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INTEGRALS IN HOPF ALGEBRAS OVER RINGS

CHRISTIAN LOMP

in memory of my uncle Morris Morgan

Abstract. Integrals in Hopf algebras are an essential tool in studying finite

dimensional Hopf algebras and their action on rings. Over fields it has been

shown by Sweedler that the existence of integrals in a Hopf algebra is equivalent

to the Hopf algebra being finite dimensional. In this paper we examine how

much of this is true for Hopf algebras over rings. We show that over any

commutative ring R that is not a field there exists a Hopf algebra H over R

containing a non-zero integral but not being finitely generated as R-module.

On the contrary we show that Sweedler’s equivalence is still valid for free Hopf

algebras or projective Hopf algebras over integral domains. Analogously for a

left H-module algebra A we study the influence of non-zero left A#H-linear

maps from A to A#H on H being finitely generated as R-module. Examples

and application to separability are given.

1. Introduction

Alfred Haar introduced a measure µ on the space of representable functions

R(G) of a locally compact group G (see [Haa33]). The map f 7→
∫

fdµ is

an integral I ∈ (R(G))∗. Hochschild exhibited the Hopf algebra structure of

R(G) and characterised the G-invariance of I as I being a R(G)-colinear map

(see [Hoc65, pp 27-28]). Finally Sweedler in [Swe69] carried this notion over to

arbitrary Hopf algebras H as H-colinear maps I : H → k and characterised them
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2 CHRISTIAN LOMP

via the augmentation, i.e. J ⋆ I(f) = J(1)I(f) for all J ∈ H∗. Here J 7→ J(1) is

an augmentation map for H∗. Sweedler boiled down the definition of an integral

to an element t of an augmented R-algebra A such that at = ǫ(a)t holds for all

a ∈ A (here ǫ : A → k denotes the augmentation and R a commutative ring).

The existence of such an integral in a Hopf algebra H is secured if H is finite

dimensional. This fact has been extensively used in studying Hopf algebras and

their action on algebras. Sweedler also showed, that the converse is true, i.e. he

showed that the existence of a left or right integral implies that the Hopf algebra

in question had to be finite dimensional. We will discuss how much of this is still

valid for Hopf algebras over rings. In particular we will show that if over every

commutative ring R that is not a field there exists always a Hopf algebra having

a non-zero integral but not being finitely generated as R-module.

We show that over a local ring or an integral domain R every Hopf algebra H

that is projective as R-module having a non-zero left or right integral t must be

finitely generated as R-module. If t has zero annulator in R then R might be also

semiperfect or a finite direct product of integral domains. In the third section we

characterise separable Hopf algebras.

In the sequel R will denote a commutative ring with unit. Let H be an aug-

mented R-algebra with augmentation (=algebra homomorphism) ǫ : H → R.

The base ring R becomes a left and right H-module given by hr := ǫ(h)r =: rh

for any h ∈ H and r ∈ R. For every left H-module M one defines the R-

submodule of ǫ-invariants as

Mǫ := {m ∈M | hm = ǫ(h)m∀h ∈ H}.

It is an easy exercise to check that the map

ϕ : HomH− (R, M)→ Mǫ

with ϕ(f) := f(1) is an isomorphism of R-modules and yields that the functors

HomH− (R,−) and (−)ǫ are equivalent. Analogously we can consider ǫ-invariant

elements in right H-modules and obtain an equivalence of functors Hom−H (R,−)

and (−)ǫ.

For a Hopf algebra H over R ǫ-invariant elements are called H-invariant ele-

ments and the submodule of those elements of a left H-module M is denote by

MH rather than Mǫ. H-elements of H seen as left (resp. right) H-module are

called left (resp. right) integrals and are denoted by
∫

l
(resp.

∫

r
). Hence we have

HomH− (R, H) ≃
∫

l
and Hom−H (R, H) ≃

∫

r
. In the sequel we will make no
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distinction in considering integrals as elements in the Hopf algebra or as H-linear

maps from R to H .

We will call a Hopf algebra H over R free, projective, flat, finite resp. non-

finite provided H is a free, projective, flat, finitely generated resp. not finitely

generated R-module.

2. Integrals as finiteness condition

2.1. In this section we will study integrals in Hopf algebras as finiteness condi-

tions. Sweedler proved that Hopf algebras over fields having a non-zero integral if

and only if they are finite dimensional. This is obviously not anymore true when

the ground field is replaced by a ring. For example take R = k× k for some field

k and let H1 and H2 be k-Hopf algebras then H = H1×H2 is a Hopf algebra over

R with component-wise operations, whose submodule of left integrals is equal to
∫

=
∫

1
×
∫

2
where

∫

j
is the space of integrals of Hj. Hence

∫

6= {(0, 0)} if and

only if one of the Hopf algebras Hj is finite dimensional. An extreme instance

of this situation is by taking H1 = k and H2 = k[x]. Then H = k × k[x] is

a projective, non-finite Hopf algebra over the semisimple ring R = k × k, that

admits a non-zero left integral t = (1, 0).

2.2. We will show that over any ring R, that is not a field, there exists always

a non-finite Hopf algebra H that admits a non-zero left integral.

Proposition. For every commutative ring R that is not a field, there exists a

non-finite Hopf algebra over R that contains a non-zero integral.

Proof. Let n be a non-zero non-invertible element of R. The polynomial ring

R[X] has a Hopf algebra structure over R by letting X be a primitive element,

i.e. ∆(X) = 1⊗X +X⊗1, ε(X) = 0 and S(X) = −X. The ideal I :=< nX > is

a Hopf ideal of R[X]. Let H := R[X]/I and denote the elements of H as images
¯f(X) of elements f(X) of H under the canonical projection. Then H is a Hopf

algebra over R with the induced structure maps ∆̄, ε̄ and S̄. Moreover n̄ is a non-

zero left and right integral of H since for all ¯f(X) ∈ H with f(X) = a0 +Xg(X)

we have

n̄ ¯f(X) = ¯na0 + ¯nXg(X) = a0n̄ = ¯εf(X)n̄.

On the other hand H is not finitely generated as R-module since a is not invertible

in R. �



4 CHRISTIAN LOMP

Rephrasing above Proposition we can characterise fields in terms of integrals in

Hopf algebras: A commutative ring R is a field if and only if every Hopf algebra

over R that contains a non-zero left or right integral is finite.

2.3. If R is decomposable, we can construct a projective non-finite Hopf algebra

over R possessing a non-zero integral.

Corollary. For any commutative ring R with a non-trivial idempotent there ex-

ists a projective non-finite Hopf algebra over R that contains a non-zero integral.

Proof. Let e be a non-trivial idempotent. Take n := e in the proof of the above

Proposition. The ideal I =< eX > is a direct summand of H as R-module since

R[X] = I ⊕ Re⊕ R(1− e)[X]. Thus H = R[X]/I is a projective R-module. �

2.4. Having seen, that the existence of non-zero integrals does not always imply

the finiteness of a Hopf algebra we are going to examine for which Hopf algebras

Sweedler’s conclusion is still valid.

