all
left primitive factor rings of A are Artinian, then the Jacobson radical of A is
H-stable.

Proof. Let λ : H → Endk(A) be the ring homomorphism inducing the left H-
module structure on A. Denote by B the subalgebra of Endk(A) generated by L(A)
and λ(H). Let h1, . . . , hm be elements of H such that {λ(h1), . . . , λ(hm)} forms a
basis of λ(H). We claim that any element of B is of the form

∑m
i=1 λ(hi) ◦ L(ai)

for some ai ∈ A. It is enough to show L(A)λ(H) ⊆ λ(H)L(A). So take elements
h ∈ H and a, b ∈ A. Then using Lemma 3.3(2), S−1 = S and S(Ht) = Hs we have

h2 · ((S(h1) · a)b) = (h2S(h1) · a)(h3 · b) (10)
= (S(εt(h1)) · a)(h2 · b) = a(εt(h1) · 1A)(h2 · b) = a(h · b).

This shows the intertwining relation L(a) ◦ λ(h) = λ(h2) ◦ L(S(h1) · a) in B which
yields that B is finitely generated as a right A-module. By the definition of module
algebras, we also have that λ(h) ◦ L(a) = L(h1 · a) ◦ λ(h2). Hence λ(H)L(A) =
L(A)λ(H). For any a ∈ A and ψ =

∑m
i=1 L(ai) ◦ λ(hi) ∈ B we have by Lemma

3.3(3) and by equation (10):

L(〈ψ, a〉) =
∑

L(ai) ◦ L(〈hi, a〉)

=
∑

L(ai) ◦ λ(hi1) ◦ L(a) ◦ λ(S(hi2))

=
∑

λ(hi2) ◦ L((S(hi1) · ai)) ◦ L(a) ◦ λ(S(hi3)) =
∑
j

ψ1
j ◦ L(a) ◦ ψ2

j .

for ψ1
j = λ(hi2) ◦ L(S(hi1) · ai), ψ2

j = λ(S(hi3) and some appropriate choice of
indices j. Moreover∑

ψ2
j ◦ψ1

j =
∑

λ(S(hi3))◦λ(hi2)◦L(S(hi1)·ai) =
∑

L(yhi2)◦L(S(hi1)·ai) ∈ L(A)

for some elements yhi2 ∈ A that exist by Lemma 3.3(4). Therefore the hypotheses
of Theorem 2.3 are fulfilled and the statement follows.

�

3.5. Smash products of weak Hopf actions. Recall that the smash product
A#H of a left H-module algebra A and a weak Hopf algebra H is defined on the
tensor product A⊗HtH where A is considered a right Ht-module by a ·z = a(z ·1A)
for a ∈ A, z ∈ Ht. The (k-linear) dual H∗ of H becomes also a weak Hopf algebra
and acts on A#H by φ · (a#h) := a#φ(⇀ h), where φ ⇀ h = h1〈φ, h2〉. Using the
Montgomery-Blattner duality theorem for weak Hopf algebras proven by Nikshych
we have:

Lemma. Let H be a finite dimensional weak Hopf algebra and A a left H-module al-
gebra. Then A#H is a finitely generated projective right A-module and A#H#H∗ '
eMn(A)e for some idempotent e ∈Mn(A) where Mn(A) denotes the ring of n× n-
matrixes for some number n > 0.

Proof. By [21, Theorem 3.3] A#H#H∗ ' End(A#HA). Since Ht is a separable k-
algebra, it is semisimple Artinian. Hence H is a (finitely generated) projective right
Ht-module and H is a direct summand of Hn

t for some n > 0. Moreover it follows
from the proof of Lemma 3.3 that A#H = (1#H)(A#1). Thus H ⊗Ht A ' A#H
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as right A-modules by h ⊗ a 7→ (1#h)(a#1). On the other hand H ⊗Ht A is a
direct summand of Hn

t ⊗Ht A ' An as right A-module. Hence A#H is a projective
right A-module of rank n and End(A#H)A ' eMn(A)e for some idempotent e ∈
Mn(A). �

3.6. Semiprime smash products for weak Hopf actions. We can now transfer
Linchenko and Montgomery’s result [17, Theorem 3.4] on the semiprimness of smash
products to weak Hopf actions.

Theorem. Let A be a left H-module algebra over a finite dimensional involutive
weak Hopf algebra H over a field of characteristic zero. If A is semiprime and
satisfies a polynomial identity, then A#H is semiprime.

Proof. Set B = A#H#H∗. Note that H∗ is also involutive since its antipode is
defined by 〈S∗(φ), h〉 := 〈φ, S(h)〉 for all φ ∈ H∗, h ∈ H. By [22, Corollary 6.5] H∗

is semisimple and by [6, 3.13] there exists a normalized left integral Λ ∈ H∗. This
implies that A#H is a projective left B-module as the left B-linear map A#H → B
with a#h 7→ a#h#Λ splits the projectionB → A#H given by a#h#φ 7→ a#h(φ ⇀
1).

