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Abstract

Portugal has been a�ected by wildfires for many years. However, the wildfires were specially
severe in 2017, causing a big number of deaths and, consequently, panic in population.

Our main goal is try to give more information to understand their occurrences. There-
fore, we will estimate the time occurrences of wildfires in Continental Portugal.

The Poisson Process is used to model the occurrence of rare events like storm water over-
flows and understand how their occurrences appear scattered on the time line.

The model has two types: homogeneous Poisson Process and inhomogeneous Poisson
Process. Both types are related because a deterministic time change can transform a homoge-
neous Poisson process into an inhomogeneous Poisson Process, and vice versa. We are going
to study their properties and we are going to apply the theoretical results of the Poisson
Process to a real database, which includes the records of wildfires between 2009 and 2015
in Continental Portugal. The analysis revealed that the adequacy of the model is strongly
sensitive to factors such as seasonality and interdependence between occurrences.

Keywords: Poisson Process, Homogeneous Poisson Process, Inhomogeneous Poisson Pro-
cess, Stochastic Processes

ii



Resumo

Portugal foi afetado por incêndios florestais durante muitos anos. Contudo, os incêndios
florestais foram muito severos no ano 2017 provocando algumas mortes e, consequentemente,
pânico na população.

O nosso principal objetivo é tentar fornecer mais informação para prevenção dos in-
cêndios florestais. Assim sendo, nós iremos estimar o tempo das ocorrências dos incêndios
florestais em Portugal Continental.

O processo de Poisson é utilizando para modelar a occorrência de eventos raros como
inundações provocadas por tempestades e a disposição temporal dos mesmos.

O modelo tem duas vertentes: processo de Poisson homogéneo e o processo de Poisson
não homogéneo. Ambos estão relacionados pois uma mudança deterministica no tempo pode
tranformar um processo de Poisson homogéneo num processo de Poisson não homogéneo e
vice-versa. Nós iremos estudar as suas propriedades e iremos aplicar os resultados téoricos do
processo de Poisson a uma base dados real que contém as ocorrências dos incêndios florestais
em Portugal Continental entre 2009 e 2015. Durante a análise, nós encontramos fatores que
influenciam o modelo tais como: a sazonalidade e a interdependência entre as occorrências.

Palavras-chave: Processo de Poisson, Processo de Poisson Homogéneo, Processo de Pois-
son não homogéneo, Processos Estocásticos
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Chapter 1

Introduction

The dissertation is based on events that have particularly a�ected Portugal during the last
years, which are wildfires. There have been severe wildfires in Portugal that caused panic in
the population. It is necessary to help stakeholders with relevant information to prevent it.

We decided to consider the applicability of the Poisson Process as a model for the time
occurrences of wildfires. The Poisson Process is used to model the occurrence of rare events
like storm water overflows see Gallager (2012) and the time points at which events happen
in a given time interval (Tse (2014)).

In the Literature Review, we present the model and its properties. The Poisson Process
has two types: homogeneous Poisson Process and inhomogeneous Poisson Process. The Pois-
son Process is homogeneous when its expected value is a linear function. Otherwise, it is
considered an inhomogeneous Poisson Process. Nevertheless, a deterministic time change
can transform a homogeneous Poisson process into an inhomogeneous Poisson Process, and
vice versa. We take the opportunity to explain some important properties: the first one is
a Markov property which says that the past and future are conditionally independent; then
we will identify the Poisson Process as a Renewal process, which means that the inter-arrival
times are an iid sequence of exponential random variables; and lastly we study thoroughly
the order statistics property, which says that for a Poisson Process with intensity λ, the dis-
tribution of the occurrence times on the interval (0, t) is uniform between 0 and t.

In the next chapter we try to fit the model to a real database which has the occurrences
of wildfires in Continental Portugal in the period from January 1, 2009, until December 31,
2015. The database is available on the website of the Instituto da Conservação da Natureza e das
Florestas (ICNF). It has 131199 records and several information. We used the alert hour and
date of occurrence of each wildfire in order to obtain the arrivals and inter-arrival times and
for categorizing data we constructed a new variable that divided the country into 3 regions:
the North, Center and South. After that, we analyzed if the model is appropriate for the
whole period and all regions. We found the presence of some factors such as seasonality
(since wildfires occur in specific season) and the interdependence between occurrences (we
cannot guarantee the events are mutually independent because wildfires can cause new ones).
Then, we decided to study if the model is suitable in a region which has less events and in a
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shorter period of time. We started to study the South Region which has less records, during
the period from the 1st May until the 30th September of each year. The model provided a
good fitting. We turned to the Center Region and in the last sub-chapter we presented the
results for the North Region and compared with the previous ones.

Lastly, we present the conclusions of our analysis.
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Chapter 2

Motivation

Wildfires are considered one of the most dangerous natural disasters around the world. Every
year several countries are a�ected by this phenomenon and populations say that nothing was
done by public institutions to prevent it.

Governments said that it is urgent to take action to prevent the wildfires and they applied
some measures, such as, buying airplanes, hiring more fire fighters and forcing populations
to clean their forests.

Portugal has been a�ected by wildfires for years. However in 2017 the forest fires had
severe consequences: more than 440 thousand hectares of forest burnt and approximately 150
people died. The Portuguese government said that it was urgent to take action to prevent
the wildfires, however, in 2018 the forest fires reached other populations and although the
consequences were not as dramatic as in the previous year, the forest fires go on being one of
the biggest problems in our country.

Wildfires have several consequences like causing the decrease of oxygen, the increase of
carbon dioxide, the increase of water pollution and soil pollution, the acceleration of the
recycling time of important minerals in the ashes and the change of the species composition
and hence the landscape. The consequences lead to a decrease in the quality of life of the
populations (Møller and DÍAZ-AVALOS (2010)).

I hope the results of our study help stakeholders and decisions makers to make better
decisions to prevent it.
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Chapter 3

Literature Review

In this chapter will be presented the homogeneous Poisson Process, the inhomogeneous Pois-
son process and their properties. This chapter is based on the references Mikosch (2009) and
Mingola (2013).

The Poisson process has been applied to Risk Theory since Filip Lundberg exploited it
as model for the claim number processes. Filip Lundberg introduced a simple model that is
capable of describing a homogeneous insurance portfolio.