Following his proof we can show an analogous statement for free Hopf algebras.

The basic ingredient of Sweedler’s proof is the following Lemma:

Lemma. Let H be a projective Hopf algebra over R. If H admits a non-zero left

or right ideal that is finitely generated as R-module then there exists an ideal Iof

R such that IH is a finitely generated R-module.

Proof. Let K be a left ideal of H with K finitely generated as R-module. Then

L := K ↼ H∗ is a left H-Hopf module and still finitely generated as R-module.

Note that LcoH = I1H for some ideal I of R. By the fundamental theorem for

Hopf modules we get L ≃ HLcoH = HI as Hopf modules. Thus IH is a finitely

generated R-module. �

Now we deduce easily the following Theorem

Theorem. The following statements are equivalent for a free Hopf algebra H.

(a) H is finite.

(b) H contains a non-zero left or right ideal I with IR finitely generated.

(c) H contains a non-zero left or right integral.

Proof. (a)⇒ (c) follows by a result of Pareigis (see [Par71].

(c)⇒ (b) is obvious since I := Ht = Rt is a non-zero left ideal of H that is cyclic

as R-module for every non-zero left integral t.
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(b) ⇒ (a) By the Lemma, there exists an ideal I of R such that IH is finitely

generated as R-module. Since H is free, there exists an index set Λ such that

H ≃ R(Λ). Thus IH ≃ IR(Λ) = I(Λ) being finitely generated implies |Λ| being

finite. �

2.5. As a corollary we get:

Corollary. Let H be a projective Hopf algebra over a semiperfect ring R. Then

H contains a non-zero left or right integral t with AnnR (t) = 0 if and only if H

is finite.

Proof. Let R = R1×· · ·×Rn be a finite direct product of local rings. H can also

be decomposed into H = H1×· · ·×Hn where each Hi is a Hopf algebra over Ri.

As H is a projective R-module, Hi is a free Ri-module. For the unit ei of Ri we

have ti := eit 6= 0 as AnnR (t) = 0. Hence Hi contains a non-zero left (or right)

integral ti and must be finitely generated as Ri-module by the above Theorem.

Thus H is finitely generated as R-module.

On the other hand if H is finite then by a theorem of Pareigis [Par71]
∫

l
is a free

rank 1 R-module. Thus there exists a left integral t such that AnnR (t) = 0. �

From the example H = k× k[x] over R = k× k with integral t = (1, 0), we see

that the condition AnnR (t) = 0 cannot be dropped.

2.6. If R is a quasi-Frobenius ring then it is not difficult to show that a projective

Hopf algebra H over R contains a non-zero left or right integral t with AnnR (t) =

0 if and only if H is a cogenerator for all left or right H-modules which are

projective as R-modules. Moreover if R is semisimple, i.e. a finite direct product

of fields then H is a cogenerator in H-Mod if and only if H is finite.

2.7. Having seen that free Hopf algebras admitting non-zero integrals must be

finite we will examine the situation for projective Hopf algebras over integral

domains.

We will give an obvious generalisation of Sweedler’s result.

Theorem. The following statements are equivalent for a projective Hopf algebra

H over an integral domain R.

(a) H is finite.

(b) H contains a left or right ideal I with IR finitely generated.

(c) H contains a non-zero left or right integral.
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The proof uses Sweedler’s theorem and all we need is the following Lemma:

Lemma. Let M be a projective module over an integral domain R with quotient

field Q. If dimQ(M ⊗R Q) is finite dimensional, then M is finitely generated as

R-module.

Proof. Let n = dimQ(M ⊗ Q). Denote by Rp the localisation of R by an p ∈

Spec(R). Since R is an integral domain, we have R ⊆ Rp ⊆ Q and henceforth :

M ⊗R Q ≃ (M ⊗R Rp)⊗Rp
Q = Mp ⊗Rp

Q.

As M is projective and Rp is local, Mp is free and there exists an index set Λ

such that Mp ≃ R
(Λ)
p as Rp-module. Thus

M ⊗R Q ≃ R(Λ)
p ⊗Rp

Q ≃ Q(Λ)

as Q-modules. Since dimQ(M ⊗ Q) = n it follows |Λ| = n and M has local

constant rank n. By a theorem of Vasconcelos [Vas69, Proposition 1.3] M is

finitely generated as R-module. �

Proof of the Theorem. (a)⇒ (c) follows by Pareigis result [Par71];

(c)⇒ (b) is trivial since for any non-zero left integral t the left ideal Ht is cyclic.

Hence we only have to prove (b)⇒ (a). Let I be a left ideal of H that is finitely

generated as R-module. Then I ⊗R Q is a non-zero left ideal of H ⊗R Q and has

finite dimension as Q-vector space. Thus by Sweedler’s theorem 2.4 H ⊗R Q is a

finite dimensional Hopf algebra over Q. By the Lemma, H is finitely generated

as R-module. �

2.8. As a corollary we get:

Corollary. Let H be a projective Hopf algebra over a finite direct product R of

integral domains. If H contains a non-zero left or right integral t with AnnR (t) =

0 then H is finite.

Proof. Let R = R1 × · · · × Rn be a direct sum of integral domains Ri. The

Hopf algebra H also has a decomposition H = H1 × · · · ×Hn where each Hi is a

projective Hopf algebra over Ri. Since AnnR (t) = 0, ti := eit 6= 0 where ei is the

unit of Ri. Thus Hi has a non-zero left or right integral ti and must be finitely

generated as Rio-module by Theorem 2.7 which makes H finitely generated as

R-module. �
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2.9. Since Sweedler boiled down the notion of integrals to the setting of aug-

mented algebras. We might ask whether there exists integrals in bialgebras. In

particular we will shortly look at integrals in semigroup rings and we will see that

Sweedler’s result fails for bialgebras.

Note that a non-empty subset I of a semigroup S is called a left ideal if sI ⊆ I

for all s ∈ S.

Theorem. The submodule of left integrals of the bialgebra R[S] is a cyclic left

and right ideal of R[S] whose generator (if non-zero) is of the form t =
∑

x∈I x

for some (for any) left ideal I of S which is a finite group. Moreover the R-

submodule of left integrals is spanned (as R-module) by all elements of the form
∑

x∈I x where I is a left ideal of S which is a finite group.

Proof. Let t be a left integral of R[S]. Write t =
∑

s∈K rss where K = sup(t) =

{s ∈ S | rs 6= 0} is the support of t. Since st = t for all s ∈ S we get

sK = sup(st) = sup(t) = K.

