
FACULTY OF ENGINEERING OF THE UNIVERSITY OF PORTO

Towards Live Refactoring to Patterns

Carlos Eduardo da Nova Duarte

Master in Informatics and Computing Engineering

Supervisor: Prof. Ademar Manuel Teixeira de Aguiar

Company Supervisor: José António Silva

July 25, 2022

© Carlos Eduardo da Nova Duarte, 2022

Towards Live Refactoring to Patterns

Carlos Eduardo da Nova Duarte

Master in Informatics and Computing Engineering

Approved in oral examination by the committee:

Chair: Prof. Filipe Alexandre Pais de Figueiredo Correia

External Examiner: Prof. António Manuel Ferreira Rito da Silva
Supervisor: Prof. Ademar Manuel Teixeira de Aguiar

July 25, 2022

Abstract

Refactoring enhances the design of existing code while maintaining its original functionality, im-
proving its quality while decreasing maintenance costs. Practitioners do not always refactor de-
spite the advantages, especially if unaware of refactoring opportunities. Moreover, if the developer
is not comfortable with the process, it can cause considerable slowdowns and dirty code, ultimately
decreasing productivity.

Live Software Development is an idea that aims to improve the liveness of SDLC1 activities,
for example, by making the development environment more informative, responsive, and immedi-
ate. Live Refactoring, concretely, incentivizes practitioners to refactor more often by automating
the environment’s refactoring capabilities, providing feedback on quality attribute enhancements,
code previews, and automatic suggestions.

Currently, IDEs2 only support the most popular refactorings. Specific organizations or frame-
works might have their own refactoring needs and processes, which can also benefit from the
liveness. While IDEs usually provide refactoring extensibility APIs3, creating a new refactoring
plugin has a very steep learning curve, potentially translating into significant time investments.
Additionally, multiple refactorings might have patterns in common, and replicating the same be-
haviors over different refactorings is counterproductive and may introduce bugs.

This dissertation aims to improve development environments by making the refactoring plugin
creation processes more automatic and reusable. Refactoring plugins are built by selecting the
desired, auto-generated behavior modules featuring Live Refactoring capabilities. The user can
focus on orchestrating modules instead of writing low-value boilerplate code. An internal DSL4

was created to allow the development of said tools, which was validated by performing a set of
controlled experiments with programmers of varying maturity.

Ultimately, this work intends to improve the refactoring plugin creation experience and assess
if the proposed solution can help novice and experienced practitioners enhance their development
experience and productivity, leading to fewer bugs, time savings, and better code quality.

1Software Development Life-Cycle
2Integrated Development Environment
3Application Programming Interface
4Domain-Specific Language

i

Resumo

O processo de Refactoring aperfeiçoa o design de código já existente mantendo a sua funcionali-
dade original, resultando numa melhoria da sua qualidade e, ao mesmo tempo, numa diminuição
dos custos de manutenção. Apesar das vantagens, os programadores nem sempre aplicam refac-
torings, especialmente se não tiverem noção das oportunidades existentes para o fazerem. Para
além disso, se o programador não estiver confortável com o processo, este processo pode causar
atrasos significativos e código "sujo", que, ultimamente, resulta em quedas de produtividade.

O Live Software Development é uma ideia que pretende melhorar a vivacidade das atividades
do Ciclo de Vida de Desenvolvimento de Software, contribuindo para tornar os ambientes de de-
senvolvimento mais informativos, responsivos e imediatos. O Live Refactoring, concretamente,
incentiva os programadores a aplicarem refactorings mais frequentemente através da automatiza-
ção das capacidades de refactoring do ambiente, providenciando feedback na melhoria de atributos
de qualidade, pré-visualização de código, e sugestões automáticas.

Atualmente, os IDEs 5 apenas suportam os refactorings mais populares. Organizações es-
pecíficas ou frameworks podem ter as suas próprias necessidades e processos de refactoring, que
também poderiam beneficiar de vivacidade acrescida. Apesar destes IDEs normalmente ofere-
cerem APIs 6 de extensibilidade de refactorings, o processo de criação de um plugin de refactoring
possui uma curva de aprendizagem muito acentuada, o que pode traduzir-se em investimentos de
tempo significativos. Adicionalmente, vários refactorings podem ter padrões em comum, sendo
que replicar o mesmo comportamento ao longo de vários refactorings é contraproducente e pode
introduzir erros.

Esta dissertação tem em vista a melhoria dos ambientes de desenvolvimento de forma que o
processo de criação de plugins de refactoring se torne mais automático e reutilizável. Os plugins
são construídas através da seleção dos módulos comportamentais desejados, que são automatica-
mente gerados, possuindo características associadas ao Live Refactoring. Desta forma, o utilizador
pode-se focar na orquestração de módulos ao invés de escrever código de base com baixo valor.
Uma DSL 7 interna foi criada para permitir o desenvolvimento desses plugins, a qual foi validada
através da realização de várias experiências controladas com programadores de variados níveis de
maturidade.

Por fim, este trabalho pretende melhorar a experiência de criação de plugins de refactoring e
avaliar se a solução proposta é capaz de melhorar a experiência de desenvolvimento e produtivi-
dade tanto de programadores novatos quanto experientes, conduzindo a menos erros, poupanças
de tempo, e melhor qualidade de código.

5Ambiente de Desenvolvimento Integrado
6Interface de Programação de Aplicação
7Linguagem de Domínio Específico

ii

Acknowledgements

First, I would like to thank my supervisor, professor Ademar Aguiar. It really was a pleasure
working with you to create this dissertation, which actually began half a year before the start of this
academic year. Since our initial brainstorming meetings you were always supportive, enlightening,
and reachable. Moreover, your cheerfulness made it much easier to finish this project. Thank you
for trusting in me, for welcoming me as your supervisee, and for all you have taught me.

My acknowledgements also go to DevScope, the company that welcomed and supported this
idea. More concretely, I would like to thank José António Silva for trusting in me and giving me
the chance to work at such a great company. Additionally, I want to thank David Mota for all the
support, knowledge, and discussions on life, the universe and everything.

I am also tremendously thankful to my parents, Carlos and Margarida, and my two closest
aunts, Helena and Isabel. You have raised me and supported me since the day I was born, during
good and bad times. Without you, this would not have been possible. I am truly privileged to have
you by my side. From the bottom of my heart, thank you for your love. And Lena, never lose your
faith and hope. As St. John of the Cross once said: "The endurance of darkness is the preparation
for great light".

To my friends Zé and Bárbara: thank you for never letting our friendship fade away. You have
been my closest friends since we met at University of Minho in 2016, and I am forever grateful to
have you in my life. You are truly special.

I must also thank my dear friend "Broas". You are not here, but the truth is that you have never
left. Your will and character have helped shape me into the person I am today. I plan to keep our
promise. Thank you for your friendship. May your light keep shining over us all, and may God
bless you.

To all others who have helped me along the way, thank you.

Carlos Eduardo da Nova Duarte

iii

To my parents Carlos and Margarida,
and to my aunts Helena and Isabel.

In memory of my dear friend
André "Broas" Reis.

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem . 2
1.4 Objectives and Expected Results . 3
1.5 Structure . 3

2 Background 4
2.1 Refactoring . 4
2.2 Design Patterns . 5
2.3 Refactoring to Patterns . 6
2.4 Meta-Programming . 7

2.4.1 Modelling and Meta-Modelling . 7
2.4.2 Reflection . 9
2.4.3 Model-Driven Software Development 9

2.5 Code Generation . 10
2.6 Live Software Development . 12

2.6.1 Live Requirements . 12
2.6.2 Live Programming . 12
2.6.3 Live Refactoring . 13
2.6.4 Compiler Platforms . 13

2.7 Summary . 15

3 Literature Review 16
3.1 Crossing the New Refactoring Rubicon . 16
3.2 Batch Refactoring . 17

3.2.1 Formal Models . 17
3.2.2 Architectures . 20
3.2.3 Discussion . 21

3.3 Refactoring Tools and Techniques . 22
3.3.1 Evolutionary Algorithms for Code Transformations 30
3.3.2 Model-Driven Refactoring . 32
3.3.3 Discussion . 36

3.4 Framework Evolution . 38
3.4.1 Proposed Ideas . 38
3.4.2 Discussion . 40

3.5 Summary . 40

v

CONTENTS vi

4 Problem Statement 42
4.1 Context . 42
4.2 Open Issues . 43
4.3 Hypothesis and Research Questions . 44
4.4 Proposal . 45
4.5 Validation . 45

5 Proposed Solution 46
5.1 Live Refactoring Features . 46
5.2 Technological Components . 47
5.3 Language Design . 49

5.3.1 Behavior Modules . 49
5.3.2 Refactoring Plugin Creation Process . 51

5.4 Abstraction Levels . 51
5.5 Implementing Refactoring Plugins with RPCL 52

5.5.1 Chain Constructors . 53
5.5.2 String Comparison . 54
5.5.3 Extract Method . 54
5.5.4 Ensure Dispose Call . 55
5.5.5 Type Conversion . 56
5.5.6 Creation Method . 56
5.5.7 Append ToList to IQueryable . 57

5.6 Experimenting with Code Analyzers . 57
5.7 An Example of Using RPCL for Preventing Severe Security Vulnerabilities . . . 59

6 Validation 61
6.1 Objectives . 61
6.2 Guidelines . 61
6.3 Tasks . 62
6.4 Results . 63

6.4.1 Participant Characterization . 64
6.4.2 Task Completion Times . 64
6.4.3 Survey Answers . 65

6.5 Threats to Validity . 68
6.6 Discussion . 68
6.7 Summary . 70

7 Conclusions and Future Work 71
7.1 Conclusions . 71
7.2 Main Contributions . 72
7.3 Main Difficulties . 72
7.4 Future Work . 73

References 76

A Survey Results 83

B Expert Assessment of RPCL 88

List of Figures

2.1 A Live Refactoring suggestion in Visual Studio Code. [8] 5
2.2 IntelliJ’s refactoring GUI. [1] . 5
2.3 Design patterns proposed by Gamma et al.. [35] [4] 6
2.4 The different components that make up a meta-model. [61] 8
2.5 The architecture of the Meta-Object Facility standard. [12] 8
2.6 The process of injecting source code by Roslyn’s compiler. [84] 10
2.7 Boilerplate code of a .NET source generator. [84] 11
2.8 City metaphor applied to EC2 deployments in a LiveSD environment 13
2.9 Virtual Reality visualization of a Java project 13
2.10 A Live Refactoring tool that identifies refactoring opportunities. [29] 14
2.11 The refactoring experience of Visual Studio 2019. [11] 14

3.1 The Rubicon river. [68] . 16
3.2 Ó Cinnéide and Nixon’s methodology for refactoring to patterns. [19] 18
3.3 Proposed architecture for Ó Cinnéide and Nixon’s batch refactoring tool. [19] . . 19
3.4 Workflow of the application of batch refactorings in ConTraCT. [47] 20
3.5 Creating batch refactorings for code reviews. [28] 21
3.6 The DINAR batch refactoring suggestion tool. [55] 23
3.7 The user interface of the ConTraCT tool. [47] 24
3.8 A prototype of a visual refactoring tool. [59] . 24
3.9 Tourwé and Mens’ refactoring identification tool. [78] 25
3.10 The JIAD tool for identifying refactoring opportunities. [64] 26
3.11 Some inference rules of the tool proposed by Jeon et al. [42] 27
3.12 The TXL processor. [21] . 28
3.13 Execution of a batch refactoring. [48] . 29
3.14 Implementation of the refactoring Promote Temp to Field. [70] 30
3.15 The invariant inference mechanism of the Daikon tool. [44] 31
3.16 The refactoring process of the tool proposed by Wei et al.. [50] 32
3.17 Visualizing class dependencies in the TransFormr tool. [38] 33
3.18 Architecture of the MORE tool. [60] . 34
3.19 Architecture of the tool developed by Shimomura. [71] 35
3.20 A pattern described in XML. [27] . 35
3.21 The architecture of France’s meta-modelling approach. [34] 36
3.22 A sample scenario for model-driven refactoring. [54] 37
3.23 Applying a refactoring through a model-driven approach. [76] 38
3.24 Source transformation for fixing the Y2K bug using TXL. [21] 39
3.25 Summary of refactoring tools capabilities. 41

vii

LIST OF FIGURES viii

5.1 List of some of Roslyn’s syntax node kinds. [7] 48
5.2 Visual Studio’s Syntax Visualizer extension. 49
5.3 The first abstraction level. Corresponds to creating a refactoring plugin using the

RPCL language, which is a composition of behavioural modules. 52
5.4 The second abstraction level. Contains the generated refactoring code from the

RPCL specification, making use of both Roslyn and Visual Studio APIs. The file
is ready to be plugged into the IDE so that the refactoring is available to users
automatically. 52

5.5 The third abstraction level. After plugging in the refactoring code into Visual Stu-
dio, it becomes available to be automatically suggested, previewed, and applied
by users in whichever project they are working on, provided the necessary precon-
ditions are met. 53

5.6 Declaration of the Chain Constructors refactoring using RPCL. 53
5.7 Declaration of the String Comparison refactoring using RPCL. 54
5.8 Example of the Greater Than and Addition binary expressions in C#. 54
5.9 Declaration of the Extract Method refactoring using RPCL. 55
5.10 Declaration of the Ensure Dispose Call refactoring using RPCL. 55
5.11 Declaration of the Type Conversion refactoring using RPCL. 56
5.12 Declaration of the Creation Method refactoring using RPCL. 57
5.13 Declaration of the Append ToList to IQueryable refactoring using RPCL. 57
5.14 Visual aids of the IQueryable analyzer. 57
5.15 Visual Studio’s message pane. [26] . 58
5.16 Visual squiggles suggesting a refactoring opportunity in the Visual Studio IDE. [26] 58
5.17 The application of a code transformation from an analyzer, identical to refactor-

ings. [26] . 58
5.18 Template code that makes up a Visual Studio code analyzer. 59
5.19 The logic for a code analyzer alerting the user. 60
5.20 The code for finding all IsAuthorized() invocation expressions. 60

6.1 The refactorings to be implemented by practitioners during the experiment, ex-
tracted from the walk-through guide. 63

6.2 The varying levels of experience of participants, in years. 64
6.3 The academic degrees of participants. 64
6.4 The time it took to each experiment participant to implement all three refactoring

plugins, as well as the average and standard deviation values. 65

Abbreviations

API Application Programming Interface
AST Abstract Syntax Tree
CI/CD Continuous Integration/Continuous Deployment
DSL Domain-Specific Language
IDE Integrated Development Environment
LiveSD Live Software Development
MDSD Model-Driven Software Development
MDSE Model-Driven Software Engineering
MOF Meta-Object Facility
SDK Software Development Kit
SDLC Software Development Life-Cycle
UML Unified Modelling Language
RPCL Refactoring Plugin Creation Language

ix

Chapter 1

Introduction

There is an old saying that the only constant in life is change. In the software engineering world,

this is ever more true: market needs vary over time, competitors create new products that put

other companies’ competitive advantages at stake, organizations restructure themselves, time and

cost budgets are surpassed, and teams’ communication abilities and morale differ considerably

[40]. These events affect the entire software development life-cycle activities: changes in require-

ments might lead to flawed designs, implementations that solve the wrong problem, and tests that

evaluate scenarios that have drifted from the project’s reality.

Most software projects fail to meet time and budget constraints [39]. While projects get in-

creasingly larger and more complex, developers may be tempted to rush the implementation of

certain features or implement small hacks in the project’s architecture to meet deadlines. As code

quality worsens, the team’s productivity falls, making it even harder to meet the constraints men-

tioned above [52]. This snowball effect can make it very hard to maintain a software project.

1.1 Context

In order to minimize this issue, refactoring is often used as a means to improve the design of

existing code while maintaining its original functionality [33]. Therefore, it is in developers’ best

interests to refactor as often as needed. Design patterns - battle-tested software designs that solve

common and recurring problems - are also a way to improve software maintainability and facilitate

its evolution [35]. However, they are not a silver bullet, and implementing them from early design

stages might not be as beneficial as one may think. As requirements change with time, the added

complexity necessary to increase flexibility might become unnecessary [19].

1

Introduction 2

1.2 Motivation

Refactorings vary in complexity. While some are simple, others require multiple steps to be ap-

plied. These steps can repeat themselves along multiple refactorings. In this case, it can be said

that they represent a pattern. For instance, a refactoring that operates over the iterable variable of a

for-each loop and converts it to a list is comparable to another refactoring that does the same thing

but converts the variable to a string.

One example of more complex refactorings is those that aim to implement a design pattern.

Refactoring to a design pattern is not as simple as refactoring a simple code smell, requiring

multiple steps to be completed until the pattern is implemented. However, due to the increased

complexity of these refactorings, it may not always be possible to apply them thoroughly. Never-

theless, their partial implementation may still improve software design. Kerievsky [45] argues that

refactoring to, towards, and away from patterns is a better approach than implementing said pat-

terns straight away, which often leads to over-engineering. This further highlights the complexity

of refactoring code to follow a design pattern and, ultimately, the variety and intricacies that the

process involves.

Research shows that automatic refactoring suggestions is one of the most requested features

by developers for development environments [62]. This is a characteristic of Live Environments

[14], which provide, among other features, more immediate and automatic feedback to developers

without needing to compile the source code. Modern development environments such as Visual

Studio and IntelliJ are powered by automatic refactoring capabilities, live feedback, and relevant

suggestions. Development environments provide users with a robust catalog of the most common

refactorings, such as those described by Fowler [33].

These tools make it easier for developers to improve their software while minimizing the

required effort. Having access to these features should motivate them to refactor often. It is

advantageous for practitioners to use the Live Refactoring capabilities of the IDEs they use for

applying both simple and complex refactorings.

1.3 Problem

Unfortunately, IDEs provide users with a limited set of refactorings, which are usually the most

popular ones. These are also often simple ones, not supporting more complex transformations

such as applying a design pattern. This is not good enough.

Additionally, organizations may have identified patterns in their frameworks or internal tooling

that could benefit from the Live Refactoring features offered by IDEs. Suppose these environments

do not offer the refactorings they need. To benefit from such code transformations, practitioners

may either refactor code by hand or build new refactoring tools that cater to their needs.

It is plausible to assume that if the refactoring tool creation process is not accessible, then

practitioners are more likely to refactor manually or not refactor at all. The decision will depend

on how much change affects the project, as mentioned at the beginning of this chapter.

1.4 Objectives and Expected Results 3

While environments provide practitioners with APIs to create refactoring tools of their own,

the creation process is often not trivial, requiring knowledge of the platform’s compiler SDK,

and syntactic and semantic analysis topics. Consequently, smaller organizations might not have

the resources to build their custom refactoring tools, requiring more experienced practitioners

knowledgeable of the process’s intricacies.

Ultimately, the main problem is that it is hard to create refactoring tools in a fast and accessible

manner while providing users with enough power to create complex transformations, potentially

detracting practitioners from refactoring code.

1.4 Objectives and Expected Results

By easing and adding flexibility to the refactoring tool creation process, the goal is that developers

are more incentivized to create their tools, thus leading them to refactor more often. By doing

so, code quality should increase, making the project more robust and increasing its maintainability

over time. Moreover, using the liveness features of modern development environments, the created

refactoring tools would also contribute to making the refactoring experience more accessible.

This dissertation will begin by presenting a literature review aiming to understand current

practices and theoretical models of refactoring tool creation.

Then, it will explore implementing a tool for creating them in an accessible and straightforward

manner, using the Live Refactoring features offered by modern IDEs.

Finally, an expert assessment and survey will be made to assess the implemented tool’s viabil-

ity, quality, and defects. A survey will be presented to assess how effective this new refactoring

tool creation process is and how much developers benefit from using it.

1.5 Structure

Chapter 1 describes the context and motivation of this research and the main research problem,

objectives, structure, and work plan. Chapter 2 addresses the background information required to

understand the dissertation better, and Chapter 3 presents the state of the art of refactoring tool

creation. Chapter 4 addresses the problem statement in-depth, as well as a brief description of the

proposed solution. Chapter 5 goes over the implementation details, and Chapter 6 presents and

discusses the validation process and results. Finally, Chapter 7 presents the overall conclusions

and future work.

Chapter 2

Background

In order to understand the state of the art of refactoring creation tools and techniques, it is necessary

to understand the building blocks that support these technologies. From refactoring and design

patterns to code generation and meta-programming, the creation of refactoring tools is certainly

not trivial.

2.1 Refactoring

Refactoring is a beneficial technique to ensure that software can be maintained throughout its

lifetime by iteratively applying structural changes that improve its core architecture without mod-

ifying its behavior. In fact, as developers keep applying cumulative refactorings, the number of

software defects decreases proportionately [66], which consequently makes software easier to

maintain [65] [53] [57] [45].

Refactoring: Improving the design of existing code while maintaining its original functionality.