First suppose that Jac(A) = 0. By Lemma 3.5, Jac(B) ' eMn(Jac(A))e = 0 for
some idempotent e. This implies also that RadB(A#H) = 0 as well, since A#H
is supposed to be a projective left B-module. Recall that the radical Rad(M) of a
module M is the intersection of all maximal submodules of M or equivalently the
sum of all small submodules, i.e. of those submodules N of M such that N+L 6= M
for all L 6= M .

Since A#H is a finite extension of A, also A#H satisfies a polynomial identity
and since H∗ is finite dimensional it acts finitely on A#H. Thus 3.4 applies and
for any nil ideal I of A#H we have B · I ⊆ Jac(A#H). On the other hand any
B-submodule N of Jac(A#H) is contained in RadB(A#H), which is zero. Hence
I = 0 and A#H is semiprime.

In general, if A is semiprime, we can extend the H-action of A to the polynomial
ring A[x] by identifying A[x] with A ⊗Ht Ht[x], which is a left H-module algebra,
where H acts on x by h · x = (εt(h) · 1A)x. Since A is semiprime, satisfying a
polynomial identity, Jac(A[x]) = 0 by [2]. Moreover A[x] also satisfies a polynomial
identity and by the argument above A[x]#H is semiprime. As any ideal I of A#H
can be extended to an ideal I[x] of A#H[x] = A[x]#H, also A#H is semiprime. �

4. Kaplansky’s theorem and the Brown-McCoy radical

As seen in the last section, the Jacobson radical of the polynomial ring A[x] has
been shown very useful to prove the desired result. The Brown-McCoy radical of
A[x], which includes the Jacobson radical, had been described by E. Puczylowski
and A. Smoktunowicz in [25]. In this section we will give a weak Hopf theoretical
analog of their description by considering the intersection of maximal H-stable
ideals. This also leads to consider compressible and strongly prime module algebras.
Eventually in analogy of Rowen’s theorem on semiprime PI-algebras we show the
existence of non-zero central H-invariant elements in non-trivial H-stable ideals
for certain H-module algebras that satisfy a polynomial identity. Throughout this
section we will consider intermediate algebras M(A) ⊆ B ⊆ Endk(A). Recall that
AB = {(1)f | f ∈ EndB(A)} ' EndB(A). We have AB = {a ∈ A | ∀ψ ∈ B :
〈ψ, a〉 = 〈ψ, 1〉a}. Since M(A) ⊆ B, AB ⊆ Z(A). The B-stable ideals of A are
precisely the (left) B-submodules of A. We say that AB is large if it intersects all
non-zero B-stable ideals non-trivially. If I is a B-stable ideal, then B also acts on
A/I. In particular (A/I)B ⊆ Z(A/I). Be aware that in general (AB + I)/I ⊆
(A/I)B might be a proper inclusion.
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4.1. Kaplansky’s theorem. Kaplansky’s theorem says that any primitive algebra
satisfying a polynomial identity is a matrix ring over a division ring which is finite
dimensional over its center.

Proposition. Let M(A) ⊆ B ⊆ Endk(A) such that B is finitely generated as a
right module over M(A). Suppose that A satisfies a polynomial identity. Then
there exists a number d such that for all maximal B-stable ideals P of A, there
exists an embedding A/P ↪→Mn((A/P )B) where n ≤ d/2.

Proof. Since A ⊗ Aop satisfies a polynomial identity, also its factor M(A) satisfies
a polynomial identity. As a finite extension, also B satisfies a polynomial identity
of some minimal degree d. Let P be a maximal B-stable ideal of A and B′ :=
B/AnnB(A/P ). Then A/P is a simple faithful left B′-module with EndB′(A/P ) '
(A/P )B . By Kaplansky’s Theorem [20, 13.3.8] B′ ' Mn((A/P )B) with n ≤ d/2.
Since A/P ⊆ B′ as rings the statement follows. �

In particular if A is B-simple and B is finitely generated over M(A), then A is
finite dimensional over AB if (and only if) A satisfies a polynomial identity.

4.2. Subdirect product of B-simple algebras. As a consequence we will get
that if the intersection of maximal B-stable ideals in A is zero, then AB is large.
First we will recall some terminology. A polynomial f(x1, . . . , xm) in non-commuting
indeterminates x1, . . . , xm and integer coefficients is called a central polynomial for
an algebraA if all evaluations are central, i.e. for all a1, . . . , am ∈ A : f(a1, . . . , am) ∈
Z(A) and furthermore f is non-trivial, i.e. f(x1, . . . , xm) 6= z + g(x1, . . . , xm) with
z ∈ Z and g(x1, . . . , xm) a polynomial identity for A. The Capelli polynomials are
the polynomials

c2t−1(x1, . . . , xt, y1, . . . , yt−1) =
∑
σ∈St

(sgn(σ))xσ(1)y1xσ(2)y2 · · ·xσ(t−1)yt−1xσ(t)

and
c2t = (c2t−1(x1, . . . , xt, y1, . . . yt−1))yt

for t ≥ 2 (see [20, 13.5.5]). There exists an operator ∇ on non-commutative poly-
nomials, such that for any commutative algebra A, ∇c2n2 is a central polynomial
for Mn(A) (see [20, 13.5.10]). The discovery of such central polynomials is usually
attributed to Formanek and Razmyslov. Since for lower sizes m ≤ n, Mm(A) can
be considered a subring of Mn(A) with equal center, we also have that ∇c2n2 is a
central polynomial for Mm(A) for all 1 ≤ m ≤ n.

