Pilot Study of the Effects of n-3 Polyunsaturated Fatty Acids on Exhaled Nitric Oxide in Patients With Stable Asthma

A Moreira,1,2 P Moreira,4 L Delgado,1 J Fonseca,2,3 V Teixeira,4 P Padrão,4 G Castel-Branco2

1 Department of Immunology, Faculty of Medicine, University of Porto, Porto, Portugal
2 Department of Immunoallergology, University Hospital São João, Porto, Portugal
3 Department of Biostatistics and Medical Informatics, Faculty of Medicine, University of Porto, Porto, Portugal
4 Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal

Abstract

Background: The anti-inflammatory effects of n-3 polyunsaturated fatty acids (n-3 PUFA) have been demonstrated both in vitro and in vivo. The results of epidemiological studies suggest that fish consumption has a beneficial effect on lung function and prevalence of asthma. However, data from intervention trials have not revealed a beneficial effect of n-3 PUFA supplementation in patients with established disease.

Objective: To study the effects of short-term n-3 PUFA supplementation in addition to maintenance therapy on exhaled nitric oxide in asthmatic patients.

Methods: A double-blind, placebo-controlled trial was undertaken in 20 women with asthma. Patients received either a combination of eicosapentaenoic acid and docosahexaenoic acid plus 10 mg vitamin E or placebo twice daily for 2 weeks. The primary outcome measure was the fraction of exhaled nitric oxide (FeNO) and the secondary outcomes were asthma control (score on the Asthma Control Questionnaire [ACQ]) and lung function (forced expiratory volume in 1 second [FEV1]).

Results: No significant differences were observed in FeNO, ACQ score, or FEV1 between patients receiving n-3 PUFA supplementation and those receiving placebo.

Conclusions: Short-term dietary supplementation with n-3 PUFA in women with stable asthma was not associated with statistically significant changes in FeNO, asthma control, or lung function.

Key words: Asthma. Airway inflammation. n-3 Polyunsaturated fatty acids. Eicosapentaenoic acid. Docosahexaenoic acid. Exhaled nitric oxide.
Introduction

There is currently a lack of consensus regarding the proposed association between reduced intake of n-3 polyunsaturated fatty acids (n-3 PUFA) and increased prevalence of allergic diseases [1-3]. Although preventive effects of n-3 PUFA supplementation in terms of allergic sensitization or inflammatory variables have been reported [4-7], data generated from intervention trials have failed to show meaningful improvement in clinical or functional asthma outcomes once the disease is established [8].

The aim of this study was to determine whether airway inflammation assessed by exhaled nitric oxide is improved by short-term dietary n-3 PUFA supplementation in stable asthmatic patients receiving inhaled corticosteroids.

Methods

Subjects

Adult women diagnosed with stable persistent asthma who attended the allergy clinic of University Hospital São João were invited to participate. Stable asthma was defined as the absence of asthma exacerbations requiring oral prednisolone or an increased use of inhaled corticosteroids in the previous 4 weeks, use of rescue medication no more than 3 times a week, and the absence of clinical indications for alteration of treatment. Persistent asthma was defined by current use of inhaled corticosteroids. Patients were excluded if they were smokers, took antileukotrienes, had any chronic diseases other than asthma and rhinitis, were pregnant, or if they did not take contraceptive measures. The study was approved by the hospital ethics committee.

Study Design

The study was a randomized, double-blind, placebo-controlled trial. General data were collected at the screening visit. After enrollment, at the baseline visit, subjects were randomly assigned to the intervention. Capsules of n-3 PUFA or placebo were labeled with study numbers according to a prepared blocked randomization list. Patients were allocated study numbers sequentially and, thus, randomly allocated trial supplement. The n-3 PUFA group (n=11) received 2 fish-oil capsules (Coolmar, Biopura, Lisbon, Portugal) containing a combination of 455 mg eicosapentaenoic acid (EPA) and 325 mg docosahexaenoic acid (DHA) plus 10 mg vitamin E each, taken once daily for 2 weeks; the placebo group (n=9) received 2 capsules of amide daily for the same period. The final visit was performed 3 days after the intervention. Compliance was monitored by counting returned capsules.