Code may be refactored, among other reasons, in response to changing requirements that make

it necessary to reorganize the software’s internal architecture or eliminate code smells [72]. The

latter is especially important, as code inevitably starts to rot. The more code smells accumulate,

the harder it is to make changes to the existing code base, which inevitably leads to steep decreases

in productivity and an unhappy team [52]. While it is no silver bullet, the process makes software

easier to understand, helps identify bugs in source code, and speeds up time spent programming

[33]. It also contributes to developers getting a better grasp on how the code works, which in turn

minimizes the need to consult with other developers, increasing the autonomy of the practitioner

[45].

Modern development environments such as Visual Studio and IntelliJ provide tools that aid

the refactoring process, as shown in Figures 2.1 and 2.2. These IDEs can analyze source code

4

2.2 Design Patterns 5

while the user is programming, automatically generating the refactored source code, alerting the

user, previewing transformations, and applying the refactoring with a single click [8] [1].

Figure 2.1: A Live Refactoring suggestion in Vi-
sual Studio Code. [8]

Figure 2.2: IntelliJ’s refactoring GUI. [1]

This activity contributes very positively to the reduction of software defects [66], and may

also make teams more productive [56]. In a world where Agile methodologies are cornerstones of

modern software development, refactoring becomes even more essential to ensure the success of

software projects.

2.2 Design Patterns

Design patterns help solve the challenge of designing good, reusable software. Since the dawn

of object-oriented design, developers have identified design solutions to recurring problems. Like

cooking recipes, design patterns provide tested designs proven to work for certain use cases, which

can be reused and shared among practitioners [35]. The classic set of patterns developed by the

Gang of Four [35] is shown in Figure 2.3.

Design Pattern: A general, well-tested solution to a common problem.

Useful to both experienced and novice practitioners [16], implementing design patterns can

bring various benefits to software projects. One is improving communication between software

designers, as patterns allow for a common understanding when discussing implementation details.

Other advantages are they can better preserve software adaptability during maintenance changes,

ease new team developers get into the project’s architecture, contribute to clearer software archi-

tecture documentation, and encourage best development practices [20] [16] [63].

For all benefits that design patterns provide, there are also some drawbacks. Not all patterns

are easy to grasp, which might lead to developers implementing half-baked solutions that do more

harm than good [80]. Moreover, enough experience is needed for a practitioner to write compelling

and beneficial patterns, requiring them to get a hold of enough examples to recognize similarities

Background 6

Figure 2.3: Design patterns proposed by Gamma et al.. [35] [4]

in code [16]. Finally, even if patterns often help improve program maintenance globally, that is not

always the case. Sometimes the solution can be implemented much simpler rather than jumping

straight to implementing a pattern [45], even if flexibility caused by changing requirements may

be lost [63].

Given all this, it is fundamental that programmers have studied design patterns well enough to

know how and when to apply them. A practitioner lacking this knowledge might look at a better,

more maintainable design built with a pattern in mind and still prefer the old solution [45], with

familiarity probably being an essential factor for justifying this behavior.

2.3 Refactoring to Patterns

Refactorings and design patterns ease software maintenance, allowing designs to evolve better as

requirements change. While some might associate design patterns more with the overall architec-

ture of the software, design patterns are also about the code. Therefore, these techniques go hand

in hand during the software development process [45].

Practitioners might apply patterns in two distinct ways. The first one is to plan and, before

development starts, think about which patterns make more sense to implement, both at the moment

and for the foreseeable future. This is refactoring: code structures being adapted to improve

maintainability in the long term, even if not replacing existing code. The second one is refactoring

existing lousy code to clean code, resulting in implementing a pattern that improves overall design

without altering functionality [45].

2.4 Meta-Programming 7

Refactoring Pattern: A behavior that is shared across multiple refactorings. A pattern may be

atomic or constituted by a sequence of more complex patterns. For example, finding all

variables of a given type is a behavior that makes up many refactoring algorithms.

Refactoring to Patterns: A technique for improving software design via implementing design

patterns by sequentially applying refactoring patterns as necessary, instead of implementing

them from the initial architecture stages.

Kerievsky [45] points out a few problems with the first alternative. First, it is risky to imple-

ment patterns to improve future design requirements: if the product does not need those adapta-

tions, time and money are wasted. Furthermore, as previously discussed, change is always happen-

ing, so developers cannot afford to waste time unnecessarily. Additionally, code that gets added

and is not used may never be removed, as developers new to the system might not be sure if that

piece of code will or will not break other core system functionalities. These novice developers

may also get confused about why those structures are there and not understand their role in the

overall system, which worsens design since they do not play any role.

The author also argues that developers should focus their time and effort on building the system

without applying patterns. If patterns are needed, they should primarily result from a system

refactoring concerned with preparing the system for new features or improving code design. It is,

then, vital to know how and when to refactor towards and away from them. A particular design

pattern may not improve the solution as much as the user hoped, and applying other techniques

might be more helpful.

2.4 Meta-Programming

In order to implement a design pattern, it is necessary to assess how existing code will change and

which code blocks must be inserted into the program. Similarly, refactoring may require existing

code to be modified and new code to be introduced. Both of these activities require detecting code

structures and modifying existing files. Refactoring tools must be able to perform these activities

automatically.

Meta-programs are programs that can analyze, interact and create other programs [46]. Meta-

programming techniques have been long used in formal logic programming, but throughout time

have broadened their application spectrum, for instance, to generating compilers, creating refactor-

ings and design patterns, building code analyzers, and scripting [23]. These programs are usually

defined in meta-languages, which in turn represent meta-models.

2.4.1 Modelling and Meta-Modelling

Overbeek [61] describes models as representations of things with associated meaning. The author

explains that, in order to represent meaning, a structured language must be used. Those languages

are, naturally, composed of a syntactic component, which is the concrete notation of the language,

Background 8

and a semantic component, which explains the syntactic components. Meta-languages, as they

are usually named, are defined by Czarnecki and Eisenecker as languages that can analyze and

describe other languages [22]. Programs that result from these languages are known as meta-

programs.

Meta-models are models that represent modeling languages and are one abstraction level above

those same models. It is possible to keep increasing abstraction levels: for instance, a model

that represents a meta-model is called a meta-meta-model. A representation of the meta-model

structure is available in Figure 2.4.

Figure 2.4: The different components that make up a meta-model. [61]

One of the most well-known meta-modeling standards is the Meta-Object Facility. Built by

Object Management Group in 1989, MOF was intended to make it easier, more portable, less

expensive, and less complex to develop software by basing it on a standard interface [61]. The

MOF architecture can be visualized in Figure 2.5.

Figure 2.5: The architecture of the Meta-Object Facility standard. [12]

MOF’s architecture comprises four hierarchically organized layers, from M0 to M3. M0, the

base layer, represents real-world objects. In turn, the M1 layer represents a model of the real

object. The M2 layer is a model that describes M1 models: a meta-model. Finally, the M3 layer

is a model that allows for manipulating meta-models, naturally, meta-meta-models.

2.4 Meta-Programming 9

Perhaps the most popular meta-model (M2) built against the MOF specification is the Unified

Modelling Language meta-model, which is the model used to describe the widely-used UML

models.

2.4.2 Reflection

Reflection is a meta-programming technique for providing practitioners access to the code they

are running, allowing them to access and execute its code at run time [37]. This is achieved by

allowing developers to interact with the program’s meta-model. Some practical applications of

reflection are debuggers and system optimization.

On its own, meta-programming is inherently reflective, as it allows for creating software that

can manipulate other software [23]. C# is an example of a language that supports reflection [83].

This technology makes it possible, for instance, to build new types at run time, examine and

instantiate assembly types, and access attributes from a project’s metadata.

2.4.3 Model-Driven Software Development

Models provide abstraction from more complex structures. However, when creating a program,

the computer does not directly understand these abstractions: they need to be translated into a

language. For instance, a computer does not directly understand the C language: it must be trans-

formed into a lower abstraction language, Assembly, which in turn is translated into an even-lower

language, which is binary code. Only then can the computer understand the program’s instructions

and act accordingly.

No sane developer would create a simple program using binary code, much less a complex

one. To do that, programmers use abstractions. For instance, one of the reasons Python became

the fastest-growing programming language in the world is its very high levels of abstraction [73].

When developers can focus on the task at hand and not on manually allocating memory or doing

garbage collection, chances are they will make much more productive use of their time.

UML models also allow developers to understand the complexity of a system in a much more

intuitive way, as they represent functionality at an abstraction level high enough to allow prac-

titioners to reason about its components quickly. Building software by creating abstract models

that are then generated in an automatic or semi-automatic fashion is the basis of what is known as

Model-Driven Software Development [49].

Models built with UML are often used to document software architectures. In MDSD, accord-

ing to Stahl and Völter [74] models are considered code and not documentation, given that code

will be generated from said models. By following such an approach when developing software,

the authors defend that productivity may significantly increase as programming becomes more

automated. Moreover, domain experts can understand the models, improving requirements elici-

tation and specification processes, increasing the chances that software is implemented strictly as

the experts requested. To put MDSD into practice, the authors point out some pre-requisites such

Background 10

as compilers, transforming the models into actual code, and a language for specifying the trans-

formations required to pass from a model representation to concrete code. Finally, to formulate

said models, a modeling language that is used to pass instructions to the computer and describe

programs, having only as many features as necessary to describe the program’s domain, which is

small and focused, is needed. This is the definition of a Domain-Specific Language [32]. These

requirements, among others, make possible the implementation of an MDSD approach.

2.5 Code Generation

With software project requirements changing at an ever-faster rate, developers need to spend more

time and resources building new features and refactoring code to keep stakeholders happy and the

project in a maintainable state. The more time developers spend developing a particular feature,

the more advantage competitors have in building a better, more robust solution. Therefore, it is

essential to reduce developers’ time on programming, focusing on the rationale behind design

solutions and implementing the most critical code structures.

Code generators are a way to automatically synthesize software structures, which is particu-

larly useful for ones that end up getting repeated throughout programs. Duplicate code is a code

smell that should be refactored: if there is the need to change a specific aspect of that code block,

all instances must be changed, which may introduce errors; also, the duplicated code might do

the same but have minimal differences that are hard to catch, and therefore may not be considered

duplicate code by the developer when, in fact, they are [3].

Roslyn [82] is the .NET compiler platform SDK, which exposes the tremendous amount of

information that the compiler has on program structures. It supports generating source code by

writing the code to be generated in C# and then writing annotations that reference said code so

that it can be injected on compile time into the program. The code generation process, as well as

the structure of a source generator, are described in Figures 2.6 and 2.7.

Figure 2.6: The process of injecting source code by Roslyn’s compiler. [84]

Roslyn provides several tools that use the code generation feature, such as code analyzers,

code fixes, and refactorings. Analyzers and code fixes detect code that should be changed and

2.5 Code Generation 11

Figure 2.7: Boilerplate code of a .NET source generator. [84]

transform it to improve its design, respectively. On the other hand, refactorings combine both

features but provide the information contextually. That means they will only be suggested when

the users interact with code that could benefit from improvements. In contrast, analyzers and code

fixes parse all project files and suggest transformations to the user in a dedicated panel. These

APIs are tremendously powerful and allow practitioners to make the most of the .NET compiler.

One of the most popular applications of code generators has to do with web development.

Naik and Shivalingaiah [58] describe the first iteration of the web as a system that provided access

to documents that could be linked to one another and visualized in a read-only fashion, with

little interactivity and dynamism. Later, subsequent web versions allowed for user interaction,

with social media as the primordial example. Nowadays, some websites still present users with

static content that does not allow interaction. For situations where there is much static content

developers wish to make available on the web, it is not resource-efficient to manually build web

pages for those documents.

For this use case, Static Site Generators are one possible solution. Tools such as Jekyll [6]

allow users to describe documents in Markdown, a markup language, apply a layout corresponding

to the document type, and generate the web page accordingly. This allows users to save time by

focusing on writing the content rather than building the web page.

Code generation techniques can improve the software in multiple ways, such as better perfor-

mance, reduced code volume, and platform compatibility [74].

Code generators are meta-programs. These create new code by transforming the model of

existing code received as input [74].

Background 12

2.6 Live Software Development

The Software Development Life-Cycle comprises many requirements analysis, design, implemen-

tation, testing, and maintenance activities. Agile methodologies have long attempted to shorten

the feedback loops of the SDLC by providing more and faster feedback to developers [14]. Not

only that, but it also focuses on allowing for better comprehension of the system, leading to faster

evolution and maintenance processes and aided by techniques such as software visualization

Live Software Development is an idea that aims to bring more liveness to all activities of the

SDLC through more immediate and automatic feedback, ultimately intending to ease software

evolution and maintenance processes [14]. Practitioners are human and naturally make mistakes

and may not identify problems as they arise. Aguiar et al. [14] suggest providing more meaningful

information to each SDLC phase through the engineer’s environment to lessen these issues.

2.6.1 Live Requirements

Requirements Engineering is one field that may not immediately resonate with live environments.

While there are tools for managing and tracking requirements, these are unaware of events in

other SDLC phases, such as failing tests and CI/CD pipelines. These tools also require engineers

to manually assess the validity and satisfiability of requirements, as they are not connected to the

implementation structures, nor is there a way to automatically identify when something has gone

wrong [25].

Duarte [25] provides an example of how the requirements activity can be better integrated into

development environments through feedback propagation to and from this SDLC phase. This is

achieved by defining requirements so that tests can be automatically generated and signal whether

the requirements are satisfied or not, communicating said feedback into the development environ-

ment.

Such initiatives could significantly improve communication with stakeholders on system status

and let developers understand how code implementations affect requirements more quickly and

automatically.

2.6.2 Live Programming

Live development environments should integrate a set of tools so that, during development, engi-

neers can get information both automatically and on-demand. This can directly benefit the pro-

gramming activity of the SDLC in the form of Live Programming, which currently already benefits

from tools such as code auto-completion engines, debuggers, always-on syntax highlighting, and

syntactic analyzers.

Live Programming, as described by Tanimoto [75], is characterized by having the program

currently being worked on constantly running in the environment, which provides valuable feed-

back and gives suggestions to the programmer. Current IDEs already implement many Live

Programming-inspired features, such as the ones mentioned in the previous paragraph.

2.6 Live Software Development 13

For instance, some research on LiveSD has explored novel ways for visualizing software struc-

tures through a city metaphor. In it, each building represents a component of the overall system

that is the city [15] [51], as seen in Figures 2.8 and 2.9. These allow for visualizing and interacting

with source code and cloud instances of popular services like Amazon EC2 [9]. Examples are

shown in Figure 2.8 and Figure 2.9.

Figure 2.8: City metaphor applied to EC2 de-
ployments in a LiveSD environment

Figure 2.9: Virtual Reality visualization of a Java
project

2.6.3 Live Refactoring

One of the SDLC activities that may benefit from applying a LiveSD approach to it is refactoring.

Aguiar et al. [14] suggest that a system supporting Live Refactoring would allow for the auto-

matic detection and application of refactoring opportunities, not through the direct manipulation

of code structures but by selecting the quality attributes the programmer intends to improve with

the refactoring.

An example of such an environment is one proposed by Fernandes [29]. It computes code qual-

ity metrics, uses them to detect code smells, and identifies and proposes refactorings in real-time

to users during development to understand which code blocks can benefit from being refactored,

as seen in Figure 2.10.

Other tools display Live Refactoring characteristics. For instance, BeneFactor aims to solve

the problem of developers not being aware of their IDEs’ tools that help refactor code. Therefore,

when a practitioner starts applying a refactoring manually, the tool identifies the user attempt and,

when invoked, auto-completes the refactoring process [36]. WitchDoctor [31] is a similar tool that

also identifies and proposes refactoring opportunities to the user in real-time.

2.6.4 Compiler Platforms

In order to interact and manipulate source code so that patterns can be detected and refactor-

ings applied, the development environment supporting Live Refactoring must have access to the

Background 14

Figure 2.10: A Live Refactoring tool that identifies refactoring opportunities. [29]

platform’s compiler tools. These should enable access to syntactic and semantic analysis and

automatic code generation, as seen in Figure 2.11.

Roslyn provides helpful features such as code completion, parameter information, smart re-

naming, and finding references of a particular object that developers can access [82]. It provides

access to a large set of code analysis and generation features.

Figure 2.11: The refactoring experience of Visual Studio 2019. [11]

These features provided by Roslyn enable development environments to support Live Soft-

ware Development features. In particular, Live Refactoring characteristics such as the previously

mentioned refactoring previews, and automatic suggestions and transformation, become possible

using Roslyn APIs.

Source generation [84] is a feature that is part of the Roslyn APIs, which are of particular

2.7 Summary 15

relevance for the process of creating and orchestrating refactoring tools. These work similarly to

Roslyn’s syntactic and semantic analyzers, which provide information on code quality and style

in the shape of warnings or errors, but they also emit source code. By retrieving compilation

objects with rich meta-data on syntactic and semantic models, source information can be used and

manipulated, and code can be injected directly on compile time. This feature further enables the

potential of Live Refactoring tools.

The Java Development Kit also provides access to the platform’s compiler through the Java-

Compiler interface [5]. It provides similar features to Roslyn, such as syntactic and semantic

diagnostics. It also provides an annotation processor and a compiler tree API for traveling the

program’s AST.

2.7 Summary

Refactoring is a technique that allows for the continued improvement of software during its life

cycle. While it does not fix all problems related to software evolution, it dramatically aids devel-

opers in building extendable and maintainable systems that are more resilient to change. Support

for refactoring tools is vast, with IDEs supplying users with features such as automatic transfor-

mations, suggestions, and code previews.

Design patterns are another technique that can increase the resilience of software projects, as

they provide tested solutions to recurring problems.

Joining both previous approaches is Refactoring to Patterns. It is an idea that aims to incen-

tivize users to not only apply design patterns at the initial architectural specifications but as change

happens and as code is developed by applying refactorings that make the code closer or further

from a given pattern.

Meta-programming is the basis of Model-Driven Software Development, which allows for

abstracting code into more comprehensible logic structures. With code generation techniques, it

is possible to add and transform existing code by manipulating said abstractions, even visually.

Live Refactoring is an idea that aims to bring quick and automatic feedback to developer envi-

ronments that aid the developer in applying code transformations. It is a subset of Live Software

Development, encompassing all SDLC activities to tighten feedback loops.

Existing compiler platforms make it possible to manipulate existing code and generate new

one, opening the doors to developing new refactoring tools that use Live Refactoring features.

Chapter 3

Literature Review

After learning about the building blocks of the process of creating refactoring tools, the focus now

shifts into understanding existing practices, trends, and techniques of the creation process. The

following sections display the state of the art of refactoring creation tools.

3.1 Crossing the New Refactoring Rubicon

Between 49-45 BC, the Roman Republic fought one of its last wars before the surge of the Roman

Empire. After his term as governor, Julius Caesar was commanded to demobilize his army and

return to Rome. In an act of disobedience, Caesar decided to cross the northern border of Italy

recklessly - physically signaled by the Rubicon River, as seen in Figure 3.1 - which was interpreted

as an act of treason and declaration of war to the central power of Rome. Since then, the expression

"crossing the Rubicon" has been used to signify the passage of a point of no return.

Figure 3.1: The Rubicon river. [68]

When the first Smalltalk refactoring tool was built 25 years ago, Fowler [2] declared that refac-

toring tools had crossed the refactoring Rubicon. This meant that refactoring support had become

16

3.2 Batch Refactoring 17

mainstream in IDE tools and was something that could not be ignored by such environments going

forward [79]. Now, some authors identify batch refactorings as the next Rubicon, resulting from

the increased complexity of creating them and orchestrating their internal components [79].

Improving the creation process of refactoring plugins presupposes knowledge of existing

refactoring creation techniques and tools. Additionally, it is essential to understand which issues

they have and how they can enhance the overall plugin creation experience.

3.2 Batch Refactoring

As software grows in complexity, applying a single refactoring may not remove all code smells that

plague programs [28]. This may be a common issue when creating refactorings to design patterns.

Thus, developers have to apply additional refactorings to fix these issues. This practice of chaining

refactorings in a sequence is usually known as batch, composite or cascaded refactoring.

Batching multiple refactorings together seems to be a regular developer practice [59]. Roughly

40% of refactorings are performed in batches using existing refactoring tools, which reveal them-

selves as insufficient due to their simplicity and necessity of being significantly improved [48].

One widespread use case of applying batch refactorings is upgrading legacy systems. These

are frequently refactored manually by developers with the required knowledge or with the recourse

of automatic tools [19]. Either way, developers do not seem comfortable with composing batch

refactorings, as they primarily focus on applying refactorings they are familiar with and unaware

of others that could be applied. Moreover, developers do not know the impact that the order of

the micro-refactoring sequence has on the introduction and removal of code smells, nor are they

aware of the effect of batch optimization techniques on code smells [28].

Automatic tools usually let practitioners select which refactorings they want to apply and

automatically transform the code to follow a particular pattern. Such tools that support the trans-

formation of several refactorings seem to be desired by developers [17], even if they feel pretty

unenthusiastic about using them as they exist today [59]. These could improve the refactoring

process in multiple ways, such as reducing the frequency that developers introduce refactorings

by hand, which naturally decreases the chances of introducing bugs in code [59].