1. Claims happen at the times Ti satisfying 0 ≤ T1 ≤ T2 ≤ T... ≤ Tn. We call them
claim arrivals or claim times or claim arrival times or simply, arrivals;

2. The ith claim arrival at time Ti causes the claim size or claim severityXi. The sequence
(Xi) constitutes an independent and identically distributed (iid) sequence of non-
negative random variables;

3. The claim size process (Xi) and the claim arrival process (Ti) are mutually indepen-
dent.

The iid property of the claim sizes, Xi, reflects the fact that there is a homogeneous proba-
bilistic structure in the portfolio. Now we can define the claim number process:

Nt = N(t) = #{i ≥ 1 : Ti ≤ t, t ≥ 0} (3.1)

i is the occurrence, i = 1 corresponds to the first occurrence, N is a counting process on
[0,∞), so N(t) is the number of occurrences that occurred up to time t and let us define
N(ti−1, t) = N(t)−N(ti−1) as the number of arrivals in the interval (ti−1, t].

A stochastic process N = (N(t))t≥0 is a Poisson process if the following conditions are
satisfied:

1. The process starts at zero: N(0) = 0;

2. The process has independent increments: for any ti, i=0,...,n, and n ≥ 1 such that
0 = t0 < t1 < ... < tn, the increments N(ti−1, ti), i = 1, ..., n, are mutually
independent;
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3. There is a non-decreasing right-continuous function µ : [0,∞) → [0,∞) with
µ{0} = 0 such that the increments N(s, t) for 0 < s < t < ∞ have a Poisson
distribution Po(µ(s, t)). We call µ the mean value function of N ;

4. With probability 1, the sample paths (Nt(ω))t≥0 of the process N are right-continuous
for t ≥ 0 and have limits from the left for t > 0.

Nt can be thought of as the number of arrivals up to time t or the number of occurrences
up to time t (Tse (2014)).

The Poisson process will be homogeneous if the following condition is satisfied:

µ(t) = λt, t ≥ 0 (3.2)

The quantity λ is the intensity or rate of the homogeneous Poisson process and is equal to
the mean number of events occurring during the unit interval (Dobrow (2016)). If λ = 1,
N is called a standard homogeneous Poisson process. When µ(t) is not a linear function, the
Poisson process is said to be inhomogeneous because the intensity varies in time λ(t).

In general, the literature says that N has an intensity function or rate function λ if µ is
absolutely continuous, with respect to Lebesgue measure, i.e., for any s < t the increment
µ(s, t] has the following representation:∫ t

s

λ(y)dy, s < t, (3.3)

for some non-negative measurable function λ.
If N is homogeneous, time evolves linearly: µ(s, t] = µ(s + h, t + h] for any h>0 and

0 ≤ s < t <∞. So, this suggests that claims arrive approximately uniformly over time.
If N has non-constant intensity function λ time slows down or speeds up taking into con-

sideration the magnitude of λ(t). When the event tends to occur in a specific season, then λ
is non-constant.

A homogeneous Poisson process with intensity λ has:

1. With probabibilty 1, the sample paths (Nt(ω))t≥0 of the processN are right-continuous
for t ≥ 0 and have limits from the left for t > 0;

2. starts at zero, with probability 1;

3. has independent and stationary increments, if the intervals have the same length, the
probability of occurring n events is the same in both intervals;

4. Then, N(t) is a Poisson random variable with parameter λt, i.e.,

P (N(t) = n) =
(λt)ne−λt

n!
(3.4)

5



An example of a homogeneous Poisson process is the Cramér-Lundberg model which is one
of the most used models in non-life insurance mathematics.

After defining homogeneous Poisson process, we will see some of its properties. The first
one is the Markov Property.

The Poisson process is a particular case of a Markov process on [0,∞) with state space
N0 = {0, 1, . . . }.

A stochastic process is said to be a Markov process if and only if the following condition
is satisfied:

P
(
N(tn) = kn|N(t1) = k1, . . . , N(tn−1) = kn−1

)
= P (N(tn) = kn|N(tn−1) = kn−1)

(3.5)
The Markov property says the past and the future are conditionally independent (Marais

et al. (2010)).
This is a consequence of the independent increment property. In fact, if we have a Poisson

Process withN = (N(t))t≥0 which has a continuous intensity function λ on [0,∞), we have

λk,k+h(t) =

{
λ(t) if h = 1,

0 if h > 1

for k ≥ 0.
In other words, we say that the intensity function λ(t) of the Poisson Process N is the in-

tensity of the Markov processN for the transition from state k to state k+1. The probability
of at least one event occurring in a time interval length h is:

P
(
N((t, t+ h]) ≥ 1

)
= λh+ o(h) as h ↓ 0

o(h) is a general and unspecified remainder term of smaller order thanh, that is o(h)/h→
0. So, we can say that λ in a Poisson Process is like the proportionality constant in the prob-
ability of an event occurring during an arbitrary small interval h (Pkj (2007)). Furthermore
in an interval of length h the probability of happening two or more events is:(

P (N((t, t+ h]) ≥ 2
)
= o(h), h ↓ 0 (3.6)

And the probability of occurring one event is:(
P (N(t, t+ h] = 1

)
= λ(t)h(1 + o(1)) (3.7)

The equations 3.6 and 3.7 make sure that a Poisson Process N with continuous intensity
function λ is unlikely to have jumps larger than 1. It is intuitively a Markov process because
of the memoryless feature of exponential variables.

3.1 Inhomogeneous Poisson Process
In the following to understand more properties we need to explain the relation between the
homogeneous and inhomogeneous Poisson process. They are very closely related because a
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deterministic time change can transform a homogeneous Poisson process into an inhomoge-
neous Poisson process, and vice-versa.

Let µ be the mean value function of a Poisson process N and Ñ be a standard homoge-
neous Poisson process. Then the following conditions are satisfied:

1. The process (Ñ(µ(t)))t≥0 is Poisson with mean value function µ;

2. If µ is continuous, increasing and limt→∞ µ(t) = ∞ then (N(µ−1(t)))t≥0 is a stan-
dard homogeneous Poisson process.

If λ is piecewise constant, which means that µ is piecewise linear, then, in order to trans-
form an inhomogeneous Poisson Process into a standard homogeneous Poisson process, we
have to transform the arrivals according to the equation:

µ(Ti) = (Ti − Tilastperiod)λperiod + µ(Tilastperiod) (3.8)

Therefore, Tilastperiod is the last arrival that happened in the previous period.
These conditions suggest a simple way of simulating paths of an inhomogeneous Poisson

process Ñ from the paths of a homogeneous Poisson process.
One of the goals of this dissertation is to try to model the number of occurrences and

their time occurrences. So we are going to study the sequence of the arrival times 0 ≤ T1 ≤
T2 ≤ . . . of a homogeneous Poisson process. To study the arrival times we need to see the
Poisson process as a renewal process.

