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ABSTRACT

This paper presents the capabilities provided byn&leRegression Trees - a hybrid non-parametric
regression technique - to on-line dynamic secassessment and monitoring of isolated power sysiéths
high penetration of wind power. In the applied t@glue, to avoid overfitting a pruning algorithmuised to
extract the security structure. This approach, tviiscdemonstrated on the electrical power syste@refe
island, proved to extract simple, interpretable] egliable security structures. A description of gecurity
problem and the data set generation procedurenaledied. Comparative results regarding performan€es
Regression Trees and Decision Trees are presendetistussed.

INTRODUCTION

In isolated power systems, like the ones operatinigrge islands, electric power is usually proaudsy
Diesel units and gas turbines, resulting in higbteaue to fuel imports and transportation. Iné¢hgstems the
production of electric energy from wind presentstipalar interest, especially when important wingesgy
potential exists, which is usual in many islandeerEfore, in these cases, significant savings of/eational
fuels can be obtained by a high wind power pernetraHowever, it is important to ensure that thecteic
power system operation will not be adversely affddiy an increased connection of this volatile fofrenergy.

The main problems faced by isolated electrical pogystems are related to system security, contirol o
frequency and management of system generationvees@& common aspect to all these problems is the
requirement to ensure that sufficient reserve dapagists within the system to compensate for suidibss of
generation. Thus, mismatches in generation and éatdor unstable system frequency control mighd [ea
system failures. This type of instability is ternfeequency instability and depends on the abilftthe system to
restore balance between generation and load folpaisevere system disturbance with minimum lodsauf
(Kundur et al., 1997). Generally, frequency indigbproblems are associated with inadequaciegjungnent
responses, poor coordination of control and prateaquipment or insufficient generation reserve.

In order to guard isolated power systems againsséen disturbances and retain acceptable selmwilgs,
on-line dynamic security assessment functions camepvery valuable for their operation. Such fumes have
been developed and are integrated within an addanoatrol system tailored to the needs of smallaisadl
power systems with increased wind power penetra#iopilot control system has been installed on @reek
island of Lemnos [6], an isolated Diesel-wind systgith a peak load of approximately 10 MW. In thistem,
dynamic security assessment and monitoring arentakee of by two modules based on Decision Treés an
Artificial Neural Networks. Decision Trees are ugedcheck security for the operating schedules gseg by
the economic dispatch module, with respect to charistic wind power fluctuations. Neural Netwokkg used
to give a real-time quantitative security evaluatiof the current operating state system, by emmgathe
expected frequency deviation to the pre-define wdistiurbance. In this way, the wind power penatratian be
increased without jeopardizing the system secluifitya more detailed description of the control sysaind the
dynamic security assessment modules see (Pecas kbpk, 1994), (Hatziargyriou et al., 1995) aéH [

The control system developed for small isolated grosystems is currently being extended within thene
of the European R&D JOULE (JOR3-CT96-0119) projctover the needs of larger isolated systems with
high wind power penetration. Larger systems areasherized by several conventional fossil-fuellethgration
plants and meshed transmission networks. The dynbetiavior performance of these systems dependmhot
on the total load and the size of the conventian#k in operation, but also on their location #imelresponse of
the available spinning reserve [6].

The objective of this paper is to present the ciifieb provided by Kernel Regression Trees - abrid/
non-parametric regression technique presented bgoTim 1997 - to on-line dynamic security assessraed
monitoring of these systems. The security evaluasiibuctures provided by this approach are beitegmated



into CARE [7], the advanced control system thatsaitm achieve optimal utilization of renewable ewerg
sources, in a wide variety of medium and large siodated systems with diverse structures and dpgra
conditions. The security evaluation structures ti@at be obtained provide a classification on dyoasacurity.
Moreover, they also obtain the degree of secuwityich, in the Crete studied case addressed inpthier, is
evaluated by emulating the expected minimum vafugystem frequency and maximal rate of frequen@nge
for a selected disturbance.