4.3. Following Rowen’s argument in [27] and using Proposition 4.1 we will show
that subdirect products A of B-simple algebras have large ring of invariants AB .

Theorem. Let M(A) ⊆ B ⊆ Endk(A) with B being finitely generated as left M(A)-
module. If A satisfies a polynomial identity and the intersection of maximal B-stable
ideals is zero, then any non-zero B-stable ideal intersects AB non-trivially.

Proof. The proof follows Rowen’s argument in [27]. Let {Pi}i∈I be a collection
of maximal B-stable ideals of A whose intersection is equal to zero. Denote by
πi : A → A/Pi the canonical projections. For any non-zero B-stable ideal K of A,
denote by I ′ the set of indices with πi(K) 6= 0. By Lemma 4.1, all factors A/Pi can
be embedded into a matrix ring Mni(Ci) whose center is Ci = (A/Pi)B . Choose an
index j ∈ I ′ such that n = nj is maximal (but less than d/2 from the Lemma). As
mentioned in the last paragraph, there exists a central polynomial f(x1, . . . , xm)
for Mnj (Cj) and also for all matrix algebras Mni(Ci), with i ∈ I ′. Since f is
not-trivial, there exist elements a1, . . . , am ∈ A/Pj such that 0 6= f(a1, . . . , am) ∈
Cj = (A/Pj)B . Since πj(K) = A/Pj there exist elements k1, . . . , km ∈ K such that
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πj(kr) = ar for all 1 ≤ r ≤ m. Since f is a central polynomial for each A/Pi, we
also have πi(f(k1, . . . , km)) ∈ (A/Pi)B for all i. For all ψ ∈ B and i ∈ I we have

πi (〈ψ − L(ψ · 1), f(k1, . . . , km)〉) = 〈ψ − L(ψ · 1), πi(f(k1, . . . , km))〉 = 0,

as πi is B-linear. So 〈ψ − L(ψ · 1), f(k1, . . . , km)〉 belongs to the intersection of all
kernels of the πi’s which is zero. This show f(k1, . . . , km) ∈ K ∩AB . �

4.4. A Brown-McCoy radical. Denote by BMc(A) the intersection of all max-
imal B-stable ideals. We saw that if A is a PI-algebra with BMc(A) = 0, then
AB is large. A Theorem by Rowen says that a PI-algebra whose prime radical
is zero has large center and we will attempt to generalize his result. Note that
since the B-submodules of A are precisely the B-stable two-sided ideals, we have
BMc(A) = Rad(BA), where Rad(BA) is the (module theoretic) radical of A as left
B-module. When considering semiprime PI algebras A, one typically reduces to
study the polynomial ring A[x] which is semiprimitive since Jac(A[x]) = N [x] for
some nil ideal N of A which will be zero in this case. Puczylowski and Smoktunow-
icz showed that the Brown-McCoy radical BM(A[x]) equals S(A)[x] where S(A) is
the intersection of all prime factors with large center. Following their ideas we will
give a similar characterization for the BMc(A[x]).

4.5. Compressible algebras. The algebra A is called B-prime if IJ 6= 0 for all B-
stable non-zero ideals I, J of A. Note that if A is B-prime, then all non-zero elements
of AB are central non-zero divisors of A, because if 0 6= x ∈ AB and xy = 0 for
some y ∈ A, then 〈ψ, x〉〈φ, y〉 = 〈ψ, 1〉〈φ, xy〉 = 0 for all ψ, φ ∈ B. Note that for all
y ∈ A, x ∈ AB and ψ ∈ B we have 〈ψ, yx〉 = 〈ψ◦L(y), x〉 = 〈ψ◦L(y), 1〉x = 〈ψ, y〉x.
Analogously we have 〈ψ, xy〉 = x〈ψ, y〉. Thus (B · x)(B · y) = 0 and hence y = 0 as
A was B-prime. In particular AB is an integral domain. A is called B-compressible
if A can be embedded as left B-module into each non-zero B-stable ideal I of A.

Lemma. A is B-compressible if and only if A is B-prime and AB is large.