3.2.1 Formal Models

Chaining refactorings together to form more complex ones is not a trivial task. Each smaller

pattern added to the sequence increases the overall complexity of the resulting refactoring, making

it harder to ensure that functionality stays the same as the design improves. Cinneide and Nixon

[19] present an model for decomposing a larger pattern into mini-patterns, as seen in Figure 3.2.

Each mini-pattern has a mini-transformation associated, which is responsible for transforming

the code from its current state into the pattern that follows it in the refactoring sequence. After

applying a series of successive mini-transformations, the code will represent the design pattern the

mini-patterns have been decomposed.

Literature Review 18

Figure 3.2: Ó Cinnéide and Nixon’s methodology for refactoring to patterns. [19]

It may happen that either a mini-pattern has not yet been applied to source code or that the

practitioner has tried to fix the problem by introducing small, insufficient hacks instead of im-

plementing a pattern. Therefore, the code may not be in a state where the pattern can easily be

applied through refactoring. These two situations are referred to as green-field and anti-pattern sit-

uations. An intermediate situation is named a precursor. Precursors are essential when refactoring

to patterns, as the code may already have some parts of the refactoring implemented but not all the

way through. Identifying the correct precursor makes it possible to identify where the refactoring

sequence was interrupted and which mini-transformation should be applied next.

Because multiple mini-refactorings can be combined to form various complex refactorings, it

is critical to ensure that invariants are preserved amid transformations. After all, one of the charac-

teristics of the refactoring process is that the code maintains its original functionality. Therefore,

each mini-transformation must preserve the pre and post-conditions of successive mini-patterns.

The architecture of the proposed solution also refers to a set of helper functions and predicates

used to collect relevant data from the code to support the application of refactorings, which are

done by interacting with the code’s Abstract Syntax Tree. Moreover, the authors argue that such

refactoring to patterns system should reuse as much code as possible from existing refactorings

[19], as many design patterns share common foundations. It can be viewed in Figure 3.3.

Kniesel and Koch [47] also defend the division of complex refactorings into smaller, sim-

pler, more reusable units and suggest a formal model that allows creating them automatically and

without depending on other programs.

To support chaining more minor refactorings together, the authors introduce the notion of

conditional transformations. These pairs of pre-conditions and transformations associated with a

pattern are necessary as mini-pattern pre-conditions may not be met when applying a refactoring.

3.2 Batch Refactoring 19

Figure 3.3: Proposed architecture for Ó Cinnéide and Nixon’s batch refactoring tool. [19]

However, this does not mean that the refactoring cannot be applied. To ensure warrant flexi-

bility for either aborting the refactoring when pre-conditions are not valid or continuing the trans-

formation chain, the authors split refactoring sequences into two different types: AND and OR

sequences. The first one may only be applied if there are no failing pre-conditions in the refactor-

ing sequence: otherwise, the refactoring is rolled-back. The latter skips the application of patterns

that have failing pre-conditions and tries to apply subsequent ones, not rolling back on previously

and successfully applied ones.

The framework also allows for optimizing refactoring sequences by eliminating redundant pre-

conditions, which increase tool performance. The model also makes it easy to revert a subset of

transformations in a refactoring sequence. However, it is not desirable that the whole refactoring

is rolled back when there is a failing AND sequence, as this hinders performance and wastes time.

The problem is aggravated because pre-conditions of successive refactorings are naturally altered

when code is introduced to apply the mini-patterns of previous refactorings. Back-propagating pre-

conditions along the sequence - from last to first - is proposed to solve this issue. A representation

of the tool’s model framework is shown in Figure 3.4.

The authors argue that tools that implement this model should only require practitioners to

specify which refactorings to chain and in which order. Moreover, the tool should manipulate

any refactorings, and the composition should be independent of the program on which it will be

applied and the programming language.

Literature Review 20

Figure 3.4: Workflow of the application of batch refactorings in ConTraCT. [47]

3.2.2 Architectures

Given that batch refactoring tools interact with more code structures throughout the refactoring se-

quence than traditional ones, Zannier and Maurer [86] suggest following a different approach. By

empowering these tools with a much more extensive knowledge-base of the overall system archi-

tecture and knowledge of the design patterns to be applied, refactorings can be more appropriately

applied. So that this can be more automatic and accessible, the set of atomic and sequential refac-

torings should generate code associated with all classes required for the correct implementation of

a pattern. Therefore, refactoring tools should be developed to preserve the previously mentioned

characteristics. With this in mind, the authors propose that knowledge should be split into three

distinct architectural components:

• Initial System Store: contains general, more abstract information on the system require-

ments and structure;

• Rule Store: has information on rules and restrictions related to the refactoring’s domain;

• Target System Store: stores information on created batch refactorings.

Fernandes et al. [28] explore alternatives for creating batch refactorings in a distributed way.

The authors state that the application of batch refactorings happens, more often than not, during

code reviews and with the help of automatic tools. They suggest three alternatives to improve the

batch refactoring creation process during code reviews. The authors suggest the architecture of a

suggestion tool that lets the user control which recommendations to accept and reject.

The first proposes that the developer accepts or asks for another suggestion for each refactoring

in the batch sequence proposal. Depending on the answers to those questions, different sequences

3.2 Batch Refactoring 21

may be formed and ultimately applied by the practitioner. The second targets the code review

process and is implemented similarly to the previous one. The difference is that these sequences

are also recommended in code review platforms so that other reviewers can opine and discuss the

characteristics of a given batch to form a consensus on which sequence is the best. The third

allows multiple reviewers to collaborate on creating a refactoring sequence by letting each one

either accept a suggestion or request an alternative. When all reviewers accept a suggestion, the

corresponding micro-refactoring is added to the sequence. The next one gets discussed similarly

until the tool exhausts its suggestions. Figure 3.5 represents the tool’s architecture.

Figure 3.5: Creating batch refactorings for code reviews. [28]

For this tool to be helpful and integrate well into the development and code review experience,

it needs to be well incorporated into IDEs. The tool must always be aware of code changes to

suggest batches. In turn, the automatic recommendations incentivize practitioners to frequently

discuss how and whether to apply a given batch.

3.2.3 Discussion

Batch refactoring is a technique that consists of chaining more minor refactorings together to form

a more complex one. It serves as the basis for any complex refactoring creation tool, encompassing

multiple responsibilities such as the specification, identification, and application of refactorings.

While a practical methodology, practitioners are still uncomfortable applying it, as development

tools do not sufficiently cater to their needs.

Formal models for batch refactoring tools are mostly based on applying small transformations

throughout the refactoring sequence to ensure the preservation of invariants related to each smaller

refactoring. Refactorings with part of their transformation sequence failing to comply with pre and

post-conditions may either be canceled or skipped, according to the characteristics of the complex

refactoring.

If these models are to be implemented and expanded by modern development environments,

they must be as user-friendly and customizable as possible. Available refactoring tools of IDEs

such as IntelliJ and Visual Studio do not support any model minimally close to what is proposed.

Literature Review 22

Ultimately, it seems that the crossing of the second refactoring Rubicon is not yet a reality

and will not be unless significant developments occur in the environments’ plugin ecosystems.

This is ever more important given that developers may not know about these batch refactoring

techniques, decreasing the chances that they will ever implement such automatic transformations

if the environments do not facilitate and explicit the process to them well enough.

3.3 Refactoring Tools and Techniques

There are multiple tools offered to developers for refactoring code. Some examples are JDeodor-

ant, JMove, FaultBuster, and Refactoring Navigator. However, as Tenorio, Bibiano, and Garcia

[59] point out, these are too simplistic [13] and are not a good fit for creating, customizing, and

applying more complex patterns [28]. Consequently, modern IDEs do not integrate these features

into their toolchains. Other problems are the incorrect refactoring implementations that do not

preserve invariants and too strong refactoring pre-conditions that do not detect nor support subtle

variations of refactorings. Also, a refactoring opportunity may be identified, but the tool may not

allow users to select from a set of these variants the one that best caters to that situation [13].

IDE extensibility toolkits such as Eclipse LTK are also hard to use and work at shallow ab-

straction levels, which may significantly decrease developer adoption rates [48]. These issues are

a consequence of, among other reasons, IDEs not having good enough static analysis features,

as well as not detecting and preserving invariants well enough during transformations [13]. The

latter may even hinder the implementation of batch refactoring creation features in development

environments. Practitioners specify new refactorings manually and statically concerning existing

batch refactoring to patterns tools. This may be a problematic approach, as manually enumerat-

ing the primitive refactorings that make up a complex refactoring can be tedious and error-prone.

Moreover, refactorings yet to be applied in the complex refactoring sequence may not be aware of

the effects on code provoked by previous primitive refactoring applications [47].

While referring that most IDEs support the creation of new refactorings and the generation

of code from templates, Hunold et al. [38] point out that most tools do not separate concerns

as clearly as desired, which may lead to confusing architectures. Moreover, manually detecting

candidate patterns for refactoring in source code is not easy, especially if the practitioner looking

at the code is not the one who wrote it and if the code and architecture are not sufficiently well

documented.

Refactorings can only be automatically suggested if patterns are found in code. In order to

incentivize practitioners to refactor more often, the implementation is of utmost importance. Also

important are ways to specify, in an easy and accessible way, custom refactorings created by

developers and mechanisms to apply them automatically.

Regarding the pattern detection feature, Yoshida and Inoue [85] suggest following an approach

based on code clone detection so that methods matching a specific pattern can be detected and

refactored, referring to the CCFinder tool [43] as an example. It is then assessed if the functions

3.3 Refactoring Tools and Techniques 23

found by the tool have common super-classes and if they have statements that declare object

creation.

Acknowledging that manually refactoring code is a tedious procedure for practitioners, Mkaouer

et al. [55] propose a tool, DINAR, for suggesting refactorings in a batch that is fully integrated

with IDEs such as Eclipse. These recommendations are not linear, as the tool uses a set of metrics

for ranking refactorings by their usefulness. The tool can be visualized in Figure 3.6.

Figure 3.6: The DINAR batch refactoring suggestion tool. [55]

One of the authors’ most significant contributions is a novel approach to identifying patterns

and recommending refactorings. After identifying patterns that match those the tool can search

for, refactorings are generated in a way that tries to both maximize code quality improvements and

minimize the amount of code smells total amount of micro-refactorings, all while preserving the

actual behavior of the program.

The practitioner can glance at the suggested batch refactorings list and accept or dismiss them.

The tool allows learning from user feedback and tweaking the suggestions to maximize the user’s

acceptance rate to suggest efficient refactorings that have higher chances of being applied by the

developer. Studies found it to offer a faster alternative to manual refactoring and alternative auto-

matic tools.

Regarding the user experience and Live Refactoring capabilities, Kniesel and Koch [47] pro-

pose a tool that provides a code wizard with multiple pages for guiding the user through the cre-

ation of the refactoring, asking relevant questions about the characteristics of the patterns that will

make up the refactoring. This wizard, represented in Figure 3.7, adds liveness to the refactoring

creation process and allows developers not to have to repeat as much code.

The author’s implementation, ConTraCT, was developed on top of jConditioner and the Eclipse

platform. It allows users to visualize sequences in a tree layout and create a sequence using a

concrete language. This implementation does not support Live Refactoring capabilities such as

automatic suggestions or previews.

Literature Review 24

Figure 3.7: The user interface of the ConTraCT tool. [47]

Similar to other research, Tenorio, Bibiano, and Garcia [59] propose splitting patterns into

smaller ones that can be orchestrated as developers see fit. The authors developed an interface

prototype that allows practitioners to visualize, add and edit the refactoring flow, which comprises

existing simple and batch refactorings that compose a particular complex transformation and is

represented in Figure 3.8. These existing refactorings are provided as a list to users, who can pick

the ones most relevant to the refactoring they are building.

Figure 3.8: A prototype of a visual refactoring tool. [59]

Some of the benefits of this idea, according to the authors, are increased predictability, the

ability to preview intermediate refactoring transformations, more flexibility in refactoring creation,

and code reuse. However, programmers must program the automatic detection of refactoring

opportunities in the IDE, which, for more complex ones, may not be a trivial task. The visual way

of creating refactorings contributes to increasing the liveness of the development environment and,

consequently, reduces the development feedback loop.

3.3 Refactoring Tools and Techniques 25

Tourwé and Mens [78] recognize that developers do not always identify refactoring opportu-

nities. Even if they do, they often do not have the knowledge to refactor by hand. The authors

propose another tool, as shown in Figure 3.9, for automatically finding patterns in code and sug-

gesting the appropriate refactorings.

Figure 3.9: Tourwé and Mens’ refactoring identification tool. [78]

This specific implementation follows a novel approach based on the concept of logic meta-

programming, combining an object-oriented language with a declarative meta-language to im-

prove software systems. In the case of the authors’ implementation, the SOUL logic meta-

language represents the program in an abstract and declarative way, which is then linked to the

Smalltalk object-oriented language so that the abstract model can be in sync with the implemen-

tation and interact with the program’s AST. The logic layer, thus, has full access to the source

code.

This approach makes it easier to perform complex queries to code structures, which is vital

to identify and retrieve the components that make up patterns. The authors developed a tool that

follows the described strategy, which is also compatible with detecting suggesting batch refactor-

ings. However, the tool does not support the automatic application of the refactoring suggestions,

having the developer implement them manually. However, checking for batch refactorings may

negatively affect performance. Also, as pattern identification is based on the declaration of logic

predicates, when a new pattern is introduced, old rules may need to change to cope with it. This

manual update process may be cumbersome to developers.

The tool is integrated into the VisualWorks Smalltalk IDE in the Refactoring Browser compo-

nent. The IDE automatically handles the pattern searching and matching, allowing practitioners

to select which patterns to look after, helping minimize performance concerns.

Rajesh and Janakiram [64] propose JIAD, a prototype refactoring tool that automatically de-

tects patterns and ensures invariant preservation. In this implementation, patterns are identified

using declarative programming rules written in Prolog, some of which are listed in Figure 3.10,

which are used by the AspectJ compiler to traverse the AST and match with existing code. Logic

predicate templates are provided to better describe object and aspect-oriented constructs such as

classes, interfaces, and methods.

Literature Review 26

Figure 3.10: The JIAD tool for identifying refactoring opportunities. [64]

The referred tool allows the user to visualize the identified patterns and automatically apply

them. However, it does not support batch refactoring and does not integrate with IDEs, which

means it lacks Live Refactoring features.

Jeon et al. [42] propose a tool for identifying candidate patterns in source code for refactoring

based on inference rules, which are then evaluated and selected for transforming source code, some

of which are shown in Figure 3.11. The evaluation is based on a refactoring strategy algorithm

that typically forms a batch refactoring sequence.

The inference rules that can be used are part of a pervasive set of logic predicates that corre-

spond to operations in Java programs. This way, the behavior of a code block can be represented

in a powerful formal model. When there are matches between rules and concrete code, the tool

suggests a refactoring to the developer. The practitioner can then decide whether or not to apply

the suggestion. If so, the transformations are applied through interactions with JavaCC, Java’s

compiler that provides access to the program’s AST for manipulating source code.

Source-to-source transformations are used in many software engineering activities, such as

forward engineering and language translation, as mentioned by Cordy et al. [21]. The refac-

toring activity can also greatly benefit from such transformations by specifying code changes in

an appropriate language. TXL is an example of a source transformation language and processor

that provides rapid code prototyping support. Following the extended Backus-Nauer form, the

language uses unrestricted, context-free grammar. The workflow of the TXL processor can be

visualized in Figure 3.12. The code to be transformed is described in the TXL language, which is

then passed to the TXL processor that parses the input program and automatically outputs a source

artifact with the desired transformations.

3.3 Refactoring Tools and Techniques 27

Figure 3.11: Some inference rules of the tool proposed by Jeon et al. [42]

TXL is a flexible language, allowing practitioners to reuse transformations previously declared

using the language. It works by finding patterns in code that correspond to the rules defined in the

TXL file, replacing them if a match is found.

The language has been used for multiple purposes, such as translating interfaces to multi-

ple languages according to a specification, creating language dialects by implementing semantic

extensions and obtaining higher-level entity abstractions from source code implementations.

By implementing a similar model to the one described by Kniesel and Koch [47], Li and

Thompson [48] present a framework powered by a DSL for creating reusable, complex refactor-

ings that propagate failures along the refactoring sequence and generate refactorings automatically.

The tool, Wrangler, is implemented using the Erlang programming language and integrated into

Eclipse and Emacs. Refactorings are also divided into mini and complex refactorings, and there

are transformation rules that automatically convert source code. Moreover, complex refactorings

provide the option of continuing or halting execution if one of the sequential transformations fails.

Visualizing Figure 3.13 allows for a better understanding of these behaviors.

The authors have designed the DSL so that primitive refactorings have a code generator asso-

ciated, which can be lazily applied to ensure that only the most up-to-date program information is

used.

Unlike other implementations, this one does not derive nor propagate invariants and primitive

refactorings, which helps increase expressibility even if it reduces overall performance. The tool

works by receiving a complex refactoring script, which after being interpreted, outputs refactor-

ing commands. These will then travel along with the AST until they match the abstract pattern

templates with relevant implementation code and apply the transformations according to the refac-

toring sequence. This tool has Live Refactoring characteristics such as code previews, automatic

Literature Review 28

Figure 3.12: The TXL processor. [21]

refactoring application, and undoing.

Schäfer and de Moor [70] also provide an implementation with support for splitting patterns

into smaller ones but take a different approach for chaining refactorings and propagating changes

throughout them. The authors argue that the usual pre-condition-based approach is not good

enough to cope with data flow and name-binding preservation problems. For instance, as suc-

cessive micro-refactoring applications alter variable names, successive refactorings might not be

successfully applied as, according to their context, the variables no longer exist. Moreover, when

variables with the same name but in different scopes exist, intermediate refactorings may get

confused and transform code that should be kept as is. The authors tackle these problems as de-

pendency preservation ones. In the case of changing variable names, after that micro-refactoring is

applied, the refactoring engine checks if the name keeps its binding with the variable declaration.

If not, the refactoring is canceled, or the binding is updated to reflect that name change. Figure

3.14 shows an implementation of a refactoring with the JastAdd tool. On another note, Eclipse,

for instance, does not ensure behavior preservation, which the authors find disturbing.

Another key difference is that refactorings are described using language extensions, in this case

for Java 5, and the refactoring engine is built on top of the JastAddJ compiler. The engine accepts

these language extensions as inputs, which are also used for handling intermediate refactorings.

These facilitate the refactoring process as refactorings can be more expressively described without

removing the simplicity and clarity of the refactoring specification model. When the refactored

code is generated, it is stripped from these language extensions and converted into pure Java code.

By bench-marking the built-in Eclipse refactorings with equivalent ones created using this

refactoring engine and language, the novel approach’s implementations are much more explicit

and concise, code-wise, making it much easier to understand the refactoring specifications and

implementations. Also, these often have higher correctness levels than the built-in ones.

However, the developed engine lacks performance, with smaller refactoring taking up to 5 sec-

onds to be applied. Additionally, the tool does not integrate with IDEs and cannot take advantage

of Live Refactoring capabilities.

Kataoka et al. [44] propose a tool, Daikon, for automatically identifying candidate patterns for

refactoring through the identification of program invariants in source code. The tool’s invariant

inference feature can be visualized in Figure 3.15. This approach identifies said invariants and

can infer them directly from the source code through the tool. The tool relies on users to decide

3.3 Refactoring Tools and Techniques 29

Figure 3.13: Execution of a batch refactoring. [48]

whether or not to apply a refactoring.

The authors point out that, even if users decide not to apply the suggested refactorings, these

may still be useful for pointing out aspects that should be better documented in the code. The tool

is not an all-in-one package, consisting of a set of standalone Perl scripts for identifying invariants

and, consequently, potential refactoring opportunities, and the Daikon tool for inferring invariants

from source code. This means there is no IDE integration.

This solution relies on dynamic analysis techniques, meaning that transformations need to be

verified to ensure behavior preservation by the user or through static analysis tools. The authors

propose a mixture of dynamic and static analysis techniques to ensure refactoring correction and

integrity.

Derezinska [24] described a tool that enables automatic and manual refactoring. The selected

approach analyzed how relevant each source code block was to a set of built-in design patterns.

The program calculates a relevance metric describing the similarity between a code block and a

design pattern.

Patterns are only applied if they respect the respective pre-conditions. The tool allows the

programmer to automatically apply the code transformations that implement the pattern.

This tool extends the Eclipse environment that operates over the Java programming language.

In particular, Eclipse’s Refactoring Framework provides the tool with Live Refactoring capabil-

ities such as automatic refactoring application, code previewing, and accessing a history of ap-

plied refactorings. The framework that is associated with this tool allows adding new refactorings

quickly.

Wei et al. [50] propose approaches for refactoring two different design patterns from Gamma

et al. [35] automatically. Again, the overall architecture is based on two main components: one

for identifying patterns that constitute refactoring candidates and another that automatically trans-

forms the source code. The author’s implementation targets the Java programming language, but

the logic can be applied to any other language. It extends the Eclipse development environment,

making use of the JDT APIs. The refactoring process can be visualized in Figure 3.16.

