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The important thing is not to stop questioning;  

curiosity has its own reason for existing. 

 

Albert Einstein 
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Abstract 

Analyzing behavior is a gateway to understanding biological systems in normal and 

pathological conditions. Behavior exposes the workings of the organisms at the system 

level, organ, tissue, cellular, down to molecular level. Animal behavior analysis plays, 

therefore, a fundamental role not only in research (universities, pharmaceutical companies) 

but also in industry (animal welfare for food production). In the particular case of 

neuroscience research, the characterization of animal behavior is a central tool in the search 

for solutions for Parkinson’s, Alzheimer’s, autism, stroke rehabilitation, among others. 

Unfortunately, animal behavior is complex to analyze and often relies on human judgment 

for manual annotation and quantification. This brings subjectivity and low reproducibility, 

with severe costs to society. This is the reason why, over the last 50 years, the analysis of 

behavior has become increasingly quantitative. Conventional behavioral assays have been 

gradually replaced by quantitative methods that resort to video recordings, machine vision 

and machine learning techniques for automatic and objective behavioral analysis. However, 

the existing computerized video-analysis solutions still present important limitations: 

recordings in static or unenriched environments, which may compromise natural behavior; 

lack of three-dimensional analysis and precision, which limits the detection of more complex 

behaviors; and absence of beginning-to-end software applications without end-user 

programming, and easy to configure. These constraints challenge the creation of novel 

computational tools that can drive more reproducible and high-throughput behavioral 

experiments, and ultimately provide new insights into the study of neural circuits’ functions 

and the computations underlying them. 

This thesis tackles these challenges by developing computational solutions for the 

quantification and automatic classification of behavior in laboratory animals. The integration 
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of depth-sensing and thermal cameras in laboratory contexts was explored as an alternative 

to conventional optical cameras. These technologies, working with infrared light, allow 

recording in dark conditions, without affecting animals’ natural behavior. Besides that, they 

are independent of animals’ coat color, improving segmentation and tracking performances. 

In particular, depth-sensing cameras allow a three-dimensional analysis, which is essential 

to accurately describe the complex animal behavioral patterns. When combined with 

machine vision and machine learning techniques, segmentation and tracking of animal’s 

centroid and body parts were successfully obtained, even for dynamic and enriched 

environments. Supervised machine learning techniques, in particular Support Vector 

Machines and Convolutional Neural Networks, were applied for automatically recognizing 

animal behavioral patterns. This methodology revealed important properties on how 

machine learning methods should be constructed and tuned to efficiently learn animal’s 

behavioral events. Namely, particular attention should be given to the integration of temporal 

information along with spatial representations when designing a model’s architecture. To 

effectively correlate behavioral expressions with environmental changes, a versatile closed-

loop framework was developed to provide real-time recognition of the animal’s behavior and 

to deliver this information for feedback control of behavioral experiments. The trainable 

system for automatic and markerless tracking and classification of the animal’s behavior 

was integrated into this closed-loop control system to trigger any external hardware device, 

such as behavioral mazes or real-time drug delivery optogenetics modules. 

Overall, this thesis provides novel, automated, multi-purpose algorithms and methods for a 

complete analysis and quantification of behavior in laboratory animals, integrated in user-

friendly software implementations, contributing to faster and high-throughput investigation 

in the computational ethology field. 
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Resumo 

A análise de comportamento é uma das estratégias para a compreensão de sistemas 

biológicos em condições fisiológicas e patológicas. O comportamento expõe o 

funcionamento dos organismos desde o nível sistémico, tecidular, celular, até ao nível 

molecular. A análise do comportamento animal desempenha, portanto, um papel 

fundamental não apenas em investigação (universidades, empresas farmacêuticas), mas 

também na indústria (em bem-estar animal na indústria alimentar). No caso particular da 

investigação em neurociência, a caracterização do comportamento animal é uma 

ferramenta central no estudo de doenças como o Parkinson, Alzheimer, autismo, em 

reabilitação após acidentes vasculares cerebrais, entre outras. Infelizmente, o 

comportamento animal é complexo de analisar e é muitas vezes dependente da intervenção 

humana para anotação e quantificação manual, o que acarreta problemas de subjetividade 

e baixa reprodutibilidade, com custos elevados para a sociedade. Esta é a razão pela qual, 

nos últimos 50 anos, a análise do comportamento tem evoluído no sentido de se tornar cada 

vez mais quantitativa. As experiências convencionais para análise de comportamento foram 

gradualmente substituídas por métodos quantitativos que recorrem a gravações de vídeo, 

técnicas de visão computacional e de aprendizagem automática para uma análise objetiva, 

sem intervenção direta humana. No entanto, as soluções computacionais existentes 

apresentam ainda importantes limitações: gravações em ambientes estáticos ou não 

enriquecidos, que comprometem o comportamento natural; ausência de análises no espaço 

tridimensional, que limitam a deteção de comportamentos mais complexos; ausência de 

aplicações computacionais que sejam completas, versáteis e fáceis de utilizar. Essas 

limitações desafiam a criação de novas ferramentas computacionais que potenciem 

experiências laboratoriais mais reprodutíveis e mais fáceis de implementar, e que possam 

trazer mais conhecimento no estudo das funções dos circuitos neuronais.   
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Esta tese aborda estes desafios através do desenvolvimento de ferramentas 

computacionais para a quantificação e classificação automática do comportamento em 

animais de laboratório. A integração em ambiente laboratorial de sensores de profundidade 

e câmaras térmicas foi explorada como uma alternativa a câmaras convencionais. Estas 

tecnologias, através da utilização de radiação infravermelha, permitem a gravação na 

ausência de radiação visível, sem afetar o comportamento natural dos animais. Além disso, 

ao não serem afetadas pela cor dos animais, estas câmaras permitem melhorar o 

desempenho das técnicas de segmentação e rastreamento. Em particular, as câmaras com 

sensores de profundidade permitem uma análise tridimensional, essencial para descrever 

com precisão padrões comportamentais mais complexos. Quando combinadas com 

técnicas de visão computacional e de aprendizagem automática, a segmentação e 

rastreamento do animal foram obtidos com sucesso, mesmo em ambientes dinâmicos e 

enriquecidos. Diferentes técnicas de aprendizagem automática, em particular Support 

Vector Machines e Convolutional Neural Networks, foram utilizadas para reconhecer 

automaticamente os padrões comportamentais dos animais. Esta metodologia revelou 

características importantes que devem ser tidas em conta aquando da construção e 

adaptação de métodos de aprendizagem automática. Mais especificamente, a integração 

de informação temporal na arquitetura dos modelos, juntamente com informação espacial, 

mostrou ser relevante no que diz respeito ao desempenho dos métodos. Para correlacionar 

eficazmente expressões comportamentais com alterações no ambiente envolvente, foi 

desenvolvido um sistema de controlo em malha fechada que permite o reconhecimento em 

tempo real do comportamento animal e fornece estas informações para controlo de 

experiências laboratoriais. Os métodos desenvolvidos para rastrear e classificar 

automaticamente comportamento animal foram integrados nesta plataforma de controlo em 

malha fechada. O sistema pode assim ser usado com o objetivo de ativar dispositivos 

externos, por exemplo em arenas de comportamento operante ou em módulos de 

administração controlada de fármacos. 

No geral, esta tese explora algoritmos e métodos inovadores para a análise automática, 

quantitativa e multifuncional do comportamento de animais de laboratório, integrados em 

aplicações computacionais que se esperam contribuir para acelerar estudos experimentais 

na área de etologia computacional. 
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 Motivation 

A fundamental question in basic neuroscience is how brain functions are affected by new 

environmental conditions and disorders, such as addictive behaviors, depression, and 

personality disorders (Baker, 2011; Nestler & Hyman, 2010). As the brain is responsible for 

creating memories, emotions, and behavioral patterns, by studying the responses to 

environmental changes, it is possible to ultimately understand complex central nervous 

system (CNS) processes (Dickinson et al., 2000; Hong et al., 2015). By definition, animal 

behavior is the bridge between the physiological (molecular and cellular) and the ecological. 

It plays a critical role in biological adaptations and defines what animals do to interact with, 

respond to and control their environment (Mench, 1998; Snowdon, 2017). Therefore, the 

integration of animal behavior assessment in the neurosciences can provide important 

outlines for theorizing cognitive, social, and other mechanisms, which are deeply studied in 

the neuroethology context. In fact, research experiments are increasingly turning to animal 

social behavioral studies as a framework to understand human social-related symptoms 

witnessed in neurological disorders, such as Parkinson’s, Alzheimer’s, and autism. Besides 

that, animal behavior analysis outcomes can have the potential to support the development 

of new rehabilitation protocols and therapeutics (Brooks & Dunnett, 2009; Kabra, Robie, 

Rivera-Alba, Branson, & Branson, 2013; Weissbrod et al., 2013). Finally, it is important to 

emphasize that, in parallel with the crucial role that animal behavior analysis plays in 

research, it is also becoming an important tool in the industry, particularly in food production. 

Commercial pressure for competitiveness and concerns about animal welfare are leading 

the food production industry to the use of systems for automatic analysis of animal behavior 

(Ahrendt, Gregersen, & Karstoft, 2011; Hong et al., 2015; Stavrakakis et al., 2015). 

The complexity of cognitive processes that characterize animal behavior, and the panoply 

of tests available for assessing these behaviors, generate vast amounts of data that are 

typically scored manually. Indeed, quantitative, precise, and long-term measurements that 

are user-independent, replicable, and standardized are not possible using video analysis 

based on visual inspection (Anderson & Perona, 2014; Hong et al., 2015; Jhuang et al., 

2010; Kabra et al., 2013; Weissbrod et al., 2013). Therefore, the automation of animal 

behavioral analysis triggered new methodologies and technologic alliances in behavioral 

studies, having obvious advantages such as repeatability and reliability, with lower labor 
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costs (Ou-Yang, Tsai, Yen, & Lin, 2011). Several studies have already addressed the 

behavioral analysis challenge by applying automatic systems based on machine vision and 

machine learning techniques to automatically track and characterize the behavior of different 

animals, such as flies, fishes, rodents, and larvae (Bohnslav et al., 2021; Kabra et al., 2013; 

A. Mathis et al., 2018; Romero-Ferrero, Bergomi, Hinz, Heras, & de Polavieja, 2019; 

Wiltschko et al., 2015). The relevance of this field has even led to dedicated denomination: 

Computational Ethology. 

Although the behavioral research field is continuously evolving and experiencing fast 

innovation thanks to advances in machine vision and machine learning, the leading experts 

are unanimous in stating that there are still many important unsolved challenges in automatic 

classification/quantification of behavior (Egnor & Branson, 2016; M. W. Mathis & Mathis, 

2020; Robie, Seagraves, Egnor, & Branson, 2017; von Ziegler, Sturman, & Bohacek, 2021; 

Zilkha, Sofer, Beny, & Kimchi, 2016). Acknowledging that ethologically relevant information 

is essential to study behavior and that this behavioral information should be acquired while 

the animal is performing natural and unconstrained behaviors (Zilkha et al., 2016), robust 

tracking algorithms in naturalistic (enriched) environments must be further developed. 

Besides that, the robustness of trackers and action/behavior systems must be improved to 

allow generalization when changing setup configurations (backgrounds, lighting conditions, 

cameras, etc.) or objects’ appearance (different animal strains). Currently proposed systems 

are specifically designed for a given environment and a given set of predefined actions. 

Conventional systems based on machine learning techniques rely on annotated labels for 

training the classifiers in automatic tracking or classifying animal behavior. Such annotations 

need to be manually obtained, and most systems using deep learning techniques need large 

annotated datasets to obtain high performance, which is unfeasible in laboratory 

experiments. Thus, innovative techniques or fine-tuned networks that can work with small 

training datasets must be designed to increase the productivity and applicability of such 

computational tools. In addition, instead of relying on in-house training datasets created 

every time an automatic analysis needs to be performed, setting up benchmark datasets of 

animal behavior that can be explored and curated by the community is crucial to push the 

neuroscience field toward more in-depth studies. To try to reduce the human factor and 

analyze behavioral information from a data perspective, improved systems that do not rely 

on annotated datasets (unsupervised learning), or that can learn from both unlabeled and 

labeled data (semi-supervised or self-supervised learning), need to be further developed. In 
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this sense, such techniques may not be subject to miss behavioral patterns that often arise 

from genotyping. Animal pose estimation and behavior recognition can also be improved by 

including 3-dimensional (3D) analyses, which allow a more complete description of the 

animals' movement or behaviors to be obtained. If animal behavior analysis aims at 

revealing underlying neural or genetic mechanisms or correlating behavioral expressions 

with the surrounding environment, real-time feedback systems are crucial to understanding 

cause-effect phenomena of specific neural circuits or environmental interactions. In this 

sense, new software tools that can achieve low-latency or real-time closed-loop feedback 

based on animal movement or behavior have the potential to change the paradigm in high-

throughput animal experiments. Finally, sophisticated tools can be only integrated into 

experimental research or industry environments if they allow for low-cost setup equipment, 

easy to install and to use by behavioral researchers. In addition, they should preferably be 

as versatile as possible, combining tracking, behavior classification, and real-time/low-

latency closed-loop analyses in a single application. 

Altogether, these points highlight the need to create an integrated approach for the 

automated measurement of animal behavior that can efficiently solve the challenges that 

still persist in the behavioral neuroscience field, and pave the way to more reproducible and 

high-throughput experiments. 

 Objectives 

The advances in technology, mathematics, and engineering, allowing scientists to 

automatically measure and analyze animals’ behavior, have led to the advancement of the 

computational ethology research. Aligned with this field, the aim of this thesis concerns the 

development of novel computational tools for the automatic quantification of behavior in 

laboratory animals. Envisaging the advance of the computational ethology field, the adopted 

strategy focused on exploring the opportunities and long-term directions of research in this 

area, to create different tools that address the previously mentioned challenges in the 

automated analysis of animal behavior. In particular, four main specific objectives were 

addressed in this work: 
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 Exploration of the potential of depth sensing and thermal cameras to extract 

valuable behavioral and welfare information 

Acknowledging the importance of analyzing animal behavior in non-invasive and stress-free 

conditions, depth and thermal cameras are promising alternatives to conventional methods. 

By using infrared technologies, videos can be recorded even in dark rooms, without 

disturbing animals’ natural cycle. Besides that, and since 3D analysis is necessary to 

adequately and objectively describe the highly complex rodents’ behavioral patterns, the 

use of depth cameras in 3D systems is a low-cost and high-performance strategy. 

Considering these advantages, depth and thermal cameras were chosen to acquire video 

sequences, which were then analyzed for the extraction of behavioral patterns of interest. 

 Improvement of single-animal segmentation and tracking using machine vision 

and machine learning techniques 

Segmentation of the animal’s whole body and tracking of the animal’s centroid and body 

parts are fundamental tasks for the analysis of animal movements. Several algorithms and 

corresponding advantages and disadvantages were discussed in the literature review and 

later implemented to address this challenge. In particular, background modeling and deep 

learning methods for foreground segmentation (i.e., whole-body segmentation of single 

animals) were explored, with emphasis on algorithms for dynamic and naturalistic 

environments. 

 Development of a trainable system for automatic classification of behavioral 

primitives and automatic behavioral phenotyping 

The challenge of automatically recognizing animal behavior using depth-sensing data was 

further explored, with a focus on supervised machine learning techniques. Traditional 

methods, such as Support Vector Machine (SVM), were initially introduced and applied in 

this context. Deep learning approaches, such as Convolutional Neural Networks (CNNs), 

were later investigated, eliminating the need for manual feature-engineering and human 

bias. Mechanisms for integrating temporal information hidden in contiguous frames in the 

video sequences were also explored to understand the impact of different temporal scales 

in the classifier’s performance.  
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 Integration of a machine learning-based algorithm for real-time behavior 

recognition with closed-loop control systems for operant mazes 

 Creating an integrated framework that allows automatic recognition of animal’s 

position/behavior, and sending such signals for feedback control of sensors and actuators 

in a behavioral maze, is the ultimate goal of a high-throughput, multi-purpose and robust 

tool in the neuroscience field. A novel software solution was therefore developed for 

automated, markerless, non-invasive, and real-time 3D tracking and behavior recognition, 

that is integrated into a control platform, providing interfaces to trigger external hardware 

devices based on behavioral detection.  

 Thesis Structure 

This thesis is divided into six chapters, starting with a literature review on the thesis subject, 

followed by three chapters containing the main experimental work, and the final chapter 

comprising the concluding remarks and future directions.  

Chapter 1 highlights the motivation that drove the development of this work, the four main 

objectives, and how this thesis is structured. 

Chapter 2 provides a general introduction on the definition of animal behavior and why its 

study is so relevant either in research or in industry. Given the recent developments in 

machine vision and machine learning methods, the analysis of animal behavior has become 

increasingly quantitative, reducing the need for time-consuming and non-standardized 

annotations. Computational methods for analyzing behavioral patterns are also reviewed in 

this chapter, highlighting the potential of these recent developments in advancing behavioral 

analysis but also reinforcing the need for further reproducible, human-free, and robust 

systems in computational ethology. 

Chapter 3 presents a computational system for thermal assessment of laboratory mice 

using infrared thermography technology. Infrared thermography is a non-invasive alternative 

to classical stressful methods (such as rectal or infrared thermometers), to measure body 

temperature changes as a way to understand animals’ physiological health and well-being. 

Using machine vision techniques applied to thermal imaging, a dedicated computational tool 

was developed for automatic segmentation of animal’s whole body and analysis of mean 
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body temperature of regions-of-interest (ROIs), which was integrated with a graphical user 

interface (GUI) for increased usability and transferability. This chapter is based on the 

following published original article: “Franco, N. H., Gerós, A., Oliveira, L., Olsson, I. A. S., & 

Aguiar, P. (2019). ThermoLabAnimal–A high-throughput analysis software for non-invasive 

thermal assessment of laboratory mice. Physiology & behavior, 207, 113-121.”. 

Chapter 4 explores the combination of depth-sensing technology, machine vision, and 

machine learning techniques for automated analysis of animal behavior. Depth cameras 

work with infrared sensors to produce range images where each pixel contains information 

regarding camera distance to the objects in the field-of-view. The use of cameras with 

infrared technology in the laboratory context was further explored, bringing added benefits 

in terms of improved background-foreground contrast and naturalistic lighting conditions. 

Segmentation of animal’s whole body was improved using such technology, and different 

algorithms to solve the dynamic background challenge were reviewed and tested. Automatic 

classification of behavior was reported for both 4- and 7-classes tasks and the proposed 

methodology was validated for behavioral phenotyping of Wistar Kyoto and Wistar rats. This 

chapter is based on the following published original article: “Gerós, A., Magalhães, A., & 

Aguiar, P. (2020). Improved 3D tracking and automated classification of rodents’ behavioral 

activity using depth-sensing cameras. Behavior research methods, 52(5), 2156-2167”. 

Chapter 5 investigates the potential of modern machine learning methods, in particular deep 

learning, in extracting information directly from raw range video sequences. The objectives 

of the previous experimental work were extended by training CNNs in automatically tracking 

animal movements and classifying animal behavior. Deep networks were designed to learn 

not only spatial but also temporal features, which proved to be essential in accurately 

recognizing 4 different classes of behavior. The deep learning-based algorithm was adapted 

for real-time recognition of animal’s position and behavior, and integrated into a platform for 

closed-loop control of sensors and actuators in any behavioral experiment. This chapter is 

based on the following original article that has been recently submitted for publication: 

“Gerós, A., Cruz, R., de Chaumont, F., Cardoso, J. S., & Aguiar, P. Deep learning-based 

system for real-time behavior recognition and automated closed-loop control of behavioral 

mazes”. 

Chapter 6 finishes this thesis with the general conclusions, along with the directions for 

future research in the computational ethology field.   
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 Studying behavior to understand biological systems’ internal 

mechanisms 

Behavior, the macroscopic expression of neural activity, translates to any sequence of 

movements performed by the animal, and it is the object of study of a comprehensive field 

called ethology. Depending on the goals of each experiment, the definition of behavior may 

change, to encompass different patterns and different types of behavior. In this sense, the 

definition of behavior may relate to social behavior (in relationships with other individuals) or 

non-social behavior. The latter can still be categorized into instinctive behavior (e.g., the 

inheritable tendency of an organism to respond to environmental stimuli), or learning (such 

as habituation or imitation behaviors) (Egnor & Branson, 2016). Nevertheless, within any 

particular animal species, some particular behaviors are shared among all members and 

others are more specific to certain individuals, regarding the environmental location. Besides 

that, and since all life forms exhibit behavioral activity, some attributes are common to all 

species. The relational component of all behaviors defends that the relationship between 

the animal and the environment influences the behavior, and the specification of the context 

or location is crucial to fully explain it. Also, the dynamic character of all behaviors imposes 

its analysis using frameworks for time series. Finally, since it is characterized by high 

dimensionality and complexity, its study must be performed taking into account all variables 

and considering overlapping of sub-behaviors, relational or social behaviors. In fact, each 

simple movement, as a single behavior, can be split into even smaller behaviors – sub-

behaviors, which can be specific to a particular behavior or shared among many of them 

(Figure 2.1) (Anderson & Perona, 2014; Egnor & Branson, 2016; A. Gomez-Marin, Paton, 

Kampff, Costa, & Mainen, 2014).  

In the neuroscience research, the readout of many laboratory experiments using animal 

models is at the level of animal behavior. Traditionally, the researchers have two distinct 

ways of analyzing behavior: detailed manual descriptions, in which the observers provide 

comprehensive and exhaustive reports on each animal behavior during a period of time, or 

specific assays, intended to assess particular patterns of behavior. Although ensuring that 

the specific pattern of interest is fully recorded, in detail, manual annotations are time-

consuming, bring strong subjectivity and errors, and are difficult to standardize across 

experiments and observers. On the other hand, behavioral tests are easier to implement 



1. Studying behavior to understand biological systems’ internal mechanisms 

12 

and faster to screen; however, in some cases, may not measure the pattern of interest in 

detail, being a more comprehensive technique (Egnor & Branson, 2016; Hong et al., 2015; 

Kabra et al., 2013; Weissbrod et al., 2013).  

 

Figure 2.1 High-level specific behaviors and their sub-behaviors. Adapted with 

permission from Egnor and Branson (2016). 

Nonetheless, in neuroscience research, behavioral assays are the most commonly used to 

study animal behavior, in particular, for motor analysis. Since it does not require expensive 

equipment and can be easily analyzed by visual inspection, the motor phenotype is the 

behavioral science function most frequently investigated (Brooks & Dunnett, 2009; Zörner 

et al., 2010). A variety of tests have been developed to describe the motor function (Figure 

2.2), and they can be categorized according to the specific function intended to be evaluated, 

taking into consideration that some of them may be used in several different contexts. To 

assess locomotor activity, the open-field test is the most used apparatus in laboratory 

environments, and it involves placing the animal in a circular or square arena, and observing 

animal’s movements, typically by visual inspection. Behavioral features like habituation (i.e., 

time the animal takes to explore the environment and venture out towards all regions) or 

moving times, and rearing, grooming, freezing, or defecation periods, are manually recorded 

to further assess, for example, locomotive impairment in animal models of neuromuscular 

disease or the efficacy of therapeutic drugs that may improve locomotion function (Brooks 

& Dunnett, 2009; Tatem et al., 2014). 
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With modern computational analysis methods, several approaches have been developed to 

observe and quantify the behavior of interest automatically, instead of relying on a visually 

behavioral assessment or time-consuming manual annotations. In fact, the research on 

ethology has benefited from advances in this field, allowing a collection and analysis of vast 

amounts of data and behavioral patterns that may go unnoticed to a human observer (subtle 

changes or modification at long time scales), the reduction in human bias and subjectivity, 

and standardization of measurements across labs (Egnor & Branson, 2016; Robie et al., 

2017). 

 

Figure 2.2 Behavioral tests commonly used to assess motor function in rodents. A. 

Open-field test.  B. Elevated plus maze test. C. Running wheel. D. Footprint analysis. E. 

Swimming test. F. Staircase reaching test. G. Cylinder test. Images in C - D adapted with 

permission from Brooks and Dunnett (2009). 

Importantly, automating the analysis of animal behavior allows for replacing or 

complementing human effort in two different ways: decision and observation. Computational 

methods appeared to support human decision-making, either through automatic methods 

for analyzing the animal's position or for automatic classification of individual or social 

behavior (offline or in real-time). This automated analysis can only be possible with 

automated video recordings for the observation of animals’ behavior, and optimizations in 

the quality of video recording hardware have emerged hand in hand with advances in 

computer vision fields. 
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 Automatic quantification of animal behavioral patterns using 

machine vision and machine learning approaches 

The first automated methods that emerged used sensory devices, such as radiofrequency 

identification (RFID) transponders, for collecting spatial data of each individual animal at a 

given point in time (Macrì et al., 2015; Spink, Tegelenbosch, Buma, & Noldus, 2001; Tang 

& Sanford, 2005; Weissbrod et al., 2013). Recent methods still rely on this technique to 

analyze individual animal activity, arguing that these systems allow for a collection of 

longitudinal data without the need to remove the animals from their home-cage 

environments (Bains et al., 2016; Redfern et al., 2017). However, besides being an invasive 

technique where RFID microchips need to be implanted in animals’ abdomen, they proved 

to be ineffective in analyzing more complex movements and behaviors. 

To overcome these limitations, computerized video-analysis systems have emerged as 

potential non-invasive tools to assess animal behavior, combining two-dimensional (2D) 

video recordings with image analysis/processing techniques (Egnor & Branson, 2016; Robie 

et al., 2017). Pioneering studies and available commercial software share a methodology 

with three major steps to automate the recognition of animal behavior itself (Dell et al., 2014). 

First, video-based segmentation algorithms are initially applied to recorded videos for 

detecting the animal in each frame. Second, the whole-body and body parts positions are 

estimated across time, for a complete pose estimation and tracking. Finally, these pose 

estimates can be used for the automatic classification of actions and translate them into 

behaviors of interest.  

Each of these steps will be separately addressed in the following sections, and they will be 

categorized based on algorithms’ computational nature: machine vision-based or machine 

learning-based algorithms. Machine vision concerns the classical methods where rule-

based algorithms are implicitly programmed for enabling machines to extract relevant 

information from images/videos. On the other hand, when using machine learning-based 

algorithms (Figure 2.3), the machine learns relevant information (patterns) within data 

representations (features), without being explicitly programmed (Bishop, 2006). Traditional 

machine learning methods follow the conventional paradigm of pattern recognition (Figure 

2.3A and B). First, complex handcrafted features need to be carefully computed, 

transforming raw input data into a suitable internal representation. These features will be 

then fed to models during the learning process to detect or classify patterns in the input. In 
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real-world scenarios, choosing which features are most important or relevant for learning a 

specific task at hand is a challenge itself, since the choice is highly problem- and user-

dependent, and the power of these features significantly affects the performance of learned 

models. In this sense, instead of relying on handcrafted feature extractors, when using deep 

learning techniques (Figure 2.3C) the features themselves are automatically learned as part 

of the training step, in a process called representation learning. Deep learning architectures 

are obtained by composing simple non-linear modules (most of them subject to learning) 

that iteratively transform the representation at one level into a representation at a higher, 

more abstract level. By stacking multiple modules, and creating multilayer Neural Networks 

(NN), higher layers of representation can learn complex functions for the discrimination of 

relevant features (Bishop, 2006; Y. LeCun, Bengio, & Hinton, 2015). 

Given the increased availability of large amounts of data and hardware computing power, 

deep learning methods have recently brought a breakthrough in artificial intelligence 

research. In particular, for image/video recognition, Convolutional Neural Networks (CNNs) 

are a dominant approach for many recognition and detection tasks and have been 

demonstrated to approach human performance. Similar to multilayer NN architecture, CNNs 

are comprised of multiple interconnected layers, in which each layer contains simple 

neurons that are connected to neurons in the next layer. However, it’s the way these layers 

work and interact with each other that makes CNNs suitable for image processing problems. 

The key feature of CNNs architecture is the convolutional layer, where convolutional 

operations with different kernels (learnable filters) are performed to encode spatial 

information between neighboring pixels of an image into feature maps. By composing 

several convolutional layers in a deep architecture, higher-level features are obtained by 

composing lower-level ones, in a way that edges, motifs, and objects can be iteratively 

learned throughout the network. Finally, in the last layer, a non-linear combination of the 

features extracted in the previous convolutional layers will be learned for the final 

classification, depending on the task at hand (Y. LeCun et al., 2015; Yann LeCun, 

Kavukcuoglu, & Farabet, 2010; Voulodimos, Doulamis, Doulamis, & Protopapadakis, 2018). 

Further theoretical concepts on NN and CNNs are available in Appendix - Fundamentals of 

Neural Networks and Convolutional Neural Networks. 
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Figure 2.3 Categories of machine learning (ML) approaches used in behavioral 

research. Traditional ML methods are divided into: A. Supervised learning, where 

manually labeled data are required to first train the classifiers, and then to automatically 

recognize new videos. B. Unsupervised learning, where categories with similar features are 

automatically detected without manual annotations. Modern supervised ML methods rely on 

C. Deep learning, where the features themselves are automatically learned during the 

representation learning step. Image adapted with permission from von Ziegler et al. (2021). 
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Taking into account the availability of manual annotations and the intrinsic properties of the 

data, machine learning methods can be divided into two broad categories: supervised and 

unsupervised learning methods. In supervised approaches, manually labeled data (visually 

identified patterns) are required to train the classifiers (Figure 2.3A). Unsupervised methods 

rely on the selection of a feature representation of the raw data, without the need for manual 

annotations, and automatically detect any stereotyped patterns (e.g., automatically defines 

what it means for two behaviors to be similar, regarding available data) (Figure 2.3B). Some 

advantages come from these unsupervised properties, such as decreased subjectivity, the 

chance of finding different or rare behaviors, which may go unnoticed by human observers, 

and increased throughput and repeatability. 

2.1 Automating video-based tracking in computational ethology 

The animal tracking challenge is solved in most behavioral studies in a way to analyze the 

position and pose (body parts geometrical configuration) of animals over time. Initial 

solutions for video-based tracking relied on manually identifying the position of the animal in 

each frame, and disadvantages such as time-consuming, low spatiotemporal resolution, and 

observer subjectivity promoted recent advances in automated tracking systems (Dell et al., 

2014; Robie et al., 2017). 

Depending on the goal of each behavioral experiment, animal motion can be analyzed using 

descriptors that vary in terms of complexity, going from coarse representations such as 

centroid or ellipse tracking to finer representations, as three-dimensional (3D) animal pose 

estimation (Figure 2.4) (Talmo D Pereira, Shaevitz, & Murthy, 2020). Accordingly, 

computational tools for extracting animal movement over time will be discussed in the next 

subsections, addressing tracking techniques for progressively more detailed descriptions. 

2.1.1 Segmentation of the animals from the background 

The animal whole-body tracking task is closely related to the foreground (object(s) of 

interest) segmentation challenge, aiming at the detection of moving objects within a video 

stream, without prior knowledge about these objects (Sobral & Vacavant, 2014; Xu, Dong, 

Zhang, & Xu, 2016). If it is possible to distinguish foreground and background pixels in each 
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frame, then estimating the centroid of a single animal is simply averaging the location of all 

foreground pixels, for each frame over time (Figure 2.4A).  

One of the most common techniques to perform foreground detection is the implementation 

of background modeling methods. These approaches have evolved during the past years 

but they share a common pipeline: 1) background initialization, where a background model 

is constructed using a fixed number of frames; 2) foreground detection, in which a 

comparison (usually, background subtraction) between the current frame and the 

background model is performed to detect foreground objects; and optionally, 3) background 

maintenance, updating the background model, which was learned at the initialization step 

using the analyzed frames. The various background modeling algorithms can be categorized 

regarding the nature of the model (basic, parametric, and non-parametric models) or the 

area of the image under study (pixel-based, region-based and hybrid methods). The basic 

models for background subtraction include creating a background model using the median 

of the pixels over all frames (Static Median/Average methods) or just subtracting a manually-

acquired static image of the background to each new recorded image (Static Frame 

Difference method).  

Interestingly, the gold standard for animal segmentation still relies on such machine vision-

based methods (Paulo Aguiar, Mendonça, & Galhardo, 2007; Alex Gomez-Marin, Partoune, 

Stephens, & Louis, 2012; Jhuang et al., 2010; Kabra et al., 2013; 

Noldus_Information_Technology_BV; Ohayon, Avni, Taylor, Perona, & Egnor, 2013; Pérez-

Escudero, Vicente-Page, Hinz, Arganda, & De Polavieja, 2014; Rodriguez et al., 2018; Spink 

et al., 2001; Sridhar, Roche, & Gingins, 2019; TSEsystems; van Dam et al., 2013). 

Background subtraction methods are performed to segment the animal using separation by 

intensity thresholding, which is highly dependent on the environment’s conditions (high 

contrast or uniform background are needed to ensure a good performance). 

A potential methodology to address the laboratory animal tracking challenge in naturalistic 

(enriched) environments should be robust to lighting changes, objects overlapping and 

moving background elements. In fact, the tendency on animal models and behavior 

quantification is to continuously increase the complexity towards more natural environments. 

However, traditional segmentation methods are not capable of dealing with dynamic 

environments’ situations and, therefore, have proved insufficient for the task of animal 

segmentation in enriched environments (Sobral & Vacavant, 2014; Xu et al., 2016).   
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Figure 2.4 Tracking representations ranging from a single-point tracking (coarse 

tracking representation) to full three-dimensional (3D) pose (fine tracking 

representation). A. Tracking of single animal’s centroid. B. Single animal’s tracking by 

fitting an ellipse to animal’s shape. C. Multi-animals’ tracking, with identity assignment over 

time. D. Single-animal pose estimation, with detection of multiple body parts. E. Multi-animal 

pose estimation and tracking, by detecting multiple body parts of different animal over time. 
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F. 3D pose estimation, with detection of multiple body parts in the three-coordinates system. 

Image representation adapted with permission from Talmo D Pereira, Shaevitz, et al. (2020). 

Images adapted with permission from: A. Alex Gomez-Marin et al. (2012), B. Geuther et al. 

(2019), C. Romero-Ferrero et al. (2019), D. Uhlmann, Ramdya, Delgado-Gonzalo, Benton, 

and Unser (2017), E. Talmo D Pereira, Tabris, et al. (2020), F. Karashchuk et al. (2021). 

In this sense, a dynamic background landscape estimator algorithm is a solution for whole-

body segmentation in changing environments. One of the pioneering methods described in 

the literature to deal with the dynamic background challenge (Sobral & Vacavant, 2014) is 

based on a parametric probabilistic background model proposed by Stauffer and Grimson  - 

Gaussian Mixture Model (GMM) (Stauffer & Grimson, 1999). This machine learning-based 

method for unsupervised clustering consists of representing each pixel as a sum of weighted 

Gaussian distributions defined in a given color space. This technique determines which 

intensities are most probably belonging to the background and the remaining pixels are 

associated with the foreground. The distributions are updated using an online Expectation-

Minimization algorithm. Particularly, each pixel is modeled by a mixture of K Gaussian 

distributions (usually, K = 2 or 3): 

P(xt) =  ∑ ωi,t N (xt|μi,t, Σi,t)

K

i=1

, 
(2.1) 

 with N (𝑥t|μi,t, Σi,t) =  
1
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exp (−
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2
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T
Σi,t

−1(𝑥t − μi,t)), D is the dimension of 

the color space, ωi,t is an estimate of the weight and each Gaussian is described by its mean 

μi,t and covariance matrix Σi,t
 , and |∙| denotes the matrix determinant. The Gaussian 

distributions that may correspond to background colors are determined based on the 

persistence and the variance of each one, and the pixel values that do not fit the background 

distributions are considered foreground until there is a Gaussian that includes them with 

consistent evidence. To improve the performance of this method in conditions of rapid 

variations of illumination, noisy videos, and shadows, many authors have proposed other 

alternatives, improving the original method. A detailed description of other GMM-based 

methods is presented in Sobral and Vacavant (2014); (Xu et al., 2016). 

To solve the drawbacks of manually selecting the parameters in each environment, non-

parametric methods can be used to perform background segmentation. The Kernel Density 

Estimation (KDE), a widely used non-parametric and region-based model, was introduced 
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by Elgammal, Harwood, and Davis (2000). These region-based methods take advantage of 

inter-pixel relations to segment the images into regions and identify foreground objects from 

image regions. In order to model the background distribution in KDE methods, the probability 

density function that a particular pixel will have intensity value 𝑥t at time t can be estimated 

using the kernel estimator (Elgammal et al., 2000): 

P(𝑥𝑡) =  
1

𝑁
∑ 𝐾(𝑥𝑡 − 𝑥𝑖)

𝑁

𝑖=1

 
(2.2) 

If P(𝑥i) < T, then 𝑥i will be classified as foreground pixel, where T is a global threshold over 

all the images. The main advantages of this method are its ability to deal with multimodal 

backgrounds (with fast changes), and to avoid parameter estimation steps. However, since 

KDE needs to save, in memory, N frames for the foreground detection process, this method 

can be computationally expensive.  

Modern approaches have begun to use instead deep learning methods to solve animal 

segmentation challenge in more complex backgrounds, using encoder-decoder or adapted 

Mask-RCNN architectures for semantic segmentation of animal’s body (Francisco, 

Nührenberg, & Jordan, 2020; Geuther et al., 2019; M. Marks et al., 2020). However, little 

progress has been made to solve this problem, and efforts have been directed towards 

methods that calculate the position of the animal and its body parts, skipping the background 

segmentation step. 

2.1.2 Tracking multiple animals 

One computer vision challenge that has been intensively explored is the tracking of multiple 

interacting and indistinguishable animals in a given environment (Figure 2.4C). This is 

particularly relevant because animals are social in the presence of other conspecifics and 

exhibit specialized social behaviors, most of them different from single-animal behaviors. 

Monitoring the behavior of multiple individuals is, however, computationally hard since some 

animals move particularly rapidly when interacting, and these interactions, as they involve 

physical contact, are prone to occlusions. The pipeline shared by pioneering solutions for 

the multiple-animal challenge can be divided into two sub-problems: identification of the 

position/pose of all animals in each frame (multi-animal detection problem), and connection 

of detected positions across frames into trajectories for each animal (identity problem). 
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A common methodology to detect multiple identity-less positions consists in, firstly, 

segmenting the foreground and, then, clustering the pixels into spatially connected groups 

using clustering algorithms, such as watershed segmentation (Fiaschi et al., 2014; 

Giancardo et al., 2013) or Expectation-Maximization algorithm for GMMs (Ohayon et al., 

2013; Pérez-Escudero et al., 2014). Other methods take into account the similarity of size 

and shape of the organisms to perform multi-target detection (Branson, Robie, Bender, 

Perona, & Dickinson, 2009; CleverSys_Inc.; de Chaumont et al., 2012; 

Noldus_Information_Technology_BV; TSEsystems). However, both approaches alone do 

not allow detecting multiple organisms in cases of occlusion, since the shape and size 

information from foreground detections are not enough to individualize the animals (Robie 

et al., 2017).  

Some solutions were found for tracking during occlusions, and one of them is to complement 

the previous approaches with prior knowledge about the shape of the organisms and 

appearance of the foreground pixels (de Chaumont et al., 2012; Dell et al., 2014; Kabra et 

al., 2013; Pérez-Escudero et al., 2014; Robie et al., 2017). However, these approaches are 

computationally slow, especially for multi-tracking with more than 2 animals. Another 

alternative is to use temporal context or kinematic information to solve the occlusion 

problem. Thus, it is possible to infer where the animals’ pixels are in the current frame taking 

into account information of both past and future frames (Fiaschi et al., 2014; Kabra et al., 

2013). These techniques are also computationally expensive when the future temporal 

context is taken into consideration, and some alternatives were suggested to improve the 

efficiency of these methods by reducing the size of the problem (Lenz, Geiger, & Urtasun, 

2015).  