Proof. If A is B-compressible and IJ = 0 for some B-stable ideals I and J of A. If
J 6= 0, then there exists a B-linear embedding f : A → J . Hence (I)f = I(1)f ⊆
IJ = 0 and as f was injective, I = 0. On the other hand 0 6= (1)f ∈ J ∩ AB .
Conversely if A is B-prime, then AB is an integral domain. For any B-stable non-
zero ideal I of A and 0 6= x ∈ I ∩ AB , if yx = 0 for y ∈ A, then 〈ψ, y〉〈ψ′, x〉 =
〈ψ, yx〉〈ψ′, 1〉 = 0, i.e. (B · y)(B · x) = 0. Hence y = 0 and the map a 7→ ax is an
injective B-linear map. �

4.6. We define S(A) =
⋂
{P ⊆ A | P is B-stable and A/P is B-compressible}.

Considering A[x] as a free left A-module of countable rank, the action of B extends
to A[x] by 〈ψ, axn〉 := 〈ψ, a〉xn for all monomial axn and ψ ∈ B. Our aim is to
show that BMc(A[x]) = S(A)[x] as in [25].

Lemma. BMc(A) ∩AB ⊆ Jac(AB).

Proof. Note that BMc(A) = Rad(BA) since the B-stable ideals are precisely the
B-submodules of A. If x ∈ Rad(BA)∩AB , then B · (1−x) = A since B ·x is a small
B-submodule of A. Hence there exists ψ ∈ B with 1 = 〈ψ, 1 − x〉 = 〈ψ, 1〉(1 − x).
Set y = 〈ψ, 1〉. For all φ ∈ B we have

〈φ, y〉 = 〈φ, y〉(1− x)y = 〈φ, y(1− x)〉y = 〈φ, 1〉y.

Thus y ∈ AB is a quasi-inverse of x. The same argument holds for all elements
1− rx with r ∈ AB and shows that x ∈ Jac(AB). �
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4.7. We extended the B-action to A[x], but the B-submodules are in general not
ideals of A[x]. Let B̂ be the subalgebra of Endk(A[x]) generated by M(A[x]) and B,
then the B-stable ideals of A[x] are precisely the B̂-submodules of A[x]. Further-
more BMc(A[x]) = Rad( bBA[x]). Note also that A[x] bB = AB [x]. Hence by Lemma
4.6 we have

BMc(A[x])∩AB [x] = Rad( bBA[x])∩A[x] bB ⊆ Jac(A[x] bB) = Jac(AB [x]) = N [x] (11)

for some nil ideal N of AB .

Lemma. If A is B-compressible, then BMc(A[x]) = 0.

Proof. Suppose that A is B-compressible, then AB is an integral domain and hence
has no non-zero nil ideals. Thus BMc(A[x]) ∩ AB [x] = 0 by equation (11). If
BMc(A[x]) 6= 0 we may choose a non-zero polynomial 0 6= f(x) =

∑n
i=1 aix

i ∈
BMc(A[x]) of minimal degree. Let I be the ideal in A generated by all leading
coefficients of polynomials in BMc(A[x]) of degree n. Since BMc(A[x]) is B-stable
and since B-acts homogeneously, I is also B-stable. Since A is B-compressible,
I∩AB is non-zero and we may assume that the leading coefficient of f(x) is in I∩AB .
Since for all ψ ∈ B : 〈ψ, f(x)〉 − 〈ψ, 1〉f(x) ∈ BMc(A[x]) has degree less than f(x)
and since f(x) had minimal degree in BMc(A[x]) we have 〈ψ, f(x)〉 = 〈ψ, 1〉f(x).
Hence f(x) ∈ AB [x] ∩ BMc(A[x]) = 0 a contradiction. �

As a consequence we have BMc(A[x]) ⊆ S(A)[x], since we showed that any
B-stable ideal P with A/P being B-compressible is the intersection of maximal
B-stable ideals of A[x].

4.8. In order to show the reversed inclusion we closely follow Puczylowski and
Smoktunowicz’s proof. Let f(x) =

∑n
i=m aix

i ∈ A[x] with am 6= 0 6= an. Set
deg(f) = n for the degree of f andmin(f) = m. The coefficient of xmin(f) is denoted
by ls(f) = am. The length of f(x) is defined as len(f) = deg(f)−min(f) + 1. The
following operation had been introduced in [25] for w(x) ∈ A[x] with min(w(x)) ≥ 1
and any f(x) ∈ A[x] :

f∗(x) := f(x)− (1− w(x))ls(f)xmin(f).

Then the following statements hold:
(1) min(f∗) ≥ min(f) + 1;
(2) deg(f∗) ≤ max{deg(f),min(f) + deg(w)};
(3) len(f∗) ≤ max{len(f)− 1, deg(w)}

In particular there exists a number d such that applying the ∗-operation d times
yields a polynomial p(x) ∈ A[x] with

len(p) ≤ deg(w) ≤ min(p).

Moreover if f(x) ∈ I[x], then also f∗(x) ∈ I[x] and if M is an ideal of A[x] and
1− w(x) ∈M , then 1− f(x) ∈M implies 1− f∗(x) ∈M . Thus we can conclude

Lemma. Let M be an ideal of A[x] and w(x) ∈ A[x] with min(x) ≥ 1 and 1−w(x) ∈
M . If I is a proper ideal of A such that xI[x] + M = A[x], then there exists a
polynomial p(x) ∈ xI[x] such that 1− p(x) ∈M and len(p) ≤ deg(w) ≤ min(p).