The identification stage is performed by automatically assessing the program’s AST and the

Literature Review 30

Figure 3.14: Implementation of the refactoring Promote Temp to Field. [70]

application of source code transformations. A match happens when a set of conditional statements

related to each design pattern are respected. Then, optimizations occur to ensure the optimal

refactoring is selected. Multiple simple refactorings can be combined to form more complex

refactorings.

Experiments over the developed tool demonstrate that refactored code is more maintainable

and extensible by assessing a set of pre-defined metrics.

Hunold et al. [38] address a tool, TransFormr, for identifying patterns in code and automati-

cally applying them. The authors mention that such features could bring significant improvements,

such as refactoring legacy code bases. It also allows the visualization of class dependencies in pat-

terns, as shown in Figure 3.17.

The authors divided the refactoring process into three stages in the proposed implementation.

The first is the extraction phase, where an AST is generated from source code and categorized

according to several characteristics such as business logic, database, or user interface. The next

step involves applying the transformations associated with a specific pattern at the abstract repre-

sentation level. Finally, source code is generated to represent said transformations.

Source transformations and pattern specifications are defined using the TXL language to an-

notate and extract the abstract model from the source code. While the user must decide if the sug-

gestions should be applied, the tool provides several different ways of visualizing the suggested

transformations. Moreover, it is also possible to create batch refactorings.

3.3.1 Evolutionary Algorithms for Code Transformations

The literature points out multiple attempts to improve the refactoring process. Some of the most

interesting ones involve optimizing the identification and generation of patterns and refactoring

3.3 Refactoring Tools and Techniques 31

Figure 3.15: The invariant inference mechanism of the Daikon tool. [44]

sequences.

Ouni et al. [60] present a tool, MORE, that simultaneously identifies anti-patterns and intro-

duces patterns. It handles refactoring as an optimization problem, using multiple algorithms, such

as hill-climbing, simulated annealing, and genetic algorithms to maximize performance metrics

and generate an optimal refactoring sequence. The architecture of the tool can be visualized in

Figure 3.18.

The tool parses and analyzes source code to create an internal representation of the program to

manipulate. An anti-pattern detector, implemented with rules based on logic predicates, matches

code with the set of anti-patterns known by the tool. Similarly, there is also a pattern detector

for finding instances of design patterns already present in the code. The tool also has knowledge

on the list of refactorings to apply, which are aborted when any of the micro-refactorings that

make up a sequence fails, and a quality evaluator for assessing how positive or negative the im-

pact of refactoring was. Finally, a coherence constraints checker ensures behavior and semantic

preservation.

Experiments reveal promising results. However, some situations may drift the overall program

architecture from its original design in ways that are not beneficial overall. One example is when

developers have to tweak refactoring applications to fit specific use cases better manually, which

is a consequence of not being able to generalize refactorings enough.

Jensen and Cheng [41] propose an alternative way to generate micro-refactoring sequences

other than following a rule-based approach. The authors propose following an evolutionary-

programming approach and using genetic programming algorithms to identify the most-beneficial

sequence to a given set of micro-refactorings. While refactoring tools that use this kind of al-

gorithm exist, these do not allow creating batch refactorings. Moreover, the authors’ approach

focuses on finding the best sequence for applying them and creating refactorings. The authors

have developed a tool based on these ideas, which features Live Refactoring capabilities through

the automatic suggestion and application of refactorings while also allowing doing so manually.

The tool represents the program being refactored as a graph based on a UML class diagram

augmented with semantic details like class instantiations and method calls. A transformation tree

encodes the changes to apply to the graph mentioned above. After applying the changes, the

graph assesses how much a set of metrics was improved. The rest of the process goes just like

any genetic algorithm. Design patterns are detected through a Prolog program responsible for

Literature Review 32

Figure 3.16: The refactoring process of the tool proposed by Wei et al.. [50]

matching patterns with the analyzed code.

Shimomura [71] has implemented a tool for suggesting and applying refactorings to design

patterns for Java code based on genetic algorithms, albeit in a different manner. The novelty of

this approach is that these algorithms are used to generate implementations of design patterns,

which are then evaluated against a set of quality criteria. For each design pattern of the set, two

sample sets of programs are created: a set of flawed programs that could benefit from applying the

pattern and a set of sound patterns that have already been applied. Then, an algorithm that assesses

program quality concerning a range of quality metrics compares good and bad samples. After

that, a genetic algorithm verifies which metrics better serve to differentiate good and bad design

patterns. Finally, these metrics are applied to the target program so the tool can know if a design

pattern should or should not be recommended. Figure 3.19 represents the tool’s architecture.

The authors identify a set of advantages of using such an approach. One of them is adding

new metrics to the tool to use by the genetic algorithm. Another is that this implementation can

provide developers feedback on which metrics are most beneficial to evaluate the possibility of

applying patterns.

3.3.2 Model-Driven Refactoring

Another innovative technique for creating and applying batch refactorings to patterns is interacting

with the program at the more abstract level of class diagrams instead of directly on code.

Model-Driven Software Engineering suggests, among other things, abstracting implementa-

tion into models for more effortless comprehensibility and evolution, which will have the corre-

sponding code automatically generated by the environment. Consequently, refactoring said ab-

stract structures into design patterns is a more general and language-independent process, and the

transformation operations need to interact directly with the models.

El-Sharqwi et al. [27] propose a model for specifying design patterns and associated refac-

toring transformations using XML, a flexible, popular, and extensible language, and the designed

3.3 Refactoring Tools and Techniques 33

Figure 3.17: Visualizing class dependencies in the TransFormr tool. [38]

models can be serialized into UML, which provides clarity when visualizing models. Figure 3.20

shows an example of a pattern described in XML.

The detection of design patterns in code is implemented as a constraint satisfaction problem.

The constraints are related to the relationships between models, such as inheritance and associ-

ations, and the respective variable domains. Model transformations are the collection of micro-

refactorings that form more complex ones. Code is ultimately generated from the models, as usual

with MDSE approaches. Implementation is based on top of NRefactory, a code generator and

parser for the .NET platform.

France et al. [34] also address the issue of refactoring to patterns following a meta-modeling

software development approach. The authors argue that automatic refactoring to patterns tools can

help ensure that code smells are not introduced during transformations and preserve developers’

time and energy from tedious and repetitive tasks. After identifying patterns in the model abstrac-

tions representing the source code, the authors suggest adding, removing, or reorganizing model

elements to apply the refactorings. Figure 3.21 describes the proposed meta-modelling approach.

Meta-models are also used for defining patterns, and the associated transformations, which

can be many, as a pattern may be embedded into the design in several ways. The refactoring

patterns and the implementation abstractions of concrete code are specified using a UML model.

The model’s M2 level, an extension of UML’s meta-model, represents the transformation language

used to specify the required changes that compose a given transformation. The M1 level extends

the UML model to represent abstract, related transformations to a concrete implementation in the

M0 level. Transformations are suggested when there are matches between the models that define

patterns and the abstractions of specific code implementation.

The developed tool has a few issues that prevent it from being production-ready. The first is

Literature Review 34

Figure 3.18: Architecture of the MORE tool. [60]

that properties are not preserved between refactorings, and the second is that there is no way to

avoid conflicts when two different refactorings are suggested for the same use case. The solution

also does not support batch refactorings or integration with modern IDEs. The authors believe this

model will significantly decrease development time and costs with these issues fixed.

Refactoring meta-models instead of directly transforming code may make the process easier

for developers. They can abstract from the concrete implementation details and focus on the

project’s overall architecture. Mens et al. [54] explain that tools for supporting model refactoring

to patterns must firmly ensure consistency among the different model views, traceability among

components, and behavior preservation during transformations. Figure 3.22 presents an example

of a model-driven software refactoring scenario.

The authors declare that model refactoring to patterns is not trivial and that there are practically

no tools for supporting the process. One of the reasons for the difficulties experienced while

transforming models is that it is hard to specify a high-quality model and which metrics may be

adequate to signal a potential refactoring opportunity. Even if Kerievsky [45] presents suggestions

for refactoring to patterns, it is not assured that these will translate well when refactoring its

respective abstract models without any modifications. Moreover, it is hard to synchronize and

ensure model consistency when users manually edit code generated from the models so that the

3.3 Refactoring Tools and Techniques 35

Figure 3.19: Architecture of the tool developed by Shimomura. [71]

Figure 3.20: A pattern described in XML. [27]

refactoring better suits a specific need. Modeling languages such as UML may also have semantic

variations from model to model, impacting the tool’s assurance of behavior preservation.

The modeling language used for describing refactorings, patterns, and transformations must

be generic enough to ensure flexibility for all problem domains. Tool implementations are bound

to have good enough performance to be helpful in real-world scenarios. Such tools could greatly

facilitate the refactoring creation and application process and chaining more minor refactorings

into more complex ones. These refactorings could be orchestrated by interacting with the model

as a graph, where operations would be characterized through graph transformation rules. Also,

existing graph theory knowledge may help explain the created batch’s parallel, sequential, and

Literature Review 36

Figure 3.21: The architecture of France’s meta-modelling approach. [34]

termination characteristics.

Tokuda and Batory [76] argue that redesigning software interfaces should become more in-

teractive and automatic. The authors propose a new methodology for evolving designs based on

editing class diagrams, which are abstractions of the code implementation, as seen in Figure 3.23.

These abstractions allow the application of generic refactorings, which are not dependent on the

implementation but operate over said abstractions. Doing so could reduce the burden of identi-

fying where in the code the refactorings can be applied, fixing bugs introduced through manual

refactorings, and testing changes.

The authors identify three operations for evolving object-oriented designs: applying design

patterns, performing schema transformations, and identifying hot-spot meta-patterns for frame-

work evolution. The developed tool covers all these use-cases and confirms that automated refac-

torings could be very effective in large-scale systems, especially when ensuring behavior preser-

vation. Ensuring behavior preservation can help reduce manual validation efforts. However, the

authors identified a set of transformations that could not be performed automatically, which is

inherently limiting. The tool also cannot integrate with IDEs to support features such as hot-

reloading code transformations when applying refactorings.

3.3.3 Discussion

Multiple tools are presented that implement one or more of the batch refactoring responsibilities

that were previously stated. Refactoring identification approaches based on code clone detection,

logic meta-programming, inference rules, and transformation languages are presented. Concern-

ing transformation techniques, tools provide visual interaction mechanisms such as code wizards

with step-by-step guides, user interfaces for composing batch refactorings, and a refactoring sug-

gestion list directly in the IDE. Most tools try to ensure invariant preservation, albeit in different

ways.

Regarding Live Refactoring capabilities, not many are compatible with development environ-

ments, and when they are, they lack features that other tools possess. IDEs are not good enough

3.3 Refactoring Tools and Techniques 37

Figure 3.22: A sample scenario for model-driven refactoring. [54]

in this area, and their toolkits are hard to use. Environment integration is also primarily focused

on the Eclipse platform, which suggests that other environments such as IntelliJ did not have re-

search performed to implement a batch refactoring creation and application system. Moreover,

some IDEs offer batch refactoring extensions that have incorrect algorithms and do not respect in-

variants, and extensibility features are challenging to use. However, some tools can integrate well

into development environments, but these do not display complex batch refactoring capabilities.

Novel techniques are being used to develop innovative batch refactoring tools. Some of these

are very robust, performing refactoring detection, suggestion, code generation, and even using

code metrics to assess the quality of suggested refactorings. However, these are not integrated

with development environments. Approaches that follow a model-driven philosophy emphasize

creating, orchestrating, and customizing batch refactorings via interacting with higher-level ab-

stractions such as UML models or graphs. Again, these tools’ interaction capabilities with IDEs

are limited, if not non-existing. Figure 3.25 summarizes the capabilities of each described tool.

Batch refactoring tools can aid the process of evolving code through source-to-source trans-

formation tools or meta-modeling approaches. By abstracting patterns into reusable modules and

then orchestrating them, the refactoring tool creation experience becomes more straightforward

and independent of underlying code generation engines. Languages that can achieve this level of

abstraction may drastically change the way refactoring tools are created.

While the architectural foundations of batch refactorings seem solid, most implementations

are insufficient to provide a good development experience to IDE users and refactoring creators.

Tools advance concrete issues of the batch refactoring creation process but are mostly incomplete.

This, allied with the required knowledge necessary to create refactorings, may be pushing away

practitioners from creating refactorings even more.

Literature Review 38

Figure 3.23: Applying a refactoring through a model-driven approach. [76]

3.4 Framework Evolution

Some of the most useful applications of refactoring to patterns techniques are related to framework

evolution [77]. Change often triggers modifications in frameworks, and as software developers up-

date their systems, they must alter existing framework code to ensure that features remain working

as expected. A tool that enables refactoring to patterns must, in turn, implement a framework

for representing the patterns that will be supported. It must be carefully designed so that it is

expandable and maintainable.

3.4.1 Proposed Ideas

Roberts and Johnson [67] define frameworks as a set of abstract classes and their relationships

that are part of a software system and constitute a reusable design. The authors recommend only

developing a framework when there are enough applications to use a set of repeatable patterns.

It is suggested that framework development should start only when there is a set of at least three

applications that can be analyzed to identify patterns. The more examples, the more generalizable

the framework can be, but too many examples can make it harder to finish developing it. Either

way, examples are mandatory, as it is challenging to develop a framework based on abstract ideas.

The framework sections that are passable of being extended and updated are named hot-spots,

and these should be correctly documented so that functionality remains unaltered [77]. Moreover,

framework evolution may be more safely performed by specifying the transformations that have

occurred since prior versions via meta-programming techniques and then be automatically applied

to production code. Meta-patterns also have the advantage of allowing the re-usability of common

patterns repeated across different framework transformations. In this case, meta-patterns are pow-

ered with information to match the concrete implementation code sections representing framework

hot-spots. Not only does the proposed approach help propagate changes across framework ver-

sions, but it also allows for detecting existing upgrade conflicts. These characteristics reduce the

chances of introducing bugs when manually upgrading frameworks and dismiss developers from

performing this tedious and possibly damaging activity.

The TXL source transformation language, for instance, is one example of how these tech-

niques can be used for framework development and evolution [21]. One of its special applications

3.4 Framework Evolution 39

is meta-programming, which is achieved through annotating automatically generated code accord-

ing to a TXL template and specifying batch code refactorings. This specification is achieved by

defining sequences of refactorings in TXL that are used to transform source code. One of the most

beneficial use cases of this source transformation language for defining refactorings is identifying

maintenance hot spots in code.

For instance, when the Y2K bug hit the world, TXL was used for automatically identifying and

converting affected code. A source transformation script is shown in Figure 3.24. This technique

can also be used for maintaining frameworks over time. Practitioners can specify the source code

blocks to be transformed and the necessary rules. The TXL processor automatically converts the

code.

Figure 3.24: Source transformation for fixing the Y2K bug using TXL. [21]

Tourwé and Mens [77] propose a model for defining meta-patterns and instances of concrete

implementations of those patterns. Additionally, meta-pattern transformations are defined for de-

scribing how to transition from one framework version state to another. Using meta-patterns makes

the concrete implementations developed by practitioners independent of the overall abstract model

of the patterns while ensuring that all constraints and invariants are preserved.

This model was implemented using a tool that supports the SOUL logic meta-programming

environment for describing said patterns. Users must annotate code to know the used patterns,

which are then listed to the practitioner. The tool also guides the user during the process, providing

support for manual design evolution, detecting conflicts between versions, and filling hot spots

automatically whenever possible.

Literature Review 40

3.4.2 Discussion

Frameworks are essential when developing large-scale software that can share components be-

tween different programs. To do this, patterns should first be identified in existing systems, which

then can be generalized.

Refactoring code bases is a way to ensure that their evolution and maintainability happen

while maintaining code clean, modular, and adaptable. This is done by specifying refactoring

patterns that identify and transform critical components of a program that must be updated, as the

transformation of vast blocks of code can be done automatically.

The way developers specify the transformations they wish to apply must be simple and acces-

sible. While approaches based on source-to-source transformation languages, such as TXL, are

compelling and customizable, developers must learn a different language. Many may not have the

time or mindset to do so.

Framework evolution may greatly benefit from the model-based refactoring techniques men-

tioned in Section 3.3. Good enough abstraction of refactoring patterns can, for instance, allow

the evolution of frameworks by scripting the changes in a domain-specific language. This may

tremendously reduce the time and effort developers spend upgrading framework components, as

most of these changes could be programmed and applied automatically through such abstractions.

In general, evolving frameworks by refactoring to patterns is an exciting methodology for

increasing developer productivity, reducing overall company costs, and adding security and speed

to the process.

3.5 Summary

In this section, state of the art on batch refactoring architectures and formal models were presented,

primarily based on splitting patterns into multiple ones and ensuring these individual ones preserve

their invariants.

Additionally, multiple refactoring to patterns tools and methodologies were presented, along

with explanations of their inner workings. Among them, novel techniques such as genetic algo-

rithms and model-driven software development approaches were identified.

Finally, refactoring to patterns techniques for ensuring framework evolution and maintainabil-

ity were identified, and the impact they may have on software development.

3.5 Summary 41

Figure 3.25: Summary of refactoring tools capabilities.

Chapter 4

Problem Statement

Change is the only constant in the world, which naturally applies to the software engineering

reality. Change affects software projects in multiple ways, such as teams increasing in size, stake-

holders changing their minds, competition getting more robust, tight deadlines, requirements that

are often modified, and the introduction of new technologies [18].

The effects of change can also be felt due to the behavior of software developers. They may

overlook how implementation details affect requirements satisfiability and may not know that the

code has bad smells. The costs are clear, and one of the most obvious ones is the steep decrease in

productivity [52].

4.1 Context

Given that code is one of the most concrete expressions of requirements, it should be as resilient to

change as possible. The problem is that constant change may make teams not pay much attention

to ensuring that the code is robust, strong, modular, and adaptable, as the limited time of each

developer may instead be allocated to develop yet another feature. This is tempting, as time is

money, and features must be added to keep stakeholders happy. The issue is accentuated by the

swift development pace that envelops the industry.

Multiple techniques are used to ensure that code is kept in a good, clean and robust state.

Refactoring is one of them, as well as the application of design patterns. The fact is that design

patterns and refactorings are intrinsically related: patterns are implemented to improve design,

and applying a pattern is performing a transformation that does not alter the code’s behavior but

improves its design, which is the definition of refactoring.

Therefore, refactorings should be applied often. Multiple tools offer Live Refactoring capa-

bilities such as automatic suggestion, application, and preview of refactorings, which can signif-

icantly help practitioners, as demonstrated in previous chapters. However, creating refactoring

plugins still leaves much to be desired.

42

4.2 Open Issues 43

4.2 Open Issues

Unfortunately, some issues prevent the creation of refactoring plugins in an accessible and straight-

forward manner. In Chapter 3, state of the art on batch refactoring, refactoring tools and tech-

niques, and framework evolution revealed some deficiencies with solutions to the creation of

refactoring tools. Along with other problems identified in Chapter 1, the following open issues

can be exposed:

High Amount of Pre-Required Knowledge. Creating refactorings from scratch is not a trivial

task, as it requires knowledge in the most varied areas, such as compilers, design patterns,

refactorings, language design, IDE and compiler APIs, and general software engineering

experience. Not all developers are comfortable with all of these areas, requiring them to get a

grasp on them before implementing something. This large, pre-required body of knowledge

may detract them from even considering building refactoring tools of their own.

Large Time Expenditure. The topics mentioned above, especially compilers and language de-

sign, are not trivial to understand, requiring considerable learning time. This is time that

many practitioners cannot spend, decreasing the likelihood they will ever create a refactor-

ing tool.

Varying Compiler and IDE APIs. Each compiler and each IDE have its APIs. Therefore, if

practitioners want to build refactoring tools targeting multiple languages and APIs, they

must study the inner workings of them all. Even if they are similar, they will indeed have

their peculiarities, and such complex pieces of software will have design differences that

require study.

Not Accessible to the Ordinary Developer. Not all developers will have the skills necessary to

build refactoring tools, reducing the chances of these being implemented. If the process

was more straightforward, requiring only the developer to know the behaviors the refactor-

ing should have, junior developers (and perhaps non-developers) could create these tools.

Additionally, practitioners are not comfortable with existing refactoring creation tools.

Ever-Evolving APIs. APIs change over time and many are even dropped or replaced. This forces

practitioners to constantly update their tools to comply with newer software versions. This

effort could, instead, be spent on improving existing refactoring tools or creating new ones.

Limited Modularity and Reusability. As practitioners implement refactoring tools by hand, some

code will likely get duplicated, as refactoring tool algorithms may share common behaviors.

It would be helpful if practitioners could reuse these behaviors as they develop new tools.

Moreover, creators could use already existing behaviors by simply including them in the tool

they are creating, reducing the amount of code needed to be written by hand. Additionally,

large portions of boilerplate must be repeatedly rewritten to implement basic functionality.

Unfortunately, this is not yet a reality and may discourage practitioners from creating new

refactoring plugins.

Problem Statement 44

Limited Refactoring Tool Creation Support from IDEs. Modern IDEs such as Eclipse, Visual

Studio, and IntelliJ do not provide support for quickly creating complex refactorings. In

the case of Visual Studio, it provides users with a template for creating a refactoring tool.