It is shown that based on the Kernel Regressioe Ppreposed technique, simple, interpretable andhbiel
security structures can be provided. There areideresd two approaches to design the security strest
differing in the way applied to avoid overfittinggblems. The first one fights overfitting by applgi directly
stop-splitting rules during the growing algorithiintiee tree structure. This first technique, altHoagoiding the
tree to grow until having only pure leafs, does looks for the right sized tree. In fact, much werks made
centered on finding the appropriate stop-splittintgs for generating the tree with the right size. (with a
trade-off betweerbias and variance, where many variants were invented and testeeifizm et al., 1984).
From this work it was concluded that searchingtifa right stopping rule was the wrong way of logkat the
problem. A more satisfactory procedure was fourd tlonsists of pruning instead of stopping. Fos thason a
pruning algorithm, which is described by Breimarakt(1984), was also applied to design the traegctire.
Regarding performance of Regression Trees and DaciBrees, it is shown that by applying the pruning
algorithm to design the Kernel Regression Treectires, besides obtaining reliable security stmestpit is also
possible to achieve simpler security rules. Thét lasue is considered highly relevant when apglyirachine
learning techniques to medium and large power systdloreover, Kernel Regression Trees can provath b
security classification and evaluation of secudggree, whereas Decision Trees can only performarisgc
classification.

THE STUDY CASE SYSTEM

The study case system is a realistic model of theep system of Crete, projected for the year 2000.
comprises several types of oil-fired units and asmee 150 kV transmission network. The conventional
generation system consists of two major power plaith twenty generating units installed. These@f&team
units of total capacity 103.5 MW, 4 Diesel unitshwfi8 MW, 7 Gas turbines with 185 MW and one corabin
cycle plant with 132 MW. The plants are locatedrneahe major load points. The system peak loatisal to
360 MW. The annual peak load demand occurs on gewitay and overnight loads can be assumed to be
approximately equal to 25% of the correspondindyda¢ak loads. The base-load is mainly suppliedHzy
steam and also by the Diesel units. The Gas tunlmits normally supply the peak load at a high mgrcost,
which increases significantly the average coshefdlectricity being supplied.

A total of 11 Wind Parks (WPs) consisting of 160nd/iTurbines (WTs) with an installed capacity of mor
than 80 MW are or will be installed (have been appd) in Crete by the year 2000. These WPs will be
connected at the MV (15 or 20 kV) network, whichl Wwe properly reinforced by new HV/MV substatiottisis
noted that with few exceptions, all WPs will betalked at the eastern part of the island, whicls@nés the most
favorable wind conditions. As a result, in casdanfits on some particular lines the majority of thied parks
will be disconnected. Furthermore, the protectiofithe WTs might be activated in case of frequerayations,
decreasing additionally the dynamic stability ok tBystem. This might be caused by wind fluctuations
conventional unit outages, faults or other distughtonditions.

Extensive simulations on the power system modekHasen performed using EUROSTAG software by
NTUA, as described in Hatziargyriou et al. (1998)s shown that for the most common wind powerliations,
the system remains satisfactorily stable, if sigfit spinning reserve is provided. On the otherdhan various
short-circuits and conventional unit outages, y&tesn frequency undergoes fast changes and migbh neery
low values. In any case, the dynamic security efdfistem depends critically on the amount of spopnéserve
provided by the conventional machines and the mespof their speed governors. As an example, Figure
shows the change of the system frequency in twierdifit dispatching conditions (1- fast thermal suritat
provide fast spinning reserve; 2— slower machinest tprovide slow spinning reserve), following the
disconnection of three wind parks producing appnately 30 MW.
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Figure 1 -Frequency change due to wind power loss

CREATION OF THE LEARNING & TEST SETS

The application of “learning from examples” techmég, such as the Kernel Regression Trees (KRT#) dea
within this paper, extract information from a largeta set of pre-analyzed operating states of a&pewystem,
screened off-line via massive random sampling. ther Crete case study, the generation of the datwas
developed by National Technical University of AteegfiNTUA), within the framework of the CARE project.
Each sampled scenario was pre-analyzed using dytieabtool of dynamic simulation — EUROSTAG soéire
— to extract the minimum value of system frequerigy, and maximal rate of frequency chand&dt,,, for
each pre-defined disturbance. The generated daf®Sg was splitted in two sub-sets: a learning(k&) and a
testing set (TS). The learning set was requireéxtoact the knowledge needed to derive automatiarig
evaluation structures, whereas the testing setra@sired to estimate their accuracy. Both condist targe
number of samples covering all possible stateshef gower system under study in order to ensure its
representativity. Each sample is characterized byeetor of pre-disturbance steady-state variabteded
candidate attributes, to define the system opeayagtaint (OP), which is labeled with the securitgigesf,, and
df/dt, . Candidate attributes can be either directly messi{powers, voltages etc.) or indirectly calcudate
qguantities (wind penetration, spinning reserve)etthe quality of the selected candidate attribwad the
representativity of the LS and TS are very impdrtlor the successful implementation of the automati
structures.

