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Abstract: Background: Gastric cancer (GC) is a major health burden worldwide, with half of patients
developing metastases within 5 years after treatment, urging novel biomarkers for diagnosis and
efficient therapeutic targeting. Sialyl-Lewis A (SLeA), a terminal glycoepitope of glycoproteins and
glycolipids, offers tremendous potential towards this objective. It is rarely expressed in healthy
tissues and blood cells, while it is present in highly metastatic cell lines and metastases. SLeA is also
involved in E-selectin mediated metastasis, making it an ideal target to control disease dissemination.
Methods and Results: To improve cancer specificity, we have explored the SLeA-glycoproteome
of six GC cell models, with emphasis on glycoproteins showing affinity for E-selectin. A novel
bioinformatics-assisted algorithm identified nucleolin (NCL), a nuclear protein, as a potential
targetable biomarker potentially involved in metastasis. Several immunoassays, including Western
blot and in situ proximity ligation reinforced the existence of cell surface NCL-SLeA glycoforms in
GC. The NCL-SLeA glycophenotype was associated with decreased survival and was not reflected in
relevant healthy tissues. Conclusions: NCL-SLeA is a biomarker of poor prognosis in GC holding
potential for precise cancer targeting. This is the first report describing SLeA in preferentially nuclear
protein, setting a new paradigm for cancer biomarkers discovery and targeted therapies.
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1. Introduction

Gastric cancer (GC) is the third leading cause of cancer-related death worldwide and constitutes
a significant therapeutic hurdle due to the lack of efficient therapeutics to address disseminated
disease [1,2]. As such, half of patients develop metastases within 5 years after curative treatment
comprehending surgery, chemotherapy and/or radiotherapy [3,4]. Moreover, many patients cannot
tolerate or complete systemic treatment due to severe treatment side-effects [5,6]. The introduction of
antibody-based targeted therapeutics with trastuzumab (anti-HER2), ramucirumab (anti-VEGFR2),
and cetuximab (anti-EGFR) has provided only modest improvements in patient survival and frequently
fail to control metastatic spread [7–10]. In addition, these options serve a reduced number of patient
subpopulations and lack the necessary tumor specificity to fully avoid off-target related toxicity [11].
These clinical challenges center the spotlight on a novel quest for cancer-specific molecular targets
capable of overcoming significant inter- and intra-tumor heterogeneity.

Malignant transformation is accompanied by a profound remodeling of the plasma membrane
glycome and glycoproteome, generating cancer unique molecular fingerprints for precise cancer
targeting [12,13]. Premature stop in O-glycan (in Serine and Threonine residues) extension in
membrane bound proteins as well as oversialylation and fucosylation of distinct glycoepitopes are
among the most well-known events [13,14]. Namely, gastric tumors often overexpress sialylated Lewis
(SLe) antigens, which are terminal epitopes of glycan chains in proteins and lipids present at the
cell surface [15]. In addition, it has been noted that gastric tumors have a significant increase in the
expression of the sialyl Lewis A isoform (SLeA), showing only modest increases of sialyl Lewis X (SLeX)
levels [16]. It is also well documented that these sialylated Lewis antigens mediate binding to E-selectin,
promoting tumor cells arrest in blood vessels, extravasation into the bloodstream and homing to
distant organs [12,17,18]. In fact, the interaction between SLe-expressing cancer cells and E-selectin,
a calcium-dependent lectin overexpressed by microvascular endothelial cells during inflammation,
is pivotal for cancer spread [19–21] and its inhibition has significantly improved survival in animal
cancer models [22]. Accordingly, GC patients with tumors showing pronounced SLeA expression have
been found at greater risk of developing distant metastasis and, consequently, face worst prognosis [23].
This antigen has also been observed in GC metastases [24], suggesting potential for designing more
effective therapeutics. Even though the SLeA is not expressed by healthy blood cells, low amounts of
this glycoepitope may be found in the salivary glands, colon, pancreas, bile ducts and other healthy
tissues [16,25]. It has also been observed in several non-malignant conditions of the gastrointestinal
tract limiting its biomarker potential [26–28]. Such observations challenge the cancer-specificity of the
glycoantigen, urging the identification of protein glycoforms for precise targeting. As such, this work
comprehensively interrogates the glycome and glycoproteome of a wide panel of GC cell models as
a starting point for the identification of unique SLeA molecular signatures. It mainly focusses on
understanding alterations in O-glycosylation, that is significantly altered in GC with major implications
in disease outcome [14,29]. Emphasis was set on SLeA protein glycoforms with affinity for E-selectin
and limited expression in healthy tissues. We anticipate that this may constitute an important roadmap
towards improved disease management at different levels.

2. Material and Methods

2.1. Cell Lines and Culture Conditions

Human GC cell lines OCUM-1 and MKN-74 were purchased from the Japanese Collection of
Research Bioresources (JCRB) Cell Bank, whereas NCI-N87 (N87), AGS, KATO-III and MKN-45



Cancers 2020, 12, 861 3 of 32

cells were acquired from ATCC. Cells were maintained with 10% heat-inactivated FBS (Thermo
Fisher Scientific, Waltham, MA, USA) and 1% penicillin-streptomycin (10,000 Units/mL penicillin;
10,000 mg/mL streptomycin; Thermo Fisher Scientific, Waltham, MA, USA) supplemented RPMI
1640+GlutaMAXTM-I medium (Thermo Fisher Scientific, Waltham, MA, USA). OCUM-1 cells were
grown with low-glucose DMEM (GE Healthcare Life Sciences, Chicago, IL, USA). Cell lines were
cultured at 37 ◦C in a 5% CO2 humidified atmosphere.

2.2. Population and Ethics Statement

This study was performed retrospectively in a series of 202 formalin-fixed paraffin-embedded
(FFPE) gastric tumor tissues obtained from archived paraffin blocks at the Portuguese Institute of
Oncology—Porto (IPO-Porto), Portugal. Gastric tumors were surgically removed from 23 men and
24 women, ranging from 54 to 88 years of age (median 66 ± 12 years), admitted and treated at the
IPO-Porto between 2004 and 2016. The clinicopathological information used for accessing SLeA and
NCL expressions is summarized latter in this study in the results. Overall survival (OS) was defined
as the period between the date of surgery and date of patient death by cancer. Clinicopathological
information was obtained from patient’s clinical records, upon IPO ethics committee approval (reference
87/17 approved on 23 March 2017). Investigations were carried out following the rules of the Declaration
of Helsinki of 1975, revised in 2013. A broad library of healthy tissues (appendix, skin, lung, pancreas,
colon, small intestine, gallbladder, liver, testis, stomach, thyroid and tonsil) were also screened
for these two markers. All procedures concerning the inclusion of patients were approved by the
institutional Ethics Committee (Comissão de ética para a saúde—CES-IPOFG-EPE 87/2017) after
patient’s informed consent.

2.3. Antibodies and Lectins

The antibodies and lectins used in this study and their applications are summarized in Table 1.
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Table 1. Antibodies used in this study and corresponding experimental conditions.

Antibody Manufacture Reference Clonality Clone Host Application Experimental Conditions

Anti-TPR Novus Biologicals, Centennial, CO, USA NB100-2866 Polyclonal - Rabbit WB 1:1000, 4 h RT
Anti-ß-Actin Sigma-Aldrich, St. Louis, MO, USA A1978 Monoclonal AC-15 Mouse WB 1.4µg/mL, 1 h RT

Anti-B2M Abcam, Cambridge, UK ab75853 Monoclonal EP2978Y Rabbit WB 1:100, 1 h, RT

Anti-CA19.9 (SLeA) Abcam, Cambridge, UK ab116024 Monoclonal CA19.9-9-203 Mouse IP, WB, IF, PLA, IHC,
FC

Flow/IF—1:100, 1 h RT
WB—1:1000, 1 h RT

IHC—1:100, 4 ◦C/12 h
Anti-NCL Abcam, Cambridge, UK ab22758 Polyclonal - Rabbit IP, WB WB—1:1000, 1 h RT
Anti-NCL Abcam, Cambridge, UK ab129200 Monoclonal EPR7952 Rabbit PLA, IHC 1:250, 4 ◦C 12 h

Alexa Fluor 647 Anti-NCL Abcam, Cambridge, UK ab202709 Monoclonal EPR7952 Rabbit Flow, IF 1:100, 1 h RT
Rabbit IgG isotype Thermo Fisher Scientific, Waltham, MA, USA LTI-02-6102 - - Rabbit IP, PLA, FC The same as for anti-NCL

Mouse IgG1 isotype Abcam, Cambridge, UK ab18443 - - Mouse IP, PLA, FC The same as for anti-CA19-9
Anti-Rabbit IgG HRP Thermo Fisher Scientific, Waltham, MA, USA 656120 Polyclonal - Goat WB 1:60,000, 30 min. RT
Anti-Mouse IgG HRP Jackson ImmunoResearch, West Grove, PA, USA 115-035-205 Polyclonal - Goat WB 1:70,000, 30 min. RT

Alexa Fluor 594 Anti-Rabbit IgG Thermo Fisher Scientific, Waltham, MA, USA A11012 Polyclonal - Goat IF 1:300, 30 min. RT

Alexa Fluor 488 Anti-Mouse IgG Thermo Fisher Scientific, Waltham, MA, USA A11001 Polyclonal - Goat IF, FC IF—1:300, 30 min. RT
Flow—1:300, 15 min. RT

FITC Anti-human IgG Agilent Technologies, Santa Clara, CA, USA F0202 Polyclonal - Rabbit IF 1:100, 30 min. RT
Alexa Fluor 594 Anti-mouse IgG Thermo Fisher Scientific, Waltham, MA, USA A11005 Polyclonal - Goat IF 1:300, 30 min. RT

Recombinant Mouse E-Selectin Ig Chimera Protein R&D Systems, Minneapolis, MN, USA 575-ES-100 - - Mouse IF 1 µg/mL, 2 h RT

FC—Flow Cytometry; IF—Immunofluorescence; IHC—Immunohistochemistry; IP—Immunoprecipitation; PLA—Proximity Ligation Assay; WB—Western Blot.
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2.4. Flow Cytometry

Cells were detached using Versene solution (Thermo Fisher Scientific, Waltham, MA, USA),
fixed with 4% paraformaldehyde (PFA; Sigma-Aldrich, St. Louis, MO, USA) and stained with mouse
anti-SLeA monoclonal antibody [CA19.9-9-203] (ab116024, Abcam, Cambridge, UK) using a 1:100
dilution in PBS 2% FBS for 1 h at room temperature. Goat anti-mouse IgG (H + L) cross-adsorbed
secondary antibody Alexa Fluor 488 was used for SLeA detection at a 1:300 dilution in PBS 2% FBS for
15 min at room temperature. Mouse IgG1 [MOPC-21] isotype control (ab18443, Abcam, Cambridge,
UK) was included as a negative control. In parallel, 106 cells were digested with either 10 mU/mL
Neuraminidase from Clostridium perfringens (Sigma-Aldrich, St. Louis, MO, USA) or 25 mU/mL
PNGase F from Elizabethkingia meningoseptica (Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C for
1 h under mild agitation, prior to SLeA staining. PNGase F digestion assay was used to access
the overall SLeA expression in glycoprotein N-glycans, whereas Neuraminidase treated cells were
included as negative controls. In addition, cancer cells were screened for NCL expression using the
Alexa Fluor 647-labelled rabbit anti-human NCL monoclonal antibody [EPR7952] (ab202709, Abcam,
Cambridge, UK). NCL was evaluated using membrane intact live cells in the presence of propidium
iodide (PI, Thermo Fisher Scientific, Waltham, MA, USA) to reassure cell surface antigen detection.
Control experiments included cells permeabilized with 0.1% Triton X-100 (Sigma-Aldrich, St. Louis,
MO, USA) prior to FACS analysis to determine the total NCL content. Data analysis was performed
through CXP Software and results represent the standard deviation of three independent experiments.

2.5. O-Glycomics

Gastric cancer cell models O-glycome was characterized using Cellular O-glycome
Reporter/Amplification method, as previously described [30]. A novel methodology that explores
a benzyl-GalNAc residue (the first sugar in O-glycans biosynthesis) as a scaffold for the cell’s
glycosylation machinery, thus enabling the identification of more extended glycans, was used in
this study. After processing in the secretory pathways, secreted benzylated O-glycans could be
easily recovered from the cell culture media, permethylated and analyzed by nanoLC-ESI-MS/MS.
According to previous reports, this method is more sensitive than classical approaches for O-glycome
characterization, which require an initial de-glycosylation step byβ-elimination. Moreover, by avoiding
this chemical manipulation, it reduces the probability of biased results associated with the loss of
more labile sugars such as fucose and sialic acid, present in sialylated Lewis antigens. Briefly, benzyl
2-acetamido-2-deoxy-α-D-galactopyranoside (Sigma-Aldrich, St. Louis, MO, USA) was peracetylated
and administered to semi-confluent cells to a final concentration of 150 µM. Following 24 h incubation,
glycans were isolated from the conditioned media by filtration using 10 kDa centrifugal filter (Amicon
Ultra-4; Merck KGaA, Darmstadt, Germany), followed by solid-phase extraction in Sep-Pak 3 cc
C18 cartridges (Waters, Milford, MA, USA). Finally, Bn-O-glycans were permethylated and analyzed
by nanoLC-ESI-MS/MS using a nanoLC system (Dionex, 3000 Ultimate nano-LC; Thermo Fisher
Scientific, Waltham, MA, USA) coupled online to an LTQ-Orbitrap XL mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) equipped with a nano-electrospray ion source (EASY-Spray
source; Thermo Fisher Scientific, Waltham, MA, USA). Eluent A was aqueous formic acid (0.2%) and
eluent B was formic acid (0.2%) in acetonitrile. Samples (20 µL) were injected directly into a trapping
column (C18 PepMap 100, 5 µm particle size) and washed with an isocratic flux of 90% eluent A
and 10% eluent B at a flow rate of 30 µL/min. After 3 min, the flux was redirected to the analytical
column (EASY-Spray C18 PepMap, 100 Å, 150 mm × 75µm ID and 3 µm particle size) at a flow rate of
0.3 µL/min. Column temperature was set at 35 ◦C. Permethylated glycan separation occurred using a
multistep linear gradient to obtain 10% eluent B at 10 min, 38% eluent B at 20 min, 50% eluent B at
55 min and 90% eluent B at 65 min. The column was maintained at 90% eluent B for 10 min before
re-equilibration at 10% eluent B. The mass spectrometer was operated in the positive ion mode, with a
spray voltage of 1.9 kV and a transfer capillary temperature of 250 ◦C. Tube lens voltage was set to 120
V and the capillary voltage to 9 V. MS survey scans were acquired at an Orbitrap resolution of 60,000 for
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an m/z range from 400 to 2,000. Tandem MS (MS/MS) data was acquired in the linear ion trap using a
data dependent method with dynamic exclusion. The top 6 most intense ions were selected for collision
induced dissociation (CID). CID settings were 35% normalized collision energy, 2 Da isolation window
30 ms activation time and an activation Q of 0.250. A window of 90 s was used for dynamic exclusion.
Automatic Gain Control (AGC) was enabled and target values were 1.00e + 6 for the Orbitrap and
1.00e + 4 for LTQ MS analysis. Data were recorded with Xcalibur software version 2.1 (Thermo Fisher
Scientific, Waltham, MA, USA). Glycan structures were assigned based on characteristic product ion
spectra and previous knowledge about O-glycosylation pathways [30]. Glycans were expressed in
terms of relative abundance in comparison to the sum of all individual contributions to the glycome.