A Renewal process is an arrival process in which the inter-arrival intervals are positive,
independent and iid random variables (Gallager (2012)).

N(t) = #{i ≥ 1 : Ti ≤ t}, t ≥ 0, (3.9)

where,

Tn = W1 + · · ·+Wn, n ≥ 1, (3.10)

and Wi is an iid sequence of exponential random variables, with parameter λ.

Theorem 1. The homogeneous Poisson process is a renewal process, if and only if:

1. The processN given by 3.9 and 3.10 with an iid exponential with parameter λ sequence (Wi)
constitutes a homogeneous Poisson process with intensity λ.

2. N is a homogeneous Poisson process with intensity λ and arrival times 0 ≤ T1 ≤ T2 ≤ . . . .
Then N has a representation given by equation (3.9), and (Ti) has a representation given by
equation (3.10) for an iid sequence of exponential random variables with parameter λ.

We provide here a simple argument that gives the Poisson property ofN given by 3.9 and
3.10, which is part of the proof of statement 1. See Mikosch (2009) for the full proof of the
Theorem.
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The following relationship is crucial:

{N(t) = n} = {Tn ≤ t < Tn+1}, n ≥ 0 (3.11)

If we consider the sum of n iid exponentially distributed with parameter λ random vari-
ables (Tn = W1 + · · · +Wn), then a classical result says that Tn has a gamma distribution
with parameters n and λ for n ≥ 1, i.e,

P (Tn ≤ x) = 1− e−λx
n−1∑
k=0

(λx)k

k!
(3.12)

Hence,

P (N(t) = n) = P (Tn ≤ t)− P (Tn+1 ≤ t) = e−λt
(λt)n

n!
(3.13)

This proves the Poisson property of N(t).
If we consider a homogeneous Poisson process as a renewal process then the inter-arrival

times are equal to:

Wi = Ti − Ti−1, i ≥ 1, (3.14)

According to the law of the large numbers, we have that Tn
n

a.s.→ EW1 = λ−1 > 0, which
means that Tn grows approximately like n

λ
and there are no limit points in the sequence (Tn)

at any finite instant of time. This means that the values N(t) of a homogeneous Poisson
Process are finite a.s. on any finite time interval [0,t].

An inhomogeneous Poisson process N with mean value function µ can be understood as
a deterministic time changed standard homogeneous Poisson Process Ñ :

(N(t))t≥0
d
= (Ñ(µ(t)))t≥0 (3.15)

Let (T̃i)i be the arrival sequence of Ñ and µ be increasing and continuous. Therefore
there is an inverse µ−1 and

Ñ(t) = #{i ≥ 1 : T̃i ≤ µ(t)} = #{i ≥ 1 : µ−1(T̃i) ≤ t}, t ≥ 0 (3.16)

Therefore, the arrival times of an inhomogeneous Poisson Process with mean value func-
tion µ have the representation:

Tn = µ−1(T̃n), T̃n = W̃1 + · · ·+ W̃n, n ≥ 1, W̃i iid Exp(1). (3.17)

Let N be a Poisson process on [0,∞) with a continuous a.e. positive intensity function
λ. Then the following conditions are satisfied:

8



1. The vector of the arrival times (T1, . . . , Tn) has density:

fT1,...,Tn(x1, . . . , xn) = e−µ(xn)
n∏
i=1

λ(xi)I{0<x1<···<xn} (3.18)

2. The vector of inter-arrival times (W1, . . . ,Wn) = (T1, T2 − T1, . . . , Tn − Tn−1) has
density:

fW1,...,Wn(x1, . . . , xn) = e−µ(x1+···+xn)
n∏
i=1

λ(x1 + · · ·+ xi), xi ≥ 0. (3.19)

This means that the inter-arrival times W1, . . . ,Wn are independent (and identically
distributed) only in the case of a homogeneous Poisson Process. This property distinguishes
the homogeneous Poisson process within the class of all Poisson processes on [0,∞).

3.2 Order Statistics Property
The next feature that will be present is one of the most important properties of the Pois-
son Process. It is the order statistics property. This property says the locations of events
are uniformly distributed when conditioning on a fixed total number of events in a certain
interval.

Consider the next example proposed by Pinsky and Karlin (2010): we start with a line
segment t units long and a fixed numbern of darts. We throw the darts along the line segment
in such a way that their position is uniformly distributed along the segment, independently
of the other darts and their location. Let U1 be the position of the first dart, U2 the position
of the second, and so on up to Un. The probability density function is the uniform density:

fU(µ) =

{
1/t for 0 ≤ µ ≤ t,
0 elsewhere.

Now let T1 ≤ T2 ≤ · · · ≤ Tn denote these same positions, not in the order in which
the darts were thrown, but instead in the order in which they are placed along the line. The
next figure 3.1 shows a typical relation betweenU1, U2, . . . , Un and T1, T2, . . . , Tn. The joint
probability density function for T1, T2, . . . , Tn is:

fT1,...,Tn(x1, . . . , xn) = n!t−n, 0 < x1 < · · · < xn < t (3.20)

For example, if one consider n=2 we have:
fT1,T2(x1, x2)dx1dx2 = 2t−2dw1dw2

Dividing by dx1dx2 and passing to the limit gives 3.20. When n=2, there are two ways
that U1 and U2 can be ordered; either U1 is higher than U2 or U1 is less than U2. There are
usually n! arrangements of U1, . . . , Un that lead to the same ordered values T1 ≤ · · · ≤ Tn.
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Figure 3.1: T1, T2, . . . , Tn can be seen as the values of
U1, U2, ...Un displayed in increasing order.

Theorem 2. Consider the Poisson process N = (N(t))t≥0 with continuous a.e. positive intensity
function λ and arrival times 0 < T1 < T2 < . . . a.s. Then the conditional distribution of
(T1, . . . , Tn) given {N(t) = n} is the distribution of ordered sample (X(1), . . . , X(n)) of an
iid sampleX1, . . . , Xn with common density λ(x)

µ(t)
, 0 < x ≤ t,

(T1, . . . , Tn|N(t) = n)
d
= (X(1), . . . , X(n)) (3.21)

This means that the left-hand vector has conditional density:

fT1,...,Tn(x1, . . . , xn|N(t) = n) =
n!