To solve the second problem of maintaining the identity of multiple animals across frames, 

one strategy is to use, once again, temporal context and kinematic information of previous 

and future frames (assuming animals move short distances at a constant speed, for 

example) (de Chaumont et al., 2012; Gershow et al., 2012; Matsumoto et al., 2013; 

Rodriguez et al., 2018). Alternatively, visual differences/fingerprints between individuals can 

be detected using either machine vision-based (Pérez-Escudero et al., 2014), or machine 

learning-based methods. The latter can learn models of each animal’s appearance from 

training frames and, then, use these learned models to predict the identity of each detected 

animal in a particular frame (Robie et al., 2017; Sridhar et al., 2019). Recently, deep learning 

techniques have led the way to improve tracking of large groups of unmarked animals, using 
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state-of-the-art CNN architectures for animals’ detection and identification over time (Arac, 

Zhao, Dobkin, Carmichael, & Golshani, 2019; Z. Chen et al., 2020; Francisco et al., 2020; 

Romero-Ferrero et al., 2019).  

Naturally, the task of tracking animal identities can be facilitated using surface markers. In 

fact, biologists have long used dye, bleach, or even different kinds of shavings to mark 

animals for identification (Stonehouse, 1978). Such markings are still currently used to more 

easily assign pixels to organisms identities, either in academic research (Boenisch et al., 

2018; Crall, Gravish, Mountcastle, & Combes, 2015; Hong et al., 2015; Ohayon et al., 2013) 

and commercial software (CleverSys_Inc.; Noldus_Information_Technology_BV; 

TSEsystems). Even so, these markings can be a technical limitation since marker imposition 

can change animals’ natural behavior (de Chaumont et al., 2012). 

2.1.3 From tracking information to pose estimation  

Trajectory data from single or multiple animals, represented by the animal’s center of mass 

over time, can be useful to answer some specific scientific questions. However, to allow the 

classification of subtler and more complex behaviors, particle-like trajectory information may 

not be enough (Berman, Choi, Bialek, & Shaevitz, 2014; Hong et al., 2015; Wiltschko et al., 

2015). In fact, over the last years, proposed methods for analyzing the movement of animals 

have evolved towards capturing progressively more detailed descriptions of the geometrical 

configuration of multiple body parts, to estimate a complete pose of the animal (Figure 2.4D, 

E). 

Most of the published work and available software rely on 3 different approaches to track 

animal body parts: simple morphological techniques, physical model-based, and machine 

learning-based methods. The first approach implements basic techniques by combining 

morphological operations and geometric considerations on skeleton detections to calculate 

a small number of body parts. This methodology assumes that the end-points of the skeleton 

can be used as a proxy for animal’s head, nose, and/or tail positions (Ben-Shaul, 2017; Alex 

Gomez-Marin et al., 2012; Tong et al., 2020; Unger et al., 2017; Z. Wang, Mirbozorgi, & 

Ghovanloo, 2018).  

Physical model-based methods can also be used to identify the position of individual body 

parts, and the existing methodologies can be divided according to their complexity. Simple 
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shaped models, such as ellipses (Figure 2.4B), can be computed by fitting a shape contour 

to the organism’s pixels (CleverSys_Inc.; Hong et al., 2015; Ohayon et al., 2013; 

TSEsystems), or by using encoder-decoder deep architectures to learn ellipse parameters 

(Geuther et al., 2019). The orientation of that shape provides information about a simple 

animal’s pose. Physical model-based tracking algorithms, initially proposed by  de 

Chaumont et al. (2012), and further extended to a 3D space (Matsumoto et al., 2013; 

Nakamura et al., 2016), can also be applied to obtain more complex ruled-based information 

on animal’s shape. They are composed of a skeleton model using geometrical primitives, 

linked by physical constraints. The relative position (and orientation) of key anatomical 

structures of the animal (nose, head, belly, and tail) can be estimated by fitting the animal 

model into the animal’s pixels, in a frame-based approach. Other complex fittings can be 

achieved, using, for example, an active shape models’ approach, that combines deformable 

models of shape and local gray-level appearance, to provide a compact description of the 

shape of the animal and identification of several body parts (Thanos, Restif, O'Rourke, Lam, 

& Metaxas, 2017; Twining, Taylor, & Courtney, 2001; Uhlmann et al., 2017). Although fast 

and with good performance, they require sophisticated and rigid skeleton models that are 

difficult to construct and fit to animals’ body and limit flexibility and applicability beyond 

species-specific experiments. 

In contrast to machine vision methods, modern machine learning methods and, in particular, 

deep learning, can be used for directly learning and computing animal’s poses. Unlike 

previous approaches, that explicitly model animal’s body, state-of-the-art CNNs learn 

associations between image patterns and pose parameters directly from the images.  Body-

parts/landmarks positions are represented as confidence maps, which encode the location 

of each landmark as a density function of a 2D probabilistic distribution centered on the 

ground-truth image coordinates (the brightest pixel of the confidence map is at the location 

of the landmark). These confidence maps are learned by CNNs using raw input images and 

corresponding ground truth landmarks’ coordinates, and, after training, the body-parts’ 

coordinates on unlabeled images can be decoded from the predicted confidence maps via 

peak detection techniques. Using this methodology, state-of-the-art deep learning-based 

approaches to human pose estimation were firstly adapted for animal pose estimation by A. 

Mathis et al. (2018) and T. D. Pereira et al. (2019), which lead the way through the creation 

of several computational tools with human-level accuracy performance. One of the most 

important challenges in computational neuroscience is designing robust and generalizable 
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deep learning networks with little training data, because, in contrast to human benchmark 

datasets, manually annotated datasets for animal experiments are smaller and sparse (M. 

W. Mathis & Mathis, 2020). These pioneering studies rely on two distinct approaches to 

obtaining high performances with little annotated data. The first approach, transfer learning, 

allows reducing the need for large datasets by reusing pre-trained network parameters 

(previously learned on a broader set of natural images, typically ImageNet dataset (Deng et 

al., 2009)). Ideally, the isolated learning paradigm can be overcome, to reduce the need for 

intensive learning on the dataset under study, just by transferring knowledge learned from 

one task to solve related ones. This approach has proven to be effective in animal pose 

estimation with reduced training sets (100-200 training images) (Arac et al., 2019; Francisco 

et al., 2020; Günel et al., 2019; Karashchuk et al., 2021; A. Mathis et al., 2018). 

The second approach consists in designing efficient NN, where CNNs contain fewer 

parameters to tune, being faster to train and predict (Z. Chen et al., 2020; Ebbesen & 

Froemke, 2020; Graving et al., 2019; T. D. Pereira et al., 2019; Talmo D Pereira, Tabris, et 

al., 2020). In theory, imaging conditions in animal experiments do not suffer from significant 

variability, and, for that reason, high networks’ representational capacity is not necessary. 

Although more efficient than transfer learning approaches, low-weight networks’ 

architectures may not be well suited for changing environmental conditions or naturalistic 

environments.  

Some recent progress has been achieved towards further reducing the need for annotated 

data and this is currently an active area of research. Semi-supervised learning and domain 

adaptation techniques have been explored (Li et al., 2020; Suwajanakorn, Snavely, 

Tompson, & Norouzi, 2018; Lauer et al., 2020), as well as incorporating temporal information 

for a precise location of landmarks without the need for additional annotations (X. Liu et al., 

2020; Wu et al., 2020).  

2.2 Automating animal tracking in three dimensions 

Recent studies have tried to address the animal’s tracking challenge by applying automatic 

systems, with focus on machine learning-based techniques. However, constraints such as 

manual interventions, single-animal detection, complex setup, and output of few informative 

data make them ineffective and inappropriate in animal behavior research experiments. 

Besides that, some animals’ movements/behaviors are extremely complex (e.g., grooming, 
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rearing), and can only be adequately and objectively described using a 3D spatiotemporal 

analysis (i.e., a combination of space and time). Consequently, the precise estimation of 

animals’ poses in these 2D video-analysis systems is very limited, impairing detailed pose 

characterization.  

In order to perform 3D tracking of laboratory animals using video-based methods (Figure 

2.4F), range images are now one of the best options. These images, also referred to as 

depth images or depth maps, correspond to frames whose pixels express the distance 

between a known reference frame and a visible and specific point in the scene. In fact, the 

use of methods based on the imaging range concept has steadily increased, as well as the 

development and production of dedicated sensors’ hardware (Cantzler, 1997). Early 

researches, aiming at animal’s tracking in 3D, combine machine vision-based methods with 

multiple cameras to produce range images (Ardekani et al., 2013; Attanasi et al., 2013; 

Cachat et al., 2011; Straw, Branson, Neumann, & Dickinson, 2010; Veeraraghavan, 

Srinivasan, Chellappa, Baird, & Lamont, 2006). They share a standard three-step 

methodology (Figure 2.5A): 2D tracking or pose estimation, triangulation, and post-

processing. Triangulation is used to determine the depth information of points in the scene, 

by collectively capturing all regions-of-interest (ROIs) across different viewpoints. To 

improve 3D reconstruction (eliminate false detections or resolve inconsistencies between 

different views), post-processing techniques are usually applied (Attanasi et al., 2013; 

Ebbesen & Froemke, 2020; Günel et al., 2019; Karashchuk et al., 2021). One-time camera 

calibration precedes these steps, where an object with distinct features or patterns is used 

to compute camera calibration parameters that allow mapping 2D points into 3D world 

coordinates. More recent studies still apply this multiple-views’ approach to reconstruct and 

track animals’ movements and pose, using machine learning-based methods (in particular, 

deep learning). Deep NN are trained to learn 2D confidence maps from multiple 2D views, 

which are later used for extracting 3D pose by triangulation (Arac et al., 2019; Francisco et 

al., 2020; Günel et al., 2019; Karashchuk et al., 2021). With the recent advances in the deep 

learning field, an alternative approach has been explored that allows directly extracting and 

learning the 3D representation of the pose to combine information from different views, 

without the need for the triangulation step (Figure 2.5B) (Dunn et al., 2021; Zimmermann, 

Schneider, Alyahyay, Brox, & Diester, 2020). 
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Figure 2.5 Deep learning approaches for 3D pose detection using multiple cameras: 

A. 2D tracking of landmarks is obtained using a 2D pose-detection network for each camera 

view, to create 2D confidence maps which are then triangulated to obtained the final 3D 

pose. B. Multi-camera views are processed by a 3D network to directly predict 3D landmark 

positions. Images adapted with permission from Dunn et al. (2021); Talmo D Pereira, 

Shaevitz, et al. (2020). 

When using multiple cameras, apart from requiring calibration, expensive setups, or 

additional hardware to synchronize different equipment, the correspondence problem 

between different images must be solved, and depth determination depends on surface 

features (Cantzler, 1997). Furthermore, while only two cameras are required for 

triangulation, additional cameras are often used to increase the precision and quality of point 

clouds’ reconstruction and to avoid occlusions (Dell et al., 2014). To overcome the limitations 

of the multiple cameras’ scenario, some technologies have been created that allow the 

acquisition of range images from a single imaging device (Dell et al., 2014). Range cameras, 

concerning the sensor device that is used to produce this type of images, may have different 

operating modes, for example, stereo triangulation, structured light, and time-of-flight (ToF). 

If the sensing system combines RGB color information with per-pixel depth information, it is 

also called RGB-D camera. The most promising developed equipment, providing a good 

trade-off between performance and cost, use structured light or ToF operating modes to 
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acquire depth maps. A detailed description of the latest researches in animal tracking and 

behavior using these technologies can be found in Section 3 in the current chapter.  

2.3 Automating animal behavior recognition 

The information about animals’ or body parts’ trajectories can be used to analyze position-

based interactions, such as the amount of time animals spend at different locations, or near 

one another. And although there has been a surge in machine learning tools for 

segmentation, identification, and pose estimation, a key element for the computational 

ethology field is the recognition of behavior itself, knowing what were the animals doing at a 

specific time point, and the social interactions between multiple animals (Figure 2.6A). The 

task of categorizing behavior at a particular time point into distinct classes is called behavior 

analysis or classification (Egnor & Branson, 2016; Robie et al., 2017). Automatic behavior 

analysis seeks, indeed, to overcome the limitations of manual approaches, and to create 

more efficient methods to classify animal behavior. In fact, unlike human annotators, 

automatic systems do not change their definition of behavior over time, and, in this sense, 

the automatic analysis allows the reduction of biases and the production of annotations that 

are more repeatable over time and also across different laboratories and experiments (Dell 

et al., 2014; Egnor & Branson, 2016; Robie et al., 2017). 

2.3.1 From low-level representations to automatic behavior classification 

One simple approach to automate behavior classification is to explore rule-based classifiers, 

in which a set of rules are manually defined to describe the presence of behavior in a given 

sequence (de Chaumont et al., 2012; Alex Gomez-Marin et al., 2012). Although simple, this 

type of classification has disadvantages regarding generalization between different 

populations and pathologies, it can only be used for simple behaviors, and it depends on the 

quality of the features (Egnor & Branson, 2016).  
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Figure 2.6 Examples of graphical representations of animal behavior with biological 

meaning. A. Ethogram representation: social behaviors of Drosophila Melanogaster as 

function of time. B. and C.  Transitional behavioral graphs of different populations: B. 

transition probabilities of male Canton-S flies engaging in both aggressive (top) and 

courtship (bottom) behaviors. Circle diameters (scaled logarithmically) and numbers 

represent the average frequency of each action; C. cross-linked transitional graphs for the 

contact event between C57BL/6J and β2-/- mice. Colored arrows represent events that 

occur only in the first 4 minutes (blue) and the last 4 minutes (green). For both B. and C., 

the thickness of the arrows is proportional to the probability of the event transition. D. Polar 

plot representation: front-hind limb coordination represented as the phase of the step cycle 

in which each limp enters stance, aligned to stance onset of the front-right (FR) paw (red), 

for control (left) and Purkinje cell degeneration (pcd) (right) mice. Distance from the origin 

represents walking speed. FL: front-left; HR: hind-right; HL: hind-left. E. Stroboscopic 

representation: consecutive animal poses during a walking event for two different sub-

behaviors/modules: waddle and control. F. 3D trajectory representation: tracking 

coordinates (x, y, and z) of a fly in millimeters (mm). Images adapted with permission from: 
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A. and B. Robie et al. (2017), C. de Chaumont et al. (2012), D. Machado, Darmohray, Fayad, 

Marques, and Carey (2015), E. Wiltschko et al. (2015), F. Ardekani et al. (2013). 

More complex approaches can be applied for automatically classifying behavior using ML 

methods. In traditional machine learning methods, it is first necessary to represent the input 

video sequence into useful information that will be interpreted by the classification algorithm 

(Egnor & Branson, 2016; Robie et al., 2017; von Ziegler et al., 2021). In this sense, low-level 

representations of behavior can be extracted from the video sequences and they can be 

further divided into two categories: trajectory-based features and pixel-based features. 

Trajectory-based features are extracted from the tracked positions of the animals and/or 

their body parts over time. In this sense, trajectory-based features may carry useful and 

interpretable information of dynamic and continuous nature, which can be used for behavior 

state characterization. Published works employ this type of features to feed classifiers using 

different methodologies. From the trajectory, simple measurements can be extracted, such 

as position-, speed- and acceleration-based features, to identify some basic behaviors (rest, 

walking, running) (Jhuang et al., 2010; Nilsson et al., 2020; Segalin et al., 2020; van Dam et 

al., 2013; Weissbrod et al., 2013). If whole-body segmentation was performed using ellipse-

fit tracking, for example, or simple model-based methods, some features extracted from the 

tracked shape can be derived (Hong et al., 2015; Kabra et al., 2013; van den Boom, Pavlidi, 

Wolf, Mooij, & Willuhn, 2017). More complex behaviors can also be identified using features 

extracted from multiple animals (Burgos-Artizzu, Dollár, Lin, Anderson, & Perona, 2012), 

multiple body parts (de Chaumont et al., 2012), or using motion features estimated by 

calculating the optical flow of adjacent frames with, for example, Lucas-Kanade algorithm 

(van Dam et al., 2013). As expected, the quality of the trajectory-based features, which are 

a key determinant of classification methods’ performance, depends on the accuracy of the 

trajectories’ tracking and body-parts segmentation previously calculated (Egnor & Branson, 

2016).  

On the other hand, pixel-based features can be derived directly from the raw pixel values of 

the video sequences. There are several described techniques, which include extracting 

information from local patches (de Chaumont et al., 2019; Jhuang et al., 2010) using feature 

descriptors such as Histogram of Oriented Gradients (HOG) (Dalal & Triggs, 2005), 

combining multiple patches within the sequence using interest-point detectors (Dollár, 

Rabaud, Cottrell, & Belongie, 2005), or exhaustively (H. Wang, Ullah, Klaser, Laptev, & 

Schmid, 2009). 
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The selection of the type of features largely depends on the tracking information that was 

obtained. If the body parts were successfully segmented, trajectory-based features can be 

extracted for classification. If, on the other hand, tracking parts’ data are not available, pixel-

based features may be more effective (Egnor & Branson, 2016). 

Given the complexity of animal movements and behaviors, the number of low-level 

representations of behavior tends to be very high, and in fact, feature vectors easily exceed 

the thousands. In this sense, dimensionality reduction techniques are a common approach 

to overcome this problem. These methods are frequently used in machine learning 

frameworks to reduce the number of variables under study, retaining the relevant information 

from the original space. In fact, the dimensionality of a dataset is closely related to the 

amount of required training data and, in turn, associated with data overfitting problems (the 

classifier learns exceptions that are specific to the training data and, when tested with new 

data, the performance is drastically reduced). Besides improving classifier generalization 

capability, dimensionality reduction techniques have advantages in reducing overall 

computational time and storage and, when applied to low dimensions, the visualization of 

data is improved. These techniques can be divided into two major categories: feature 

selection, which is the process of selecting subsets of relevant features to the predictive 

modeling problem, and feature extraction or reduction, mapping the original high-

dimensional data onto lower-dimensional space. Both approaches can be used, 

independently, to improve model’s classification, and there are already some published 

works that explore these techniques, such as Principal Component Analysis (PCA) or linear 

and non-linear discriminant analysis, in the context of animal’s behavior (Berman et al., 

2014; Hsu & Yttri, 2021; Ravbar, Branson, & Simpson, 2019; van Dam et al., 2013). 

Afterwards, these behavior representative features are used for automatic behavioral 

phenotyping with machine learning approaches. Here, the main goal is searching for a 

classifier or a set of classifier functions that best reproduce the data, in a way to transform 

complex trajectories and features into biological and systematical data (Dell et al., 2014; 

Egnor & Branson, 2016). To achieve this, a mathematical model (classifier) is trained by 

interactively optimizing weights/parameters and increasing its accuracy in predicting 

behavioral patterns. The first experiments to detect specific behaviors in rodents started with 

Rousseau, Van Lochem, Gispen, and Spruijt (2000), using a NN approach to recognize rat 

behaviors with trajectory-based features. In 63.7% of all frames, the behavior was 

successfully recognized, when compared to the human-annotated ground truth. Supervised 
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approaches based on sparse spatiotemporal and trajectory features were also described by 

Dollár et al. (2005), Burgos-Artizzu et al. (2012) and Giancardo et al. (2013), reaching 72%, 

61.2% and 74.44%–82.67% of overall accuracy between automatic system and human 

graders, respectively. 

General-purpose machine learning algorithms were also used to address rodent’s behavior 

analysis, including simple quadratic classifiers based on normal densities (van Dam et al., 

2013), Support Vector Machines (SVM) (Hong et al., 2015; Zheyuan Wang, Mirbozorgi, & 

Ghovanloo, 2015), Random Forests (de Chaumont et al., 2019; Giancardo et al., 2013; 

Hong et al., 2015; Hsu & Yttri, 2021), and Boosting techniques (Kabra et al., 2013; Segalin 

et al., 2020). Sequential behavioral data can also be extracted to train more complex 

classifiers, such as Hidden Markov Models (HMM), in which the state transition probabilities 

are learned from the training sequence data. Jhuang et al. (2010) predicted mouse strain 

type based on detected behaviors, with an accuracy of 77.3%, by applying a modified HMM 

(SVMHMM). However, in general, training a behavioral system with HMMs may be 

disadvantageous, since these approaches require larger training sets and longer time to 

train. Besides that, when dealing with specific animal experiments, drug-treated or 

genetically modified animals, the behavior transition probabilities may be altered and may 

be different from those initially considered in the model (van Dam et al., 2013).  

Contrary to these supervised techniques, some studies have explored unsupervised 

techniques to automatically identify animal behavior. Most of the published work clustered 

feature representations into behavior categories using different unsupervised clustering 

algorithms, such as hierarchical clustering (Z. Chen et al., 2020; Wiltschko et al., 2015), PCA 

(Marques, Lackner, Felix, & Orger, 2018; Wiltschko et al., 2015), t-distributed stochastic 

neighbor embedding (t-SNE) (Berman et al., 2014; Günel et al., 2019; Klibaite, Berman, 

Cande, Stern, & Shaevitz, 2017; Marques et al., 2018) or k-means (Braun, Geurten, & 

Egelhaaf, 2010; Schwarz, Branicky, Grundy, Schafer, & Brown, 2015).  

Alternatively, to combine the strengths of both unsupervised and supervised methods, 

semi- , weakly- and self-supervised learning may be introduced in this context (Egnor & 

Branson, 2016; Robie et al., 2017). Semi-supervised methods learn from both unlabeled 

and labeled data. In weakly-supervised techniques, labeled data or a previously trained 

model is used as a prior and further replaced with more reliable signals. Finally, in self-

supervised learning, useful representations from the unlabeled pool of data are learned and 
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then fine-tuned with fewer labels. Although having potential in reducing annotation effort, the 

use of these methods for automatic classification of animal behavior is still in its infancy and 

need to be further explored (Egnor & Branson, 2016; Robie et al., 2017; Tanha et al., 2012; 

Wutke, Schmitt, Traulsen, & Gültas, 2020). 

2.3.2 Direct behavior classification from raw inputs 

With the new advances in machine vision and machine learning, recognizing the behavior 

itself can be performed automatically with deep learning techniques, without resorting to the 

first step of extracting positional or shape-based features. In fact, given the complexity and 

subtlety of some animal behaviors, it is expected that more informative features may be 

generated by deep learning, leading to better performances. Although a leading technique 

for both 2D and 3D human pose estimation and object recognition, CNNs for animal behavior 

analysis has recently started to be studied. 

A pioneering study in this field applied standard 2D CNNs to recognize, per-frame and with 

low error rate (0.072%), two basic behaviors of Drosophila (regarding the position on the 

environment substrate) using 2D video sequences (Stern, He, & Yang, 2015). State-of-the-

art pre-trained neural network models (e.g., You Only Look Once (YOLO) v3 network) were 

also used to recognize different postures in videos with multiple animals (Jin & Duan, 2019), 

where transfer learning has proven to be an interesting approach to increase performance 

while reducing the quantity of annotated data. Another study used simple feed-forward NN 

combined with features extracted from the DeepLabCut tool (A. Mathis et al., 2018) to prove 

that, by using deep learning techniques, it is possible to detect and quantify behavioral data 

as well or better than commercial solutions (Ethovision XT14 from Noldus, and TSE Multi 

Conditioning System from TSE systems). However, a small number of behaviors were 

analyzed, questioning its transferability to broader applications (Sturman et al., 2020). 

Acknowledging the fact that temporal information may be an important piece in analyzing 

animal behavior, recent studies have tried to construct and adapt CNN-based networks to 

include both temporal and spatial information. A simple approach is to merge a sequence of 

adjacent frames into a single image, and then apply a 2D CNN to extract features from both 

spatial and temporal dimensions. Zhou and Xu (2018) applied this technique, and the pre-

trained CaffeNet network was fine-tuned to automatically recognize 7 behaviors. Another 

approach is to combine optical-flow information (using a flow-generator as the MotionNet 
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architecture) with RGB frames for further classification of behavior (Bohnslav et al., 2021). 

To avoid extra pre-processing steps, temporal sequence modeling techniques, such as 

Recurrent Neural Networks (RNNs), are an alternative for learning complex temporal 

dynamics. In fact, spatial feature extraction using 2D CNNs can be followed by recurrent 

layers for temporal integration (M. Marks et al., 2020; Nguyen et al., 2019). Finally, 3D CNNs 

can be constructed by substituting original 2D by 3D kernels, allowing for an extension of 

spatial dimensions along with the time domain. In this way, feature extraction and temporal-

spatial information encoding of animal behavior can be achieved on an end-to-end basis 

(Jiang, Chazot, Celebi, Crookes, & Jiang, 2019; Murari, 2019; Nguyen et al., 2019; van Dam, 

Noldus, & van Gerven, 2020). More detailed background information on using CNNs for 

spatiotemporal encoding can be found in Appendix – Sequence Models for Extracting 

Spatiotemporal Features of Depth Sequences. 

2.4 Representing behavioral dynamics 

In order to make computational data easily analyzable by ethologists or researchers, it is 

necessary to summarize them in graphical representations with biological meaning (Figure 

2.6). Trajectory-based data can be organized into simple ethograms, geometrical 

representations of movement patterns (Figure 2.6D) or 2D or 3D tracking representations 

inside behavioral mazes (Figure 2.6E and F). Behavioral data is usually represented by 

ethograms as well, to describe the fraction of time spent on each behavior (Figure 2.6A), or 

using kinematic diagrams to show the transition probabilities between behaviors (Figure 

2.6B and C) (Egnor & Branson, 2016; Robie et al., 2017). 

 Depth cameras in animal behavioral analysis 

The process of acquiring a machine-readable sequence of images or video data that can be 

efficiently analyzed, and that accurately describes the real world, depends on the final 

purpose, species, and type of environment to be studied. Nevertheless, in addition to 

automating the recognition itself, optimizing video quality must also be taken into 

consideration to improve the quality of that analysis. In this sense, to ensure high-quality 

video for computer vision, video equipment must share some particular features: guarantee 

uniform and sufficient lighting, high contrast between objects and background, and ensure 

standard conditions between trials (Robie et al., 2017). 
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Also, the complexity of animal behavior together with the lack of precise estimation of their 

poses in the available 2D systems impairs a detailed and complete behavior 

characterization. In fact, and given the setup constraints of 3D recording systems, recent 

technologies for 3D analysis from a single imaging device have appeared as an alternative 

to multi-camera systems. As mentioned in Section 2.2, these 3D imaging technologies use 

structured light or ToF operating modes to acquire range in addition to color images, in what 

is called an RGB-D camera (Figure 2.7A-D). 

The structured light general principle reflects the process of projecting a known pattern of 

pixels onto a scene and inferring depth from the deformation of that pattern. The variation 

of the projected pattern against the reference one for a fixed distance provides a method to 

reconstruct the depth map (Litomisky, 2012). An example of this technology initially 

launched on the market is the Microsoft Kinect v1 sensor (first generation of the Kinect-

based sensors) (Figure 2.7B). This motion-sensing input device combines an RGB camera 

along with a depth sensor (an infrared (IR) laser-based projector and an IR camera) (Figure 

2.7A). Based on the previous principle, the IR projector sends out a fixed pattern of light and 

dark speckles, which is captured by the IR camera and compared part-by-part to reference 

patterns. Commercial depth cameras typically have 8-bit RGB video stream’s resolutions, 

up to 1920x1080 pixels, while the monochrome depth sensor has 16-bit resolution up to 

1280x720 pixels, and a maximum depth range from 0.2 to 10.0 meters. Both video outputs 

typically work at 30 frames per seconds (fps) (or up to 90 fps for lower resolutions and 

optimal lighting conditions) (Intel®RealSenseTM, 2020; Z. Y. Zhang, 2012). Kinect-based 

cameras were originally created in 2010, for game purposes on Xbox 360 video game 

consoles and Windows computers, but quickly spread to technological and scientific 

applications. In fact, some studies have shown that RGB-D cameras are even an accurate 

device for clinical purposes (Geros, Horta, & Aguiar, 2016; Khoshelham & Elberink, 2012; 

Muhammad et al., 2021; Thevenot, López, & Hadid, 2017). Interestingly, sensor systems 

that provide depth data have been custom-built for years, however at an extremely high 

price. The RGD-D cameras are now available at a low cost due to the development of Kinect-

based models. 
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Figure 2.7 Depth-sensing technology. A. RGB and depth frames acquired from an RGB-

D camera, under dim red light conditions. RGB-D cameras: B. Microsoft Kinect v1 – 1st 

generation of Kinect-based cameras, operating with the structured light principle. C. 

Microsoft Kinect v2, operating with the time-of-flight principle. D. Intel RealSense D435 – 

new generation of low-cost RGB-D cameras. E. 3D reconstruction of animal’s shape (central 

image) by merging point clouds captured by 4 depth cameras. Images in E adapted with 

permission from Matsumoto et al. (2013). 

To circumvent the limitations of the pioneer low-cost range cameras, different sensor 

technology was created - ToF - to integrate the acquisition of accurate intensity data and 

range information into a single device at a low cost (Figure 2.7C). This technology uses a 

laser or light pulse to calculate the distance by measuring the signal’s time of flight between 

the camera and the object, for each point of the image. Additional information on ToF 

functioning principles is available in Appendix – Fundamentals of Time-of-Flight operation 

system. Several advantages over the first generation can be highlighted, such as the 

reduction in shadow areas, and efficiency under different lighting conditions and speeds. 

However, interferences and multiple reflections can influence the performance of this 

technology and should be carefully addressed (Ganapathi, Plagemann, Koller, & Thrun, 
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2010b). The first experiments with ToF low-cost cameras (E Lachat, Macher, Mittet, Landes, 

& Grussenmeyer, 2015), namely the study of geometric and depth calibration, as well as 

system properties (outdoor efficiency, influence of materials and colors, pre-heating time, 

influence of frames averaging), revealed promising results for computer vision tasks. 

Importantly, the overall advantages of RGB-D cameras fit perfectly into the context of animal 

behavior characterization: by working with an infrared sensor, contrast is independent of 

animals’ coat color and environment light, and videos can be recorded in dark rooms, which 

will not affect animals' biological cycle (Figure 2.7A). Some studies have therefore 

addressed the problem of animal tracking and behavior analysis in 3D using RGB-D 

cameras. Tracking and pose reconstruction of rodents were initially studied by Ou-Yang et 

al. (2011) and Monteiro, Oliveira, Aguiar, and Cardoso (2012), using a single Microsoft 

Kinect v1 camera. The former applied threshold methods to perform animal segmentation, 

and rat’s mass center, size, and solid shape were extracted by geometric considerations. 

Rest and movement positions were also detected, as well as velocity in each time instant. 

Limitations such as the poor reconstruction of shaded parts of the rat and basic behaviors’ 

identification were pointed out by the authors. Monteiro et al. (2012) addressed point cloud 

representation of mice using different segmentation methods. Results showed better 

performances for a fixed background method, achieving a true positive rate of 68%. Animal 

tracking using a single range camera was further explored by Kulikov et al. (2014) and later 

by Saberioon and Cisar (2016) for 3D tracking of multiple animals. Background 

segmentation was achieved using threshold techniques, and animal detection and 

identification were possible thanks to Pérez-Escudero et al. algorithm (Pérez-Escudero et 

al., 2014). Point cloud segmentation of rodents was further studied using a single Kinect-

based sensor (Creative 3D SenZ camera) by Paulino Fernandez, van Dam, Noldus, and 

Veltkamp (2014). To segment animals’ whole-body from the background, RANdom Sample 

Consensus (RANSAC) algorithm was applied, and rodents’ point clouds were reconstructed. 

The segmentation task using a basic background scenario was facilitated, which is the major 

limitation pointed out by the authors. 

The use of multiple depth cameras for 3D tracking was introduced later, as a way to cover 

the entire surface of the object. The 3D points are captured by multiple depth cameras and 

different viewpoints are integrated into one single 3D point cloud. Nakamura et al. (2016) 

used this approach for markerless motion capture of monkeys by fitting a physical skeleton 

model. Taking advantage of the recent progress in the machine learning field, Ebbesen and 
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Froemke (2020) used a deep CNN to detect key points (nose, ears, base of tail, and neural 

implant) in the RGB images and extracted the 3D point cloud from depth images of multiple 

cameras. Because these methods do not depend on feature engineering techniques or 

physical models for tracking multiple animals, they can capture movement dynamics of 

unmarked mice with high temporal (~60fps) and spatial (~2mm) precisions. 

Behavior in rats, including social and sexual interactions, was firstly studied by Matsumoto 

et al. (2013), using multiple Microsoft Kinect v1 cameras. In here, de Chaumont et al. (2012) 

tracking system was expanded to RGB-D streams, and body parts’ tracking was performed 

by fitting a skeleton model of the animal to the 3D images (Figure 2.7E). Although identifying, 

for the first time, several behaviors associated with sex interactions using 3D information on 

ruled-based models, manual interventions, unsynchronized cameras, and incapability in 

detecting new user-defined behaviors can be pointed out as the main limitations of this work. 

Two-animal interactions were analyzed by Hong et al. (2015), using two different range 

cameras (for a comparative study), along with a side-view RGB video camera. The tracking 

algorithm was based on background subtraction techniques, in which the background model 

was constructed using unoccupied regions of the cage, and behavior analysis were tested 

using different machine learning classifiers (including SVM, adaptive boosting, and random 

decision forest). The need for animals with distinct coating colors, and the absence of body-

parts segmentation are some of the limitations of this system. In a recent study, depth-

sensing cameras were combined with RFID for long-term real-time analysis of mice’s social 

behavior (de Chaumont et al., 2019). Animals’ segmentation was performed by dynamic 

background subtraction, machine learning methods were applied for animal identity 

recovery, and social interactions were identified using the same approach as de Chaumont 

et al. (2012). Finally, Microsoft Kinect v1 was used to construct a behavior recognition and 

analysis system, developed by Zheyuan Wang et al. (2015). The segmentation and behavior 

analysis was performed using depth information in the following pipeline: reference image-

static difference technique was used to track animal’s whole-body; pre-processing methods 

were applied to reduce noise level; geometric features were extracted using morphological 

operations, and, finally, an SVM classifier was trained, to identify 5 basic rodents’ behaviors 

(standstill, walking, grooming, rearing, rotating). Although having higher accuracy rates, the 

background technique chosen to perform animal tracking is insufficient when applied in more 

complex and naturalist environments. 
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To the best of the author’s knowledge, combining deep learning methods with data from 

depth-sensing technology has been poorly explored for animal behavior analysis, and only 

a few studies have recently started to use both technologies to classify very basic behaviors 

(Nourizonoz et al., 2020).  

 Infrared thermal imaging for assessing animal health and 

welfare 

Thermal sensors also play an important role in the computational ethology field (Giancardo 

et al., 2013; Magdalena Mazur-Milecka & Ruminski, 2020; Xudong, Xi, Ningning, & Gang, 

2020) (Figure 2.8). Thermal or IR imaging cameras work by detecting and measuring the 

infrared radiation emanating from objects (their heat signature). They contain an optical 

system fitted with a lens that allows IR frequencies to pass through and focuses them onto 

a detector chip or sensor array containing multiple detector pixels arranged in a grid. Each 

pixel, also called microbolometer pixel, reacts to the infrared wavelengths hitting it, causing 

a change in its electrical resistance, which can be probed by passing a current through the 

device. In this sense, temperature changes can be read out as electronic signals, that are 

sent to a processor to produce an image as a color map of different temperature values. The 

sensor array may have different pixel resolutions, usually lower than visible light sensors. 

Since thermal detectors need to sense energy of much larger wavelengths than visible light, 

each sensor pixel needs to be significantly larger, resulting in a lower resolution (Lloyd, 2013; 

Ostrower, 2006).  

 

Figure 2.8 Thermal imaging technology. FLIR E60 camera (left), from FLIR Systems 

(USA) (one of the most broadly used thermal camera brand), and acquired thermal image 

(right), with temperature values ranging from 22.3 to 34.0 degrees. 
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With the recent availability of low-cost thermal imaging technologies, infrared thermography 

has increasingly been incorporated into animal research and veterinary medicine. In 

particular, the assessment of animal welfare has become an important concern in laboratory 

environments, as to promote the search for different methods that prevent, minimize and 

relieve any discomfort experienced by research animals (Mota-Rojas et al., 2021). Such 

contactless technologies are a promising alternative for invasive methods, which, by 

stressing/perturbing the animals, may affect the temperature readout. Besides allowing for 

non-invasive recordings in more naturalistic environments (dark rooms, dynamic 

backgrounds), thermography can itself be a useful method for the analysis of the overall 

physiopathological state of the animals, since modifications in animal’s body temperature 

can be associated with physiological changes (such as the presence of infections, increased 

metabolic activity, lesions, or stress) (Całkosiński et al., 2015; David, Chatziioannou, 

Taschereau, Wang, & Stout, 2013; Harshaw & Alberts, 2012; Ludwig, Gargano, Luzi, 

Carenzi, & Verga, 2010). 

Despite the recent advances in machine vision and machine learning areas, most studies 

still rely on cameras’ proprietary software for direct pixel readouts or to extract mean 

temperature in manually defined ROIs (Bautista et al., 2017; Całkosiński et al., 2015; David 

et al., 2013; Gabbi et al., 2021; Joy et al., 2021; Sutherland et al., 2020; H. Yuan, Liu, Wang, 

Wang, & Sun, 2022). In addition to reproducibility and standardization problems, proprietary 

software has a small number of features that limit a complete quantitative analysis. 

Conventional machine vision techniques have been poorly explored for automatic 

segmentation of animals’ bodies in thermal images, using thresholding methods for 

background subtraction (Lecorps, Rödel, & Féron, 2016; Manzano-Szalai et al., 2016; 

Martinez, Ghamari-Langroudi, Gifford, Cone, & Welch, 2015; Magdalena Mazur-Milecka & 

Rumiński, 2017), and watershed algorithms for individualizing multiple animals (Giancardo 

et al., 2013). More recently, deep learning methods have started to be applied, using, for 

example, U-Net-based networks for direct segmentation of multiple animals’ bodies 

(Magdalena Mazur-Milecka & Ruminski, 2020), or Mask R-CNN model in RGB images for 

the segmentation of ROIs in thermal images (S. Kim & Hidaka, 2021). It is important to 

highlight that the vast majority of published studies apply thermal imaging technologies to 

assess animal health and welfare in the food industry environment, which is currently an 

active area of research. Hopefully, the knowledge from this field can help accelerate future 
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studies in the laboratory context, in parallel with advances in the computational ethology 

field. 

 Control of operant mazes based on real-time behavioral 

analysis 

Improvements in the way researchers record and analyze animal behavior have been rapidly 

emerging over the last years in parallel with breakthroughs in computer vision and imaging 

technologies. These advances not only enable high throughput and fully automated analysis 

but also increase the quantity and quality of extracted behavioral data. Most of the previously 

described techniques focus on offline quantification across several species and different 

patterns of behavior. However, automatically recording and measuring behavior, and further 

distilling it down into meaningful metrics, are not sufficient to effectively correlate behavioral 

expressions with the environment or neuronal activity. The behavior should be detected in 

real-time, allowing for online closed-loop (environment or organism) manipulations based 

on the current identified behavioral expression. In this sense, besides accurate 

quantification, real-time detection of behavioral dynamics is essential to construct 

movement-triggered feedback systems and brain-machines interfaces, and to further allow 

online reinforcement of user-defined patterns of interest.   

Real-time measurements are already possible thanks to advances in imaging and 

computing technologies, being performed as images are acquired and removing the need 

for storing huge amounts of video data (Alex Gomez-Marin et al., 2012). In fact, several 

studies have tried to address feedback control in real-time, combining machine vision (P. 