2.6. Subcellular Fractionation And Protein Extraction From Gastric Tissues

Plasma membrane proteins were extracted from whole cells (20 × 106) by scrapping with
fractionation buffer (20 mM HEPES buffer (pH = 7.4), 10 mM KCl, 2 mM MgCl2, 1 mM EDTA and 1
mM EGTA) on ice. Cell suspension was then passed through a 27G needle, left on ice for 20 min. and
then centrifuged at 720 g for 5 min at 4 ◦C to remove the nuclei. The supernatants were transferred
to a new tube and recentrifuged at 10,000× g for 5 min at 4 ◦C to remove mitochondria. Samples
were then transferred to polycarbonate centrifuge bottles with cap assemblies and centrifuged for 1 h
at 100,000 g at 4 ◦C. The pellets were recovered, resuspended in the fractionation buffer and passed
through a 25G needle before a new centrifugation for 45 min at 100,000× g at 4 ◦C. The final pellets
corresponding to membrane proteins were resuspended in an appropriate volume of TBS with 0.3%
SDS. The nuclei pellets, obtained in the first centrifugation, were then passed through a 25G needle and
centrifuged at 4,000× g for 10 min at 4 ◦C. Pellets were resuspended in TBS with 0.3% SDS and sonicated
briefly to shear genomic DNA and homogenize the lysate. Cytoplasmic proteins obtained in the
supernatant of first ultracentrifugation cycle were passed through an Amicon Ultra-4 10K Centrifugal
Filter device, centrifugated at 7500× g for 20 min and washed extensively with fractionation buffer.
The retentate was collected. The protein content in each fraction was estimated using a DC protein
assay kit (Bio-Rad, Hercules, CA, USA). The purity of the fractions was estimated by Western blot using
β2 microglobulin (B2M) and SLeA as biomarkers of membrane proteins, Nucleoprotein TPR (TPR)
as nuclear marker, and β-actin as a cytoplasmatic/cytoskeleton marker. Proteins were also extracted
from formalin fixed paraffin embedded gastric carcinoma tissues using Qproteome FFPE tissue kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Then the protein buffer was
exchanged to RIPA buffer and the protein amount were quantified and subsequently used to access the
presence of NCL-SLeA proteoforms.

2.7. O-Linked Glycoproteomics

The SLeA expressing glycoproteins were isolated from plasma membrane enriched extracts (200µg)
by immunoprecipitation (IP) using the anti-SLeA monoclonal antibody [CA19.9-9-203] (ab116024,
Abcam, Cambridge, UK) immobilized at the surface of magnetic beads with the Pierce™ Direct IP Kit
(Thermo Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s instructions. In parallel,
a similar strategy was used to pull-down glycoproteins with affinity for E-selectin [31]. A recombinant
mouse E-selectin/ human Fc chimera (E-selectin-Ig chimera-E-Ig), a validated tool to identify E-selectin
ligands in human cells [32,33], was used towards this end. The E-Ig chimera was immobilized at the
surface of magnetic beads, as previously described, and incubated with the membrane protein extracts
containing 2 mM CaCl2. Negative controls involving IPs with IgG1 isotype control and pulldowns with
E-selectin in the absence of Ca2+ were also conducted. The glycoproteins isolated in these assays were
then resolved by SDS-PAGE using 4–20% precast polyacrylamide gels (Bio-Rad, Hercules, CA, USA)
and blotted for SLeA and SLeX. The bands were also excised from the gels, reduced, alkylated and
digested with trypsin and identified by mass spectrometry. Tryptic digestion and nanoLC-nES-MS/MS
analysis were carried out according to the conditions previously described [34]. Data was analyzed
automatically using the SequestHT search engine with the Percolator algorithm for validation of protein
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identifications (Proteome Discoverer 1.4, Thermo Fisher Scientific, Waltham, MA, USA). Data was
searched against the human proteome obtained from the SwissProt database, selecting trypsin as the
enzyme and allowing up to 2 missed cleavage sites and a precursor ion mass tolerance of 10 ppm and
0.6 Da for product ions. Carbamidomethylcysteine was selected as a fixed modification, while oxidation
of methionine (+15.9) was defined as variable modification. Based on glycomics studies, the database
search also included as variable modifications the glycosylation of serine and threonine with HexNAc
(+203.079; Tn antigen), HexNAc-Hex (+365.132; T antigen), HexNAc-Hex-Fuc (+511.190, fucosyl-T
antigen); HexNAc-Hex-NeuAc (+656.228, sialyl-T antigen); HexNac(NeuAc)-Hex-NeuAc (+947.323,
disialyl-T antigen), HexNAc(Hex)-HexNAc(Fuc)-Hex(NeuAc) (+1167.418, core 2 substituted with
a terminal SLeA epitope). The results corresponded to proteins identified with high confidence
and showing glycopeptides with SLeA as post-translational modification (PTM) in at least one cell
line. MS raw files and corresponding curated results were deposited in the PRIDE—Proteomics
Identification Database—EMBL-EBI (https://www.ebi.ac.uk › pride › archive) under project accession
number PXD016968.

2.8. Bioinformatics for Biomarker Discovery

For each cell line, the subcellular location, molecular and biological functions associated with the
subsets of SLeA-expressing glycoproteins with affinity for E-selectin were characterized using the Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING) version 10.5 (http://string-db.org/) [35].
The glycoproteins common to all the cell lines were also categorized based on transcriptomics data
deposited in OncomineTM (https://www.oncomine.org/) [36] for distinct GC subtypes (intestinal,
mixed, diffuse) compared to the healthy gastric mucosa. A p ≤ 0.05 as well as a 2-fold variation of
expression were considered. This data was integrated with information on protein expression in the
normal gastric mucosa from The Human Protein Atlas [37,38]. Protein expression data deposited in the
Human Protein Atlas was further used to develop a scoring algorithm (target score; described here for
the first time) to rank the identified glycoproteins in relation to their potential for targeted therapeutics
with minimal off-target effects. To achieve this goal, the target score majorated the overexpression
and localization of the glycoproteins at the cell membrane as well as associations with poor prognosis
in GC, while penalizing their presence in the same subcellular compartment as in healthy tissues.
Accordingly, the score system results from the sum of the following nine variables: (i) location in
healthy cells (membrane: 0 points; other subcellular locations: 1 point); (ii) location in cancer cells
(membrane: 1 point; cytoplasm and/or other subcellular locations: 0 points); (iii) expression in the
healthy gastric epithelium at the plasma membrane (negative: 3 points; low: 2 points; moderate:
1 point; high: 0 points); (iv) expression in GC (negative: 0 points; low: 1 point; moderate: 2 points; high:
3 points); (v) prognosis value in GC (high expression is not prognostic and/or associates with favorable
prognosis: 0 points; high expression associates with poor prognosis: 1 point); (vi) expression in the
brain (exclusively in the brain: 1 point; brain and other tissues: 0 points); (vii) expression in lymphoid
tissues at the plasma membrane (not expressed: 1 point; expressed: 0 points); (viii) expression in
gametes (not expressed: 1 point; expressed: 0 points); and ix) index of expression in healthy tissues
at the plasma membrane-varies from 3 points (no expression) to 0 (high expression). Interpretation
of biological functions associated with glycoproteins common to all cell lines and showing affinity
to E-selectin was done using ClueGO version 2.2.5 [39] and CluePedia plugins version 1.2.5 [40] for
cytoscape version 3.3.0 [41]. N- and O-glycosites prediction was performed using NetNGlyc 1.0
(http://www.cbs.dtu.dk/services/NetNGlyc/) and NetOGlyc 4.0 [42], respectively.

2.9. Western Blot

Proteins from different sources were resolved by SDS-PAGE using 4–20% precast polyacrylamide
gels (Bio-Rad, Hercules, CA, USA) and then transferred to a nitrocellulose membrane (GE Healthcare
Life Sciences, Chicago, IL, USA). This included gastric cancer cell lines, total protein as well as
plasma membrane, nuclear and cytoplasm proteins-enriched extracts. It also included NCL and

https://www.ebi.ac.uk
http://string-db.org/
https://www.oncomine.org/
http://www.cbs.dtu.dk/services/NetNGlyc/
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SLeA-expressing glycoproteins isolated from membrane extracts as well as from human gastric
carcinomas by immunoprecipitation, using an anti-SLeA monoclonal antibody (ab116024, Abcam,
Cambridge, UK), isotype controls, anti-NCL antibody [EPR7952] (ab129200, Abcam, Cambridge, UK) or
E-selectin pulldowns in the presence and absence of Ca2+ (negative control). The membranes were then
blocked with 1% Carbo-Free Blocking Solution (Vector Laboratories, Burlingame, CA, USA) and probed
with either the anti-SLeA (1:1,000) or the anti-NCL (1:1,000) antibodies, previously described, for 1 h at
room temperature. The peroxidase affiniPure goat anti-mouse IgG (H+L) polyclonal antibody (1:90,000,
115-035-003, Jackson ImmunoResearch, West Grove, PA, USA) was used as a secondary antibody for
SLeA detection. The goat anti-rabbit IgG (H+L) HPR conjugate antibody (1:60,000; G-21234; Thermo
Fisher Scientific, Waltham, MA, USA) was used as a secondary antibody for NCL detection. Additional
enzymatic controls were performed prior to blotting for SLeA. Briefly, membranes were incubated with
0.2 U Neuraminidase from Clostridium perfringens (Sigma-Aldrich, St. Louis, MO, USA) or 0.16 U/mL
PNGase F from Elizabethkingia meningoseptica (Sigma-Aldrich, St. Louis, MO, USA) overnight at
37 ◦C to disclose the specificity of SLeA expression. The Amersham ECL Prime Western Blotting
Detection Reagent (GE Healthcare Life Sciences, Chicago, IL, USA) was used as developing reagent.

2.10. Immunofluorescence Microscopy In Situ Proximity Ligation Assays (PLA)

Cells were cultured in coverslips, probed with the antibodies of interest and fixed with 4%
PFA. After blocking with 5% bovine serum albumin (BSA), cells were stained with the anti-SLeA
and anti-NCL primary antibodies as above described for flow cytometry. Enzymatic controls with
neuraminidase from Clostridium perfringens or PNGase F from Elizabethkingia meningoseptica
and permeabilization with 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) were included.
The in situ proximity ligation assay (PLA) of SLeA and NCL in cell lines was performed to detect
both antigens in simultaneous proximity. The slides were incubated overnight with the primary
antibodies at 4 ◦C. Ligation and amplification of the PLA signal were performed according to the
Duolink PLA Technology kit (Sigma-Aldrich, St. Louis, MO, USA). Finally, slides were incubated with
DAPI and mounted using Vectashield mounting medium (Vector Laboratories, Burlingame, CA, USA).
PLA using isotype controls for one or both the antibodies of interest were used as negative controls.
In addition, cells were screened regarding affinity for E-selectin using the E-selectin/human Fc chimera
(E-selectin-Ig chimera-E-Ig) for 1 h at room temperature. Goat anti-mouse Alexa 549 and polyclonal
rabbit anti-human IgG-FITC were used for 30 minutes at room temperature. All images were acquired
on a Leica DMI6000 FFW microscope (Leica Microsystems, Wetzlar, Germany) using the Las X software
(Leica Microsystems, Wetzlar, Germany) version.

2.11. Immunohistochemistry

Formalin-fixed paraffin embedded (FFPE) GC tissue sections showing distinct clinicopathological
features (intestinal and diffuse type GC) and healthy tissues (appendix, skin, lung, pancreas,
colon, small intestine, gallbladder, liver, testis, stomach, thyroid and tonsil) were screened by
immunohistochemistry for both SLeA and NCL, as previously described by us [34]. Briefly, FFPE
tissue sections were deparaffinized with xylene, rehydrated with a graded series of alcohol washes
and subjected to heat-induced antigen retrieval using citrate buffer pH = 6.0 (Vector Laboratories,
Burlingame, CA, USA) for 15 min in the microwave, after pre-heating of the solution at maximum power
rating for 5 min. Sections were incubated with 0.3% hydrogen peroxide (Merck KGaA, Darmstadt,
Germany) for 25 min, blocked with UV Block®(Thermo Fisher Scientific, Waltham, MA, USA) and
incubated overnight at 4 ◦C in a wet chamber with either anti-SLeA (1:100 5% BSA-PBS) or anti-NCL
(1:250 5% BSA-PBS) antibodies. After washing with PBS-Tween, biotinylated secondary antibody was
added to tissue sections, before incubation with streptavidin (Thermo Fisher Scientifc, Waltham, MA,
USA). Antibodies’ binding was detected by incubation with 3,3′-diaminobenzidine (ImmPACT™ DAB,
Vector Laboratories, Burlingame, CA, USA) for 4 min. Nuclei were counterstained with hematoxylin
for 1 min. Positive and negative control sections were tested in parallel. Negative control sections
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were performed using 5% BSA-PBS devoid of primary antibody. Positive controls consisted of
known positive tumor tissues for the antigen in study. Tumors were classified as positive when
immunoreactivity was observed by microscopic presence of brown chromogenic product in tumor cells.
Antibody staining was assessed double-blindly by two independent observers and validated by an
experienced pathologist. Whenever there was a disagreement, the slides were reviewed, and consensus
was reached. To evaluate sialic acid-dependent binding of the antibodies, tissues were treated with
sialidase prior to analysis.

2.12. Statistical Analysis

All experiments were independently replicated at least as three times. Statistical data analysis
was performed with IBM Statistical Package for Social Sciences—SPSS for Windows (version 20.0, IBM,
Armonk, NY, USA). One-way ANOVA and Mann–Whitney U test were used. Chi-square analysis
was used to compare categorical variables. Kaplan-Meier curves were used to analyze the influence
of the biomarkers expression in the context of time-to-event (death). Comparison of estimates was
done using log-rank test. A 95% significance threshold for the null hypothesis was considered p < 0.05
(* p < 0.05, **p < 0.01, ***p < 0.001). A cluster heatmap analysis was conducted to compare the cells
lines in relation to their glycomics patterns. The analysis was carried out in MetaboAnalyst 4.0 [43]
using log-transformed and auto-scaled data. Cluster analyses followed the criteria (i) cluster rows and
columns; (ii) similarity metrics: Euclidean distance; and (iii) clustering method: Ward.