(µ(t))n

n∏
i=1

λ(xi), 0 < x1 < · · · < xn < t (3.22)

In the case of a homogeneous Poisson process, we have:

fT1,...,Tn(x1, . . . , xn|N(t) = n) = n!t−n, 0 < x1 < · · · < xn < t (3.23)

Therefore, if there are n arrivals of a homogeneous Poisson process in the interval (0, t),
these arrivals constitute the points of an ordered sample of n uniformly distributed random
variables on (0, t). This conclusion is independent of the intensity λ.

Proof. To prove this property, we start by giving a well-known result on the distribution of
the order statistics:

X(1) ≤ · · · ≤ X(n),
of an iid sample X1, . . . , Xn.

If the iid X ′is have density f then the density of the vector (X(1), . . . , X(n)) is given by:

fX(1),...,X(n)(x1,...,xn) = n!
n∏
i=1

f(xi)I{x1<···<xn} (3.24)

The support of the vector (X(1), . . . , X(n)) is the set:

Cn = {(x1, . . . , xn) : x1 ≤ · · · ≤ xn} ⊂ IRn. (3.25)

The existence of a density fXi,...,Xn implies that all elements of the iid sample X1, . . . , Xn

are di�erent a.s., which means that in definition of Cn the ≤ can be replaced by <.
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In what follows, we will give the proof of (3.21) and (3.22). The proof starts with a limit:

limhi↓0,i=1,...,n
P (T1∈(x1,x1+h1],...,Tn∈(xn,xn+hn]|N(t)=n)

h1,...,hn

The limit can be interpreted like a density for the conditional probability distribution of
(T1, . . . , Tn), given {N(t) = n}.

One can choose the h′is so small that the intervals (xi, xi + hi] ⊂ [0, t], i = 1, . . . , n,
become disjoint with 0 < x1 < · · · < xn < t. Then the following expression is obtained:{

T1 ∈ (x1, x1 + h1], . . . , Tn ∈ (xn, xn + hn], N(t) = n
}

=
{
N(0, x1] = 0, N(x1, x1 + h1] = 1, N(x1 + h1, x2] = 0,

N(x2, x2 + h2] = 1, . . . , N(xn−1 + hn−1, xn] = 0,

N(xn, xn + hn] = 1, N(xn + hn, t] = 0
} (3.26)

Taking probabilities on both sides and using the property of independent increments of
the Poisson Process N , we obtain:

P
(
T1 ∈ (x1, x1 + h1], . . . , Tn ∈ (xn, xn + hn], N(t) = n

)
= P (N(0, x1] = 0)P (N(x1, x1 + h1] = 1)P (N(x1 + h1, x2] = 0)

P (N(x2, x2 + h2] = 1) · · ·P (N(xn−1 + hn−1, xn] = 0)

P (N(xn, xn + hn] = 1)P (N(xn + hn, t] = 0)

= e−µ(x1 [µ(x1, x1 + h1] e
−µ(x1,x1+h1]] e−µ(x1+h1,x2][µ(x2, x2 + h2]

e−µ(x2,x2+h2]] · · · e−µ(xn−1+hn−1,xn][µ(xn, xn + hn]

e−µ(xn,xn+hn ] eµ(xn+hn,t]

= e−µ(t)µ(x1, x1 + h1] · · ·µ(xn, xn + hn]

(3.27)

Dividing by P (N(t) = n) = e−µ(t) (µ(t))
n

n!
, we get the scaled conditional probability:

P (T1∈(x1,x1+h1],...,Tn∈(xn,xn+hn]|N(t)=n)
n∏

i=1
hi

= n!
(µ(t))n

µ(x1,x1+h1]
h1

. . . µ(xn,xn+hn]
hn

→ n!
(µ(t))n

λ(x1), . . . , λ(xn), as hi ↓ 0, i = 1, . . . , n

In the last step, we apply the continuity of λ to show that µ′(xi) = λ(xi).
Then we obtained equation 3.23.
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Chapter 4

Pre-processing Data and Solution
Approach

In this chapter, we are going to apply the theoretical results of the Poisson Process to a real
database which has the occurrences of wildfires in Continental Portugal in the period from
January 1, 2009, until December 31, 2015.

The database is available on the ICNF website and it has 131199 records. We would like
to explore data about 2017 but public institutions have not analyzed it, yet.

The database has several information, but essentially we used the alert hour and date of
occurrence of each wildfire in order to create a variable Ti, which keeps record of the elapsed
time in hours since the first day (1st January of 2009) until the occurrence of that particular
wildfire. Based on this variable Ti we defined the waiting times, Wi according to equation
3.14.

We also created a variable in order to categorize data according to the region where the
wildfire took place. We split the country into 3 regions by grouping the following districts:

1. North Region: Viana do Castelo, Porto, Braga, Vila Real, Bragança, Guarda, Viseu;

2. Center Region: Aveiro, Coimbra, Santárem, Castelo Branco, Portalegre, Leiria;

3. South Region: Lisboa, Setúbal, Beja, Faro, Évora.

4.1 Continental Portugal
In this section we are going study if the theoretical results adjust to a real database in several
years. We used SPSS, Excel and R to analyze the data.

We plotted the arrivals (Figure 4.1a) with a straight line that has a slope 0.47. According
to the law of large numbers, the slope represents λ̂−1 = Tn/n. The λ̂ is the maximum likeli-
hood estimator of λ under the hypothesis that the inter-arrival times Wi are iid Exp(λ). We
assessed the validity of this statement by applying a Kolmogorov Smirnov test. This method
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is implemented when one wants test if a given sample follows a certain distribution. In this
case we want to know if Wi follows an exponential distribution with λ = 1/0.47 = 2.13, i.
e., we consider

H0 = Wi ∼ Exp(2.13)
H1 = Wi 6' Exp(2.13)

and obtained a p − value = 0.2976 > 0.01, we do not reject null hypothesis and for a
significance level 1% and since the p-value is quite large we have some indication that the
inter-arrival times may follow an exponential distribution. Then we plotted the correspond-
ing inter-arrival times (Figure 4.1b).

(a) Arrivals (b) Inter-arrival times

Figure 4.1: Arrivals and corresponding inter-arrival times in Continental Portugal

We also built a table (Table 4.1) with the main statistics of the inter-arrival times for each
year, for the whole period and all regions.