4.9. We need some condition on the B-stableness of powers of B-stable ideals that
in our application will be satisfied.

Lemma. Suppose that for any B-stable ideal I of A all powers Im are B-stable.
Let M be a maximal B-stable ideal of A[x] and P = A ∩M . Then P is B-stable
and A/P is B-compressible.
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Proof. We may assume P = 0, i.e. A ∩M = 0. Our aim is to show that A is
B-compressible. Certainly A is B-prime since for all non-trivial B-stable ideals I, J
of A, I[x] + M = A[x] and J [x] = JI[x] + M hold. Hence JI 6= 0 - otherwise
J ⊆M ∩A = 0. Let J be a non-zero proper B-stable ideal of A. We need to show
the existence of a non-trivial B-invariant element in J . Note that xJ [x]+M = A[x]
since otherwise xJ [x] ⊆ M and J [x] + M = A[M ] implies J = A. So let w(x) =∑n
i=1 aix

i ∈ xJ [x] be a non-zero polynomial of minimal length with 1−w(x) ∈M .
We claim that w(x) ∈ AB [x]. If not, then let k be the maximal number such that
ak 6∈ AB . Hence there exist ψ∗ ∈ B with c := 〈ψ∗, ak〉−〈ψ∗, 1〉ak 6= 0. Let I = B · c
be the B-stable ideal in A generated by c. Note that for any m ≥ 1, Im is B-
stable by hypothesis and xIm[x] + M = A[x] since otherwise Im is improper. By
Lemma 4.8 there exist polynomials pm(x) ∈ xIm[x] such that 1 − pm(x) ∈ M and
1− p(x) ∈M and len(pm) ≤ deg(w) ≤ min(pm) for all m. For each m we suppose
to have chosen a polynomial pm(x) of minimal length. Since w(x) had minimal
length in xJ [x] among all those with 1−w(x) ∈M and since Im ⊆ J , we have also
len(w) ≤ len(pm). By showing that actually

len(w) ≤ len(p1) < len(p2) < · · · < len(pm−1) < len(pm) < · · · ≤ deg(w) (12)

for all m, we will reach a contradiction since len(pm) is bound by deg(w). So
let m ≥ 2 and let a be the leading coefficient of pm(x) which belongs to Im.
Since Im = Im−1(B · c) there exist elements uj ∈ Im−1 and ψj ∈ B such that
a =

∑s
j=1 uj〈ψj , c〉. Denote by g(x) the polynomial g(x) = 〈ψ∗, w(x)〉−〈ψ∗, 1〉w(x)

whose leading coefficient is c and whose degree is deg(g) = k. Note that since
1− w(x) ∈M we have

g(x) = 〈ψ∗, w(x)〉 − 〈ψ∗, 1〉+ 〈ψ∗, 1〉 − 〈ψ∗, 1〉w(x)
= 〈ψ∗, 1〉(1− w(x))− 〈ψ∗, 1− w(x)〉 ∈M.

Now define h(x) =
∑s
j=1 uj〈ψj , g(x)〉 which has degree k and leading coefficient a.

Thus the polynomial q(x) = pm(x) − h(x)xdeg(pm)−k has degree less than deg(pm)
and since len(pm) ≥ len(w) ≥ len(g) ≥ len(h), we have len(pm) > len(q). On the
other hand q ∈ xIm−1[x] and 1− q(x) ∈ M . Thus by the minimality of the length
of pm−1 we get len(pm−1) ≤ len(q), which proves the chain (12).

�

4.10. Summarizing the Lemmas 4.7 and 4.9 we can now state an extension of
Puczylowski and Smoktunowicz’s description of the Brown-McCoy radical of A[x]
under some operator action.

Theorem. Let M(A) ⊆ B ⊆ Endk(A) such that powers of B-stable ideals of A are
B-stable and denote by S(A) the intersection of B-stable ideals I whose factors A/I
are B-compressible. Then BMc(A[x]) = S(A)[x].

The description of the Brown-McCoy radical and Theorem 4.3 allows us to
strengthen 4.3.

Corollary. Let M(A) ⊆ B ⊆ Endk(A) such that B is finitely generated over M(A).
Suppose that A satisfies a polynomial identity and that A is a subdirect product of
B-compressible algebras. Then AB is large in A.

4.11. The central closure of a module algebra. Before applying the obtained
results we like to look at another related concept. A general central closure con-
struction for an algebra A and some intermediate algebra M(A) ⊆ B ⊆ Endk(A)
such that A does not contain any non-zero nilpotent B-stable ideal, was given in
[18], namely by defining a ring structure on the self-injective hull Â of A as left
B-module. To be more precise, there exists a left B-linear map

ψ : A⊗AB EndB(Â)→ Â with (a⊗ t)ψ := (a)t
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with AB = {(1)f | f ∈ EndB(A)}, whose kernel is an ideal in the ordinary tensor
product of A and EndB(Â) (see [18, Theorem 3.2]). The multiplication on Â is then
defined as

(a)s · (b)t = (ab)st ∀a, b ∈ A, s, t ∈ EndB(Â).