3. Results

The expression of SLeA at the cell surface is decisive for E-selectin mediated hematogenous
dissemination of GC cells and the formation of local and distant metastasis [14,29]. However,
the proteoforms carrying this modification in GC cells remain to be elucidated, which is a critical
aspect for precise targeting of subpopulations showing high metastatic potential. As such, this work
started by screening for SLeA a panel of cell models reflecting distinct aspects of the disease (Table S1).
The overall goal was to elect models for downstream targeted glycoproteomics studies, foreseeing the
identification of SLeA-expressing glycoproteins showing high affinity for E-selectin. Emphasis was
set on disclosing alterations in the O-glycoproteome, which is well known to experience significant
remodeling during GC progression and dissemination [14,44].

3.1. Glycomics and Affinity for E-selectin

Six cancer cell models were screened for SLeA expression by flow cytometry (Figure 1A,B). This
showed high heterogeneity in SLeA expression, most likely reflecting different glycosyltransferases
repertoires [45]. Namely, AGS and MNK-74 cells did not express SLeA, whereas high levels of this
glycan were observed in N87 and OCUM-1 (60–80% of positive cells) and, to a much lesser extent,
in MKN-45 and KATO-III cells (>20%). Subsequently, cells were N-deglycosylated with PNGase
F to determine the origin of the SLeA antigen. This had little impact in MKN-45, KATO-III and
OCUM-1, strongly suggesting that SLeA may be mostly derive from O-glycans in glycoproteins
and, potentially, glycolipids (Figure 1A–C). On the other hand, exposure to PNGase F significantly
decreased SLeA levels in N87 cells (4-fold), demonstrating that in this cell line most of the antigen
comes from N-glycans. Nevertheless, 20% of cells retained SLeA expression after enzymatic treatment,
also suggesting significant O-glycosylation levels. Notably, the signals in OCUM-1 and N87 cells were
highly responsive to neuraminidase digestion, demonstrating the specificity of the anti-SLeA antibody
for sialylated glycans (Figure 1A–C). In parallel, fluorescence microscopy studies demonstrated that
recognition of OCUM-1 and N87 cancer cells by E-selectin was dependent on the presence of SLeA and
increased with the levels of the antigen (Figure 1D). Control experiments conducted in the absence of
Ca2+ (required for E-selectin binding) as well as with cells previously digested with neuraminidase
did not show relevant affinity of the lectin for cancer cells, reinforcing previous observations.
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from the O-glycosylation of proteins and glycolipids. In N87 the major source of SLeA expression 
appears to be N-glycans. Nevertheless, considerable amounts of SLeA remain, suggesting that SLeA 
is also carried by O-glycans. Moreover, these signals were significantly decreased when cells were 
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Figure 1. Expression of SLeA and affinity to E-selectin of different GC cell models. (A) SLeA expression
in different cell models (AGS, MKN-74, MKN-45, KATO-III, N87 and OCUM-1). The FACS histogram
in panel A highlights the levels of SLeA in AGS, MKN-74, MKN-45, KATO-III, N87 and OCUM-1 cells,
ranked from the lowest to highest expression. Notably, AGS and MKN-74 were negative for the antigen,
whereas N87 and OCUM-1 presented the highest expression levels. (B) Evaluation of the origin of SLeA
expression based on N-deglycosylation with PnGase F. The histogram in panel B corresponds to control
experiments involving PNGase F (for N-deglycosylation) and neuraminidase (NeuAse, sialidase) for
cell line N87. This confirmed the specificity of the anti-SLeA antibody for sialylated structures and
that the SLeA signals arises mostly from N-glycans. However, a still significant subpopulation of
cells conserved SLeA antigen expression, suggesting also the presence of O-glycans and/or glycolipids
carrying this alteration. (C) Summary of SLeA expression levels before and after N-deglycosylation
and neuraminidase digestion for the six cell lines. Panel C summarizes SLeA evaluation for each
cell line resulting from flow cytometry experiments, in agreement with the observations in panel A.
Exposure to PNGase F had little effect on MKN-45, KATO-III and OCUM-1 cell lines, suggesting that
the majority of the SLeA may arise from the O-glycosylation of proteins and glycolipids. In N87 the
major source of SLeA expression appears to be N-glycans. Nevertheless, considerable amounts of SLeA
remain, suggesting that SLeA is also carried by O-glycans. Moreover, these signals were significantly
decreased when cells were treated with neuraminidase prior to analysis, reinforcing the specificity
of antibody recognition. * p < 0.05; ** p < 0.01; *** p < 0.001; and **** p < 0.0001. (Student’s t-test for
three independent replicates) (D) E-selectin affinity for SLeA negative gastric cancer cells lines (AGS
and MKN-74) and cells expressing high amounts of the antigen (OCUM-1 and N87) by fluorescence
microscopy. The panel shows that E-selectin binding (green) is dependent on SLeA expression (red).
Nuclei were counterstained with DAPI (blue).
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We then comprehensively interrogated the cells’ glycome by mass spectrometry with the objective
of validating these results. This was also used to gain more insights on the structure of the glycans
exhibiting sialylated Lewis antigens as terminal epitopes, which was of key importance for protein
annotation upon glycoproteomics characterization. Based on flow cytometry analysis and previous
reports, emphasis was set on the O-glycome [44]. As highlighted by Figure 2A, 23 distinct glycans
were identified. Overall, the glycome of all cell lines was composed by core 1 and core 2 fucosylated
and/or sialylated O-glycans of variable lengths. Nevertheless, shorter glycans predominated over
more extended structures beyond core 2 (Figure 2A,B) and all cell lines, irrespectively of their origin,
overexpressed the T antigen (core 1; m/z 572.3), fucosylated-T antigen (Fuc-T; m/z 746.4), Sialyl-T antigen
(ST; m/z 933.5) and short core 2 structure (m/z 991.5; 1021.5; 1195.6) antigens. However, key differences
could be identified when zooming in on the glycome of each cell line. According to the heat map on
Figure 2B, OCUM-1, AGS and KATO-III cells were enriched for neutral glycans, including core 1, Fuc-T
and short core 2 structures (m/z 1021.5), exhibiting considerable degrees of mono- (m/z 1195.6), di- (m/z
1369.7; 1818.9) and tri-fucosylation (m/z 1543.8). On the other hand, MKN-45, MKN-74 and N87 cells
presented significant oversialylation (e.g., m/z 933.5, 1178.7, 1294.7). MKN-45 exhibited more extended
fucosylated and/or sialylated glycans, while MKN-74 were significantly enriched for the sialyl-T antigen
and N87 cells presented shorter mono- and di-sialylated core 1 and core 2 glycans and the sialyl-Tn
(STn antigen; m/z 729.4), a glycan known to play a critical role in GC invasion and metastasis [46,47].
Despite marked differences, MKN-45, KATO-III, OCUM-1 and N87 also exhibited a low abundance of
ions (<5% relative abundance; m/z 1556.8, 1801.9 and 1917.9), potentially corresponding to glycans with
terminal SLe epitopes, in accordance with flow cytometry analysis. Moreover, the chromatographic
profiles for these samples suggested the presence of SLeA and SLeX antigens (Figure 2C), which could
not be observed in SLe negative cell lines (AGS and MKN-74). Product ion spectra showing cross-ring
fragmentations characteristic of both isomers (Figure 2D) allowed the annotation of chromatographic
signals corresponding to SLe antigens (Figure 2C) and a relative estimation for SLeA in relation to
SLeX in each cell line (Figure 2E). In particular, the SLeA product ion spectrum (left spectrum in
Figure 2D) presented diagnostic signals resulting from different cross-ring cleavages (0,3X, 1,3X or 3,5X;
carbohydrate fragmentations according to Domon and Costello [48]) at GlcNAc residues (m/z = 554.5,
m/z = 707.7, m/z = 815.6 and m/z = 1061.9). The fragment ion at m/z = 653.9 (Z3,5XGlcNAc), not observed
for SLeA, defined SLeX (right spectrum in Figure 2D). Based on these observations, N87 cells expressed
similar amounts of both isomers, whereas OCUM-1, KATO-III and MNK-45 mostly overexpressed SLeA
and minor amounts of SLeX (<10%). The presence of SLeX in these cell lines was further confirmed by
flow cytometry). In summary, glycomics characterization provided important structural information
for guiding future studies on the functional role of O-glycans in GC. Moreover, it demonstrated that
SLeA is not a major determinant of the O-glycome, despite its tremendous impact on metastasis
development. Nevertheless, SLeA was found as the dominant sialylated Lewis O-glycoform in GC
cells; even though the presence of its isomer SLeX could also be detected. Taken together with flow
cytometry analysis (Figure 1C), our findings support that SLeA may be expressed by subpopulations
of cells, reinforcing the importance of engaging in targeted glycoproteomics studies towards their
precise identification. In this context, glycomics analysis was also crucial for the identification of glycan
modifications to be used in targeted glycoproteomics, enabling higher protein coverage and validation
of relevant glycosylated patterns.
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Figure 2. O-Glycomics analysis of GC cells. (A) Glycome of GC cell lines. The graph shows that the
O-glycome of all cell lines was composed by fucosylated and/or sialylated core 1 and core 2 O-glycans.
Additionally, shorter glycans predominated over extended structures beyond core 2. All cell lines,
irrespective of their origin, overexpressed T (m/z 572.3), fucosyl-T (m/z 746.4), ST (m/z 933.5) and short
core 2 (m/z 1021.5; 1195.6) antigens as main O-glycans. (B) Heat-map and cluster analysis detailing
differences and similarities between the gastric cancer models. Notably, cell lines MKN-45, KATO-III,
OCUM-1 and N87 also exhibited low abundant ions (<5% relative abundance; m/z 1556.8, 1801.9 and
1917.9) potentially corresponding to glycans with terminal SLeA epitopes, supporting flow cytometry
analysis. (C) Typical nanoLC-ESI-MS/MS chromatographic profile of the N87 cell line showing the
co-expression of SLeA and SLeX antigens. (D) Fragmentation spectra for the ions at m/z 1556 at different
retention times (RT: 38.5 min for SLeA; 42.5 min for SLeX). Panel D shows one possible fragment for
each main assignment, considering a mass accuracy of m/z 0.8 and glycosidic cleavages, loss of the
benzyl tag and/or cross-ring fragmentations. Diagnostic signals for SLeA result from different cross-ring
cleavages (0,3X, 1,3X or 3,5X) at GlcNAc residues (m/z = 554.5, m/z = 707.7, m/z = 815.6 and m/z = 1061.9).
The fragment ion at m/z = 653.9 (Z3,5XGlcNAc), not observed for SLeA), defined SLeX Several other
non-assigned fragments corresponding to multiple combinations of fragmentations (glicosydic plus
cross-ring fragmentations) could also be observed. (E) Relative abundance of SLeA in relation to SLeX
by nanoLC-ESI-MS. According to chromatographic profile showed in panel C, abundance of SLeA was
estimated in comparison to SLeX, considering the ion at m/z 1556.8. AGS and MKN-74 did not express
SLe epitopes in O-glycan chains, whereas all the other cell lines overexpressed both SLeA and, in much
lower amount, SLeX.
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3.2. Targeted Glycoproteomics and Glycobiomarker Discovery

We then devoted our attention to characterizing the SLeA glycoproteome of different cancer cell
models with the goal of identifying common molecular signatures for precise cancer targeting. OCUM-1,
N87 and KATO-III cell lines, exhibiting relevant SLeA levels, were elected for this study. Glycoproteins
were isolated from extracts enriched for plasma membrane proteins by immunoprecipitation with
an anti-SLeA monoclonal antibody (scheme in Figure 3A). These were subsequently resolved by
SDS-PAGE and identified using a conventional bottom-up proteomics strategy (excision of gels spots,
reduction, alkylation and digestion with trypsin) culminating in nanoLC-nES-MS/MS analysis. Protein
annotations were performed including the possibility of variable protein modifications with the
Tn antigen (the simplest form of O-glycosylation) as well as the T, ST, Fuc-T and extended core 2
substituted with SLe antigens, in accordance with glycomics analysis. The final list of identifications
included proteins annotated with high confidence, irrespectively of the SLeA status. Prior to analysis,
we evaluated the SLeA antigen by Western blot in IP samples from both SLeA+ (N87) and SLeA- (AGS)
cell lines (Figure 3B). Samples obtained with the corresponding isotype control were also screened. As
expected, SLeA was not detected in the isotype controls nor in SLeA- cell lines (Figure 3B). In parallel
we also evaluated the potential recovery of SLeX together with SLeA-expressing glycoproteins by
this method. All blots were negative for SLeX (Figure 3B), reinforcing the specificity of the isolation
protocol for SLeA expressing glycoproteins. In parallel, glycoproteins with affinity for E-selectin
were pulled-down with an E-selectin-IgG chimera and identified, to disclose potential mediators of
metastases development. Prior to MS/MS analysis, E-selectin pulldowns were screened for SLeA
expression by Western blot and compared to samples obtained in the absence of Ca2+ ions (negative
controls). Again, SLeA could only be observed in SLeA positive cell lines and only when pulldowns
were performed in the presence of Ca2+ (Figure 3B). Moreover, as expected, SLeX could be detected
in SLeA positive extracts of N87 cell lines, since the lectin recognizes both glycoepitopes (Figure 3B).
Collectively, preliminary experiments support the specificity of the SLeA IP for glycoproteins presenting
this glycan and the affinity of E-selectin pulldowns for glycoproteins expressing both SLeA and SLeX.
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Figure 3. (A) Schematic representation of the workflow used to identify SLeA-expressing glycoproteins
with affinity for E-selectin. Briefly, IPs with a monoclonal targeting the SLeA antigen were used to
isolate glycoproteins from plasma membrane glycoproteins enriched extracts. In parallel, samples were
pulled down with E-selectin. Parallel IPs with isotype controls and lectin pulldowns in the absence of
Ca2+ ions (required for binding) were also performed as negative controls. The proteins were then
resolved by SDS-PAGE, the bands were excised, proteins reduced, alkylated and digested with trypsin
prior to analysis by nanoLC-ESI-MS/MS. (B) SLeA and SLeX expressions in glycoproteins obtained
by IP for SLeA and corresponding isotype controls for N87 (SLeA+/SLeX+) and AGS (SLeA-/SLeX-;
negative control) as well as glycoproteins with affinity for E-selectin in the presence and absence of Ca2+

(negative control). Collectively, the blots support the affinity of the IP strategy for SLeA-expressing
glycoproteins with no contaminations from SLeX glycoproteins. On the other hand, E-selectin isolated
both SLeA and SLeX expressing glycoproteins. (C) Venn diagrams highlighting the distribution
SLeA-expressing glycoproteins and glycoproteins showing affinity for human E-selectin for cell line
N87 (A), OCUM-1 (B), and KATO-III (C). Glycoproteins with confirmed O-SLeA expressing glycosites
and showing affinity for E-selectin among the three cell models (D). The Venn diagrams in panels
A–C highlight the number of glycoproteins isolated by IP for SLeA and E-selectin for each cell line,
evidencing the percentage of glycoproteins commonly identified for both IPs and showing clear SLeA
modifications in O-glycans. Panel C highlights the 22 glycoproteins presenting O-SLeA glycosylation
and affinity for E-selectin in all cell lines.