However, it requires users to interact with compiler and IDE APIs, which, as previously

mentioned, are not accessible to most practitioners.

Limited Live Refactoring Support. Most complex refactoring creation tools do not integrate

well - if at all - with modern development environments such as Visual Studio.

Some Existing Refactoring Tools Are Flawed. Some of the existing tools for creating complex

refactorings have algorithmic errors. Therefore, these tools are not providing refactorings

but inaccurate code transformations, as they are not improving the design of existing code

nor maintaining original functionality.

Limited Refactoring Availability in IDEs. Most IDEs only provide support for the most popular

refactorings and do not cater to more complex ones. It is safe to say that it is implausible

that IDE manufacturers will develop plugins for niche refactorings in the foreseeable future.

4.3 Hypothesis and Research Questions

Chapter 3 helped identify current practices regarding creating complex refactoring tools. The

information in that chapter revealed that the patterns and mini-patterns paradigm were thoroughly

considered among academics. This technique can be used not only for the programming activity

but even for the code review process. Additionally, it was recognized that IDEs are not good

enough in supporting the creation of batch refactorings, lacking, for instance, accessible toolkits.

However, they provide useful Live Refactoring features that are much useful to practitioners.

The process of abstracting refactoring behaviors and isolating them into concrete modules was

revealed to be helpful, as well as the process of orchestrating said modules. This orchestration

could be done visually or by refactoring behavior scripting languages, which are not always clear

and accessible enough. Moreover, this kind of language that abstracts concrete implementation

details of creating complex refactorings seems to be very fruitful when applied to framework

evolution. Changes can be scripted using such a language, and frameworks can be automatically

updated.

When the issues above regarding the creation of refactoring plugins are examined, it becomes

clear that there is much potential to improve the creation process, further incentivizing practition-

ers to build their own.

The following hypothesis can, thus, be declared:

A tool for building complex refactoring plugins via behavior orchestration, using Live

Refactoring environment features, can incentivize the creation of such plugins and

make the development process more accessible and simple.

4.4 Proposal 45

In order to confirm or reject this hypothesis, the next set of research questions can be raised in

order to better direct the quest for validating the hypothesis:

RQ1: Can a tool for generating refactoring plugins make the plugin development process more

accessible and straightforward?

RQ2: Will practitioners benefit from plugins with built-in Live Refactoring features such as live

previews, automatic refactoring opportunity detection, and one-click refactoring applica-

tion?

RQ3: Will a refactoring plugin generator incentivize practitioners to build refactoring plugins of

their own?

4.4 Proposal

Considering the previously described research questions and open issues, the dissertation will

focus on developing a tool for creating refactoring plugins. This tool should improve the creation

of refactoring plugins by making it more accessible, not requiring large amounts of knowledge

on many topics. Additionally, users of the tool should be able to get results quickly. The tool’s

interface should be stable and independent of the concrete implementation so that users do not

need to be constantly relearning it and to allow it to support multiple programming languages.

Finally, it should integrate with modern development environments and use their Live Refactoring

capabilities.

4.5 Validation

An expert assessment with software engineering professionals will be performed to validate the

hypothesis and provide answers to the research questions. The participants, who ideally will have

different years of experience and academic formation, will be required to use the tool for building

several refactoring plugins of varying complexity. The experiments will be timed so that it is

possible to assess to which extent the developed tool has improved the creation process. These

results will be collected through a survey filled by participants at the end of the experiment. The

validation methodology will be further described in Chapter 6.

Chapter 5

Proposed Solution

A potential solution would be to abstract the creation process to a point where the developer

would only need to focus on chaining the behaviors needed to implement a particular refactoring,

resulting in the generation of a refactoring plugin ready to be connected to an IDE. This approach

takes cues from the research in Chapter 3. A possible abstraction could take the form of a sim-

ple language that could generate refactoring plugins by chaining behaviors together in the shape

of reusable modules. When chained, these would allow the creation of both simple and batch

refactorings.

Therefore, RPCL - Refactoring Plugin Creation Language - was developed for building cus-

tom refactoring plugins. When connected with the Visual Studio IDE, these plugins can use its

Live Refactoring capabilities to suggest, preview, and transform code according to the refactoring

algorithm. The language aims to democratize the refactoring plugin creation process, making it

accessible to every developer by lowering the knowledge entry barrier. This is achieved by dis-

pensing the user from the need to grasp complex knowledge in multiple programming areas. The

ultimate goal is to improve code quality and the overall practitioner’s development experience.

5.1 Live Refactoring Features

As mentioned in Chapter 1, while refactorings are helpful, they are only valuable if applied. There-

fore, even if there is a language capable of generating refactoring plugins, if, when used, the tool

cannot offer refactoring suggestions in a quick, straightforward, and obvious way, it will not be

advantageous. With this in mind, RPCL was designed to be able to generate plugins with mul-

tiple Live Refactoring capabilities built-in and ready to be used when plugged into the IDE. The

available Live Refactoring features are the following:

Automatic Detection of Refactoring Opportunities. Refactorings resultant from using a refac-

toring plugin that was generated with RPCL will alert users of refactoring opportunities that

46

5.2 Technological Components 47

enhance code quality and maintainability. This is done by triggering an automatic sugges-

tion whenever the cursor hovers an expression of the kind that is explicit in the RPCL script.

For instance, it makes sense only to trigger a refactoring that adds a parameter to a method

declaration if the user’s cursor is hovering over a method declaration - provided it complies

with the conditions defined by the practitioner when creating the refactoring plugin. The

suggestion is offered through the appearance of a light-bulb contextual menu. This menu

lists all available refactorings for that expression type when clicked. An example is available

in Figure 5.5.

Live Previews. This feature, also built into all RPCL-generated plugins, allows users to visualize

how the refactoring, when applied, will transform the source code. These previews are

color-coded to effectively separate which segments will be added (highlighted in green) and

removed (highlighted in red). Respecting the Live Refactoring philosophy, the previews are

dynamic. This means that the code previews are applied to code in real-time - these are not

renders of concrete situations but representations of how the refactoring will transform the

code. Figure 5.5 is an example of the refactoring preview feature.

Automatic Application of Refactorings. While detecting and previewing refactorings is useful,

applying refactoring transformations is no less convenient. Looking again at Figure 5.5,

when clicking on a line of the live contextual menu that appears whenever it is appropri-

ate, the refactoring is automatically applied. It is also possible to revert the refactoring

application automatically, modifying the code to the state the code was immediately before

applying it. Ultimately, the application of refactorings is simply another text edit operation.

This reversion operation can be performed, for instance, through the CTRL + Z keyboard

shortcut or the Edit menu in the Visual Studio menu bar.

5.2 Technological Components

RPCL is a DSL built on top of the C# programming language. It is an internal DSL, as opposed

to an external one, to take advantage of the practitioners’ familiarity with the language. The

language’s syntax is valid C# code. This means that the refactoring plugins can be written in a C#

file, provided that RPCL’s library, which contains all the available modules, is imported. Because

this is an internal DSL, there is no need to parse the language, as it is simply a C# script. Thus,

the refactoring plugin can be generated by simply compiling and running the code. In the Visual

Studio IDE, this process is as easy as pressing the Play button in the menu bar.

Using C# as the base language provides multiple advantages. One of them is having access

to the .NET Platform Compiler SDK, which provides powerful meta-programming manipulation

tools. Being a compelling platform that enables developers to interact with multiple C# compiler

APIs, Roslyn lets users manipulate ASTs by adding, transforming, and deleting nodes. RPCL

leverages C#’s syntax features and builds on top of them.

Proposed Solution 48

Additionally, it is an object-oriented language. This should ease the developers’ learning ex-

perience as it is a paradigm that most software engineers are familiar with. It is also a popular

language [10], which also contributes to easing the learning journey. Finally, it is easy to read and

charged with features such as method chaining, making it easier to combine multiple commands

in a logical sequence and successively use the results of previous operations.

Internally, Roslyn stores code structures in the form of an AST. Nodes are used to store the

implementation of classes, methods, and expressions, among others [81]. Each syntax node has

a kind that identifies it, as each C# construct is composed of a particular set of expressions and

tokens. For instance, an if-statement expects a boolean condition expression and a set of body

statements. Optionally, there can be an else-statement, which also expects a body of statements.

These are surrounded by the appropriate tokens, such as curly braces and parenthesis. A list of

some of these node kinds is present in Figure 5.1. Figure 5.2 showcases Syntax Visualizer, a

Visual Studio extension that allows visualizing how different syntax nodes can be nested together

to form a program.

Figure 5.1: List of some of Roslyn’s syntax node kinds. [7]

Given that Roslyn was selected as the compiler platform that powers RPCL, it was a natural

decision to pick Visual Studio 2022 as the development IDE so that the refactoring plugins can

take advantage of its Live Refactoring capabilities. Visual Studio provides multiple APIs for all of

the Live Refactoring features described in Section 5.1. These are independent of the behavior of

the refactoring plugin and are automatically added to it. Moreover, the IDE supports the display

of contextual menus such as the light bulb indicators and messages in a specific application pane

whenever the developer finds it appropriate.

5.3 Language Design 49

Figure 5.2: Visual Studio’s Syntax Visualizer extension.

5.3 Language Design

Creating a language is a process that must receive enough attention and ponderation. The language

should be flexible enough but not to a point where it loses its intended focus, in this case, building

refactoring plugins. A well-thought language induces harmony when used without limiting the

user’s freedom and creativity. The following sub-sections go over the thought process of creating

RPCL.

5.3.1 Behavior Modules

The language’s building blocks are its modules, representing the behaviors that characterize a

refactoring. Modules may be either conditional or transformational. Conditional modules are

preconditions that must be verified for the refactoring to be suggested and applied. These module

names begin with the "If" word. On the other hand, transformational modules define the code

manipulations that the refactoring will perform on existing code, such as adding or removing

specific code segments. The names of these do not begin with any specific word.

Internally, each module is a C# method. These take advantage of the Roslyn APIs for inter-

acting with a program’s AST. Possible interactions include searching for methods with a specific

name, variables of a particular type, and expressions of various kinds, such as invocations and bi-

nary expressions. Each module was named so that it becomes immediately apparent to the creator

what its behavior is.

An essential characteristic of behavior modules worthy of mention is that each one is atomic,

meaning they work independently. However, this does not mean they do not have code in com-

mon. For instance, one module may require the construction and addition of a method declaration

necessary for the functioning of another module. In these cases, each module queries the AST to

Proposed Solution 50

determine if that declaration is already present in the AST so that the tree can access it. If so, that

declaration is used; if not, it is added to the AST.

Two special modules make up the entire set:

TriggerOnAll. Before invoking any other modules, there must be an invocation to this one, which

specifies which kind of code declarations (such as classes, methods, or expressions) the

refactoring plugin should alert the user that a refactoring opportunity is available. For in-

stance, if the module targets method declarations, the refactoring will only be offered when

the practitioner’s cursor hovers over a method declaration where the conditional modules

(or refactoring preconditions) are verified.

Assemble. This module should always be invoked after all behavioral modules are stated, as it is

responsible for generating a file containing the generated refactoring plugin’s code. If not

used, the file’s content can be accessed by assigning the result of the module chaining to a

variable.

While not a module, the @Previous construct is also encompassed by special rules. This is to

be used whenever the practitioner wants to reference an object previously referenced by another

module. For instance, it may happen that, during the development of a refactoring plugin, the

practitioner does not know beforehand the name that a variable will have when the plugin is used,

but only its expected type. In these situations, the @Previous construct helps chain refactorings

together and allows preconditions to be built on top of each other, exchanging information from the

previous reference and sharing context. However, in cases where the variable’s name is a constant,

if the refactoring should only be applied for objects with that name, then referencing objects using

the @Previous keyword would be unnecessary, and passing the variable name would suffice.

No one size fits all, and thus some modules may not completely cater to the needs of de-

velopers. With this in mind, the available refactoring plugin modules are customizable. Such

customization is achieved via parametrization. This design decision aims to augment the flexibil-

ity of the modules so that they are not tied to the refactoring plugins they were extracted from and

can be reused and adapted to other use cases.

With RPCL, no previous compiler knowledge and Roslyn and Visual Studio APIs are required

to create new refactoring plugins. However, this is not true when creating new modules. Suppose

there are enough built-in modules for most common preconditions and transformations. In that

case, creating new ones should be less of a necessity. However, this need will inevitably arise.

Practitioners may want to create new modules or tweak existing ones to comply with the intended

design. In the latter case, they may tweak the generated plugin to adapt it accordingly, avoiding the

need to create new modules, but this may, sometimes, be unavoidable. As the language evolves, the

goal is for it to provide as many modules as possible to decrease the likelihood of being necessary

to create new ones. All modules that are created should seamlessly integrate with the built-in ones.

5.4 Abstraction Levels 51

5.3.2 Refactoring Plugin Creation Process

Refactoring plugins are built by declaring a new RefactoringPlugin object, which receives its name

and description of what it will do. The user should chain the available modules together to define

the refactoring behaviors from which the plugin will be based. The object also stores contextual

information on behavior modules as they are chained. When executed, all behaviors return an

updated RefactoringPlugin object.

The RefactoringPlugin class, from which new plugins are created, contains a blank AST that is

progressively built as the behavioral modules are called. Internally, the class’ constructor starts by

automatically generating boilerplate code common to all refactoring plugins, such as the necessary

blocks for integrating with the Visual Studio refactoring APIs and importing libraries required for

any plugin to function. After that, each method is executed in the order it was declared (the natural

flow of chaining methods together). When a method is executed, it generates the appropriate code

by invoking Roslyn APIs to verify the preconditions and transform existing code. Each module’s

code is generated as syntax nodes, which are appended to the AST of the file that, at the end of the

chain, will contain the concrete implementation of the refactoring plugin. This behavior is similar

to the Pipes and Filters design pattern, characterized by the successive transformations of original

data input as it passes the pipeline’s filers, resulting in a refined output.

5.4 Abstraction Levels

When dealing with meta-programming issues, it can quickly become confusing to identify at

which abstraction level operations are being performed. In this case, three different abstraction

levels can be identified. Figures 5.3, 5.4 and 5.5 provide concrete examples of these abstraction

levels using the Extract Method refactoring plugin as an example, whose functioning is described

later in Section 5.5. The first level, pictured in Figure 5.3, is where the refactoring plugin is created

through the RPCL language. With it, multiple refactoring patterns are chained together to build

refactoring plugins of varying complexities. The result of running this code corresponds to the

second abstraction level, as seen in Figure 5.4. This level is represented by a file generated when

compiling the RPCL script, containing a lot more advanced code that interacts with compiler and

IDE APIs. It may not be intelligible to the common practitioner. It also contains the code re-

sponsible for providing the refactoring plugins with Live Refactoring functionality. This file can

then be plugged into Visual Studio, which will provide the capabilities mentioned above to any

C# project, allowing users to apply the refactorings that the plugin they built seamlessly provides.

This corresponds the third abstraction level, explicit in Figure 5.4.

Naturally, there is a sequence of interactions between abstraction levels, with the first inter-

acting with the second and the second interacting with the third. These interactions are, naturally,

unidirectional. However, non-consecutive levels cannot interact with each other. It would not

make sense to be otherwise, given that each level builds on top of the previous one. For instance,

the third level can only provide Live Refactoring capabilities built into the first abstraction layer if

Proposed Solution 52

an intermediate layer - the second one - transforms the RPCL specification into concrete code that

performs the appropriate API calls.

Figure 5.3: The first abstraction level. Corresponds to creating a refactoring plugin using the
RPCL language, which is a composition of behavioural modules.

Figure 5.4: The second abstraction level. Contains the generated refactoring code from the RPCL
specification, making use of both Roslyn and Visual Studio APIs. The file is ready to be plugged
into the IDE so that the refactoring is available to users automatically.

5.5 Implementing Refactoring Plugins with RPCL

In order to build refactoring plugins with RPCL, there must exist modules so they can be chained

together. With this in mind, some refactoring plugins were created from scratch, that is, by manu-

ally using Roslyn and Visual Studio APIs to detect refactoring opportunities and transform source

code. This was, naturally, not an easy task, as all issues identified with current refactoring plugin

creation processes in Section 4.2 were present.

After implementing each refactoring plugin, the code blocks that conferred the plugin par-

ticular behaviors (such as detecting a method with a given name or a class that implements a

5.5 Implementing Refactoring Plugins with RPCL 53

Figure 5.5: The third abstraction level. After plugging in the refactoring code into Visual Studio,
it becomes available to be automatically suggested, previewed, and applied by users in whichever
project they are working on, provided the necessary preconditions are met.

particular interface) were identified and isolated. Each gave origin to a behavior module. Natu-

rally, the more refactoring plugins were implemented, the more behavior patterns were identified

and, consequently, the more modules became available.

The implemented refactoring plugins revolve around the Chain Constructors, String Compari-

son, Extract Method, Ensure Dispose Call, Type Conversion, Creation Method, and Append ToList

to IQueryable refactorings, whose descriptions will be presented next.

5.5.1 Chain Constructors

Figure 5.6: Declaration of the Chain Constructors refactoring using RPCL.

One of the many refactorings described by [45] is Chain Constructors, a beneficial transforma-

tion to decrease duplicate code. The refactoring is triggered on constructor declarations whenever

Proposed Solution 54

a catch-all constructor exists. A catch-all constructor can replace another’s body by being called in

place of the body statements. For instance, consider two constructors: the catch-all constructor and

a simple one (a non-catch-all constructor). The simple one has, in its body, variable assignments.

The catch-all constructor can receive, as parameters, all variables being assigned to the simple

one and assigns them inside its own body. Therefore, the simple one can invoke the catch-all

constructor with all the correct parameters to reduce duplicate code.

The code transformations may be applied if a catch-all constructor exists inside a class. These

consist of creating a new constructor that receives, as parameters, all variables present in the body

of all other constructors, which are initialized to some value. Then, all other constructors are

stripped from their body statements, calling the catch-all constructor instead. The RPCL imple-

mentation of this refactoring can be seen in Figure 5.6.

5.5.2 String Comparison

Figure 5.7: Declaration of the String Comparison refactoring using RPCL.

The String Comparison refactoring aims to dissuade developers from comparing strings with

the equality operator (==) and invoke the Equals() method instead. This can ensure that the ex-

ception can be dealt with accordingly if any of the operators is not of type string. The RPCL code

that defines such refactoring is represented in Figure 5.7.

Figure 5.8: Example of the Greater Than and Addition binary expressions in C#.

This refactoring should trigger on all binary expressions, which have an operator surrounded

by two operands, such as the Equality operator. The refactoring can be triggered if the operands

are both of type string. When these preconditions are met, the binary expression is replaced with

a call to the Equals() method.

5.5.3 Extract Method

Yet another implemented refactoring is Extract Method, which is represented in Figure 5.9. It

aims to remove a set of statements manually selected by the practitioner using the mouse and put

them into a new method, which is then called exactly where those statements were in the original

method. The refactoring was implemented following the algorithm presented by Fernandes et al.

[30], which was inspired by Salgado’s [69].

5.5 Implementing Refactoring Plugins with RPCL 55

Figure 5.9: Declaration of the Extract Method refactoring using RPCL.

The refactoring is defined according to the following set of behaviors:

1. Candidate nodes must be valid statements according to the API in use.

2. Nodes must have associated parent nodes, meaning they must not be the root of a syntax

tree.

3. Expressions cannot be trivial statements such as variable declarations.

4. The block of statements highlighted by the user cannot correspond to more than 80% of the

original method’s statements.

5. The block of statements highlighted by the user should contain at least three statements.

6. The block of statements must be made up of consecutive statements.

The first condition is valid as the refactorings target only Invocation Statements, a subset of

valid Expression Statements. This fact also automatically validates conditions two and three. The

sixth condition is also valid, as the refactoring is only triggered whenever a set of statements, also

known as a syntax block, is highlighted with the mouse. The remaining conditions are assured by

invoking the rest of the conditional modules.

5.5.4 Ensure Dispose Call

Figure 5.10: Declaration of the Ensure Dispose Call refactoring using RPCL.

Figure 5.10 demonstrates an implementation of the Ensure Dispose Call refactoring through

the orchestration of RPCL’s behavioral modules. The refactoring is triggered only when a Method

Declaration is in mouse-focus. Then, inside the method body, there must be an object declara-

tion that implements the IDisposable interface. If so, the refactoring assesses whether that object

invokes the Dispose method, achieved through the @Previous construct.

Proposed Solution 56

After stating all precondition behavioral modules, a transformation module is disclosed. Since

Invocation Statements can vary significantly, the module allows users to customize several pa-

rameters, such as the object on which the Invocation Statement will be invoked, the name of the

method to be invoked, and a list of the arguments to be passed. The argument list does not have

a size limit, meaning that any arguments can be passed in any quantity, provided they are strings.

In practice, the string type requirement is not a limitation as, in RPCL, no actual object is being

passed, only its name. In the second abstraction level, the object’s name will be introduced into

the invocation, but this time without quotation marks. In essence, this means that the string literal

passed to RPCL is converted into a concrete type when used by the following abstraction level.