Hence K is a finite left ideal of S such that every element of S acts as a permuta-

tion. Choose a finite non-empty subset I of K such that sI = I for all s ∈ S and

I is minimal with that property. Since for all x ∈ I Ix is also a finite non-empty

left ideal of I and |Ix| ≤ |I| we get by minimality of I I = Ix. Thus any element

of the semigroup I is divisible by any other element of I on both the left and the

right. By [Lja74, Theorem V.1.4] I is a group. Let t′ :=
∑

x∈I rxx. Then t′ is

again a left integral of R[S], because I is a left ideal and a group. In particular
∑

x∈I

rxx = t′ = yt′ =
∑

x∈I

rxyx

for all y ∈ I. Comparing the coefficients we get ryx = rx for all x, y ∈ I. In

particular if x is the neutral element e of the group I it follows ry = re = r for

all y ∈ I. Hence t′ = r(
∑

x∈I x).

It is not difficult to see that K := K \I is again a left ideal of S with the property

sK = K. Repeating our argument we find another left ideal I ′ ⊆ K of S which

is a group and so forth. Eventually we get left ideals I1, I2, . . . , Ik of S which are

finite groups such that K is the direct union of those I ′

js.

We may right

t =

k
∑

j=1

(
∑

x∈Ij

rxx) =

k
∑

j=1

rjtj
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where rj ∈ R and tj =
∑

x∈Ij
x. This shows that every left ideal of R[S] is an

R-linear combination of elements of the given form.

Now if I and J are two left ideals of S which are finite groups, then for any

x ∈ J we have that Ix ⊆ J is also a left ideal of S. J being a group implies

Ix = J . Hence (if exists) we may fix a left ideal I of S which is a finite group,

such that every other left ideal J of S which is a finite group is of the form Ix for

some x ∈ J . If t is a left ideal of R[S] we saw that there are left ideals I1, . . . , Ik

of S which are finite groups and r1, . . . , rk ∈ R such that t =
∑k

j=1 rjtj where

tj =
∑

x∈Ij
x. We might choose elements xj ∈ Ij such that Ij = Ixj and

t =
k
∑

j=1

rjtj =
k
∑

j=1

rj

(

∑

y∈I

yxj

)

= t′

(

k
∑

j=1

rjxj

)

where t′ =
∑

y∈I y. This shows t ∈ t′R[S]. Since every element in t′R[S] is a left

integral, we proved
∫

l
= t′R[S]. �

Hence the semigroup ring k[S] for any monoid S with zero element 0 ∈ S,

i.e. s0 = 0 = 0s for all s ∈ S, contains a non-trivial left (and right) integral 0

independently whether S is finite or infinite.

Corollary. If R[S] contains non-zero left integrals and a non-zero right integrals,

then
∫

l
=
∫

r
= Rt where t =

∑

x∈I x and I is a two-sided ideal of S which is a

finite group.

Proof. If R[S] contains a non-zero left integral, then S contains a left ideal I

which is a finite group. Analogously if R[S] contains a non-zero right integral, S

contains a right ideal J of S which is a finite group. Since I is a left ideal JI ⊆ I

and since I is a group JI = I. By the analogous argument we get J = JI.

Hence every left ideal of S which is a group is an ideal of S and there can exist

at most one of those ideals. Hence there exists exactly one element of the form

t =
∑

x∈I x where I is a left (or right) ideal of S which is a finite group, i.e.
∫

l
=
∫

r
= Rt. �

2.10. Since the only left ideal of a group is the group itself we conclude that the

group ring R[G] contains a non-zero integral if and only if G is finite. This also

holds a bit more general for cancelative monoids. Recall that a monoid S is called

right cancelative if ba = ca ⇒ b = c for all a, b, c ∈ S. If S is right cancellative,

then R[S] contains a non-trivial left integral if and only if S is a finite group,

because if I is a left ideal of S which is a finite group and x is some element of
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I, the map f : S → I with f(s) = sx is injective. Hence |S| ⊆ |I| ⊆ |S| implies

S = I, i.e. S is a finite group.

2.11. It is easy to construct finite semigroups that do not admit left ideals which

are groups. In particular finite completely simple semigroups (see [How95]) have

this property. An easy way to construct examples is as follows: Fix a field k. Let

I and J be non-empty sets and let S := I × J . Define a multiplication on S as

(i, j)(i′, j′) := (i, j′) for all i, i′ ∈ I and j, j′ ∈ J . Then S does not admit any left

(resp. right) ideal unless |I| = 1 (resp. |J | = 1) (see [How95]).

Hence for two sets I and J of two elements, the 5-dimensional bialgebra k[S1]

over k does not posses any non-zero left or right integral (here S1 denotes the

semigroup S with adjoint neutral element). Moreover the previous example shows

that the uniqueness of integrals in Hopf algebras fails for bialgebras since we can

construct n + 1-dimensional bialgebras whose space of integrals is n-dimensional

for any n ≥ 1. In case |I| = 1 and |J | = ∞ we can construct an infinite

dimensional bialgebra that posses non-zero left integrals.

3. Separable Hopf algebras

In the introduction we saw that there exists a correspondence between integrals

and H-linear maps from R to H . We will show now another correspondence

between integrals and homomorphisms from H to H ⊗ H that is essential for

characterising separable Hopf algebras.

3.1. Denote by CH⊗H(H) the set of H-centralising elements of H ⊗H , i.e.

CH⊗H(H) :=

{

∑

i

xi ⊗ yi ∈ H ⊗H |
∑

i

hxi ⊗ yi =
∑

i

xi ⊗ yih ∀h ∈ H

}

.

The evaluation homomorphism

Ψ : HomH−H (H, H ⊗H) −→ CH⊗H(H) with ϕ 7→ ϕ(1H)

is an isomorphism of R-modules. We have the following correspondence between

integrals and H-centralising elements:

Lemma. The following homomorphisms of R-modules exist:

il :
∫

l
−→ CH⊗H(H), t 7→ (1⊗ S)∆(t)

pl : CH⊗H(H) −→
∫

l
,

∑

i xi ⊗ yi 7→ (1⊗ ε) (
∑

i xi ⊗ yi)

where pl ◦ il = id∫
l
.
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Proof. The image of il lies in CH⊗H(H), as for all t ∈
∫

l
and h ∈ H :

∆(t)⊗ h =
∑

(h)

∆(ε(h1)t)⊗ h2 =
∑

(h)

∆(h1t)⊗ h2 =
∑

(h,t)

h1t1 ⊗ h2t2 ⊗ h3.

Hence
∑

(t)

t1⊗S(t2)h =
∑

(h,t)

h1t1⊗S(h2t2)h3 =
∑

(h,t)

h1t1⊗S(t2)S(h2)h3 =
∑

(t)

ht1⊗S(t2).

This shows il(t) ∈ CH⊗H(H).