MS/MS analysis after immunoprecipitation assays for the SLeA antigen identified 889, 344
and 665 proteins in N87, OCUM-1 and KATO-III cell lines, respectively (Figure 3C; raw data and
assignment tables available at PRIDE accession number PXD016968). Interestingly, few glycoproteins
(approximately 10% of the total identified glycoproteins for each cell line) were common to all
cell lines, denoting highly cell-specific SLeA-glycoproteomes (Figure 3C). However, the number of
glycoproteins showing affinity for E-selectin was lower in comparison to SLeA-immunoprecipitation
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assays (630 proteins for N87, 309 for OCUM-1 and 500 for KATO-III). Nevertheless, approximately 60%
of the identified glycoproteins were simultaneously identified by the two strategies for each cell line
(532 for N87, 186 for OCUM-1, 367 for KATO-III) (Figure 3C). Moreover, MS/MS analysis confirmed the
presence of O-glycopeptides with SLeA epitopes in more than 20% of the identified glycoproteins in
OCUM-1 and N87 cell lines but just 1% in KATO-III, in agreement with glycomics studies showing
lower SLeA expression in this cell line. Moreover, more than 90% of the glycoproteins identified in these
studies presented glycosylation patterns characteristic of cell surface glycoproteins (PRIDE accession
number PXD016968), in accordance with their cell surface origin. However, we have also noted that
a significant percentage of the glycoproteins isolated by SLeA IP did not show affinity to E-selectin
(approximately 40% for all cell lines). Even though the existence of non-specific immunoprecipitations
is frequent and may decisively contribute to these observations, approximately 50% of the glycoproteins
in the SLeA-IP group, which could not be found using E-selectin, exhibited SLeA-glycopeptides.
Such observations strongly suggest that the expression of sialylated Lewis antigens is not the unique
pre-requisite for E-selectin binding. It is possible that the nature of the glycoproteins presenting these
modifications, as well as the density and structural organization of glycans chains, may also influence
this process, which warrants a more profound evaluation in future studies. On the other hand, there is a
significant portion of E-selectin identifications that do not match in the SLeA-IP group. The expression
of SLeX by these cell lines (Figure 2C–E), which is also a key ligand for E-selectin [15], may account for
these findings.

We then used gene ontology to comprehensively classify SLeA-expressing glycoproteins with
affinity for E-selectin, according to their class (Panther), main biological functions and associated
subcellular locations (ClueGo and CluePedia). Accordingly, Figure S1 shows a wide number of different
protein classes for each cell line (20 for N87, 11 for OCUM-1, 14 for KATO-III), denoting significant
differences between the distinct cell models. Nevertheless, the main represented protein classes
included signaling and nucleic acid binding for N87 and OCUM-1/Kato-III cell lines, respectively.
Strikingly, many of these glycoproteins (20–60%) were primarily associated with protein translation
and biosynthesis in ribosomes, spliceosome complexes and even at the nuclear euchromatin. Proteins
typically found in the cytoplasm and the cytoskeleton were also detected (10–20%). On the other
hand, only 10–15% of them could be associated with the plasma membrane, cell junctions and the
extracellular space, known to typically undergo O-glycosylation across the secretory pathways. While
collectively these findings could question the quality of glycoproteins isolation methods, the presence
of glycopeptides with terminal SLeA glycans in all identified glycoprotein challenges this concept,
suggesting that a significant number of proteins may experience subcellular miss-localization and
appear at the cell membrane yielding abnormal glycosylation patterns. Although this is a defying
concept, proteins miss-localization has been long described and frequently observed for more aggressive
cancer cells, generally associated with more aggressive cancer subpopulations [49–52]. Such events
may most likely explain current observations but warrant confirmation in future studies.

In summary, we have demonstrated the existence of a wide array of glycoproteins showing
high affinity for E-selectin, including many glycoproteins with confirmed O-SLeA glycoforms
(193 glycoproteins). These 193 glycoproteins were distributed among the three cell lines according to
the Venn Diagram in Figure 3C. The N87 model presented a more unique glycopattern in comparison
to the other cell lines (95 unique glycoproteins in N87 vs. 4 for OCUM-1 and 1 for KATO-III).
A high degree of homology was also observed between N87 and KATO-III cell lines at this level
(55 common glycoproteins). More importantly, only 22 protein species were common to all cell lines
(Figure 3C), suggesting a relatively low degree of similarity between the three cell models. Nevertheless,
the identified glycoproteins constituted an important starting point for identification of common
molecular grounds potentially associated with metastases development.

Envisaging molecular signatures of potential clinical interest for a wide number of tumors,
the focus was placed on the restricted group of 22 glycoproteins found in all cell lines. According to
transcriptomics data deposited on the Oncomine repository, only 5 glycoproteins were significantly
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overexpressed in GC (KRT5, HIST1H1D, PSMD2, ANXA2 and SPTAN1), distributed between the
different types of gastric tumors, according to the Lauren classification (intestinal, diffuse and mixed
type adenocarcinomas), as highlighted in Figure 4A. Gene expression was then matched with the
levels of the proteins in gastric tumors, as defined by the Human Protein Atlas (Figure 4B). Notably,
HIST1H1D, PSMD2, ANXA2 and SPTAN1 overexpression was associated with elevated protein content
in cancer tissues, whereas KRT5 has been rarely observed at the protein level in these tissues (Figure 4B).
HIST1H1D overexpression was observed in all three types of gastric lesions, whereas PSMD2 was
mainly linked to intestinal and mixed type tumors, ANXA2 to intestinal and diffuse subtypes and
SPTAN1 to the mixed subtype. Nevertheless, the functional implications of these glycoproteins in
the context of the different types of lesions is poorly understood and should be subject to more
profound investigation in future studies. Moreover, all these glycoproteins were also tremendously
overexpressed in healthy tissues, limiting their potential for targeted therapeutics.

To tackle the difficulties associated with cancer biomarkers specificity, we applied an alternative
strategy using an algorithm developed in-house exploiting information from the Human Protein Atlas.
This algorithm, termed target score, was designed to pinpoint cancer biomarkers showing high cancer
specificity and limited off-target potential due to low/null expression in healthy tissues (Figure 4C).
It balanced the expression of proteins in healthy tissues versus cancer; its subcellular localization in
tumors, privileging expression at the cell surface; and associations with poor prognosis. On the other
hand, it severely penalized proteins showing wide distribution in healthy organs. Surprisingly, the
top-ranked protein among the 22 glycoproteins common to all cell lines was nucleolin (NCL; Figure 4C),
a protein generally found in the nucleus of healthy cells, but previously reported at the cell membrane
of esophageal [53], gastric [51], colorectal [54] and breast [55] cancer cells. Moreover, according to
analysis in silico, NCL may be densely O-glycosylated (23 O-glycosites; NetOGlyc 4.0) and present also
3 N-glycosites (with NetNGlyc 1.0) (Figure S2), supporting its detection using mass spectrometry-based
immunoassays directed for glycans. Interestingly, the second top-targeted glycoprotein X-ray repair
cross-complementing protein 6 (Ku70; Figure 4C) was also a typical nuclear protein poorly studied
in GC. Like NCL, the Ku70 protein has been previously found at the cell membrane of cancer
cells in other models, playing a key functional role driving extracellular matrix remodeling and
invasion [56]. The Ku70 protein also showed a higher density of potential O-glycosylation sites
(n = 11) in comparison to N-glycosites (n = 1) upon bioinformatics analysis. Collectively, these findings
reinforce the relevance of addressing O-glycosylation for biomarker discovery and support the notion
of protein misslocalization in cancer cells. Contrastingly, most of the glycoproteins pinpointed as
significantly overexpressed in gastric tumors according to transcriptomics and immunohistochemistry
using monoclonal antibodies (highlighted by Figure 4A,B) were found in the lower part of the ranking,
severely penalized by its high levels of expression in healthy tissues, suggesting low potential for
precise cancer targeting. Such findings reinforce the importance of the target score system as a valuable
tool for identifying unforeseen biomarkers at the cell membrane. The target score’s sensitivity for
protein misslocalization pinpointed several novel targetable molecules that were not captured by
transcriptomics and conventional immunoassays (Figure 4), constituting a decisive new tool for
glycoproteome datamining and biomarker discovery.
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Figure 4. Bioinformatics analysis of the 22 glycoproteins expressing SLeA and showing affinity
to E-selectin that were present in all cell lines towards biomarker discovery. (A) Identification of
glycoproteins showing elevated gene expression. The 22 glycoproteins set was comprehensively
matched against existing transcriptomics data in the Oncomine database. Only five have previously
been reported to be overexpressed in GC, occurring throughout intestinal, mixed and diffuse type
lesions as highlighted in the right. Notably, KRT5 and HIST1H1D were significantly overexpressed
in all types, PSMD2 was mainly associated with the intestinal and mixed phenotype, ANXA2 was
linked to intestinal and diffuse type but not mixed lesions, whereas SPTAN1 was overexpressed
solely in mixed type lesions. (B) Comparison between transcripts and protein levels for the identified
glycoproteins. Transcriptomics findings (RNAseq; Oncomine) were matched against protein expression
in GC (immunohistochemistry, Human Protein Atlas). KRT5 showed low/no expression at the protein
level, thus not reflecting increased transcriptional activity. HIST1H1D, PSMD2, ANXA2 and SPTAN1
showed both increased gene expression and high protein levels in GC. (C) Target score for the identified
glycoproteins in GC. Briefly, higher target scores are given to glycoproteins highly expressed at the
cell membrane in cancer cells and showing low levels of expression in healthy tissues. Aspects
related with poor prognosis significantly contribute to increase the scoring potential. Sub-cellular
re-localization of proteins from intracellular compartments in healthy cells to the cancer cell membrane,
an aspect that frequently occurs in cancer, is also highly score. Conversely, proteins showing a
high expression in multiple healthy tissues are penalized in comparison to those showing a more
cancer-specific expression pattern. According to this protocol, NCL (that was not found overexpressed
in cancer tissues) ranked first as a potentially targetable biomarker due to its cancer specific nature.
(D) Protein–protein networks highlighting the main biological functions played by the identified
glycoproteins. The map demonstrates a significant functional correlation of identified glycoproteins
with cell differentiation, cytoskeleton organization, cell–cell adhesion mediated by cadherins, as well as
translation and mediation of responses to epidermal growth factor stimulus. Notably, NCL appears to
play a key role in the latter two processes.
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Finally, we explored protein–protein networks provided by ClueGo and CluePedia for Cytoscape
to gain more insights on their potential functional roles. In general, there is a significant level of
interaction between the identified glycoproteins in the mediation of six main biological functions: i)
differentiation; ii) cytoskeleton structure; iii) cadherin-mediated cell–cell adhesion; iv) protein targeting
to the cell membrane; v) protein translation; and vi) cellular response to epidermal growth factor
stimulus (Figure 4D). Such observations support a conserved role for these glycoproteins in distinct
cell models. Notably, NCL constituted an important hub protein in the regulation of protein translation
(Figure 4D), most probably when present in the nucleus. Surprisingly, it was also observed as a
mediator of response to epidermal growth factor, which is a key aspect in GC underlying progression
and dissemination [57,58]. Although the functional role of NCL in GC remains unknown, important
observations were made to guide future studies on this field.

Collectively, we comprehensively interrogated the O-glycoproteome of GC cells for common
molecular signatures showing affinity for E-selectin using different bioinformatics approaches.
Strikingly, NCL emerged as a top-ranked potentially targetable protein at the cell membrane and
a potential ligand for E-selectin. More efforts were then devoted to validating the presence of this
glycoprotein at the cell membrane, its substitution with glycans presenting SLeA and providing a
clinical context for its appearance in GC.

3.3. Nucleolin Expression in Gastric Cancer Cells

Immunofluorescence staining showed that NCL was not present in cell nucleus and seems to
be distributed along cytoplasm and cell membrane in OCUM-1, KATO-III and N87 cells (Figure 5A).
Furthermore, both NCL and SLeA seem to be in close proximity, as reinforced by the positive signal in situ
PLA (Figure 5A,B). Notably, the low density of red dots denoting positive PLA suggests that NCL-SLeA
proteoforms may be restricted to specific cells, possible endowed with high metastatic capacity, which
warrants future clarification. On the other hand, the lack of antibodies targeting specifically NCL at the
cell membrane may significantly contribute to its underestimation. Nevertheless, the presence of NCL
at the cell membrane was also supported by flow cytometry and immunofluorescence analysis before
and after membrane permeabilization (Figure S3). In contrast, SLeA negative cell models (AGS and
MKN-74) showed just residual amounts of NCL at the cell membrane and presented more elevated
intracellular NCL in comparison to the other models, supporting a close association between these
events. Future efforts should be focus on understanding the role of glycosylation in stabilization of
this glycoprotein at the cell membrane and underlying molecular mechanism supporting subcellular
compartment migration.

The nature of NCL glycoforms was then addressed by tandem mass spectrometry analysis
(Figure 5C,F). The glycoproteins resulting from the SLeA and E-selectin/IgG chimera IPs were analyzed
in a molecular weight-resolved manner. NCL was detected above 100 kDa, most likely corresponding
to heavily glycosylated proteoforms of its canonical form at 76 kDa. However, it was also detected
between 75 and 50 kDa in all cell lines and at lower molecular weights (37–15 kDa), which was
particularly evident for OCUM-1 and KATO-III (Figure 5F). Unequivocal annotations were confirmed
by O-glycopeptides containing the SLeA, as highlighted by the MS/MS spectra in Figure 5E showing
product ion spectra combining fragments ions from the peptide and the glycan backbones (m/z 366.2,
731.3, 877.3 and 1167.42). Western blot analysis for SLeA IPs confirmed the patterns identified by
MS/MS (Figure 5F), reinforcing that GC cells may express a wide array of NCL glycoproteoforms
of distinct lengths. For cross-validation, NCL IPs were probed for SLeA and screened for E-selectin
affinity before and after neuraminidase digestion (negative control) (Figure S4), which also confirmed
mass spectrometry assignments. Equally important, these identifications matched with E-selectin IPs
(Figure 5D), suggesting that E-selectin may target distinct NCL glycoproteoforms, irrespectively of
their size.
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Figure 5. Identification of NCL-SLeA glycoforms in GC cell models. (A) Immunofluorescence staining
of GC cells (AGS, N87, OCUM-1, KATO-III) for SLeA (green) and NCL (red). Neither SLeA nor NCL
were detected in AGS cell lines. However, clear cell membrane staining was observed for both antigens
in N87, OCUM-1 and KATO-III. (B) Proximity ligation assays for NCL-SLeA in N87 cells. Positive
PLA signals (white arrows) were observed in N87 cells, which significantly decreased upon PNGase F
treatment and completely disappeared in cells treated with neuraminidase. (C) Typical SDS-PAGE for
glycoproteins isolated by IP for SLeA and E-selectin. The gels were an important starting point for
molecular weight resolved identification of NCL in GC cells. (D) NCL expression according to molecular
weight resolved glycoproteomics analysis. NCL appears between 50 and 100 kDa, with a major band
just above 50 kDa. Notably, shorter proteoforms (37–15 kDa) can also be observed in OCUM-1 and
KATO-III cell lines. IP-SLeA and IP-E-selectin showed similar NCL patterns. (E) MS/MS for NCL-SLeA
glycopeptides identified by Mw-resolved glycoproteomics in N87 and OCUM-1 cell lines. Tandem
mass spectra support the existence of glycopeptide fragments carrying the SLeA antigen between 50
and 75 kDa for the N87 cell line and between 25 and 37 kDa for OCUM-1 cells. (F) Western blots for
NCL in whole cell lysates and in SLeA expressing glycoproteins isolated by immunoprecipitation
(IP) for N87 and OCUM-1 cells. Neuraminidase digested samples prior to IP were used as negative
controls. The blots show that SLeA IP were enriched for shorter NCL proteoforms in comparison to the
whole cell extract, with emphasis on bands between 50 and 75 kDa. Bands bellow 50 kDa could also be
observed in both cell lines, reinforcing MS analysis data showing low molecular weight NCL-SLeA
glycoforms. SLeA IPs performed after neuraminidase digestion did not show positive NCL signals,
supporting the specificity of recognition.
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To disclose the potential existence of cell membrane NCL proteoforms, as suggested by
glycoproteomics, we performed subcellular fractionation of N87, OCUM-1 and KATO-III cells. Plasma
membrane, nucleus and cytoplasmatic protein enriched extracts were then screened for NCL (Figure
S5). The purity of each extract was assessed based on the expression of biomarkers associated
with each subcellular location: SLeA and B2M (cell membrane); TPR (nucleus); β-actin (cytoplasm).
Collectively, results suggested that both plasma membrane and cytoplasmatic extracts presented a
considerable degree of purity. More importantly, membrane protein fractions appear not to present
nuclear proteins, further supporting the existence of plasma membrane NCL. Strikingly, all subcellular
fractions share two main NCL bands at 100 and just above 50 KDa, suggesting that these proteoforms
may be present in all subcellular compartments. Nevertheless, a considerably higher number of other
proteoforms could be identified in the plasma membrane and the nucleus, which were not seen in the
cytoplasm. Moreover, there are marked differences between the plasma membrane and the nuclear
fractions, despite its contamination with glycosylated proteins. Even though more effective subcellular
fractionation methods would be required, these observations support the existence of specific NCL
proteoforms associated with the cell membrane. The future identification of such proteoforms will be
required for better understanding the functional role of this protein at the cell surface.

