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Abstract. We explain some formulae that appeared in bounds
on DNA codes using elementary methods in metric spaces.

1. Finite metric spaces

A metric on a non-empty set X is a map d : X ×X → R satisfying
the following conditions for all x, y, z ∈ X:

(1) (x, y) ≥ 0 and d(x, y) = 0 if and only if x = y for all x, y ∈ X.
(2) d(x, y) = d(y, x).
(3) d(x, z) ≤ d(x, y) + d(y, z).

1.1. For any 0 ≤ r ≤ n and x we define the sphere of radius r around
x as

Sr(x) = {y ∈ X | d(x, y) = r}.
For any 0 ≤ r ≤ n and x we define the ball of radius r around x as

Br(x) = {y ∈ X | d(x, y) ≤ r}.
Obviously one has

Br(x) =
·⋃

0≤k≤r

Sk(x)

1.2. We say that the finite metric space (X, d) has constant volume of
balls of fixed radius if for all r there exists a number V (r) such that
|Br(x)| = V (r) for all x ∈ X. We say that X has constant area of
spheres of fixed radius if for all r there exists a number W (r) such that
|Sr(x)| = W (r) for all x ∈ X.

Lemma. Let (X, d) be a finite metric space, then X has constant vol-
ume of balls of fixed radius if and only if X has constant areas of spheres
of fixed radius.

Proof. Suppose that X has constant areas of spheres, then for all x ∈
X :

|Br(x)| =
r∑

k=0

|Sk(x)| =
r∑

k=0

W (r) =: V (r)

is constant. On the other hand suppose that X has constant volume
of balls of fixed radius. We use induction to show that X has constant
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area of spheres. For r = 0 and x ∈ X we have S0(x) = B0(x) = {x}.
Hence W (0) = V (0) = 1 is constant. Suppose that we showed that
for r ≥ 0 there exists a number W (r) such that |Sr(x)| = W (r) for all
x ∈ X. For any x ∈ X we have

V (r + 1) = |Br+1(x)| = |Sr+1(x)|+ |Br(x)| = |Sr+1(x)|+ V (r).

Hence |Sr+1(x)| = V (r + 1)− V (r) is constant. �

1.3. For any subset C ⊆ X with |C| ≥ 2 define its minimal distance
as

dist(C) = min{d(x, y) | x, y ∈ X ∧ x 6= y}.

Lemma (Hamming bound). Let (X, d) be a finite metric space with
constant volume of balls of fixed radius. Then for any subset C ⊆ X
with |C| > 1 and minimum distance dist(C) = δ we have

|C| ≤ |X|
V (e)

,

where e = δ
2
− 1 if δ is even and e = δ−1

2
if e is odd.

Proof. If δ is even, then we might assume δ = 2(e + 1) for e ≥ 0, if δ
is odd, then we might assume δ = 2e + 1 for e ≥ 0. In both cases for
x 6= y ∈ X : Be(x) ∩Be(y) = ∅, because if z ∈ Be(x) ∩Be(y) then

d(x, y) ≤ d(x, z) + d(z, y) ≤ 2 ∗ e < δ,

what is not possible if x 6= y. Thus

|C|V (e) =

∣∣∣∣∣
·⋃

x∈C

Be(x)

∣∣∣∣∣ ≤ |X|.

�

1.4. Let (X, d) be a finite metric space with constant volume of balls
and denote by W (k) the area of a sphere of radius k as in 1.2, then the
Hamming bound can also be expressed as

|C| ≤ |X|∑e
k=0 W (k)

for e as above.

1.5. Let (X, d) be a finite metric space. Define

A(X, δ) = max{|C| | C ⊆ X with dist(C) ≥ δ and |C| > 1}

Lemma (Gilbert-Varshamov bound). Let (X, d) be a finite metric
space with constant volume of balls of fixed radius and δ ≥ 1.