Outcomes

The primary outcome measure was the fraction of exhaled nitric oxide (FeNO) and the secondary outcomes included lung function and control of asthma. FeNO was measured using the NIOX system (Aerocrine, Stockholm, Sweden) [9]. Asthma control was assessed using the 6-item Asthma Control Questionnaire (ACQ) [10]. The ACQ was developed to measure the adequacy of clinical asthma control with a score ranging from 0 (good) to 6 (poor). Forced expiratory volume in the first second (FEV1) was determined by spirometry using a Vitalograph 2120 spirometer (Vitalograph Ltd, Buckingham, UK). A baseline Asthma Life Quality (ALQ) test [11] was administered. The ALQ test has a score ranging from 0 (good) to 20 (poor). Dietary intake was measured using a semi-quantitative food frequency questionnaire (FFQ) administered by a nutritionist and analyzed using Food Processor Plus software (ESHA Research, Salem, USA).

Statistical Analysis

Analysis was conducted on an intention-to-treat basis, with subjects defined as all randomized patients who took at least 1 dose of the intervention. The estimated sample size required to detect a 33% effect of the intervention using FeNO as the main outcome was 20 subjects [12]. Clinical characteristics of placebo and n-3 PUFA groups were compared by Student t test for continuous variables and proportions were compared with χ2 tests. Comparisons between baseline and final visits were made with paired t test. Comparisons between groups were made by covariance analysis.

The covariance analysis considers the initial value of the parameter as a covariate, allowing a better estimation of the effect of the intervention. Statistical significance was set at P < .05.

Results

Of the 23 patients screened and randomized, 20 were analyzed (Table 1). Three withdrew before taking any supplement, having indicated that they were unable to attend visits. No side-effects, such as bleeding or menstrual problems, were reported. Patient compliance was above 75% in all cases. No differences were observed between n-3 PUFA and placebo groups in terms of the change in FeNO (P = .373), FEV1 (P = .533), or ACQ score (P = .978) (Table 2). A significant increase in FeNO was observed in the placebo group (P = .041) and an improvement in ACQ score was observed in the placebo (P = .033) and n-3 PUFA (P = .021) groups (figure).

Discussion

In asthma, FeNO is used as an indirect marker of airway inflammation and is correlated with inflammatory biomarkers such as blood eosinophils, IgE level, and allergic sensitization [15]. Elevated levels of FeNO result from increased expression and activity of the inducible nitric oxide synthase (iNOS) in airway epithelial and inflammatory cells following stimulation by proinflammatory cytokines such as interleukin-1, tumor necrosis factor α, and interferon-γ [16,17]. However, the effects of n-3 PUFA on iNOS are unclear. In human osteoblastic cells, EPA prevented the increase in iNOS gene expression [18] while in rat vascular smooth muscle cells, DHA potentiated...
Table 1. Baseline Characteristics of the Patient Group*

<table>
<thead>
<tr>
<th></th>
<th>Placebo, n=9</th>
<th>n–3 PUFA, n=11</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>34 (24 – 44)</td>
<td>41 (37 – 46)</td>
<td>.222</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25 (19 – 31)</td>
<td>28 (20 – 36)</td>
<td>.553</td>
</tr>
<tr>
<td>Atopic, n (%)</td>
<td>6 (66.7)</td>
<td>6 (54.5)</td>
<td>.670</td>
</tr>
<tr>
<td>Inhaled corticosteroids, µg†</td>
<td>686 (274 – 1097)</td>
<td>1000 (486 – 1514)</td>
<td>.251</td>
</tr>
<tr>
<td>PUFAn–6:n–3, mean ± SD</td>
<td>8.7 ± 2.6</td>
<td>10.1 ± 2.2</td>
<td>.252</td>
</tr>
<tr>
<td>FeNO, ppb</td>
<td>20.4 (10.0 – 30.1)</td>
<td>27.6 (16.6 – 38.6)</td>
<td>.309</td>
</tr>
<tr>
<td>ACQ score</td>
<td>1.7 (1.0 – 2.5)</td>
<td>1.4 (0.8 – 2.1)</td>
<td>.488</td>
</tr>
<tr>
<td>FEV₁, % predicted</td>
<td>90.9 (75.9 – 105.8)</td>
<td>96.7 (85.4 – 108.0)</td>
<td>.478</td>
</tr>
<tr>
<td>AQL score</td>
<td>13.9 (11.6 – 16.2)</td>
<td>13.5 (10.9 – 16.2)</td>
<td>.222</td>
</tr>
</tbody>
</table>