3.4. SLeA and NCL Expression in Gastric Cancer and Healthy Tissues

We then screened a large patient cohort (202 cases; Table 2; Figure S6) and 56 lymph node
metastases for SLeA expression. The SLeA antigen was detected in approximately 82% of the tumors,
corresponding to more than 30% of the tumor area in 64% of the cases (SLeA overexpression),
irrespective of its clinicopathological classification (Figure 6A, Table 3). It showed an intense cell
membrane expression in cancer cells but could also be observed in the cytoplasm, most likely associated
with glycoproteins across the secretory pathways. Notably, SLeA signals in both primary tumors
and metastases were responsive to digestion with neuraminidase but showed little changes after
incubation with PNGase F (Figure S7), supporting the key contribution of O-glycans suggested during
glycomics studies. Equally importantly, the SLeA antigen was overexpressed by 71% of the lymph
node metastases, showing significant correlation with its presence in the primary tumor (p = 0.006),
in agreement with its metastasis-associated nature. Moreover, the SLeA antigen was exclusively found
in the tumor area but not in the surrounding apparently normal mucosa, denoting some degree of
cancer specificity. According to Table 3, SLeA overexpression was significantly associated with more
advanced stages of the disease (p = 0.002) and the presence of distant metastases, reinforcing its
association with more aggressive phenotypes and key role in disease dissemination. Moreover, SLeA
overexpression showed a trend association with decreased OS in GC (p = 0.07).
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Table 2. Clinicopathological data of patients included in the SLeA (n = 202) and for NCL analysis
(n = 47).

Title n for SLeA (%) n for NCL (%)

Stage

I 18 (9%) 2 (4%)
II 60 (30%) 12 (26%)
III 89 (44%) 25 (53%)
IV 35 (17%) 8 (17%)

Tumor (T)

T1 12 (6%) 0 (0%)
T2 17 (8%) 0 (0%)
T3 105 (52%) 26 (55%)
T4 64 (32%) 21 (45%)

Missing Information 4 (2%) 0 (0%)

Lymph node metastasis (N)

N0 49 (24%) 10 (21%)
N1 40 (20%) 8 (17%)
N2 32 (16%) 7 (15%)
N3 76 (37%) 21 (45%)

Missing Information 5 (3%) 1 (2%)

Distant metastasis (M)

M0 151 (75%) 36 (77%)
M1 36 (19%) 8 (17%)

Missing Information 15 (7%) 3 (6%)

Lauren Classification

Intestinal subtype 124 (61%) 23 (49%)
Mixed 22 (11%) 0 (0%)
Diffuse 51 (25%) 24 (51%)

Missing Information 5 (2%) 0 (0%)

Borrmann Classification

Type I 9 (5%) 1 (2%)
Type II 76 (38%) 18 (38%)
Type III 42 (21%) 7 (15%)
Type IV 58 (29%) 18 (38%)

Missing Information 17 (8%) 3 (6%)

Overall Survival (OS)

Median (months±SD) 26 ± 34 28 ± 32
Mean (months±SD) 40 ± 34 40 ± 32

Age 64 ± 13 66 ± 12

Gender

Male 109 (54%) 23 (49%)
Female 93 (46%) 24 (51%)
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Figure 6. (A) SLeA and NCL expressions in intestinal and diffuse type GC as well as lymph node
metastases (red arrows highlight NCLmem proteoforms). Both SLeA and NCL could be co-localized at
the cell membrane of GC cells, reinforcing the notion of cell surface NCL-SLeA glycoforms. Of note,
the nuclear subcellular location of NCL could also be observed in cancer cells. Similar observations
were made in metastatic tissue. (B) Proximity ligation assay of SLeA and NCL (left panel) and
Western blots (right panel) for NCL isolated by immunoprecipitation for SLeA. The red dots in PLA
analysis suggest very close spatial proximity between NCL and SLeA. The blots from two histologically
different tumors (intestinal and diffuse) show a major band at 37 kDa most likely corresponding
to NCL-SLeA glycoforms. The blots also suggest the existence of vestigial proteoforms at higher
molecular weights. Collectively, these findings support the existence of NCL-SLeA glycoforms at the
cell surface. (C) Kaplan-Meier analysis of patients bearing tumors expressing NCL at the cellular
membrane (NCLmem) and SLeA NCLmem (NCL-SLeA) glycoforms. The expression of NCLmem
does not associate with worst prognosis (p = 0.405) whereas NCL-SLeA significantly associated with
decreased survival (p = 0.05). These observations support the importance of targeting abnormal protein
glycosylation towards clinically useful biomarkers. The p-values in survival analyses reflect the Breslow
test. (D) Expression of SLeA and NCL in healthy human tissues of relevant organs. SLeA was found in
the cytoplasm of exocrine pancreas cells and mildly detected at the cell membrane of goblet cells of
the gastrointestinal tract, in upper layers of the corneal epithelium, rare thyroid parafollicular cells
and pulmonary secretions. NCL was detected in the nucleus of most non-malignant cells. Membrane
NCL was only observed in the epidermis and corneal epithelium, even though not in the same cell
types expressing SLeA. These observations suggest that the conjugation of SLeA and NCL at the cell
membrane is a rare event associated with cancer, holding cancer-specific targeting potential.
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Table 3. Expression of SLeA and NCL at the cell membrane (NCLmem) in GC according to clinicopathological variables.

Clinicopathological Variables SLeA Expression
n (%) p*-Value NCLmem

n (%) p*-Value NCLmem+SLeA

n (%)
p*-Value

Stage

I 8 (44%)

0.020

2 (100%)

0.337

0 (0%)

0.772
II 37 (62%) 4 (33%) 4 (33%)
III 50 (57%) 12 (48%) 9 (36%)
IV 29 (83%) 3 (38%) 3 (38%)

Tumor size/extension (T)

T1 6 (50%)

0.633

-

0.716

-

0.927
T2 11 (65%) - -
T3 68 (65%) 11 (42%) 9 (35%)
T4 36 (63%) 10 (48%) 7 (33%)

Lymph node metastasis (N)

N0 28 (57%)

0.651

4 (40%)

0.862

2 (20%)

0.551
N1 24 (60%) 3 (38%) 2 (25%)
N2 18 (56%) 4 (57%) 3 (43%)
N3 50 (67%) 10 (48%) 9 (43%)

Distant metastasis (M)

M0 84 (56%)
0.005

18 (50%)
0.522

13 (33%)
0.941M1 29 (81%) 3 (38%) 3 (38%)

Lauren Classification

Intestinal subtype 77 (62%)
0.191

11 (48%)
0.671

8 (35%)
0.917Mixed 10 (46%) - -

Diffuse 35 (69%) 10 (42%) 8 (33%)

Borrmann Classification

Type I 4 (44%)

0.744

1 (100%)

0.641

1 (100%)

0.228
Type II 46 (61%) 7 (39%) 5 (28%)
Type III 27 (64%) 3 (43%) 1 (14%)
Type IV 35 (61%) 9 (50%) 9 (50%)

*Chi-square test for a 95% confidence interval.
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We then evaluated NCL in a subset of 47 gastric tumor sections comprehending distinct
clinicopathological types (23 intestinal, 24 diffuse) as well as 7 lymph node metastases, thus reflecting a
clinicopathological nature (Table 3), similar survivals as the main cohort (Figure S6), and showing SLeA
expression patterns very similar to the main patient cohort. The main objective was to disclose the
strong cancer associated nature of NCL-SLeA glycoforms suggested by glycomics, glycoproteomics and
comprehensive bioinformatics studies. The option for a smaller patient subset was directly linked to the
very time-consuming nature of NCL subcellular evaluation facing extensive nuclear expression and the
lack of specific antibodies for NCL glycoforms. Nevertheless, the evaluation of these tumors showed
that NCL was extensively expressed in the nucleus of most cells in all cases (Figure 6A). However,
half the tumors also presented scattered cancer cells (not exceeding 5% of the lesion) with marked
membrane expression accompanied by the loss of nuclear expression (Figure 6A). The NCL membrane
phenotype was also observed in 57% (4/7) of lymph node metastases, suggesting a possible role in
this process. However, neither SLeA nor NCL at the cell membrane showed associations with clinical
variables (Table 3) in this patient subset, most likely due to the number of analyzed cases. In addition,
we observed that NCL expression at the cell membrane and SLeA occurred in the same tumor areas in
approximately 40% of the cases, suggesting NCL glycophenotypes like GC cell lines. To confirm this
hypothesis, we immunoprecipitated SLeA expressing glycoproteins from both intestinal and diffuse
type gastric tumors. The Western blots in Figure 6B support the existence of NCL-SLeA in GC and
show that shorter proteoforms at approximately 37 kDa predominate in relation to higher molecular
weight species. Again, no associations were found between the NCL-SLeA and clinicopathological
variables, which warrants validation in a larger cohort. However, we observed a statistically significant
association between NCL-SLeA and decreased OS (p = 0.05; Figure 6C), which was not reflected by
membrane NCL alone (p = 0.405; Figure 6C). These observations reinforce the importance of targeting
abnormal protein glycosylation towards clinically useful biomarkers. In summary, we identified a
subset of gastric tumors expressing NCL-SLeA glycoforms and facing worst prognosis, supporting the
importance of targeting glycosylation for more precise cancer biomarkers. We also observed that this
glycophenotype is characteristic of minor subpopulations of cells with yet unknown role in the disease.
Future studies must be devoted to comprehensively disclosing the clinical significance of NCL-SLeA in
larger patient cohorts, foreseeing improved clinical management and potentially targeted therapeutics.
Emphasis should also be placed on conducting studies in the context of currently accepted molecular
disease subtypes [59]. It is also pressing to address the functional impact of these molecular features
for cancer cells.

Foreseeing precise cancer targeting, we evaluated SLeA and NCL in a wide array of relevant
healthy tissues. SLeA was observed in the cytoplasm of exocrine pancreas cells, suggesting association
to secreted proteins (Figure 6D). It was also mildly detected at the cell membrane of goblet cells of
the gastrointestinal tract, cells composing the upper layers of the corneal epithelium, rare thyroid
parafollicular cells and pulmonary secretions (Figure 6D). In turn, nuclear NCL was abundantly
observed in all tissues. On the other hand, membrane protein expression was observed in corneal
epithelium, not in the same cell types expressing SLeA, and epidermis (Figure 6). Additional studies
on membrane NCL and SLeA positive tissues also retrieved negative These observations suggest that
the conjugation of SLeA and NCL at the cell membrane is a rare event associated with cancer, holding
cancer-specific targeting potential. Nevertheless, screening a wider array of healthy tissues is still
required to fully characterize NCL-SLeA glycoforms expression patterns in health and disease.

4. Discussion

The tremendous advances in the molecular subtyping of gastric tumors over the past five years
have significantly contributed to improving its clinical management, enabling better therapeutic
selection and prognosis [9,10,60]. However, the quest for molecular signatures associated with
metastatic spread persists as a daunting research topic due to significant intra- and inter-tumor
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molecular heterogeneity. Exploring alterations in protein glycosylation occurring at the cancer cell
surface holds tremendous potential towards this end [13,14].

Based on these observations, we focused on glycoproteins expressing the SLeA antigen,
a well-known mediator of metastasis that allows GC cells to bind E-selectin on activate endothelial
cells, supporting their extravasation into the blood and lymph and, ultimately, intravasation into
several organs [18,61–63]. Accordingly, we have identified the SLeA in both N- and O-glycoproteins
and specific O-glycome signatures associated with this modification. Nevertheless, despite its key
functional role, SLeA was residually expressed in comparison to other types of O-glycans, denoting
a highly restricted phenotype, possibly associated with more aggressive cell subpopulations, as
suggested by different studies [25,64]. This structural information also enabled the identification of a
wide number of glycoproteins, significantly broadening our understanding on the SLeA-glycoproteome.
Glycoproteomics studies clearly showed that the SLeA-glycoproteome varies significantly with the
type of cell and highlighted marked cell-type dependent glycoproteomes, reinforcing the need
for personalized molecular characterization. However, only a small percentage of the identified
glycoproteins showed affinity for E-selectin, suggesting that the presence of SLeA is not a sole
determinant for this process. Future studies must comprehensively disclose how the density and
distribution of glycosites and the structure and type of glycans chains, as well as the nature of the
protein, may influence E-selectin recognition. Future studies should also focus on characterizing the
SLeX-glycoproteome, equally targeted by E-selectin and widely expressed in GC [65,66]. These aspects
will be critical for elucidating the molecular basis mediating the interaction between GC cells with
endothelial cells. Notably, sialylated Lewis glycan mimetics are currently being used in pre-clinical
and clinical settings to inhibit E-selectin mediated metastasis [22,67]. A more profound knowledge
about the molecular aspects governing this interaction will be a key milestone towards improving this
emerging therapeutic strategy.