For the creation of the global data set of Crefayge number of initial operating points (OPs) wasained
by varying randomly the load for each load bushiz&, wind power for each wind park and the wind nrarg
These variables were assumed to follow normalidigions around three operating profiles.

For each one of the 11 load busbars and each otte @df aggregate wind parks in operation, a peatiob of
approximately+10% was applied around each one of the three atefeered operating profiles. A dispatch
algorithm approximating actual operating practifmowed in the control system of Crete was appliect in
order to complete the pre-disturbance OPs.

For each one of the produced OPs a number of pestigiurbances has been simulated, where EUROSTAG
was used to obtain the system dynamic behavior. Major disturbances have been finally selectedsd lage:

a) Outage of a major gas turbine;

b) Three-phase short-circuit at a critical bus neantind parks.

These disturbances were selected according tayutiliterion. In fact, a unit disconnection is &duent
event and a tree-phase fault, although rare, évere event that can occur during stormy conditions

For each OP, botff,, and df/di,.« security indices were checked against the valhes activate the
frequency relays that protect the WPs, and the @&e classified as “secure/insecure” accordinghythiis
paper the variable used to verify security wasrttieimum frequencyf., the system experiments after each
disturbance, where the security criteria used was:

If frin < 49 Hzthen the OP is “insecure”;
else the OP is “secure”.

For the vector of candidate attributes that cherams each OP, 22 operating parameters were egject
including:
« Total active and reactive load} P and> Q, ;

«  Total conventional active generatiom-F ;
« Active and reactive power in the wind parkSy, ZPW,ZQW ;

+ Spinning reserve and active generation in the cutweal power plants SR, P, and) P, ;



Reactive generation in capacitor bank3-Q_,,
Wind power penetration WP=>R, / >R ;
Wind margin -WM => SR/ YR, .

Using the approach described in this section, 2a6&eptable samples have been obtained, which were
divided in the two sets mentioned before, (by segpd samples to the LS and 1 to the TS). The LSpcises
1844 samples and the TS 921 samples. This partitammade having in mind that if the majority of 1S is
used for testing purposes in order to ensure gstithates, then the quality of the extracted segwstitucture
will be reduced. On the other hand, if the majootyhe DS is used for training purposes, thentdiséing errors
will confer a wrong idea about the quality of thesijned structure. According to Breiman et. al @)38e TS is
frequently taken as approximately 1/3 of the tatinples, where the rest of samples belong to thdrLthe
context of the pruning regression trees algorithorgo (1998) claims that the best results are obthusing the
following method for deciding the size of the TS:

#{TS} = min(03x#{DS},1000) (1)

APPLICATION OF KERNEL REGRESSION TREES

As the Kernel Regression Tree (KRT) approach isdeipplied for the first time in this field, a shor
description of the main stages of the method arkeidied in the next paragraphs. The first applicatbRTs in
dynamic security assessment is due to Wehenkebj19@d recently an application of a KRT approactihie
voltage stability assessment problem was recentiggmted by Pecas Lopes et al. (1998).

The Kernel Regression Tree (Torgo, 1997) is anibyaigorithm that integrates recursive partitioning
Regression Trees (RT) with Kernel Regression (Kd®aling with continuous goal variables (i.e. regias
problems). The regression problem consists in oltgia functional model that relates thetput ywith the
inputs a, &, ..., & (OP candidate attributes), where theputy (denominate as goal variable) is, in this case, a
numerical value of any electrical security indextta power system. For the problem under analisssecurity
index adopted is the minimum frequendy,z (Hz).

The design of a RT (Breiman et al., 1984) consistthe extraction of interpretable security ruléte
existing RT approaches differ in the predictingdiimn used in the leafs. For instance, Breiman 4)3&es a
mean value of, whereas Karalic (1992) and Quinlan (1992) usaeal regression function. Kernel Regression
models (Watson, 1964; Nadaraya, 1964), which isom-parametric statistical methodology, provide guit
opaque models of the data, but, on the other haredable to approximate highly non-linear functioByg
integrating this regression procedure in the tesfsl we can obtain a model that keeps the effigieand
interpretability of a RT, but with a better accuraby increasing the non-linearity of the functiamsed at the
leafs. Moreover, KRTs achieve significantly bettmrcuracy than RTs with smaller trees. By doing this
hybrid model provides a better tradeoff betweerusaxy and simplicity than RTs, which is considetaitghly
relevant in real life applications. This last pradgecan be seen in this paper, in the results nbthfor the Crete
power system.