5.5.5 Type Conversion

Figure 5.11: Declaration of the Type Conversion refactoring using RPCL.

The Type Conversion refactoring aims to solve the problem of idiomatic peculiarities when

parsing strings. The method Parse is characteristic of multiple types, such as int or float. This

concrete refactoring aims to append a CultureInfo argument whenever the Parse method is called

on a float object. This is useful as some information may vary from region to region. One example

is the variety in decimal separators, which the dot or the comma characters may represent.

This refactoring is triggered only on Invocation Expressions. Additionally, the object where

the invocation expression is being called must be named "float", as the Parse method is invoked

on the float object. However, it only makes sense to invoke such a method if there is not already

a CultureInfo object being passed to it. Therefore, the refactoring will only be invoked if there is

only one argument in the invocation, which must be of type string. The method’s first argument is

of that type, corresponding to the string being parsed.

After all the preconditions are stated in RPCL, the transformation module adds the CultureInfo

parameter. Note that the string has an expression for creating an object of that type and not to an

existing object. The thought process is the same as with Ensure Dispose Call refactoring, allowing

for passing objects of any kind. This creation string will then be processed internally and appear

in the final refactoring plugin.

5.5.6 Creation Method

The Creation Method refactoring, like Chain Constructors, is part of the set presented by Kerievsky

[45]. It intends to move the code inside the body of a constructor and put it into a new method,

which is invoked in the original method. Due to this, the refactoring is only triggered when

5.6 Experimenting with Code Analyzers 57

Figure 5.12: Declaration of the Creation Method refactoring using RPCL.

hovering constructor declarations, which is the only relevant precondition. Finally, the method

with the extracted code is created, and an invocation to it is inserted in the method that originally

contained it.

5.5.7 Append ToList to IQueryable

Figure 5.13: Declaration of the Append ToList to IQueryable refactoring using RPCL.

The Append ToList to IQueryable refactoring, built with the RPCL script present in Figure

5.13 converts the data from an object that implements the IQueryable interface into a List whenever

that object is being iterated in a ForEach loop. Due to that, the refactoring will only trigger when

hovering such loop statements. Then, it is assessed whether the variable being iterated over in

the ForEach loop is of an IQueryable type. If so, the ToList() invocation call is appended to the

variable being iterated.

5.6 Experimenting with Code Analyzers

Figure 5.14: Visual aids of the IQueryable analyzer.

Refactorings are not the only instrument in Visual Studio’s toolchain for directing developers’

attention to code enhancements. Like refactorings, code analyzers [26] wander through code to

find improvement opportunities. When found, they are displayed in a message pane in Visual

Studio, as seen in Figure 5.15, with the difference that they parse all project files and not only the

one that is opened at the moment. Moreover, the code editor highlights the relevant code segments

Proposed Solution 58

to visually indicate where the suggestions were found in the code, exemplified in Figure 5.16. The

practitioner also has the option to apply a transformation that applies the improvements suggested

by the analyzers, which functions in the same manner as refactorings, as shown in Figure 5.17.

Figure 5.15: Visual Studio’s message pane. [26]

Figure 5.16: Visual squiggles suggesting a refactoring opportunity in the Visual Studio IDE. [26]

Figure 5.17: The application of a code transformation from an analyzer, identical to refactorings.
[26]

For example, the Append ToList to IQueryable refactoring was implemented as a code an-

alyzer. The main difference compared to refactoring implementation is how the opportunity is

signaled. The visual cues may make identifying such opportunities more straightforward than

having to hover over syntactic expressions manually, as can be visualized in Figure 5.14. Addi-

tionally, the list of all identified opportunities in the message pane may help practitioners get a

more straightforward overview of all possible improvement chances and aid in prioritizing them.

5.7 An Example of Using RPCL for Preventing Severe Security Vulnerabilities 59

5.7 An Example of Using RPCL for Preventing Severe Security Vul-
nerabilities

During the development of RPCL, a situation emerged where DevScope, the company that sup-

ported the development of this dissertation, requested the development of a code analyzer to ensure

that HttpPost routes were only accessible when adequately authorized. In more concrete terms,

the company asked that, for every method with the HttpPost annotation, it was ensured that there

was an invocation to the IsAuthorized() method. Not only would this analyzer warrant that no files

possessed this vulnerability when deployed, but it would also help both experienced developers

and newcomers to the company not forget always to perform this security check.

When the analyzer was run, it immediately and automatically found many files that missed this

security check. As the code base over which the analyzer ran on top of was massive, it would have

been tricky and tedious to verify if all routes complied with the security requirements manually.

While, in this case, a code analyzer was built to deal with this issue, a refactoring plugin could

also have been built, similar to the tools described in Section 5.5. However, the dissertation was in

a phase dedicated to experimenting with code analyzers. Nevertheless, separating behaviors into

modules could be seamlessly used to build any refactoring plugin, including one for this concrete

case. As for the code transformation that would occur when these conditions were verified, one

possible implementation could be to append the invocation of the IsAuthorized() method to the

body of all methods that comply with the two restrictions mentioned above.

The implementation of the analyzer was very similar to that of a refactoring. Figures 5.18,

5.19 and 5.20 reveal some of the code that makes it up. Apart from the boilerplate code of the

first two figures, there are few differences from refactoring code. This is good as it ensures that

modules can be reused interchangeably between refactorings and code analyzers.

Figure 5.18: Template code that makes up a Visual Studio code analyzer.

Having routes that deal with sensitive content without security checks is a recipe for disaster,

so production code must not have this security flaw. This is a real-life scenario in which a code

analyzer saved the company from a potential disaster in minutes.

Proposed Solution 60

Figure 5.19: The logic for a code analyzer alerting the user.

Figure 5.20: The code for finding all IsAuthorized() invocation expressions.

Chapter 6

Validation

The developed language aimed to improve the creation experience of building refactoring tools,

thus making the process simpler, more reusable, and modular. In order to validate the previously

stated research hypothesis, an experiment was performed with multiple software developers of

varying experience and academic backgrounds. This experiment is described in this section, en-

compassing the procedures as well as the collected results.

6.1 Objectives

This experiment aimed to assess whether using a language to orchestrate refactoring behaviors

effectively decreased the difficulty, length, and accessibility of the refactoring plugin creation

process.

One important aspect to be validated was how easy it was for practitioners to understand,

regardless of their experience, what each available module did. This is critical as one of the

project’s main goals is to allow users to abstract from the implementation details and focus only on

orchestrating the desired behaviors. The experiment aimed to understand how clear the modules

were and how well practitioners could link each module to the behavior they had to add to the

refactoring plugin.

Additionally, the refactorings should not take too long to implement, given that one of the

leading project goals was to decrease the pre-required knowledge base to implement such plugins,

as well as the required amount of code for the refactoring plugin creation. This should lead to

decreased development times.

6.2 Guidelines

In order to validate the language, a set of guidelines were defined to provide answers to the research

questions stated in Chapter 4.

61

Validation 62

Device. In order to experiment, a computer with the Windows 10 operating system and the Visual

Studio 2022 IDE was required. Such a laptop was used for these experiments.

Local. The experiments were performed remotely. The meetings were set up via a Microsoft

Teams call, through which testers could use the Request Control feature of this program

to remotely control the IDE of the laptop mentioned above, property of the experiment’s

organizer.

Participants. All testers participated freely and voluntarily, and demonstrated interest in experi-

menting with the developed language. Each experiment was performed with one participant

at a time. They had varying experience and academic degrees, but all were active profes-

sional software developers. None had previously experimented with the language.

Tool exposure. Testers were given a walk-through guide describing the project and experiment’s

flow. It also contained a similar description to the one verbally provided to users, a list of all

the available language modules, a description of how to create a refactoring, and the set of

refactorings to implement plugins for. Participants also had the chance to watch a step-by-

step demo of the implementation of a refactoring plugin that was not part of the experiment

list. The testers were free to ask any questions they considered pertinent. Then, they took

on three different tasks to implement refactorings of increasing complexity.

Duration. The time allocated for completing all tasks was 40 minutes, counted after a 20-minute

introduction and demonstration of the refactoring plugin creation process and totaling 60

minutes of interaction. The time that each developer spent completing each task was counted

independently.

Questionnaire. A questionnaire was handed to all testers at the end of the experiment. It aimed to

collect feedback on usability, ease of use, and relevance. Participants were also asked how

many years they had exercised their profession and academic degree. All questions were

open-ended.

6.3 Tasks

Participants were required to perform three different tasks. Each focused on orchestrating behavior

modules for a particular refactoring, resulting in the generation of a refactoring plugin for each.

For a participant to know which modules to chain together in each task, the required behaviors

were described in the provided walk-through guide, as shown in Figure 6.1. The complete guide

is available in Appendix B, and the refactorings to be implemented in each task are described in

Chapter 5.

The first task required the practitioner to implement the Append ToList to IQueryable refactor-

ing plugin. The refactoring can be implemented by orchestrating the modules as per Figure 5.13.

The second task is similar but focuses on the Ensure Dispose Call refactoring, while the third

6.4 Results 63

Figure 6.1: The refactorings to be implemented by practitioners during the experiment, extracted
from the walk-through guide.

task relates to the Extract Method refactoring. The RPCL code that practitioners should type in

order to build each of these refactoring plugins is displayed in Figures 5.10 and 5.9, respectively.

The order of the tasks reflects the complexity of each refactoring, from simpler to more complex.

It is important to note that, in the case of these experiments, higher complexity does not mean

the refactorings are harder to implement. Instead, it means that they require more modules to be

chained together, further restraining the circumstances which allow a refactoring suggestion to be

triggered.

6.4 Results

This section covers the participants’ thoughts concerning their experience during the experiment.

The latter was performed with 10 different software developers.

Validation 64

6.4.1 Participant Characterization

In order to better validate the research hypothesis, the participants’ academic degrees and devel-

opment experience were collected.

Regarding work experience, 1 participant had been working professionally for less than 1 year,

7 participants had between 1 and 5 years of experience, and 2 participants had 10 or more years

of experience. Concerning their academic qualifications, 8 possessed a Bachelor’s degree, while 1

had a Master’s degree, and 1 did not pursue any academic path. One of the Bachelors did not have

formation in Computer Science, but Sociology.

Figure 6.2: The varying levels of experience of participants, in years.

Figure 6.3: The academic degrees of participants.

6.4.2 Task Completion Times

As mentioned in this chapter, participants had 40 minutes to implement all 3 refactoring plugins.

The time each participant took to implement each of them was measured and will be described

next. It is also synthesized in Figure 6.4.

6.4 Results 65

Regarding Task 1, participants spent, on average, 04:10 seconds implementing the refactoring

plugin, with a standard deviation of 01:23 seconds. Task 2 was completed, on average, in 06:28

seconds, with a standard deviation of 02:25. Finally, Task 3 took, on average, 04:44 seconds to be

finalized, with a standard deviation of 01:28.

Analyzing each participant’s time to complete all three tasks is also helpful. On average, par-

ticipants took 15:22 seconds to finish the experiment, with a standard deviation of 04:36 seconds.

The fastest participant spent a total of 09:31 seconds on all tasks combined, while the slowest took

23:01 seconds.

Figure 6.4: The time it took to each experiment participant to implement all three refactoring
plugins, as well as the average and standard deviation values.

6.4.3 Survey Answers

At the end of the experiment, participants filled out a form with 4 open-ended questions regarding

their experience with the developed language. As mentioned, these questions aimed to provide

answers to the research questions that were proposed in Chapter 4 and focus on assessing the

language’s clarity, accessibility, and utility of the built-in Live Refactoring features, among other

aspects.

The survey questions will be listed below, but the entire document containing the participant’s

answers is available in Appendix A.

SQ1: How easy was it to build refactoring tools? Was RPCL flexible and clear enough?

SQ2: Did you find the built-in Live Refactoring capabilities (live previews, automatic refactoring

opportunities detection, one-click refactoring application) useful?

SQ3: Do you consider that RPCL incentivizes practitioners to build refactoring tools of their own,

making the process easier? Why/Why not?

Validation 66

SQ4: In your opinion, what are the main benefits of using RPCL? And what are the main draw-

backs?

These questions intend to answer the research questions declared in Chapter 4. Therefore,

survey question SQ1 provides answers to RQ1, survey question SQ2 provides answers to RQ2,

and SQ3 provides answers to RQ3. The last survey question aims to understand the language’s

characteristics that most made a difference to participants and the most significant improvement

points.

6.4.3.1 SQ1 Answers

All participants agreed that the refactoring plugin creation process was straightforward. Concern-

ing the language’s simplicity and clarity, all practitioners agreed that the module orchestration

process was "very intuitive", easy, and "self explanatory", with one adding that this simplicity be-

came apparent once "you know how it works". Another participant mentioned that the language

helped understanding how refactorings work, as "Personally I had never worked with refactoring

[sic] and this tool made my understanding a lot easier". Additionally, it was referred that the lan-

guage made it possible "to create something in minutes that otherwise would’ve taken hours to

build and test". The documentation provided in the walk-through guide also made it easier to get

to know the tool, as it was found to be "clear". Regarding the existing modules, it was pointed out

that they "are extremely useful" and flexible due to "the amount of ’modules’ provided out of the

box".

One participant mentioned some clarity problems, "namely module names and parameter

names, which could be confused with standard programming constructs, instead of the equiva-

lent Roslyn concepts". Another issue regarding flexibility was that the language "is almost too

flexible: conditionals and transformational expressions can be chained at will without any com-

pile time checks, even when not compatible". Finally, there was a concern about "how easy it will

be to develop new code to handle new refactorings".

6.4.3.2 SQ2 Answers

The totality of participants agreed that the "built-in experience with Visual Studio seems as optimal

as possible", making the process easier and "allowed to identify exactly the result obtained from

the use of refactoring [sic]". One of the participants pointed out that the tool could be of great use

for new developers on a team that may not "be aware of the best practices" and "more experienced

developers when they are distracted".

6.4.3.3 SQ3 Answers

Once again, there is consensus among participants regarding the incentives the language gives

them to develop their plugins. All agreed that, as the language allows practitioners "to build them

in a few lines of code", it "will make more developers start refactoring their code" more often.

6.4 Results 67

The tool "makes the process easier and more intuitive, because it abstracts all of the plumbing

logic necessary to program these features", meaning that "the programmer doesn’t need to have

the knowledge to do a refactoring from scratch and thus be able to do his own refactorings".

Another participant found that "not only does the tool make creating refactoring tools far easier

than conventional methods, it also makes it much more readable". These are all incentives to

program refactorings, given that, as another practitioner mentions, "writing refactoring code is a

very tedious task and consumes much time". It was mentioned that the incentives might come

from the language’s ease of use, as the many available modules also make the language more

accessible than manually creating refactoring plugins. This is because "developers wouldn’t like

to try to create one refactoring tool if RPCL doesn’t provide full or near coverage [sic]".

One issue during the experiments was that the language might sometimes be too abstract and

simple, "blocking core functionality". This same participant also mentions that it is "important

to find a middle ground between exposing underlying functionality, and making a simple user

interface for the user".

6.4.3.4 SQ4 Answers

Regarding the most positive aspects, practitioners mention that it makes the process easier and

quicker, as "the main benefits are definitely how easy and efficient it is to create refactoring tools".

The ease of use was reinforced by another participant, mentioning that "anyone with knowledge

of C#, after doing two refactorings, becomes already a pro [sic]". This, according to another par-

ticipant, is critical to incentivizing users to refactor more often. Another participant mentions that

"this project is a great opportunity to more easily implement wide code rules and suggestions". At

the same time, it is "very helpful to teach younger developers how to code with the best practices"

and provides an "expected increase in code quality". Time savings and a smooth learning curve

were also pointed about as positive points of the language. The Live Refactoring features and

integration with Visual Studio were "relatively simple and intuitive", working "as expected".

Concerning the language’s characteristics that could be improved, it was mentioned that the

language "could be extended further for ’power users’". While "flexible enough for plenty of use

cases", the language "could be improved by providing more Intellisense opportunities, such as

by "using types and lambda selectors instead of strings, and restricting chaining modules that are

not compatible with each other". Another aspect mentioned was that the language currently only

supports Visual Studio as the target IDE, which may limit the potential user base. Ideally, the tool

would also be available in other IDEs such as IntelliJ’s Rider or Microsoft’s Visual Studio Code.

Regarding the available RPCL modules, one practitioner suggested the "separation of the trigger’s

modules in several depending on the trigger condition". This is so that no strings used to specify

the type of a certain language construct would have to be manually inserted, as is the case with the

parameters that some modules receive (mostly related to Roslyn syntax kinds). Given that "in the

current way the programmer would have to read a possible documentation to identify the string that

corresponds to the desired situation", the participant argues that if these "were modules already

created, he could see what the possibilities are, in the IDE itself". Also related to this observation,

Validation 68

a different participant mentioned that the "need to memorize some internal names" may hinder the

experience. Another comment focuses on the module availability, as two participants suggested

that more modules would be needed for the language to cope with a lot more refactoring use cases.

A final comment pointed out the required "maintenance or the expertise needed to keep building

new refactorings", which may compromise the long-term use of the tool.

6.5 Threats to Validity

While the experiment was carefully curated in order to minimize errors and maximize accuracy,

there are a few aspects that can negatively affect the validity of the results:

Sample size. Given that the experiment was performed with active software developers, it was not

as easy to schedule meetings with as many practitioners as desired. Ideally, the experiment

would be performed with a more significant number of software developers, contributing to

more heterogeneity of personal characteristics, experience, and academic background.

Sample characterization. Due to the previous point, there was not as much diversity in the pop-

ulation as desired, as most participants had a Bachelor’s degree compared to the single

participant that had a Master’s degree and the individual that did not have any degree at all.

Moreover, most software developers who accepted participating in the experiment had be-

tween 2 and 5 years of experience. More variety would have been beneficial for the validity

of the research questions.

Time pressure. All experiment tasks were timed to assess how much the tool made it quicker

to build refactoring plugins for Visual Studio. All participants were informed of the mat-

ter before the beginning of the experiment. This may have affected their performance, as

additional pressure may have been felt to complete all tasks in time.

Refactoring plugin selection. Because developers did not have much time available to experi-

ment, it was not possible for them to try to implement all of the possible refactoring plugins.

Participants did not test all modules even if the refactoring plugins were carefully selected

to present varying difficulty levels. This is not ideal, as it does not allow to take as many

definitive conclusions about the language’s characteristics as intended.

6.6 Discussion

Overall, the experiment seemed to validate all of the research questions introduced in Chapter

6. Creating a refactoring plugin from scratch implies knowledge of compilers, design patterns,

refactorings, language design, traditional software engineering skills, and both the target compiler

and IDE platforms. Nevertheless, each participant’s time to finish all required tasks was very short.

6.6 Discussion 69

All participants agreed that the language was straightforward, flexible, and easy to use. They

were able to implement all of the suggested refactorings. Again, a complete and favorable agree-

ment was found regarding whether practitioners would be more incentivized to build refactoring

plugins of their own and more often if they had access to RPCL.

One participant commented that the language lacked clarity in some cases. One example

where this problem is revealed has to do with some modules that receive an "objectType" as a pa-

rameter. The participant thought that this was one of C#’s types, such as "string", "int", or "float".

However, the name intended the user to specify the syntax node’s type, such as "InvocationEx-

pressionSyntax", "BinaryExpressionSyntax" or "ForEachStatementSyntax". The critique is valid,

and the name of this parameter should have been "objectKind", as that is the name used by Roslyn

internally to specify the types of syntax nodes available in the language.

Another participant said that not enough safety checks were being made to ensure the integrity

of the refactoring language. Again, it is a good point. For instance, if a module that passes the

@Previous construct as an argument is invoked, and if there is no previous declaration of a module

that references a given variable, the construct will not have any variable to interact with. Currently,

no checks are being made concerning this. However, all syntax checks offered by C# are being

used.

A recurrent issue verified during the experiments was that most participants did not read or

analyze all of the available modules in the walk-through guide. This led to them often picking

modules somewhat related to the behavior to be implemented but was not the solution to the

problem. This may indicate that had the modules been described in another order, the error rate

would be lower, but this is not a reasonable solution. Decreasing the number of available modules

may not be a feasible solution, too, as it would decrease design flexibility. An alternative would

be to bet on complete and well-organized documentation that would better segment each type of

module and the structures it interacts with.

Another interesting behavior identified during the experiments (which is also a consequence

of the previous point) was that when participants identified a module that seemed general enough,

they tended to put it in the script they were creating automatically. However, when they looked

at the module list more thoroughly, they found other modules that were mode specific to their use

case. This raises the question of whether it is better to build less but more flexible modules or

more but less general ones. The described behavior seems to indicate that the first approach is the

best.

Additionally, some participants did not understand the purpose of some modules. For instance,

one picked the "IfArgumentsAreOfType" module instead of "IfObjectIsOfType". While the issue

for this particular case may be that the developer did not know the difference between an argument

and an object, it still means that the names were not clear enough and could be further improved

to minimize these issues. This is tremendously important. Naming clarity is even more important

to educate users as they use the language. One developer mentioned that RPCL improved its

knowledge on refactorings, which demonstrates well the potential of the generated refactoring

plugins in educating new and experienced developers throughout their daily tasks.