Finally, we observed that only a small subset of 22 SLeA-expressing glycoproteins with affinity for
E-selectin were conserved in all cell lines. An in-house target score algorithm was developed and used
for the first time to rank these glycoproteins according to their cancer-specificity. The objective was
to establish a proteome interrogation tool capable of capturing cancer specific biomarker signatures
not easily foreseen by other omics. Surprisingly, NCL, a typical nuclear protein found generally
associated with intracellular chromatin and playing a central role in polymerase I transcription in
healthy cells [68], emerged as a top-ranked cancer protein at the cytoplasm and cell membrane. Its
location in cancer cells not restricted to the nucleus, as generally occurs in healthy cells, significantly
contributed to this stratification. Interestingly, the presence of NCL at the cell surface was described
for the first time over thirty years ago [69] and has since been observed in cancer cells of different
origins [68], including in GC [70,71]. Nevertheless, these observations remain quite surprising,
since the protein does not present transmembrane hydrophobic domains nor a plasma membrane
targeting sequence [68]. Moreover, it has been found glycosylated by an as-yet unraveled molecular
mechanisms [72,73], with glycosylation playing a fundamental role in its biological function [72–74].
Namely, at the plasma membrane, NCL interacts with several membrane and external ligands involved
in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis [68]. In GC, membrane
NCL has also been found to mediate the incorporation of tumor necrosis factor-α (TNF-α)-inducing
protein, produced in large amounts by Helicobacter pylori. The NCL-TNFα-inducing protein complex
was shown to promote epithelial-mesenchymal transition of cancer cells, inducing cell migration and
invasive morphological changes [75]. On the other hand, in the nucleus, NCL plays a relevant role
maintaining genome stability [76]. Therefore, in cancer cells, nuclear NCL overexpression is considered
critical to control the balance between DNA replication and repair, limiting DNA damage accumulation
due to high proliferation rates [68]. Supporting these observations, high levels of nuclear NCL was
demonstrated to be an independent prognostic marker for better survival in GC, while high cytoplasmic
staining was closely associated with worse prognosis [77]. Nevertheless, the clinical significance of
its translocation to the cell membrane has not yet been disclosed in the context of GC. However, it
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is possible that NCL abnormal subcellular localization at the cell membrane may promote a more
aggressive phenotype, as suggested by its functional role in GC. Notably, our bioinformatics analysis
associated NCL, together with other identified glycoproteins, to cellular responses to epidermal growth
factor stimulus. Supporting these observations, NCL has been found to stabilize ErbB1 and interact with
Ras. The three proteins act synergistically to mediate tumor growth and favor cancer cell proliferation
and survival [78,79]. Moreover, bioinformatics analysis suggest that a similar mechanism may occur in
GC, warranting further investigations to understand the exact mechanism and clinical implications.

Another striking observation is that NCL at the cell membrane is targeted by E-selectin, strongly
suggesting its glycoforms may play a key role in disease dissemination, which should be addressed in
future studies. These glycoforms were of low molecular weight compared to the canonical form. It is
likely that altered splicing mechanisms accompanying disease progression may lead to the expression
of truncated forms, which warrants also careful evaluation envisaging to understand their functional
role in cancer. Importantly, NCL-SLeA glycoforms showed significant associations with worst overall
survival in GC which were not evident based on NCL evaluation alone. These findings support
the importance of targeting specific protein glycoforms in order to improve the cancer-specificity of
relevant biomarkers, as previously demonstrated by us for other models [34]. Equally important,
NCL-SLeA glycoforms were detected in the primary tumors as well as the corresponding metastases,
supporting a possible role in disease dissemination mediated by SLeA-E-selectin interactions [80].
Although the interaction between NCL and E-selectin via SLeA is being suggested for the first time,
NCL has been recently found to bind L-selectin, another type of selectin expressed by lymphocytes
that also targets sialylated antigens. In this case, NCL was described as a major ligand mediating
head-and-neck squamous carcinoma cells to lymphocytes, under low shear stress conditions, required
for successful adhesion of cancer cells to the lymphatic vascular compartment [81]. Collectively, these
findings support that NCL carrying sialylated antigens may help promoting cancer metastasis at
different levels. Moreover, it may also contribute to immune evasion by fostering the adhesion of
cancer cells to platelets via P-selectin [12,82], which also binds to sialylated Lewis antigens. While
the functional dimension of these observations remains to be fully clarified and should be subjected
to future investigations, it becomes clear that NCL-SLeA glycoforms hold potential for addressing
both intestinal and diffuse tumors and associated metastases. Envisaging this goal, we have screened
a wide number of relevant healthy tissues for membrane NCL and SLeA antigen. According to our
observations, sole targeting of membrane NCL or SLeA could potentiate off-target effects negatively
affecting ocular, cardiac and gastrointestinal organs. Contrastingly, the bi-specific nature of NCL-SLeA
glycoforms may pave the way for precise cancer targeting.

In summary, this work sets a novel molecular rationale for targeting GC cells of higher metastatic
potential translated by increased affinity for E-selectin. It also suggests that the overexpression of
NCL-SLeA glycoforms at the cell surface of cancer cells may be a key mediator of this process, which
warrants confirmation by studies in vitro and in vivo. The cancer-specific nature of these alterations
further supports potential for precise cancer targeting with limited off-target effects in healthy organs.
It is now becoming crucial to elucidate the functional impact of such observations as well as their
clinical context foreseeing improved strategies for controlling disease dissemination.

5. Conclusions

This work shows that different types of gastric cancer cells express NCL at the cell membrane
expressing O-glycans terminated with the SLeA antigen that may be recognized by E-selectin. Moreover,
NCL-SLeA glycoforms are expressed in the primary tumors and metastases, are associated with worst
prognosis, and could not be found in healthy human tissues, supporting the potential for targeted
therapeutics. To our knowledge, this is the first report describing SLeA in preferentially nuclear
protein, setting a new paradigm for cancer biomarkers discovery. Future studies should devote to the
validation of these findings foreseeing precision oncology.



Cancers 2020, 12, 861 27 of 32

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/861/s1,
Figure S1: Main protein classes and associated biological functions translated by protein–protein interactions
and main subcellular localization for glycoproteins expressing O-glycosylated glycans with SLeA and showing
affinity for E-selecting for N87, OCUM-1 and Kato III cell lines, Figure S2: Potential N- (Blue) and O-glycosylated
(Red) sites for NCL predicted with NetNGlyc 1.0 and NetOGlyc 4.0 bioinformatics tools and using the protein
canonical form as reference, Figure S3: A) Immunofluorescence for NCL, B) Percentage of NCL positive cells and
C) NCL levels before and after plasma membrane permeabilization, Figure S4: Western blot for NCL in whole cell
lysates and SLeA and E-selectin in NCL-IPs. Proteins digested in situ with neuraminidase (NeuAse) where used
as negative controls, Figure S5. A) NCL expression profiles in the whole cell lysates and different protein extracts
enriched for membrane, nuclear and cytoplasmatic proteins. B) SLeA expression in the different fractions. C)
Expression of nuclear (TPR), cytoplasm (β-actin) and B2M (plasma membrane) biomarkers across the different
fractions for the N87 cell line, Figure S6. kaplan meier survival curves for the patients’ cohort used for A) SLeA
and the patient’s subset used for B) NCL and NCL-SLeA evaluations, Figure S7. SLeA expression a gastric tumor
section before and after PNGase F digestion, Table S1. Origin and clinicopathological features for the GC cell lines
adopted for this study.

Author Contributions: Conceptualization, E.F., R.F., D.F. and J.A.F.; Methodology, E.F., R.F., D.F., R.A., C.P.,
M.R.-S., A.M.N.S. and J.A.F.; Software, R.A., A.M.N.S.; Validation, E.F., R.F., D.F., J.S., R.A., M.R.-S., L.P.A.,
C.P., M.J.O., R..F, A.M.N.S., L.L.S. and J.A.F.; Formal Analysis, E.F., R.F., D.F., R.A., M.R.-S., A.M.N.S. and J.A.F;
Investigation, E.F., R.F., D.F., J.S., R.A., C.G., A.P., S.O., S.C., M.R.-S.; Resources, M.J.O., A.M.N.S., L.L.S., J.A.F.;
Data Curation, D.F., J.S., R.A., A.M.N.S. and J.A.F.; Writing—Original Draft Preparation, J.A.F.; Writing—Review
& Editing, E.F., R.F., D.F., A.P., M.J.O., R.F., A.M.N.S., L.L.S.; Visualization, E.F., R.F., D.F., R.A., M.R.-S. and J.A.F.;
Supervision, A.M.N.S., J.A.F.; Project Administration, L.L.S. and J.A.F. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors wish to acknowledge the Portuguese Foundation for Science and Technology (FCT) for the
human resources grants: PhD grant SFRH/BD/103571/2014 (EF), SFRH/BD/111242/2015 (AP), SFRH/BD/146500/2019
(MRS), SFRH/BD/142479/2018 (JS), SFRH/BD/105355/2014 (RA), SFRH/BD/127327/2016 (CG); and assistant
researcher grant CEECIND/03186/2017 (JAF). FCT is co-financed by European Social Fund (ESF) under
Human Potential Operation Programme (POPH) from National Strategic Reference Framework (NSRF).
The authors also acknowledge FCT funds for CI-IPOP research unit (PEst-OE/SAU/UI0776/201), CI-IPOP funds
(CI-IPOP-29-2014; CI-IPOP-58-2015; CI-IPOP-Proj.70-bolsa2019-GPTE), FCT/MCTES funds for the LAQV research
unit (UIDB/50006/2020) and PhD Programs in Biomedical Sciences and Pathology and Molecular Genetics of
ICBAS-University of Porto. The authors EF, DF and MRS also acknowledge the financial support of the Research
Group of Digestive Cancers (GICD), the “Early stage cancer treatment, driven by context of molecular imaging
(ESTIMA)” framework (NORTE-01-0145-FEDER-000027), IPO-Score (DSAIPA/DS/0042/2018) and “Towards a
single therapy with a synergistic combination against triple negative breast cancer and neuroblastoma by
nucleolin mediated multicellular targeting” (EU joint call ENMed/0006/2015). This article is also a result of the
project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE
2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund
(ERDF). This work was financed by FEDER funds through the COMPETE 2020 - Operacional Programme for
Competitiveness and Internationalisation (POCI), Portugal 2020, and by FCT/MCTES funds in the framework of
the project "Institute for Research and Innovation in Health Sciences" (POCI-01-0145-FEDER-007274).

Conflicts of Interest: The authors declare no conflict of interests.

References

1. Catenacci, D.V.T.; Henderson, L.; Xiao, S.-Y.; Penuel, E.; Patel, P.; Yauch, R.L.; Peterson, A.; Salgia, R.
Durable Complete Response of Metastatic Gastric Cancer with Anti-Met Therapy Followed by Resistance at
Recurrence. Cancer Discov. 2011, 1, 573–579. [CrossRef] [PubMed]

2. Wu, C.W.; Lo, S.S.; Shen, K.H.; Hsieh, M.C.; Chen, J.H.; Chiang, J.H.; Lin, H.J.; Li, A.F.; Lui, W.Y. Incidence
and Factors Associated with Recurrence Patterns after Intended Curative Surgery for Gastric Cancer. World J.
Surg. 2003, 27, 153–158. [CrossRef] [PubMed]

3. Mochizuki, Y.; Kodera, Y.; Ito, S.; Yamamura, Y.; Kanemitsu, Y.; Shimizu, Y.; Hirai, T.; Yasui, K.; Inada, K.-I.;
Kato, T. Treatment and Risk Factors for Recurrence after Curative Resection of Gastrointestinal Stromal
Tumors of the Stomach. World J. Surg. 2004, 28, 870–875. [CrossRef] [PubMed]

4. Youn, H.G.; An, J.Y.; Choi, M.G.; Noh, J.H.; Sohn, T.S.; Kim, S. Recurrence after Curative Resection of Early
Gastric Cancer. Ann. Surg. Oncol. 2009, 17, 448–454. [CrossRef] [PubMed]

5. Lordick, F.; Siewert, J. Recent Advances in Multimodal Treatment for Gastric Cancer: A Review. Gastric
Cancer 2005, 8, 78–85. [CrossRef] [PubMed]

http://www.mdpi.com/2072-6694/12/4/861/s1
http://dx.doi.org/10.1158/2159-8290.CD-11-0175
http://www.ncbi.nlm.nih.gov/pubmed/22389872
http://dx.doi.org/10.1007/s00268-002-6279-7
http://www.ncbi.nlm.nih.gov/pubmed/12616428
http://dx.doi.org/10.1007/s00268-004-7418-0
http://www.ncbi.nlm.nih.gov/pubmed/15593459
http://dx.doi.org/10.1245/s10434-009-0772-2
http://www.ncbi.nlm.nih.gov/pubmed/19904573
http://dx.doi.org/10.1007/s10120-005-0321-z
http://www.ncbi.nlm.nih.gov/pubmed/15864714


Cancers 2020, 12, 861 28 of 32

6. Sastre, J.; García-Sáenz, J.A.; Diaz-Rubio, E. Chemotherapy for Gastric Cancer. World J. Gastroenterol. 2006,
12, 204–213. [CrossRef] [PubMed]

7. Aoyagi, K.; Kouhuji, K.; Kizaki, J.; Isobe, T.; Hashimoto, K.; Shirouzu, K. Molecular Targeting to Treat Gastric
Cancer. World J. Gastroenterol. 2014, 20, 13741–13755. [CrossRef]

8. Ishii, T.; Kawazoe, A.; Shitara, K. Dawn of Precision Medicine on Gastric Cancer. Int. J. Clin. Oncol. 2019,
24, 779–788. [CrossRef]

9. Samson, P.; Lockhart, A.C. Biologic Therapy in Esophageal and Gastric Malignancies: Current Therapies and
Future Directions. J. Gastrointest. Oncol. 2017, 8, 418–429. [CrossRef]

10. Kirstein, M.M.; Lange, A.; Prenzler, A.; Manns, M.P.; Kubicka, S.; Vogel, A. Targeted Therapies in Metastatic
Colorectal Cancer: A Systematic Review and Assessment of Currently Available Data. Oncologist 2014,
19, 1156–1168. [CrossRef]

11. Kuo, W.-Y.; Hsu, H.-J.; Wu, C.-Y.; Chen, H.-S.; Chou, Y.-C.; Tsou, Y.-L.; Peng, H.-P.; Jian, J.-W.; Yu, C.-M.;
Chiu, Y.-K.; et al. Antibody-Drug Conjugates with Her2-Targeting Antibodies from Synthetic Antibody
Libraries Are Highly Potent against Her2-Positive Human Gastric Tumor in Xenograft Models. mAbs 2019,
11, 153–165. [CrossRef] [PubMed]

12. Peixoto, A.; Relvas, M.; Azevedo, R.; Santos, L.L.; Ferreira, J.A. Protein Glycosylation and Tumor
Microenvironment Alterations Driving Cancer Hallmarks. Front. Oncol. 2019, 9, 380. [CrossRef] [PubMed]

13. Azevedo, R.; Peixoto, A.; Gaiteiro, C.; Fernandes, E.; Neves, M.; Lima, L.; Santos, L.L.; Ferreira, J.A. Over Forty
Years of Bladder Cancer Glycobiology: Where Do Glycans Stand Facing Precision Oncology? Oncotarget
2017, 8, 91734–91764. [CrossRef] [PubMed]

14. Pinho, S.S.; Reis, C.A. Glycosylation in Cancer: Mechanisms and Clinical Implications. Nat. Rev. Cancer 2015,
15, 540–555. [CrossRef]

15. Trinchera, M.; Aronica, A.; Dall’Olio, F. Selectin Ligands Sialyl-Lewis a and Sialyl-Lewis x in Gastrointestinal
Cancers. Biology 2017, 6, 16. [CrossRef]

16. Sakamoto, S.; Watanabe, T.; Tokumaru, T.; Takagi, H.; Nakazato, H.; Lloyd, K.O. Expression of Lewisa, Lewisb,
Lewisx, Lewisy, Siayl-Lewisa, and Sialyl-Lewisx Blood Group Antigens in Human Gastric Carcinoma and in
Normal Gastric Tissue. Cancer Res. 1989, 49, 745–752.