There exists also an injective ring homomorphism EndB(Â) → Â t 7→ (1)t whose
image is denoted by ÂB . Define B̂ = 〈M(Â), B〉 to be the subalgebra of Endk(Â)
generated by M(Â) and the B-action. Then End bB(Â) ' ÂB .

4.12. Strongly B-prime algebras. Those algebras whose central closure is sim-
ple are called strongly prime.To have an analog for module algebras we first recall
that for any left R-module M over some ring R, the smallest Grothendieck category
in R-Mod containing M is called the Wisbauer category σ[M ], whose objects are
all submodules of quotients of direct sums of copies of M . A module M is called
strongly prime if for every submodule N ⊆ M , σ[M ] = σ[N ]. Strongly prime left
R-modules were defined in [13] and form the elements of Rosenberg’s ”left spec-
trum” of a ring (see [26]). Let M(A) ⊆ B ⊆ Endk(A) be as above. Then we call A
strongly B-prime if A is a strongly prime left B-module. For B = M(A) this notion
reduces to the ordinary notion of a strongly prime algebra. Since the self-injective
hull of a strongly prime module has no fully invariant submodules ([30, 13.3]) and
since every ideal of Â is fully invariant as EndB(Â) ' ÂB ⊆ Z(Â), we get that the
central closure Â of a strongly B-prime algebra A is B̂-simple and ÂB is a field.
With this and with Lemma 4.1 we get:

Corollary. Let M(A) ⊆ B ⊆ Endk(A) with B being finitely generated as M(A)-
module. If A is a strongly B-prime algebra satisfying a polynomial identity, then
its central closure Â is a finite dimensional over ÂB. Moreover A embeds into a a
matrix ring Mn(ÂB).

5. Applications to measurings, gradings and involutions

In this section we will apply the obtained results to (weak) Hopf actions or more
generally to measurings of left bialgebroids.

5.1. Bialgebroids. Hopf algebroids generalize the notion of (weak) Hopf algebras,
but instead have two bialgebroid structure. Recall from [5] or [8] that a k-vector
space C is an R-coring (for a k-algebra R) if there exists some R-bilinear maps
∆ : C → C⊗RC and ε : C → R satisfying the coassociativity and counit condition.
An associative unital k-algebra A is an R-ring, with R being an associative unital
k-algebra if there exists a homomorphism of k-algebras η : R→ A. A left character
of an R-ring A is a k-linear map χ : A→ R such that for all a, a′ ∈ A, r ∈ R:

χ(1A) = 1R, χ(aa′) = χ(aη(χ(a′))), χ(η(r)a) = rχ(a).

Right character being defined analogously. An R⊗Rop-ring A can be described by
a pair of k-algebra maps s : R→ A and t : Rop → A with commuting range.

Definition. Let L be a k-algebra. A left bialgebroid H over L is a k-algebra with
an L⊗Lop-ring structure (H, s, t) and an L-coring structure (H,∆, ε) subject to the
following compatibility axioms.

(i) The bimodule structure in the L-coring (H,∆, ε) is related to the s and t
via

l · h · l′ := s(l)t(l′)h, for all l, l′ ∈ L, h ∈ H. (13)
(ii) Considering H as an L-bimodule as in (13), the coproduct ∆ restricts to a

k-algebra map from H to

H ×L H :=

{ ∑
i

hi ⊗L h′i :
∑
i

hit(l) ⊗L h′i =
∑
i

hi ⊗L h′is(l) ∀l ∈ L

}
,
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where H ×L H is an algebra via factorwise multiplication.
(iii) The counit ε is a left character on the L-ring (H, s).

A bialgebra H over k is of course an example of left bialgebroid over k. A weak
Hopf algebra H has a left bialgebroid structure over L = Ht with ε = εt.

5.2. Following [7] we say that a bialgebroid H over L measures a left L-ring A with
unit map ι : L → A if there exits a k-linear map, called a measuring, H ⊗k A →
A, h⊗ a 7→ h · a such that for all h ∈ H, l ∈ L, a, b ∈ A,

(i) h · 1A = ι(ε(h));
(ii) (t(l)h) · a = (h · a)ι(l) and (s(l)h) · a = ι(l)(h · a);
(iii) h · (ab) = (h1 · a)(h2 · b);
Weak Hopf actions are examples of left bialgebroid measurings. Note that an

H-module algebra A over a weak Hopf algebra H is an Ht-ring, with ι(z) = z · 1A
for z ∈ Ht.

5.3. Given a measuring of a left bialgebroid H on A we consider the subalgebra B
of Endk(A) generated by M(A) and λ(H) where λ(h) denotes the action of h on A.
The invariants of such an H-action, are defined as

AH = {a ∈ A | h · a = ι(ε(h))a ∀h ∈ H}.
Then Z(A)H := Z(A)∩AH = AB and Z(A)H being large means that any non-zero
H-stable ideal contains a non-zero central H-invariant element. We say that H acts
finitely if λ(H) is finite dimensional over k. Note that by property (iii) we also have
some intertwining relations between L(a) resp. R(b) and λ(h) namely:

λ(h) ◦ L(a) = L(h1 · a) ◦ λ(h2) and λ(h) ◦R(b) = R(h2 · b) ◦ λ(h1).