We will show now that pl(u) is a left integral for any u ∈ CH⊗H(H). Let u =
∑

i xi ⊗ yi ∈ CH⊗H(H). For all h ∈ H :
∑

i

hxi ⊗ yi =
∑

i

xi ⊗ yih ∈ H ⊗H.

Applying (1⊗ ε) to this element we get:

hpl(u) =
∑

i

hxiε(yi) =
∑

i

xiε(yih) = ε(h)pl(u).

Thus pl(u) ∈
∫

l
has been proven. �

Analogous one proves that there are homomorphisms between
∫

r
and CH⊗H(H):

ir :
∫

r
−→ CH⊗H(H) t 7→ (S ⊗ 1)∆(t)

pr : CH⊗H(H) −→
∫

r

∑

i xi ⊗ yi 7→ (ε⊗ 1) (
∑

i xi ⊗ yi)

where pr ◦ ir = id∫
r
.

3.2. Recall some definitions: Let S ⊆ T be an extension of rings. T is called

a left (resp. right) semisimple extension of S if every short exact sequence

of left T -modules that splits as left S-modules also splits as left T -modules (see

[HS66, Def. 1]).

T is called a separable extension of S if the map m : T ⊗S T −→ T with

m(x ⊗ y) := xy splits as T -bilinear map, i.e. if there exists a T -bilinear map

ϕ : T −→ T ⊗S T with m ◦ ϕ = idT (see [HS66, Def. 2]). Equivalently T is

a separable extension of S if and only if there exists a separability idempotent
∑

i xi ⊗S yi ∈ T ⊗S T with
∑

i xiyi = 1 and
∑

i txi ⊗S yi =
∑

i xi ⊗S yit for all

t ∈ T . In case S is commutative we also call T a separable S-algebra if T is

a separable extension of S. It is well-known that any separable extension is a

semisimple extension.
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3.3. The following characterisation of separable Hopf algebras does not require

any condition on the Hopf algebra as module over its base ring.

Theorem. The following statements are equivalent for a Hopf algebra H over R:

(a) H is a separable R-algebra.

(b) H is a left or right semisimple extension of R.

(c) R is a projective left or right H-module.

(d) there exists a left or right integral t in H such that ε(t) is invertible in R.

If H satisfies one of the statements above, then H is separable and finitely gen-

erated over its centre Z(H) and hence a PI-algebra. Moreover if additionally H

is a projective R-module then H is also finitely generated as R-module.

Proof. (a)⇒ (b) follows from [Wis96, 28.5];

(b)⇒ (c) from [Wis96, 20.5] it follows that R is an (H, R)-projective H-module,

i.e. every short exact sequence of left H-modules

0 −−−→ X −−−→ Y −−−→ R −−−→ 0

that splits as R-modules splits as left H-modules. Hence ε splits in H-Mod, i.e.

R is a projective left (resp. right) H-module;

(c)⇒ (d) follows from HomH− (R, H) ≃
∫

l
resp. Hom−H (R, H) ≃

∫

r
;

(d) ⇒ (a) Let t be a left integral with ε(t) invertible in R. Without loss of

generality we might assume ε(t) = 1. By the correspondence 3.1 t gives rise to

the H-centralising element

ω := il(t) = (1⊗ S)∆(t) =
∑

(t)

t1 ⊗ S(t2) ∈ H ⊗H.

Let µ : H ⊗H → H denote the multiplication map, then

µ(ω) =
∑

(t)

t1S(t2) = ε(t) = 1.

Hence ω is a separability idempotent for H over R, i.e. H is a separable extension

of R. Analogously one checks for a right integral t with ε(t) = 1 that

ω = ir(t) = (S ⊗ 1)∆(t) =
∑

(t)

S(t1)⊗ t2

is a separability idempotent for H over R.

If H is a separable extension of R then H is also a separable extension of its

centre Z(H) and hence an Azumaya algebra (see [Wis96, 28.4]). Central Azumaya

algebras are finitely generated and projective and hence PI-algebras (see [Wis96,
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28.1]). It follows from [Wis96, 28.5] that projective separable extensions are

finitely generated. �

3.4. The equivalence (a) ⇔ (d) has been shown in [KS00, Corollary 5.2] and

[Par73] for finite projective Hopf algebras that are Frobenius. As we saw those

conditions are not necessary.

Property (b) of the theorem above is often called the Maschke-property and

plays a central role in the study of semisimple Hopf algebras.

3.5. In contrast to separable Hopf algebras we will show that semisimple Hopf

algebras, i.e. Hopf algebras that are semisimple artinian as rings, are always

finitely generated and projective over their base ring.

Proposition. A Hopf algebra H over R is a semisimple ring if and only if H

is separable over R and R is a semisimple ring. In particular every semisimple

Hopf algebra is finitely generated projective as a module over its base ring.

Proof. If H is a separable extension of a semisimple ring R then H itself is a

semisimple ring as separable extensions are semisimple extensions.

Assume that H is a semisimple ring, then R is a projective left H-module and

by 3.3 H is separable over R. Since every ideal I of R is a direct summand of R

as left H-submodule, I is also a direct summand of R as R-module, i.e. R is a

semisimple ring.

If H is separable over R and R semisimple then H is projective as R-module.

By [Wis96, 28.5] H is finitely generated as R-module. �

3.6. The fact that semisimple Hopf algebras over fields are finite dimensional

was known (see [Swe69, Remark after 2.7]); already the existence of a non-zero

integral implies this. In general we see that also any semisimple Hopf algebra

over a commutative ring R has to be finitely generated over R without a priori

assumptions on R or on H as R-module.

3.7. Separable Hopf algebras that are not semisimple can be easily constructed:

Let G be a finite group of order n ≥ 1. Set R := Z[ 1
n
] the localisation of Z

by the set {1, n, n2, . . .}. Then H := R[G] is a separable Hopf algebra over R

by 3.3, since n = |G| = ε(t) (with t =
∑

g∈G g) is invertible in R. But H is not

semisimple as R is not semisimple.
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3.8. Let H be a Hopf algebra over R. A pure R-submodule K of H is called a

Hopf subalgebra if K is a subalgebra of H with ∆(K) ⊆ K ⊗K and S(K) ⊆ K.

A Hopf subalgebra K of H is called normal if K is closed under left and right

adjunction, i.e. if for all h ∈ H and k ∈ K:
∑

(h)

h1kS(h2) ∈ K und
∑

(h)

S(h1)kh2 ∈ K.

For a normal Hopf subalgebra K the quotient algebra H = H/K+H with K+ :=

K∩Ker (ε) becomes a Hopf algebra over R. Moreover we get also K+H = HK+.

The following theorem extends [Lin01, Theorem 3.10] from Hopf algebras over

fields to Hopf algebras over rings:

Proposition. Let H be a Hopf algebra over R and let K be a normal Hopf

subalgebra of H with quotient H := H/K+H where K+ = K ∩Ker (ε). Suppose

that K and H are separable R-algebras, then H is also a separable R-algebra.