17. Worrede, A.; Meucci, O.; Fatatis, A.; Worrede-Mahdi, A. Limiting Tumor Seeding as a Therapeutic Approach
for Metastatic Disease. Pharmacol. Ther. 2019, 199, 117–128. [CrossRef]

18. Kannagi, R.; Izawa, M.; Koike, T.; Miyazaki, K.; Kimura, N. Carbohydrate-Mediated Cell Adhesion in Cancer
Metastasis and Angiogenesis. Cancer Sci. 2004, 95, 377–384. [CrossRef]

19. Mannori, G.; Santoro, D.; Carter, L.; Corless, C.; Nelson, R.M.; Bevilacqua, M.P. Inhibition of Colon Carcinoma
Cell Lung Colony Formation by a Soluble Form of E-Selectin. Am. J. Pathol. 1997, 151, 233–243.

20. Krause, T.; Turner, G. Are Selectins Involved in Metastasis? Clin. Exp. Metastasis 1999, 17, 183–192. [CrossRef]
21. Kannagi, R. Carbohydrate Antigen Sialyl Lewis a—Its Pathophysiological Significance and Induction

Mechanism in Cancer Progression. Chang. Gung Med. J. 2007, 30, 189–209. [PubMed]
22. DeAngelo, D.J.; Erba, H.P.; Jonas, B.A.; O’Dwyer, M.; Marlton, P.; Huls, G.A.; Liesveld, J.; Cooper, B.W.;

Bhatnagar, B.; Armstrong, M.; et al. A Phase Iii Trial to Evaluate the Efficacy of Uproleselan (Gmi-1271)
with Chemotherapy in Patients with Relapsed/Refractory Acute Myeloid Leukemia. J. Clin. Oncol. 2019,
37, TPS7066. [CrossRef]

23. Song, Y.-X.; Huang, X.-Z.; Gao, P.; Sun, J.-X.; Chen, X.-W.; Yang, Y.-C.; Zhang, C.; Liu, H.-P.; Wang, H.-C.;
Wang, Z. Clinicopathologic and Prognostic Value of Serum Carbohydrate Antigen 19-9 in Gastric Cancer: A
Meta-Analysis. Dis. Markers 2015, 2015, 549843. [CrossRef] [PubMed]

24. Ikeda, Y.; Mori, M.; Kajiyama, K.; Haraguchi, Y.; Sasaki, O.; Sugimachi, K. Immunohistochemical Expression
of Sialyl Tn, Sialyl Lewis a, Sialyl Lewis a-B-, and Sialyl Lewis X in Primary Tumor and Metastatic Lymph
Nodes in Human Gastric Cancer. J. Surg. Oncol. 1996, 62, 171–176. [CrossRef]

25. Fernandes, E.; Ferreira, J.A.; Peixoto, A.; Freitas, R.; Relvas-Santos, M.; Palmeira, C.; Martins, G.; Barros, A.;
Santos, L.L.; Sarmento, B.; et al. Glycoengineered Nanoparticles Enhance the Delivery of 5-Fluoroucil and
Paclitaxel to Gastric Cancer Cells of High Metastatic Potential. Int. J. Pharm. 2019, 570, 118646. [CrossRef]

26. Itai, S.; Arii, S.; Tobe, R.; Kitahara, A.; Kim, Y.-C.; Yamabe, H.; Ohtsuki, H.; Kirihara, Y.; Shigeta, K.; Kannagi, R.
Significance of 2-3 and 2-6 Sialylation of Lewis a Antigen in Pancreas Cancer. Cancer 1988, 61, 775–787.
[CrossRef]

http://dx.doi.org/10.3748/wjg.v12.i2.204
http://www.ncbi.nlm.nih.gov/pubmed/16482619
http://dx.doi.org/10.3748/wjg.v20.i38.13741
http://dx.doi.org/10.1007/s10147-019-01441-x
http://dx.doi.org/10.21037/jgo.2016.11.13
http://dx.doi.org/10.1634/theoncologist.2014-0032
http://dx.doi.org/10.1080/19420862.2018.1541370
http://www.ncbi.nlm.nih.gov/pubmed/30365359
http://dx.doi.org/10.3389/fonc.2019.00380
http://www.ncbi.nlm.nih.gov/pubmed/31157165
http://dx.doi.org/10.18632/oncotarget.19433
http://www.ncbi.nlm.nih.gov/pubmed/29207682
http://dx.doi.org/10.1038/nrc3982
http://dx.doi.org/10.3390/biology6010016
http://dx.doi.org/10.1016/j.pharmthera.2019.03.007
http://dx.doi.org/10.1111/j.1349-7006.2004.tb03219.x
http://dx.doi.org/10.1023/A:1006626500852
http://www.ncbi.nlm.nih.gov/pubmed/17760270
http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS7066
http://dx.doi.org/10.1155/2015/549843
http://www.ncbi.nlm.nih.gov/pubmed/26576068
http://dx.doi.org/10.1002/(SICI)1096-9098(199607)62:3&lt;171::AID-JSO5&gt;3.0.CO;2-4
http://dx.doi.org/10.1016/j.ijpharm.2019.118646
http://dx.doi.org/10.1002/1097-0142(19880215)61:4&lt;775::AID-CNCR2820610423&gt;3.0.CO;2-U


Cancers 2020, 12, 861 29 of 32

27. Itai, S.; Nishikata, J.; Yoneda, T.; Ohmori, K.; Yamabe, H.; Arii, S.; Tobe, T.; Kannagi, R. Tissue Distribution
of 2-3 and 2-6 Sialyl Lewis a Antigens and Significance of the Ratio of Two Antigens for the Differential
Diagnosis of Malignant and Benign Disorders of the Digestive Tract. Cancer 1991, 67, 1576–1587. [CrossRef]

28. Tuo, X.H.; Itai, S.; Nishikata, J.; Mori, T.; Tanaka, O.; Kannagi, R. Stage-Specific Expression of
Cancer-Associated Type 1 and Type 2 Chain Polylactosamine Antigens in the Developing Pancreas of
Human Embryos. Cancer Res. 1992, 52, 5744–5751.

29. Ferreira, J.A.; Magalhães, A.; Gomes, J.; Peixoto, A.; Gaiteiro, C.; Fernandes, E.; Santos, L.L.; Reis, C.A. Protein
Glycosylation in Gastric and Colorectal Cancers: Toward Cancer Detection and Targeted Therapeutics.
Cancer Lett. 2017, 387, 32–45. [CrossRef]

30. Kudelka, M.R.; Antonopoulos, A.; Wang, Y.; Duong, D.M.; Song, X.; Seyfried, N.T.; Dell, A.; Haslam, S.M.;
Cummings, R.D.; Ju, T. Cellular O-Glycome Reporter/Amplification to Explore O-Glycans of Living Cells.
Nat. Methods 2016, 13, 81–86. [CrossRef]

31. Carrascal, M.; Silva, M.; Ferreira, J.A.; Azevedo, R.; Ferreira, D.; Silva, A.; Ligeiro, D.; Santos, L.; Sackstein, R.;
Videira, P.A. A Functional Glycoproteomics Approach Identifies Cd13 as a Novel E-Selectin Ligand in Breast
Cancer. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2069–2080. [CrossRef] [PubMed]

32. Carrascal, M.A.; Silva, M.; Ramalho, J.S.; Pen, C.; Martins, M.; Pascoal, C.; Amaral, C.; Serrano, I.; Oliveira, M.J.;
Sackstein, R.; et al. Inhibition of Fucosylation in Human Invasive Ductal Carcinoma Reduces E-Selectin
Ligand Expression, Cell Proliferation, and Erk1/2 and P38 Mapk Activation. Mol. Oncol. 2018, 12, 579–593.
[CrossRef] [PubMed]

33. Thankamony, S.P.; Sackstein, R. Enforced Hematopoietic Cell E- and L-Selectin Ligand (Hcell) Expression
Primes Transendothelial Migration of Human Mesenchymal Stem Cells. Proc. Natl. Acad. Sci. USA 2011,
108, 2258–2263. [CrossRef] [PubMed]

34. Cotton, S.; Azevedo, R.; Gaiteiro, C.; Ferreira, D.; Lima, L.; Peixoto, A.; Fernandes, E.; Neves, M.; Neves, D.;
Amaro, T.; et al. Targeted O-Glycoproteomics Explored Increased Sialylation and Identified Muc16 as a Poor
Prognosis Biomarker in Advanced-Stage Bladder Tumours. Mol. Oncol. 2017, 11, 895–912. [CrossRef]

35. Szklarczyk, D.; Morris, J.H.; Cook, H.V.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.;
Roth, A.; Bork, P.; et al. The String Database in 2017: Quality-Controlled Protein-Protein Association
Networks, Made Broadly Accessible. Nucleic Acids Res. 2016, 45, D362–D368. [CrossRef]

36. Rhodes, D.R.; Kalyana-Sundaram, S.; Mahavisno, V.; Varambally, R.; Yu, J.; Briggs, B.B.; Barrette, T.R.;
Anstet, M.J.; Kincead-Beal, C.; Kulkarni, P.; et al. Oncomine 3.0: Genes, Pathways, and Networks in a
Collection of 18,000 Cancer Gene Expression Profiles. Neoplasia 2007, 9, 166–180. [CrossRef]

37. Uhlen, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.;
Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-Based Map of the Human Proteome. Science
2015, 347, 1260419. [CrossRef]

38. Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.;
et al. A Pathology Atlas of the Human Cancer Transcriptome. Science 2017, 357, eaan2507. [CrossRef]

39. Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.;
Trajanoski, Z.; Galon, J. Cluego: A Cytoscape Plug-in to Decipher Functionally Grouped Gene Ontology and
Pathway Annotation Networks. Bioinformatics 2009, 25, 1091–1093. [CrossRef]

40. Bindea, G.; Galon, J.; Mlecnik, B. Cluepedia Cytoscape Plugin: Pathway Insights Using Integrated
Experimental and in Silico Data. Bioinformatics 2013, 29, 661–663. [CrossRef]

41. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T.
Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome
Res. 2003, 13, 2498–2504. [CrossRef] [PubMed]

42. Steentoft, C.; Vakhrushev, S.Y.; Joshi, H.; Kong, Y.; Vester-Christensen, M.B.; Schjoldager, K.T.-B.G.;
Lavrsen, K.; Dabelsteen, S.; Pedersen, N.B.; Da Silva, L.M.; et al. Precision Mapping of the Human
O-Galnac Glycoproteome through Simplecell Technology. EMBO J. 2013, 32, 1478–1488. [CrossRef] [PubMed]

43. Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. Metaboanalyst 4.0:
Towards More Transparent and Integrative Metabolomics Analysis. Nucleic Acids Res. 2018, 46, W486–W494.
[CrossRef] [PubMed]

44. Duarte, H.; Freitas, D.; Gomes, C.; Gomes, J.; Magalhães, A.; Reis, C.A. Mucin-Type O-Glycosylation in
Gastric Carcinogenesis. Biomolecules 2016, 6, 33. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/1097-0142(19910315)67:6&lt;1576::AID-CNCR2820670620&gt;3.0.CO;2-2
http://dx.doi.org/10.1016/j.canlet.2016.01.044
http://dx.doi.org/10.1038/nmeth.3675
http://dx.doi.org/10.1016/j.bbagen.2018.05.013
http://www.ncbi.nlm.nih.gov/pubmed/29777742
http://dx.doi.org/10.1002/1878-0261.12163
http://www.ncbi.nlm.nih.gov/pubmed/29215790
http://dx.doi.org/10.1073/pnas.1018064108
http://www.ncbi.nlm.nih.gov/pubmed/21257905
http://dx.doi.org/10.1002/1878-0261.12035
http://dx.doi.org/10.1093/nar/gkw937
http://dx.doi.org/10.1593/neo.07112
http://dx.doi.org/10.1126/science.1260419
http://dx.doi.org/10.1126/science.aan2507
http://dx.doi.org/10.1093/bioinformatics/btp101
http://dx.doi.org/10.1093/bioinformatics/btt019
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://dx.doi.org/10.1038/emboj.2013.79
http://www.ncbi.nlm.nih.gov/pubmed/23584533
http://dx.doi.org/10.1093/nar/gky310
http://www.ncbi.nlm.nih.gov/pubmed/29762782
http://dx.doi.org/10.3390/biom6030033
http://www.ncbi.nlm.nih.gov/pubmed/27409642


Cancers 2020, 12, 861 30 of 32

45. Holgersson, J.; Löfling, J. Glycosyltransferases Involved in Type 1 Chain and Lewis Antigen Biosynthesis
Exhibit Glycan and Core Chain Specificity. Glycobiology 2006, 16, 584–593. [CrossRef]

46. Ozaki, H.; Matsuzaki, H.; Ando, H.; Kaji, H.; Nakanishi, H.; Ikehara, Y.; Narimatsu, H. Enhancement of
Metastatic Ability by Ectopic Expression of St6galnaci on a Gastric Cancer Cell Line in a Mouse Model. Clin.
Exp. Metastasis 2012, 29, 229–238. [CrossRef]

47. Freitas, D.; Campos, D.; Gomes, J.; Pinto, F.; Macedo, J.A.; Matos, R.; Mereiter, S.; Pinto, M.; Polónia, A.;
Gartner, F.; et al. O-Glycans Truncation Modulates Gastric Cancer Cell Signaling and Transcription Leading
to a More Aggressive Phenotype. EBioMedicine 2019, 40, 349–362. [CrossRef]

48. Domon, B.; Costello, C.E. A Systematic Nomenclature for Carbohydrate Fragmentations in Fab-Ms/Ms
Spectra of Glycoconjugates. Glycoconj. J. 1988, 5, 397–409. [CrossRef]

49. Lee, K.; Byun, K.; Hong, W.; Chuang, H.-Y.; Pack, C.-G.; Bayarsaikhan, E.; Paek, S.H.; Kim, H.; Shin, H.Y.;
Ideker, T.; et al. Proteome-Wide Discovery of Mislocated Proteins in Cancer. Genome Res. 2013, 23, 1283–1294.
[CrossRef]