Aguiar, Mendonca, & Galhardo, 2007; Lopes et al., 2015; G.-W. Zhang, Shen, Li, Tao, & 

Zhang, 2019) or machine learning (de Chaumont et al., 2019; Forys, Xiao, Gupta, & Murphy, 

2020; Kane, Lopes, Saunders, Mathis, & Mathis, 2020; Nourizonoz et al., 2020; Schweihoff 

et al., 2021; Sehara, Zimmer-Harwood, Larkum, & Sachdev, 2021) techniques for extracting 

animal behavioral patterns, with hardware devices to close the loop in behavioral 

experiments (Figure 2.9). 

Feedback control signals can be generated by simply detecting spatial coordinates of the 

animals, using thresholding techniques for background subtraction and geometrical 

considerations for centroid’s calculations (P. Aguiar et al., 2007; G.-W. Zhang et al., 2019) 

(Figure 2.9A). The control system can also be constructed to allow closed-loop feedback 
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with basic body parts’ position estimation, using traditional machine learning methods (de 

Chaumont et al., 2019). Deep learning techniques can be applied to further improve pose 

estimation by tracking multiple points (Forys et al., 2020; Sehara et al., 2021) or animal's 

body parts in 2D (Kane et al., 2020; Schweihoff et al., 2021) (Figure 2.9B and C) and 3D 

(Nourizonoz et al., 2020). The combination of these computational methods with hardware 

devices makes real-time or low-latency feedback control a promising framework for 

behavioral experiments. 

To allow the study of animals’ social interactions in controlled and customizable 

environments, some studies have integrated robotics in animal behavior studies (Gribovskiy, 

Halloy, Deneubourg, Bleuler, & Mondada, 2010; Halloy et al., 2007; Changsu Kim, Ruberto, 

Phamduy, & Porfiri, 2018; Q. Shi et al., 2013). In these robotic-based platforms, stimuli are 

adapted based on the automatic detection of behavioral patterns of interest, and biologically-

inspired replicas interact with the animal under study for a dynamic interplay in closed-loop 

control systems. 

Although these high-throughput approaches have already acknowledged the potential of 

combining strong computational techniques with cutting-edge hardware devices, some 

limitations, such as the need for manual interventions, complicated and costly setup, and 

absence of direct recognition of behavior, need to be addressed for complete integration in 

laboratory environments. Nevertheless, important steps towards more robust, rich, and 

reproducible animal experiments have been taken over the last years, and future 

improvements have an important position in revolutionizing the field of behavioral 

neuroscience. 
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Figure 2.9 Closed-loop approaches for controlling behavioral experiments. A. Track-

Control system: images from a webcam are streamed into the computer, where each frame 

is initially converted to a grayscale image. After gaussian filtering and binarization, animal 

contour is detected by polygon fitting, and the centroid of that polygon is determined. Logic 

computations are then performed to determine whether a command signal will be sent via 

the universal serial bus (USB) port, and finally, the signal is used to trigger hardware output 

(e.g. light-emitting diode (LED) light) via an Arduino microcontroller. B. Closed-loop setup 

using DeepLabCut network for body-parts’ estimation. high-speed video of a head-fixed 

mouse is acquired under infrared (IR) illumination. Whisker positions are estimated for each 

frame, and a digital output, turning on an LED, is generated based on estimated positions 

using DeepLabCut network. C. DeepLabStream workflow: an experimental protocol is 

initially designed using a sequence of modules (puzzle pieces), and a trained DeepLabCut 

network is integrated into the DeepLabStream, providing three different outputs for every 

experiment. Experiments can be monitored on a live stream and the experimental protocol 
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is run based on the automatic posture detection. Finally, the recorded video and 

experimental data are exported for further analysis. Images adapted with permission from: 

A. (G.-W. Zhang et al., 2019), B. (Sehara et al., 2021), and C. (Schweihoff et al., 2021). 
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 Abstract 

Body temperature changes in laboratory mice are often assessed by invasive and stressful 

methods, which may confound the measurement. Infrared thermography is a possible non-

invasive alternative, but the cost of standard thermal cameras, lack of dedicated software 

for biomedical purposes, and labor-intensiveness of thermal image analysis have limited 

their use. An additional limitation lies on the scarcity of research on the causing factors of 

differences between body surface and core body temperature. We propose a method for 

automatic processing of non-invasive mean body surface temperature in freely-moving 

mice, using dedicated software for thermal image analysis. While skin surface temperature 

may not necessarily be linearly correlated with core body temperature (in itself an imprecise 

concept), under standardized environmental conditions, such as those in which laboratory 

animals are kept, mean body surface temperature can provide useful information on their 

thermal status (i.e. deviations from normothermia, namely hypo- and hyperthermia). We 

developed a publicly available software (ThermoLabAnimal) that includes an imaging 

analysis workflow/algorithm for automatic segmentation of the pixels associated with the 

animal from the pixels associated with the background, removing the need for manually 

defining the area of analysis. A batch analysis mode is also available, for automatic and 

high-throughput analysis of all image files located in a folder. The software is compatible 

with the most widespread thermal camera manufacturer, FLIR Systems, as well as with the 

low-cost Thermal Expert TE-Q1 miniaturized high-resolution thermal camera used for this 

study. Furthermore, the software has been validated in a mouse model expressing non-

transient hypothermia, where the thermal analysis results were compared with readings from 

implanted thermo-sensitive passive integrated transponders tags. Thermography allows for 

thermal assessment of laboratory animals without the effect of handling stress on their 

physiology or behavior. Our automatic image analysis software also removes observer 

errors and bias, while speeding up the data processing.  

Keywords: Temperature Variation • Mice • Analysis Software • Infrared Thermography • 

LPS-Induced Hypothermia • Mean Body Surface Temperature 
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 Highlights 

• Body temperature variation gives valuable information on animal health and welfare 

• Thermal assessment of laboratory animals raises technical and welfare challenges 

• IR thermography is an option, but analysis is laborious and prone to variability 

• We propose a novel user-friendly software for analysis of thermal images of mice 

• The new analysis methodology was validated in LPS-injected mice showing 

hypothermia 

 Introduction 

Body temperature variation can provide valuable information in animal-based biomedical 

research. An increasingly used method for monitoring thermal changes in laboratory animals 

is infrared thermography (IRT), which allows contactless estimation of body surface 

temperature variations, with several applications in research (Bautista et al., 2017; David et 

al., 2013; Gjendal, Franco, Ottesen, Sørensen, & Olsson, 2018; Lecorps et al., 2016; Meyer, 

Ootsuka, & Romanovsky, 2017; Mufford et al., 2016; Tattersall, 2016). This approach 

prevents the scientific and welfare impact of more invasive methods for thermal assessment. 

The use of rectal or infrared thermometers directly affects the temperature readout, due to 

a core temperature rise resulting from a hyperthermic stress response mediated by the 

sympathetic-adrenal and the hypothalamic-pituitary-adrenal (HPA) axes (Adriaan 

Bouwknecht, Olivier, & Paylor, 2007; C. Gordon, 2012). This is accompanied by a 

sympathetically-mediated vasoconstriction, resulting in a transient drop in the extremities 

(particularly in the tail), which rebounds by the warming from vasodilation for core heat 

dissipation (A. Marks, Vianna, & Carrive, 2009; D. M. Vianna & Carrive, 2005). 

This response is moreover heightened by repeated handling (C. J. Gordon et al., 2008; 

Hartinger, Külbs, Volkers, & Cussler, 2002) and can even be elicited prior to handling, in 

response to alarm calls from handled animals (C. J. Gordon et al., 2008; Hartinger et al., 

2002; Zethof, Van Der Heyden, Tolboom, & Olivier, 1994). Surgically implanted sensors can 

be read from a distance (Sanford, Yang, & Wellman, 2011); however, these methods are 

not non-invasive in themselves. Sensor implantation requires surgery under general 
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anesthesia, and adds considerably to workload, as well as animal welfare impact (Helwig, 

Ward, Blaha, & Leon, 2012; Morton et al., 2003; Tang & D. Sanford, 2002). 

The use of IRT is not new in veterinary research and practice (Church, Cook, & Schaefer, 

2009; Fabio Luzi, Malcolm Mitchell, Leonardo Nanni Costa, & Redaelli, 2013; Herbut & 

Walczak, 2013) but its use with laboratory animals has been limited, probably as a result of 

the cost (in the thousands of Euros range) and bulkiness of most IRT cameras, which are 

incompatible with measurements in small rodent cages, in combination with the lack of 

dedicated analysis software. To the best of our knowledge, there are no infrared 

thermography imaging software dedicated/tailored for laboratory mice, and researchers 

often rely on general purpose and proprietary software for direct pixel (temperature) 

readouts (e.g. Fluke SmartView, FLIR Tools, or Testo IrSoft). Despite these difficulties, IRT 

technology has been proven useful in laboratory animal science in identifying housing 

problems (David et al., 2013), following neonatal development (Harshaw & Alberts, 2012), 

identifying stress (Ludwig et al., 2010) and monitoring infections (Całkosiński et al., 2015; 

Vadlejcha et al., 2010), among others. 

In a previous study, we found IRT readout of mean body surface temperature (MBST) to be 

a more reliable parameter for non-invasive assessment of surface temperature variation in 

freely-moving mice than either maximum eye or tail temperature (Gjendal et al., 2018). This 

parameter has also been successfully used in previous studies in mice (Lecorps et al., 2016; 

Manzano-Szalai et al., 2016; Martinez et al., 2015; Mufford et al., 2016), as well as in other 

species, including rabbit pups (Bautista et al., 2017; Gilbert, McCafferty, Giroud, Ancel, & 

Blanc, 2012), chickens (Herborn, Jerem, Nager, McKeegan, & McCafferty, 2018) and 

animals in the wild (McCafferty, Gallon, & Nord, 2015; Powers et al., 2017). The inherently 

limited accuracy and noise of thermal cameras, the inhomogeneity in the animals’ surface 

emissivity, along with the presence of other interfering heat sources, render temperature 

measurements based on a single spot error-prone. A better approach may be to average 

larger body surface areas, which are relatively isothermal if the ambient temperature 

remains unchanged, as is the case in environmentally controlled laboratory animal facilities. 

In a previous study (Gjendal et al., 2018), we assessed MBST by manually defining regions-

of-interest (ROIs) corresponding to the contour of each animal, in each image. Image 

analysis was then performed on the ROIs to extract, for example, mean thermal values. This 

process was found to be laborious, time-consuming, user-dependent, error-prone and 

difficult to perform consistently. 
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In response to these challenges, we hereby present a dedicated computational tool 

developed for automatic assessment of MBST from a virtually unlimited number of thermal 

images (ThermoLabAnimal). This new software greatly facilitates surface temperature 

quantification of freely-moving mice. The software uses image segmentation algorithms that 

remove background heat and focus the analysis in specific ROIs. Further, it allows both 

individual thermal image screening and batch analysis of thermal images. The type of image 

analysis to perform, single or batch, as well as other options and features, are chosen using 

a simple and intuitive graphical user interface (GUI). The software reads thermal images 

saved as comma-separated values (.CSV) files, a format to which most thermal cameras 

can save images directly, or convert to, using the camera’s software.  

We validated our computational tool and analysis protocol in a mouse model of acute septic 

shock by intraperitoneal injection of a high dose of lipopolysaccharide (LPS), of which a 

pathophysiological hallmark is quick-onset, pronounced hypothermia. The aim was to 

assess whether MBST could reliably inform on body temperature changes in this model, as 

compared with data from the well-established method of implanted thermo-sensitive passive 

integrated transponders (PIT) tags. Subcutaneous PIT tags are a widely used method for 

non-invasive measurements but have many limitations, as presented before. The objective 

is not to compare the IRT methodology itself with PIT tag measurements, but instead to 

emphasize the advantages that ThermoLabAnimal brings when using IRT. In compliance 

with the 3Rs principle of Reduction, measurements were obtained as additional data from 

an already scheduled experiment, in an ongoing project in our institution. 

The software can be downloaded from https://github.com/ThermoLabAnimal. 

 Materials and Methods 

4.1 Thermal Cameras 

A miniaturized (47 mm x 25 mm x 25 mm) Thermal Expert TE-Q1 (i3 Systems, Korea) 

thermal camera was used in all animal thermal imaging experiments. According to the 

manufacturer, it has a 384x288 pixel’s resolution, thermal sensitivity below 50 mK and ± 3℃ 

or ± 3% accuracy (depending on environmental conditions). To assess camera’s accuracy, 

https://github.com/ThermoLabAnimal
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we tested the accuracy of the low-cost using a blackbody radiation source (see 

Supplementary Information). 

The camera was placed 30 cm above the cage, alongside an RGB Microsoft LifeCam HD-

3000 camera (Redmond, Washington, USA) to allow visual identification of the animals, with 

the camera’s optical axis perpendicular to the cage floor. Both cameras were connected via 

OTG universal serial bus (USB) to an ASUS T101Ha computer (running OS Windows 10) 

and operated via the Thermal Expert proprietary software (version 1.7.0). Emissivity was set 

to 0.95. 

All animal thermal measurements were carried out after an equipment warm-up period of 30 

minutes (mins) (i.e. the camera was turned on 30 mins before the first animal measurement, 

and continued to operate continuously until completing the last measurement). With the 

purpose of widening and validating the compatibility of this computational tool, we made it 

capable of reading and analyzing files generated by FLIR cameras (the most broadly used 

thermal camera brand). Compatibility was assessed using images of freely-moving mice 

taken by a FLIR E60 (320×240 pixels’ resolution, < 50 mK thermal sensitivity and ± 2°C or 

± 2% accuracy; FLIR Systems, USA), after being converted to .CSV using the FLIR 

proprietary software (FLIR Tools). 

4.2 Software development 

A dedicated thermal imaging analysis software, named ThermoLabAnimal, was developed 

in MATLAB R2018a (The MathWorks Inc., USA) and took advantage of the advanced image 

analysis algorithms available in MATLAB’s Image Processing Toolbox. In order to 

automatically segment the animals’ bodies, and separate the background from foreground 

pixels, a global thresholding method was used, where the temperature threshold value was 

calculated in order to minimize the intra-class variance (Otsu’s method) (Otsu, 1979). The 

segmentation mask was corrected with the removal of small patches (associated in general 

with urine spots), by eliminating all the components (using an eight neighbor’s connectivity) 

with an area smaller than a defined (but user modifiable) value. This corrected mask was 

then used to perform the thermal analysis statistics exclusively in pixels associated with the 

animal(s). The analysis workflow also included an optional step for the identification of 

multiple animals in the mask. In situations where animals are not juxtaposed, a connected-



4. Materials and Methods 

52 

components analysis can be performed and the mask is segregated into individual 

components (associated with the individual animals). 

The GUI for the software was developed using MATLAB’s graphical interfaces development 

environment (GUIDE). Import capabilities were included providing the ability to load files 

with thermal data from both Thermal Experts and FLIR Systems’ cameras. 

ThermoLabAnimal was developed for compatibility with both Microsoft Windows and Apple 

operating systems. 

4.3 Animals 

To validate the ThermoLabAnimal software, we obtained thermal images from C57BL/6 

mice undergoing procedures in a different project (DGAV license 009951), which involved 

large-dose LPS injection via the intraperitoneal route. No additional intervention, other than 

the thermal imaging, was imposed on the animals for the purpose of the present study. We 

present pooled data from nine mice from three of the experimental groups, the control group 

and two of the experimentally treated groups for which surface temperature variation did not 

differ significantly from that of control mice (one-way ANOVA, df = 2, ssq = 2,120, F = 1,426, 

𝑝 = 0.244). To preserve confidentiality of yet unpublished results, treatments are not 

disclosed. Four control mice were housed with one mouse from an experimental group in a 

Type II (dimensions: 268 mm x 215 mm x 141 mm, floor area: 370 cm2) cage, whereas the 

other seven mice were housed together in a Type III (dimensions: 425 mm x 276 mm x 153 

mm, floor area: 820 cm2) cage (Tecniplast, Italy). All cages contained corncob bedding (LBS 

serving Biotechnology, United Kingdom), absorbent paper (Renova, Portugal) for nesting 

material, and a cardboard tube (LBS serving Biotechnology, United Kingdom). Mice had 

access to Teklad Harlan 2014S (Envigo, United Kingdom) chow and tap water ad libitum. 

Room temperature was maintained at 20-24°C with a relative humidity of 45-65%. Mice were 

housed under a 12:12 h dark/light cycle with lights on between 08:00 h and 20:00 h. 

4.4 Experimental Protocol 

The mice were subcutaneously implanted with a Biotherm thermo-sensitive PIT tag, using a 

12-gauge needle, under short-term (<5 mins) isoflurane anesthesia (administered with 1 bar 

of oxygen, at 5% concentration for induction and 2% for maintenance). PIT tags were read 



A High-Throughput Analysis Software for Non-Invasive Thermal Assessment of Laboratory 
Mice 

53 

by a Destron Fearing GPR+ handheld reader (with a reading range between 33-43°C). The 

puncture site was sealed with surgical glue, but in two of the animals the tags were 

nonetheless exteriorized and found the following day on the cage bedding. These animals, 

as well as a third which maintained normothermia throughout the experiment (possibly due 

to error in administration of LPS), were removed from the study. Hence, subcutaneous and 

mean body surface temperature of a total of N = 9 animals (three per each of the treatment 

groups) was monitored. One week after PIT tag implantation, animals were marked in the 

tail (by colored marker) for fast visual identification, and injected intraperitoneally with 12.5 

mg/kg of LPS from Escherichia coli O111:B4 (Sigma Aldrich). Thermal images were 

collected during a period of 6 hours: every 10-20 mins post-injection during the first hour 

and a half (namely at (at 0:20, 0:32, 0:45, 0:58, 1:12, 1:22, 1:36, 1:48 hours post-injection), 

and then at more spaced intervals (namely at 2:28, 3:00, 4:42, 5:15, 5:44, 6:13 hours post 

injection). At each time-point, the cage lid was open, the nesting material and cardboard 

tube were gently removed and three images were taken of the group, when all animals had 

all four paws on the cage floor. At each time-point, image collection of the group of animals 

took about 1 min to perform. At t = 4.67 h, mean subcutaneous temperature reached 33.3 

°C, and cages were placed over a warm heating pad. 

4.5 Statistics 

Significant changes between time-points were assessed by paired-samples t-test, with a 

Holm-Bonferroni correction for multiple comparisons. The threshold for significance was set 

at 𝑝 < 0.01. Temperature decrease was expected to be very pronounced, following LPS 

challenge. Through a power calculation (using G-Power software) for a one-sided matched-

pairs test with 𝛼 = 0.01, a power of 80%, and a standardized effect size Cohen's d = 2 (mean 

difference at least as large as two standard deviations) a total sample size of six mice was 

deemed sufficient. Our sample size of N = 9 would allow identifying smaller differences, with 

the same statistical power, for the same significance level. The IBM SPSS Statistical 

package (version 25) was used. 
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 Results 

5.1 ThermoLabAnimal graphical user interface 

The computational tool ThermoLabAnimal runs on both Microsoft Windows and Apple's 

operating systems, and has a user-friendly GUI allowing an easy workflow of importing the 

thermal images, analyzing the data and saving the results (Figure 3.1). Two modes of 

analysis are available in the main GUI (Figure 3.1A): single image and batch analysis 

(performed on all files in a specified folder). 

In the single image analysis mode, the user can select a thermal image in .CSV format. The 

segmentation algorithm automatically creates a mask for the animals, separating foreground 

pixels (animal) from background pixels. From the single image analysis, two figures are 

generated. The first figure shows an unaltered false-color thermal image reconstructed from 

the .CSV file, along with the thermal color legend (Figure 3.1B). The second figure is 

composed of three elements (Figure 3.1C): i) a reconstructed image with the automatic mask 

applied to eliminate the background; ii) a 3-dimensional (3D) temperature map (x, y, °T), 

which can be freely rotated; and iii) a histogram of temperatures in the mask (animal 

surface). All animals in a cage can be considered an experimental unit or, alternatively, each 

can be analyzed individually (Figure 3.2). If in the thermal image the animals are not 

overlapping, ThermoLabAnimal can automatically segment each one individually (Figure 

3.2A) and present separate thermal analysis for each animal (Figure 3.2B). All output figures 

are interactive and can be exported. 

While the automatic segmentation algorithm works in most cases, mask fine-tuning may be 

necessary in some conditions (Figure 3.3). For this purpose, ThermoLabAnimal provides 

manual adjustment of the threshold with immediate visualization feedback. Furthermore, in 

order to eliminate odd detections (e.g. urine spots), the software allows automatic removal 

of all blobs smaller than a user-defined number of pixels, for both single and batch image 

analyses (Figure 3.3A). To keep ThermoLabAnimal as versatile as possible, users can also 

perform the thermal analysis of a user-defined ROI (Figure 3.3B). This feature can be used 

to analyze local temperatures at specific anatomical regions (e.g. eye, tail, wounded or 

inflamed region, etc.).  
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Figure 3.1 Graphical user interface (GUI) of the ThermoLabAnimal software. A. The 

main GUI provides simple access to the software tools/features, namely the option between 

single image analysis and batch analysis. B. After loading a thermal image in single image 
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analysis, the user can inspect the image using standard visualization tools (zoom, read 

specific pixel values, etc.). C. The automatic segmentation and thermal background 

elimination algorithms allow isolation of the pixels associated with the mice. A histogram for 

surface temperature distribution of all mice in the frame, and a three-dimensional 

representation of the temperature map, integrate the analysis outputs. 

The batch analysis mode allows automatic and high-throughput thermal data analysis from 

all the image files located in a specified folder. The batch analysis produces two outputs. 

The first is a single spreadsheet document, listing the mean and median MBST of all animals 

identified in each thermal picture. The second is, for each .CSV file, an automatically-

generated composite image similar to the output of single image analysis with a false-color 

thermal image, a thermal histogram, and a 3D temperature map (x, y, °T). In the batch 

analysis mode, the user can choose to also export information about the background of each 

image in the folder. In parallel, a similar composite image is generated, containing 

information about the background, obtained using the counter-mask that separates the 

foreground and background pixels. 

5.2 Software output 

The software successfully recognized each individual animal from their thermal background 

(Figure 3.1), in every image, providing a histogram for the distribution of group mean and 

median body surface temperature, along with a fully-adjustable 3D map (pixel coordinates 

vs temperature). The thermal profile of specific areas could be obtained by defining a 

contour/ROI (Figure 3.3). Using the batch analysis function, a dataset of 1384 .CSV files 

were automatically analyzed, obtaining MBST in a standardized way, thus eliminating the 

possibility of unwanted variation and operator bias. The output was a single spreadsheet file 

with values for group mean and median temperature for every .CSV image, as well as an 

automatically generated composite image for each file analyzed. Even when surface 

temperatures differed considerably between animals in the same frame, the software was 

successful in highlighting each animal in the frame. However, in the extreme cases when 

the MBST of some animals decreased to the point where their thermogram blended with the 

background, the detection threshold had to be manually adjusted for those images. 
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Figure 3.2. The software is also capable of individualized thermal analysis, as long as 

the animals are not overlapping. A. Using the “Individual Animals” analysis option, the 

software detects and labels each animal. However, animal identity is not maintained 

between images. B. For each separated animal in the image, the software outputs a 

dedicated thermal analysis window. 
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Figure 3.3 Additional tools in ThermoLabAnimal. A. To eliminate odd occurrences, such 

as urine spots, an added feature allows removing all blobs smaller than a user-defined 

number of pixels, in both single image and batch analyses. B. Defining regions-of-interest 

(ROIs) is also simple, allowing temperature analysis in specific user-defined areas (e.g. an 

inflammation area, the tail, or any other anatomical area of interest). 

5.3 High-dose LPS challenge  

Immediately following a high-dose LPS challenge, there was a small subcutaneous 

temperature rise in both the PIT tag readout and MBST, yet not found to be significant 

(Figure 3.4). This was followed by a steady decrease in subcutaneous temperature, along 

with a faster and more pronounced decrease in MBST, which remained low until decreasing 

further at t = 5.25 h. At t = 4.67 h mean subcutaneous temperature was estimated as 33.3°C, 

with most animals (six out of nine) falling below the reading range of the PIT tag reader of 

33.0°C (and registered as 32.9°C). At t = 4.67 h cages were placed over a warm heating 

pad, in compliance with institutional animal welfare guidelines. This pattern was consistent 

for all three groups (Figure 3.4A). The aggregated information from all groups is presented 

in Figure 3.4B. 

  



A High-Throughput Analysis Software for Non-Invasive Thermal Assessment of Laboratory 
Mice 

59 

 Discussion 

We developed software for automatic analysis of thermal images of freely-moving mice, and 

tested it on a mouse model of sepsis-induced hypothermia, comparing its output with the 

readout from thermo-sensitive PIT-tags. The laborious and time-consuming nature of 

thermoimage analysis is presently a barrier to the wider use of thermography in research 

with laboratory animals. Researchers end up having to rely on general-purpose imaging 

software (typically associated with camera manufacturers) that is primarily focused on direct 

pixel (temperature) readout. While some allow manual definition of ROIs that can be used 

to calculate statistics, this generic software lack basic tools for efficient measurements of 

laboratory mice (e.g. segmentation and background subtraction, automatic identification of 

multiple animals, detection and removal of urine spots, automatic ROIs, batch analysis).  

We thus developed ThermoLabAnimal, a computational tool capable of analyzing thermal 

images in .CSV file format, a standard output file used by several commercially available 

thermal cameras. The software addresses the analysis challenge in two ways. Firstly, 

through the segmentation algorithm, it automatically separates the pixels in the image that 

represent the animal from those that represent the background. This eliminates the need to 

manually defining the area of analysis, which is time-consuming and prone to inter-user 

variation. Importantly, instead of collapsing the thermal readout of the segmented pixels into 

a single statistical measure (such as a mean or median value), the method generates and 

uses the full histogram of the values to generate a more informative thermal fingerprint. 

Secondly, the batch analysis function allows automatic and high throughput analysis of all 

image files located in a folder. We tested the compatibility of the software with both the 

Thermal Expert camera used in this study (a miniaturized, low-cost thermal camera, a 

technology that is likely to improve and widen access to IRT technology (Clausing, 2016; 

Maillot et al., 2018) – and the most broadly used thermal camera manufacturer, FLIR (using 

.CSV files converted by its proprietary software). The software’s compatibility can be 

extended to other manufacturers, but presently it already reads the standard .CSV format, 

with or without manufacturer-specific headers. A comparison between typical general-

purpose IRT software and the proposed ThermoLabAnimal software is presented in Table 

3.1. 
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Figure 3.4 MBST and subcutaneous temperature following LPS injection. A. The 

temperature profiles following a high-dose LPS challenge were consistent in all three cages 

(treatment groups) and between PIT tags and MBST method. B. Temperature profiles 

combining (mean) the 3 groups of 3 mice (N = 9). The largest mean MBST variation (-4.6°C) 

was found between t = 0.33 h (20 min post-LPS injection) and t = 4.67 h (280 min post LPS-

injection). The largest subcutaneous temperature variation (-5.4°C, between t = 0.33 h and 

t = 4.67 h) is an underestimate, since temperatures under 33.0°C were under the lower 
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reading range limit of the PIT tag reader, and thus scored as 32.9°C, for analysis. Asterisks 

(*) indicate significant changes (𝒑 < 0.01) between consecutive time-points (paired samples 

t-test, with Holm-Bonferroni correction for multiple comparisons). Bars represent 95% 

confidence interval. 

Our protocol and software for assessing MBST variation in laboratory animals have the 

potential to improve not only animal welfare but also the quality of the scientific results, by 

minimizing interference from handling stress (Bailoo, Reichlin, & Würbel, 2014; Gouveia & 

Hurst, 2013). While this is aligned with the 3Rs principle of Refinement, it can also help 

further the principle of Reduction, by reducing unwanted inter-individual variability – e.g. 

from handling stress, sensor position or operator bias – which warrants larger sample sizes 

for detecting a given effect (Bailoo et al., 2014; Parker & Browne, 2014). In this experiment, 

we present data from thermal images of animals placed in separate cages. We have now 

further developed the software to allow segmentation of each individual animal, so that 

future recordings can be done without having to remove an animal from its home cage and 

cage mates. The present version of the software is still unable to identify the same animal 

across multiple images, we are contemplating if it is feasible to add a feature to automatically 

identify animals, using the unique distribution of body surface temperature as an identifier 

(M. Mazur-Milecka, 2016), or adding a marker recognizable by the software.  

Our results on a mouse model of sepsis-induced hypothermia show that the expected 

temperature decrease and hypothermia in mice in the first hours following a high-dose LPS 

injection (Blanqué, Meakin, Millet, & Gardner, 1996; Saito, Sherwood, Varma, & Evers, 

2003) was identifiable by both readout of subcutaneous PIT tags and the automatic 

estimation of MBST. This decrease was, however, more immediately perceivable in the 

animals’ body surface temperature, which to our knowledge has not previously been 

monitored for this model. This finding is consistent with the peripheral vasoconstriction 

expected to follow high LPS dose injection in mice (microcirculatory dysfunction is a central 

feature of sepsis pathogenesis (Bauer, 2002)), which would result in a subsequent 

temperature decrease in peripheral areas due to reduced blood flow. It might also be a 

physiological response mechanism to maintain core-body temperature (C. J. Gordon et al., 

2008; Overton, 2010), or a combination of both.  

https://www.sciencedirect.com/topics/medicine-and-dentistry/pathogenesis
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Table 3.1 Comparison between general-purpose IRT software (e.g. Fluke SmartView, 

FLIR Tools, or Testo IrSoft) and ThermoLabAnimal software.  

 Proprietary software ThermoLabAnimal 

Compatibility 
Compatible with own 
manufacturer’s export 

formats 

FLIR Systems .CSV; 
Thermo Expert .CSV 
(expandable to other 

manufacturers’ .CSVs) 

Batch Analysis No Yes 

Automatic identification of 
animals 

No Yes 

Statistics over a region-of-
interest 

Yes (usually simple 
geometrical shapes) 

Yes (freehand regions) 

3D thermal map No Yes 

Automatic animal body 
segmentation 

No Yes 

Price Variable 
Free, for the version with all 

features except batch 
analysis 

 

A transient small temperature rise was also observable by both methods (although not 

significant) immediately after intraperitoneal injection of LPS, which is consistent with a quick 

onset hyperthermic stress response, and in agreement with similar observations in rats 

(Almeida, Steiner, Branco, & Romanovsky, 2006). It could, however, also be attributed to an 

increase of activity following the disturbance of the animals and the removal of the nesting 

material, or to a putative short-lived fever response following the LPS challenge, immediately 

before the onset of hypothermia. We also observed a rise in skin temperature resulting from 

placing the cages over a warm heating pad, although how this affected subcutaneous 

temperature is uncertain, as PIT tags cannot register temperatures below 33°C.  

It is worth mentioning that the easiness of image analysis brought about by this software 

allows for greater monitoring frequency, which can be an advantage for many animal 

studies, especially during short standardized behavioral tests (e.g. open-field (OF) test). For 

this particular study, however, in which more interventions other than collecting images – as 
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this was coupled to another experiment – were carried out, this would mean making animals 

endure prolonged periods under a bright light (and warrant a cage with taller walls) or disturb 

their microenvironment more frequently.  

We found it would not be appropriate to test for correlation between MBST and 

subcutaneous temperature, even though temperature decrease was observable by the two 

methods. Firstly, because the PIT tags have a hard lower bound and missed data below 

33°C, which prevented identifying further temperature decreases from t = 4.67 h onward. 

Secondly, despite standardized implantation methods, we found great variation in PIT tag 

position (upon post-mortem examination, these could be found in some animals in the 

interscapular region, in others on the flank of the animal, and others on the backside), and 

such variation is a likely contributing factor to the unreliability of PIT tags to inform on core 

body temperature in vivo despite providing accurate readings in vitro (Hartinger et al., 2002). 

More accurate information on the relationship between this proxy measure of core body 

temperature and MBST could be sought in further studies, by fixing the position of the 

thermo-sensitive transponders, either on the dorsal or abdominal region (Kort, Hekking-

Weijma, Tenkate, Sorm, & VanStrik, 1998). 

Another possibility would be to compare MBST with maximum eye temperature, since it has 

been found to be a good proxy of other measures of core body temperature in mice (Vogel 

et al., 2016), as the eyes are supplied by blood from the ophthalmic artery from the brain 

(Vogel et al., 2016). However, the relationship between eye temperature and core 

temperature may be easily affected by peripheral vasoconstriction, either elicited exposure 

to cold (Piccione, Gianesella, Morgante, & Refinetti, 2013; Vannetti et al., 2014) or acute 

stressors (Herborn et al., 2015; Ludwig et al., 2010; D. M. Vianna & Carrive, 2005).  

Moreover, we have found it not to be well suited for measuring freely-moving mice, as 

constant shifts in head position will affect the thermal readout from the eyes. Furthermore, 

the eyes are often not visible, leading to up to 40% missing values, even when taking three 

images per time-point (Gjendal et al., 2018). It is, therefore, not surprising that others have 

recommended picking up and restraining mice from placing their eyes directly in front of the 

thermal camera for estimating absolute temperature by IRT (Vogel et al., 2016), losing the 

advantages of contactless measurement. 

Perhaps most importantly, there is no ‘pure' measure of body temperature, just local 

temperatures in different parts of the body – internal or external – each of them with its 
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particular bias (D. L. Vianna & Carrive, 2012). Therefore, although in small animals, skin 

temperature is more likely connected with core temperature than in larger species 

(McCafferty et al., 2015), we do not wish to make the claim that MBST can be used as a 

proxy of mice core body temperature. We are insteade proposing that MBST – obtained by 

means of our software – can be a reliable, non-invasive approach to identify and monitor 

temperature changes in freely-moving group-housed mice with minimal disturbance. It is, 

however, worth mentioning that gathering species-specific thermographic data could 

contribute to defining standard values for MBST that could be used as a reference value in 

and of itself. 

ThermoLabAnimal is distributed as free software with all its features except for the "Batch 

Analysis" mode, which is available at a small fee. The paid full version does not require 

MATLAB on the user side, and the fee is intended to promote long-term support and 

improvement of the software. We encourage colleagues to use the software and provide 

feedback to promote improvements and bug fixes. 

ThermoLabAnimal software is available on GitHub:  https://github.com/ThermoLabAnimal. 
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 Supplementary Information 

8.1 Extended methodology 

8.1.1 Thermal reading validation experiments 

The accuracy of the low-cost Thermal Expert TE-Q1 camera was tested using a blackbody 

radiation source of 1.00 emissivity (Hyperion R Blackbody Model 982, Blackbody Isotech, 

Southport, UK) at a stable controlled temperature of 30°C, in equally controlled room 

conditions. Thermal pictures were collected of the central circular body placed at a distance 

of 30 cm (with the circular body occupying 2/3 of the frame), at 1 min intervals for the first 

15 mins and 5 min intervals for the following 45 min. Three to four images per time-point 

were taken. The ThermoLabAnimal software was used to segment and perform statistical 

analysis (full distribution, mean and median values of the readings) of the temperature at 

the blackbody. Camera measurements were compared to the specified blackbody 

temperature to perform an independent assessment of the quality (precision, accuracy and 

stability) of the Thermal Expert TE-Q1 measurements. This assessment showed that the 

camera requires a warm-up period of at least 30 mins for the thermal readings to begin 

stabilizing (Supplementary Figure S 3.1). The warm-up time is a common condition in 

thermal cameras (which require hardware stabilization before accurate measurements) and 

is critical to take into account in thermal imaging (Priego Quesada, Kunzler, & Carpes, 2017; 

Vogel et al., 2016). In the controlled blackbody experiments, after 30 min warm-up time, our 

particular camera registered values at +2.6°C (+/- 0.26 SD), and at 60 mins, it further 

stabilized at +1.96 °C (+/- 0.19 SD) above the controlled blackbody temperature. Differences 

in mean temperature between some consecutive time-points were found to be significant 

(Supplementary Table 3.1), albeit small (at most 0.35°C) (Supplementary Figure S 3.1). 
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8.2 Supplementary Figures 

 

Supplementary Figure S 3.1 In thermal imaging, all cameras, both low-cost and high-

end, typically require a warmup period. The low-cost Thermal Expert TE-Q1 thermal 

camera used in this study required about 30 minutes to reduce significantly its readings 

variability. 

8.3 Supplementary Tables 

Supplementary Table 3.1 Differences in mean temperature to blackbody reference 

temperature. Readings were taken in intervals of typically 5 minutes, after waiting for 30 

minutes of warmup (m30). 

 Mean 

difference 

Std. 

Deviation 

95% Confidence Interval of the Difference 

 Lower Upper t DF p 

m30 - m35 0.064 0.108 -0.070 0.198 1.324 4 0.256 

m35 - m40 -0.132 0.156 -0.326 0.062 -1.889 4 0.132 

m40 - m46 0.348 0.075 0.255 0.440 10.43 4 0.000 

m46 - m50 -0.090 0.069 -0.176 -0.004 -2.905 4 0.044 

m50 - m55 0.346 0.078 0.250 0.442 9.963 4 0.001 

m55 - m61 0.092 0.198 -0.153 0.337 1.041 4 0.356 
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This chapter was based on the following original research paper:  

Gerós, A., Magalhães, A., & Aguiar, P. (2020). Improved 3D tracking and automated 

classification of rodents’ behavioral activity using depth-sensing cameras. Behavior 

research methods, 52(5), 2156-2167 
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 Abstract 

Analysis of rodents’ behavior/activity is of fundamental importance in many research fields. 

However, many behavioral experiments still rely on manual scoring, with obvious problems 

in reproducibility. Despite important advances in video-analysis systems and computational 

ethology, automatic behavior quantification is still a challenge. The need for large training 

datasets, background stability requirements, and reduction to 2-dimensional analysis 

(impairing full posture characterization), limit their use. Here we present a novel integrated 

solution for behavioral analysis of individual rats, combining video segmentation, tracking of 

body parts, and automatic classification of behaviors, using machine learning and computer 

vision methods. Low-cost depth cameras (RGB-D) are used to enable 3-dimensional 

tracking and classification in dark conditions and absence of color contrast. Natively our 

solution tracks five anatomical landmarks in dynamic environments and recognizes seven 

distinct behaviors, within the accuracy range of human annotations. The developed free 

software was validated in experiments where behavioral differences between Wistar Kyoto 

and Wistar rats were automatically quantified. The results reveal the capability for effective 

automatic phenotyping. An extended annotated RGB-D dataset is also made publicly 

available. The proposed solution is an easy-to-use tool, with low-cost setup and powerful 

3D segmentation methods (in static/dynamic environments). The ability to work in dark 

conditions means that animal natural behavior is not affected by recording lights. 

Furthermore, it is capable of automatic classification with only ~30 minutes of annotated 

videos. By creating conditions for high-throughput analysis and reproducible quantitative 

measurements of animal behavior experiments, we believe this contribution can greatly 

improve behavioral analysis research. 

Keywords: Animal Tracking in 3D • Automatic Behavior Classification • Automatic 

Phenotyping • Depth Sensors • Dynamic Background Segmentation • Free and User-

Friendly Software • Public RGB-D Dataset • Wistar Kyoto Model 

 Introduction 

Analysis of how animals interact with, respond to, and control their environment, is a 

fundamental methodological approach in many research fields (Anderson & Perona, 2014; 
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Berman, 2018). This is particularly relevant in behavioral neuroscience and in the challenge 

to understand brain function (Dickinson et al., 2000; Hong et al., 2015; Krakauer, Ghazanfar, 

Gomez-Marin, MacIver, & Poeppel, 2017). Besides being a pillar in the health sciences, 

supporting research translation to human clinical trials (Richardson, 2015; Unger et al., 

2017), animal behavior analysis is an increasingly important tool in industry, namely in the 

essential animal welfare monitoring in food production (Ahrendt et al., 2011; Hong et al., 

2015; Stavrakakis et al., 2015). 