Proof. Let t be a left integral in K with ε(t) = 1 and let s be a left integral in

H with ε(s) = ε(s) = 1. Then we also have ε(st) = 1. We show now that st is a

left integral in H . Let h ∈ H . From hs = ε(h)s in H it follows that there exists

x ∈ K+H with

hs− ε(h)s = x ∈ K+H = HK+.

Since K+t = 0 we get hst− ε(h)st = xt = 0. By 3.3 H is separable over R. �

3.9.

Lemma. Let H be a Hopf algebra over R and K a normal Hopf subalgebra. with

quotient H. If H is a separable R-algebra then so is H and if moreover H is free

as left K-module, then K is also a separable R-algebra.

Proof. We have H = H/K+H ≃ H ⊗K R. Let f be the ring homomorphism

f := 1⊗ ε : H ≃ H ⊗K K −→ H ⊗K R.

Then f is surjective. Since H is separable over R, H is separable over K by

[HS66, Prop 2.5(1)] and by [HS66, Prop. 2.4] f(H) is separable over f(K). From

f(H) ≃ H and f(K) ≃ R it follows that H is a separable R-algebra.

To show that K is separable over R if H is free as left K-module one can proceed

as in [Mon92, 2.2.2(2)] (the proof there does not require that R is a field or any

other properties of H as R-module). �
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3.10.

Proposition. Let H be a free Hopf algebra over a noetherian local ring R and

let K be a normal Hopf subalgebra of H. Then H is a separable R-algebra if and

only if K and H are separable R-algebras.

Proof. If K and H are separable over R then H is also separable over R by 3.8.

On the other hand if H is separable over R it must be finitely generated as R-

modules since H is free. As R is noetherian K is finitely generated as R-module.

By [KS99, Lemma 5.2] H is a free left K-module. Hence K and H are separable

R-algebras by 3.9. �

4. Homomorphisms from a module algebra to its smash product

As we saw in the last section, the existence of a non-zero integral can be seen as

a finiteness condition for the Hopf algebra. Integrals and H-linear maps from R

to H are in bijection to each other since every left integral t defines a left H-linear

map r 7→ rt between R and H and since for any left H-linear map f : R → H

the element (1)f is a left integral. We will see that more generally the existence

of a non-trivial homomorphism between an H-module algebra A and its smash

product A#H can be seen as a finiteness condition on H .

Let H be a bialgebra over R and let A be an R-algebra that is also a left H-

module algebra. If the multiplication µ : A⊗A→ A and the unit η : R→ A are

H-linear maps, then A is a called a left H-module algebra. The smash product

of A and H is the R-algebra A#H whose underlying R-module is A ⊗ H and

whose multiplication is given by

(a#h)(b#g) :=
∑

(h)

a(h1 · b)#h2

for all a#h, b#g ∈ A#H where · denotes the left H-action on A.

A#H is an R-algebra with subring A ≃ {a#1 | a ∈ A} ⊆ A#H . Note that H

is in general not a subring of A#H . Necessary conditions for this to happen are

that H is a flat R-module and A is faithful as R-module.

One checks that

HomA#H (A, A#H) ≃ (A#H)H = r.annA#H(Ker (α))

where the first isomorphism is given by f 7→ (1)f .
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4.1. Let us begin with an example. Let A be an R-algebra and S a monoid

whose elements act as endomorphisms on A. Denote the action of an element

g ∈ S on an element a ∈ A by ag. Then A is a R[S]-module algebra where we

consider the semigroup ring R[S] as an bialgebra. The smash product A#R[S] is

called the skew-semigroup ring of A and S and is denoted by A∗S. We denote the

S-invariant elements of A∗S by (A∗S)S. Note that HomA∗S (A, A∗S) ≃ (A∗S)S.

In this situation we have the following analogue to 2.9:

Theorem. The submodule of S-invariant elements (A ∗ S)S of A ∗ S is a cyclic

right ideal of A ∗ S and generated (if non-zero) by some element 1 ∗ t where

t =
∑

x∈I x and I is a left ideal of S which is a finite group.

Proof. The proof goes analogously to the proof of 2.9. Let γ =
∑

x∈S ax ∗ x ∈

(A ∗ S)S for some ax ∈ A. Then I = {x ∈ S | ax 6= 0} is a finite left ideal of S

with sI = I for all s ∈ S. As in 2.9 one decomposes I into a disjoint union of

left ideals Ik which are finite groups. For all y ∈ S we have
n
∑

k=1

∑

x∈Ik

ax ∗ x = γ = (1 ∗ y)γ =
n
∑

k=1

∑

x∈Ik

ay
x ∗ yx.

As the Ik are disjoint we must have
∑

x∈Ik

ax ∗ x =
∑

x∈Ik

ay
x ∗ yx

for all k. In particular if y ∈ Ik for some k we have axy = ay
x for all x ∈ Ik. If

x = e is the neutral element of Ik we get ay = ay
e . Set bk := ae. Hence

γ =

n
∑

k=1

∑

x∈Ik

ax ∗ x =

n
∑

k=1

∑

x∈Ik

bx
k ∗ x =

n
∑

k=1

∑

x∈Ik

(1 ∗ x)(bk ∗ 1)

Fix any left ideal I of S which is a finite group. As seen in the proof of 2.9 we

may choose elements yk ∈ Ik such that Ik = Iyk. Thus

γ =
n
∑

k=1

∑

x∈Ik

(1∗x)(bk∗1) =
n
∑

k=1

∑

z∈I

(1∗zyk)(bk∗1) =

(

∑

z∈I

1 ∗ z

)(

n
∑

k=1

(1 ∗ yk)(bk ∗ 1)

)

.

For γ′ :=
∑n

k=1(1 ∗ yk)(bk ∗ 1) and t :=
∑

z∈I z we have γ = (1 ∗ t)γ′. Note that t

does not depend on γ, hence (A ∗ S)S ⊆ (1 ∗ t)R[S]. The converse is clear. �

We see that HomA∗S (A, A ∗ S) 6= 0 if and only if S contains a left ideal

which is a finite group. In case S is a left cancellative monoid we see that

HomA∗S (A, A ∗ S) 6= 0 if and only if S is a finite group.
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It is known that if a group G acts on a ring A as automorphisms such that A

is a projective module over the skew group ring A ∗ G then G has to be finite.

We see that already the existence of a non-zero A∗G-homomorphism A→ A∗G

makes the group finite.

4.2. We will see that under some additional conditions non-zero A#H-linear

maps from A to A#H give rise to the existence of non-zero left integrals in H

(which in turn might imply that H is finitely generated as R-module as we had

seen before).

First we need the following Lemma. For any A-module M denote by 〈H ⊗M〉

the left H-module whose H-action is given by h(g⊗m) = hg⊗m for all h, g ∈ H

and m ∈M .