Validation 70

The development of new modules forces the user to know about the compiler and IDE APIs,

and currently, there is no way to abstract the module creation process. The developed language is

only as powerful as the modules it provides. It is expected that, as more modules are created, the

more power users will have, and the more refactorings will be possible to be created.

The developers that took part in the experiment had varying experience levels. Some were

recent software engineering graduates, while others had over a decade of experience. Despite that,

all could implement the required refactorings without spending much time. It is worth reinforcing

that successive tasks produced refactorings of increased complexity. The last task presented users

with the challenge of implementing the Extract Method refactoring - a complex one to implement

- and the focus of multiple research papers. The fact that participants were all able to implement

it signals that the language is effective in allowing the creation of complex code transformations.

6.7 Summary

This chapter described both the validation process and its results. Firstly, the validation objectives

were defined, and the experiment guidelines were explicit. This was followed by a description

of the experiment tasks the participants were expected to take. Then, the results were laid out

and analyzed, culminating with a list of factors that could potentially impact the validity of the

experiments, as well as a brief discussion on some relevant issues relating to the validation results.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation exposed the essential background information on refactorings, design patterns,

refactoring to patterns, meta-programming, code generation, and live software development. These

techniques were identified as the base body of knowledge to build a system for creating complex

refactorings. While refactorings and design patterns alone can improve software quality, applying

successive refactorings towards a given design pattern can provide extended benefits to experts in

these topics or inexperienced practitioners.

The literature review helped to better understand current methodologies, techniques, and ap-

proaches to refactoring plugin creation. Information on batch refactoring techniques and existing

implementations allowed for better comprehension of how to develop such plugins. Novel tech-

niques demonstrated the potential that refactoring to patterns could have on a software system.

Consequently, a language for building refactoring plugins was built, focusing on modularity,

reusability, and accessibility. By orchestrating the set of desired refactoring behaviors, it became

possible to automatically generate a refactoring plugin that, when plugged into Visual Studio, pro-

vided users with Live Refactoring suggestions that, according to them, enriched their experience.

The language was also found simple to use, yet powerful nonetheless.

All of the refactoring plugins that participants were asked to implement during the experiments

were able to do so in a total of about 15 minutes, which is a surprisingly low amount of time for

implementing three different plugins.

Overall, it is possible to conclude that RPCL improved the user experience of creating refactor-

ing plugins and incentivized developers to do so while benefiting from the built-in Live Refactoring

features. Thus, the hypothesis is positively validated.

71

Conclusions and Future Work 72

7.2 Main Contributions

With this dissertation, a comprehensive literature review was performed, presenting state of the art

on creating complex refactoring tools. Additionally, the RPCL language was developed, providing

multiple benefits to the refactoring plugin creation process. The following list describes the main

contributions of this dissertation:

Literature Review. In Chapter 3, state of the art regarding refactoring creation tools was exposed.

It provided indispensable insights on current and past trends for generating simple and com-

plex refactoring tools. Due to its extension, the literature review significantly contributes to

this dissertation.

Language for Generating Refactoring Plugins. RPCL can successfully create refactoring plu-

gins. Both the language and the validation process make up a distinct contribution to both

the academic and industrial world:

Abstracting the Refactoring Plugin Creation Process. As mentioned, creating refactor-

ing plugins is daunting for many, requiring users to know many different areas of

computer science. RPCL abstracted that complexity and allowed participants that had

never used the language to implement three different refactoring plugins in an average

time of fifteen minutes. The language makes creating refactoring plugins an easy, fast,

and accessible experience by automatically generating them from an easy-to-write and

easy-to-read script.

Live Refactoring Features Integration. Refactoring plugins generated via RPCL are equipped

with automatic refactoring opportunity detection, preview, and application. This makes

it seamless for the practitioner to use the generated refactoring plugin to identify and

apply refactorings. It is also trivial for the developer using RPCL to create a refactoring

plugin to integrate these Live Refactoring features without explicitly coding anything.

Survey. By conducting experiments with participants and asking them to fill in a survey,

it was possible to understand what they thought about the developed internal DSL,

mainly concerning its usability and ease of use.

7.3 Main Difficulties

While working on this dissertation was a joyful experience, the ride was not always easy. However,

the lower points were tremendously useful to understand better the current issues regarding the

creation of refactoring plugins. Some of the hardest Rubicon rivers to cross were the following:

Understanding the Roslyn APIs. Even with solid knowledge of compilers, translating that into a

concrete API such as Roslyn’s demanded a study period of study. Due to the sheer size of the

Roslyn project, there was often no documentation available, requiring experimenting a lot.

This made it much harder to implement any refactoring plugin, but eventually, the problem

7.4 Future Work 73

was surpassed successfully. Being Roslyn such an enormous project, it was a challenge to

understand it at global and more concrete scales, but it was yet another obstacle that did not

remain in the way.

Deprecated Visual Studio APIs. Many of Visual Studio’s APIs, such as those responsible for

accessing and manipulating document and project information, were deprecated. Addition-

ally, other extension points, such as building custom interfaces, used ancient technology and

could not be used for this project.

Creating Modules from the Implemented Refactoring Plugins. Identifying common behaviors

between refactoring plugins was difficult, as every plugin has its peculiarity, and every refac-

toring algorithm is different. Getting to a point where modules were generalizable enough

was challenging. The same applies to parameterizing modules to become more flexible and

adapt to more circumstances. This reinforces that module design should be performed with

sufficient sobriety and clairvoyance.

7.4 Future Work

As naturally happens with all software projects, they evolve and should be maintained to keep

working as intended. Additionally, multiple areas could be improved to make the refactoring

plugin creation experience more enjoyable.

Additional Module Development. The more modules the language has, the more freedom the

creator will have when orchestrating its refactorings. While many modules were imple-

mented during the implementation phase of this dissertation, many more can be constructed.

Flexibility is improved even further if the extra developed modules are flexible enough using

parametrization. However, the choice of modules to be developed should be made with cri-

teria, as the parametrization mentioned above can render the creation of additional modules

redundant.

Improved Module Flexibility via Parameterization. Some of the modules developed for this

dissertation could benefit from increased flexibility. For instance, the IfExistsObjectImple-

mentingInterface module could also receive the object name as a parameter. This would al-

low deeper filtering of all candidate objects that implement a particular interface. Increased

parameterization can also decrease the likelihood that the modules that RPCL provides are

not enough for practitioners using the language, which could decide on building modules

on their own. This, of course, is no trivial task and could make them give up on the idea and

stop implementing the refactoring plugin altogether.

Increased Support for @Previous Construct. Not all available modules support the @Previous

construct, which is not ideal given how useful it can be. Expanding the number of modules

that support it can add even more power to the language.

Conclusions and Future Work 74

Expanded IDE Support. As verified in the experiments, not all practitioners use Visual Studio

as their primary IDE. As RPCL aims to abstract the refactoring plugin creation process, the

ideal scenario would be to be able to generate plugins for multiple IDEs while keeping the

language’s syntax intact. This could be done by specifying the target IDE at the beginning

of the script, with RPCL injecting the appropriate API calls into the final refactoring plugin

file for providing Live Refactoring features.

Expanded Language Support. Similar to the previous point, it would be helpful if RPCL could

target more languages than C#. Again, in an ideal scenario, RPCL’s syntax would be the

same, only the plumbing would be different, generating code structures for other languages

such as Java.

Integrated Code Analyzer and Refactoring Features. While refactoring APIs help suggest po-

tential refactoring opportunities whenever the user’s cursor is near a given code segment,

the warning messages that code analyzers provide are extremely useful. Additionally, they

can show suggestions for the file currently opened and for all files in a given project. This

may lead to additional time savings and a grasp of the project’s overall status regarding code

quality.

Documentation. The experiments revealed that excellent documentation is imperative for this

project. It was verified that many practitioners did not go over all the available modules,

leading them to pick the wrong ones due to not taking sufficient time. Nevertheless, the

fact is that if participants are rushing, then something is not as well as it could be regarding

module understandability and readability. Therefore, it would make sense to further segment

module documentation into more concrete use cases so that developers could open the doors

they want to enter and avoid those that have nothing to do with their intents and purposes.

Improve Module Naming Clarity. Some modules were chosen by mistake due to practitioners

not understanding what they did by simply reading their names. While this was not usual,

it still happened and suggests that naming could be further improved. If the module names

are clear enough, developers may find which modules they need by simply typing keywords

characteristic of the required behavior. The practitioner who achieved the fastest comple-

tion time was the only one who used this capability extensively. Others that used this also

benefited from decreased time expenditures.

Publishing RPCL as a NuGeT Package. NuGeT packages are Microsoft’s format used for dis-

tributing Visual Studio extensions. By packaging RPCL as an extension, its distribution can

be done in a much more streamlined way, potentially increasing the user base. Also, when

new modules are developed, they can be delivered to users via extension updates automati-

cally handled by Microsoft.

Building a Visual Interface for Module Orchestration. It could be even more user-friendly if

the refactoring behavior modules could be orchestrated by simply dragging and dropping

7.4 Future Work 75

them into a canvas and ordering them as developers see fit. Such a feature would make it

even more accessible for anyone to create custom refactoring plugins and learn how they

operate.

Extending the Survey to a Broader Audience. While the experiment sample provided valuable

information on the efficiency and accessibility of the language, its size would ideally have

been bigger. To do this, the process could be more streamlined so that participants could par-

take in the experiment alone, without a guide to help them in the process. Doing the exper-

iments asynchronously would also be a way to increase the participant pool, as scheduling

calls with developers is not always easy due to tight deadlines and calendar conflicts.

The previous list’s extension demonstrates the potential for improvement concerning the de-

velopment of refactoring plugins. These are exciting times for research on refactoring techniques

and tooling, and indeed the user experience of creating such plugins will keep improving and

becoming more accessible.

References

[1] Code refactoring | IntelliJ IDEA. https://www.jetbrains.com/help/idea/refactoring-source-
code.html.

[2] Crossing Refactoring’s Rubicon. https://martinfowler.com/articles/refactoringRubicon.html.

[3] Duplicate Code. https://refactoring.guru/smells/duplicate-code.

[4] Gang of Four Design Patterns Diagram. https://i.pinimg.com/originals/9a/c8/ea/9ac8ea1e4f898c9fe1e90fccd1f2deb0.png.

[5] JavaCompiler (Java Platform SE 6). https://docs.oracle.com/javase/6/docs/api/javax/tools/JavaCompiler.html.

[6] Jekyll • Simple, blog-aware, static sites. https://jekyllrb.com/.

[7] MethodDeclarationSyntax Class (Microsoft.CodeAnalysis.CSharp.Syntax) | Microsoft
Docs. https://docs.microsoft.com/en-us/dotnet/api/microsoft.codeanalysis.csharp.syntax.methoddeclarationsyntax?view=roslyn-
dotnet-4.2.0.

[8] Refactoring source code in Visual Studio Code. https://code.visualstudio.com/docs/editor/refactoring.

[9] Secure and resizable cloud compute – Amazon EC2 – Amazon Web Services.
https://aws.amazon.com/ec2/.

[10] Stack Overflow Developer Survey 2021. https://insights.stackoverflow.com/survey/2021/?utm_source=social-
share&utm_medium=social&utm_campaign=dev-survey-2021.

[11] TechCohere - Microsoft Visual Studio 2019 - Code refactoring.
https://techcohere.com/post/microsoft-visual-studio-2019-code-refactoring.

[12] Meta-Object Facility. Wikipedia, January 2021.

[13] Aharon Abadi, Ran Ettinger, and Yishai A. Feldman. Re-approaching the refactoring Ru-
bicon. In Proceedings of the 2nd Workshop on Refactoring Tools - WRT ’08, pages 1–4,
Nashville, Tennessee, 2008. ACM Press.

[14] Ademar Aguiar, André Restivo, Filipe Figueiredo Correia, Hugo Sereno Ferreira, and
João Pedro Dias. Live software development: Tightening the feedback loops. In Proceedings
of the Conference Companion of the 3rd International Conference on Art, Science, and En-
gineering of Programming, Programming ’19, pages 1–6, New York, NY, USA, April 2019.
Association for Computing Machinery.

[15] Diogo Amaral, Gil Domingues, João Dias, Hugo Ferreira, Ademar Aguiar, and Rui Nóbrega.
Live Software Development Environment for Java using Virtual Reality:. In Proceedings of
the 14th International Conference on Evaluation of Novel Approaches to Software Engineer-
ing, pages 37–46, Heraklion, Crete, Greece, 2019. SCITEPRESS - Science and Technology
Publications.

76

REFERENCES 77

[16] Kent Beck, First Class, Software James, O. Coplien, and Ron Crocker. Industrial experience
with design patterns. In In Proceedings of the 18th International Conference on Software
Engineering, ICSE ’96, pages 103–114. IEEE Computer Society, 1996.

[17] Ana Carla Bibiano, Eduardo Fernandes, Daniel Oliveira, Alessandro Garcia, Marcos Kali-
nowski, Baldoino Fonseca, Roberto Oliveira, Anderson Oliveira, and Diego Cedrim. A
Quantitative Study on Characteristics and Effect of Batch Refactoring on Code Smells. In
2019 ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 1–11, September 2019.

[18] George Candea and Patrice Godefroid. Automated Software Test Generation: Some Chal-
lenges, Solutions, and Recent Advances. In Bernhard Steffen and Gerhard Woeginger, edi-
tors, Computing and Software Science: State of the Art and Perspectives, Lecture Notes in
Computer Science, pages 505–531. Springer International Publishing, Cham, 2019.

[19] Mel Ó Cinnéide. A Methodology for the Automated Introduction of Design Patterns. In Pro-
ceedings IEEE International Conference on Software Maintenance - 1999 (ICSM’99). ’Soft-
ware Maintenance for Business Change’ (Cat. No.99CB36360), Oxford, UK, 1999. IEEE.

[20] Marshall P. Cline. The pros and cons of adopting and applying design patterns in the real
world. Communications of the ACM, 39(10):47–49, October 1996.

[21] James R Cordy, Thomas R Dean, Andrew J Malton, and Kevin A Schneider. Source trans-
formation in software engineering using the TXL transformation system. Information and
Software Technology, 44(13):827–837, October 2002.

[22] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison Wesley, 2000.

[23] Robertas Damaševi. Taxonomy of the Fundamental Concepts of Metaprogramming. Infor-
mation Technology and Control, 37(2):9, 2008.

[24] Anna Derezińska. A Structure-Driven Process of Automated Refactoring to Design Patterns.
In Jerzy Świątek, Leszek Borzemski, and Zofia Wilimowska, editors, Information Systems
Architecture and Technology: Proceedings of 38th International Conference on Information
Systems Architecture and Technology – ISAT 2017, volume 656, pages 39–48. Springer In-
ternational Publishing, Cham, 2018.

[25] Carlos Duarte. Live Requirements Engineering. https://caduonrails.com/blog/live-sd/, De-
cember 2021.

[26] Mika Dumont. Code analysis using Roslyn analyzers - Visual Studio (Windows).
https://docs.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview.

[27] Mohamed El-Sharqwi, Hani Mahdi, and Islam El-Madah. Pattern-based model refactoring.
In The 2010 International Conference on Computer Engineering & Systems, pages 301–306,
Cairo, Egypt, November 2010. IEEE.

[28] Eduardo Fernandes, Anderson Uchoa, Ana Carla Bibiano, and Alessandro Garcia. On the
Alternatives for Composing Batch Refactoring. In 2019 IEEE/ACM 3rd International Work-
shop on Refactoring (IWoR), pages 9–12, Montreal, QC, Canada, May 2019. IEEE.

REFERENCES 78

[29] Sara Fernandes. A live environment for inspection and refactoring of software systems.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, pages 1655–1659, Athens
Greece, August 2021. ACM.

[30] Sara Fernandes, Ademar Aguiar, and André Restivo. A Live Environment to Improve the
Refactoring Experience. In Companion of the 6rd International Conference on Art, Science,
and Engineering of Programming (Programming ’22), page 8. ACM, 2022.

[31] Stephen R. Foster, William G. Griswold, and Sorin Lerner. WitchDoctor: IDE support for
real-time auto-completion of refactorings. In 2012 34th International Conference on Soft-
ware Engineering (ICSE), pages 222–232, Zurich, June 2012. IEEE.

[32] Martin Fowler. Domain-Specific Languages. Pearson Education, September 2010.

[33] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley Pro-
fessional, November 2018.

[34] R. France, S. Chosh, E. Song, and D.K. Kim. A metamodeling approach to pattern-based
model refactoring. IEEE Software, 20(5):52–58, September 2003.

[35] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Pearson Education, October 1994.

[36] Xi Ge and Emerson Murphy-Hill. BeneFactor: A flexible refactoring tool for eclipse. In Pro-
ceedings of the ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion - SPLASH ’11, page 19, Portland, Oregon,
USA, 2011. ACM Press.

[37] Kevin Hazzard and Jason Bock. Metaprogramming in .NET. Manning Publications, Shelter
Island, NY, 2013.

[38] Sascha Hunold, Björn Krellner, Thomas Rauber, Thomas Reichel, and Gudula Rünger.
Pattern-Based Refactoring of Legacy Software Systems. In Will van der Aalst, John My-
lopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Szyperski, Joaquim Filipe, and José
Cordeiro, editors, Enterprise Information Systems, volume 24, pages 78–89. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[39] Standish Group Int. The Chaos Report, 2015.

[40] Shalinka Jayatilleke and Richard Lai. A systematic review of requirements change manage-
ment. Information and Software Technology, 93:163–185, January 2018.

[41] Adam C. Jensen and Betty H.C. Cheng. On the use of genetic programming for automated
refactoring and the introduction of design patterns. In Proceedings of the 12th Annual Con-
ference on Genetic and Evolutionary Computation - GECCO ’10, page 1341, Portland, Ore-
gon, USA, 2010. ACM Press.

[42] Sang-Uk Jeon, Joon-Sang Lee, and Doo-Hwan Bae. An automated refactoring approach
to design pattern-based program transformations in Java programs. In Ninth Asia-Pacific
Software Engineering Conference, 2002., pages 337–345, December 2002.

REFERENCES 79

[43] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-based code clone
detection system for large scale source code. IEEE Transactions on Software Engineering,
28(7):654–670, July 2002.

[44] Y. Kataoka, M.D. Ernst, W.G. Griswold, and D. Notkin. Automated support for program
refactoring using invariants. In Proceedings IEEE International Conference on Software
Maintenance. ICSM 2001, pages 736–743, Florence, Italy, 2001. IEEE Comput. Soc.

[45] Joshua Kerievsky. Refactoring to Patterns. Pearson Education, August 2004.

[46] Paul Klint, Tijs van der Storm, and Jurgen Vinju. EASY Meta-programming with Rascal.
In João M. Fernandes, Ralf Lämmel, Joost Visser, and João Saraiva, editors, Generative and
Transformational Techniques in Software Engineering III, volume 6491, pages 222–289.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[47] Günter Kniesel and Helge Koch. Static composition of refactorings. Science of Computer
Programming, 52(1-3):9–51, August 2004.

[48] Huiqing Li and Simon Thompson. A Domain-Specific Language for Scripting Refactorings
in Erlang. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann
Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen,
Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Juan
de Lara, and Andrea Zisman, editors, Fundamental Approaches to Software Engineering,
volume 7212, pages 501–515. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[49] Stephen W. Liddle. Model-Driven Software Development. In David W. Embley and Bern-
hard Thalheim, editors, Handbook of Conceptual Modeling: Theory, Practice, and Research
Challenges, pages 17–54. Springer, Berlin, Heidelberg, 2011.

[50] Wei Liu, Zhi-gang Hu, Hong-tao Liu, and Liu Yang. Automated pattern-directed refactoring
for complex conditional statements. Journal of Central South University, 21(5):1935–1945,
May 2014.

[51] Pedro Lourenço, João Dias, Ademar Aguiar, and Hugo Ferreira. CloudCity: A Live Environ-
ment for the Management of Cloud Infrastructures. In Proceedings of the 14th International
Conference on Evaluation of Novel Approaches to Software Engineering, pages 27–36, Her-
aklion, Crete, Greece, 2019. SCITEPRESS - Science and Technology Publications.

[52] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pearson
Education, August 2008.

[53] Panita Meananeatra. Identifying refactoring sequences for improving software maintainabil-
ity. In 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, pages 406–409, September 2012.

[54] Tom Mens, Gabriele Taentzer, and Dirk Müller. Challenges in Model Refactoring. In Proc.
1st Workshop on Refactoring Tools, University of Berlin, volume 98, July 2007.

[55] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb, and Mel
Ó Cinnéide. Recommendation system for software refactoring using innovization and in-
teractive dynamic optimization. In Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, pages 331–336, Vasteras Sweden, September
2014. ACM.

REFERENCES 80

[56] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Giancarlo Succi.
A Case Study on the Impact of Refactoring on Quality and Productivity in an Agile Team. In
Bertrand Meyer, Jerzy R. Nawrocki, and Bartosz Walter, editors, Balancing Agility and For-
malism in Software Engineering, volume 5082, pages 252–266. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[57] Raimund Moser, Alberto Sillitti, Pekka Abrahamsson, and Giancarlo Succi. Does refactoring
improve reusability. In Ninth International Conference on Software Reuse (ICSR-9, pages
11–15, 2006.