A(X, δ) ≥ |X|
V (δ − 1)
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Proof. Let C ⊆ X with |C| = A(X, δ). Let z ∈ X and assume that
∀x ∈ C : d(x, z) ≥ δ, then C ∪{z}. By maximality of C, z ∈ C. Hence
for all z ∈ X \C : ∃x ∈ C such that d(x, z) < δ, i.e. z ∈ Bδ−1(x). Thus

X =
⋃
x∈C

Bδ−1(x)

and hence |X| ≤ |C|V (δ − 1). �

1.6. Let (X, d) be a finite metric space with constant volume of balls
and denote by W (k) the area of a sphere of radius k as in 1.2, then the
Gilbert Varshamov bound can also be expressed as

A(X, δ) ≥ |X|∑δ−1
k=0 W (k)

.

Combining the two bounds we have:

|X|∑δ−1
k=0 W (k)

≤ A(X, δ) ≤ |X|∑e
k=0 W (k)

2. Applications to Coding Theory

Let A be a non-empty finite set. We will refer to A as an alphabet
and to its elements as letters. The cartesian product An is a metric
space with the Hamming metric d, i.e.

d(x, y) = |{i ∈ {1, . . . , n} | xi 6= yi}

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ An. Usually one refers to
“vectors” x ∈ An as “words” in A of length n.

2.1. The finite metric space (An, d) has constant volume on balls of
fixed radius. To see this it is enough to show that the spheres of radius
r have all the same area. Let q = |A, 0 ≤ r ≤ n and x ∈ An, then

W (r) = |Sr(x)| =
(

n

r

)
(q − 1)r

since a word y ∈ An differs precisely in r positions from x and at each
position there are q − 1 possibilites. If we want to specify the area of
a sphere of radius r in the metric space An, we will write

W (A, n, r) =

(
n

r

)
|A| − 1r.

Hence

V (r) = |Br(x)| =
r∑

k=0

(
n

k

)
(q − 1)k

is the volume of a ball of radius r.
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2.2. A code in A of length n is any non-empty subset C ⊆ An.
We have recovered the orignial Hamming bound for codes C of length

n and minimal distance δ over a q-ary alphabet as

|C| ≤ qn∑e
k=0

(
n
k

)
(q − 1)k

where e = δ
2
− 1 if δ is even and e = δ−1

2
if e is odd.

The Gilbert-Varshamov bound states

A(X, δ) ≥ qn∑δ−1
k=0

(
n
k

)
(q − 1)k

.

2.3. Let B ⊆ A and denote its complement by B = A \ B. For any
x ∈ An define the B-support as

B − sup(x) = {i ∈ {1, . . . , n} | xi ∈ B}.

As we will see later, in some aplications not the whole metric space An

is used, but some subspace of words of costant B-support for a given
subset B. Hence for any 0 ≤ w ≤ n define a metric subspace of An as

X = X(B, n, w) = {x ∈ An | |B − sup(x)| = w}.

We have |X| =
(

n
w

)
|B|w|B|n−w.

Lemma. Given a finite alphabet A with non-empty subset B such that
|B| = q and |B| = p and numbers 0 ≤ w ≤ n any sphere of radius δ in
the finite metric space X(B, n, w) has constant area

W (δ) =

M(r)∑
k=0

(
w

k

)(
n− w

k

)
(qp)k

N(r,k)∑
i=0

W (B, w−k, i)W (B, n−w−k, r−2k−i)

with M(r) = min( r
2
, w, n− w) and N(r, k) = min(r − 2k, w − k)

3. Aplications to codes of constant weight

Let A be an alphabet of q elements with a distinguished element 0.
In most cases A will be a group, a ring or a finite field and 0 will be
its neutral element or zero element. The weight w(x) of an element
x ∈ An is defined to be the number of indices i where xi 6= 0. In other
words w(x) = B − sup(x). for B = A\{0}. The words of length n in A
of constant weight w are precisely the words in X = X(A \ {0}, n, w).

3.1. Note that B = {0} consists only of 1 element. The metric
space B

n
is degenerated and consists also just of one element. Hence

W (B, n, r) 6= 0 if and only if r = 0.
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3.2. Acording to 2.3 we have

Lemma. The spheres of fixed radius r in X = X(A \ {0}, n, w) have
area

W (r) =

min( δ
2
,w,n−w)∑

k=r−w

(
w

k

)(
n− w

k

)(
n− w − k

r − 2k

)
(q − 1)k(q − 2)r−2k

where q = |A|.