Design of aKernel Regression Tree

The design of a KRT involves two stages:

= Design of the regression tree (RT);
= Definition of the kernel regression model to makediction in the tree leafs.

Starting with the learning set (LS), the desigradRT consists in explaining as much as possiblerthan
squared error of the security indgxthere observed. This corresponds to divide thepkesof the LS into
disjoint regions, in such a way that in each redfmsecurity indey is as constant as possible. This partition is
defined by the leafs of the designed tree. In pigiper there are considered two approaches to deéwgRT,
differing in the way applied to avoid overfittinggblems. The first one fights overfitting by apjpigi directly
stop-splitting rules during the growing algorithrhtbe RT. This first technique, although avoiditg tree to
grow until having only pure leafs, does not looks the right sized tree. In fact, much work was enadntered
on finding the appropriate stop-splitting rules f@nerating the tree with the right size (i.e. wathrade-off
betweenbias and variance, where many variants were invented and testediifizm et al., 1984). From this
work it was concluded that searching for the rigfiopping rule was the wrong way of looking at thebpem. A



more satisfactory procedure was found that consfgtsuning instead of stopping. For this reasdossqguently
a pruning algorithm, which is described by Breinetual. (1984), was applied to design the RT.

Design of a RT with Stop-Splitting Rules
In this approach, the design of a RT is determimethe following two issues:

« the optimal splitting test;
« the stop-splitting rules.

Starting with the root node, which correspondsh® ItS, the growing of the RT is made by succesgivel
splitting their nodes. The splitting of a node &fprmed by a test defined as:

{a,(sample) >u, }? (2)

whereu, is the optimal threshold value of the chosen adatdi attributea,. By applying this test to all the
samples in the node, two successor nodes are dyegieh correspond to the two possible instandd¢beotest
{a,(sample) >u, } and {a,(samplg <u, }. The split of each node must be performed accgrdin an

optimal splitting testwhich corresponds to the splitting test that pies a maximum amount of information.
Considering the mean value yhs the predicting function to use in the leafs, dptimal splitting tests” of a
node”t” is the one that minimizes the varianceyf the two successor nodés” and”tg’ resulting from the
split, i.e. that maximizes:

25 (y),, =s2(y), P xs2(y), —Pa xs*(Y), 3)
where sz(y)t is the variance of at the learning samples stored in nétle, P, and P; are the proportion of

learning samples at the left and right successdesioands®( y), and s?( y), are the variance at the left and
right successor nodes. This splitting rule is the described by Breiman et al. (1984) and emplay&ART.

The procedure continues splitting the created sscrenodes, until a stop-splitting criterion is riwetall the
non-split nodes. This criterion used was the oneciilzed by Luis Torgo (1997), being defined by tive
stop-splitting rules:

- Rule I It is not possible to further reduce varianceyofn a statistically significant way. This
corresponds to verify if a minimum number of leagnsamples\iin, has been reached in the node;

- Rule 2 The variance oy has been sufficiently reduced. This correspondetdy if a minimum value
S(y)min as been reached, which corresponds to a percetual of the variance in the root.

Predicting with Kernel regressors

Given a new unseen operating pdita prediction for its security index is obtaingdapplying a regression
model to the learning samples stored in the RT tieaf verifies theQ operating conditions. Kernel Regression
models (Watson, 1964; Nadaraya, 1964) make preditly a weighted average of the responséthe form:

samples
z K,[D(Q.0R)]x y,
y(Q) = i:ilmples (4)

2 K:[P(Q.OP)

where D(Q,OP)is the distance function (measures normalized mistabetween samples in the candidate
attributes hyperspacel, is the bandwidth value ant{h[x]= K[x/ h], being K(.) the Kernel function. The

prediction is obtained using the samples (also aémated byneighbor$ that are "most similar" t®. This
similarity is measured by means of the distancectfan. The Kernel function estimates the weighteath
neighbor, given more weight to neighbors that azarest toQ. The design of the kernel regression model
includes the choice of the distance function, thadwidth value, and the kernel function. In the lenpented
model it was used an Euclidean distance, a k-neasghbor (KNN) rule to define the bandwidth, aad

GaussianK(d) = e to define the kernel function. KNN method sets tiaadwidth valuéh as the distanc®

to the k-nearest neighbor @ It also sets that only the k-nearest neighbolisb@iused to make prediction.