A full characterization of phenotypic domains in behavioral analysis asks for screening test 

batteries, with different degrees of coverage and validation, and implemented in a non-

subjective and standardized way. Computerized video-analysis systems have thus emerged 

as potential tools to automatically assess behavior, combining 2-dimensional (2D) video 

recordings with image processing (Robie et al., 2017; Valletta, Torney, Kings, Thornton, & 

Madden, 2017) and machine learning methods (P. Aguiar et al., 2007; de Chaumont et al., 

2012; Jhuang et al., 2010; Preisig et al., 2016). Most published solutions rely on standard 

background subtraction methods (P. Aguiar et al., 2007; Jhuang et al., 2010; Twining et al., 

2001) for animal segmentation, with dynamic background conditions being still under active 

development. Body-parts classification can be addressed using algorithms for 

learning/computing the individual's pose (A. Mathis et al., 2018; T. D. Pereira et al., 2019). 

In turn, trajectory-based features (Burgos-Artizzu et al., 2012; Kabra et al., 2013) can be 

extracted from video sequences (Dollár et al., 2005; Jhuang et al., 2010) to describe low-

level representations of behavior. These features can then be used for automatic behavior 

classification by applying rule-based classifiers (de Chaumont et al., 2012), or supervised 

(Burgos-Artizzu et al., 2012; Kabra et al., 2013) and unsupervised (Berman et al., 2014; 

Schwarz et al., 2015) machine learning methods to train classifiers. Alternatively, semi- and 

weakly-supervised learning may be introduced in this context although modest progress has 

been made here (Egnor & Branson, 2016; Malte Lorbach, Poppe, & Veltkamp, 2019; Robie 

et al., 2017). 

Nevertheless, as expected, the estimation of animals’ pose in 2D is unsatisfactory in most 

cases. Some studies have therefore started to address the problem in 3-dimensions (3D), 

using multiple conventional cameras, or cameras capable of combining color and depth 

sensing (RGB-D cameras) (Hong et al., 2015; Matsumoto et al., 2013; Z. Wang et al., 2018). 
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The present study describes a novel computational solution for automated, markerless 3D 

segmentation and tracking (in static and dynamic environments), of both whole-body and 

body parts, in experiments with a single freely behaving rodent. This tool uses low-cost RGB-

D sensors and machine learning/computer vision techniques, to precisely quantify 

behavioral features in 3D space. Given its focus on automatic Classification and Tracking in 

depth (z-axis), our computational tool is named CaT-z. The tool is tested and validated in 

controlled experiments to assess its performance and precision. It is made freely available 

to the research community, as to foster reproducible and reliable quantitative behavioral 

analysis in labs with limited resources.  

The CaT-z software is publically available for download at GitHub: https://github.com/CaT-

zTools/CaT-z_Software.The open access dataset (41 GB) is also publicly available for 

download at Zenodo: https://zenodo.org/record/3636136#.YbysrGjP2Uk. 

 Materials and Methods 

3.1 Behavioral Protocol 

Behavioral experiments for dataset construction and system validation were conducted 

during 3 consecutive weeks for each animal (N = 2). Inside the experimental environment 

(an opaque acrylic open-field (OF) cage, 1 m × 1 m × 0.5 m, made in-house), 3 types of light 

conditions where alternatively used: dim red light, dim white light, and in total darkness 

(Figure 4.1). Animals were recorded using CaT-z software, while freely moving, for 15 

minutes (mins). For behavioral phenotyping studies, Wistar Kyoto rats (WKY; N = 10) and 

wild type rats (N = 10) were subjected to the Elevated Plus Maze (EPM) test (standard 

apparatus). Animals were allowed to freely explore the maze for 5 mins. The following 

measurements were taken: percentage time spent in the open arms, percentage time spent 

in center arena and total distance, as well as automatic classification of seven behaviors 

(see below). 

3.2 Video Acquisition 

RGB-D videos were recorded using a Microsoft Kinect v2 camera, with 1920x1080 color and 

512x424 depth pixels’ resolution, respectively. It records at a maximum of 30 frames per 

https://github.com/CaT-zTools/CaT-z_Software
https://github.com/CaT-zTools/CaT-z_Software
https://zenodo.org/record/3636136#.YbysrGjP2Uk
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second (fps), but in low light conditions this value drops to 15 fps (typically). The operation 

range is from 0.5 to 4.5 m, with a spatial resolution of ≈2 mm. The camera was placed 

centrally above the OF and the EPM (1.20 m high, to fully include setup dimensions) and 

connected to a computer. A pre-heating time of 30 mins for the camera was respected for 

the stabilization of the depth sensor (E. Lachat, Macher, Landes, & Grussenmeyer, 2015). 

 

Figure 4.1 RGB-D behavioral dataset. A. RGB and depth frames under three different 

lighting conditions: dim red light, dim white light, and in total darkness. B. Depth frames for 

the seven types of rodent behaviors. 

3.3 Manual annotation of rodents’ behaviors 

The RGB-D dataset containing frames for supervised classification (ground-truth) was fully 

annotated by researchers with experience in ethology, with one of seven mutually exclusive 

behavioral labels: standstill, local exploration, moving exploration, walking, supported and 

unsupported rearing, and grooming (Supplementary Table 4.1; see Figure 4.1 for 

examples). An extended list of classes is sometimes not necessary, nor advisable (increase 

in subjectivity), and consequently a simplified list was also considered: standstill+ (standstill 

and local exploration), walking+ (walking and moving exploration), rearing (unsupported and 
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supported rearing), and grooming. The CaT-z software also includes an interface for manual 

annotation, which was used for the manually annotated dataset for the supervised 

classification algorithms (“ground-truth”). Regarding the observation method, the annotation 

interface allows the construction of the animals ethogram based on focal-animal 

annotations, and all actions of one animal are annotated for a specified time period (all video 

frames are annotated). 

The level of agreement between observers for the annotated dataset was calculated using 

two different metrics. In the frame-based approach, 1 frame tolerance was allowed in the 

transitions. In the quality-based approach, the number of matching (overlapping) behavior 

periods between observers was used.  

For the WKY/Wistar EPM experiments, seven mutually exclusive behaviors were also 

defined: standstill+ (local exploration and standstill), walking+ (walking and moving 

exploration), rearing (supported and unsupported rearing), head dipping (snout sloping 

down from the EPM and body standing in the same place with the 4 legs in the open arms), 

protective head dipping (snout sloping down from the EPM and body standing in the same 

place with at least one limb in the closed arms ), SAP (lower back, elongation of the body, 

and either standing still or moving forward very slowly), and grooming (see Supplementary 

Table 4.1 for definitions). 

3.4 Tracking and Classification Algorithms 

Four computational components are addressed in our method (Supplementary Figure S 

4.1): animal segmentation, tracking, features detection and classification. All algorithms 

were implemented in C++ language, for computational performance, and using Qt Creator 

(The Qt Company Ltd.) environment to integrate the algorithms in the user-friendly CaT-z 

software. Three graphical user interfaces (GUIs) were developed to: support videos 

acquisition, annotation and processing (segmentation, tracking, and classification of 

behavioral data). 

3.4.1 Animal detection and tracking.  

Animal segmentation was performed using three different background modeling methods. 

The static Median-difference method sets a static background model using the median of 
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the pixels over a set of initial frames. A 2D median filter (5x5 size) was also applied. Along 

the frames, the foreground detection was performed by computing the difference between 

the current frame and the background model. 

In order to cope with dynamically changing environments (e.g. bedding material, small 

objects moving/(dis)appearing), two other algorithms were developed. Both methods are 

initialized with a background model similar to the static method. The landscape-change 

detection (LCD) method uses the background subtraction technique but constantly updates 

the background model. The updating algorithm uses the assumption that local environment 

modifications are smaller than the animal’s area. The background model is updated using 

information from the current frame to incorporate possible objects that (dis)appeared/moved 

in the frame. Finally, the probabilistic Gaussian Mixture model (GMM), was adapted from 

Stauffer and Grimson (1999), to incorporate 16-bit depth images in the processing algorithm 

and improve background estimation. 

The validation of these methods under dynamic environments was performed using a 

controlled synthetic dataset. This dataset consisted on 1000 depth frames, whose intensity 

values follow a normal distribution of mean 1000 mm and standard deviation 5 mm 

(experimental precision value of this depth sensor). A dynamic environment was simulated 

by synthetically creating well-defined dips or rises in the depth map. The validation was 

performed by comparing background models and ground truth. 

3.4.2 Body parts’ detection and tracking.  

From the 3D segmented animal, five anatomical points were tracked: nose, head, body 

center (centroid), tail-base and tail-end. Importantly, these landmarks were estimated using 

scale-free geometrical constraints/properties (see Body parts’ detection and tracking). For 

example, after finding the rodent body contours, the tail-end is defined as the furthest 

contour point from the centroid (independently of animal size). Simple heuristics were 

implemented to check the validity of the detected body parts location (for example, 

discrepancy between the positions in consecutive frames). Frames with uncertain body 

parts’ detection are flagged and this information is later used for the frame classification (see 

Supplementary Table 4.2): not only this flag in important for signaling tracking anomalies, 

but also, interestingly, the absence of particular body parts (e.g. by occlusions) can in itself 
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help detecting certain behaviors (for example, during grooming events frequently the nose 

is not detected). 

The performance of the body parts’ detection algorithm (which relies on scale-free 

geometrical rules) was evaluated by comparing the automated tracking results with manually 

annotated locations of body parts in a set of 600+ frames. 

3.4.3 Features’ extraction.  

For the automatic classifiers, low-level representations of behavior were organized to 

describe trajectory-based aspects and shape-based information (Supplementary Table 4.2). 

In order to add information from previous frames (temporal memory) and to help distinguish 

between behaviors with different temporal dynamics, the features’ set for each frame were 

combined with the features from ~1 second in the past, obtaining a final set of 22 features 

for each time point. The features were normalized using Z-score transformation.  

3.4.4 Automatic behavior classification.  

The Support Vector Machine (SVM) classifier was selected for supervised and multi-class 

behavior recognition (Boser, Guyon, & Vapnik, 1992). A nonlinear classifier with a radial 

basis function kernel was used. Further theoretical concepts on SVMs are available in 

Appendix – Fundamentals of Support Vector Machines. The best combination of SVM 

parameters was selected by grid search and the parameters with higher cross-validation 

accuracy were selected, using k-fold cross-validation approach (k = 5) on the training set. 

Performance was estimated using the leave-one-video-out technique, where all but one 

video of a pool of N videos were used to train the model, and the performance was evaluated 

on the remaining video. This procedure was repeated N times for all videos. Learning curves 

were constructed to show the classification performance as a function of the training dataset 

size, and to determine the minimum N size to construct this pool of videos. 

Model predictions for all the testing frames were filtered (with a 5x5 median filter) to reduce 

erroneous classifications of isolated frames, and then concatenated to compute the overall 

accuracy (ratio of correct frames), and performance per class using confusion matrices and 

the F1-score.   
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F1-score is the harmonic average of the precision and recall, ranging from 0, with no correct 

predictions, to 1 for perfect precision and recall, calculated as follows:  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4.1) 

where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 and 𝑟𝑒𝑐𝑎𝑙𝑙 =

 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

This metric is better suited for datasets with behaviors that occur with different frequencies 

(M. Lorbach et al., 2018). This leave-one-video-out approach provides the best estimate of 

the future performance of a classifier, and was also applied to avoid testing bias due to the 

consecutive frames effect and “double-dipping” (Kriegeskorte, Simmons, Bellgowan, & 

Baker, 2009). 

When studying the activity of WKY rats inside the EPM, only RGB-D data from Wistar rats 

was used to train the classifier, but both Wistar and WKY data was used as testing sets.  

3.5 Behavioral phenotyping 

The capability to detect behavioral differences (phenotyping) between different strains was 

assessed using a k-nearest neighbor algorithm (kNN). This choice served the purpose of 

demonstrating that even a simple classifier can be used for this step. Model’s accuracy and 

posterior probabilities of belonging to the control class were calculated for both Wistar and 

WKY strains in order to select a reduced set of metrics and to construct a behavioral profile 

for phenotyping strains. 

Extended methodology is presented in Supplementary Information. 

 Results 

4.1 An RGB-D behavioral dataset to promote advances in computational 

ethology 

As in other fields, important contributions to computational ethology can potentially arise 

from machine learning researchers not directly engaged in behavioral experiments. The 
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availability of large, public, annotated datasets is therefore of fundamental importance to 

empower these potential contributions. With this in mind, instead of producing a specific 

dataset for developing CaT-z, we have compiled a general-purpose dataset, which is made 

public to catalyze new developments in computational ethology and automatic classification 

of rat behavior activity. 

The produced RGB-D dataset was compiled from videos and respective behavior 

annotations that capture freely-walking Wistar rats in an OF arena. The OF was chosen 

since it is a standard setup commonly used in ethology studies to measure behavioral and 

locomotor activity in animal models (Belzung, 1999; Cryan & Holmes, 2005; Overstreet, 

2012). The dataset is composed of several ≈10/15 mins RGB-D video sequences of 

individual rat behavior, where the animal is allowed to move freely inside the OF cage 

(Figure 4.1). Three different lighting conditions were used (Figure 4.1A) to recreate the 

typical light setups used in behavioral recordings. Total darkness is the ideal lighting 

condition for the animals’ active phase, but it is usually replaced by dim red light or dim white 

light due to limitations of the standard recording systems. The full dataset consists of 24 

videos, with a total of 6 hours: 4 hours of fully annotated sequences (for supervised machine 

learning methods; ~180 000 annotated frames) and 2 additional hours of raw behavioral 

sequences (adding data for unsupervised machine learning methods). 

Every RGB-D video frame in the annotated dataset was manually labeled by researchers 

with experience in ethology, with one of the seven mutually exclusive rat behavioral labels 

(Figure 4.1). These specific behaviors were selected as they are commonly used in manual 

scorings in neurobehavioral research. Information regarding the frequency of each 

behavioral event, within the annotated dataset, is described in Supplementary Table 4.1, 

which ranges from 2.5%, for walking events, to 37.9% for local exploration events. 

In the manual annotation of animal behavior, reliability between human observers is typically 

limited to 70%-80% (Anderson & Perona, 2014; Spruijt & DeVisser, 2006). This limitation 

was, in fact, a core motivation for this work. In the annotated dataset the average level of 

agreement between the observers was 83.3% ± 5.7 in a frame-based approach (N = 21 988 

frames), and 81% ± 0.8 in a quality-based approach (agreement on behavioral type; please 

see Materials and Methods). Taken together, these results reveal that both agreement 

scores for the annotation of this dataset are consistent with the reported range. 
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4.2 Depth information improves whole-body segmentation in both static and 

dynamic background conditions 

Animal segmentation, a challenging problem in RGB video sequences, is considerably 

improved and facilitated using depth information combined with the implemented 

static/dynamic background algorithms (Figure 4.2). In the segmented images, it is possible 

to visually distinguish specific body parts such as tail, snout, upper and lower limbs (Figure 

4.2A). For different lighting conditions, there were no differences in detection performance, 

which means that animal detection is independent of ambient lighting. 

 

Figure 4.2 Depth information improves whole-body segmentation. Segmented depth 

frames, using the static Median-difference method for background removal, capturing: A. 

Three different behaviors: unsupported rearing (left), local exploration (middle), and 

supported rearing (right).  Background pixels in black. Maximum depth values (240mm) in 

white. Depth colormap in mm. B. Body parts’ tracking (centroid and nose) and their depth 

profile. Top: Two sequences of segmented depth frames with identification of some body 

parts: centroid (in orange) and head (in yellow). Bottom: Corresponding depth profile (in mm) 

for the centroid and head points in the depth frames sequences. 

The performance of the three background segmentation algorithms (standard static, 

modified GMM, and the new LCD algorithm) was quantified in controlled dynamic 
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background landscapes (Supplementary Figure S 4.2). The results showed that the LCD 

method is more effective at dealing with background changes, incorporating them quickly 

into its depth profile: as the background changes, the pixel depth values change instantly, 

allowing a more accurate estimate of the background. In turn, the modified GMMs method 

also incorporates pixel modifications in the estimated background but much slower than the 

LCD method, which is consistent with the defined learning rate. As expected, the widely 

used static Median-difference method has very limited performance in dynamic 

environments. 

4.3 Tracking multiple anatomical landmarks in 3D 

Geometric methods for the detection of body parts greatly benefit from depth information, 

enabling the detection of the 3D trajectories of each anatomical landmark. Using these 

representations, it is possible to identify subtle fluctuations in depth which could not be 

noticeable by visual inspection (Figure 4.2B). 

Overall tracking performance was assessed by comparing automatically predicted 

coordinates with the manually labeled ones (Figure 4.3). In particular, automatically detected 

positions of the animal’s body center are in very high agreement with the carefully manually-

traced trajectories (Figure 4.3A). The trajectories overlap along the frames, with a 5% error 

in the estimation of the distance traveled by the animal. The errors in estimating the traveled 

distance can be driven by differences between the visual estimate of the animal's body 

center and the centroid mathematical estimate, which is affected by other segmented body 

parts (e.g., tail). For each labeled frame, the x- and y-coordinates’ differences between 

predicted and manually defined body center coordinates were computed for error 

quantification (Figure 4.3B). The differences were, most of the cases (median), less than 2 

pixels (Figure 4.3B). In fact, a difference of 2 pixels, between the predicted and manually 

labeled body center coordinates, is barely noticeable and within the variability of human 

annotation (Figure 4.3C). 
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Figure 4.3 Multiple anatomical landmarks can be accurately tracked in 3D. A–C. 

Comparison between manually defined body center and automatically predicted 

coordinates, for a 40 seconds’ frame sequence. A. Manually-traced (gray) and predicted 

(orange) trajectories inside the open-field cage. B. x- and y-coordinates differences, in 

pixels, between manually defined and predicted centroid’s coordinates. Colorbar indicates 

x- and y-differences’ occurrences. The circle in magenta (2 pixels radius) represents 50% 

of the results. C. Example images with manually defined body center (gray) and predicted 

(orange) coordinates, where the distance is equal to the median value (2 pixels).  D–F. 

Examples of body parts’ detection in several frames of a single video. F. shows an example 

of incorrect detection of tail-base and nose body parts. G–J. Histograms of coordinates’ 

differences, in pixels, between manually defined and predicted body parts’ coordinates, for 

a 46 seconds’ frame sequence. Colorbar indicates x- and y-differences’ occurrences. The 

circle, in magenta, represents 50% of the results, whose distance radius is 1.0, 2.1, 2.2 and 

4.0 pixels, for G–J histograms, respectively. Scale factor calculated using open-field setup 

dimensions (scale factor = 3.2 mm/pixel). 
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The system is also able to automatically locate the position of landmarks for a variety of 

animal postures (Figure 4.3D and E). Nevertheless, when the animal is at ambiguous poses, 

the performance is reduced (Figure 4.3F). Globally, the performance of the system is very 

high, with the majority (median) of the landmarks detection errors being below 2 pixels for 

the nose and tail-base anatomical points, 4 pixels for the head estimate, and 1 pixel for the 

tail-end point detection (Figure 4.3G–J). The geometric algorithms defined to find the 

anatomical points are scale-free, making the tracking system robust to changes in animal 

sizes. 

4.4 Automatic behavior classification using depth information 

The proposed automatic classification system, based on multiclass SVMs, shows the 

capability to attain high-performance levels even if trained with only 30 mins of annotated 

video recordings (Figure 4.4). As the number of training examples increases, the mean gap 

between the validation and training scores gets narrower, and from a training set size of 

30 000 examples (≈30 mins. video), both scores stabilize. This level of performance is 

observed using either simplified or extended annotations, corresponding to either 4 or 7 

different types of behaviors (Figure 4.4A and B, respectively). The performance levels were 

assessed using a 5-fold cross-validation approach and avoiding testing bias problems (see 

Materials and Methods - Automatic behavior classification.). The 30 mins is an important 

figure, as compared with the very large training datasets required by other approaches, 

particularly conventional deep learning methods. It means that the manual annotation effort 

may be remarkably reduced in supervised training approaches. For consistency, the results 

presented from here on were all obtained with training datasets with roughly 30 mins of 

video. 

Standard methods for automatic behavior analysis (Ethovision - Noldus, The Netherlands; 

Smart - Panlab, Spain; Kabra et al., 2013) are not fully functional under total dark conditions, 

which is an important limiting factor for recording natural rodent behavior. Our methods are 

independent of ambient light conditions (dim red, dim white, and total darkness) as shown 

by the automatic classification accuracy and F1-scores (Supplementary Table 4.3). 

Moreover, the system generalizes among different lighting conditions; for example, dim red 

light videos can be used for training and total darkness for testing (Supplementary Table 

4.3). 
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For a detailed analysis of the classification errors for each type of behavior, we constructed 

confusion matrices, showing the combinations of predicted and real/annotated values 

(examples in Figure 4.4C and D). For the simplified annotations (4 classes), the average 

accuracy was 84.9%, with high F1-score values for all behaviors (Figure 4.4C), whereas in 

the extended annotations (7 classes) the average accuracy was 76.9%. In both conditions, 

the presently defined features for the SVM classifier allows the system to correctly recognize 

most behaviors (Supplementary Movie 1). In the extended annotations, the current system 

shows some limitations. Walking periods belong to the most misclassified behaviors, 

occasionally classified as moving exploration, leading to low F1-scores. Also, F1-scores for 

standstill are very low, or not possible to calculate due to lack of representativeness in the 

training set. The automatic classification methods presented here allow the direct generation 

of ethograms to describe the behavioral data, and the time spent on each behavior (Figure 

4.4E). 

4.5 CaT-z: a user-friendly computational solution for quantifying animal 

behavior 

Acknowledging the paramount importance of encapsulating all algorithms in a user-friendly 

application suited for laboratory environments, an effort was made to create an integrated, 

easy-to-use, and freely available software that works out-of-the-shelf – CaT-z. This 

computational tool contains three different modules to support annotation and recording of 

RGB-D frames, and automatic tracking and classification of rodent’s behavior (Figure 4.5). 

The GUI for RGB-D data visualization and annotation (Figure 4.5A) allows the manual 

scoring of color and depth frames, simultaneously, into user-defined behaviors. Depth 

frames can be displayed in three different visualizations, and RGB-D videos can be played 

using media controls (in different velocities). During annotation, a behavioral ethogram is 

automatically updated to give color feedback on the behaviors previously identified. It is 

possible to resume an unfinished annotation and, finally, the data is saved in comma-

separated values (.CSV) format to be later used for automatic behavior analysis. As far as 

we know, such RGB-D data annotation tools are not presently available. 
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Figure 4.4 Automatic behavioral recognition performance. A. and B. Learning curves of 

trained model for the recognition of 4 (simplified annotations) or 7 (extended annotations) 

behaviors, respectively. Results represented as mean (filled line) and SD (colored shadow) 

for training (blue) and cross-validation (orange) scores. C. and D. Examples of normalized 

confusion matrix of automatic behavioral recognition and corresponding F1-scores, for 4 or 
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7 classes, respectively. E. Example of ethogram for manual annotations (gray) and 

automatic behavioral recognition labels (orange), over 300 seconds of testing video. 

New RGB-D data can be acquired using the data acquisition GUI (Figure 4.5B), and later 

annotated or analyzed by the tracking/behavior classification GUI (Figure 4.5C). 

Segmentation and tracking are performed using different available methods, and a particular 

region-of-interest (ROI) can be select. Body part’s tracking information (x, y and z 

coordinates) can be exported to a user-defined directory. Finally, using previous tracking 

information and annotated data, the classifier can be trained, tested, or applied for the 

recognition of new behavioral data. The GUI also allows training the classifier with multiple 

videos, simultaneously, without the need for multiple launches. Noteworthy, CaT-z is made 

available to the community with a detailed user manual and tutorial/walkthrough videos. 

4.6 Ability to distinguish between strains – automatic behavioral 

phenotyping 

The behavioral profile of WKY rats was quantitatively compared with Wistar rats using CaT-

z. The system was capable of automatically detecting behavioral differences between 

strains (behavioral phenotyping) (Figure 4.6). Specific ethology metrics to assess the degree 

of activity within EPM were calculated from the tracking data: percentage of time in open 

arms, total distance traveled, and percentage of time in the EPM center. In most cases, no 

significant differences were found between genders within the same strain (Supplementary 

Figure S 4.3) and, as such, the variable gender was dropped. 

As expected, WKYs generally spend less time on the open arms of the EPM (𝑝 < 0.05), 

since they are a strain characterized by high levels of anxiety and depression, as well as 

less time in the center of the EPM (𝑝 < 0.05) (Figure 4.6A). There also appears to be a 

decrease in the traveled distance in WKY, when compared to Wistar rats (but without 

statistical significance). These results are consistent with the fact that WKY animals are 

generally less exploratory (D'Souza & Sadananda, 2017; Langen & Dost, 2011). 
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Figure 4.5. CaT-z: a free computational solution for quantifying animal behavioral 

features, in depth (z). Graphical user interface (GUI) of the applications developed for: A1. 

RGB-D frames visualization and annotation (main window); A2. Dock window for the 

annotation; B. RGB-D data acquisition (dark mode for animal facility environments); C. 3D 

segmentation, tracking and behavior classification. 

The specific set of types of behaviors for the EPM were quantified and compared between 

both strains, and, as before, no differences were found between genders, within the same 

strain (Supplementary Figure S 4.3). When comparing both strains (Figure 4.6B), WKY 

animals spend less time in rearing periods than the Wistar rats (𝑝 < 0.01), whereas there 

were no statistically significant differences between groups in the other behaviors.  

The combination of the metrics %time walking, %time rearing, and %time in the open arms, 

allow a high discrimination power when comparing strains using a kNN classifier (Figure 

4.6C): accuracy of 79% and average posterior probabilities of 96% ± 12.6 and 25% ± 15.4, 

of a control or WKY sample, respectively, belonging to the control class. In addition, and 

according to the confusion matrix using these metrics, 2 rats in every 10 WKY rats were 

misclassified as belonging to the control class (20% false positives rate), while 22% of the 

controls were misclassified as not belonging to the Wistar class (false negative rate).  

Thus, the results show that, although statistically significant differences were not found in 

isolated metrics, when they are combined, it is possible to distinguish the two strains with 

an accuracy degree of 79%. Furthermore, it is possible to construct behavioral profiles, 

characteristic of each strain, with 20% of false positives. 
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Figure 4.6 Distinction between Wistar Kyoto strains (behavioral phenotyping) made 

easy using RGB-D information. A. Motor activity measurements inside the elevated plus 

maze, for Wistar control (blue circles) and Wistar Kyoto (orange squares) rats. Data 

represented as median ± 95% confidence interval. * 𝑝 < 0.05. B. Radar plot of automatic 

classification of behaviors for Wistar control (blue) and Wistar Kyoto (orange) rats. Solid 

lines (both blue and orange) represent median values. Shaded areas (both blue and orange) 

represent ±95% confidence interval. * 𝑝 < 0.05. C. Three-dimensional representation of 

clustering results, for Wistar control (blue area) and Wistar Kyoto (orange area) rats, 
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regarding three features: % of time in moving and rearing, and % of time in open arms. Blue 

circles and orange squares represent well-classified points, for Wistar control and Wistar 

Kyoto, respectively. Blue circles with orange margin represent misclassified points, 

regarding the decision region of the clustering algorithm: both points should belong to Wistar 

control area but were misclassified as Wistar Kyoto points. standstill (S); walking (W); rearing 

(R); head dipping (HD); protective head dipping (PHD); grooming (G). 

 Discussion 

The core goal of this work was to develop a free and fully-integrated system for 3D 

segmentation, tracking, and classification to automatically detect and quantify behaviors in 

rodents. With the developed algorithms, the CaT-z tool is capable of performing 

segmentation of a single animal’s whole-body in complex backgrounds, tracking multiple 

body parts, and detecting different behaviors. These methods are embedded in a user-

friendly software package, supported by a publicly available manual. The outputs of this tool 

are: 3D coordinates of body parts, automatically predicted behaviors, and, if applicable, 

corresponding performance metrics. From the 3D coordinates one can construct 

trajectories, and extract other motor parameters, such as distance traveled, average 

velocities, periods of active movement. 

Importantly, this work also introduces the first publicly available RGB-D rat behavioral 

dataset that is suitable for training automatic behavior recognition in rodents, catalyzing new 

machine learning developments.  

From the results, it was shown that 30 mins of annotated video of freely-walking movement 

is already sufficient to train our multiclass SVM classifier and attain accuracy levels which 

are comparable with the level of agreement in human observers (70-80%). The 30 mins 

figure is worth emphasizing since other methods, namely deep learning, typically require 

many hours of annotated videos for reaching high accuracy levels (but see (A. Mathis et al., 

2018; T. D. Pereira et al., 2019). The ability to generalize is also fundamental in machine 

learning systems and, as demonstrated with the phenotyping experiments, CaT-z is able to 

cope not only with different setups but also with new types of behavior (without the need to 

redefine the features). 
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The use of depth sensors in analyzing animal behavior include advantages that go well 

beyond just adding a third dimension. Several research considered its potential application 

to segment and track rodents (Ou-Yang et al., 2011; Paulino Fernandez et al., 2014), as 

well as to estimate their pose, and social and non-social interactions (Hong et al., 2015; 

Matsumoto et al., 2013; Z. Wang et al., 2018). However, limitations as marker-imposition, 

basic poses/behaviors recognition, manual interventions, integration in a user-friendly public 

software, or insufficient classifier performance have limited their use. In addition to 

presenting important advantages over other approaches, CaT-z can be used to compare 

behavioral profiles (“behavioral fingerprints”) of different strains. Previous studies have 

shown that WKY rats exhibit a combination of anxiety- and depressive-like behaviors, as 

well as hypoactivity and decrease in locomotion and social interaction levels (Burke et al., 

2016; D'Souza & Sadananda, 2017; Langen & Dost, 2011). With our system, we were able 

to automatically quantify several behavioral differences that confirm these findings. More 

importantly, it was possible to automatically predict the strain of individual animals (with low 

false positive and false negative rates). Whereas automated behavioral phenotyping can be 

achieved in some conditions using home-cage 2D video data (Ethovision XT, Noldus, The 

Netherlands; Jhuang et al., 2010), this process can be greatly facilitated and improved when 

3D information is available. Available solutions for automated behavioral phenotyping are 

often very expensive and limited to constrained/controlled environments (HomeCageScan - 

CleverSys, Inc, USA; LABORAS - Metris, The Netherlands; Phenocube - PsychoGenics, 

USA) or require the use of radiofrequency identification (RFID) implants which may affect 

animal behavior itself (IntelliCage, TSE, Germany; Weissbrod et al., 2013). For all the above 

reasons we are convinced that CaT-z has an important role to play in the computational 

ethology landscape. 

The CaT-z software is freely available for download at GitHub (https://github.com/CaT-

zTools/CaT-z_Software). The open-access dataset (41 GB) is also available at Zenodo 

(https://zenodo.org/record/3636136#.YbysrGjP2Uk). 
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 Supplementary Information 

8.1 Extended Methodology 

8.1.1 Animals. 

Wistar rats (N = 12) and WKY rats (N = 10) from the colony of Instituto de Investigação e 

Inovação em Saúde, Portugal, aging 5–6 weeks, were used in the study. Rats were housed 

in pairs in a controlled environment (20 ± 2℃, 45–55% humidity) with a 12h light/dark cycle 

(lights off at 12h00). Food and water were supplied ad libitum. All behavioral experiments 

were performed during the animal’s active (dark) phase. All procedures were carried out 

under personal and project licenses approved by the national authority for animal protection, 

‘Direção Geral de Alimentação e Veterinária’ (Portugal), and were performed in accordance 

with the European Directive 2010/63/EU on the protection of animals used for scientific 

purposes. 
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8.1.2 Behavioral Protocol 

Behavioral experiments for dataset construction and system validation were conducted 

during 3 consecutive weeks for each animal, preceded by a habituation period (5 

consecutive days) to reduce stress in the presence of a human experimenter. On 

experimental days, the rats were transported to the experimental room, and placed 

individually in a clean experimental environment (an opaque acrylic open-field cage, 1 m × 

1 m × 0.5 m, made in-house), without bedding and accessories. The experiments were 

performed alternately with each animal, under 3 types of light set: dim red light, dim white 

light, and in total darkness (Figure 4.1A). All animals were recorded using CaT-z software 

without any external artificial markers. During the experiment, the animal was placed in the 

center of the apparatus and allowed to move freely for 15 mins. Between subjects, the 

apparatus was cleaned thoroughly with 70% ethanol. 

For behavioral phenotyping studies, WKY rats were subjected to the EPM test. The 

apparatus consisted of a plus-shaped maze made of grey PVC with two opposing closed 

arms (10 cm wide × 50 cm long) with side walls (27 cm high), two opposing open arms (10 

cm wide×50 cm long) and a central arena of 10 cm ×10 cm. The maze was elevated 50 cm 

above ground. The apparatus was placed in a room adjacent to the animal maintenance 

room so that animals were not disturbed by environmental stimuli. The light intensity was 30 

± 50 lux, with the light being more intense in the open arms. The test was performed by 

placing a rat in the central arena of the apparatus facing one of the open arms. Animals 

were allowed to freely explore the maze for 5 mins. Behavior was recorded using CaT-z 

software. The apparatus was cleaned between every animal test.  

8.1.3 Animal detection and tracking 

Landscape-change detection (LCD) method: applies background subtraction technique 

with constants updates of the background model. First, the absolute difference between the 

background model and the current depth frame is calculated to detect non-static objects 

(that will be potentially incorporated in the background model). After detecting the animal 

using connected component analysis (object with the maximum area), a new subtraction 

operation is performed to obtain a mask that contains new objects (including new dips or 

rises in the bedding material), shadows or reflections. The background model is then 

updated with the pixel values belonging to the new objects. 
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Probabilistic Gaussian Mixture model (GMM): this method was adapted from the original 

approach, by Stauffer and Grimson, 1999. Noteworthy, animal movement is typically 

heterogeneous, with variable velocities, and multiple stop periods of distinct durations. By 

keeping the model parameters (learning constant/rate and the proportion of background 

data) constant, the animal pixels are usually incorporated in the background model, leading 

to accumulated errors in the foreground estimation. The initial algorithm was improved so 

that the background update would only be performed if movement was detected between 

consecutive frames. Upon movement detection, the components of the adapted GMM model 

(weights, the mean and standard deviation for each Gaussian distribution) are determined 

using the Expectation-Maximization algorithm; background is then updated pixel-wise. To 

detect movement differences between frames, the algorithm calculates the pixel percentage 

that differs between two consecutive frames. 

8.1.4 Pre-processing 

After each background modeling approach, depth thresholding was applied to remove 

background noise (depth values fluctuations). Reflections and depth value errors in object 

borders can occur due to the intrinsic time-of-flight (ToF) operation of the Microsoft Kinect 

v2 sensor (Ganapathi, Plagemann, Koller, & Thrun, 2010a). In these cases, structures from 

the periphery that were miss-segmented as objects of the foreground were removed using 

morphological operations. Reflections, occurring because of the multi-path phenomenon in 

time-of-flight sensors, were removed using their distinct depth profile. After animal body 

detection, the center of the animal body (3D centroid coordinates) can be calculated for 

tracking purposes. 

8.1.5 Body parts’ detection and tracking 

After finding the potential rodent body contours and x, y and z centroid points, the tail-end 

is defined as the furthest contour point from the centroid. Given the eccentricity of the mask 

containing animal’s pixels, the nose and head points are detected using two different 

approaches (to cope with different positions of animal body). If the eccentricity is greater 

than a threshold (elliptical shape), the nose point is defined as the rostral contour point (the 

point from the opposite side of the tail) furthest from the centroid. To detect the head point, 

the thinning processing operation was applied to the animal mask in order to compute the 
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skeleton mask and the head is then defined as the endpoint of the skeleton mask closest to 

the nose. For lower eccentricity values, the head point is defined as the endpoint of the 

skeleton mask furthest from the tail-end, and the nose as the contour point closest to the 

head. In both, nose coordinates are finally adjusted to correspond to the pixel whose depth 

value is highest one around its 7x7 neighbors, centered in the pre-determined point. 

The tail-base position is calculated as the point in the skeleton mask where the distance to 

the periphery/background, measured using the distance transform mask, is close to a radius 

threshold (defined as 0.3). Finally, head orientation was calculated by taking into 

consideration the position of the nose and the head. 

8.1.6 Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 7.0 (GraphPad Software 

Inc., CA, USA). The method of D'Agostino & Pearson was used as a normality test, and 

parametric or non-parametric tests were chosen as appropriate. Statistical significance was 

considered for 𝑝 < 0.05. Parametric data are expressed as mean ± standard deviation (SD), 

and non-parametric data are expressed as median and 95% confidence intervals. The total 

sample size was calculated through a power calculation (using G-Power software): for a 

one-sided Mann-Whitney test with α = 0.05, a power of 80%, and a standardized effect size 

Cohen's d = 1.6, a total sample size of 12 rats (N = 6) was deemed sufficient. A total sample 

size of 20 would allow identifying smaller differences, with the same statistical power, for the 

same significance level. 
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8.2 Supplementary Figures 

 

Supplementary Figure S 4.1 Workflow of RGB-D tracking, segmentation and 

classification algorithm for the automatic recognition of rodent’s behaviors. Uns. 

Rearing – unsupported rearing; Sup. Rearing – supported rearing. 
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Supplementary Figure S 4.2 Depth information improves segmentation in dynamic 

conditions. Comparison between the three implemented methods for background removal: 

static Median-difference (in orange), landscape-change detector (in yellow), and modified 

Gaussian Mixture Models (GMM) (in blue). The depth information for an illustrative 

coordinate is presented. The synthetic dataset included modifications of the ground-level 

(insertion and subsequent removal of objects). Ground truth profile in gray. 

 

Supplementary Figure S 4.3 Comparison between female and male individuals show 

no statistical differences, for both Wistar and Kyoto rats. A-C. Motor activity 

measurements (%time in the open arms, %time in the center, and total distance in meters 

(m), respectively), for Wistar control (circles) and Wistar Kyoto (squares) rats. D-E. 

Automatically predicted behaviors for Wistar control (circles, top) and Wistar Kyoto (squares, 

bottom) rats. Female and male individuals are represented by pink and blue markers. Data 
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represented as median ± 95% confidence interval. ns - no statistical differences. S – 

standstill; W – walking; R – rearing; HD – head dipping; PHD – protective head dipping; G 

– grooming; SAP – stretch-attend posture. 

8.3 Supplementary Tables 

Supplementary Table 4.1 Description of each type of behavior, and corresponding 

overall frequencies, on the annotated RGB-D dataset. 

Behavior Description 
Frequency 

(%) 

standstill rest at one place, no movement of limbs or head 4.0 

walking 
body clearly moves from one place to another, movement of 

limbs (hind and forelimbs) and snout raised 
2.5 

moving 

exploration 

body clearly moves from one place to another, movement of 

limbs (hind and forelimbs) and exploratory sniffing 
21.5 

local exploration 
no movement of the hindlimbs, occasional micromotions (e.g. 

sniffing) 
37.9 

supported 

rearing 

rise up on hindlimbs, and forelimbs off the ground but 

supported on objects/wall 
8.6 

unsupported 

rearing 

rise up on hindlimbs, and forelimbs off the ground with no 

support 
7.8 

grooming 
licking the fur or scratching with forepaws in curled body 

position 
17.7 
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Supplementary Table 4.2 Features’ description. 