As mentioned earlier, the inverse of the mean corresponds to an estimator of the inten-
sity function. The table suggests that during the years there is a tendency for an intensity
decrease. We can prove this statement taking into consideration time series methods that
analyze trends and seasonal components. The moving average is a non-parametric approach
that estimates a deterministic trend which influenced a stationary time series based on the
past values (Brockwell et al. (2002)). The estimate of the mean inter-arrival time is defined
by:

(λ̂(i))−1 = (2m+ 1)−1
min(n,i+m)∑
j=max(1,i−m)

Wj for m = 3000. (4.1)

The corresponding estimates for (λ̂(i))−1 can be interpreted as the reciprocals of the
values of the Poisson intensity. We plotted the annual estimates supported by moving average
estimate (λ̂(i))−1 and the corresponding reciprocals and there is a tendency for the intensity
to decrease when time goes by (Figure 4.2). Moreover we presented the boxplots of each year
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where one can see that the distribution of inter-arrival times of the claims is more spread
towards the end of 2015 and concentrated around the value 0.15 in contrast to 0.08 at the
beginning (Figure 4.3). Furthermore, the annual claim number decreased over the years.

Year 2009 2010 2011 2012 2013 2014 2015 Total

sample size 24816 21241 23977 20374 18633 6800 15358 131199
minimum 0 0 0 0 0 0 0 0
1st quartile 0.03 0.03 0.03 0.03 0.03 0.10 0.05 0.03

median 0.08 0.07 0.08 0.10 0.10 0.27 0.15 0.10
mean 0.35 0.41 0.37 0.43 0.47 1.29 0.57 0.47

λ̂=1/mean 2.83 2.43 2.74 2.32 2.13 0.77 1.76 2.14
3rd quartile 0.20 0.20 0.22 0.25 0.23 0.67 0.37 0.25
maximum 218.65 291.60 432.00 352.82 429.55 584.43 230.67 584.43

Table 4.1: Descriptive Statistics of Continental Portugal

Figure 4.2: The annual estimates by moving average
estimate (λ̂(i))−1 and their reciprocals

Figure 4.3: Boxplots of the inter-arrival times for
each year and all regions together

According to the literature review, a homogeneous Poisson Process has a constant λ in the
time interval of analysis. Then, we have obtained statistical evidence that the arrival times of
wildfires in Continental Portugal are possibly modeled by an inhomogeneous Poisson Process.

However, there is a relation between an inhomogeneous and homogeneous Poisson Pro-
cess. As mentioned above, if one transforms the arrivals Ti into µ(Ti), the inhomogeneous
Poisson Process will become a standard homogeneous Poisson Process. The di�culty is then
the estimation of µ. We calculated µ(Ti) using the equation 3.8, assuming that µ(t) is piece-
wise linear, which means that we considered that λ is piecewise constant. We used the usual
estimator of λ during the intervals of constancy. In our first approach to the global analysis,
we assumed these periods corresponded to each year. To analyze the performance of our esti-
mates we assessed the quality of the standard homogeneous fitting by verifying the following
criteria.

1. The homogeneous Poisson Process has a linear function; To prove this statement we
plotted the transformed arrivals µ(Ti) (Figure 4.4).
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2. According to previous chapter in the homogeneous Poisson Process the claims arrive
approximately uniformly over time. Then, we did the histogram of the values µ(Ti)
(Figure 4.5).

3. For the homogeneous Poisson Process the inter-arrival times follow an exponential
distribution. Therefore, we draw a QQ-plot of the values µ(Ti)− µ(Ti−1) against the
standard exponential distribution (Figure 4.6).

4. The homogeneous Poisson Process is standard if λ is equal to 1. We plotted the esti-
mates of the intensity function using the approach of time series with horizontal line
equal to 1 (Figure 4.7).

We were expected to observe a closely straight line in the Figure 4.4 however there are
several jumps between arrivals. As we can see in the Figure 4.5 there is statistical evidence
that transformed arrivals do not follow an uniform distribution. We can observe in the Figure
4.6 there is a clear indication of a right tail that is heavier than exponential. Finally in the
Figure 4.7 the estimates vary wildly around 1. Indeed, there is evidence that the process may
not be Poisson and other models probably could be more appropriate.

Possibly reasons for such poor agreement are: seasonality, as one knows wildfires tend to
occur in days that temperatures are high and very windy, therefore during winter and autumn
there are several periods of heavy rain that cause the huge di�erences between the arrivals as
one can observe in Figure 4.1b; the second reason is related with the number observations.
As we referred above the Poisson Process is a suitable approach for rare events which have
a small probability of occurring. In six years we have 131199 records, therefore it is hard to
say that wildfires are rare events; the last reason has to do with interdependence which is
also related with the number of observations. If there are more wildfires there is a tendency
to increase the number of events because the temperature increases and the residuals that
were freed by wildfires may fall on soil and cause a new event, so we cannot conclude that
the inter-arrivals are completely mutually independent, which is one of the conditions for a
Poisson Process.

Consolidating our analysis, we decided to divide the country into three regions and we
chose to study more thoroughly the South Region because it is the region that has less events
and where there are less longer periods of heavy rainfall, which means less interdependence
and ultimately a better fitting.

4.2 South Region
We are going to apply the theoretical results of the Poisson Process to the South Region
between January 1, 2009, and December 31, 2015.

Firstly, we plotted the arrivals with a linear function Ti = 4.25i. If we observe the figure
4.8 we can see the jumps in arrivals, which may indicate that model is not suitable. We believe
there is a strong seasonality in the data.
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Figure 4.4: The transformed arrivals µ(Ti)

Figure 4.5: The histogram of the values µ(Ti)

Figure 4.6: QQ-plot of the values µ(Ti)− µ(Ti−1)

Figure 4.7: Estimation of the intensity function corresponding to the transformed sequence
µ(Ti)
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The seasonality is shown in the figures 4.9 and 4.10 where it is clear that most arrivals
occurred between May and September. Therefore, we decided restrict the study to these
periods ever year.

Figure 4.8: Arrivals of South Region

Figure 4.9: Histogram of arrivals of South in 2009 Figure 4.10: Histogram of arrivals of South in 2010

The first period between 1st May 2009 to 30th September we have 1811 occurrences which
is more than 50% of all events recorded during this year. We divide it into 22 short periods
which correspond to one week. Therefore, the first is 1st May 2009 until 7th May 2009, the
second is 8th May 2009 until 15st May 2009, and so on.