Kernel regression, and generally local modeling, loa very sensitive to the presence of irrelevaatures,
and so weighing can help to reduce this influeffa@do, 1997). Atkeson et al. (1996) claims that¢heice of
the kernel function is not a critical design issas,long as the function is reasonably smooth. & laeghors
provide an extensive list of alternative kerneldiimns and discuss some of their merits.




Design of a RT with Pruning Algorithm
In the implemented KRT algorithm, it was applied gfruning procedure presented by Breiman et a84),9
comprising the following stages:

= Design a very large regression tré&&[ . , which is supposed to overfit the LS.

= Generation of a sequence of pruned trees with detig complexity, RT, = RT, >...>root where

RT, <=RT,,,, by progressively prunindRT,,, upward in the “right way” until being reached treot.
Note that a subtreRT; of RT is referred as a pruned tree RT if root(RT, )=root(RT), which can be
denoted byRT > RT,.

= Selection, among the sequence of pruned t{Ré’s} ={RT1 ,R1'2,...,root} the right sized one, according to

the minimization of an accurate estimation of tiue fpredicting error of the corresponding KRTstites.

ax

To grow RT,,,, one applied the previously described design mphoeethat exploits only the stop-splitting

rules. The size of this initial tree is not crifies long as it is large enough to overfitt the T8en a selective
pruning process is applied, that generates a rabmmumber of pruned trees BT __ , with decreasing size,

max ?
such that each subtree is the “best” pruned treitsisize range. To select the “best” pruned trewirimal
error-complexity criterionis used. Considering thadtis the binary tree structure of a regression Régthe
error-complexity mease of RTis defined by:

MSE'%a (RT) = MSE(RT) + a x[T| (5)

whereMSE-S(RT) (the error ofRT) is the mean squared error of R& when applied to the learning set, used to
estimate the predicting error of tRE by taking as predicting function in the leafs tothe mean value of ‘ﬂ

(the complexity ofRT) is the number of leafs in the tree, and (the penalty of the complexity) is a real
number= 0. Starting witha=0, while a runs through a continuos value, the pruning pm@eeduces a finite
sequence of pruned regression tredg RT,, ..., rootwith progressively fewer terminal nodes. This écdéuse
eachRT(a) is the minimizing subtree for a range of valuesrpind therefore ag increases it continues being
minimizing until a jump pointa’ is reached, where a new smaller subtReHd') becomes minimizing. The
pruning process stops when the minimizing subtezmimes the root a2 Ty,q

Among the sequence of pruned trees {RT}, the atboriselects the right sized one according 10SE rule
Following this rule, the chosen tree is the smalbeg such that:

MSE"®(KRT, )< MSE*(KRT, )+ SE (6)
where MSE™*(KRT, )= min MSE>(KRT)
0 RTO{RT}

The MSEYKRT) of eachRT, is the estimation of the predicting error of KRT; structure (i.e., structure
composed by the binary regression tReewith a kernel regression function in the leafsameed by the mean
squared error that is obtained when applied to tdsing set.SE is the standard error estimation of
MSEYKRT,), which is used to define the uncertainties of M&E YKRT,o) estimation. Note that the selection
of the right sized tree must be done accordin@péaniinimization of an accurate estimation of the fpredicting
error of the KRTs, whereas the application of thé&SE rulemust be used instead of the minimization of
MSEYKRT). One of the reasons is because the minimum positidISE SKRT) might be unstable. In fact,
small changes in parameter values, or even in hevL$ and TS result from randomly separating therbight
cause large changes m for the tree that minimizeSISE KRT) By applying thel SE ruleit is possible to

reduce that instability. Another reason to applig ttule is that it allows choosing the simplest tree whose
accuracy is comparable to the one that minimi&E YKRT), and thus obtaining a better tradeoff between
comprehensibility and accuracy.

NUMERICAL RESULTS

This section presents the results obtained withptioposed Kernel Regression Tree approach, to merfioe
dynamic security assessment of the Crete powerrsysComparative results regarding performances of
Regression Trees (RT) and Decision Trees (DT) eesegmted and discussed. Because of lack of spalgethe
results obtained for the goal varialfig, regarding a three-phase short-circuit disturbameepgesented in this
document.