Hence if H acts finitely on A, then B is finitely generated as right M(A)-module.
Instead of B-simple, B-prime, B-compressible, etc. we will write H-simple, H-
prime, H-compressible. We call an H-stable ideal I of AH-prime (strongly H-prime
resp. H-compressible) if A/I is H-prime (strongly H-prime, resp. H-compressible).
Summarizing we have the following results on Hopf algebroid actions on A:

Theorem. Let H be a left bialgebroid measuring A. Then
(1) A is H-compressible if and only if A is H-prime and Z(A)H is large in A.
(2) The intersection of maximal H-stable ideals of A[x] is given by S(A)[x]

where S(A) is the intersection of H-compressible ideals.
(3) Suppose that A satisfies a polynomial identity and that H acts finitely on

A, then
(a) If A is H-simple, then it embeds into a matrix ring Mn(Z(A)H).
(b) If A is strongly H-prime, then Â is finite dimensional over Z(Â)H .
(c) If A is a subdirect product of H-compressible module algebras, then

Z(A)H is large in A.

5.4. Gradings. If M is a monoid and A is an M -graded k-algebra, then H = k[M ]
is a bialgebra and there are projections πg : A → Ag onto the g-components for
all g ∈ M . Those projections define linear operators. Let B be the subalgebra of
Endk(A) generated by M(A) and all projections πg with g ∈ M . The B-stable
ideals are precisely the graded ideals of A. The polynomial ring A[x] is naturally
graded with g-components being Ag[x]. Note that we also have some intertwining of
L(a) and πg, namely if ah is a homogeneous element of Ah, h ∈M , then L(ah)◦πg =
πhg ◦ L(ah) and R(ah) ◦ πg = πgh ◦ R(ah). Hence if M is finite, then B is finitely
generated as M(A)-module. The subring of invariants AB is the center of the e-
component Z(Ae), where e is the neutral element of M . Applying the results of the
last section we get similar statements as in the last theorem. For instance that the
intersection of maximal graeded ideals of A[x] is given by S(A)[x] where S(A) is the
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intersection of those graded ideals P of A with A/P being graded prime and having
large subring Z(A/Pe). And if A satisfies a polynomial identity, M is finite and
A is strongly graded prime, then its graded central closure Â is finite dimensional
over Z(Âe).

5.5. Involutions. Our approach also yields corresponding results for algebras A
with involutions ∗, by considering the subalgebra B generated by L(A) and ∗, that
automatically will contain also all right multiplications R(a) = ∗ ◦ L(a∗) ◦ ∗. The
∗-ideals are the left ideals I of A with I∗ ⊆ I. The subring of invariants AB is the
subring of central symmetric elements, i.e a ∈ Z(A) with a∗ = a. We can rephrase
the above results in the ∗-setting. For instance, that the intersection of maximal ∗-
ideals of A[x] is given by the intersection of ∗-ideals P of A with A/P being ∗-prime
and having a large subring of central symmetric elements.

6. One-sided irreducible module algebra

The left uniform dimension of A is denoted by udim(A) and is the supremum of
the cardinalities of the index sets of direct sums of left ideals contained in A.

6.1. A result [4, Theorem 2.2] by Bergen, Cohen and Fishman says that if a Hopf
algebra H acts finitely on a module algebra A with finite uniform dimension, such
that A is a simple A#H-module, then A has finite dimension over AH .

Lemma. Suppose L(A) ⊆ B ⊆ Endk(A) such that A is a simple left B-module. If
AB is generated by n elements then [A : AB ] ≤ n · udim(A).

Proof. Since A is a simple left B-module, EndB(A) and hence AB is a division
ring by Schur’s Lemma. Let x1, . . . , xk be linearly independent elements of AAB .
Then by the Jacobson Density theorem there exist elements ψ1, . . . , ψk such that
ψj · xi = δij1. Since B is n-generated over A, there exist an epimorphism of left
A-modules ϕ : An → B therefore elements ti ∈ An such that (ti)ϕ = ψi for all i. If∑k
i=1 aiti = 0 for some ai ∈ A, then

0 =

(
n∑
i=1

aiti

)
ϕ · xj =

n∑
i=1

ai(ψi · xj) = L(aj)

for all j. Thus
⊕k

i=1Ati is a direct sum in An and k ≤ udim(L(A)n) = n ·udim(A).
Hence [A : AB ] ≤ n · udim(A). �

6.2. Before we apply this result to weak Hopf actions, we first generalize another
result from the theory of Hopf actions to a more general setting. Let A be an R-
ring with k-algebra homomorphism η : R → A. The existence of a left character
χ : A→ R is equivalent to R being a left A-module, namely through the following
action a · r := χ(aη(r)) for all a ∈ A, r ∈ R. It also allows to define invariants of
left A-modules M as

Mχ = {m ∈M | am = χ(a)m ∀a ∈ A} ' HomA(R,M).