Firstly we built a table with relevant information about each week of inter-arrival time
(Table 4.2). As we can see in the table the intensity is not constant and varies a lot, showing a
tendency to increase. Therefore, we calculated the intensity according to the moving average
formula 4.1 withm = 50 because we decreased the number of events from 131199 to 1811 and
we can observe that there is a clear tendency for the intensity to increase (Figure 4.11). Next,
we draw the boxplots per week and we can observe in the first period that the distribution
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Weeks Sample Size Mean λ̂ = 1/mean

1 50 3.249 0.308
2 19 8.942 0.112
3 51 3.311 0.302
4 52 3.279 0.305
5 67 2.484 0.403
6 38 4.464 0.224
7 71 2.337 0.428
8 103 1.598 0.626
9 55 3.137 0.319
10 95 1.761 0.568
11 83 2.040 0.490
12 88 1.904 0.525
13 102 1.655 0.604
14 82 2.012 0.497
15 106 1.603 0.624
16 96 1.761 0.568
17 121 1.370 0.730
18 127 1.333 0.750
19 118 1.415 0.707
20 76 2.233 0.448
21 101 1.651 0.606
22 110 1.298 0.770

Total 1811 2.026 0.494

Table 4.2: Sample size and Mean about South Region between 1st May 2009 and 30th Septem-
ber 2009

of inter-arrival times is around the value 1.4 which is greater than in last week that is about
the value 0.6 (Figure 4.12). Furthermore, the number of events increases over the weeks.

So, we have gained statistical evidence that the arrivals are modeled by an inhomogeneous
Poisson Process. As mentioned above to transform an inhomogeneous Poisson Process into
a homogeneous Poisson Process we need to calculate µ(Ti). Once µ(Ti) is computed taking
into consideration equation 3.8 and using a constantλ per week, we will check the fitting with
respect to a standard homogeneous Poisson Process after transforming the inhomogeneous
process using the condition 2 of the beginning of Section 3.1.

Firstly we observed if the transformed process looks like a linear function. We plotted the
transformed arrivals and compared with estimated mean value function of insurance arrivals
µ(t). In the left graph we have the estimated mean value function µ(t). As one can see the
slopes correspond to the intensities from Table 4.2. On the right we draw the transformed
arrivals. We can observe that the transformed data is very much aligned with a straight line,
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Figure 4.11: Estimates of intensity function by mov-
ing average approach Figure 4.12: Boxplots for each periof of 2009

while the left graph shows several deviations of the arrivals from a straight line (Figure 4.13).

(a) Estimated mean value function µ(t) (b) Transformed arrivals µ(Ti)

Figure 4.13: Comparison between estimated mean value function µ(t) and transformed ar-
rivals µ(Ti)

According to the literature the arrivals of a homogeneous Poisson Process follows an uni-
form distribution on any fixed interval, conditionally on the number of claims in this interval.
To check it we plotted the histogram of the transformed arrivals and the histogram of arrivals.
We can observe that the histogram of the transformed arrivals resembles a histogram of an
uniform sample (Figure: 4.14).

Next, we focus on the distribution of inter-arrival times, which should be exponentially
distributed. To check this statement we draw a QQ-plot of the distribution of the inter-
arrival times µ(Tn)− µ(Tn−1) against the standard exponential distribution (Figure 4.15b).
We also draw the QQ-plot of the distribution of Wi against the standard exponential dis-
tribution (Figure 4.15a). In both graphs there is a clear indication of a right tail of the dis-
tribution which is heavier than the tail of the exponential distribution. However there is a
clear approximation of the straight line in the right graph, which means that assuming an
exponential distribution for the inter-arrival times is not absurd.

Next, we focus on the constant intensity λ. According to literature if we change a in-
homogeneous Poisson Process into homogeneous it will become a standard homogeneous
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(a) Histogram of Ti (b) Histogram of µ(Ti)

Figure 4.14: Histogram of arrivals and histogram of transformed arrivals

(a) QQ-plot of the inter-arrival times Wi (b) QQ-plot of the inter-arrival times µ(Tn) −
µ(Tn−1)

Figure 4.15: Comparison between QQ-plot of the inter-arrival timesWi and QQ-plot of the
inter-arrival times µ(Tn)− µ(Tn−1)
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Poisson Process, which means that λ is equal to 1. We estimated λ by moving average ap-
proach using Wi (Figure 4.16a) and µ(Tn)− µ(Tn−1) (Figure 4.16b). We can observe in the
right graph that the estimates of intensity function around the value 1 in contrast in the left
graph the estimates of intensity function are increasing.

(a) Estimates of intensity function using Wi (b) Estimates of intensity function using µ(Tn)−
µ(Tn−1)

Figure 4.16: Comparison between estimates of intensity function usingWi and usingµ(Tn)−
µ(Tn−1)

We may conclude that an inhomogeneous Poisson Process provides an appropriate model
for the period between the 1st May of 2009 and the 30th September of 2009.

In the following, we studied if the model is suitable for whole years in the same period,
we followed the same steps that we did for 2009. Firstly we did a table with important
information about the years (Table 4.3). The table shows us that there is not any year that
the estimates of intensity function λ̂ = 1/mean is constant, therefore the homogeneous
Poisson Process is not appropriate in any year.