Type Feature 

 

Description 

S
h

a
p

e
-b

a
s

e
d

 f
e
a
tu

re
s

 

Maximum depth value Maximum depth value between all pixels of the animal’s mask 

Body Area Sum of all pixels of animal’s body 

Body Radius 

 

The longest distance between centroid and animal’s body 

contour 

Circularity The square proportion between body area and body radius  

Ellipticity 

  

The ratio between long and short axes of the ellipse (after fitting) 

Flag for body parts’ 

detection 

Flag to indicate if body parts’ detection was possible (if not, the 

feature values that depend on that detection, take feature values 

of previous frame) 

Depth value of the nose The depth value of the nose point (when detected) 

T
ra

je
c
to

ry
-b

a
s

e
d

 f
e
a
tu

re
s

 

Angular velocity of the 

nose 

Head direction (angle between centroid-head vector and head-

nose vector), divided by the time interval 

(moving average filter on a non-homogeneous time grid; time 

window = 0.5 seconds) 

Minimum distance to the 

walls 

Minimum distance from the centroid and the open-field walls 

(given by the ROI) 

Speed of centroid 

 

Pixel distance between animal’s positions in two consecutive 

frames, divided by the time interval  

(moving average filter on a non-homogeneous time grid; time 

window = 0.5 seconds) 

Speed of centroid 

 

Pixel distance between animal’s positions in two consecutive 

frames, divided by the time interval  

(moving average filter on a non-homogeneous time grid; time 

window = 1.0 seconds) 
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Supplementary Table 4.3 Per event recognition performance for each lighting 

condition and multiple videos of approximately 10/15 minutes each, for different 

training sets. Results are expressed as median [95% confidence interval] (N = 4 videos), 

using the leave-one-video-out technique. For training with videos for a particular lighting 

condition, no significant differences were observed between different lighting conditions (F1-

scores and accuracy) except in local exploration behavior (Kruskal-Wallis test; * 𝒑 < 0.05). 

For training with videos of dim red-light conditions, no significant differences were observed 

between different lighting conditions (F1-scores and accuracy; Mann Whitney test). For 

testing with the same lighting condition and different training sets, no significant differences 

were observed (F1-scores and accuracy; Mann Whitney test). 

 

  

F1-SCORE 

 Training set 

(individually for a particular lighting condition) 

Training set 

(dim red light videos) 

                    Testing set 

 

Behavior 

Red  

light 

White  

light 

Total  

darkness 

 

White  

light 

Total 

darkness 

standstill 7.3 [-10.1,24.7] N.A. 1.5 [-23.0,26.1] N.A. 12.2 [-20.1,44.5] 

walking 51.7 [27.8,75.7] 35.8 [13.5,58.2] 38.4 [21.0,55.7] 59.5 [32.3,86.6] 49.0 [23.5,74.4] 

moving exploration 72.9 [68.8,77.1] 69.6 [61.4,77.7] 66.3 [53.2,79.4] 69.0 [54.4,83.7] 58.5 [46.8,70.1] 

local exploration 64.5 [52.9,76.1]* 81.1 [72.4,89.7]* 72.2 [61.8,82.6] 75.6 [73.8,77.4] 67.1 [57.7,76.4] 

supported rearing 88.0 [81.2,94.7] 80.8 [73.8,87.8] 87.2 [85.2,89.2] 74.6 [78.3,90.9] 85.7 [78.5,93.0] 

unsupported rearing 75.5 [52.3,98.8] 76.0 [63.0,88.9] 73.1 [39.4,106.8] 73.9 [67.9,79.8] 65.7 [34.9,96.4] 

grooming 79.6 [69.9,89.4] 65.3 [51.4,79.1] 75.1 [56.4,93.7] 69.2 [43.6,94.7] 72.3 [69.4,75.3] 

ACCURACY (%) 70.8 [61.9,79.7] 76.0 [71.0,81.0] 70.0 [67.6,72.2] 73.2 [65.4,81.0] 67.9 [61.3,74.5] 
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8.4 Supplementary Movies 

Supplementary Movie 1 Automated animal segmentation video of freely-walking rat 

inside the open-field cage, displayed at 10 fps. Segmented video using the static Median-

difference method for background removal, with the classification output of the machine 

learning algorithm overlaid (4 classes): standstill, walking, rearing and grooming. Black 

pixels correspond to background pixels. Depth colormap as in Figure 4.2A.  

Available at: https://link.springer.com/article/10.3758%2Fs13428-020-01381-9. 

 

https://link.springer.com/article/10.3758%2Fs13428-020-01381-9
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This chapter was based on the following original research paper:  

Gerós, A., Cruz, R., de Chaumont, F., Cardoso, J. S., & Aguiar, P. Deep learning-based 

system for real-time behavior recognition and automated closed-loop control of behavioral 

mazes using depth sensing (under review). 
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 Abstract 

Robust quantification of animal behavior is fundamental in experimental neuroscience 

research. Systems providing automated behavioral assessment are an important alternative 

to manual measurements avoiding problems such as high cost, human bias, and low 

reproducibility. Integrating these tools with closed-loop control systems creates conditions 

to correlate environment and behavioral expressions effectively, and ultimately explain the 

neural foundations of behavior. 

We present an integrated solution for automated behavioral analysis of rodents using deep 

learning networks on video stream acquired from a depth-sensing camera. The use of depth 

sensors has notable advantages: tracking/classification performance is improved and 

independent of animals’ coat color, and videos can be recorded in dark conditions without 

affecting animals’ natural behavior. Convolutional and recurrent layers were combined in 

deep network architectures, and both spatial and temporal representations were 

successfully learned for a 4-classes behavior classification task (standstill, walking, rearing 

and grooming) using depth input sequences. Integration of an Arduino microcontroller 

creates an easy-to-use control platform providing real-time feedback signals based on the 

deep learning automatic classification of animal behavior. The complete system, combining 

depth-sensor camera, computer, and Arduino microcontroller, allows simple mapping of 

input-output control signals using the animal’s current behavior and position. For example, 

a feeder can be controlled not by pressing a lever but by the animal behavior itself. An 

integrated graphical user interface completes a user-friendly and cost-effective solution for 

animal tracking and behavior classification. This open-software/open-hardware platform can 

boost the development of customized protocols for automated behavioral research, and 

support ever more sophisticated, reliable and reproducible behavioral neuroscience 

experiments. 

Keywords: Deep Learning • Depth Sensing • Spatiotemporal Features • Feedback Control 

• Closed-Loop System • Automated Behavior Classification • Free Open Source Software • 

Animal Tracking • Automated Control of Behavioral Mazes 
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 Introduction 

Behavior is shaped by interactions between the organisms and the environment, being the 

most important output response of the nervous system to external (and internal) stimuli. 

Understanding this relationship between behavior and neural activity is the central goal of 

systems neuroscience, which relies on analyzing animal behavior for theorizing cognitive 

mechanisms and ultimately explaining the underlying neural circuits (Anderson & Perona, 

2014; Berman, 2018; Krakauer et al., 2017).  Besides basic neuroscience research, the 

study of animal behavior plays a key role in the translational analysis of disease models, 

preclinical assessment of therapies’ efficacy, and also in food production industries 

(Anderson & Perona, 2014).  

The research on animal behavior has benefited from the recent technological advances in 

machine vision and machine learning fields, allowing for the collection and automatic 

quantification of vast amounts of data. Besides reducing human bias and subjectivity, and 

consequently allowing for the standardization of measurements across laboratories, 

behavioral patterns that were once unnoticed to a human observer may now be explored at 

different scales and resolutions (Macpherson et al., 2021; M. W. Mathis & Mathis, 2020; 

Robie et al., 2017). The first approaches to successfully combine computer vision and 

machine learning techniques typically relied on hand-crafted features extracted from images 

or video sequences that can be then used for automated behavior classification using 

supervised (de Chaumont et al., 2019; Gerós, Magalhães, & Aguiar, 2020; Jhuang et al., 

2010; Kabra et al., 2013) or unsupervised (Malte Lorbach et al., 2019; Marques et al., 2018; 

Wiltschko et al., 2015) learning methods. However, such approaches are highly dependent 

on domain expertise for feature engineering, often losing their generalization capability in 

the presence of a new environment/scenario. Recent developments in the computational 

neuroscience field have explored deep learning techniques to meet this challenge. Most 

state-of-the-art systems present powerful deep learning-based solutions for pure body-part 

detection and tracking for pose estimation (Dunn et al., 2021; Forys et al., 2020; Geuther et 

al., 2019; Graving et al., 2019; A. Mathis et al., 2018; T. D. Pereira et al., 2019; Romero-

Ferrero et al., 2019), but modest progress has been made for direct recognition of behavioral 

events (Bohnslav et al., 2021; Jiang et al., 2019; M. Marks et al., 2020). When compared to 

action detection in humans, which already achieved outstanding performance in challenging 

benchmarks, animals’ behavior is more complex to characterize. First, some animal 

behaviors are very similar to each other (more easily confused than those of humans), in 
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which temporal information is necessary for a flawless detection (sometimes a single frame 

is not enough to label the behavior correctly). Recent approaches take advantage of deep 

architectures that integrate temporal information along with spatial information to this end 

(Bohnslav et al., 2021; Jiang et al., 2019; M. Marks et al., 2020). Also, different behaviors 

have different durations and temporal scales: some of them take place in long time scales, 

such as grooming, and others in short time scales, such as rearing or walking. To the best 

of authors’ knowledge, temporal multi-scale integration has not been explored in the context 

of animal behavior analysis. Another concern when planning behavioral experiments is to 

ensure that the environment where the animal moves is adequate to allow capturing natural 

behavior and yet probing for multiple parameters for its study. In particular, an important 

limiting factor for recording natural rodent behavior is the environment lighting conditions 

(which may affect animals’ biological cycle). Usually, the most natural conditions are left 

behind at the expense of recording conditions (higher image resolution or contrast). One 

possible strategy is to use cameras with infrared technology (such as deep sensing 

cameras). A few studies have recently begun combining deep learning methods with data 

from such technologies for animal behavior analysis (Nourizonoz et al., 2020). Finally, to 

effectively correlate behavioral functions with specific neural circuits, automatic behavioral 

analysis tools should ideally be integrated into real-time closed-loop control systems, that 

provide instantaneous feedback based on the current behavioral expression. There are 

already published tools that provide feedback control in real-time based on animal posture 

patterns (de Chaumont et al., 2019; Forys et al., 2020; Kane et al., 2020; Nourizonoz et al., 

2020; Schweihoff et al., 2021; Sehara et al., 2021). However, they do not satisfy all these 

requirements simultaneously for a complete and versatile behavioral analysis system.  

Here, we introduce a novel computational solution for automated, markerless, real-time 

three-dimensional (3D) tracking and behavior classification of 4 classes (standstill, walking, 

rearing and grooming) in experiments with a single freely-behaving rodent. Combining the 

power of low-cost depth sensors and deep learning techniques, the proposed framework is 

integrated into a control platform that streams real-time mapping of input-output signals 

using the animal’s current behavior and position. First, we analyze the performance of 

advanced action recognition deep learning networks on the rodent behavior dataset. 

Acknowledging the importance of integrating temporal information in behavioral feature 

learning, we hypothesized whether abstract spatiotemporal features obtained from simple 

deep networks are suitable for recognizing multiple behaviors. In particular, the behavior of 
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networks for increasing temporal extents and with multiple timescales’ branches (partially 

inspired in Feichtenhofer, Fan, Malik, and He (2019)) was compared regarding their 

performance in detecting behavioral events. We found that temporal information from the 

past, using a short-time scale, is most relevant for the learning process. Second, we analyze 

how robust the proposed networks were at different input representations (input frame 

encodings, sampling rates, and resolutions), where raw depth frames at higher sampling 

rates and resolutions helped improve classification performance. Also, ~21 minutes (mins) 

of annotated video showed to be already sufficient to attain a good generalization using 

proposed deep networks for behavior classification. Lastly, we adapt the deep learning 

framework to recognize animal tracking and behavior in real-time, and we integrate it into a 

platform capable of closed-loop control of behavioral experiments, either for behavioral 

mazes or real-time drug delivery systems. Besides being non-invasive and with low latency, 

it provides a versatile interface to trigger different hardware actuators from either hardware 

sensors or behavior/tracking-dependent signals. 

 Materials and Methods 

The proposed system for online rodent behavioral recognition consists of two components: 

deep learning networks and the real-time control module. The deep learning networks are 

responsible for spatiotemporal feature extraction and behavior/position detection for each 

frame in the video sequence. The real-time classifications are used to control 

sensors/actuators in any maze. All these tasks can be controlled through an easy-to-use 

graphical user interface (GUI) for beginning-to-end management of all experiments.  

3.1 Dataset 

An open-access RGB-D behavioral dataset, available at 

https://doi.org/10.5281/zenodo.3636135 (Gerós et al., 2020), was used for all experiments. 

Details on the experimental procedures, video acquisition and manual annotation of rodent’s 

behavior can be found in (Gerós et al., 2020). In brief, the dataset is composed of 10 to 15 

mins RGB-D video sequences of individual Wistar rat behavior, recorded with a Microsoft 

Kinect v2 camera (512x424 depth pixel resolution). The maximum frame rate is 30 frames 

per second (fps), but this value typically drops to 10 to 15 fps in low light conditions. A subset 

list of classes was considered here with the four most commonly used state behavior states: 

https://doi.org/10.5281/zenodo.3636135
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standstill, walking, rearing and grooming. A randomly selected subset of these fully 

annotated recordings was considered for the experiments and denoted as dataset-100k 

(~2.20 h in 26 subvideos, approximately 100,000 frames total, with a time difference 

between two consecutive frames of approximately 67 milliseconds (ms)). Only the depth 

frames were kept for analysis. 

3.2 Proposed deep learning model 

In order to create a framework that incorporates spatiotemporal features for video 

understanding tasks, a neural network architecture is proposed and validated. The network 

consists of an encoder and a classifier, which is trained end-to-end. The encoder consists 

of two-dimensional (2D) convolutional layers, to extract local spatial features in each frame 

of the video sequence. The classifier is composed of a recurrent layer to learn temporal 

features between adjacent frames in the video sequence, and fully-connected layers to 

output the behavioral classes’ probabilities (Figure 5.1).  

3.2.1 Architecture 

Two variants of the encoder were considered – the single-branch and the dual-branch. The 

single-branch receives an input sequence with a time-window of size 𝑇 ms, with frames 

equally spaced over time by a temporal stride of 𝜏 ms. The dual-branch variant receives two 

sequences with different temporal strides in each stream (Figure 5.1). The idea is for the 

two pathways to exploit temporal information of a different scale: the short-time scale 

provides information hidden in temporally neighboring frames, giving clues about animal’s 

movement at fast temporal changes, while the long-time scale may help distinguish between 

different behaviors at slower temporal changes (namely, transitions between behavioral 

states). In both architectures, frames are individually encoded by four 2D convolutional 

layers (64 filters, 3x3 kernel size, 2x2 stride, rectified linear unit (ReLU) activation). After the 

encoding part, a recurrent layer (RNN, 128 hidden state features) takes as input the 

sequence of spatial features output by the feature extractor and integrates it over time for 

both temporal and spatial dynamics learning. Two fully-connected layers (64 and 32 

channels) and a softmax output layer are used for the final recognition of behavioral classes.  
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Figure 5.1 Integrated framework for the control of behavioral mazes using depth 

information and deep learning-based techniques. A. Deep learning architecture, with the 

two variants of the encoder, single-branch (solid line) and dual-branch (solid and dashed 

lines), for the automatic classification of 4 behavioral classes. Both variants receive one 

input sequence with a time-window of size 𝑻 ms, with frames equally spaced over time by a 

temporal stride of 𝝉. The dual-branch variant receives additionally one sequence with a 

different temporal stride, long-time scale pathway, that operates on a bigger time-window (𝜶 

× 𝑻') with a temporal stride of 𝜶 ×  𝝉 (𝜶 >1, where 𝜶 is the frame rate ratio between short- 

and long-time scale pathways). B. Workflow of the closed-loop feedback system, for 

controlling behavioral experiments. Depth video sequences are acquired by a depth camera, 

and used as inputs to deep learning networks for real-time automatic classification of 

behavior and detection of animal’s position (x, y, and z coordinates of centroid, and any 

defined regions-of-interest inside the maze (mROI)). Such signals, together with input 
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signals coming from any sensor hardware (blue), are sent to the Arduino microcontroller for 

feedback control of the actuators present in the maze (green). For real-time behavior 

classification and detection of animal’s position, the deep learning models must first be 

trained using a training set with annotated depth video sequences (segmentation masks and 

behavioral labels). 

In the case of the dual-branch, both pathways work on different time-windows: the short-

time scale pathway receives as input a pre-defined time-window 𝑇′ with the same temporal 

stride 𝜏  as the single-branch network; the long-time scale pathway operates on a bigger 

time-window (𝛼 ×  𝑇′) with a temporal stride of 𝛼 ×  𝜏, where 𝛼 > 1 is the frame rate ratio 

between short- and long-time scale pathways. Two recurrent layers are used for each 

branch, which are then concatenated before the fully-connected layers. 

Since recognizing rodent’s behavior is a challenging task, either due to the size of the 

animals or the nature of the behaviors (faster movement, higher similarity and greatly 

dependent on temporal information to be clearly distinguished), the feature extraction 

process needs to be carefully designed to avoid confusion between behavioral events. For 

this reason, 2D convolutions were chosen, instead of the currently used 3D convolutions for 

spatiotemporal learning, in order to process spatial and temporal content separately and 

thus avoid mixing information of different scales. The reduced number of convolutional 

layers and the number of filters at each layer allow the entire network to be computationally 

lightweight and capable of being used for real-time inference afterwards. 

3.2.2 Training 

The models were trained from scratch using the ADAM optimizer, with a batch size of 16 

video sequences with a time-window of 𝑇 ms , and a learning rate of 1 × 10−4, for 100 

epochs. A dropout layer was used before the recurrent layer, with a dropout ratio of 0.5.  

Initially, the dataset was split into training (70%), validation (10%) and testing (20%) sets 

that are maintained throughout the experiments. The validation set was used to compare 

the performance of different models when performing ablation studies. To address the 

problem of having a highly imbalanced dataset (standstill 40.3%, walking 28.7%, rearing 

11.7%, and grooming 19.3%), the video sequences of each class were oversampled until 

their frequencies were uniform.  
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3.2.3 Experiments 

For a systematic study of networks’ performance, the effect of increased temporal 

information was evaluated, by changing different parameters in each experiment. First, the 

impact of changing the time-window 𝑇 of the input sequence was tested, with 𝑇 ∈

 {0𝜏, 1𝜏, 4𝜏, 10𝜏, 19𝜏} 𝑚𝑠, corresponding to a network input with 1 (single-frame), 2, 5, 11 

and 20 frames in total, respectively, sampled with a fixed temporal stride 𝜏 of 133 ms. Also, 

the temporal stride 𝜏 between adjacent frames (𝜏 ∈  {67, 133} 𝑚𝑠) was evaluated, which 

corresponds to approximately 15 or 8 frames sampled per second, with a fixed time-window. 

Finally, the frame rate ratio 𝛼 between short- and long-time scale pathways for the multi-

branch architecture (𝛼 ∈  {5, 10}) was varied. These temporal parameters were chosen in 

order to make the network responsive to the different behavior timescales present in the 

original dataset. In this sense, and taking into consideration the camera’s frame rate, the 

capability of the network of capturing both fast behavioral events (in the order of a few 

hundred milliseconds) and slower events (in the order of a few seconds) was explored. Also, 

different spatial resolutions of {64, 128, 256} pixels and input encoding modalities were 

tested. Besides raw 8-bit depth frames, depth jet-encoding (Eitel, Springenberg, Spinello, 

Riedmiller, & Burgard, 2015) was applied to depth frames, in which the depth information is 

distributed according to the jet colormap, transforming the one-channel depth map to a 

three-channel color image. Also, surface normals were used to encode the depth frames 

into a three-channel image representing form and surface structure (implementation details 

in Madai-Tahy, Otte, Hanten, and Zell (2016)). Unless otherwise noted, the full dataset-100k 

was considered for analysis, and the default parameters for the systematic study were: 𝑇 =

10𝜏, 𝜏 = 133 ms, spatial resolution of 128 pixels in raw depth frames. The influence of 

training set size on network generalization was also benchmarked. Different training sizes 

were selected and each subsampled training set was used to train the network, and 

compared with the same validation set (using the default parameters’ set as well).  

3.2.4 Data augmentation 

To improve the robustness and generalization of the models, data augmentation was 

performed with random perturbations of the training set during training, that included: full-

rotation around the center (90/180/270°); horizontal flipping; resized cropping and 

brightness variation (by sampling an additive value from a uniform distribution, [-0.15, 0.15]). 



Deep Learning-based System for Real-Time Behavior Recognition and Automated Closed-
Loop Control of Behavioral Mazes 

111 

As the input of all models is a frame sequence of approximately 𝑇 𝜏⁄  frames, the same 

augmentation operations were performed on each frame in this set.  

3.2.5 Model evaluation and metrics 

The validation set was used for models’ comparison and evaluation, and all analyses 

reported share the same validation set, for a total of 5 runs for each experiment. The hold-

out testing set was further applied to evaluate the performance of the best-chosen model to 

an unseen set. To evaluate the overall performance of the different proposed methods, 

balanced accuracy (average of recall obtained on each class) and weighted F1-score 

(weighted average F1-score over all classes according to classes’ relative frequency) were 

calculated. Performance per class was assessed using confusion matrices and 

corresponding F1-score.  

The F1-score is the harmonic average of the precision and recall, calculated as follows: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.1) 

where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 and 𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 . 

These metrics are better suited to deal with imbalanced datasets.  

3.3 Real-time control system 

The entire control system consists of software and hardware modules configured to create 

an automated closed-loop tool. It is made of five main components: the control computer, 

the interface board, the control software, the video camera and the maze hardware modules 

(Figure 5.1). Frames acquired by a depth camera are fed into the trained deep learning 

models, which will automatically detect both behavioral events and the animal’s position in 

the maze. The network outputs are sent to the interface board that, together with existing 

sensor outputs (e.g., buttons, maze sensors), controls circuit actuators (e.g., maze feeders, 

light-emitting diodes (LED)s). The computer is used to operate the entire circuit by a 

graphical user interface (GUI), either sending messages to the interface board or acting 

directly on the maze hardware modules.   
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3.3.1 Interface board 

An Arduino microcontroller (Mega 2560) was used as the interface board between the 

computer and the hardware modules, and the communication is established using a 

communication (COM) port. The microcontroller board has 16 MHz clock speed, and 54 

digital input/output ins that can be connected to different maze hardware components, such 

as animal feeders, LEDs, maze sensors, and buttons. After being connected to the 

computer, the Arduino board communicates via Arduino integrated development 

environment (IDE). The user writes the Arduino code for the automated control in the IDE, 

uploads it to the microcontroller which executes the code to interact with the input and output 

hardware modules. Notice that, once uploaded, the code can run regardless of the 

connection between the Arduino and the computer.  

3.3.2 Control software 

The automated control software consists of the following components: the automation 

control code, the trained deep learning models for detection, and the data acquisition and 

communication protocol.  

Automation control code 

Arduino code is written within the Arduino IDE (in a language very similar to C++) and it was 

carefully organized to segregate the code for specific logic state implementations 

(automated control) from all other maintenance code (such as reading and writing data to 

the communication port (COM). To do so, a specific user-defined function was created, 

which has access to all critical variables for the control, such as sensors’ and actuators’ 

states, and animal’s position and behavior. Inside this function, the user can easily define 

the conditions of stimuli-response that characterize each behavioral test experiment.  

Deep learning models 

In order to automatically classify the behavior and calculate the position of the animal using 

deep learning methods, previously trained models are imported and directly used for 

predictions. For the automatic classification of behavior, the single-branch model was 

trained according to the protocol previously described (input sequence of raw depth frames, 

with a time-window of approximately 1330 ms, acquired at a frame rate of 15 fps). For the 
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estimation of animal’s position, two different methods were made available to the user: deep 

learning-based model for semantic image segmentation, and conventional background 

subtraction model, both followed by centroid calculation. The deep learning-based model 

combines two ingredients from deep networks’ knowledge in order to perform semantic 

segmentation taking into consideration temporal information: U-Net model as backbone 

architecture, and (optional) convolutional Long Short-Term Memory (ConvLSTM) layers, 

learn spatiotemporal features. The traditional U-Net architecture was reduced to only one 

convolutional layer per block, fewer filters per layer (32) and it was extended by placing two 

ConvLSTM layers, one between the encoder and the decoder, and the other one before the 

last dense layer (different positions in the network, as well as different architecture 

parameters, were tested to ensure maximum performance yet reduced inference time and 

memory (Supplementary Figure S 5.1)). The network was trained from scratch using 1220 

train and 320 validation video sequences (previously annotated to obtain the segmentation 

masks), with ADAM optimizer and dice binary cross-entropy (BCE) loss function. 

A conventional background subtraction method was integrated in parallel to provide a 

computationally lighter alternative yet with lower performance (mainly in frames with 

dynamic backgrounds). Using this method, the segmentation mask containing animal’s 

pixels is produced by subtracting the present frame with the background model (frame of 

the behavioral experimental setup without the animal). From the segmentation mask, the 

position of the animal is calculated as the centroid of the detected object/animal. For details 

on algorithm’s design and performance, please check Gerós et al. (2020). 

For a more complete information about animal’s movements inside the maze, the system 

allows the user to define spatial mROIs, by uploading an image file with the same resolution 

as the acquired frames, with the different mROIs painted uniformly with different colors. 

Those regions are automatically detected after getting animal’s tracking, and they will be 

used as input for the Arduino board to control the hardware mazes, if needed.  

Data acquisition and communication 

To establish the communication between the COM port and the Arduino board, a 

communication protocol was defined. The computer communicates with the interface board 

by sending the behavioral classification, tracking and mROI outputs (as well as a flag for 

any keypress), in the form of a characters’ list separated by commas. Each character 

encodes information for the behavioral state (S for standstill; W for walking; R for rearing, 
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and G for grooming), tracking (x, y and z coordinates of the centroid), mROI and a key-

pressed flag (both encoded as integers). On the other hand, the Arduino board sends 

information regarding the status of each of the sensors and actuators (binary coded, on/off) 

back to the computer.  

3.3.3 Video camera 

The acquisition protocol was developed using a new generation of low-cost depth cameras, 

the Intel® RealSense Depth Cameras (in particular, D435 model), acquired with 512x424 

depth pixel resolution and at a maximum of 30 fps.  

3.3.4 Computational performance: inference and latency times 

To test time-performance of the system, a video of a freely-walking rat was used to simulate 

a camera feed from an animal in real-time, and single frames from the video were loaded at 

the maximum rate of 30Hz. The bidirectional communication with the Arduino board was 

achieved from either four input sensors and signals from the computer, and four output 

actuators (in this case, LEDs). Three latency periods were measured: (a) the delay from 

image acquisition to detecting the behavioral state/tracking position (image-event delay); (b) 

the delay from detecting one behavioral event/tracking position to the next event/tracking 

position (event-event delay, including Arduino response, mROI detection, GUI updates and 

saving images to external folder); (c) the delay between sending a behavioral state to the 

Arduino and turn on the corresponding LED (event-LED delay, with and without output 

feedback of Arduino). The first two latency times were determined using software 

timestamps and the last one was measured using the oscilloscope.  

3.4 Computing hardware 

All experiments, including inference speed and feedback control tests, were conducted on 

an Intel® Core i9-7940X (128 GB RAM), and a NVIDIA GeForce RTX 2080 graphics 

processing unit (GPU) (8 GB RAM), running Windows 10, with Python 3.9 using PyTorch 

(1.8.1) and TensorFlow-GPU (2.5.0) frameworks. All algorithms were integrated into a user-

friendly GUI, designed in the Qt Creator (The Qt Company, Finland) environment and 

implemented in Python language. 
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3.5 Statistical methods 

Statistical analysis was performed using GraphPad Prism version 7.00 (GraphPad Software 

Inc., CA, USA). The method of D'Agostino & Pearson was used as a normality test, and 

parametric or non-parametric tests were chosen as appropriate. Statistical significance was 

considered for 𝑝 < 0.05. Parametric data are expressed as mean ± standard deviation (SD), 

and non-parametric data are expressed as median and 95% confidence intervals. 

 Results 

4.1 Learning spatial and temporal features: modeling approach 

To take advantage of the temporal content present in RGB-D videos, and to understand if 

and how temporal information can help the learning process, networks with different 

architectures and input representations were studied. 

4.1.1 Past information improves behavioral classification performance 

In particular, the time-window 𝑇 of the sliding input sequences was systematically increased, 

with a fixed temporal stride 𝜏 = 133 ms, to investigate the behavior of networks for increasing 

temporal extents (Figure 5.2A and Supplementary Figure S 5.2). Improvements over 𝑇 were 

observed, where models with a time-window of 10𝜏 (approximately 1500 ms, 11 frames in 

the sequence) achieved the top overall results on the validation set, with a balanced 

accuracy of 80.0% [74.6, 83.0]%. No statistical differences were found when using as input 

a time-window of 4𝜏. The results seem to indicate that the gain of increased time-window is 

clearer for networks with a smaller time-windows, with a converging trend towards time-

windows above 1000 ms. This is aligned with the timescale for the analyzed animal behavior 

classes (where the timescale for variation is in the order of 1 second) (Figure 5.2B). For 

time-windows smaller than 300 ms, the performance significantly dropped.  
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Figure 5.2 How much temporal information does the network need for rodents’ 

behavioral learning? A. Results using single-branch architecture of varying temporal 

extents. Left: Overall balanced accuracy (bacc) for increasing temporal extents. Right: F1-

score per class. Time window 𝑻 in units of 𝝉 (𝝉 = 133 ms). Data represented as median ± 

95% confidence interval (N = 5 trials). B. Behavioral events’ duration, in milliseconds (ms). 

Data represented as median ± 95% confidence interval. C. Stroboscopic montage in which 

each animal position represents raw depth frames extracted at every 266 ms for 2 different 

walking clips. D. Sample clips with frames extracted at every ~500 ms, for a single grooming 

clip.  
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When no temporal information was taken into consideration, using a model with only one 

input frame, the lowest overall accuracy was achieved, as well as category F1-score, 

showing that not only spatial information within a particular frame may be important but also 

its motion content across different frames. In fact, when performing manual annotations, 

ethologists often need to double-check previous frames to annotate the current one, which 

also seems to happen in these networks. 

Out of all 4 classes, no behavioral event has a monotonic decrease with the increasing 

temporal extent, and overall their recognition seems to benefit from time-windows smaller 

than 1000 ms (category F1-score systematically increasing over 𝑻, until approximately 1000 

ms). This effect is particularly clear during standstill, walking and grooming events, where 

F1-score performance seems to slightly decrease for time-windows greater than 1000 ms. 

In fact, standstill and walking are events that usually last for a shorter period of time, 

compared to other behavioral events, containing approximately 932 [800 – 1000] ms and 

933 [866 - 1000] ms as median duration (Figure 5.2B). For this reason, they do not seem to 

benefit from long time-windows for accurate recognition. Furthermore, walking is the class 

with the lowest overall performance and one possible explanation could be the fact that 

walking is the class containing greater intra-class movement variability (either in terms of 

complexity of geometric shapes, sequences’ durations and movement speeds) (Figure 

5.2C.). The behavioral event that appears to be the most sensitive one to increasing the 

temporal extents is grooming. Using manual annotations given by the ethologists, this action 

is typically composed of several stationary periods interspersed with shorter periods of 

movement, in which the animal changes its position momentarily without leaving the 

grooming event.  Long-term networks, with larger time-windows, can, thus, easily confuse 

grooming with standstill events (not shown), due to this heterogeneity within one single 

grooming sequence (one example is shown in Figure 5.2C., where a sequence of grooming 

frames was sampled at every 500 ms). On the other hand, rearing is the class with the 

highest performance for the different time-windows studied, not seeming to benefit from the 

increase in temporal extents. In fact, this is the less ambiguous behavior in the current 

classification task, because of its easy-to-distinguish geometric shape and lower depth 

values, and usually it is enough to analyze closer frames to confirm it. 
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4.1.2 Short-time scales are the most relevant for the learning process 

Additionally, two variants of network encoder, single- and dual-branch, were systematically 

compared to study the impact of having temporal information of different scales. While in the 

standard single-branch networks the input is a time-sliding sequence with a fixed temporal 

stride between frames, this dual-branch network is fed with input sequences with different 

temporal strides in each pathway, as a way to understand if having multiple time scales 

helps in the learning process. To allow direct comparison, a single-branch architecture, with 

a time-window of 2𝜏 and a temporal stride of 133 ms, and a dual-branch architecture, with 

different frame rate ratios 𝛼 between the short- and long-time scale pathways, were trained 

and validated. The single-branch and dual-branch 𝛼 = 5 appear to have similar overall 

performances (Figure 5.3A), even for per-class recognition; however 𝛼 equal to 10 (which 

means doubling the time-window for that pathway) seems to decrease performance. These 

results are in line with the conclusions of the previous section, where behavior learning does 

not seem to benefit from very distant temporal information (irrelevant frames are being taken 

into consideration, degrading network’s performance). 

4.1.3 Different input sequence’s representations improve networks’ learning 

To further understand whether the temporal extent of video input sequences or their 

sampling frame rate with which the network is fed has more impact on learning rodents’ 

behavior, networks with different temporal strides 𝜏, but a fixed time window 𝑇 =  10𝜏, were 

also compared (Figure 5.3B). Significant improvements were observed when using higher 

frame rates (smaller temporal strides), with an increase of approximately 5% in the overall 

performance (with a frame rate equal to 14 fps, the median balanced accuracy reached 

84.1% [83.0 - 86.2]%). In particular, walking and grooming events greatly benefit from 

increasing the input frame rate. This could indicate that a higher temporal resolution is 

needed to detect movement oscillations inherent to these types of heterogeneous behavioral 

events. 
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Figure 5.3 A. Which time scales are most relevant for the learning process? 

Comparison between architecture with different temporal scales: single-branch and dual-

branch (𝜶 = 𝟓 and 𝜶 = 𝟏𝟎), regarding overall balanced accuracy (bacc), and F1-score per 

class. B. How should time be distributed to increase performance? Comparison 

between different temporal strides 𝝉 between adjacent frames (𝝉 ∈  {𝟔𝟕, 𝟏𝟑𝟑} ms), 

corresponding to approximately 14 or 8 frames sampled per second, respectively). C. How 

much information does the network need to learn? Overall and per-class classification 

performance as function of number of labeled minutes. Data represented as median ± 95% 

confidence interval (N = 5 trials). * 𝒑 < 𝟎. 𝟎𝟓; ** 𝒑 < 𝟎. 𝟎𝟏. Statistical analysis only for overall 

balanced accuracy for the sake of readability. Additional statistical analysis on 

Supplementary Figure S 5.3. 

As part of the networks’ systematic study, the effects of input resolution and input depth 

encoding were also examined. The highest resolution (256x256) achieved the best results, 

with an overall performance of 85.9% [82.8 – 86.6]%. All behavioral events seem to benefit 

from increased resolution, in particular grooming, with an increase of approximately 44% 

over the lowest resolution (Supplementary Figure S 5.4A). When changing input depth 

encoding, networks trained with raw depth frames outperformed any other depth encoding 

techniques, with surface normal inputs reporting the worst performance, yielding an overall 

accuracy of 71.8% [60.9 - 75.8]% (Supplementary Figure S 5.4B and C).   
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4.1.4 High performances achieved with a reduced training dataset 

In order to determine the approximate amount of annotated training data required for good 

network performance, the size of the training set was systematically varied (Figure 5.3C). 

As expected, overall performance increases for increasing number of training images. Even 

10k labeled frames (approximately 21 mins of labeled data) were enough to achieve a good 

generalization, above 70%, with performance degradation in walking and grooming events. 

In fact, the effect of changing training size is most significant in these classes, where 

increasing 20 mins of annotated data leads to a gain of almost 45% in per-class 

performance. Peak performance was reached with 30k training examples (corresponding to 

approximately 1hour of labeled data). 

4.1.5 Behavior is accurately detected in unseen depth videos 

The behavior of the network against a completely unseen testing set is the ultimate study to 

quantify recognition performance and generalization capability of the model (Figure 5.4A). 

After being trained with the best set of parameters, the model achieved an overall accuracy 

of 82.2 % [78.5 – 83.9]%. Together with the ethograms automatically generated (Figure 

5.4B), these results indicate that the proposed automated classification method captured 

the overall patterns of behavior in the new videos. 

Regarding per-class performance, rearing is the behavioral event with the highest 

performance, attaining 87.2% [86.0 – 91.1]% F1-score, in accordance with previous results. 

Also, walking periods belong to the most misclassified behaviors, which are occasionally 

classified as standstill events (example in Figure 5.4A), given frames’ heterogeneity on 

shape and speed. 
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Figure 5.4 How does the best network behave for an unseen test set? A. Example of 

normalized confusion matrix for a detailed analysis of automated behavior recognition 

errors, and corresponding F1-scores for each class. B. Example of ethogram for a 

comparison between automated model’s detection (orange) and manual annotation (blue), 

over 5 mins of testing video. 

4.2 Automating closed-loop control of behavioral mazes: feedback approach 

4.2.1 Closed-loop system achieves low-latency feedback based on animal 

behavioral/tracking patterns 

In order to create a system capable of controlling a behavioral task based on animal 

behavior/position, it is necessary to close the loop between automatic detection of 

behavioral events and experimental operant conditioning hardware. A control platform, 

combining depth-sensor camera, computer and Arduino microcontroller was constructed to 

allow mapping of input-output control signals using the current deep learning detection of 

animal behavior and position. To demonstrate the applicability of the closed-loop framework 

in triggering signals based on animal behavior, an experiment was designed in which four 

actuators (in this case, LEDs) were turned on when the rat performed one of the four 
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behavioral events: standstill, walking, rearing and grooming. The behaviors and tracking 

positions were automatically detected by previously trained deep networks, that, together 

with input signals coming from different sensors, are sent to the Arduino board to control the 

output devices (Figure 5.5C). This setup achieved delays from image acquisition to detecting 

the behavior+tracking position (image-event delay) as fast as 28.9 ms [26.95 – 31.86] ms, 

for an input resolution of 128x128 (Figure 5.5A). For larger images (256x256), the delay 

increased about 8.9% (full results from additional configurations can be found in Figure 

5.5A). The proposed system, with the advanced hardware configuration (GPU settings) and 

for the smaller resolution, reached a performance time of 32.9 ms [32.8 – 34.9] ms from 

predicting one behavioral event+tracking position to the next one (event-event delay), 

including Arduino output generation, frame acquisition and processing, and 

behavior/tracking position detection. Finally, sending the signal to the Arduino board and 

sending back the signal to the computer took an additional 0.457 ms [0.457 – 0.460] ms, 

when compared to just turning on the LED – event-LED delay (0.914 ms [0.913 – 0.914] 

ms). Thus, the Arduino response is not constraining the runtime from event detection in one 

frame to the next frame, and it can be almost entirely attributed to intrinsic camera frame 

rate, behavior/tracking detection and additional processing.  

4.2.2 User-interface allows end-to-end control of behavioral experiments 

Acknowledging the importance of embedding all algorithms in a user-friendly application 

suited for research environments, we developed a full-featured, easy-to-use and freely 

available software interface (Figure 5.5B), requiring no programming by the end-user.  

Behavior classification and/or tracking are performed using different available methods, 

chosen by the user, and detected using uploaded trained models. The GUI provides online 

information regarding hardware modules states, animal’s behavior and position, allowing full 

control of the entire system. In particular, the state of 4 sensors and 4 actuators are updated 

in real-time, in which a LED-type icon is turned on upon the first image in which a behavioral 

pattern was detected, and subsequently turned off upon the first image in which the pattern 

is no longer detected (Figure 5.5C). This allows for a fully closed-loop stimulus’ framework. 

The GUI also includes an option for users to upload an image containing ROIs for a more 

versatile and complete behavioral analysis. All useful information recorded during the 

experiment (depth frames, tracking and behavioral classes’ information with 
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sensors/actuators states for each timestamp) can be exported to a user-defined directory 

for further analysis.  