As previously referred, the predicting accuracytioé results was estimated by using an independent
pre-analyzed testing set (TS) with 921 samplesalt measured through the classification errors:



TSsamplesncorrecty classifiedoy S}
#{TSsampIe]s

Global Classification Erro(S) = # x1009% @)
#{"secure’TSsampIesIassifieoby Sas’ insecure}'

False Alarm Err0|(S): #{"secure"l'Ssamme]S

x100%, 8)

#{"insecureTSsampleslassifiecby Sas'secure}

Missed Alarm Erro(S)= #{..insecureq—sgample]s

x100% (9)

and through quantifying mismatches relatively te tlue goal valueg where the indicators used were the mean
absolute errorNJAE) and the root mean squared er®MSH, i.e.:

__1 _ _ _[2 _ :
MAELS) = N TSiommrs fs(OFi”|'RMSES)‘\/N(Ts)o%n(syi fs(OR)) (10)

In egn. (11), fs(OR ) is they value assigned by the security structBr® the operating point i of the TS,

whereasy, is its true (pre-computed) value yof

Regarding the sequence of KRT structures genetaethe pruning algorithm previously explained, the
graphical evolution of their predicting error (meaxl by theRMSE as a function of their complexity
(measured by |T| = number of nodes of the treetsire) is presented in Figure 2. Figure 3 presartsom of
that evolution, being also presented fhvedicting error/complexityevolution for the set of generated RT
structures.
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Figure 3 — Comparing accuracy and complexity betv€RT and RT (Short-circuif;y,)

Figure 2 shows that starting with the most splittie® (with 3341 nodes), as the tree initially @éase in
size, the KRT predicting error decreases slowlerTat the tree with 205 nodes, it hits a minimuithiw in a
valley region whereas the KRT predicting error bps and downs. From this region forward, as the gets
smaller the KRT predicting error increases rapidy. applying thel SE rulethe tree with 11 nodes was
selected as the right sized tree. In this figiRTzsrdenotes the KRT structure that results from thhtrsized
tree, whereaKR Tyt denotes the KRT structure that results from the that minimizeRMSE

As we can see in Figure 3, KRTs achieve signifigadmetter accuracy than RTs with smaller treesdBing
so, this hybrid model provides a better tradeofileen accuracy and simplicity than RTs.



The performance evaluation results obtained fodR&@, RT and DT approaches are presented in Table 1
The Decision Tree results, obtained with an indctnference procedure, are presented only for eoatiye
purposes. A more complete description of the promedsed to derive DTs for this problem can be doar[5].

Besides the predicting errors, Table 1 also presdrg K value used to define the bandwidth in thenél
regression model and the number of nodes of therypimnee structures. Regarding the performancdtsesiithe
KRT approach, two security structures are addresbedRTzstand theKRTyur. Regarding the performance
results of the RT, the addressed RT structure @satie that resulted from applying the pruning athor
previously described, where it was considered teamvalue of/ as the predicting function to use in the tree
leafs. This structure is denoted Rizst

o KRT gst KRT vt RT rst DT
S (11 Nodes; K=7) [(205 Nodes: K=7) | (33 Nodes) | (23 Nodes)
MAE 0.033L7 0.02495 0.05085 -
RMSE 0.12188 0.09699 0.12240 -
Global 2.71% 2.39% 6.51% 2.17%
False Alarm 2.38% 1.83% 7.88% 1.87%
Missed Alarm 3.20% 3.20% 4.53% 2.58%

Table 1 — Performance Evaluation Results (Shoctiiff, )

Figure 4 presents the tree structure of the exttd€RTzsrsecurity model, whereas the tree structure of the
extractedDT can be observed in Figure 5. NodeKRTzstare of two types: non-terminal and terminal nodes
(leafs). In the root node (node number 1) we inetuthformation related with the total number of é8nples,
the variance in the LS(y) value) and the splitting test. In Figure 4 nonvtiemal nodes present the node number
and also contain information related to the splittiest. In the leaf nodes we can get informatéated with the
node number, the number of learning samples stiire@d (N), and the meari/o and variances{(y)) of the
security indexy of those samples. To perform classification ordgdal on these structures one can assigned a
given degree of security to each leaf accordingl;h'eg/ value in the node. For the DT presented in Fidgure
each node presents the following: node number; eurob learning samples stored in the node, safatip r

(= #{"secure” learning samples stored in the no#fiarning samples stored in the node}) and thétsp) test
for non-terminal nodes. Leaf nodes with a safetipfarger than 0,5 correspond to “secure” nodes.