50. Wang, X.; Li, S. Protein Mislocalization: Mechanisms, Functions and Clinical Applications in Cancer. Biochim.
Biophys. Acta. 2014, 1846, 13–25. [CrossRef]

51. Fujiki, H.; Watanabe, T.; Suganuma, M. Cell-Surface Nucleolin Acts as a Central Mediator for Carcinogenic,
Anti-Carcinogenic, and Disease-Related Ligands. J. Cancer Res. Clin. Oncol. 2014, 140, 689–699. [CrossRef]
[PubMed]

52. Zaoui, K.; Boudhraa, Z.; Khalifé, P.; Carmona, E.; Provencher, D.; Mes-Masson, A.-M. Ran Promotes
Membrane Targeting and Stabilization of Rhoa to Orchestrate Ovarian Cancer Cell Invasion. Nat. Commun.
2019, 10, 2666. [CrossRef] [PubMed]

53. Qi, J.; Li, H.; Liu, N.; Xing, Y.; Zhou, G.; Wu, Y.; Liu, Y.; Chen, W.; Yue, J.; Han, B.; et al. The Implications and
Mechanisms of the Extra-Nuclear Nucleolin in the Esophageal Squamous Cell Carcinomas. Med. Oncol.
2015, 32, 45. [CrossRef] [PubMed]

54. Wu, D.-M.; Zhang, P.; Liu, R.-Y.; Sang, Y.-X.; Zhou, C.; Xu, G.-C.; Yang, J.-L.; Tong, A.; Wang, C.-T.
Phosphorylation and Changes in the Distribution of Nucleolin Promote Tumor Metastasis Via the Pi3k/Akt
Pathway in Colorectal Carcinoma. FEBS Lett. 2014, 588, 1921–1929. [CrossRef]

55. Wang, Y.; Chen, X.; Tian, B.; Liu, J.; Yang, L.; Zeng, L.; Chen, T.; Hong, A.; Wang, X. Nucleolin-targeted
Extracellular Vesicles as a Versatile Platform for Biologics Delivery to Breast Cancer. Theranostics 2017,
7, 1360–1372. [CrossRef]

56. Monferran, S.; Paupert, J.; Dauvillier, S.; Salles, B.; Muller, C. The Membrane Form of the DNA Repair Protein
Ku Interacts at the Cell Surface with Metalloproteinase 9. EMBO J. 2004, 23, 3758–3768. [CrossRef]

57. Keller, S.; Kneissl, J.; Grabher-Meier, V.; Heindl, S.; Hasenauer, J.; Maier, D.; Mattes, J.; Winter, P.; Luber, B.
Evaluation of Epidermal Growth Factor Receptor Signaling Effects in Gastric Cancer Cell Lines by Detailed
Motility-Focused Phenotypic Characterization Linked with Molecular Analysis. BMC Cancer 2017, 17, 845.
[CrossRef]

58. Galizia, G.; Lieto, E.; Orditura, M.; Castellano, P.; La Mura, A.; Imperatore, V.; Pinto, M.; Zamboli, A.; De
Vita, F.; Ferraraccio, F. Epidermal Growth Factor Receptor (EGFR) Expression is Associated With a Worse
Prognosis in Gastric Cancer Patients Undergoing Curative Surgery. World J. Surg. 2007, 31, 1458–1468.
[CrossRef]

59. The Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Gastric
Adenocarcinoma. Nature 2014, 513, 202–209. [CrossRef]

60. Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K.-M.; Ting, J.C.; Wong, S.S.; Liu, J.; Yue, Y.G.; Wang, J.; Yu, K.; et al.
Molecular Analysis of Gastric Cancer Identifies Subtypes Associated with Distinct Clinical Outcomes. Nat.
Med. 2015, 21, 449–456. [CrossRef]

61. Kannagi, R. Carbohydrate-Mediated Cell Adhesion Involved in Hematogenous Metastasis of Cancer.
Glycoconj. J. 1997, 14, 577–584. [CrossRef] [PubMed]

62. Shimada, Y.; Maeda, M.; Watanabe, G.; Imamura, M. High Serum Soluble E-Selectin Levels Are Associated
with Postoperative Haematogenic Recurrence in Esophageal Squamous Cell Carcinoma Patients. Oncol. Rep.
2003, 10, 991–995. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/glycob/cwj090
http://dx.doi.org/10.1007/s10585-011-9445-1
http://dx.doi.org/10.1016/j.ebiom.2019.01.017
http://dx.doi.org/10.1007/BF01049915
http://dx.doi.org/10.1101/gr.155499.113
http://dx.doi.org/10.1016/j.bbcan.2014.03.006
http://dx.doi.org/10.1007/s00432-014-1587-5
http://www.ncbi.nlm.nih.gov/pubmed/24469254
http://dx.doi.org/10.1038/s41467-019-10570-w
http://www.ncbi.nlm.nih.gov/pubmed/31209254
http://dx.doi.org/10.1007/s12032-015-0484-3
http://www.ncbi.nlm.nih.gov/pubmed/25631630
http://dx.doi.org/10.1016/j.febslet.2014.03.047
http://dx.doi.org/10.7150/thno.16532
http://dx.doi.org/10.1038/sj.emboj.7600403
http://dx.doi.org/10.1186/s12885-017-3822-3
http://dx.doi.org/10.1007/s00268-007-9016-4
http://dx.doi.org/10.1038/nature13480
http://dx.doi.org/10.1038/nm.3850
http://dx.doi.org/10.1023/A:1018532409041
http://www.ncbi.nlm.nih.gov/pubmed/9298690
http://dx.doi.org/10.3892/or.10.4.991
http://www.ncbi.nlm.nih.gov/pubmed/12792758


Cancers 2020, 12, 861 31 of 32

63. Nakashio, T.; Narita, T.; Sato, M.; Akiyama, S.; Kasai, Y.; Fujiwara, M.; Ito, K.; Takagi, H.; Kannagi, R. The
Association of Metastasis with the Expression of Adhesion Molecules in Cell Lines Derived from Human
Gastric Cancer. Anticancer Res. 1997, 17, 293–299. [PubMed]

64. Natoni, A.; Smith, T.A.G.; Keane, N.; McEllistrim, C.; Connolly, C.; Jha, A.; Andrulis, M.; Ellert, E.; Raab, M.S.;
Glavey, S.V.; et al. E-Selectin Ligands Recognised by Heca452 Induce Drug Resistance in Myeloma, Which Is
Overcome by the E-Selectin Antagonist, Gmi-1271. Leukemia 2017, 31, 2642–2651. [CrossRef]

65. Catarina, G.; Almeida, A.; Barreira, A.; Calheiros, J.; Pinto, F.; Abrantes, R.; Costa, A.; Polonia, A.; Campos, D.;
Osório, H.; et al. Carcinoembryonic Antigen Carrying SLeX as a New Biomarker of More Aggressive Gastric
Carcinomas. Theranostics 2019, 9, 7431–7446.

66. Rho, J.-H.; Mead, J.R.; Wright, W.S.; Brenner, D.E.; Stave, J.W.; Gildersleeve, J.C.; Lampe, P.D. Discovery
of Sialyl Lewis a and Lewis X Modified Protein Cancer Biomarkers Using High Density Antibody Arrays.
J. Proteom. 2013, 96, 291–299. [CrossRef]

67. Alley, S.C.; O’Meara, M.; Gardai, S.J.; Okeley, N.M. Abstract Ddt02-02: Sgn-2ff: A Novel Small Molecule
Inhibitor of Fucosylation with Preclinical Antitumor Activity through Multiple Immune Mechanisms. Cancer
Res. 2017, 77, DDT02-02.

68. Berger, C.M.; Gaume, X.; Bouvet, P. The Roles of Nucleolin Subcellular Localization in Cancer. Biochimie
2015, 113, 78–85. [CrossRef]

69. Semenkovich, C.F.; Ostlund, R.E.; Olson, M.O.J.; Yang, J.W. A Protein Partially Expressed on the Surface of
Hepg2 Cells That Binds Lipoproteins Specifically Is Nucleolin. Biochemistry 1990, 29, 9708–9713. [CrossRef]

70. Suganuma, M.; Watanabe, T.; Yamaguchi, K.; Takahashi, A.; Fujiki, H. Human Gastric Cancer Development
with Tnf-Alpha-Inducing Protein Secreted from Helicobacter Pylori. Cancer Lett. 2012, 322, 133–138.
[CrossRef]

71. Watanabe, T.; Tsuge, H.; Imagawa, T.; Kise, D.; Hirano, K.; Beppu, M.; Takahashi, A.; Yamaguchi, K.; Fujiki, H.;
Suganuma, M. Nucleolin as Cell Surface Receptor for Tumor Necrosis Factor-Alpha Inducing Protein: A
Carcinogenic Factor of Helicobacter Pylori. J. Cancer Res. Clin. Oncol. 2010, 136, 911–921. [CrossRef]
[PubMed]

72. Hofmann, B.; Schlüter, L.; Lange, P.; Mercanoglu, B.; Ewald, F.; Fölster, A.; Picksak, A.-S.; Harder, S.; El
Gammal, A.T.; Grupp, K.; et al. Cosmc Knockdown Mediated Aberrant O-Glycosylation Promotes Oncogenic
Properties in Pancreatic Cancer. Mol. Cancer 2015, 14, 109. [CrossRef] [PubMed]

73. Losfeld, M.-E.; Leroy, A.; Coddeville, B.; Carpentier, M.; Mazurier, J.; Legrand, D. N-Glycosylation Influences
the Structure and Self-Association Abilities of Recombinant Nucleolin. FEBS J. 2011, 278, 2552–2564.
[CrossRef] [PubMed]

74. Hoja-Łukowicz, D.; Kedracka-Krok, S.; Duda, W.; Litynska, A. The Lectin-Binding Pattern of Nucleolin and
Its Interaction with Endogenous Galectin-3. Cell. Mol. Boil. Lett. 2014, 19, 461–482. [CrossRef]

75. Watanabe, T.; Takahashi, A.; Suzuki, K.; Kurusu-Kanno, M.; Yamaguchi, K.; Fujiki, H.; Suganuma, M.
Epithelial-Mesenchymal Transition in Human Gastric Cancer Cell Lines Induced by Tnf-Alpha-Inducing
Protein of Helicobacter Pylori. Int. J. Cancer 2014, 134, 2373–2382. [CrossRef]

76. Nair, N.; Shoaib, M.; Sørensen, C.S. Chromatin Dynamics in Genome Stability: Roles in Suppressing
Endogenous DNA Damage and Facilitating DNA Repair. Int. J. Mol. Sci. 2017, 18, 1486. [CrossRef]

77. Qiu, W.; Zhou, F.; Zhang, Q.; Sun, X.; Shi, X.; Liang, Y.; Wang, X.; Yue, L. Overexpression of Nucleolin
and Different Expression Sites Both Related to the Prognosis of Gastric Cancer. APMIS 2013, 121, 919–925.
[CrossRef]

78. Farin, K.; Schokoroy, S.; Haklai, R.; Cohen-Or, I.; Elad-Sfadia, G.; Reyes-Reyes, E.; Bates, P.J.; Cox, A.D.;
Kloog, Y.; Pinkas-Kramarski, R. Oncogenic Synergism between ErbB1, Nucleolin, and Mutant Ras. Cancer
Res. 2011, 71, 2140–2151. [CrossRef]

79. Schokoroy, S.; Juster, D.; Kloog, Y.; Pinkas-Kramarski, R. Disrupting the Oncogenic Synergism between
Nucleolin and Ras Results in Cell Growth Inhibition and Cell Death. PLoS ONE 2013, 8, e75269. [CrossRef]

80. Carrascal, M.A.; Talina, C.; Borralho, P.; Mineiro, A.G.; Henriques, A.R.; Pen, C.; Martins, M.; Braga, S.;
Sackstein, R.; Videira, P.A. Staining of E-Selectin Ligands on Paraffin-Embedded Sections of Tumor Tissue.
BMC Cancer 2018, 18, 495. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/9066667
http://dx.doi.org/10.1038/leu.2017.123
http://dx.doi.org/10.1016/j.jprot.2013.10.030
http://dx.doi.org/10.1016/j.biochi.2015.03.023
http://dx.doi.org/10.1021/bi00493a028
http://dx.doi.org/10.1016/j.canlet.2012.03.027
http://dx.doi.org/10.1007/s00432-009-0733-y
http://www.ncbi.nlm.nih.gov/pubmed/20049476
http://dx.doi.org/10.1186/s12943-015-0386-1
http://www.ncbi.nlm.nih.gov/pubmed/26021314
http://dx.doi.org/10.1111/j.1742-4658.2011.08180.x
http://www.ncbi.nlm.nih.gov/pubmed/21575138
http://dx.doi.org/10.2478/s11658-014-0206-4
http://dx.doi.org/10.1002/ijc.28582
http://dx.doi.org/10.3390/ijms18071486
http://dx.doi.org/10.1111/apm.12131
http://dx.doi.org/10.1158/0008-5472.CAN-10-2887
http://dx.doi.org/10.1371/journal.pone.0075269
http://dx.doi.org/10.1186/s12885-018-4410-x


Cancers 2020, 12, 861 32 of 32

81. Goldson, T.M.; Turner, K.L.; Huang, Y.; Carlson, G.E.; Caggiano, E.G.; Oberhauser, A.F.; Fennewald, S.M.;
Burdick, M.; Resto, V.A. Nucleolin Mediates the Binding of Cancer Cells to L-Selectin under Conditions of
Lymphodynamic Shear Stress. Am. J. Physiol. Cell Physiol. 2020, 318, C83–C93. [CrossRef] [PubMed]

82. De Bruijne-Admiraal, L.G.; Modderman, P.W.; Borne, A.E.V.D.; Sonnenberg, A. P-Selectin Mediates
Ca(2+)-Dependent Adhesion of Activated Platelets to Many Different Types of Leukocytes: Detection
by Flow Cytometry. Blood 1992, 80, 134–142. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1152/ajpcell.00035.2019
http://www.ncbi.nlm.nih.gov/pubmed/31644306
http://dx.doi.org/10.1182/blood.V80.1.134.134
http://www.ncbi.nlm.nih.gov/pubmed/1377047
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Cell Lines and Culture Conditions 
	Population and Ethics Statement 
	Antibodies and Lectins 
	Flow Cytometry 
	O-Glycomics 
	Subcellular Fractionation And Protein Extraction From Gastric Tissues 
	O-Linked Glycoproteomics 
	Bioinformatics for Biomarker Discovery 
	Western Blot 
	Immunofluorescence Microscopy In Situ Proximity Ligation Assays (PLA) 
	Immunohistochemistry 
	Statistical Analysis 

	Results 
	Glycomics and Affinity for E-selectin 
	Targeted Glycoproteomics and Glycobiomarker Discovery 
	Nucleolin Expression in Gastric Cancer Cells 
	SLeA and NCL Expression in Gastric Cancer and Healthy Tissues 

	Discussion 
	Conclusions 
	References