Lemma. Let H be a Hopf algebra over R and let P be a left H-module that is

projective as R-module. Then 〈H ⊗ P 〉H =
∫

l
⊗P .

Proof. By hypothesis there exists an index set Λ and a split epimorphism π :

R(Λ) −→ P . The map

1⊗ π : 〈H ⊗ R(Λ)〉 −→ 〈H ⊗ P 〉

is a splitting left H-module homomorphism and induces a splitting R-linear map

p : HomH (R, 〈H ⊗ R(Λ)〉) −→ HomH (R, 〈H ⊗ P 〉).

Consider the following commuting diagram:

HomH (R, 〈H ⊗ P 〉) ←−−−
p

HomH (R, 〈H ⊗R(Λ)〉)
≃
−−−→ HomH (R, H)(Λ)

ϕ1





y

ϕ2





y

ϕ3





y

〈H ⊗ P 〉
1⊗π
←−−− 〈H ⊗R(Λ)〉

≃
−−−→ H(Λ)

where ϕ1, ϕ2 and ϕ3 are the evaluation maps that evaluate the homomorphisms

at 1. The images of ϕi are precisely the submodules of H-invariant elements. We

get:

Im (ϕ3) = 〈H(Λ)〉H =

∫ (Λ)

l

and hence

〈H ⊗ R(Λ)〉H =

∫

l

⊗R(Λ).
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Eventually we have

〈H ⊗ P 〉H = Im (pϕ1) = Im (ϕ2(1⊗ π)) =

(
∫

l

⊗R(Λ)

)

(1⊗ π) =

∫

l

⊗P.

�

4.3. The next Lemma is known for Hopf algebra actions over fields and will be

important for the rest of this section. Let A be a left H-module algebra and let

α : A#H −→ A be the A#H-linear projection given by a#h 7−→ aε(h).

Lemma. Let H be a Hopf algebra over R with bijective antipode. Then

(A#H)H =

(

1#

∫

l

)

(A#1)

for every left H-module algebra A that is projective as R-module.

Proof. By Lemma 4.2 〈H ⊗ A〉H =
∫

l
⊗A. Moreover it is easy to check that the

map

φ : 〈H ⊗ A〉 −→ A#H with h⊗ a 7→ (1#h)(a#1)

is an isomorphism of left H-modules with inverse

φ−1(a#h) :=
∑

(h)

h2 ⊗ S−1(h1) · a.

Hence

(A#H)H = φ

(
∫

l

⊗A

)

=

(

1#

∫

l

)

(A#1).

�

4.4. Now we are ready to state the main result of this section relating non-zero

homomorphisms between a module algebra and its smash product with non-zero

integrals of the Hopf algebra.

Theorem. Let H be a Hopf algebra over R with bijective antipode and let A be

a left H-module algebra that is projective as R-module. The following statements

are equivalent:

(a) HomA#H (A, A#H) 6= 0

(b) ∃ϕ ∈ HomH− (R, H) such that ϕ 6= 0 and Ker (ϕ)A 6= A.

(c) ∃t ∈
∫

l
such that the map A −→ A#H with a 7−→ a#t is non-trivial.

If
∫

l
is cyclic then A is isomorphic to a left ideal of A#H if and only if there

exists a non-zero left integral t in H such that AnnR (t) ⊆ AnnR (A).
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Proof. By 4.3 (A#H)H = (1#
∫

l
)(A#1).

(a) ⇒ (c) Let 0 6= φ ∈ HomA#H (A, A#H). Then (1A)φ ∈ (A#H)H =

(1#
∫

l
)(A#1). Hence for all a ∈ A: (a)φ =

∑k

i=1(a#ti)(ai#1) for some non-

zero left integrals ti ∈
∫

l
and elements ai ∈ A. Thus there exists at least one left

integral t such that the map a 7→ a#t is non-trivial.

(c) ⇒ (b) Assume there exists a non-zero left integral t such that the map

Rt : A → A#H with (a)Rt = a#t is non-trivial. Let ϕ : R −→ H be the

H-linear map ϕ(r) = rt. Obviously Ker(ϕ) = AnnR (t) and Ker(ϕ)A ⊆ Ker(Rt).

Since t 6= 0, ϕ 6= 0 and since Ker (Rt) 6= A, Ker (ϕ)A 6= A.

(b)⇒ (a) Let ϕ ∈ HomH (R, H) be such that Ker (ϕ)A 6= A. Set

φ := 1A ⊗ ϕ : A ≃ A⊗ R −→ A#H.

φ is left A#H-linear. As A is a flat R-module and Ker (ϕ)A 6= A, φ 6= 0.

Assume that
∫

l
is cyclic. If there exists an embedding φ : A → A#H as

A#H-modules, then (1A)φ = (1#t)(a#1). Let r ∈ AnnR (t) then

(r1A)φ = r(1#t)(a#1) = 0

implies that r1A = 0, i.e. r ∈ AnnR(1A) = AnnR (A). Thus AnnR(t) ⊆ AnnR(A).

On the other hand let t be a left integral such that AnnR (t) ⊆ AnnR (A).

Consider the map Rt : R → H with Rt(r) = rt. Since A is flat we get also

a map φ : A → A#H with (a)φ = a#t whose kernel is Ker (Rt)A. Since

Ker (Rt) = AnnR (t) ⊆ AnnR (A) the kernel is zero and φ is injective. It is easy

to verify that φ is left A#H-linear. �

4.5. In general the existence of a non-zero left integral in H is not sufficient

for the existence of a non-zero left A#H-linear map from A to A#H . We will

construct an example:

Let e be a non-trivial idempotent in R and define H := R[X]/〈eX〉 as in 2.3.

Then H is a projective Hopf algebra over R with bijective antipode and non-zero

integral. Set A := R(1−e). Then A is an R-algebra and a left H-module algebra

with trivial H-action given by ǫ. The smash product is isomorphic to

A#H = R(1− e)⊗ (R[X]/〈eX〉) ≃ R(1− e)[X] = A[X]

and we have for the group of homomorphisms:

HomA#H (A, A#H) ≃ HomA[X] (A, A[X]) = 0.
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Thus if k is a field and R = k × k. Then there exists a Hopf algebra H with

bijective antipode and non-zero integrals over the semisimple ring R and a left

H-module algebra A with HomA#H (A, A#H) = 0.

4.6. Combining the last theorem with results from the second section enables us

to state characterisation of when a Hopf algebra is finitely generated over its base

ring in terms of homomorphisms from a module algebra to its smash product.

Theorem. Let R be an integral domain or a local ring. The following statements

are equivalent for a projective Hopf algebra H over R.

(a) H is finite.

(b) Every left H-module algebra A which is projective as R-module is isomor-

phic to a left ideal of A#H.

(c) H has a bijective antipode and there exists some left H-module algebra A

which is projective as R-module such that HomA#H (A, A#H) 6= 0.