*Data are shown as means (95% confidence interval) unless otherwise indicated. FEV₁ indicates forced expiratory volume in the first second; ACQ, Asthma Control Questionnaire; AQL, Asthma Quality of Life questionnaire; FeNO: fraction of exhaled nitric oxide; PUFAs, polyunsaturated fatty acids; BMI, body mass index.
†Budesonide equivalent dose. Groups were compared by χ² or t test where appropriate.

Because of the exploratory nature of our study, the number of patients could have been insufficient to establish statistical significance. Additionally, duration or dosage of the supplement may have been inadequate to achieve the hypothesized antiinflammatory effects. Higher ratios of n-6: n-3 PUFAs have been associated with an increased risk of asthma. However, our strategy—supplementation at a dose known to carry no risk of adverse events and over a short period of time—is more prone to increase compliance in real life. We restricted inclusion to women based on previous observations that the relationship between asthma measures and diet or obesity is sex dependent. Most all of the subjects were within the normal range for baseline FeNO, with values probably representing optimum FeNO levels, due to the current use of inhaled corticosteroids. It can be argued that the likelihood of a meaningful change would therefore be limited. However, the aim of our study was not to determine whether n-3 PUFAs supplementation would be better than inhaled corticosteroids in terms of exhaled nitric oxide, but rather to assess if any further benefit would appear from n-3 PUFAs supplementation in addition to regular maintenance treatment.

Previous studies failed to show any consistent effect of n-3 PUFAs on FEV₁. Doses from 200 to 3000 mg per day of EPA/DHA from 1 month to 1 year had no significant effect on lung function, while in 2 studies, 10 to 20 g per day of perilla-seed oil for 1 month in 14 asthma patients.

Table 2. Changes in Exhaled Nitric Oxide, Lung Function, and Asthma Control After Supplementation With n-3 PUFAs Compared to Placebo*

<table>
<thead>
<tr>
<th></th>
<th>Placebo, n=9</th>
<th>n–3 PUFA, n=11†</th>
<th>Placebo vs n3PUFA‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Post</td>
<td>Change† intervention</td>
</tr>
<tr>
<td>FNO, ppb</td>
<td>20.4 (10.0 – 30.1)</td>
<td>25.0 (12.3 – 37.7)</td>
<td>4.6 (0.2 – 8.9); P = .041</td>
</tr>
<tr>
<td>FEV₁, %</td>
<td>90.9 (75.9 – 105.8)</td>
<td>94.5 (75.9 – 113.0)</td>
<td>3.7 (-4.6 – 12.9); P=.336</td>
</tr>
<tr>
<td>ACQ score</td>
<td>1.7 (1.0 – 2.5)</td>
<td>1.1 (0.4 – 1.8)</td>
<td>-0.6 (-1.2 – 0.1); P = .033</td>
</tr>
</tbody>
</table>

*Data are shown as means (95% confidence interval). PUFAs indicates polyunsaturated fatty acids; FNO, fractional exhaled nitric oxide; ppb, parts per billion; FEV₁, forced expiratory volume in 1 second; ACQ, asthma control questionnaire.
†Paired samples t test; ‡Analysis of covariance, baseline value as covariate.
1000 mg per day of EPA/DHA for 1 year in 12 asthma patients [27] improved FEV1. Seven of our patients had an FEV1 below 80% of predicted and 5 had an ACQ score above 2, leaving little room for improvement in these measurements.

In this pilot study, we failed to show any clinically meaningful or statistically significant effect of n-3 PUFA supplementation in women with asthma. Trials involving larger numbers of subjects over a longer period of time are needed to fully assess the effect of EPA/DHA on asthma.

Acknowledgments

We thank the patients who participated in the trial. The authors are grateful to Dr Renata Barros for help with data collection and Professor Tari Haahtela for critical comments on the manuscript. This study was supported in part by a grant from the Portuguese Health Ministry (Comissão de Fomento da Investigação em Cuidados da Saúde, Ministério da Saúde).

References