[58] Umesha Naik and D Shivalingaiah. Comparative Study of Web 1.0, Web 2.0 and Web 3.0.
In 6th International CALIBER -2008, page 9, 2008.

[59] Daniel Oliveira, Ana Carla Bibiano, and Alessandro Garcia. On the Customization of Batch
Refactoring. In 2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR), pages
13–16, May 2019.

[60] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Mel Ó Cinnéide, Kalyanmoy Deb, and
Katsuro Inoue. A Multi-Objective Refactoring Approach to Introduce Design Patterns and
Fix Anti-Patterns. In North American Search Based Software Engineering Symposium 00,
page 16. Elsevier, 2015.

[61] Ing J F Overbeek. Meta Object Facility (MOF). PhD thesis, University of Twente, 2006.

[62] Gustavo H. Pinto and Fernando Kamei. What programmers say about refactoring tools?: An
empirical investigation of stack overflow. In Proceedings of the 2013 ACM Workshop on
Workshop on Refactoring Tools - WRT ’13, pages 33–36, Indianapolis, Indiana, USA, 2013.
ACM Press.

[63] L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, and L.G. Votta. A controlled experiment
in maintenance: Comparing design patterns to simpler solutions. IEEE Transactions on
Software Engineering, 27(12):1134–1144, December 2001.

[64] J. Rajesh and D. Janakiram. JIAD: A tool to infer design patterns in refactoring. In Pro-
ceedings of the 6th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming - PPDP ’04, pages 227–237, Verona, Italy, 2004. ACM Press.

[65] Jacek Ratzinger, Michael Fischer, and Harald Gall. Improving Evolvability through Refac-
toring. In MSR’05, page 5, 2005.

[66] Jacek Ratzinger, Thomas Sigmund, and Harald C Gall. On the Relation of Refactoring and
Software Defects. In MSR’08, page 4, May 2008.

[67] Don Roberts and Ralph Johnson. Evolving Frameworks: A Pattern Language for Developing
Object-Oriented Frameworks, 1986.

[68] Beppe Salerno. Crossing the Rubicon. https://www.tourissimo.travel/blog/crossing-the-
rubicon.

[69] Sérgio António Dias Salgado. Towards a Live Refactoring Recommender Based on Code
Smells and Quality Metrics. Masters in Informatics and Computing Engineering, Faculty of
Engineering of the University of Porto, 2022.

REFERENCES 81

[70] Max Schaefer and Oege de Moor. Specifying and implementing refactorings. ACM SIG-
PLAN Notices, 45(10):286–301, October 2010.

[71] Takao Shimomura, Kenji Ikeda, and Muneo Takahashi. An Approach to GA-Driven Au-
tomatic Refactoring Based on Design Patterns. In 2010 Fifth International Conference on
Software Engineering Advances, pages 213–218, August 2010.

[72] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why we refactor? confessions of
GitHub contributors. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 858–870, Seattle WA USA, November
2016. ACM.

[73] K R Srinath. Python – The Fastest Growing Programming Language. International Research
Journal of Engineering and Technology (IRJET), 04(12):5, 2017.

[74] Thomas Stahl and Markus Völter. Model-Driven Software Development: Technology, Engi-
neering, Management. John Wiley, Chichester, England ; Hoboken, NJ, 2006.

[75] Steven L. Tanimoto. A perspective on the evolution of live programming. In 2013 1st
International Workshop on Live Programming (LIVE), pages 31–34, May 2013.

[76] L. Tokuda and D. Batory. Evolving object-oriented designs with refactorings. In 14th
IEEE International Conference on Automated Software Engineering, pages 174–181, Co-
coa Beach, FL, USA, 1999. IEEE Comput. Soc.

[77] T. Tourwe and T. Mens. Automated support for framework-based software. In Interna-
tional Conference on Software Maintenance, 2003. ICSM 2003. Proceedings., pages 148–
157, September 2003.

[78] T. Tourwe and T. Mens. Identifying refactoring opportunities using logic meta program-
ming. In Seventh European Conference onSoftware Maintenance and Reengineering, 2003.
Proceedings., pages 91–100, March 2003.

[79] Mohsen Vakilian and Ralph E Johnson. Composite Refactorings: The Next Refactoring
Rubicons. page 1, June 2012.

[80] Marek Vokáč, Walter Tichy, Dag I. K. SjØberg, Erik Arisholm, and Magne Aldrin. A Con-
trolled Experiment Comparing the Maintainability of Programs Designed with and without
Design Patterns—A Replication in a Real Programming Environment. Empirical Software
Engineering, 9(3):149–195, September 2004.

[81] Bill Wagner. Get started with syntax analysis (Roslyn APIs). https://docs.microsoft.com/en-
us/dotnet/csharp/roslyn-sdk/get-started/syntax-analysis.

[82] Bill Wagner. The .NET Compiler Platform SDK (Roslyn APIs).
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/.

[83] Bill Wagner. Reflection (C#). https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/concepts/reflection.

[84] Bill Wagner. Source Generators. https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-
sdk/source-generators-overview.

REFERENCES 82

[85] Norihiro Yoshida and Katsuro Inoue. Towards an Investigation of Opportunities for Refac-
toring to Design Patterns. In Proceedings 1st International Workshop on Software Patterns
and Quality (SPAQu’07), page 3, Nagoya, Japan, December 2017. Information Processing
Society of Japan.

[86] Carmen Zannier and Frank Maurer. Tool Support for Complex Refactoring to Design Pat-
terns. In Processes in Software Engineering, Proceedings of the 4 Th International Confer-
ence XP 2003, Genova, Italy (2003), LNCS 2675, pages 123–130. Springer, 2003.

Appendix A

Survey Results

83

Survey Results
For how long have you been a software developer?

• 1 ano

• 5 years

• 3 years

• About 10 months

• 1 ano

• 10y

• 14

• 5 years

• 4 years

• 4

What is your degree? (Bachelors, Masters, Doctorate...)
• Licenciatura em Sociologia

• Masters

• Bachelors

• Bachelors in informatics engineering and I'm doing a master's degree in AI

• Licenciatura

• I've no degree.

• Bachelor

• Bachelors

• Bachelors

• Bachelors

How easy was it to build refactoring tools? Was RPCL flexible and clear

enough?
• Bastante fácil, após leitura da documentação todo processo é bastante intuitivo

• It was a very easy and simple process. The method names were intuitive and self explanatory.

• RPCL was easy to use and suitably flexible given the amount of ""modules"" provided out of the

box. There were some problems with clarity, namely module names and parameter names,

which could be confused with standard programming constructs, instead of the equivalent

Roslyn concepts. It is also difficult to assert which Roslyn ""kind"" types to use on the various

conditional methods available. Knowing these kinds requires some Roslyn knowledge if not

provided with a cheat sheet, documentation or examples. The most frequent ""kinds"" could be

included in string constants and made available to the user. These constants could be

documented with C# XML docs, providing small examples of usage when the programmer uses

Intellisense/auto-complete in Visual Studio. Additionally, on an effort to improve flexibility,

RPCL is almost too flexible: conditionals and transformational expressions can be chained at will

without any compile time checks, even when not compatible. This experience could be

improved by using type parameters instead of type strings and expression lambdas for

configuration.

• Personally I had never worked with refactoring and this tool made my understanding a lot

easier. The need for only logical understanding and the very representative module names make

the tool very easy and clear to use.

• Os métodos tinham nomes clarificativos e foi fácil perceber como funciona após ler a

documentação.

• Was very easy, course one time that you know how it works. Was flexible inside what is done.

• It was easy. We just need to follow the guidelines and it's easy to build refactorings. IT seems to

be flexible but I don't know how easy it will be to develop new code to handle new refactorings.

• It was very easy, the documentation was clear and the already existing methods on RPCL are

extremely useful.

• It was easy in parts, We have very specific methods to help us, and de RPCL was be clear too.

• Super easy, given the documentation provided, I managed to create something in minutes that

otherwise would've taken hours to build and test.

Did you find the built-in Live Refactoring capabilities (live previews,

automatic refactoring opportunities detection, one-click refactoring

application) useful?
• Sim, todas estas funcionalidades facilitam a implementação/testagem do refractoring

• Yes, it is very helpful.

• Yes! The built-in experience with Visual Studio seems as optimal as possible at this stage.

• Yes, the built-in Live Refactoring capabilities responded quite well according to the specified

conditional modules and allowed to identify exactly the result obtained from the use of

refactoring.

• Sim, estas funcionalidades são muito úteis para a utilização no dia a dia.

• Yes, I could see many useful cases for this.

• yes specially for the new developers on the team who couldn't be aware of the best practices

and even for the more experienced developers when they are distracted.

• Yes, made the refactoring process a lot easier, after creating the refactoring tasks.

• Yes, it helps us to programming better.

• Yes, very useful. It enables the developer to take action immediately in a very useful and non-

intrusive matter.

Do you consider that RPCL incentivizes practitioners to build refactoring

tools of their own, making the process easier? Why/Why not?
• Sim, uma vez que torna fácil todo o processo de criação de Refractoring não sendo necessário

ao developer gastar muito tempo com isso

• The level of abstraction that comes with this project is very helpful and encouraging.

Implementing new code practices is much simpler using RPCL.

• RPCL as a tool definitely makes the process easier and more intuitive, because it abstracts all of

the plumbing logic necessary to program these features. However, in an effort to abstract that

plumbing, RPCL can become either too abstract, becoming plumbing of its own, or too simple,

blocking core functionality. Its important to find a middle ground between exposing underlying

functionality, and making a simple interface for the user.

• Yes, the ease of use of this tool means that the programmer doesnt need to have the knowledge

to do a refactoring from scratch and thus be able to do his own refactorings.

• O facto de os refactors serem sugestões do IDE facilitam o incentivo na utilização desta prática.

• In general yes, one time that there are many "methods" to cover many situations. Because day

to day developers wouldn't like to try to create one refactoring tool if the RPCL doesn't provide

full or near coverage.

• Yes if they want to invest time. For sure it could help a lot when the team is focused or have

someone focused to create and maintain refactorings

• Yes. Writing refactoring code is a very tedious task and consumes a lot of time, having a tool to

build them in a few lines of code will make more developers start refactoring their code.

• I think that a lot of developers have a pattern, so they can make a refactoring method to help

them.

• I did, not only does the tool make creating refactoring tools far easier than conventional

methods, it also makes it much more readable.

In your opinion, what are the main benefits of using RPCL? And what are

the main drawbacks?
• Torna o processo de criação e aplicação de refractors fácil e rápido, e é precisamente o oposto

destes pontos que por vezes afasta os developers de alteram código que á muito já deveria ter

sido alterado

• This project is a great opportunity to more easily implement company wide code rules and

suggestions. It will be very helpful to teach younger developers how to code with the best

practices.

• RPCL provides a simple interface for complex Roslyn and Visual Studio features in a neat, simpler

package. Integration with Visual Studio seems relatively simple and intuitive, while live features

within the IDE work as expected. At the current stage it is flexible enough for plenty of use

cases, but could be extended further for ""power users"". Usability while orchestrating refactors

could be improved by providing more Intellisense opportunities, by using types and lambda

selectors instead of strings, and restricting chaining modules that are not compatible with each

other. RPCL could also be extended to support additional IDEs as ""targets"", like Rider or Visual

Studio Code.

• In my opinion, the tool is quite easy to use. Anyone with knowledge of csharp, after doing two

refactorings, becomes already a pro and ready to do anything else. As an improvement to point

out, and I don't know if it's an improvement or personal preference, it would be the separation

of the trigger's module in several depending on the trigger condition. Because in the current

way the programmer would have to read a possible documentation to identify the string that

corresponds to the desired situation, while if they were modules already created, he could see

what the possibilities are, in the IDE itself.

• Facilita muito o uso das técnicas de melhoria do código escrito. A grande desvantagem é as

limitações existentes dos refactors possíveis, mas é normal visto que é o início do projeto.

• The benefits are time savings and learning curve. The disadvantages are that you need to

memorize some internal names and the coverage of situations is not complete.

• The drawbacks could be related to the maintenance or the expertise needed to keep building

new refactorings. The benefits are the expected increase in code quality.

• The main benefit is the ease with which a programmer can start refactoring their code. I did not

find any drawbacks in the little time I used RPCL. It delivers what it promises.

• Productivity and clean code

• The main benefits are definitely how easy and efficient it is to create refactoring tools. I didn't

find any major drawbacks, that being said, a cleaner interface would make the process even

easier.

Appendix B

Expert Assessment of RPCL

88

Expert Assessment of RPCL

Introduction
Refactoring is the process of improving the design of existing code while maintaining its original functionality.

There exist multiple refactoring plugins that assist the automation of refactorings. For instance, modern IDEs

suggest refactorings to users whenever the conditions for their application are verified. However, it may happen

that the IDE does not provide practitioners with the refactorings they need. This forces them to build refactorings

of their own.

Creating such refactoring plugins is also no trivial task, requiring the creator to have good-enough understanding of

not-so-trivial topics such as compilers, programming languages, refactorings, and design patterns. Moreover, the

developer must be comfortable with the APIs of the development environment the refactorings are targeting,

given that each language has its own API for manipulating source code in a metaprogramming fashion.

RPCL is an internal domain-specific language based in C# (which reads just like English, albeit with the C# syntactic

rules) targeting for generating refactoring implementations compatible with the Visual Studio IDE. The language

does not refactor code directly but generates a C# file to be enveloped in a Visual Studio plugin that offers

refactoring suggestions, previews, and transformations. It was created to make the refactoring creation process as

seamless and straightforward as possible, reducing the amount of pre-required knowledge and increasing the pool

of developers able to create refactorings. These are created by chaining pre-conditions and behaviors, much like in

object-oriented languages you chain methods over a certain object. These behaviors, also referred to as modules,

are reusable blocks of code that interact with the compiler and with Visual Studio APIs, performing most of the

heavy lifting of the refactoring creation process. You, as the user, must only worry about chaining together the

behaviors the refactoring should have. This way, you can focus on the logic behind the refactoring, and not on

programming complex algorithms and understanding obscure and prone-to-obsoletion APIs.

Interview flow
The interview will begin with a briefing of what RPCL is and how it can be used to create refactorings. Then, you

will be asked to implement a set of refactorings using RPCL, and to try and use them in the development

environment. This will be a guided process, meaning that, after you create the refactorings, the generated file will

be attached to Visual Studio by the experiment moderator on a project built for experimenting with refactoring

creation, so that you can try and use it in a real-life scenario. Finally, a set of questions will be asked to better

understand and evaluate your experience creating refactorings using RPCL. These will be open questions, meaning

you will be able to give whatever feedback you find useful, be it positive or negative.

You’ll be interacting with the IDE via a Microsoft Teams call, which will allow you to take control of the IDE as if it

were running in your own computer.

Available RPCL modules
RPCL modules can be of 3 types: base, conditional, and transformational.

• Base

o TriggerOnAll(string expressionKind)

• Conditional

o IfExistsObjectImplementingInterface(string interfaceName)

o IfDoesNotExistInvocationExpression(string objectName, string
methodName)

o IfExistsInvocationExpression(string objectName, string methodName)
o IfBinaryOperandsAreOfType(string firstOperandType, string

secondOperandType)
o IfObjectIsOfType(string objectName, string objectType)
o IfObjectIsNamed(string objectName)
o IfArgumentsAreOfType(List<string> argumentTypes)
o IfBinaryExpressionOperandsAreOfType(string firstOperandType, string

secondOperandType)
o IfExistsCatchAllConstructor()

IfSelectedStatementsAreOfType(string statementType)
o IfNumberOfSelectedStatementsIsGreaterOrEqualThan(int

numberOfSelectedStatements)
o IfRatioBetweenSelectedStatementsAndMethodStatementsIsGreaterThan(int

percentage)
o IfRatioBetweenSelectedStatementsAndMethodStatementsIsLessThan(int

percentage)
o IfStatementIsEnclosedIn(string structureType)
o IfParentNodeIsNotOfType(string parentNodeType)
o IfVariableBeingIteratedOverIsOfType(string variableType)

• Transformational

o InsertInvocationStatement(string objectName, string methodName,
List<string> arguments)

o AddArgumentToInvocationExpression(string objectName, string argument)
o ReplaceBinaryExpressionWithEqualsMethod()
o GenerateCreationMethodFromConstrctor(string creationMethodName)
o ChainConstructors()
o ExtractMethod()
o AppendToListToExpression()

Anatomy of a RPCL refactoring
The syntax for creating a new refactoring using RPCL is identical to the syntax of creating an object using C#, and

follows the following template:

Walkthrough guide
A class that represents a bank loan (Loan) serves as the basis for this experiment. The class sports many variables

and methods.

Over the course of this experiment, you will be creating a set of refactorings using RPCL. The following list contains

the refactorings to be implemented, together with a brief description of what they are supposed to do, the pre-

conditions and the transformations to apply. You must only chain behaviors/modules of the RPCL language on the

RefactoringPlugin object.

After creating a refactoring script, you must run the RefactoringPlugin. It will then output the refactoring code that

interacts both with the C# compiler as well as the Visual Studio APIs for previewing code changes, applying

transformations and automatic refactoring detection.

NOTE: The refactoring name must not contain any spaces!

1. Use the available modules to create the Append ToList to IQueryable:

a. The following pre-conditions must apply:

i. The refactoring should trigger on all expressions of type “ForEachStatementSyntax”

ii. The variable being iterated over must be of type “IQueryable”

b. The following transformations must be applied:

i. The “ToList()” method should be appended to the expression

2. Use the available modules to create the Ensure Dispose Call refactoring:

a. The following pre-conditions must apply:

i. The refactoring should trigger on all expressions of type “MethodDeclarationSyntax”

ii. There must exist an object implementing the “IDisposable” interface

iii. There must not exist an invocation expression on the previous object that calls the

“Dispose()” method

b. The following transformations must be applied:

i. An invocation statement should be inserted, called on the previous object, calling the

“Dispose()” method, without any parameters

3. Use the available modules to create the Extract Method refactoring:

a. The following pre-conditions must apply:

i. The refactoring should trigger on all expressions of type “BlockSyntax”

ii. The statements selected with the cursor must be of type “InvocationExpressionSyntax”

iii. The number of statements selected with the cursor for extraction must be greater or

equal than 3

iv. The ratio between the number of statements selected with the cursor and the body of

the number of statements of the method inside which it is enclosed into must be less

than 80%

v. The statements must be enclosed inside a method declaration

(“MethodDeclarationSyntax”)

b. The following transformations must be applied:

i. The method must be extracted

	Front Page
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem
	1.4 Objectives and Expected Results
	1.5 Structure

	2 Background
	2.1 Refactoring
	2.2 Design Patterns
	2.3 Refactoring to Patterns
	2.4 Meta-Programming
	2.4.1 Modelling and Meta-Modelling
	2.4.2 Reflection
	2.4.3 Model-Driven Software Development

	2.5 Code Generation
	2.6 Live Software Development
	2.6.1 Live Requirements
	2.6.2 Live Programming
	2.6.3 Live Refactoring
	2.6.4 Compiler Platforms

	2.7 Summary

	3 Literature Review
	3.1 Crossing the New Refactoring Rubicon
	3.2 Batch Refactoring
	3.2.1 Formal Models
	3.2.2 Architectures
	3.2.3 Discussion

	3.3 Refactoring Tools and Techniques
	3.3.1 Evolutionary Algorithms for Code Transformations
	3.3.2 Model-Driven Refactoring
	3.3.3 Discussion

	3.4 Framework Evolution
	3.4.1 Proposed Ideas
	3.4.2 Discussion

	3.5 Summary

	4 Problem Statement
	4.1 Context
	4.2 Open Issues
	4.3 Hypothesis and Research Questions
	4.4 Proposal
	4.5 Validation

	5 Proposed Solution
	5.1 Live Refactoring Features
	5.2 Technological Components
	5.3 Language Design
	5.3.1 Behavior Modules
	5.3.2 Refactoring Plugin Creation Process

	5.4 Abstraction Levels
	5.5 Implementing Refactoring Plugins with RPCL
	5.5.1 Chain Constructors
	5.5.2 String Comparison
	5.5.3 Extract Method
	5.5.4 Ensure Dispose Call
	5.5.5 Type Conversion
	5.5.6 Creation Method
	5.5.7 Append ToList to IQueryable

	5.6 Experimenting with Code Analyzers
	5.7 An Example of Using RPCL for Preventing Severe Security Vulnerabilities

	6 Validation
	6.1 Objectives
	6.2 Guidelines
	6.3 Tasks
	6.4 Results
	6.4.1 Participant Characterization
	6.4.2 Task Completion Times
	6.4.3 Survey Answers

	6.5 Threats to Validity
	6.6 Discussion
	6.7 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Main Contributions
	7.3 Main Difficulties
	7.4 Future Work

	References
	A Survey Results
	B Expert Assessment of RPCL