Proof. (a)⇒ (b) Let H be a Hopf algebra that is finitely generated and projective

as R-module. By [Par71] H has a bijective antipode and contains a non-zero left

integral t.

If R is local then R has trivial Picard group and
∫

l
≃ R by [Par71]. Applying 4.4

we get that A is isomorphic to a left ideal of A#H for any left H-module algebra

A that is projective as R-module.

If R is an integral domain and t a non-zero left integral, then AnnR (t) = 0 as

H is a torsionfree R-module. Thus the map ϕ : R → H with ϕ(r) = rt is an

injective H-linear map. Take any left H-module algebra A that is projective as

R-module. Since A is flat as R-module also φ : A → A#H with φ(a) = a#t is

injective. One checks easily that φ is A#H-linear. Hence A is isomorphic to a

left ideal of A#H .

(b) ⇒ (c) Since A = R is a left H-module algebra with trivial H-action we get

that HomR#H (R, R#H) ≃ HomH (R, H) 6= 0. Thus H contains a non-zero left

integral and must be finitely generated by 2.4 resp. 2.7. Hence H has a bijective

antipode.

(c)⇒ (a) Assume that H has a bijective antipode and that there exists a left H-

module algebra A that is projective as R-module such that HomA#H (A, A#H) 6=

0. Then by 4.3 H contains a non-zero left integral. By 2.7 resp. 2.4 H has to be

finitely generated as R-module. �
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4.7. Let R be an integral domain or a local ring and H a Hopf algebra over R

with bijective antipode. We have in particular the following dichotomise:

either every left H-module algebra A that is projective as R-module

is isomorphic to a left ideal of A#H

or HomA#H (A, A#H) = 0 for every left H-module algebra A

that is projective as R-module.
Thus if H is a Hopf algebra with bijective antipode over a field k and A is a

left H-module algebra that is projective as A#H-module then H must be finite

dimensional.

4.8. In the last part of this chapter we will relate integrals to the projectivity

of a module algebra as module over its smash-product.

Definition. Let H be Hopf algebra over R. An element a ∈ A of a left H-module

algebra A is called a trace one element if there exists a left integral t ∈
∫

l
such

that t · a = 1.

Obviously the existence of a trace one element in a H-module algebra requires

the existence of a left integral and as we have seen might imply that H is finitely

generated as R-module.

Since t ·A ⊆ AH always holds, one easily shows that A has a trace one element

if and only if t · A = AH holds.

The relation of the existence of trace one elements in a module algebra A and

the projectivity of A as left A#H-module is given in the following proposition.

Proposition. Let H be a Hopf algebra over R and let A be a left H-module

algebra that has a trace one element, then A is a projective left A#H-module.

Proof. Let t ∈
∫

l
and a ∈ A with t · a = 1. The map β : A −→ A#H with

(x)β := (x#t)(a#1) is left A#H-linear, since for all x ∈ A and h ∈ H :

h(x)β = (1#h)(x#t)(a#1) =





∑

(h)

(h1 · x)#(h2t)



 (a#1)

=





∑

(h)

(h1 · x)#ε(h2)t



 (a#1)

= ((h · x)#t)(a#1) = (h · a)β.

Moreover β lets α split as

(x)βα = [(x#t)(a#1)]α = x(t · a) = x,
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for all x ∈ A. Thus A is a projective left A#H-module. �

Proposition. Let H be a Hopf algebra over R with bijective antipode such that
∫

l

is a cyclic right ideal of H and let A be a left H-module algebra that is projective

as R-module. If A is projective as left A#H-module then A has a trace one

element.

Proof. Assume that A is a projective left A#H-module. Then α splits, i.e. there

exists a A#H-linear map β : A −→ A#H such that (x)βα = x for all x ∈ A.

Since the isomorphism

HomA#H (A, A#H) ≃ (A#H)H = (1#

∫

l

)(A#1

(see 4.3) maps β to (1)β we might assume (1)β = (1#ti)(ai#1). As
∫

l
is a cyclic

right ideal of H we might write (1)β as (1#t)(a#1). Now

1 = (1)βα = ((1#t)(a#1))α = t · a

shows that A has a trace one element. �

In particular for a ring R with trivial Picard group and a Hopf algebra H

that is finitely generated projective as R-module we have for all left H-module

algebras A which are projective as R-module: A has a trace one element if and

only if A is projective as left A#H-module.

5. Separable Smash products

Let S ⊆ T be an extension of rings. A short exact sequence in T -Mod is called

(T, S)-exact if it splits in S-Mod. A left T -module M is called (T, S)-semisimple

if every (T, S)-exact sequence in σ[T M ] splits. (Here σ[T M ] denotes the full

subcategory of T -Mod whose objects are quotients of direct sums of M).

If T is a (T, S)-semisimple left T -module if and only if T is a left semisimple

extension of S.

5.1.

Theorem. Let H be a Hopf algebra over R and A a left H-module algebra.

Suppose that there exists a right integral t in H and a central element z in AS

such that S(t) · z = 1, them A is a (A#H, A)-semisimple projective left A#H-

module.
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Proof. Set ω :=
∑

(t)(1#S(t1))(z#t2) ∈ A#H . For all a ∈ A we have:

ω · a =
∑

(t)

S(t1) · (z(t2 · a)) =
∑

(t)

(S(t2) · z)(S(t3)t2 · a) = (S(t) · z)a = a.

Let M ∈ σ[A#HA], then there exists an index set Λ and a A#H-submodule

I ⊆ A(Λ), such that M is isomorphic to a A#H-submodule of A(Λ)/I. Without

loss of generality we identify M with a submodule of A(Λ)/I. Let m ∈ M , then

there are elements aλ ∈ A with m = (aλ)Λ + I. Hence

ω ·m = (ω · aλ)Λ + I = (aλ)Λ + I = m (†)

Consider the A#H-bimodule A#H⊗AA#H and its element

Ω :=
∑

(t)

(1#S(t1))⊗ (z#t2).

We will show that Ω is A#H-centralising: Let h ∈ H then

(1#h)Ω =
∑

(t)

(1#hS(t1))⊗ (z#t2) =
∑

(t)

(1#S(t1))⊗ (z#t2h) = Ω(1#h)

as
∑

(t) S(t1)⊗ t2 = ir(t) ∈ CH⊗H(H) by 3.1.

Let a ∈ A then

Ω(a#1) =
∑

(t)

(1#S(t1))⊗ (z#t2)(a#1)

=
∑

(t)

(1#S(t1))⊗ (z(t2 · a)#t3)

=
∑

(t)

(1#S(t1))(t2 · a)#1)⊗ (z#t3)

=
∑

(t)

(S(t2)t3 · a#S(t1))⊗ (z#t4)

=
∑

(t)

(a#S(t1))⊗ (z#t2)

= (1#a)Ω.