Overall, a cost-effective and easy-to-setup framework was created. The entire system 

consists of a computer running the GUI, connected to a depth camera (e.g., Intel® 

RealSense Depth Cameras, of ~300 €) and an Arduino (e.g. Mega 250, of ~35 €). Sensors 

and actuators can be directly connected to the Arduino board, and the quantity and type 

depend on each experiment’s goal. The source code of the software, together with the user-

guide manual, list of hardware materials and video examples, are publicly available for 

download at GitHub (https://github.com/CaT-zTools/Deep-CaT-z-Software). 

 Discussion 

We have presented a fully integrated framework that can provide real-time feedback based 

on automated rodents’ behavior classification and tracking position, using specialized deep 

Neural Networks (NN) to extract information from frames acquired with depth-sensing 

technologies. 

With the developed algorithms, we demonstrate that cutting-edge deep learning models can 

be used to learn features from depth video sequences, without the need for feature-

engineering approaches. In fact, this is one of the main reasons why deep learning-based 

methods can be more powerful than conventional behavior classification ones, avoiding user 

bias in the learning process and allowing for more easily tunable and generalizable systems. 

This is particularly important in basic research where environmental setups or animals’ 

appearance/strains may be changed depending on the objectives of each experiment and 

yet it is possible to successfully apply the same methods (Anderson & Perona, 2014; M. W. 

Mathis & Mathis, 2020). 

Furthermore, the capabilities of these deep learning networks were extended to learn feature 

representations exclusively from depth information. Although several deep learning-based 

studies have been published using depth frames for detecting human behavior, depth 

information is usually incorporated using multi-branch architectures, combining color and 

depth inputs from multiple streams for motion capture (Elboushaki, Hannane, Afdel, & Koutti, 

2020; Singh, Khurana, Kushwaha, & Srivastava, 2020; L. Zhang et al., 2017).  

https://github.com/CaT-zTools/Deep-CaT-z-Software
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Figure 5.5 How to close the loop for behavioral experiments? A. Latencies, in 

milliseconds (ms), from image acquisition to obtaining an event (image-event) and from the 
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last event detected to the current event detected (event-event), using CPU or GPU 

processing. Latencies were estimated for automated predictions of behavior only (B), 

behavior and tracking using the background subtraction method (B + T back), and behavior 

and tracking using a deep model-based method (B + T deep). The width of the violin plots 

represents the probability density of the data, with the median and 95% confident interval 

represented as red and black dashed lines. B. Example of a rearing followed by a walking 

sequence, with corresponding LED status (as it appears in the graphical user interface), 

from the test video sequence. Image timestamps in seconds are presented at the bottom of 

each image. C. Graphical user interface for automating real-time closed-loop behavioral 

experiments. 

Here, we focused on depth images and how information can be successfully retrieved for 

animal behavior extraction. Analyzing behavior with only depth information has four 

important advantages. Since these frames are acquired by infrared sensors, videos can be 

recorded in dark conditions (where color information is useless) without disrupting animals’ 

natural behavior (mainly in nocturnal animals, such as rodents). Also, with this technology, 

color contrast between the animal and the background is no longer a problem for 

detection/tracking purposes. Conventional methods usually use markers or methods 

dependent on animals’ color coating (Hong et al., 2015; Machado et al., 2015; Ohayon et 

al., 2013; Pérez-Escudero et al., 2014; Unger et al., 2017), which can be avoided using 

depth-sensing information. In addition, 3D information can be retrieved from a single 

camera, and so setting complicated stereo-vision setups is no longer needed. Finally, to 

further facilitate the integration of computational methods in the laboratory and industry 

fields, low-cost acquisition devices are required, combined with good performance and, at 

the same time, quick data acquisition and low computational cost. Therefore, the use of 

depth technology, such as Kinect-based cameras, showed to be an alternative strategy to 

be applied in behavioral experiments. Since there are no state-of-the-art studies exploring 

the use of depth information in the context of feature extraction for animal behavior 

classification, we also perform a systematic study to understand the best ways to represent 

network inputs and how we can improve models’ performance. By using deep learning 

networks that incorporate spatiotemporal features, it was possible to conclude that temporal 

information is very relevant for learning animal behavioral patterns, especially in some 

classes (standstill and walking, which contain a strong dynamic component). These results 

are in agreement with the fact that temporal information of video data can provide additional 
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clues hidden in temporally neighboring frames for the recognition of actions/behaviors or 

segmentation of frames (Elboushaki et al., 2020; Simonyan & Zisserman, 2014). By using a 

fixed temporal stride between input frames of approximately 133 ms, the performance of 

networks is significantly improved for input video sequences with a time-window of 

approximately 1.5 seconds. As expected, some animal behaviors are of very short duration, 

with rapid transitions, sometimes imperceptible by humans, and for this reason, deep NN 

for animal behavior classification must be carefully designed to support finer temporal 

analyses. In addition, results showed that neither long-time scales nor multi-scales seemed 

to be advantageous for detecting animal behavior. One possible explanation is that long-

time scales include frames too far apart in time, containing irrelevant information to learn 

useful feature representations for the current frame. Although with our system we didn’t see 

advantages in the multi-scale analysis, we hope that it can be further explored in the context 

of animal behavior. For example, in a system with higher frame rates, it may be useful to 

also explore shorter time scales.  

Along with the fact that higher resolutions and higher sampling rates in raw frames (without 

preprocessing or encoding) significantly improve the performance of proposed deep 

networks, the results give an insight on how to build, train and fine-tune networks to better 

learn rodent behavior using depth-sensing information. Finding that ~21 mins of annotated 

videos are already sufficient to achieve high generalization rates strengthens the 

contributions of the proposed system since a core goal of automating the analysis of 

behavior is reducing the manual annotation effort. In this sense, once the deep learning 

model is trained, the system is ready to assist in any behavioral experiment without 

additional user-time, allowing for more reproducible results and reducing variability imposed 

by inter-human annotations. Recent works have made some progress toward the goal of 

supervised classification of rodents’ behavior using deep learning techniques to improve 

conventional feature-engineering-dependent methods. M. Marks et al. (2020) developed 

SIPEC:BehaveNet for behavior recognition, which was tested in a dataset acquired with a 

conventional camera and containing freely behaving mice whose behavior was labeled with 

only 3 classes (Sturman et al., 2020). Although claiming superior performance to Sturman 

et al. (2020) proposal, SIPEC:BehavNet achieved lower overall performances for supported 

rearing and grooming events (mean ± standard error of the mean: 0.84 ± 0.04 and 0.49 ± 

0.21, respectively), when compared to what we were able to report here. DeepEthogram is 

another recent tool for frame-based classification of animal behavior in RGB videos 
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(Bohnslav et al., 2021). High overall performances (overall accuracy) were obtained for 

datasets containing mice behavior with more than 4 classes. However, performance per-

class (F1-score) is substantially impaired for some behaviors, in particular, the rarest and 

most challenging behaviors in the dataset (average F1-score below 70%). This shows 

evidence that attention must be paid to metrics performance when dealing with highly 

unbalanced datasets. Overall, both methods fall behind some strengths that our method 

shows, needing more than 70 mins of labeled data to achieve a comparable performance 

(overall accuracy above 70%) and not being suitable for natural environmental conditions in 

the analysis of rodents’ behavior.  

In order to improve the potential of the proposed system and create an integrated tool that 

would boost future development in understanding behavioral patterns and neuronal activity 

relationship, deep learning-based detection of behavior was used to provide event-triggered 

feedback in real-time. The loop between animals’ maze, depth frames acquisition, and 

automatic streaming of behavioral patterns was closed using input and output devices 

connected to an Arduino microcontroller. From detecting one behavioral event to the next 

event in a consecutive frame, the system was able to achieve real-time feedback control, 

with latencies of less than 33 ms with GPU-based configuration. These results are below 

the frame rate of the camera used (which typically is reduced to ~15 fps in low light 

conditions), and so, in theory, more powerful cameras could be tested. Research on 

developing real-time applications for neuroscience research has been advancing in recent 

years. However, efforts have essentially been directed towards tools to detect animal’s 

posture, rather than classifying directly the behavior. Both Forys et al. (2020) and Schweihoff 

et al. (2021) developed software and hardware to enable real-time estimation of mice 

posture, and achieved latencies of 30ms using comparable computational configurations, 

from frame acquisition to detecting a posture of interest (slower image-event delay than what 

we were able to achieve) (Forys et al., 2020; Schweihoff et al., 2021). Kane et al. (2020) 

reported higher computational performances for the same task, with a 16ms delay from 

image-LED event (for equivalent image resolution and hardware configurations) . However, 

it is worth emphasizing that our 30-fps figure is achieved when both behavior classification 

and tracking position are available, which gives the tool versatility for different research 

applications. To the best of authors’ knowledge, Nourizonoz et al. (2020) were the first to try 

to detect animal postures as well as simple behaviors in naturalistic environments, using 

multiple cameras with infrared-based technology. Real-time detections were achieved to 
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enable reinforcing a simple behavior (rearing) by operant conditioning. Although with high 

performance in naturalistic environments and taking the first steps in moving forward to 

correlate posture with neural circuits by optogenetics stimulation, the detection of a single 

behavior from posture was achieved using a set of geometrical rules. This approach may 

not be sufficient to classify more sophisticated behaviors, or computationally heavier when 

classifying multiple behaviors.  

A key aspect of the design of the whole system is its versatility and how different modules 

can be adapted to different research goals. In particular, several tracking algorithms were 

made available, depending on model’s performance and computational power. This 

flexibility may be important when real-time detection is not required but offline high-

performance detection is needed. Also, many sensors and actuators can be easily adapted 

to the Arduino microcontroller to finer control of animal’s maze, and the automation control 

code is prepared to be further extended. Even so, recent advances in multiple animal 

behavior analysis and tracking (de Chaumont et al., 2019; Pérez-Escudero et al., 2014; 

Romero-Ferrero et al., 2019) could be included to further enhance this versatility. System 

adaptation is, in theory, straightforward, however, the triggers for feedback control need to 

be carefully designed when dealing with complex social behavior. Furthermore, the list of 

behavioral events/classes can be further extended. Here, the potential of deep NN can be 

explored, since they are able to extract relevant features without the need for feature 

engineering, unlike conventional machine learning methods. 

Taking all the contributions together, we believe that the flexibility and yet easy-to-use 

characteristics of this real-time feedback framework may open the door to further studies 

and broader applications, allowing more high-throughput and rigorous behavioral 

experiments while less invasive for laboratory animals. 

 Conclusions 

We present a versatile and real-time software solution using deep learning techniques on 

depth video sequences for the automatic detection of behavioral events. Using feature 

extraction on depth information introduces a new paradigm in behavioral neuroscience by 

allowing recordings and analysis of natural animals’ movements with markerless and 

contrast-free deep learning methods. When combined in a feedback control system, it 

automates communication using closed-loop signals directly dependent on current detected 
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behavioral patterns. By creating conditions for low-cost, high-throughput analysis and 

reproducible quantitative measurements of animal behavior experiments, we anticipate that 

this tool will contribute to faster and more reliable investigation in ethology and neuroscience 

fields.  
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 Supplementary Information 

7.1 Extended Methodology 

7.1.1 Semantic segmentation performance using U-Net and U-Net-ConvLSTM 

networks 

 

Supplementary Figure S 5.1 Semantic segmentation results of U-Net-based networks. 

A. Networks’ performance in terms of Dice coefficient for different architectural parameters. 

Left: number of convolutional layers per block; Right: networks without (w/o) and with (w/) 
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dropout layer at the end of the encoder. The traditional U-Net architecture was extended by 

placing a ConvLSTM layer at different positions in the network (U-Net-ConvLSTM), in order 

to find which position is most suitable for the depth images segmentation task (following 

Pfeuffer, Schulz, and Dietmayer (2019) methodology). U-Net-ConvLSTM version 1 (v1) – 

ConvLSTM layer placed between the encoder and the decoder. U-Net-ConvLSTM version 

2 (v2) – ConvLSTM layer placed in the end of the network. U-Net-ConvLSTM version 3 (v3) 

– a combination of the last two versions. Data represented as median ± 95% confidence 

interval (N = 2 trials). B. Sample clips representing original (top) and predicted segmentation 

masks by the U-Net (middle) and U-Net-ConvLSTM v3 (bottom) networks, for a time window 

of 500 ms. Black pixels represent the background predictions and white pixels represent 

foreground (animal) predictions. During the inference, the presence of ConvLSTM layers 

improves the segmentation masks over time. 

7.2 Extended Results 

7.2.1 Past information improves behavioral classification performance 

 

Supplementary Figure S 5.2 How much temporal information does the network need 

for rodents’ behavioral learning? Stroboscopic montages in which each animal position 

represents raw depth frames extracted at every 133 ms, for 2 different walking clips and 

different time windows 𝑇, in units of 𝜏 (𝜏 = 133 ms). Each stroboscopic image illustrates the 

depth video sequence input fed to the deep learning network for different values of 𝑇. 
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7.2.2 High performances achieved with a reduced training dataset 

 

Supplementary Figure S 5.3 How much information does the network need to learn? 

Extended statistical analysis for per-class classification performance as function of number 

of labeled minutes. Data represented as median ± 95% confidence interval (N = 5 trials). 

* 𝑝 < 0.05; ** 𝑝 < 0.01. 

7.2.3 Input resolution improves behavioral classification performance 

As part of the networks’ study, the effect of input resolution was also examined, keeping the 

single-branch architecture with default parameters (Supplementary Figure S 5.4A). As 

expected, the highest resolution (256x256) achieved the best results, with an overall 

performance of 85.9% [82.8 – 86.6]%. All behavioral events seem to benefit from increased 

resolution, in particular grooming, with an increase of approximately 44% over the lowest 

resolution. The fact that grooming events seem to need both higher temporal and spatial 

resolutions makes it the most sensitive and complex behavior to recognize. 

7.2.4 Raw depth video inputs are the most informative for the learning process 

Depth data encodes distance from the sensor to the captured scene and the information of 

each pixel is of a different nature than the RGB counterparts (originally directly used as input 
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for the CNNs). Thereby, the questions that arise are will CNNs learn as effectively when 

using raw depth images without any encoding? If not, how should a depth image be encoded 

to be used as inputs in CNNs so that it can learn more meaningful features for rodents’ 

classification challenge? Networks were then trained with varying input depth encoding 

(Supplementary Figure S 5.4B). Regarding per-class recognition, the negative effect on 

network’s learning when using surface normal encoding is even more pronounced. One 

possible explanation is that when using a colorization method based on the calculation of 

surface normal, the reflexes on the walls of the open-field (OF) during, for example, 

grooming events (which are always near OF’s periphery) are more visible and may be 

interfering with networks’ learning. Sensitivity analysis can be used to identify the most 

relevant input features during the learning process, by calculating heatmaps from pixel-wise 

normalized gradients (derivative of class model’s predictions with respect to pixel values). 

This impact on model’s prediction is exemplified on Supplementary Figure S 5.4C, where, 

by using surface normals, periphery pixels seem to have a stronger influence on model’s 

prediction (gradient colored as black pixels), when compared to pixels from networks trained 

with raw depth frames (gradient colored as green pixels). Overall, behavioral learning does 

not seem to benefit from any of these typical depth input representations. 
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Supplementary Figure S 5.4 Which input sequence representation is most informative 

for network’s learning? A. Recognition performance of the single-branch architecture with 

different input resolutions. * and ** denote statistical significance when compared to the 

lowest resolution (64x64). B. Different depth encodings and corresponding performance, 

when compared to raw depth input frames. Data represented as median ± 95% confidence 

interval (N = 5 trials). * 𝒑 < 𝟎. 𝟎𝟓; ** 𝒑 < 𝟎. 𝟎𝟏. C. Sensitivity analysis for different depth 

encoding methods (two different frames are shown), with gradients in green or black. 
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1. Main Conclusions 

Animal behavioral experiments are a fundamental mainstay in neuroscience research, 

where behavioral patterns’ characterization is used to assess the effects of pharmacological 

manipulations, rehabilitation protocols, neurological diseases, etc. (Berman, 2018; Krakauer 

et al., 2017). Unfortunately, animal behavior experiments are still extremely complex to 

analyze and often end up relying on human judgment for manual quantification and 

classification, which brings strong subjectivity, high costs, and reduced reproducibility. 

Computational ethology has appeared to automate behavior analysis and ultimately 

accelerate the development of novel therapies for prevalent and devastating human 

diseases, such as neurodegenerative diseases, cancer, and mental illnesses (Anderson & 

Perona, 2014; Egnor & Branson, 2016). Although solutions already exist to improve the 

conventional manual methods for behavior analysis through machine vision and machine 

learning techniques, these approaches are still insufficient for a complete and effective 

classification of animal behavior (Egnor & Branson, 2016; M. W. Mathis & Mathis, 2020; von 

Ziegler et al., 2021; Zilkha et al., 2016). Aiming to address some important unsolved 

challenges in computational ethology, this thesis proposes different machine vision and 

machine learning-based techniques to probe and analyze animal behavior in an automated 

and reproducible way. 

Behavioral researchers, along with computational neuroscientists, have developed over the 

last years an immense array of experimental methods to study complex behaviors for 

different applications (analysis of locomotion, anxiety, depression, cognitive functions, 

animal welfare, etc.). However, a limitation shared among most of these experimental 

paradigms is the study of behavioral patterns in very restricted environments (e.g., with static 

backgrounds), or using invasive or stressful techniques. Besides diverging from 

ethologically-relevant behaviors, even the mildest disturbances in environmental conditions 

can impact on behavioral outcomes (Reardon, 2016). Alternative non-invasive methods that 

allow capturing animal behavior in enriched and dynamic environments were presented in 

CHAPTER 3. Here, the potential of thermal infrared cameras was initially studied for the 

overall assessment of mean body surface temperature (MBST) in freely-moving mice, and 

dedicated software was developed for thermal image analysis. We showed that 
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thermography allows for non-invasive thermal assessment of laboratory animals, avoiding 

the effect of handling stress on animals’ physiology or behavior. 

Depth cameras with infrared technology are another interesting option over conventional 

optical sensors, and their applicability in capturing animal behavior under naturalistic lighting 

conditions was first presented in CHAPTER 4. The proposed system allows segmentation 

and tracking in dark/low contrast conditions: even when the background color matches the 

animal’s fur (impairing color segmentation), segmentation in depth is still possible. Besides 

that, machine vision-based methods for depth segmentation in enriched and dynamic 

environments were proposed and tested for a freely-walking rat in an open-field setup. 

Another important step was taken towards improving the reproducibility of behavioral 

experiments by creating a benchmark dataset that could be used by the scientific community 

(CHAPTER 4). In fact, we introduced the first published RGB-D rat behavioral dataset, which 

can be further used to train and test automatic behavior recognition systems in rodents, and 

improve existing machine learning-based methods in the computational neuroscience field.  

The precise estimation of animals’ pose in two-dimensional (2D) video-analysis systems is 

very limited, impairing detailed pose characterization, and, later, accurate and precise 

behavior classification. Although some studies have therefore started to address the 

problem in three-dimensions (3D), limitations such as the use of markers to distinguish the 

animals (de Chaumont et al., 2019; Hong et al., 2015), human interventions (de Chaumont 

et al., 2019; Matsumoto et al., 2013), or equipment and setup of high cost (Dunn et al., 2021; 

Günel et al., 2019; Matsumoto et al., 2013), makes these solutions far from being completely 

integrated into a laboratory environment. With the fundamental study presented in 

CHAPTER 4, 3D segmentation and tracking of multiple body parts were made possible 

thanks to the combination of depth-sensing technology and machine vision techniques. Five 

anatomical points were detected (nose, head, body center (centroid), tail-base and tail-end), 

using scale-free geometrical constraints/properties. Semantic segmentation of animals’ 

whole-body using depth information was further improved with the methods presented in 

CHAPTER 5, using deep learning techniques to improve model’s performance and avoid 

human interventions during the feature-engineering process. Here, the traditional U-Net 

architecture (Ronneberger, Fischer, & Brox, 2015) was evaluated in its ability to semantically 

segment purely depth videos. Also, this architecture was extended by placing a 

Convolutional Long Short-Term Memory (ConvLSTM) layer at different positions in the 

network (Pfeuffer et al., 2019), to both take advantage of the temporal information present 
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in contiguous depth frames and find which layer’s position is most suitable for the depth 

segmentation task. 

To create integrated systems in which it is possible to perform multiple tasks for different 

behavioral experiments, two computational solutions were created (described in CHAPTER 

4 and CHAPTER 5). These solutions, in addition to the segmentation and tracking of the 

animal, allow performing automatic classification of behavioral patterns. This outcome is 

important when tracking alone is not enough for the complete characterization of animals’ 

behavior. Furthermore, the ablation studies performed for the automatic classification task 

unraveled important clues on how machine learning classifiers and deep learning networks 

should be constructed to improve learning performance of rodents’ behavior. Here, besides 

spatial information encoded in depth frames, temporal information showed to be crucial for 

the learning process, either in terms of temporal windows used as networks’ inputs or in the 

frame rate of the input video sequences. In this sense, with this new information, studies 

that intend to explore the dynamics of laboratory animals’ behavior must bear in mind its 

temporal characteristics and adapt their models accordingly to gain further useful insights 

on behavioral patterns of interest. The features of the computational tool initially presented 

in CHAPTER 5 have been extended to increase the range of applications in behavioral 

experiments. Whether the objective is to control behavioral maze modules, such as feeders 

or levers, or real-time drug delivery protocols, the proposed tool now allows for real-time 

recognition of animal behavioral patterns and feedback control of sensors/actuators in any 

maze for high-throughput behavioral experiments. An Arduino microcontroller was used as 

the interface board between the computer and any hardware modules, and a communication 

protocol was defined to allow sending positional, behavioral, and modules status information 

between the computer and the microcontroller. 

In order to facilitate integration in laboratory environments, the three computational 

solutions, described in CHAPTER 3, CHAPTER 4, and CHAPTER 5, were designed to be 

easy to install (only the computer and the infrared camera are necessary; in the case of the 

feedback control system, a connection of the control modules to a microcontroller is 

required), and easy to use (graphical user interfaces (GUI) were carefully designed to guide 

the acquisition and processing, without the need for extra programming knowledge). 

Altogether, they provide tools for analyzing and quantifying animal behavior in an automatic, 

user-friendly, standardized, and reproducible way, all essential characteristics in the context 

of experimental neuroscience.  
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With the promising advances that lie ahead in the coming years, mainly in the fields of 

machine vision and machine learning, behavioral neuroscience is expected to become more 

and more quantitative. In fact, this is the only way to progress as to ensure reproducibility 

and standardization in animal behavioral experiments. This thesis has contributed to the 

computational ethology field with novel tools for the automatic characterization of animal 

behavior. High-throughput behavioral experiments are now possible thanks to the use of 

non-invasive techniques, capable of working in dark environments (such as thermography 

and depth-sensing technologies), as well as in dynamic and enriched backgrounds. 

Behavioral events can be detected using state-of-the-art machine vision and machine 

learning methods and control operant mazes in real-time analysis. Having this in mind, the 

author believes that these computational tools boost subsequent investigations, and 

accelerate the understanding of behavioral mechanisms, either in neuroscience research or 

industrial environments. 

2. Future Perspectives 

Over the last years, the computational ethology field has undergone remarkable advances, 

in particular in the past two years, where a rapid innovation in computational methods and 

techniques has been noted thanks to the integration of deep learning tools in laboratory 

experiments. At the same time, technology has evolved to provide more accurate and 

sophisticated hardware (acquisition sensors, maze modules, graphics processing unit 

(GPU) boards, etc.) that can now be used to acquire and process information in a faster and 

more robust way. When combined, these advances bear the potential not only to provide 

larger scale and standardized automated analysis but also to increase the quality of 

extracted data and to provide unparalleled power to reveal novel patterns and biological 

mechanisms.  

Although the work developed in this thesis addressed some important challenges 

concerning the automatic quantification of animal behavior, some questions were raised that 

still need further attention, as well as new directions for future studies. With the plethora of 

behavioral assays and experimental setups available to analyze animal behavior comes the 

difficulty in creating robust methods both to changes in the environmental conditions 

(background, behavioral apparatus, lighting conditions, cameras, etc.) and to animals’ 

appearance. The generalization capability of the machine learning classifier explored in 
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CHAPTER 4 was tested by using different lighting conditions (dim red light, dim white light, 

and total darkness) and a different apparatus (elevated plus maze (EPM)) for phenotyping 

Wistar and Wistar Kyoto (WKY) rats. Nevertheless, further studies are necessary to extend 

this capability to different animal strains and behavioral apparatus. Besides data 

augmentation, which is a popular strategy to increase the robustness of deep learning 

networks and that was explored in CHAPTER 5, transfer learning is an alternative to improve 

out-of-domain performance. Another advantage of using such techniques is the reduction of 

dataset sizes. This is an important challenge for applying machine learning methods to 

neuroscience since deep learning networks typically require large-scale datasets, which are 

not readily available for laboratory experiments. Semi-, weakly- or self-supervised learning 

are also emerging research directions in machine learning that applied to increase 

generalization even with little data. Recently, such methods have surpassed the 

performance of some state-of-the-art supervised methods in different areas, such as image 

recognition (T. Chen, Kornblith, Norouzi, & Hinton, 2020) and speech processing (Baevski, 

Zhou, Mohamed, & Auli, 2020; Ravanelli et al., 2020), and since they are able to reduce the 

amount of labeled data significantly, they are promising methods to be applied in 

computational ethology (Y. LeCun et al., 2015; von Ziegler et al., 2021).  

Considering the social component of animal behavior, many experiments in neuroscience 

require the detection and measurement of multiple actions and interactions between 

animals. In this thesis, the behavior of a single animal was explored; however, if the objective 

is to quantify social behavior, the proposed methods would have to be further adapted to 

more than one animal. Recently, deep learning approaches have been used to solve the 

multi-object’ tracking task. For that, a methodology followed by C. Romero-Ferrero et al. 

(2019) could be adapted to work with depth-sensing images. For centroid tracking over time, 

the authors used two Convolutional Neural Networks (CNNs) to first detect if each pre-

segmented mask corresponds to a single animal or a crossing, and then to identify each 

individual between two crossings. With this approach, several unmarked animals can be 

tracked at the same time, and such information could then be used to further analysis or 

automatic classification of behavior. An alternative followed by several studies is to apply a 

popular and fast object localization network, You Only Look Once (YOLO) network, for 

multiple animals’ detection (Arac et al., 2019; Z. Chen et al., 2020), and then combine it with 

different pose estimation packages for tracking during social behaviors.  
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Finally, the deep learning approach for automatic classification of behavior brought 

advantages in reducing human interventions and increasing overall performance for the 

classification of 4 classes. Nevertheless, there is still room to extend the proposed set of 

behavioral events. As opposed to the traditional machine learning techniques, deep Neural 

Networks (NN) allow for more versatility both in terms of architecture and optimization, and, 

for that reason, the increasing knowledge on this field will continue to pave the way for an 

improved study of animal behavioral patterns. 
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1. Fundamentals of Time-of-Flight operation system 

Time-of-flight (ToF) cameras provide technology for the acquisition of range information, in 

real-time, into a single and compact device at a low cost. Microsoft Kinect v2 uses this optical 

ToF technology to measure distances and produce, simultaneously, depth maps and RGB 

images. By using a laser or light pulse, it determines the distance measuring the signal time 

of flight between the camera (emitter) and the subject (target), for each point of the image. 

The distance 𝑑 to be measured is proportional to the time travelled by the illumination source 

(E. Lachat et al., 2015), i.e., the phase difference between the radiated and reflected IR 

waves, Δ𝜑, (Hansard, Lee, Choi, & Horaud, 2012) (Figure A 1.1), as follows: 

𝑑 =  
𝑐

2

Δ𝜑

2𝜋𝑓
 (6.1) 

where f denotes waves’ frequency. 

 

Figure A 1.1 Time-of-flight principle for measuring distances: the infrared (IR) wave 

indicated in red is directed to the target object, and the sensor detects the reflected IR 

component. The phase delay between emitted and reflected IR signals is measured to 

calculate the distance. Image adapted with permission from Hansard et al. (2012). 

1.1 Representation of 3D coordinates 

Once the distance to the corresponding point in the scene is calculated using the ToF 

principle, this information can be used to estimate the three-dimensional (3D) structure 
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directly. In order to model the real space, it is necessary to calculate the 3D coordinates of 

each point in the scene.  

The first step is to calculate the depth map from the distance map, provided by the ToF 

sensor. According to Figure A 1.2, given the specific point P, its distance d from the camera 

center C (outputted by the ToF sensor), the focal length 𝑓𝑙 of the camera and the distance x 

from the principal point to point P projected on image plane, the distance z from camera 

center to point Pc can then be calculated. Distance z is the desired output value to populate 

the depth map, extracted from the RGB-D sensor. In this sense, each pixel depth value 

represents the distance to the plane that contains the object point and is perpendicular to 

camera principal axis: Pc - C line.  

 

Figure A 1.2 Representation of depth calculation. P – point in scene; d – distance from 

the camera center C; 𝒇𝒍 – focal length of the camera; x – distance from the principal point to 

the projection of P on the image plane, Pc; z – distance from the camera center to Pc. Image 

adapted with permission from Valgma (2016). 

First, it is necessary to calculate the distance 𝑙 from C to P projection on image plane:  

𝑙 =  √𝑓𝑙
2 + 𝑥2 (6.2) 
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And finally, distance z can be obtained as follows: 

z = d
𝑓𝑙

𝑙
= d 

𝑓𝑙

√𝑓𝑙
2 +  x2

 
(6.3) 

In order to describe the mathematical relationship between the coordinates of a 3D point 

and its projection onto the image plane, and, ultimately, to calculate the true 3D coordinates 

for the desired points, the standard pinhole camera model can be used in this type of 

camera. This model can only be used as an approximation of the 2D image from a 3D scene, 

since it does not take into consideration geometric distortions or blurring effects. Lenses 

aberrations’ analysis will be addressed in Section A 1.3. 

The pinhole camera model is based on the representation illustrated in Figure A 1.3, where 

𝑑𝐶 is the distance between the center of projection and the image plane, principal axis 

corresponds to the line starting from the center of projection and perpendicular to the image 

plane and the principal point is the intersection between principal axis and image plane.  

 

Figure A 1.3 Standard pinhole camera model. 𝒅𝑪- distance between center of projection 

and the image plane; (u, v) – pixel coordinate system; P(X ,Y, Z) - 3D coordinates of point 

P; p(x, y) – coordinates of point P on the camera image plane. Image adapted with 

permission from Valgma (2016). 
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If (X,Y,Z) are the 3D coordinates of point P, the corresponding coordinates on the camera 

image plane (p(x,y)) are given by: 

𝑥 = 𝑑𝐶

𝑋

𝑍
        𝑦 = 𝑑𝐶

𝑌

𝑍
 (6.4) 

In order to transform these real world coordinates into pixel coordinates, in the pixel 

coordinate system given by (u,v) a scale factor, pixels per millimeter, should be given: (ku, 

kv). Also, the coordinates of the principal point in the pixel coordinate system are required: 

(-x0, -y0). In this sense the coordinates of point p can be calculated in the pixel coordinate 

system: 

𝑢 =  𝑘𝑢(𝑥 + 𝑥0) =  𝑘𝑢 𝑑𝐶  
𝑋

𝑍
+  𝑘𝑢𝑥0 (6.5) 

𝑣 =  𝑘𝑣(𝑦 +  𝑦0) =  𝑘𝑣 𝑑𝐶  
𝑌

𝑍
+  𝑘𝑣𝑦0 (6.6) 

In matrix form, it can be written as follows: 

(
𝑢
𝑣
1

) =  (
𝑘𝑢 𝑑𝐶 0 𝑘𝑢 𝑥0

0 𝑘𝑣 𝑑𝐶 𝑘𝑣 𝑦0

0 0 1

)  (
𝑋′
𝑌′
1

) = 𝐾𝑃′ (6.7) 

where the coordinates of point P were normalized, by dividing them with its Z coordinate: 

𝑃′ =  
𝑃

𝑍
=  (

𝑋/𝑍
𝑌/𝑍

1

) =  (
𝑋′
𝑌′
1

) (6.8) 

The set of values in the matrix K are commonly called camera intrinsic parameters, and are 

usually denoted as: 

Focal length: 𝛼𝑢 =  𝑘𝑢𝑑𝐶   , 𝛼𝑣 =  𝑘𝑣𝑑𝐶 

Coordinates of the principal point: 𝑢0 =  𝑘𝑢𝑥0  ,   𝑣0 =  𝑘𝑣𝑦0 

These parameters can be found out by calibration, and, in the case of Microsoft Kinect 

sensors, the software development kit (SDK) already provides this information. Finally, 

considering that u, v, K and Z are known for point P, the coordinates X and Y can be 

calculated: 
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𝑃 = (
𝑋
𝑌
𝑍

) =  𝑍 𝐾−1  (
𝑢
𝑣
1

) (6.9) 

SDK for Microsoft Kinect sensors provides a look-up table of (𝛾𝑢, 𝛾𝑣) values for each pixel 

(u, v): 

𝑋 =  𝛾𝑢. 𝑍      𝑌 =  𝛾𝑣 . 𝑍 (6.10) 

And so, the x- and y- coordinates can be easily obtained, for the perfect pinhole camera 

model (Valgma, 2016).  

1.2 Alignment of depth and color sensor 

The correspondence between RGB and depth sensors can be done by a transformation 

matrix T, since depth and color information are captured by different fixed sensors, and there 

is a rigid transformation from depth coordinates to RGB coordinates. In this sense, and since 

RGB camera can also be modelled as a pinhole camera, the expression that calculates the 

coordinates of P in RGB camera coordinate system is given by (Changhee Kim, Yun, Jung, 

& Won, 2015; Valgma, 2016): 

𝑍𝑐𝐾𝑐
−1 (

𝑢𝑐

𝑣𝑐

1
) =  (

𝑋𝑐

𝑌𝑐

𝑍𝑐

) (6.11) 

where 𝑋𝑐 , 𝑋𝑐  and 𝑋𝑐 are point P coordinates in RGB camera coordinate system, and 𝐾𝑐 are 

the camera intrinsic parameters matrix for RGB camera.  

The correspondence can, then, be obtained as follows: 

𝑇 (
𝑋
𝑌
𝑍

) =  (

𝑋𝑐

𝑌𝑐

𝑍𝑐

) (6.12) 
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Using depth coordinates expression, the equation that describes the mapping between 

depth and color camera can be written as: 

𝑇 𝑍 𝐾−1  (
𝑢
𝑣
1

) = 𝑍𝑐𝐾𝑐
−1  (

𝑢𝑐

𝑣𝑐

1
) (6.13) 

where all parameters can be obtained by calibration.  

Similarly, Microsoft Kinect SDK provides mapping functions to simplify depth and color 

registration (Changhee Kim et al., 2015; Valgma, 2016). 

1.3 Distortion analysis 

The perfect pinhole camera model is usually updated to take into consideration lenses 

distortion, and the importance of this adaptation increases from the center of the image to 

the edges as lens distortion effects increase. The most common and significant type of 

distortion is called radial distortion, which can be further classified as barrel distortion or 

pincushion distortion (Figure A 1.4).  

 

Figure A 1.4 Radial distortions: pincushion (left) and barrel (right) distortions, when 

compared to no distortion (middle). 

Since it is primarily dominated by low order radial components, radial distortion can be 

corrected using relative simple models, such as Brown’s distortion model. This model can 

be used to corrected for both radial and tangential distortions, but for the particular case of 

RGB-D images generated by Microsoft Kinect sensors, it is only necessary to consider radial 

distortions.  
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In this sense, the correction of the ideal (distortion free) coordinates ((x,y)) using Brown’s 

model is given by: 

𝑥𝑑 = 𝑥. (1 + 𝑘1 𝑟2 + 𝑘2 𝑟4 + 𝑘3 𝑟6) (6.14) 

𝑦𝑑 = 𝑦. (1 + 𝑘1 𝑟2 +  𝑘2 𝑟4 +  𝑘3 𝑟6) (6.15) 

where (𝑥𝑑, 𝑦𝑑) are the real observed coordinates, 𝑟 =  √𝑥2 +  𝑦2, and 𝑘1, 𝑘2 and 𝑘3 are radial 

distortion coefficients. Microsoft Kinect SDK provides the first three coefficients for radial 

distortion but, as far as the author knows, it is not clear if they are automatically used to 

correct for distortion (Valgma, 2016). 
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2. Fundamentals of Support Vector Machines 

Support Vector Machine (SVM), pioneered by Vapnik (1999) is a discriminative and binary 

classification method that works by optimizing a linear decision surface based on the 

concept of risk minimization. In this margin-type classifier, for a linearly separable dataset, 

the key idea is to find the optimal decision boundary (hyperplane) that maximizes the gap 

(concept of geometric functional margin) to the classes’ closest points (support vectors). The 

boundary between classes is then obtained by a weighted combination of support vectors. 

Formally, the binary dataset of N samples used to train the SVM algorithm is represented 

by 𝑋 = {(𝑥𝑖, 𝑦𝑖)| 𝑥𝑖  ∈  ℝ𝑚, 𝑦𝑖  ∈ {−1, 1}}
𝑖=1

𝑁
, where 𝑥𝑖 corresponds to the i-th data point in the 

m-dimensional real space ℝ𝑚, and 𝑦𝑖  ∈ {−1, 1} represents its class label from one of two 

classes. For a linearly separable training dataset, the linear decision surface can then be 

formalized as: 

𝑤 ∙ 𝑥 + 𝑏 = 0 (6.16) 

where w is the normal vector to these planes and b determines their location relative to the 

origin. The optimization problem consists in finding the hyperplane, parametrized by 

Equation (6.16). Geometrically, the optimal hyperplane maximizes the sum of the distances 

to the closest positive and negative training samples (this sum is referred to as the margin 

of the separating hyperplane) (Figure A 2.1). The problem of maximizing the margin 
2

‖𝑤‖
 is 

equivalent to the problem of minimizing 
1

2
‖𝑤‖2 subject to constraints that ensure class 

separability (all training samples 𝑥𝑖 are correctly classified). This quadratic optimization 

problem, denoted as hard-margin SVM formulation (Figure A 2.1A), can be expressed as 

follows: 

min
𝑤,𝑏

1

2
 ‖𝑤‖2 

(6.17) 

subject to 𝑦𝑖  (𝑤 ∙ 𝑥𝑖 + 𝑏)  ≥ 1,   𝑖 = 1, … , 𝑁 

When the training samples are not linearly separable (e.g., noisy data, outliers), slack 

variables 𝜉𝑖 can be introduced to the constraints to allow misclassification of difficult or noisy 

data points and the violation of the separation constraints to a certain degree. 
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In this case, the objective function, known as soft-margin linear SVM formulation (Figure A 

2.1B), can be described as follows: 

min
𝑤,𝑏,𝜉

 
1

2
 ‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖

     
(6.18) 

subject to 𝑦𝑖  (𝑤 ∙ 𝑥𝑖 + 𝑏)  ≥ 1 − 𝜉𝑖, 

𝜉𝑖  ≥ 0, 𝑖 = 1, … , 𝑁 

where 𝐶 > 0 tunes the trade-off between minimizing the sum of the slack errors and 

maximizing the margin (Bishop, 2006; Gutschoven & Verlinde, 2000).  

 

Figure A 2.1 Support Vector Machine (SVM) representation. A. Hard-margin SVM in a 

linearly separable dataset. B. Soft-margin SVM in a nonlinearly separable dataset. Square 

and circle symbols represent data points from positive and negative classes, respectively. 

Filled symbols denote the support vectors. 𝝃𝒊 represent slack variables. Margin = 
𝟐

‖𝒘‖
. Image 

inspired by OpenCV ; Theodoridis and Koutroumbas (2003). 