Years 2010 2011 2012 2013 2014 2015
Weeks i Mean 1/Mean i Mean 1/Mean i Mean 1/Mean i Mean 1/Mean i Mean 1/Mean i Mean 1/Mean
1 24 6.640 0.150 9 18.052 0.055 1 115.633 0.009 29 5.770 0.173 26 6.247 0.160 14 11.500 0.087
2 4 29.446 0.034 16 10.658 0.094 23 9.370 0.107 36 4.635 0.216 48 3.523 0.284 39 4.451 0.225
3 34 6.485 0.154 10 16.280 0.061 18 9.504 0.105 23 7.372 0.136 31 5.311 0.188 78 2.110 0.474
4 40 4.265 0.234 19 9.075 0.110 28 6.055 0.165 50 3.276 0.305 23 7.608 0.131 73 2.330 0.429
5 31 5.387 0.186 16 10.676 0.094 34 4.790 0.209 84 2.035 0.491 66 2.526 0.396 93 1.829 0.547
6 22 6.619 0.151 22 7.579 0.132 51 3.376 0.296 23 7.084 0.141 34 4.841 0.207 72 2.335 0.428
7 78 2.491 0.401 39 4.305 0.232 61 2.724 0.367 69 2.494 0.401 55 3.118 0.321 40 4.185 0.239
8 77 2.169 0.461 36 4.521 0.221 62 2.757 0.363 85 1.997 0.501 20 8.368 0.119 65 2.590 0.386
9 80 2.119 0.472 49 3.484 0.287 82 2.035 0.491 105 1.584 0.631 39 4.370 0.229 61 2.765 0.362
10 125 1.309 0.764 70 2.445 0.409 53 3.119 0.321 143 1.180 0.847 59 2.842 0.352 80 2.100 0.476
11 102 1.676 0.597 69 2.434 0.411 76 2.252 0.444 52 3.154 0.317 89 1.889 0.529 111 1.512 0.661
12 140 1.211 0.826 73 2.313 0.432 143 1.178 0.849 61 2.757 0.362 56 2.994 0.334 100 1.642 0.609
13 216 0.777 1.287 73 2.287 0.437 70 2.369 0.422 76 2.261 0.442 91 1.828 0.547 86 1.990 0.502
14 152 1.103 0.907 52 3.144 0.318 100 1.696 0.590 79 2.109 0.474 86 1.956 0.511 70 2.396 0.417
15 203 0.814 1.228 88 1.981 0.505 122 1.370 0.730 102 1.672 0.598 103 1.648 0.607 125 1.335 0.749
16 133 1.286 0.777 72 2.282 0.438 70 2.416 0.414 98 1.677 0.596 108 1.558 0.642 81 2.082 0.480
17 109 1.531 0.652 66 2.569 0.389 87 1.924 0.520 105 1.620 0.617 82 1.995 0.501 69 2.399 0.417
18 138 1.219 0.821 36 4.613 0.217 166 1.012 0.988 114 1.491 0.671 89 1.931 0.518 63 2.689 0.372
19 77 2.196 0.455 51 3.363 0.297 108 1.539 0.650 73 2.201 0.454 40 3.475 0.288 93 1.835 0.545
20 89 1.878 0.533 59 2.856 0.350 102 1.670 0.599 81 2.146 0.466 10 14.727 0.068 42 3.887 0.257
21 53 3.114 0.321 99 1.690 0.592 88 1.837 0.544 100 1.654 0.604 9 20.691 0.048 87 1.984 0.504
22 97 1.506 0.664 111 1.275 0.784 24 6.188 0.162 21 3.437 0.291 21 7.880 0.127 67 2.124 0.471
Total 2024 1.813 0.551 1135 3.232 0.309 1569 2.339 0.428 1609 2.235 0.447 1185 3.092 0.323 1609 2.281 0.438

Table 4.3: Main Statistics of whole years during the period 1st May until 30th September

Then, we are going to study if we transform the Ti into µ(Ti), whether the process is well
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fitted by a standard homogeneous Poisson Process.
For each year, we draw the same graphs as we did for 2009 (Figures 4.17, 4.18, 4.19, 4.20,

4.21 and 4.22) to check if the fitting is good or not. In the left we put the inhomogeneous
plots and the homogeneous graphs on the right.

We observed that, in all years, from May until September the Poisson fitting is reasonable.
So, we grouped all years between May and September and obtained λ̂ = 0.62 which means
that in each 0.62 hours a wildfire occur, i.e., every 37 minutes a new wildfire occur in the
South Region.

However, the Poisson Process does not fit perfectly in some years. For example, in 2012
the estimates of intensity function using moving average approach in the beginning of period
is very close to 1 in contrast to the end there is a widely variation of intensity function. This
phenomenon happened because in the weeks 18 to 20, there were more than 100 wildfires in
each week in contrast to the weeks 16 and 17 and weeks 21 and 22 when there were 157 and
112 wildfires occurred, respectively, in each 2 week period (Figure 4.19h). If we consider only
the period between May and August we will obtain better fitting. According to a climate
report from IPMA in the last week of September rained copiously.

Another year that the Poisson Process does not fit perfectly is 2015. As observed in figure
4.22c, we see the arrivals are more approximately uniformly distributed in the end of period
in contrast to the beginning. If we analyzed the statistics of inter-arrival times we can verify
the maximum of inter-arrival times are in the first week, if we analyze the mean of inter-
arrivals times per month we can see on May the mean is 3.068 higher than other months that
are respectively 2.518, 1.911, 1.965 and 2.303. If we exclude May the Poisson Process fitting
will be better. According to a climate report from IPMA, in May, a heat wave started on the
9th May. In fact, the mean of inter-arrival times the 1st May to 8th May is 10.54 hours while
in the remaining days is 2.47 hours.

Therefore we can conclude that the Poisson Process is appropriate to model rare events.
However, certain weather phenomena may perturb its fitting. Seasonality a�ects the fit-
ting and long raining periods will introduce huge di�erences between arrivals. Dependence
between occurrences plays also an important role since a wildfire may generate favorable
conditions for new wildfires in close locations.

4.3 Center Region
In this section, we are going to study if the Poisson Process is a suitable model for the Center
Region. The Center Region has more occurrences than the South Region. It is important
to understand if we increase the number of events, the Poisson Process will still be able to
model the number of occurrences of wildfires due to interdependence of events.

Firstly, we plotted the graphs of the two first years to understand if seasonality was also
presented in the Center Region. In Figures 4.23 and 4.24, we detected seasonality. So, to
perform our analysis we intend to study a shorter period, namely, between May to September
because we would like to compare with the South Region.
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(a) The estimated mean value function µ(t) (b) The transformed arrivals µ(Ti)

(c) Histogram of Ti (d) Histogram of the µ(Ti)

(e) QQ-plot of the inter-arrival times Wi (f) QQ-plot of the inter-arrival times µ(Tn) −
µ(Tn−1)

(g) Estimates of intensity function using Wi (h) Estimates of intensity function using µ(Ti)−
µ(Ti−1)

Figure 4.17: Graphs for 2010
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(a) The estimated mean value function µ(t) (b) The transformed arrivals µ(Ti)

(c) Histogram of Ti (d) Histogram of the µ(Ti)

(e) QQ-plot of the inter-arrival times Wi (f) QQ-plot of the inter-arrival times µ(Tn) −
µ(Tn−1)