Kernel Regression Tree por

? (KRTggr)

1| N=1844

$(y) = 0.306514

Pg1>37.6 MW

2 | N=662

=49.802845
s(y) =0.003372

13 | N=623 14 | N=69 15| N=8

¥ =48.99221 Y =48.420246 =46.216248
s2(y) = 0.019686 sy) =0.07492 s2(y) = 0184591

Pg1>23.35MW

24| N=24 25 | N =458

Y =47.062916 ¥ =48.897911
s'(y) =0.431058 | | s(y) = 0.003651

Figure 4 — Tree structure of thk&kTrsrobtained for: [Short-circuify,]




Decision Tree

1| N=1844

(DT) 0.5834
WP <= 37.85 %
yes ‘ no
\Z v
2| N=1425 ?‘N:MQ
0.7558 0.0000
Pg1 <= 37.2 MW LEAF
I
v v
ﬂ N =763 5| N =662
0.5439 1.0000
WP <= 25.89 % LEAF
I
\Z v
6|N=274 7| N=489
0.0766 0.8057
IP, <= 148 MW P, <=148.8 MW
I
v v
8|N=33 9| N=241 16 [N = 439 17 N =50
0.4242 0.0290 0.8679 0.2600
Pg3 <= 24.1 MW P, <=148.8 MW SR1<=11.2 MW DEADEND
10N=13 11N =20 12 [N =57 13N =184 18N =378 19 N =61
0.0000 0.7000 0.1228 0.000 0.9550 0.3279
LEAF DEADEND 2P, <= 46 MW LEAF SR1 <= 8.6 MW DEADEND
14|N=39 15N =18 20N=3 21|N=375
0.0000 0.3889 0.0000 0.9627
LEAF DEADEND LEAF WP <=34.8%
22 |N =341 23N=34
0.9883 0.7059
LEAF DEADEND

Figure 5 — Tree structure of tBE obtained for: [Short-circuifp;.]

The scatter plot of the testing samples in terrtheir true value oy — y(TS)values — and obtained estimated
value is presented in Figure 6a for the extrad{®Iist structure and in Figure 6b for the extractRthst

structure.
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Figure 6 — True and predicted values obtained KRfzsrandRTrsrfor the TSsamples (Short-circuify,i,)

Compar ative Assessment

From the results obtained with the several apprescime can derive the following main conclusions:

By selecting the kernel regression tree (KRT) tleaifies thel SE rule instead of choosing the one that

minimizesMSE a significant reduction on the complexity of #adracted KRT structure was obtained
(reduction from 205 to 11 nodes), keeping almostsidime accuracy.

The Kernel Regression Tree approach is able toigosecurity classification results and emulatién o

the numerical security indefy,, in a coherent way and with good accuracy. Besi&S[s provide
simple interpretable security rules that can bepsatb by operators in the control rooms to help them

operating the system. Namely, by assigning the maare 9 as the predicting function to be used in

the leafs of the KRT structure presented in Figreegarding the expectdg;, that results from the
short-circuit disturbance the following securityerean be extracted for the stated study case:



If Pg, >37.1MWthenthesystenis" secure”
Elsethesystenis" insecure"

- Regarding the Regression Tree (RT) approach, KdRegression Tree (KRT) approach was able to
provide security structures with better accuraay simplicity.

- Regarding the Decision Tree (DT) approach, KRTsw&tbto design a classification structure with
comparable performance but with a simpler structwieich makes easier any interpretation of the
phenomena and of the influence of the relevantrparers. KRTs have the advantage of producing
simultaneously a classification structure and givihe degree of robustness of the system through th
predicted value of;,.

CONCLUSIONS

This paper described the application of a hybridchirae learning approach oriented to deal with the
evaluation of the dynamic security of a medium gipgver system. The security structures extracted this
approach will be integrated in the dynamic secusggessment module of the advanced control systehe o
Crete island, helping to identify the operating ditions and parameters, namely wind power penetrathat
lead to a less robust operation of the system. @oatipe results regarding performances of othemsady
known and applied machine learning techniques ssegnted and discussed.
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