Proof. Looking at the formula in 2.3 and as mentioned above W (B, n−
w, r − 2k − i) 6= 0 if and only if r − 2k = i. Hence if we want that
the terms contribute something to the area of a sphere, i must “reach”
r − 2k, ie. r − 2k ≤ w − k ⇔ r − w ≤ k. Applying 2.3 we have:

W (r) =

min( δ
2
,w,n−w)∑

k=r−w

(
w

k

)(
n− w

k

)
(q − 1)kW (B, w − k, r − 2k)

=

min( δ
2
,w,n−w)∑

k=r−w

(
w

k

)(
n− w

k

)(
w − k

r − 2k

)
(q − 1)k(q − 2)r−2k

�

3.3. The Hamming bound for q-ary codes C of length n with constant
weight w and minimu distance δ says now that

|C| ≤
(

n
w

)
(q − 1)w∑e

r=0

∑min( δ
2
,w,n−w)

k=r−w

(
w
k

)(
n−w

k

)(
n−w−k
r−2k

)
(q − 1)k(q − 2)r−2k

where e is as above.
Denote by Acnst(q, n, δ, w) the cardinality of a maximal q-ary code

of length n of constant weight w and minimum distance δ, then the
Gibert-Varshamov bound says:

Acnst(q, n, δ, w) ≥
(

n
w

)
(q − 1)w∑δ−1

r=0

∑min( δ
2
,w,n−w)

k=r−w

(
w
k

)(
n−w

k

)(
n−w−k
r−2k

)
(q − 1)k(q − 2)r−2k

.

4. Applications to DNA codes

Let A be an alphabet and B ⊆ A a subset with 2|B| = |A| and |B| =
p. Then we have for the volume of balls for the code X = X(B, n, w):

Lemma. The volume of a ball of radius δ in X is:

V (δ) =
δ∑

r=0

min( r
2
,w,n−w)∑

k=0

(
w

k

)(
n− w

k

)(
n− 2k

r − 2k

)
p2k(p− 1)r−2k.
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Proof.

V (δ) =
δ∑

r=0

M(r)∑
k=0

(
w

k

)(
n− w

k

)
p2k

N(r,k)∑
i=0

(
w − k

i

)(
n− w − k

r − 2k − i

)
(p− 1)i(p− 1)r−2k−i

=
δ∑

r=0

M(r)∑
k=0

(
w

k

)(
n− w

k

)
p2k(p− 1)r−2k

N(r,k)∑
i=0

(
w − k

i

)(
n− w − k

r − 2k − i

)

=
δ∑

r=0

min( r
2
,w,n−w)∑

k=0

(
w

k

)(
n− w

k

)(
n− 2k

r − 2k

)
p2k(p− 1)r−2k

where we use the Vandermonde convolution∑
k

(
r

k

)(
s

d− k

)
=

(
r + s

d

)
.

�

4.1. DNA codes are codes over the 4-letter alphabet A = {A, T, G, C}.
In [1] the GC-content of a word x was defined as B − sup(x) where
B = {G, C} and limits for DNA codes with constant GC-content w
had been established. Let X = X(B, n, w). Then |X| =

(
n
w

)
2n. Denote

by AGC(n, δ, w) the number of words in maximal DNA code of length
n, minimum distance δ and GC-content w. Here we find those limits
by the above general observations:

Theorem. The volume of a ball of fixed radius δ in the space of DNA-
codes of words of length n and constant GC-content w is

V (δ) =
δ∑

r=0

min( r
2
,w,n−w)∑

k=0

(
w

k

)(
n− w

k

)(
n− 2k

r − 2k

)
4k

Hence:

AGC(n, δ, w) ≤
(

n
w

)
2n∑ δ

2
−1

r=0

∑min( r
2
,w,n−w)

k=0

(
w
k

)(
n−w

k

)(
n−2k
r−2k

)
4k

.

AGC(n, δ, w) ≥
(

n
w

)
2n∑δ−1

r=0

∑min( r
2
,w,n−w)

k=0

(
w
k

)(
n−w

k

)(
n−2k
r−2k

)
4k

.
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