Thus Ω is a A#H-centralising element of A#H ⊗A A#H .

Let f ∈ HomA (M, N) for two left A#H-modules M, N . Since Ω is A#H-

centralising we get that

f̃ : [m 7→
∑

(t)

(1#S(t1)) · f((z#t2) ·m)]
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is a left A#H-linear map. Hence if M, N ∈ σ[A#HA] and if N is direct summand

of M as left A#H-module with A-linear projection. π : M −→ N , then π̃ is a

A#H-linear projection, since for all n ∈ N holds π(n) = n. It follows from (†):

π̃(n) =
∑

(t)

(1#S(t1)) · π((z#t2) · n) =
∑

(t)

(1#S(t1)) · ((z#t2) · n) = ω · n = n.

Hence every short exact sequence in σ[A#HA] that splits in A-Mod also splits in

A#H-Mod. �

5.2. In case H has a bijective antipode then the hypothesis of the theorem above

is equivalent to A having a central element of trace one.

Lemma. Let H be a Hopf algebra over R with bijective antipode and let A be

a left H-module algebra. Then there exists a right integral t in H and a central

element z in A with S(t) · z = 1 if and only if A has a central element of trace

one.

Proof. Let t ∈
∫

r
and z ∈ Z(A) with S(t)z = 1. Since the antipode is bijective

S(t) ∈
∫

l
and A has a central element of trace one. On the other hand if z is a

central element of trace one, then t · z = 1 for some left integral t. Thus S−1(t)

is a right integral in H such that S(S−1(t)) · z = 1. �

5.3. The existence of a central element of trace one for group actions implies

the separability of the skew group ring. More generally we have the following

theorem that has also been proved in [CF92, Theorem 1.11] (see also [CF94])

for crossed products but under the additional hypothesis of H being a Frobenius

R-algebra. As we will see, we do not need any additional assumptions.

Theorem. Let H be a cocommutative Hopf algebra over R and A a left H-module

algebra. If A contains a central element of trace one then A#H is a separable

extension of A.

Proof. Let z be a central element of trace one with t · z = 1 for some t ∈
∫

l
. Note

that since H is cocommutative S2 = id. Hence t′ := S(t) = S−1(t) ∈
∫

r
and

S(t′) · z = 1. Let Ω be the element in A#H⊗AA#H from the proof of 5.1 with

respect to t′ and z. Then

Ω =
∑

(t′)

(1#S(t′1))⊗ (z#t′2) =
∑

(t)

(1#t2)⊗ (z#S(t1))
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is A#H-centralising in A#H⊗AA#H as it has been shown in the proof of 5.1.

Moreover

µ(Ω) = ω =
∑

(t)

(t2 · z)#t3S(t1) =
∑

(t)

(t1 · z)#t2S(t3) = (t · z)#1 = 1#1

where µ : A#H⊗AA#H → A#H denotes the multiplication of A#H . Hence Ω

is a separability idempotent, i.e. A#H is separable over A. �

5.4. The following Corollary shows that for group actions or more generally for

actions of cocommutative Hopf algebras the separability of the smash product

and the projectivity of the module algebra coincide.

Corollary. Let H be a cocommutative Hopf algebra over R and let A be a com-

mutative left H-module algebra that is projective as R-module. The following

statements are equivalent:

(a) A#H is a separable extension of A.

(b) A is a projective left A#H-module.

(c) A contains an element of trace one.

Proof. (a) ⇒ (b) Since separable extensions are semisimple extensions and since

the A#H-linear projection A#H → A splits in A-Mod it also splits in A#H-

Mod. Hence A is projective as left A#H-module.

(b)⇔ (c) Follow from 4.8.

(c)⇒ (a) Follows from 5.3. �

5.5. (b) ⇒ (a) does not hold in general for bialgebras. For instance let S be

the multiplicative monoid (Z3, ·, 1) and consider the 3-dimensional commutative

cocommutative Z2-bialgebra H := Z2[S]. One checks easily that the counit ε :

H → Z2 splits as ring homomorphism and yields a decomposition H ≃ Z2×Z2[C2]

as Z2-algebras where C2 denotes the group of two elements. Note that Z2[C2] is

not semisimple as Z2-algebra and hence H is not semisimple and therefore also

not a separable extension of Z2. On the other hand the trivial H-module algebra

Z2 is projective as H-module.

Hence there exists a cocommutative finite dimensional bialgebra over a field

and a commutative module algebra A such that A is projective as A#H-module,

but A#H is not a separable extension of A.
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5.6. Analogous to the characterisation of separable Hopf algebras we can char-

acterise separable smash products.

Theorem. Let H be a Hopf algebra over R and A a left H-module algebra. If H

contains a left or right integral t such that ε(t) is invertible in A, then A#H is

a separable extension of A.

Proof. Let t be a right integral such that ε(t) is invertible in A and denote by

z = ε(t)−1 ∈ A the inverse of ε(t). Since ε(t) ∈ R1A ⊆ Z(A), z is a left and right

inverse of ε(t). Moreover it is easy to see that z is also a central element of A.

For all h ∈ H consider the following:

hz− ε(h)z = zε(t)[hz− ε(h)z] = z[h(ε(t)z)− ε(h)(ε(t)z)] = z[h1A− ε(h)1A] = 0,

Hence z is an H-invariant element. Thus S(t) · z = ε(t) · z = 1 holds. Let Ω

the element from the proof of 5.1 with respect to t and z. Then Ω is A#H-

centralising. Moreover

µ(Ω) = ω =
∑

(t)

(S(t2) · z)#S(t1)t3 =
∑

(t)

z#ε(t2)S(t1)t3 = z#ε(t) = 1#1

shows that Ω is a separability idempotent for A#H , i.e. A#H is separable over

A. �

5.7. One should compare the hypothesis of the last theorem with the (frequent)

assumption of the existence of |G|−1 in A in the theory of (finite) group actions.

Since t =
∑

g∈G g is an integral of the group ring Z[G] and ε(t) = |G| our

last theorem showed that the invertibility of |G| in A implies the separability of

A ∗G = A#Z[G] over A.

Also the presumable weaker condition that A is |G|-torsionfree allows to localise

A by the powers of |G| and obtain an algebra A′ where |G| is invertible. Thus

one can go over from A to a localisation A′ of A such that A′ ∗ G is separable

over A′. The same argument is indeed applicable to a H-module algebra A.

5.8. The condition of Theorem 5.6 is obviously fulfilled if ε(t) is invertible in R,

i.e. if H is separable over R. Hence we get the following extension of characteri-

sation of separable Hopf algebras.

Corollary. The following statements are equivalent for a Hopf algebra H over

R.

(a) H is a separable R-algebra.
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(b) A#H is a separable extension of A for any left H-module algebra A.

(c) Every left H-module algebra has an element of trace one.

(d) Every left H-module algebra A is a projective left A#H-module.
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