This SVM formulation is solved via its Lagrangian dual problem, written in terms of 

multipliers, 𝛼𝑖, and both data and slack variables become implicitly represented: data is 

represented by a kernel matrix, K, of all inner products between pairs of data points 

( 𝐾 (𝑥𝑖, 𝑥𝑗) =   ⟨𝑥𝑖 , 𝑥𝑗 ⟩), and each slack variable is associated with a Lagrangian multiplier.  
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When using Lagrangian multipliers method, the dual problem can be formulated as: 

max
𝛼𝑖

∑ 𝛼𝑖

𝑁

𝑖

−  
1

2
 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾 (𝑥𝑖, 𝑥𝑗)

𝑁

𝑖,𝑗

, 𝑖, 𝑗 = 1, … , 𝑁 
(6.19) 

constrained to ∑ 𝛼𝑖𝑦𝑖 = 0𝑖  and 0 <  𝛼𝑖  < 𝐶. Once the optimal solutions 𝛼∗ are determined, 

both parameters 𝑤∗ and 𝑏∗ that define the optimal hyperplane can be calculated: 

𝑤∗ =  ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖

 
(6.20) 

𝑏∗ =  𝑦𝑖 −  𝑤∗  ∙ 𝑥𝑖 (6.21) 

Finally, the classifier can be defined as follows: 

𝑔(𝑥) =  𝑤∗ ∙ 𝑥𝑖 + 𝑏∗ =  ∑ 𝛼𝑖
∗𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑁

𝑖

+ 𝑏∗ 
(6.22) 

In some cases, data is not linearly separable in the original feature space, but may be linearly 

separable in high-dimensional spaces (Figure A 2.2). In order to operate in higher 

dimensions, kernel methods, which use kernel functions, can be employed, without actually 

mapping the input points into the high-dimensional space. The so-called kernel trick allows 

for an efficient mapping by manipulating the kernel function 𝐾(∙,∙) presented in the dual 

formulation (Gutschoven & Verlinde, 2000). Some of the most commonly used kernel 

functions are as follows: 

Linear SVM: 𝐾 (𝑥𝑖, 𝑥𝑗) =  𝑥𝑖  ∙  𝑥𝑗 

Polynomial SVM of degree 𝑝: 𝐾 (𝑥𝑖, 𝑥𝑗) =  (𝑥𝑖  ∙  𝑥𝑗 + 1)𝑝 

Radial-Basis Function (RBF) or Gaussian SVM: 𝐾 (𝑥𝑖 , 𝑥𝑗) = exp {−
‖𝑥𝑖− 𝑥𝑗‖

2

2𝜎2 } 

 

Figure A 2.2 Kernel trick for non-linearly separable datasets. For a linear Support Vector 

Machine: 𝑔(𝑥) =  𝑤 ∙ 𝑥 + 𝑏. In a higher-dimensional feature space: �̃�(𝑥) =  𝑤 ∙ 𝜙(𝑥) + 𝑏. 

Adapted with permission from Pisner and Schnyer (2020). 
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3. Fundamentals of Neural Networks and Convolutional Neural 

Networks 

Neural Networks (NN) (also known as Multilayer Perceptrons (MLPs)) represent the general 

foundation of deep learning methods. Deep learning is a representation-learning method 

where useful features (or representations) are directly learned from the raw input data, 

instead of relying on hand-crafted feature extractors (as in the traditional machine learning 

methods). Multiple levels of representation are obtained by composing simple non-linear 

modules that iteratively transform the raw input into representations with higher and more 

abstract levels (Yann LeCun et al., 2010; Voulodimos et al., 2018).  

In NN, several units or neurons are arranged in layers, comprising an input layer, an output 

layer and several hidden layers (Figure A 3.1). Formally, the output of the i-th unit within 

layer l is given by a weighted sum of the neuron’s activations (outputs) in the previous layer 

(l - 1), plus a constant bias, followed by a nonlinear activation function 𝜙(∙): 

𝑎𝑖
(𝑙) =  𝜙(𝑙)(𝑧𝑖

(𝑙)) (6.23) 

with 𝑧𝑖
(𝑙) =  ∑ 𝑤𝑖,𝑘

(𝑙)𝑚(𝑙−1)

𝑘=1 𝑎𝑘
(𝑙−1) +  𝑏𝑖

(𝑙) 

where 𝑎𝑘
(0) =  𝑥𝑘 = [𝑥1, … , 𝑥𝐷] corresponds to the k-th input feature with D input units, 𝑤𝑖,𝑘

(𝑙) 

corresponds to the weighted connection (or weights) from the k-th neuron in layer (l-1) to 

the i-th neuron in layer l, 𝑏𝑖
(𝑙) denotes the bias, and 𝑚(𝑙) corresponds to the number of units 

in layer l. The most commonly used activation functions include the sigmoid function: 

𝜙(𝑧) =  𝜎(𝑧) =  
1

1 + 𝑒−𝑧
 (6.24) 

or the hyperbolic tangent function: 

𝜙(𝑧) =  𝑡𝑎𝑛ℎ(𝑧) =  
1 − 𝑒−2𝑧

1 + 𝑒−2𝑧
 (6.25) 

or, the recently introduced Rectified Linear Unit (ReLU) function (Glorot, Bordes, & Bengio, 

2011): 

𝜙(𝑧) =  ReLU(𝑧) = max(0, 𝑧) (6.26) 
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For classification tasks, in which the neurons of the last layers output class posterior 

probabilities, the activation function usually is the softmax function, defined as: 

𝜎(𝑧)𝑖 =  
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝐶
𝑗=1

 (6.27) 

where 𝜎(𝑧)𝑖 denotes the output of the i-th neuron in the output layer, and represents the 

probability of a given instance belonging of the class i, in a total number of classes C 

(Bengio, 2009).  

 

Figure A 3.1 Fully Connected Neural Network representation, with L layers, D input units 

and C output units. The l-th layer contains m(l) hidden units.  

During the learning process, also called training, all trainable parameters of the network, 𝜃, 

are adjusted to minimize a given loss (cost or objective) function. This objective function 

measures the error (or distance) between the output scores of the neural network, 𝑎 (∙, 𝜃) 

and the desired target output, 𝑦. For classification problems, the most commonly used 

objective function is the categorical cross-entropy (with K output classes): 

ℒ(𝜃) =  − ∑ ∑  

𝐾

𝑘=1

𝑦𝑛(k) log  (𝑎𝑘(𝑥𝑛, 𝜃)) + (1 − 𝑦𝑛(𝑘)) log(𝑎𝑘(𝑥𝑛, 𝜃))

𝑁

𝑛=1

 (6.28) 

where N is the number of training examples, and the output 𝑦𝑛 is coded as 1-of-K. 

Generically, to adjust the internal parameters (or weights), the learning algorithm computes 

a gradient vector that, for each weight, measures what would be the modification of the error 

if that weight were increased by a small amount. The weights are then adjusted in the 

opposite direction to the gradient vector (Y. LeCun et al., 2015).  
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Usually, the learning algorithm consists of multiple iterations, or epochs, with two phases: 

forward pass, where the signal flows from the neurons in the input layers to the neurons in 

the output layer, and the current weights are used to compute this signal; backward pass, 

for the optimization of the neural network’s trainable parameters. This optimization is usually 

performed using a gradient descent method. Stochastic Gradient Descent (SGD) is the most 

commonly used optimization procedure, and consists of iteratively computing the outputs 

and the errors after the forward pass, computing the average gradient for those input 

examples (formally, the partial derivatives of the loss function with respect to all trainable 

parameters) (Y. LeCun et al., 2015; Yann LeCun et al., 2010), and adjust the weights 

accordingly, as follows: 

∆𝜃𝑡 =  𝛼 
𝜕𝐸(𝜃𝑡, 𝑋𝑖)

𝜕𝜃𝑡
 (6.29) 

𝜃𝑡+1  ←  𝜃𝑡 −  ∆𝜃𝑡 (6.30) 

where 𝜃𝑡 denotes the parameters at epoch t, 𝑋𝑖 represents the mini-batches (or small sets 

of examples randomly sampled from the overall training dataset 𝑋), and 𝛼 is the learning 

rate, an hyperparameter that defines how far the parameters should be updated in the 

optimization space.  

Convolutional Neural Networks (CNNs) are a particular type of deep neural network 

designed to process data that come in the form of multiple arrays, such as time-series (one-

dimension (1D)), images (2D), or videos or volumetric images (3D). CNNs follow an 

architecture similar to conventional NN, and take advantage of different properties to deal 

with array-form data: local connections, shared weights, and different types of layers 

(convolutional and pooling layers). A typical CNN architecture is comprised of two blocks 

(Figure A 3.2): a set of L alternating pairs of convolutional and pooling layers, also known 

as the feature extraction block, where the activations after the convolution and pooling 

operations are stored in feature maps; followed by fully connected layers (as in MLPs) in the 

classification/regression block. The main goal of the last block is to provide a prediction 

based on the feature maps produced by the feature extraction block (Goodfellow, Bengio, & 

Courville, 2016; Y. LeCun et al., 2015; Yann LeCun et al., 2010).  



APPENDIX 

180 

In the convolutional layers, the input data is convolved with a set of kernels (or learnable 

filters) to produce an activation map (or feature map). The activation at a spatial location 

(𝑖, 𝑗) in layer l can be computed as follows: 

𝑎(𝑖, 𝑗)𝑙 =  𝜙 ( ∑ ∑ 𝑊𝑚,𝑛 𝑎𝑖+𝑚,𝑗+𝑛
𝑙−1 +  𝑏𝑙

𝐾−1

𝑛=0

𝐾−1

𝑚=0

) 
(6.31) 

where 𝜙 (∙) is the non-linear activation function, 𝑏𝑙 is the bias, 𝑎𝑙−1 denotes the incoming 

activation map, and W corresponds to the trainable filter with a kernel size of 𝐾 × 𝐾 pixels 

(Voulodimos et al., 2018). 

 

Figure A 3.2 Standard architecture of a Convolutional Neural Network for 

classification tasks, with C convolutional layers, SS pooling layers, with the corresponding 

feature maps’ sizes. Image adapted with permission from Yann LeCun, Bottou, Bengio, and 

Haffner (1998). 

Unlike conventional NN where all neurons in one layer are fully connected to every neuron 

in the next layer, in CNNs the neurons are locally connected to small regions of the input 

data (local receptive fields). These receptive fields are related to the filter size and slide 

across the entire input structure. This way, neurons are capable of combining local 

neighborhood information to detect local features, that are iteratively combined by the 

subsequent convolutional layers. Besides that, each activation map within the output volume 

shares the same weights and bias, allowing the detection of the same feature in different 

locations in the input data (Goodfellow et al., 2016; Y. LeCun et al., 2015; Yann LeCun et 

al., 2010).  



 APPENDIX 

181 

In the pooling layers, semantically identical features produced by the convolutional layers 

are merged into one, downsampling the output information of the neuron. The advantage is 

that by computing summary statistics over local regions of the feature maps, feature 

representations and, ultimately, final predictions are robust to small variations in the input 

space (Goodfellow et al., 2016; Y. LeCun et al., 2015). One common type of pooling is called 

Max Pooling, where only the maximum activation value is kept for each local region in the 

feature map, and passed to the next convolutional layer. 
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4. Deep Learning Approaches for Learning from Depth-Sensing 

Information 

This section depicts the experiments and corresponding results that were obtained to 

support the experimental work described in CHAPTER 5. 

4.1 Semantic Segmentation with U-Net – segmentation of animal’s whole-

body 

Although the most common task when using CNNs is classification, it sometimes becomes 

essential to identify/label specific regions/objects in images to characterize them, extract 

measurements, or assist in further classification. This is particularly relevant in biomedical 

imaging, allowing, for example, reducing the time required to run diagnostic tests, identifying 

lesions, or, in the specific case of behavioral neuroscience, identifying animals for further 

analysis or tracking. Unlike the classification problems in which the objective is to make 

predictions for the whole input, in semantic segmentation, a class is assigned to each pixel 

of the image. In this way, semantic segmentation achieves fine-grained inference by making 

dense predictions, and that is why it is one of the high-level tasks that paves the way towards 

complete scene/image understanding. A general semantic segmentation architecture can 

be constructed as an encoder followed by a decoder network. In this structure, the encoder 

downsamples the spatial resolution of the input, creating lower-resolution feature mappings 

that are learned to be highly efficient at discriminating between classes. The encoder is 

usually a pre-trained classification network, such as VGG/ResNet/AlexNet, followed by a 

decoder network, which upsamples the feature representations into a full-resolution 

segmentation map to get a dense classification. The goal of the downsampling steps is to 

capture semantic/contextual information, whereas the upsampling goal is to recover spatial 

information. To fully recover the fine-grained spatial information lost during downsampling 

and reconstruct accurate shapes for segmentation boundaries, it is common to use skip 

connections that pass information from the downsampling to the upsampling steps. 

Consequently, features are merged from different resolution levels and it helps to combine 

spatial with context information (Ronneberger et al., 2015). 

Different model architectures were initially proposed to perform semantic segmentation, 

using several approaches as part of the decoding mechanism and built on top of powerful 

CNN backbone architectures. The Fully Convolutional Network (FCN) was first used by 
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Long, Shelhamer, and Darrell (2015) as a solution for semantic segmentation. This network 

was trained end-to-end, learning to map from pixels to pixels, and using the AlexNet model 

as the encoder module of the network. The encoder is a stack of convolutional and max-

pooling layers, in which the decoder module was appended with transpose convolutional 

layers to upsample the coarse feature maps into a full-resolution segmentation map.  

To improve the predictions of FCN and increase the resolution at the boundaries due to loss 

of information from the encoding, Ronneberger et al. (2015) proposed the U-Net 

architecture, which is built upon the FCN and modified to obtain a contracting path (encoder) 

that captures context and a symmetric expanding path (decoder) that enables precise 

localization (Figure A 4.1). Similar to FCN, the U-Net architecture uses various blocks of 

convolution and max-pooling layers applied to the input image. In turn, every step in the 

expansive path consists of an upsampling of the feature map followed by convolutions that 

halves the number of feature channels and concatenation with the correspondingly cropped 

feature map from the contracting path.  Because of its symmetry, the network has a larger 

number of feature maps to propagate context information to higher resolution layers. 

Besides being computationally less demanding than the FCN model, when combined with 

data augmentation, it is possible to train the U-Net with a few training examples (in the 

original paper, the authors reached an average intersection-over-union (IOU) of 92% using 

only 35 partially annotated training images from the PhC-U373 dataset of the ISBI cell 

tracking challenge 2014 and 2015). This simpler architecture has grown to be commonly 

used and widely adapted for a variety of semantic segmentation problems, where the 

stacked convolutional layers were substituted by different blocks, such as residual blocks 

(Drozdzal, Vorontsov, Chartrand, Kadoury, & Pal, 2016), dense blocks (Jégou, Drozdzal, 

Vazquez, Romero, & Bengio, 2017), or even using different types of convolutional 

techniques (L.-C. Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2017; L.-C. Chen, 

Papandreou, Schroff, & Adam, 2017). 

A different approach to semantic segmentation, and also object detection, includes region-

based methods that follow a common pipeline. The first stage, called Region Proposal 

Network (RPN), extracts free-form regions from an image and proposes candidate object 

bounding boxes. The next stage extracts features from each candidate and performs region-

based classification and bounding box regression. This model, named Fast R-CNN, and 

proposed by Girshick (2015), was later modified to improve training and testing speed, and 

also increase detection accuracy (S. Ren, He, Girshick, & Sun, 2015).  
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Figure A 4.1 U-Net architecture (example for 16x16 pixels in the lowest resolution). 

Each blue box corresponds to a multi-channel feature map, in which the number of channels 

is denoted on top of the box and the corresponding x-y-size at the lower left edge of the box. 

The network is divided into two convolutional parts: encoder, on the left, and the decoder, 

on the right. Grey boxes in the decoder section represent copied feature maps. The arrows 

denote the different operations, subtitled in the image itself. Inspired by Ronneberger et al. 

(2015). 

Mask R-CNN, also developed by the Girshick team (He, Gkioxari, Dollár, & Girshick, 2017) 

is based on these last improved models but adds complexity by simultaneously generating 

a high-quality segmentation mask. Therefore, this model architecture is able to go even 

further in the segmentation task and be applied for instance segmentation: detection and 

identification of each object of interest appearing in an image at the pixel level. This is why 

Mask R-CNN model architecture is one of the most representative works of region-based 

methods for object segmentation. Following the previous pipeline, this model uses selective 

search to extract a large number of object proposals, and then through the computation of 

CNN features for each of them, it performs classification. To perform semantic 

segmentation, in addition to a class label, and a bounding box, Mask R-CNN also includes 

a third branch that outputs the object mask, through an FCN. In this sense, Mask R-CNN 

combines two different networks: Faster R-CNN and FCN, and, formally, a multi-task loss 

function is defined for the whole model as a combination of classification, bounding box and 

mask generation losses.  

Current state-of-the-art methods that lead the performance ranking for solving semantic 

segmentation problems applied object region representations’ techniques. In particular, one 
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of the methods that achieved the best performance on several segmentation benchmarks 

was developed by Y. Yuan, Chen, and Wang (2019), and applies the object-contextual 

representation (OCR) concept to improve the performance of the semantic segmentation. 

OCR is the weighted aggregation of all the object region representation with the weights 

calculated according to the relations between pixels and object regions, following the 

motivation that the class label assigned to one particular pixel is the category of the object 

that that pixel belongs to. Therefore, it is considered a late-stage processing algorithm, only 

using deep networks to learn the division of pixel area into a set of object regions by their 

corresponding class.  

Another promising network architecture was recently developed by Zhang and a group of 

researchers from Amazon and UC Davis in 2020 (H. Zhang et al., 2020). It is also one of the 

state-of-art performance architectures for image classification, object detection, instance 

and semantic segmentation. In this work, the researchers suggest a new ResNet-like 

network architecture, called ResNeSt, that incorporates attention across groups of feature 

maps. The created Split-Attention block is a computational unit composed of the feature-

map group and split-attention operations that, when stacked together with multiple of these 

blocks, creates the new ResNeSt network architecture (Figure A 4.2A). In more detail, 

initially, all features are divided into K groups (being K the cardinality hyperparameter). 

Within each cardinal group, the network calculates the attention across all splits inside it (R 

stands for the radix hyperparameter that gives the number of splits within a cardinal group). 

Each split attention is multiplied by a feature map and added together to generate the output 

cardinal representation (Figure A 4.2B). These final K representations are then 

concatenated along the channel dimension, and the results are added to the input through 

a shortcut connection, as in a regular ResNet. With these modifications, the overall ResNet 

structure is maintained in a simple modular network, without adding additional computational 

effort. 
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Figure A 4.2 ResNeSt block and detailed view of the Split-Attention unit. A. ResNeSt 

block. For simplicity, it is shown the ResNeSt block in cardinality-major view (the feature 

map groups with same cardinal group index reside next to each other). B. Split-Attention 

within a cardinal group. Adapted with permission from H. Zhang et al. (2020). 

4.1.1 Experiments 

To prove that the RGB-D dataset presented in CHAPTER 5 can be used for segmentation 

and classification tasks using deep learning methods, the performance of a single U-Net 

architecture was initially evaluated in its ability to semantically segment purely depth images.  

The objective is to separate animal’s body in a frame-by-frame approach, eliminating the 

background.  

Although there are already other segmentation methods that currently outperform the initially 

proposed by Ronneberger et al. (2015), this architecture was chosen for being a simple 

approach to the semantic segmentation problem (the goal is to classify only two classes) 

while being quick to train using augmentation techniques. 

Dataset 

A subset of 500 depth frames (16-bit depth; 512x424 pixels) were selected from the original 

RGB-D dataset and manually segmented to create segmentation masks (ground-truth). The 

labeling process was performed in two stages: primary automatic segmentation and manual 

correction. In the first step, a sequence of image processing techniques was applied to 

obtain primary masks. Linear thresholding was used to eliminate depth values bigger than 

2000 (2 meters; camera-derived errors) and Canny Edge detection algorithm was applied 
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to perform edge detection on the depth images. The resulting mask was processed using 

morphological operations to remove small objects and merged with a second mask obtained 

after Otsu histogram thresholding method. The final mask was obtained after applying 

morphological operations to fill existent holes. To fine-tune this primary automatic 

segmentation, the masks were corrected using the ImageLabeler application in MATLAB.  

Finally, and before training experiments, all depth images were normalized in the interval [0, 

255], all frames were converted to 8-bits, re-scaled to the input size of the U-Net (256x256), 

and normalized again ([0, 1]). The depth frames’ subset was split into 300 images for 

training, 100 images for validation, and 100 images for testing. After obtaining the predicted 

masks, these were post-processed, using image analysis techniques to eliminate small-

sized particles/objects left by thresholding the probability maps. 

Implementation Details 

All experiments were performed using the publicly available U-Net model (Ronneberger et 

al., 2015). It consists of 23 convolutional layers. The contracting path consists of repeated 

two 3x3 convolutions (unpadded convolutions), each block followed by a ReLU, and a 2x2 

max pooling operation with stride 2 for downsampling. At each downsampling step, the 

number of feature channels is doubled. Every step in the expansive path consists of an 

upsampling of the feature map followed by a 2x2 convolution, a concatenation with the 

correspondingly cropped feature map from the contracting path, and two 3x3 convolutions, 

each followed by a ReLU. At the final layer, a 1x1 convolution is used to map each 64-

component feature vector to the desired number of classes, in this case, 2: background and 

foreground (animal) (Figure A 4.3). 

The input images, with size 256x256, and their corresponding segmentation masks were 

used to train the U-Net network, with SGD implementation of TensorFlow and ADAM 

optimizer, with an initial learning rate of 0.0001 (that is reduced by a factor of 0.75 after 5 

iterations, and training is stopped after 10 iterations if validation loss doesn’t decrease, for 

a maximum of 300 iterations), a momentum of 0.9, dropout in all layers equal to 0.5 and 

batch size of 10. 
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Figure A 4.3 U-Net architecture for a frame extracted from the original RGB-D dataset 

(with input size of 256x256x1). Each blue box corresponds to a multi-channel feature map, 

in which the number of channels is denoted on top of the box and the corresponding x-y-

size at the lower left edge of the box. The network is divided into two convolutional parts: 

encoder, on the left, and the decoder, on the right. Grey boxes in the decoder section 

represent copied feature maps. The arrows denote the different operations, subtitled in the 

image itself. Inspired by Ronneberger et al. (2015). 

Four different loss functions were tested for model evaluation. Binary cross-entropy (BCE) 

loss measures the performance of a classification model and calculates the loss by 

computing the following average: 

𝐵𝐶𝐸 (𝑦, �̂�) = − 
1

𝑁
 ∑ 𝑦𝑖  log( �̂�𝑖  ) + (1 − 𝑦𝑖) log( 1 − 𝑦�̂� )  

𝑁

𝑖=1

 (6.32) 

where �̂�𝑖 is the i-th scalar value in the model output (predicted value), 𝑦𝑖 the corresponding 

target value (true value) and 𝑁 is the total number of samples. The model is trained using 

BCE loss to minimize the entropy between two probabilistic distributions by penalizing 

misclassification.  

Dice binary cross-entropy and Jaccard binary cross-entropy combine BCE and Dice or 

Jaccard coefficients (Dice BCE or Jacc BCE), respectively. Dice and Jaccard coefficients 

are performance metrics commonly used in semantic segmentation problems with class 

imbalance (for instance, when the ratio between background and foreground pixels is very 
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high). Dice coefficient, also known as the Sørensen-Dice coefficient, measures the overlap 

area between the prediction and the ground truth: 

𝐷𝑖𝑐𝑒 (𝑦, �̂�) =  
2 ∑ 𝑦𝑖,𝑗�̂�𝑖,𝑗𝑖,𝑗

∑ ∑ �̂�𝑖,𝑗  𝑗𝑖 +  ∑ ∑ 𝑦𝑖,𝑗 𝑗𝑖
 (6.33) 

In turn, Jaccard Index (also named IoU) is the area of overlap between the predicted 

segmentation and the ground truth divided by the area of union between both, given by: 

𝐽𝑎𝑐𝑐 (𝑦, �̂�) =  
∑ 𝑦𝑖,𝑗�̂�𝑖,𝑗𝑖,𝑗

∑ ∑ �̂�𝑖,𝑗 𝑗𝑖 +  ∑ ∑ 𝑦𝑖,𝑗  − ∑ 𝑦𝑖,𝑗�̂�𝑖,𝑗𝑖,𝑗  𝑗𝑖
 (6.34) 

In this sense, when these metrics are combined with BCE to formulate different loss 

functions, the objective is to minimize the entropy while maximizing the overlap between the 

predicted and ground truth class (actually, to achieve the same objective, it is usual to 

minimize (1 −  𝐷𝑖𝑐𝑒 (𝑦, �̂�)) or ( −𝐽𝑎𝑐𝑐 (𝑦, �̂�))): 

𝐷𝑖𝑐𝑒 𝐵𝐶𝐸 (𝑦, �̂�) = 0.5 𝐵𝐶𝐸 (𝑦, �̂�) + 0.5 (1 − 𝐷𝑖𝑐𝑒 (𝑦, �̂�)) (6.35) 

𝐽𝑎𝑐𝑐 𝐵𝐶𝐸 (𝑦, �̂�) = 0.5 𝐵𝐶𝐸 (𝑦, �̂�) − 𝐽𝑎𝑐𝑐 (𝑦, �̂�)) (6.36) 

These metrics were also used to evaluate and compare the performance of the models and 

3 independent tests were carried out for performance comparison, maintaining the training 

conditions previously described. Training of a single network run took ~20 mins (a set of 

50/60 epochs), using an NVIDIA GeForce RTX 2080 GPU (8 GB RAM).  

Another common strategy to improve deep learning results and, simultaneously, avoid 

overfitting by increasing model’s generalization ability, is called data augmentation (Shorten 

& Khoshgoftaar, 2019). This technique allows for a significant increase in the diversity of the 

data available for training, without collecting new data, rather than transforming the already 

available one. By introducing additional variability to the dataset, the augmented data will 

represent a more comprehensive set of possible data points, approaching overfitting 

problems from the first step - the training step.  In this case, the data augmentation effect on 

training the model was evaluated, and the dataset was augmented by random rotation (30 

degrees), zooming (0.2), and vertical and horizontal translation (10% of total height/width). 
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4.1.2 Results 

Table A 4.1 shows preliminary results of the median validation loss, Dice and Jaccard 

coefficients obtained after training with different loss functions. The U-Net model was initially 

trained with different loss functions (with or without augmentation), for 3 experiments each. 

Table A 4.1 Segmentation performance results. Summary of the performance on the test 

set of different methods on the semantic segmentation task, using different loss functions.  

Reported values are expressed as median values [95% confidence interval] (N = 3 

consecutive runs; optimal threshold; after post-processing). BCE – Binary cross-entropy; 

Dice BCE – Binary cross-entropy combined with Dice Loss; Jacc BCE – Binary cross-

entropy combined with Jaccard Loss. 

 

 Validation  

Loss 

Dice  

Coefficient 

Jaccard 

Coefficient 

 

NO 

AUGMENTATION 

BCE 0.01 [0.002; 0.018] 76.7 [75.6; 77.8] 60.5 [56.6; 64.45] 

Dice BCE 0.07 [0.04; 0.10] 79.9 [76.0; 78.0] 66.5 [63.8; 69.23] 

Jaccard 

BCE 

-0.77 [-1.06; -0.48] 83.6 [74.5; 92.7] 71.8 [58.9; 84.7] 

 

AUGMENTATION 

Dice BCE 0.04 [0.01; 0.07] 90.1 [85.2; 95.0] 82.0 [74.1; 90.0] 

Jaccard 

BCE 

-0.84 [-0.87; -0.81] 88.9 [88.5; 89.3] 80.0 [79.5; 80.5] 

 

The objective was to check if the RGB-D dataset could be learned by such a model and to 

gain intuition about what parameters would be best for this type of model and data. In 

general, and without augmentation methods, the model trained with Jaccard BCE 

outperformed the other methods, yielding an overall Dice and Jaccard performance of 83.6% 

and 71.8%, respectively. When combining augmentation techniques, it did result in an 

increased performance of more than 5%, with the augmented Dice BCE model attaining the 

best performance of 90.1% and 82.0% on the test set. 
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Figure A 4.4 Semantic segmentation results of the different trained models. 

Comparison between predicted and ground-truth masks of 3 different depth frames of the 

testing set, for 3 different loss functions. Predicted masks from the 3 trials are merged to 

show variability between different training runs.  BCE – Binary cross-entropy; Dice BCE – 

Binary cross-entropy combined with Dice Loss; Jacc BCE – Binary cross-entropy combined 

with Jaccard Loss. 

Although the performance in the training set was lower (in terms of Dice and Jaccard 

coefficients, and training loss) in augmented models (data not shown), that doesn’t happen 

when comparing performance on the testing set. In this sense, the trained model is not 
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closely reproducing a particular set of the training data and failing to fit new additional data, 

but rather learning how to generalize and predict future observations. Qualitatively, when 

analyzing the probability maps and binary masks predicted by the trained model with no 

augmentation (Figure A 4.4), the animal’s body was poorly segmented. In particular, 

animal’s tail was usually eliminated or cropped in the final masks. 

Also, the BCE method was quantitatively worse than the remaining ones, with more animal’s 

body pixels eroded, absence of tail, less detail in the paws and head, and irregular body 

shape. With augmentation, either method keeps the animal's body better defined. In 

particular, the Dice BCE method performed better at distinguishing the totality of animal’s 

tail, and the final masks were cleaner and more detailed (no pre-processing required) 

(Figure A 4.4). 

Indeed, these results confirm that with augmented data the model holds better its 

generalization capability when tested with new unseen data (testing set), being the best-

trained model for learning and segmenting the recorded depth frames. From here on, 

augmentation techniques were always applied to the dataset. 

4.2 Depth representation for Convolutional Neural Networks  

CNNs were designed to mimic the biological behavior of the visual cortex and, therefore, 

initially applied to analyze RGB 2D visual imagery, as natural camera images (Krizhevsky, 

Sutskever, & Hinton, 2012).  In this sense, although RGB images can be directly used as 

inputs for the CNNs, the same may not happen with depth images. Depth data encodes 

distance from the sensor to the scene and so, the information of each pixel is of a different 

nature, when compared to RGB images. Nonetheless, when looking at a rendered version 

of a depth image, it is possible to recognize some visual features, such as corners, edges, 

or shaded regions, that are also present in RGB images. Thereby, the question that arises 

is how should a depth image be encoded for use in CNNs so that it can learn more 

meaningful features. Does the absence of color and texture information of depth images 

weaken the discriminative representation and learning power of CNN models? Or, given this 

intrinsic nature of depth data and geometric similarity to RGB frames, will CNNs learn as 

effectively when using raw depth images without any encoding? 
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Different depth encoding methods for CNN feature learning have been proposed in the 

literature (Figure A 4.5), and depending on the modality adopted for recognition, the 

architectures are broadly categorized into three groups: single stream depth-based, single-

stream 4-channel RGB+D-based, or combining RGB and depth networks in a fusion-based 

architecture. Following the idea that no additional depth pre-processing is required for CNN 

input, different methods use raw depth frames for recognition problems (mainly, human 

action recognition or object recognition), whether in a single stream (Shah, Bennamoun, 

Boussaid, & While, 2017), 4-channel (Couprie, Farabet, Najman, & LeCun, 2013) or fusion-

based architecture (Che & Peng, 2018; Z. Liu, Zhang, & Tian, 2016; Rahman, Tan, Xue, 

Shao, & Lu, 2019; Socher, Huval, Bath, Manning, & Ng, 2012). In general, as required by 

network input, the depth data is rendered to grayscale (Figure A 4.5A and B), normalized or 

standardized, and, if necessary, the grayscale values are replicated to the three channels 

of the input. 

 

Figure A 4.5 Different approaches for color encoding of depth images. A. RGB, B. 

depth-gray, C. HHA, D. depth-jet coloring, and E. surface normal encodings. Adapted with 

permission from Zia, Yuksel, Yuret, and Yemez (2017). 

Another commonly used method for depth encoding is called HHA encoding. Initially 

proposed by Gupta, Girshick, Arbeláez, and Malik (2014), this method encodes the depth 

image in three channels at each pixel with horizontal disparity, height above ground, and the 

angle between pixel’s local surface normal and the inferred gravity direction (Figure A 4.5C). 

The authors trained the network initially proposed by Krizhevsky et al. (2012) with input data 

transformed using the HHA encoding, following the hypothesis that there is enough common 

structure between the proposed HHA geocentric images and corresponding RGB images. 

In this sense, a network that was initially designed and trained for RGB images can also 

learn a suitable representation for HHA images. Other authors followed this hypothesis, 

using HHA depth-based features to learn for RGB-D object and scene recognition (Eitel et 
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al., 2015; Song, Herranz, & Jiang, 2017; Thermos, Papadopoulos, Daras, & Potamianos, 

2020), person re-identification (L. Ren, Lu, Feng, & Zhou, 2017), and image segmentation 

(Tresch, 2016). 

The depth jet-encoding, initially used by Eitel et al. (2015), is an alternative and also 

prevalent method for depth encoding. Here, a jet colormap is applied to the given depth 

image, transforming the one-channel depth map to a three-channel color image. The depth 

information is distributed over the three RGB channels, being converted to color values 

ranging from red (near scene pixels) over green to blue (far scene pixels) (Figure A 4.5D). 

As in the previous method, the authors believe that as the chosen network is designed for 

RGB images, this colorization method will provide enough similar structure between the 

RGB and the corresponding depth image, improving feature representation learning. Other 

studies explored depth-jet coloring potential in encoding depth frames for automatic object 

recognition, in a two-stream CNN architecture (Kumar, Shrivatsav, Subrahmanyam, & 

Mishra, 2016; Thermos et al., 2020). 

Another interesting approach to explore depth information, typically in action recognition, is 

by using the concept of motion representation. The motion information is encoded through 

a sequence of images/video in a single 2D visual representation, generated by accumulating 

the motion energy through the entire sequence. If this representation is composed of a 

sequence of depth frames, it is called Depth Motion Map (DMM) and it was originally 

introduced by Yang, Zhang, and Tian (2012). DMMs are obtained by projecting the depth 

frames onto three orthogonal Cartesian planes, and a set of frames are combined to obtain 

the spatial energy distribution map that represents the movements. In order to preserve 

subtle motion information, C. Chen et al. (C. Chen, Liu, & Kehtarnavaz, 2016; C. Chen et 

al., 2017), first, and later other authors (Dawar, Ostadabbas, & Kehtarnavaz, 2018; 

Elboushaki et al., 2020; Singh et al., 2020) extended and improved the initial concept of 

DMM to calculate the motion energy by accumulating the absolute difference between 

consecutive frames (Figure A 4.6A): 

𝐷𝑀𝑀(𝑓,𝑠,𝑡) =  ∑  | 𝐷 (𝑥, 𝑦, 𝑡 + 1) (𝑓,𝑠,𝑡)  −  𝐷(𝑥, 𝑦, 𝑡) (𝑓,𝑠,𝑡) |

𝑁−2

𝑡=0

 
(6.37) 

where  𝐷(𝑥, 𝑦, 𝑡) (𝑓,𝑠,𝑡) corresponds to a depth video sequence with 𝑁 number of frames and 

for the three projection planes: 𝑓 – front view; 𝑠 – side view; 𝑡 – top view. 
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These representations can then be used to describe the shape and motion cues of a 

particular depth action sequence and can be fed as inputs to CNN-based networks to 

perform action/gesture recognition in RGB-D image sequences.  

Finally, less explored encoding methods have also been described in the literature. One 

strategy uses surface normals to represent form and surface structure (Madai-Tahy et al., 

2016). The gradients for each pixel are calculated and each dimension of the calculated 

surface normal vector corresponds to one channel in the resulting image (𝑥 → 𝑅, 𝑦 → 𝐺, 𝑧 →

𝐵) (Figure A 4.5E). The final values are transformed to contain natural numbers between 0 

and 255 using the following operations: 

The voxel grid concept is also used to encode depth information (Zia et al., 2017). The RGB 

pixel is placed at the same position (coordinates) in the voxel, but at its corresponding depth 

layer/channel (Figure A 4.6B). In this way, it is possible to combine color and depth 

information in a single metric, maintaining both the texture and the spatial distribution of the 

pixels. The number of final channels is equal to the maximum depth value of the images, 

which in itself can be computationally intensive if fed to large networks. 

A different idea introduced by W. Wang and Neumann (2018) is to incorporate depth 

information into the internal elements of a conventional CNN (convolution and max-pooling 

layers), instead of pre-processing the input depth data. The so-called Depth-aware CNN, 

applied in semantic segmentation problems, uses information from the depth images to 

construct similarity kernels, based on points with similar depth values, and this information 

is incorporated in depth-aware convolutions and average pooling elements (Figure A 4.6C). 

The fact that pixels with the same semantic label and similar depth should have more impact 

on each other and may have similar segmentation labels motivated this depth-aware 

technique, as well as the fact that standard CNNs are limited to learning geometric 

transformations due to the fixed convolutional kernels’ structure. 

  

(𝑅𝑓𝑖𝑛𝑎𝑙 , 𝐺𝑓𝑖𝑛𝑎𝑙 , 𝐵𝑓𝑖𝑛𝑎𝑙) =  (
𝑥 + 1

2
× 255,

𝑦 + 1

2
× 255, 𝑧 × 255) (6.38) 



APPENDIX 

196 

 

Figure A 4.6 Different depth-encoding approaches. A. Depth Motion Maps (DMMs) 

generation for a depth sequence. B. Illustration of how RGB-D images are converted to 

voxel representations for a 3×3 input image (fragment), where depth values are quantized 

into 6 intervals. C. Illustration of information propagation in Depth-aware CNN. Without loss 

of generality, we only show one filter window with kernel size 3×3. In depth similarity shown 

in the figure, darker color indicates higher similarity while the lighter color represents that 

two pixels are less similar in depth. Left: the output activation of depth-aware convolution is 

the multiplication of depth similarity window and the convolved window on input feature map. 

Right: the output of depth-aware average pooling is the average value of the input window 

weighted by the depth similarity. Images adapted with permission from: A. C. Chen et al. 

(2017), B. Zia et al. (2017), and C. W. Wang and Neumann (2018). 
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4.2.1 Experiments 

In order to understand which depth input would allow better and faster learning of the 

features’ representation by the U-Net model, four different encoding strategies for rendering 

depth information were compared.  

Implementation Details 

In addition to the raw depth frames, coloring and surface normals encoding methods were 

applied to the original dataset prepared for semantic segmentation (of 500 depth frames; 

16-bit depth; 512x424 pixels). Besides standard jet colormap, previously described, the 

Turbo colormap (look-up table available at: Mikhailov (2019)) was also applied to the given 

depth images, encoding depth information into three color channels. This new colormap was 

originally reported as an improved colormap for visualization that outperforms the jet one in 

reducing false detail, color banding, and color blindness ambiguity. In this sense, it is argued 

as being more appropriate to distinguish fine details and perform visual semantic 

segmentation in depth images.  

Acknowledging the fact that depth frames are usually affected by acquisition errors/noise, 

the raw frames were also filtered, calculating the pixel-by-pixel median between 3 and 5 

consecutive frames, to eliminate those one-off fluctuations. Given the nature of our depth 

frames and the setup in which they were acquired (open-field 1 m x 1 m; minimum height of 

1.20 m; Wistar rats), the dynamic range of depth values is very high. The maximum and 

minimum valid values of depth (excluding outliers/noise) are approximately equal to 2000 (2 

meters) and 0, respectively. To improve the contrast of depth images and to understand how 

better CNN feature learning would be in this context, the dynamic range was reduced to 

255, centered on the pixels belonging to the animal and truncated on the others (the 

manually annotated masks allowed this animal-centered processing). Before all training 

experiments, depth input images were normalized in the interval [0, 255], all frames were 

converted to 8-bits, re-scaled to the input size of the U-Net (256x256), and normalized again 

([0, 1]).  