In particular EndA(R) ' Rχ can be considered a subalgebra of R. A is called a
Galois R-ring if the homomorphism A→ End(RRχ), a 7→ χ(aη(−)) that defines the
A-module structure on R is an isomorphism.

6.3. The smash product A#H of a module algebra A and a weak Hopf algebra H
is an A-ring with left character χ given by a#h 7→ aεt(h) · 1. So the next result will
automatically apply to this case.

Proposition. Let A be an R-ring with left character χ such that A is finitely
generated as left and right R-module . Suppose R has finite left uniform dimension,
R is simple as left A-module. The following statements are equivalent:
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(a) A is a simple ring;
(b) A is a Galois R-ring and RRχ is finitely generated projective;
(c) R is a faithful A-module and Aχ 6= 0;

If AR is free of rank n, then (a− c) are also equivalent to:
(d) dim(RRχ) = n and Aχ 6= 0;

Proof. To put us in the situation where we can apply Lemma 6.1 we consider the
subalgebra B of Endk(R) generated by all operators λ(a) := [r 7→ r · a = χ(aη(r))].
The left B-module structure of R is the same as the left A-module structure. Hence
R is a simple (faithful) left B-module. Note that RB ' EndB(R) = Rχ is a division
algebra. Furthermore, B is finitely generated as left L(R)-module since A is finitely
generated as left R-module and R ' L(R) ⊆ B. By Lemma 6.1 dim(RRχ) is finite.
Since AR is finitely generated, say by Rk, we have k ·dim(RRχ) ≥ dim(ARχ). Hence
A is finite dimensional over Rχ.

(a)⇒ (b) Suppose A is simple, then it is a matrix ring over a division ring, hence
χ splits as left A-module by some map φ : R → A. Since A is simple, the trace
ideal (R)φA equals A, i.e. R is a generator in A-Mod. Hence by a standard module
theoretic argument A ' End(RRχ) and RRχ is finitely generated projective (see
[30, 5.5]).

(b)⇒ (c) is clear since R is a generator. Recall that Aχ ' HomA(R,A).
(c) ⇒ (a) Aχ 6= 0 implies that R is isomorphic to a left ideal of A (since R is a

simple A-module). Hence also B contains a copy of R as a left ideal and is therefore
a left primitive ring having a faithful minimal left ideal, i.e. B ' Mm(Rχ) with
m = dim(RRχ). If R is a faithful left A-module, then A ' B is simple.

If AR is free of rank n, then n · dim(RRχ) = dim(ARχ) holds. (c)⇔ (d) As seen
in the last step Aχ 6= 0 implies B ' Mm(Rχ) with m = dim(RRχ). On the other
hand n · m = dim(ARχ) ≥ dim(BRχ) = m2 holds. Hence n = m if and only if
A ' B if and only if R is a faithful left A-module.

�

6.4. Considering A#H as an A-ring with left character and by considering the
subalgebra of Endk(A) generated by the H-action and L(A) we can apply 6.1 and
6.3 to obtain the weak Hopf analogs of results by Bergen et al. [4, Theorem 2.2]
and Cohen et al. [11, Theorem 3.3].

Corollary. Let A be a left H-module algebra over a finite dimensional weak Hopf
algebra H. If A has finite left uniform dimension and is a simple left A#H-module,
then it is finite dimensional over AH and satisfies [A : AH ] ≤ dim(H) · udim(A).
Moreover the following statements are equivalent:

(a) A#H is simple;
(b) AH ⊆ A is an H∗-Galois extension;
(c) A is a faithful left A#H-module;

If A#HA is free of rank dim(H), then (a− c) are also equivalent to:
(d) dim(AAH ) = dim(H).

6.5. Concluding remarks. The associativity of A is not needed to prove Lemma
6.1. Non-associative examples of module algebras are given by module algebras
over quasi-Hopf algebras. Let H be a quasi-Hopf algebra, that is H is an asso-
ciative algebra which is a not necessarily coassociative coalgebra satisfying some
compatibility conditions (see [12]). A left H-module algebra A is a unital algebra
in the category of left H-modules (see [9]). In particular its multiplication satisfies
(ab)c =

∑
(x1 · a)[(x2 · b)(x3 · c)] where φ−1 = x1 ⊗ x2 ⊗ x3 is the inverse of the

Drinfeld reassociator of H. By the proof of 6.1, substituting A by L(A) we get the
following
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Corollary. Let A be a left H-module algebra over a quasi-Hopf algebra H which
acts finitely on it. If A has finite left uniform dimension and is a simple left A#H-
module, then it is finite dimensional over AH .

This applies in particular to finite quasi-Hopf action on non-associative division
rings, which are now seen to be finite extensions of their (associative) subring of
invariants. Quasi-Hopf actions on non-associative division rings were considered for
example by Albuquerque and Majid in [1].
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