All experiments were performed using the already described U-Net model, trained with SGD 

implementation of TensorFlow and ADAM optimizer, and Dice BCE loss function. The 

training consisted of a maximum of 300 iterations with a batch size of 10, an initial learning 

rate 0.0001 (which dropped by a factor of 0.75 after 5 iterations, and training is stopped after 
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10 iterations if validation loss doesn’t decrease), a momentum of 0.9, dropout in all layers 

equal to 0.5. Augmentation techniques were applied, with the same previously described 

parameters (Appendix - Semantic Segmentation with U-Net – segmentation of animal’s 

whole-body - Experiments). 

Although only 3 independent tests were performed for each encoding method, the obtained 

results allowed initial filtering of the different techniques tested and choosing a subset to be 

further explored. In this way, for a more in-depth analysis of the performance of the selected 

models, the network was trained and tested 40 times for each model, keeping the same 

partition of the training and validation sets in a single run. Statistical analysis was performed 

using GraphPad Prism (GraphPad Software Inc., version 7.0, CA, USA). The method of 

D'Agostino & Pearson was used as a normality test, and parametric or non-parametric 

(paired) tests were chosen as appropriate. Statistical significance was considered for 𝑝 < 

0.05. Parametric data are expressed as mean ± standard deviation, and non-parametric 

data are expressed as median and 95% confidence intervals. 

4.2.2 Results 

Different encoding strategies were tested to understand if the U-Net model could learn 

meaningful features for the semantic segmentation task. Since the U-Net model proved 

successful when applied to the depth frames dataset, it is now interesting to analyze which 

depth encodings would work best in learning those features (Figure A 4.7). 
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Figure A 4.7 Representative frames of the different types of depth encoding. Median, 

depth-jet, depth-turbo, and surface normal encodings’ frames have reduced dynamic range.  

Qualitatively, and as expected, when the dynamic range is reduced, the details of the image 

are more easily distinguished, such as the animal's tail and paws. When the median is 

performed between several consecutive frames, some noise is eliminated, mainly in the 

image corners, without affecting the overall structure and intensity distribution. Also, in the 

depth-jet and -turbo encodings, the fine details are even better distinguished, mainly in the 

depth-jet encoding, where the contrast between the background and the animal is clearer. 

Regarding the surface normals’ frames, it is possible to visually identify the same local 

structure between pixels, even with irregularities. 

Model’s performances were quantified using Dice and Jaccard coefficients, after testing the 

U-Net model for the different depth encoding strategies (Table A 4.2). It is possible to see 

that, in general, decreasing the dynamic range improves the overall performance of the U-

Net model, as expected. The model learns using increasingly optimized kernels, that detect 
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spatially local input patterns. Thus, the higher the contrast, the easier it is to detect intensity 

transitions that can represent these feature patterns, so the higher the model’s capability to 

learn how to recognize them. Also, when performing the median of some consecutive 

frames, the overall performance has not improved, when compared to the raw depth frames. 

In fact, in all independent tests (N = 3), the median of 5 frames slightly outperforms the 

median of 3 frames input network, but it was never superior when using raw depth frames. 

When the probability maps were analyzed (data not shown), both median methods showed 

more irregular maps and less clean masks. Taking into account that the computational 

power of this pre-processing is much higher (non-linear operations), these methods were no 

longer considered. 

Table A 4.2 Segmentation performance results for different depth encoding methods. 

Summary of the performance on the testing set for different encoding methods and with the 

original and reduced dynamic depth range ([0, 255]).  Reported values are expressed as 

median values [95% confidence interval] (N = 3 consecutive runs; optimal threshold; after 

post-processing).  

 

Dynamic  

Range 

Validation 

Loss 

Dice 

Coefficient 

Jaccard 

Coefficient 

Raw depth frames Original 0.04 [0.01; 0.07] 90.1 [85.2; 95.0] 82.0 [74.1; 90.0] 

Reduced 0.03 [0.01; 0.04] 93.5 [88.4; 98.6] 87.8 [78.8; 96.8] 

Median 3 frames Original 0.07 [0.02; 0.13] 83.4 [80.4; 86.4] 71.0 [66.4; 75.6] 

Reduced 0.04 [0.01; 0.07] 82.9 [73.7; 92.1] 70.8 [57.0; 84.6] 

Median 5 frames Reduced 0.05 [0.01; 0.08] 83.5 [74.5; 92.5] 71.7 [57.9; 85.5] 

Depth-jet encoding 

frames 

Original 0.04 [0.03; 0.06] 87.1 [84.6; 89.6] 77.1 [73.2; 81.0] 

Reduced 0.02 [0.02; 0.03] 91.2 [85.5; 96.9] 83.8 [74.3; 93.3] 

Depth-turbo 

encoding frames 

Original 0.03 [0.02; 0.03] 87.3 [78.3; 96.3] 77.5 [63.7; 91.3] 

Reduced 0.02 [0.02; 0.02] 91.6 [87.7; 95.5] 84.5 [77.8; 91.2] 

Surface Normals 

frames 

Original 0.04 [0.02; 0.05] 93.1 [71.3; -] 81.3 [57.9; -] 

Reduced 0.04 [0.02; 0.06] 91.2 [84.3; 98.1] 83.8 [72.6; 95.0] 
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Furthermore, even with some type of depth encoding, the method that uses raw depth 

frames as inputs of the network achieves a Dice and Jaccard coefficients value of 93.5% 

and 87.8% on the test set, respectively, which are the best results achieved on this 

classification task. The binary masks outputted by depth-jet and -turbo coloring methods 

(data not shown) show a more irregular animal body and often the presence of shadows, 

mainly during rearing events, which is less often using raw depth frames. On the other hand, 

although the normal surface method’s masks have segmentation holes inside the animal 

and contain noise and sparse blobs, the shadows completely disappear, which is intrinsic to 

the geometric/surface structure information encoded by the surface normals’ data. Overall, 

these experiments show that the CNN network can be trained for recognition of depth data 

using different depth encoding methods, but interestingly, the model without any pre-

processing of the raw frames slightly outperforms all other depth encoding methods. 

A recurring error common to all depth encoding methods occurred in frames containing 

rearing events, where the presence of shadows disturbs model learning (Figure A 4.8). To 

try to reduce the impact that this type of frames has on segmentation performance, 100 new 

frames containing rearing events were manually annotated and added to the training set. 

Although the performance metrics had no significant improvements quantitatively, the final 

masks were cleaner and contained fewer shadows’ effects (data not shown). This new 

training set was maintained for future experiences. 

Besides, the model’s ability to learn using depth frames was further tested using frames 

without any foreground (in the absence of an animal) and in the presence of two animals 

(with overlapping or completely separated), examples of which are in Figure A 4.9. Empty 

frames were constructed by reflecting half of an original frame (in the absence of an animal). 

The model was then able to detect the absence of animals in empty frames (no foreground 

pixels on the predicted masks), but also the presence of two animals, even when overlapping 

(average Dice and Jaccard coefficients equal to 89.7% and average and 81.4%, 

respectively). These results prove model's ability to generalize and recognize scenarios 

different from those seen in the training set. 
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Figure A 4.8 Representative frames of recurrent errors during rearing events. 

Given the obtained results, the 3 best methods were chosen for a detailed statistical analysis 

of performance: raw depth, depth-jet coloring, and surface normal frames’ models. Depth-

jet coloring method was chosen instead of depth-turbo coloring one since the performance 

differences were residual and the first is most commonly used in the literature. The 

performance of these 3 methods (Figure A 4.10) was statistically compared using the Dice 

and Jaccard coefficients evaluated in the test set, and the time until the model convergence 

was compared in terms of the number of epochs until the training stopped. This extensive 

analysis confirmed that the model trained with raw frames significantly improves the 

performance of the U-Net model, when compared to the two encoding methods (𝑝 < 0.01 

and 𝑝 < 0.0001 for depth-jet and surface normal encoding strategies, respectively), with 

median Dice and Jaccard coefficients of 93.7% ([92.0; 95.2]) and 88.2% ([85.2; 89.7]), 

respectively. Furthermore, the model trained with surface normal encoding does not appear 

to be superior to the one trained with depth-jet coloring (p = 0.28) and presents a greater 

variance of Dice and Jaccard metrics’ values. 
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Figure A 4.9 Representative frames of model’s ability to detect empty frames and 

frames with multiple animals. Above: Empty frames constructed by reflecting half of an 

original frame. Below: Frames containing two overlapping or completely separated animals 

and corresponding probability maps and binary masks. 

Although outperforming the other methods, learning using raw depth frames is significantly 

slower, taking longer to converge (p < 0.0001), for the same stopping criteria. Nevertheless, 

and given that the computational power between encoding preprocessing can be leveled 

with the convergence training time, the raw depth frame-based method was selected as the 

best at learning how to semantically segment depth frames. 
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Figure A 4.10 Comparison between different depth encoding models’ performance, 

regarding: A. Dice coefficient, B. Jaccard coefficient, and C. Number of epochs until 

convergence. A. and B. Dice and Jaccard coefficients’ performance results, respectively, 

when trained with raw depth (green), depth-jet coloring (orange), and surface normals 

(yellow) frames (reduced dynamic range; results in the test set). Right: Point-wise 

distributions for the 40 paired trials. Left: Single histogram distributions (top) and overlap 

distributions (bottom) for the 3 models. Data represented as median ± 95% confidence 

interval. C. Right: Point-wise distributions of the number of epochs until convergence for the 

40 paired trials. Left: Extended analysis of the number of epochs until convergence per event 

run. Data represented as mean ± standard deviation. ** 𝑝 < 0.01; **** 𝑝 < 0.0001. 
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4.3 Sequence Models for Extracting Spatiotemporal Features of Depth 

Sequences 

When analyzing a video sequence, for different computer vision tasks, not only the spatial 

information within each frame is important but also its motion content across frames. In fact, 

in contrast with still image recognition tasks, the temporal information of video data can 

provide additional clues hidden in temporally neighboring frames for the recognition of 

actions/behaviors or segmentation of frames (Elboushaki et al., 2020; Simonyan & 

Zisserman, 2014). The advances in image recognition methods, mainly after the 

breakthrough of deep learning in still-image recognition, originated by the introduction of the 

AlexNet model, boosted video understanding research. After showing that CNNs are an 

effective class of models for understanding image content and for learning powerful and 

interpretable image features (Krizhevsky et al., 2012; Sermanet et al., 2013), those methods 

were adapted and extended to deal with video data.  

The simplest approach that first emerged was to process each frame of the video sequence 

separately and apply CNNs to recognize actions or segment at the individual frame level. 

However, by using this approach, temporal information encoded in neighboring frames is 

not considered. In particular, for the semantic segmentation task of video sequences, as the 

temporal dependencies are ignored, the results may present temporal inconsistencies, 

caused by changes in environment illumination, fluctuations in pixel values (intrinsic to the 

acquisition device), or occlusions (Ji, Xu, Yang, & Yu, 2012; Rebol & Knöbelreiter, 2020). 

Another disadvantage when using individual frame level approach for semantic 

segmentation is that the semantic label of each voxel depends on the entire spatiotemporal 

context of the video, and labels differ from each other in terms of voxels; on the contrary, in 

classification tasks, labels depend mostly on the global video representation.   

In this way, different research lines have been proposed to extend the connectivity of CNNs 

in the time domain and incorporate spatiotemporal features in video understanding methods. 

The first obvious approach applies 2D CNNs to extract spatial features from individual 

frames and later fuse the temporal information (Karpathy et al., 2014; Koller, Ney, & Bowden, 

2016). In particular, Karpathy et al. (2014) explored four different fusion techniques, capable 

of combining temporal information in CNNs from different contiguous frames. The proposed 

technique that attained the best performance is called Slow Fusion, where higher layers get 

access to progressively more global information, spatially and temporally, by computing 
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activations through temporal convolutions in addition to spatial convolutions (Figure A 

4.11A). Although these architectures are easy to be fine-tuned on pre-trained models given 

the large availability of image annotated datasets, the temporal encoding is not considered 

during the feature learning stage (only spatial information) and the temporal order of the 

sequences tends to be neglected.  

Another technique to learn spatiotemporal features is to process spatial and motion 

information in separated branches, using conventional 2D CNN, followed by a learned fusion 

of both information. These two-stream CNNs were first proposed by Simonyan and 

Zisserman (2014), where RGB and optical flow frames are used as spatial/appearance and 

motion information, respectively, and processed independently (Figure A 4.11B.). This 

technique has been explored in recent studies (Elboushaki et al., 2020; Feichtenhofer, Pinz, 

& Wildes, 2017; L. Wang et al., 2016; Ye, Cheng, Yang, & Xu, 2019), combining different 

spatial and motion (depth, optical flow, etc.) encodings, albeit with some drawbacks 

(optical/scene flow methods can be computationally expensive, and different branches are 

largely processed independently, preventing a more effective temporal feature learning). 

 

Figure A 4.11 Different techniques for spatiotemporal learning. A. Explored approaches 

for fusing information over temporal dimension through the network. Red, green and blue 

boxes indicate convolutional, normalization and polling layers, respectively. In the Slow 

Fusion model, the depicted columns share parameters. B. Two-stream architecture for video 

classification. Images adapted with permission from: A. Karpathy et al. (2014), and B. 

Simonyan and Zisserman (2014). 
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Temporal sequence modeling techniques, such as Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory networks (LSTMs), are one of the most used for the temporal 

analysis of sequential data. Traditional RNNs (Figure A 4.12A.) are able to learn complex 

temporal dynamics by using recurrent connections (Equation (6.39) and (6.40)) in the hidden 

layers, between the input, hidden states, and output sequences: 

ℎ𝑡 = 𝑔(𝑊𝑥 ℎ𝑥𝑡 +  𝑊ℎℎℎ𝑡−1 +  𝑏ℎ) (6.39) 

�̂�𝑡 = 𝑔(𝑊𝑦ℎ  ℎ𝑡 +  𝑏𝑦) (6.40) 

where 𝑔 is an element-wise non-linear activation function, 𝑥𝑡 is the input sequence, ℎ𝑡  ∈ ℝ𝑁 

is the hidden state with 𝑁 hidden units, and �̂�𝑡 is the output at time 𝑡.  

 

Figure A 4.12 Temporal sequence modeling techniques. Diagram of a basic: A. RNN 

cell, and B. LSTM memory cell. 

A disadvantage when using RNNs units is the difficulty in training them to learn long-term 

dynamics. In fact, RNNs networks are more prone to suffer from vanishing or exploding 

gradients problems, that can result from difficulties in propagating the gradients back 
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through the many layers of the recurrent network, each corresponding to a particular 

timestep. This is why this short-term memory is not enough to handle some types of 

sequential data, such as video sequences. LSTMs were proposed by Hochreiter and 

Schmidhuber Hochreiter and Schmidhuber (1997) as a solution for long time dependencies 

(Figure A 4.12B). This specific recurrent architecture incorporates memory cells to store 

foregone information (learning when to forget) and gates to control the updating of the 

memory (learning when to update hidden states with new information), controlled as follows 

(Hochreiter & Schmidhuber, 1997): 

𝑖𝑡 = 𝜎(𝑊𝑥 𝑖𝑥𝑡 +  𝑊ℎ𝑖ℎ𝑡−1 +  𝑏𝑖) (6.41) 

𝑓𝑡 = 𝜎(𝑊𝑥 𝑓𝑥𝑡 +  𝑊ℎ𝑓 ℎ𝑡−1 + 𝑏𝑓) (6.42) 

𝑜𝑡 = 𝜎(𝑊𝑥 𝑜 𝑥𝑡 +  𝑊ℎ𝑜 ℎ𝑡−1 + 𝑏𝑜) (6.43) 

�̃�𝑡 = 𝜙(𝑊𝑥 𝑐𝑥𝑡 +  𝑊ℎ𝑐  ℎ𝑡−1 + 𝑏𝑐) (6.44) 

𝑐𝑡 = 𝑓𝑡 ⨀ 𝑐𝑡−1 +  𝑖𝑡  ⨀ �̃�𝑡 (6.45) 

ℎ𝑡 = 𝑜𝑡   ⨀  𝜙(𝑐𝑡) (6.46) 

where 𝜎(𝑥) =  (1 +  𝑒−𝑥)−1  is the sigmoid activation function, 𝜙(𝑥) = 2 𝜎(2𝑥) − 1 is the 

hyperbolic tangent activation function,  𝑖𝑡  ∈ ℝ𝑁 is the input gate, 𝑓𝑡  ∈ ℝ𝑁 is the forget gate, 

𝑜𝑡  ∈ ℝ𝑁 is the output gate, �̃�𝑡  ∈ ℝ𝑁 is the input modulation gate, 𝑐𝑡  ∈ ℝ𝑁 is the memory 

cell, and ‘⨀’ is the element-wise product of vectors.  

These additional cells enable LSTMs to learn very complex and long-term temporal 

dynamics, overcoming the problem of vanishing/exploding gradients of the classical RNNs.  

However, traditional full-connected LSTMs, by taking the vectorized features as inputs, loses 

the spatial correlation information during recurrence operations. Also, and similarly to MLPs 

when applied to 3D feature maps, LSTMs are time- and memory-consuming due to the large 

matrix sizes, and translational variant by feature vectorization. Altogether, these limitations 

shorten its use in image processing applications. Convolutional LSTMs (ConvLSTMs) were 

proposed by X. Shi et al. (2015) to naturally handle 3D convolutional features as inputs and 

preserve spatial information, equivalent to the CNNs in feedforward NN. The ConvLSTM cell 

replaces matrix multiplications in every gate of the traditional LSTM cell (Equations. (6.47) 
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– (6.52)) by convolution operations. Formally, the activations of a ConvLSTM cell at time 𝑡 

are formulated as follows (X. Shi et al., 2015):  

𝑖𝑡 = 𝜎(𝑊𝑥 𝑖  ∗ 𝑥𝑡 +  𝑊ℎ𝑖 ∗  ℎ𝑡−1 + 𝑏𝑖) (6.47) 

𝑓𝑡 = 𝜎(𝑊𝑥 𝑓 ∗  𝑥𝑡 +  𝑊ℎ𝑓  ∗  ℎ𝑡−1 + 𝑏𝑓) (6.48) 

𝑜𝑡 = 𝜎(𝑊𝑥 𝑜  ∗  𝑥𝑡 + 𝑊ℎ𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜) (6.49) 

�̃�𝑡 = 𝜙(𝑊𝑥 𝑐  ∗  𝑥𝑡 +  𝑊ℎ𝑐   ∗  ℎ𝑡−1 + 𝑏𝑐) (6.50) 

𝑐𝑡 = 𝑓𝑡 ⨀ 𝑐𝑡−1 +  𝑖𝑡  ⨀ �̃�𝑡 (6.51) 

ℎ𝑡 = 𝑜𝑡  ⨀ 𝜙(𝑐𝑡) (6.52) 

where ‘∗’ and ‘⨀’ denote the convolution and Hadamard product operations, respectively, 

and 𝑊𝑥~ and 𝑊ℎ~ are 2D convolution kernels. The convolutions, together with recurrence 

operations, can take full use of the spatiotemporal correlation information, empowering 

traditional LSTMs to learn long-term spatiotemporal features.  

When compared to these RNN-based networks in modeling the video sequences’ dynamics, 

traditional feedforward NN are not able to accomplish the task since they do not share 

feature information across different positions of the network; they simply assume that all 

inputs and outputs are independent of each other. Therefore, RNN-based models have 

proven successful on tasks such as image and video description (Donahue et al., 2015), 

machine translation (Cho et al., 2014), and activity/behavior recognition (Donahue et al., 

2015; Kramida et al., 2016; Majd & Safabakhsh, 2020; Murari, 2019). In the particular case 

of segmentation, RNNs can be used for two main purposes (Figure A 4.13): capture 

temporal information of a video sequence (Pfeuffer et al., 2019; Qiu, Yao, & Mei, 2017; 

Rebol & Knöbelreiter, 2020; Salvador et al., 2017; Zou et al., 2019), or learn the global 

context of an image (in which the image is divided into small regions or superpixels, and 

each of these is sequentially fed into an RNN-based network to learn the spatial relationship 

between them) (Byeon, Breuel, Raue, & Liwicki, 2015; Liang, Shen, Feng, Lin, & Yan, 2016). 

In addition to applying RNN-based models to predict frame-to-frame semantic segmentation, 

it is also possible to improve the consistency of the results by modifying, for example, the 

loss function. Rebol and Knöbelreiter (2020) proposed to extend the cross-entropy loss 

function with a novel inconsistency error term. This inconsistency loss penalizes pixels with 
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different predictions in consecutive frames, which were already predicted correctly in at least 

one frame of the consecutive set.  

Finally, a natural extension of 2D CNNs to video is CNNs with 3D spatiotemporal 

convolutions and pooling layers, to extract features from both spatial and temporal 

dimensions. 3D convolutions are achieved by convolving 3D kernels to the cube formed by 

stacking multiple contiguous frames together, as an extension of the spatial dimension along 

with the time domain. As a result, multiple contiguous frames are included in the obtained 

feature maps, which will, in turn, be connected to feature maps of the previous layers to 

capture motion information across frames. Therefore, unlike 2D convolutions that only learn 

spatial information, whether they are applied to an individual frame (Figure A 4.14A) or 

multiple frames sequentially (Figure A 4.14B), 3D convolutions allow preserving temporal 

information, returning a 3D output feature map (Figure A 4.14C).  

 

Figure A 4.13 Deep architectures for semantic segmentation tasks. A. DST-FCN 

architecture for semantic video segmentation. This framework could be divided into two 

streams, treating the input video clip as sequential (individual) frames (2D FCN + ConvLSTM 

for long-term temporal relationships) and a whole clip separately (3D FCN for dense 

representation for the entire clip). B. Graph LSTM layers combined with FCN for semantic 

object parsing. Images adapted with permission from: A. Qiu et al. (2017), and B. Liang et 

al. (2016). 
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3D convolutional networks (3D-CNNs) were initially proposed by Baccouche, Mamalet, Wolf, 

Garcia, and Baskurt (2011) and Ji et al. (2012) for human action recognition, and extended 

by Tran, Bourdev, Fergus, Torresani, and Paluri (2015) to include 3D pooling layers in a 

convolutional 3D network (C3D), or by Varol, Laptev, and Schmid (2017) by feeding 3D CNN 

with longer continuous RGB frames sequences in Long-Term Temporal Convolutions.  

 

Figure A 4.14 2D and 3D convolution operations. A. Applying 2D convolution on an image 

results in an image. B. Applying 2D convolution on a video volume (multiple frames as 

multiple channels) also results in an image. C. Applying 3D convolution on a video volume 

results in another volume, preserving temporal information of the input signal. Adapted with 

permission from Tran et al. (2015). 

Several methods that take advantage of 3D convolutions have been proposed for learning 

spatiotemporal features, and generally outperform 2D counterparts (Hara, Kataoka, & 

Satoh, 2018; K. Liu, Liu, Gan, Tan, & Ma, 2018; Mahadevan et al., 2020). However, this 

comes at the cost of estimating a larger number of parameters for 3D kernels, which 

increases the risk of overfitting. Also, because of the number of parameters to learn, training 

3D networks is more challenging, especially when dealing with long-duration sequences. 

Consequently, new methods have emerged that propose a combination of 3D CNNs and 

RNN-based networks (Figure A 4.15), arguing that the latter are more suitable to encode 

long-term temporal information, especially from various-length videos, and in turn, 3D CNNs 

are superior in learning short-term temporal features between adjacent video frames 

(Molchanov et al., 2016; X. Wang, Miao, Zhang, & Hao, 2019; L. Zhang et al., 2017). 
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Figure A 4.15 Combination of 3D convolutional layers and RNN/LSTM cells in CCN-

based architectures. A. R3DCNN architecture for the classification of dynamic gestures. A 

gesture video is presented in the form of short clips to a 3D-CNN for extracting local spatial-

temporal features. These features are input to a recurrent network, which aggregates 

transitions across several clips. B. 3DCNN and bidirectional ConvLSTM are utilized to learn 

the short-term and long-term spatiotemporal features, successively, and then 2DCNN is 

used to learn higher-level spatiotemporal features based on the learnt 2D long-term 

spatiotemporal feature maps for the final gesture recognition. Images adapted with 

permission from: A. Molchanov et al. (2016), and B. L. Zhang et al. (2017). 

4.3.1 Experiments 

To take advantage of the temporal information present in the videos of the original RGB-D 

dataset, and to confirm that this information can improve the performance of the previously 

proposed segmentation approach, the U-Net architecture was extended by using different 

methods that consider image information from previous or contiguous frames. In fact, some 
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segmentation errors occurring only at single frames, such as flickering pixels, borders, and 

animal shadows, could be avoided using additional information from previous or consecutive 

frames, instead of processing each image independently. Hence, temporal information is 

used in these experiments to improve segmentation results.  

Dataset 

The annotated dataset, composed of a total of 600 frames, was split into 400 images for 

training, 100 images for validation, and 100 images for testing, being all consecutive frames 

within each independent set. Initially, these independent sets were again subdivided into 

sequences of 16 consecutive frames (clips), following Tran et al. (2015) approach. The time 

difference 𝜏 between two frames of the sequence contains approximately 67 ms.  

Implementation Details 

Different approaches for the video segmentation task were implemented, using the U-Net 

model architecture, previously described (Figure A 4.3), as the backbone architecture. Here, 

all max-pooling operations were replaced by strided convolutions (stride equal to 2) (Figure 

A 4.16A). The motivation for this modification is that by replacing by a strided convolution, 

the pooling operation can also be learned, which may increase model’s expressiveness 

ability and improve the overall accuracy of a model with the same depth and width 

(Springenberg, Dosovitskiy, Brox, & Riedmiller, 2014). Also, in feature upsampling at the 

decoder, transpose convolutions with stride equal to 2 were applied.  

One technique to take into account last frames’ information for feature learning is through 

RNN, such as LSTMs that can be easily trained and integrated. Thereby, the traditional U-

Net architecture was extended by placing a ConvLSTM layer at different positions in the 

network, in order to find which position is most suitable for learning depth images in 

segmentation tasks. The extended U-Net is called hereinafter U-Net-ConvLSTM. Following 

Pfeuffer et al. (2019) methodology, 3 different versions of the U-Net-ConvLSTM architecture 

were tested, where the temporal integration is performed differently (Figure A 4.16B). In 

version 1, a ConvLSTM layer is placed between the encoder and the decoder. Since the 

encoder determines global image information, which should not vary much between 

neighboring frames, memorizing and modifying these image features might avoid flickering 

of features and improve segmentation results. In turn, version 2 consists of placing a 

ConvLSTM layer at the end of the network. Here, each frame is processed independently to 
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avoid error propagation through the network. In the end, the results from neighboring frames 

are combined using the recurrent structure, resulting in temporal filtering of the final 

segmentation map. A combination of these two versions was also considered to take 

advantage of both global and filtering advantages (version 3). The kernel size of the 

ConvLSTM layers in all versions was set to 3×3 and the number of output channels is equal 

to the one of the previous layer.  

 

Figure A 4.16 U-Net architecture for a depth video sequence of the original RGB-D 

dataset (input size of 128x128x16). A. U-Net backbone architecture for an input video 

sequence. Each blue box corresponds to a multi-channel feature map, in which the number 

of channels is denoted on top of the box and the corresponding x-y-size at the lower-left 

edge of the box. The network is divided into two convolutional parts: encoder, on the left, 

and the decoder, on the right. Grey boxes in the decoder section represent copied feature 

maps. The arrows denote the different operations, subtitled in the image itself. Inspired by 

Ronneberger et al. (2015). B. U-Net-ConvLSTM network architecture: light pink boxes 

illustrate original U-Net layers, while the different positions of the ConvLSTM layers are 

colored, according to the version. Adapted with permission from Pfeuffer et al. (2019). 

3D convolutions were also tested as a natural extension of 2D convolutions for 

spatiotemporal feature learning. In this way, the convolutional and max-pooling layers of the 

original U-Net architecture were extended in 3D, to comprise 3D input dimensions (U-Net 

3D). Following (Tran et al., 2015), 3×3×3 space-time filters were used for all convolutional 
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layers, instead of the original 3×3 kernels. All of these convolutional layers were applied 

with appropriate padding (both spatial and temporal), and max pooling layers with kernel 

size 2×2×2, except for the first and last layer with kernel size 1×2×2 to not merge the 

temporal signal too early and avoid collapsing the temporal signal (Tran et al., 2015). 

All networks were trained from scratch, with SGD implementation of TensorFlow and ADAM 

optimizer and Dice BCE loss function. The training consisted of a maximum of 100 iterations 

with a default batch size of 1, an initial learning rate 0.0001, and a momentum of 0.9. The 

resolution of the input images was reduced to 128×128 due to memory and time reasons. 

These training conditions were set for all different networks so that only the architectural 

differences influence the result. To determine which parameters should be used in training 

such networks, ablation studies were initially carried out, to find the optimal batch size (N = 

1 or 4), dropout (equal to 0.5), activation function (ReLU or Leaky ReLU), and architecture 

size (with 1 convolution per block – small size, or with 2 convolutions per block – big size).  

The effect of increased temporal information was also evaluated, by increasing the size of 

each clip to {32, 48, 64, 80} frames. Also, the time difference 𝜏 between each frame within 

one clip was increased to approximately {133, 200, 267} ms, corresponding to sampling 

every two, three, or four frames of the original dataset, respectively. These experiments will 

provide some insights into whether network learning is improved by changing the temporal 

extent (number of frames per clip) and/or the granularity of temporal information (time step 

between two consecutive frames in a clip). The same augmentation operations were applied 

to all frames in each clip, with the previously described parameters (Appendix -  Semantic 

Segmentation with U-Net – segmentation of animal’s whole-body - Experiments). When 

using 16 frames per clip with a time difference of 67 ms, a total of 625 clips (10000 frames) 

were produced for training and a total of 6 clips (96 frames) for each validation and testing.  

4.3.2 Results 

To understand if the integration of recurrent layers can help in the animal’s body 

segmentation, by taking advantage of temporal information between frames, the 

performance of networks with different architectures was studied. Initially, and using the 

default parameters, the effect of introducing ConvLSTM layers was explored, and the results 

showed that whatever the position of these layers, the performance is always improved 

when compared to the simple U-Net architecture (Supplementary Figure S 5.1A). It's 
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interesting to point out that, during inference (Supplementary Figure S 5.1B), the presence 

of ConvLSTM layers improves the segmentation mask as the sequence progresses (the first 

few frames have poor segmentation masks, but the quality of segmentation improves over 

time). This is expected for recurrent layers since over time there is more background 

knowledge available to help segment the frames.  

Overall, U-Net-ConvLSTM versions 1 and 3 achieved superior results, proving that, for this 

segmentation task, introducing a ConvLSTM layer between the encoder and decoder has a 

stronger effect. Here, since global information is determined by the encoder and that this 

global information does not vary between consecutive frames (static camera, background 

features similar across time, animal shape consistent between contiguous frames), 

segmentation is improved over time using stored global features. Using a ConvLSTM layer 

at the end of the network allows further improvement of the segmentation, and for that 

reason, U-Net-ConvLSTM version 3 is the best architecture for the segmentation task, with 

more consistent results across trials. 

Networks’ architectures were fine-tuned by testing different parameters (Supplementary 

Figure S 5.1). When the number of convolutional layers per block is increased, there was 

an overall increase in the performance of the segmentation (cleaner background and more 

detailed animal shape). A decrease in overfitting was observed, as expected, with the 

introduction of dropout layers at the end of the encoder, with a slight increase in model’s 

performance. Finally, changing the activation function to the Leaky ReLU one did not bring 

any improvements. Results showed weaker segmentation maps, lower overall performance 

in training and validation sets, and the model was slower to converge.  

To investigate the behavior of U-Net-based networks for increasing temporal information, U-

Net, U-Net-ConvLSTM version 3 and U-Net 3D networks were systematically compared 

(Figure A 4.17). The results showed that increasing the time difference between sampling 

frames impacts the performance of all U-Net-based networks with smaller size (1 

conv./block), with a slight performance increase for 𝜏 equals to 2 and 3 (which corresponds 

to sampling every two or three frames in the original dataset). For higher 𝜏 values, the 

segmentation performance starts to decrease (Figure A 4.17).  
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Figure A 4.17 Semantic segmentation results of U-Net-based networks for increased 

temporal information. Different architectures were compared: U-Net, U-Net-ConvLSTM 

version 3 (v3) and U-Net 3D, with 1 or 2 convolutional layers in each block (conv./block). 

Left: Overall Dice coefficient for increasing time differences 𝜏 (in miliseconds, ms) between 

sampling frames in the input sequence. Right: Overall Dice coefficient for increasing 

temporal extents. Time window in units of 𝜏 (𝜏 = 67 ms). Data represented as median ± 95% 

confidence interval (N = 3 trials). 

This can be explained by the granularity of depth information present in contiguous frames: 

for low time differences, the information contained in consecutive frames is similar and does 

not suffer from abrupt changes. However, with high time differences, the variations in depth 

information are greater, with frames more distinct from each other and containing completely 

different animal movements. For this reason, consecutive frames sampled with a higher time 

difference may no longer contain relevant information for segmenting the current frame. On 

the other hand, for time-windows longer than 2 seconds, approximately, the segmentation 

performance decreases drastically. This is aligned with previous results, where the 

segmentation learning does not seem to benefit from very distant temporal information, 

degrading networks’ performance. Finally, temporal integration through 3D convolutions 

doesn't seem to improve segmentation, with similar performances to the U-Net model. In 

fact, since ConvLSTM layers are designed to process spatial and temporal information 

separately, they may be more suitable when the temporal component is truly important, 

avoiding mixing information of different scales. 
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Overall, these results showed that temporal information appears to be crucial for the learning 

process and that networks must be carefully designed to allow spatiotemporal integration 

on a time scale that fits the question under study. 


	Acknowledgements
	Abstract
	Resumo
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Author’s contributions
	CHAPTER 1
	Motivation, Objectives, and Thesis Structure
	1. Motivation
	2. Objectives
	3. Thesis Structure

	CHAPTER 2
	Quantifying and Understanding Animal Behavior
	1. Studying behavior to understand biological systems’ internal mechanisms
	2. Automatic quantification of animal behavioral patterns using machine vision and machine learning approaches
	2.1 Automating video-based tracking in computational ethology
	2.1.1 Segmentation of the animals from the background
	2.1.2 Tracking multiple animals
	2.1.3 From tracking information to pose estimation

	2.2 Automating animal tracking in three dimensions
	2.3 Automating animal behavior recognition
	2.3.1 From low-level representations to automatic behavior classification
	2.3.2 Direct behavior classification from raw inputs

	2.4 Representing behavioral dynamics

	3. Depth cameras in animal behavioral analysis
	4. Infrared thermal imaging for assessing animal health and welfare
	5. Control of operant mazes based on real-time behavioral analysis

	CHAPTER 3
	A High-Throughput Analysis Software for Non-Invasive Thermal Assessment of Laboratory Mice
	1. Abstract
	2. Highlights
	3. Introduction
	4. Materials and Methods
	4.1 Thermal Cameras
	4.2 Software development
	4.3 Animals
	4.4 Experimental Protocol
	4.5 Statistics

	5. Results
	5.1 ThermoLabAnimal graphical user interface
	5.2 Software output
	5.3 High-dose LPS challenge

	6. Discussion
	7. Acknowledgments
	8. Supplementary Information
	8.1 Extended methodology
	8.1.1 Thermal reading validation experiments

	8.2 Supplementary Figures
	8.3 Supplementary Tables


	CHAPTER 4
	Improved 3D Tracking and Automated Classification of Rodents’ Behavioral Activity using Depth-Sensing Cameras
	1. Abstract
	2. Introduction
	3. Materials and Methods
	3.1 Behavioral Protocol
	3.2 Video Acquisition
	3.3 Manual annotation of rodents’ behaviors
	3.4 Tracking and Classification Algorithms
	3.4.1 Animal detection and tracking.
	3.4.2 Body parts’ detection and tracking.
	3.4.3 Features’ extraction.
	3.4.4 Automatic behavior classification.

	3.5 Behavioral phenotyping

	4. Results
	4.1 An RGB-D behavioral dataset to promote advances in computational ethology
	4.2 Depth information improves whole-body segmentation in both static and dynamic background conditions
	4.3 Tracking multiple anatomical landmarks in 3D
	4.4 Automatic behavior classification using depth information
	4.5 CaT-z: a user-friendly computational solution for quantifying animal behavior
	4.6 Ability to distinguish between strains – automatic behavioral phenotyping

	5. Discussion
	6. Acknowledgments
	7. Author’s contributions
	8. Supplementary Information
	8.1 Extended Methodology
	8.1.1 Animals.
	8.1.2 Behavioral Protocol
	8.1.3 Animal detection and tracking
	8.1.4 Pre-processing
	8.1.5 Body parts’ detection and tracking
	8.1.6 Statistical analysis

	8.2 Supplementary Figures
	8.3 Supplementary Tables
	8.4 Supplementary Movies


	CHAPTER 5
	Deep Learning-based System for Real-Time Behavior Recognition and Automated Closed-Loop Control of Behavioral Mazes
	1. Abstract
	2. Introduction
	3. Materials and Methods
	3.1 Dataset
	3.2 Proposed deep learning model
	3.2.1 Architecture
	3.2.2 Training
	3.2.3 Experiments
	3.2.4 Data augmentation
	3.2.5 Model evaluation and metrics

	3.3 Real-time control system
	3.3.1 Interface board
	3.3.2 Control software
	3.3.3 Video camera
	3.3.4 Computational performance: inference and latency times

	3.4 Computing hardware
	3.5 Statistical methods

	4. Results
	4.1 Learning spatial and temporal features: modeling approach
	4.1.1 Past information improves behavioral classification performance
	4.1.2 Short-time scales are the most relevant for the learning process
	4.1.3 Different input sequence’s representations improve networks’ learning
	4.1.4 High performances achieved with a reduced training dataset
	4.1.5 Behavior is accurately detected in unseen depth videos

	4.2 Automating closed-loop control of behavioral mazes: feedback approach
	4.2.1 Closed-loop system achieves low-latency feedback based on animal behavioral/tracking patterns
	4.2.2 User-interface allows end-to-end control of behavioral experiments


	5. Discussion
	6. Conclusions
	7. Supplementary Information
	7.1 Extended Methodology
	7.1.1 Semantic segmentation performance using U-Net and U-Net-ConvLSTM networks

	7.2 Extended Results
	7.2.1 Past information improves behavioral classification performance
	7.2.2 High performances achieved with a reduced training dataset
	7.2.3 Input resolution improves behavioral classification performance
	7.2.4 Raw depth video inputs are the most informative for the learning process



	CHAPTER 6
	Main Conclusions and Future Perspectives
	1. Main Conclusions
	2. Future Perspectives

	REFERENCES
	APPENDIX
	1. Fundamentals of Time-of-Flight operation system
	1.1 Representation of 3D coordinates
	1.2 Alignment of depth and color sensor
	1.3 Distortion analysis

	2. Fundamentals of Support Vector Machines
	3. Fundamentals of Neural Networks and Convolutional Neural Networks
	4. Deep Learning Approaches for Learning from Depth-Sensing Information
	4.1 Semantic Segmentation with U-Net – segmentation of animal’s whole-body
	4.1.1 Experiments
	4.1.2 Results

	4.2 Depth representation for Convolutional Neural Networks
	4.2.1 Experiments
	4.2.2 Results

	4.3 Sequence Models for Extracting Spatiotemporal Features of Depth Sequences
	4.3.1 Experiments
	4.3.2 Results