(g) Estimates of intensity function using Wi (h) Estimates of intensity function using µ(Ti)−
µ(Ti−1)

Figure 4.18: Graphs for 2011
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(a) The estimated mean value function µ(t) (b) The transformed arrivals µ(Ti)

(c) Histogram of Ti (d) Histogram of the µ(Ti)

(e) QQ-plot of the inter-arrival times Wi (f) QQ-plot of the inter-arrival times µ(Tn) −
µ(Tn−1)

(g) Estimates of intensity function using Wi (h) Estimates of intensity function using µ(Ti)−
µ(Ti−1)

Figure 4.19: Graphs for 2012
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(a) The estimated mean value function µ(t) (b) The transformed arrivals µ(Ti)

(c) Histogram of Ti (d) Histogram of the µ(Ti)

(e) QQ-plot of the inter-arrival times Wi (f) QQ-plot of the inter-arrival times µ(Tn) −
µ(Tn−1)

(g) Estimates of intensity function using Wi (h) Estimates of intensity function using µ(Ti)−
µ(Ti−1)

Figure 4.20: Graphs for 2013
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(a) The estimated mean value function µ(t) (b) The transformed arrivals µ(Ti)

(c) Histogram of Ti (d) Histogram of the µ(Ti)

(e) QQ-plot of the inter-arrival times Wi (f) QQ-plot of the inter-arrival times µ(Tn) −
µ(Tn−1)

(g) Estimates of intensity function using Wi (h) Estimates of intensity function using µ(Ti)−
µ(Ti−1)

Figure 4.21: Graphs for 2014
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(a) The estimated mean value function µ(t) (b) The transformed arrivals µ(Ti)

(c) Histogram of Ti (d) Histogram of the µ(Ti)

(e) QQ-plot of the inter-arrival times Wi (f) QQ-plot of the inter-arrival times µ(Tn) −
µ(Tn−1)

(g) Estimates of intensity function using Wi (h) Estimates of intensity function using µ(Ti)−
µ(Ti−1)

Figure 4.22: Graphs for 2015
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Figure 4.23: Histogram of arrivals of Center
in 2009

Figure 4.24: Histogram of arrivals of Center
in 2010

We built a table with descriptive information about each week. Table 4.4 shows us that
λ increases along the weeks. According to the literature review, a homogeneous Poisson
Process has a constant λ, so we have gained statistical evidence the arrivals are modeled by
an inhomogeneous Poisson Process.

An inhomogeneous Poisson Process will become a standard homogeneous Poisson process
if we transform the arrivals Ti into µ(Ti). After that, we verified if the conditions to be a
standard homogeneous Poisson Process are respected in the Center Region.

The first assumption is related to µ(t). As one can observe in Figure 4.25a, µ(t) is not
linear (as it should be if the process was homogeneous). Therefore, we assumed that µ(t) was
piecewise linear with constant slopes in each week and estimated this slopes with usual esti-
mator for λ. Equipped with this approximation for µ, we transformed the data and plotted
µ(Ti), which corresponds to Figure 4.25b. As expected by the theory, as long as, we have
a good approximation of µ(t) the transformed data should look as those from a standard
homogeneous Poisson process, which means that one should observe approximately a line of
slope 1, as Figure 4.25b indeed shows.

(a) The estimated mean value function µ(t) of
Center Region in 2009

(b) The transformed arrivals µ(Ti) of Center Re-
gion in 2009

Figure 4.25: Comparison between estimated mean value function µ(t) and the transformed
arrivals of Center Region in 2009
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Weeks Sample Size Mean λ̂ = 1/mean

1 124 1.336 0.748
2 20 8.192 0.122
3 33 5.284 0.189
4 63 2.657 0.376
5 168 0.973 1.028
6 8 21.146 0.047
7 45 3.802 0.263
8 127 1.320 0.758
9 45 3.703 0.270
10 66 2.568 0.389
11 118 1.432 0.699
12 137 1.208 0.828
13 95 1.772 0.564
14 58 2.920 0.342
15 160 1.053 0.950
16 179 0.929 1.077
17 191 0.882 1.134
18 238 0.710 1.409
19 257 0.657 1.523
20 251 0.669 1.496
21 107 1.573 0.636
22 182 0.778 1.285

Total 2672 1.373 0.728

Table 4.4: Sample size and Mean about Center Region between 1st May 2009 and 30th Septem-
ber 2009

The next condition is about arrivals Ti. According to the property of order statistics the
arrivals of a standard homogeneous Poisson Process are approximately uniformly distributed.
To check this we plotted the histogram of Ti against the histogram of µ(Ti). In the Figure
4.26, we see that the right graph resembles the histogram of uniform sample in contrast to
the left one.

Next, we are going to check if the inter-arrival times are exponentially distributed. We
built two QQ-plots, the left side has a QQ-plot using Wi and the right side has a QQ-plot
taking into consideration µ(Ti) − µ(Ti−1). In the figure 4.27 we visualize that both graphs
have a right tail which is heavier than the tail of the exponential distribution, however the
right graph is more close to the straight line than left graph, then it is not unreasonable to
assume that µ(Ti)− µ(Ti−1) are approximately exponentially distributed.

Lastly, if a homogeneous Poisson Process is standard, λ is equal to 1. To verify this state-
ment we computed the estimates of the intensity function forWi and µ(Ti)−µ(Ti−1) using
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(a) Histogram of Ti of Center Region in 2009 (b) Histogram of transformed arrivals µ(Ti) of
Center Region in 2009

Figure 4.26: Comparison between histogram of Ti and histogram of µ(Ti) of Center Region
in 2009

(a) QQ-plot using Wi of Center Region in 2009 (b) QQ-plot using µ(Ti)−µ(Ti−1) of Center Re-
gion in 2009

Figure 4.27: Comparison between QQ-plot usingWi and QQ-plot using µ(Ti)−µ(Ti−1) of
Center Region in 2009
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the moving average approach with m = 75 because the number of events is higher. Figure
4.28 shows that the intensity function estimates vary wildly on the left, while, on the right,
the graph is close to 1.

(a) Estimates of intensity function using Wi (b) Estimates of intensity function using µ(Ti)−
µ(Ti−1)

Figure 4.28: Comparison between estimates of intensity function using Wi and estimates of
intensity function using µ(Ti)− µ(Ti−1) of Center Region in 2009

If we compare this period with the same period in the South Region we can conclude
the Poisson Process is more appropriate for the South Region than for the Center Region.
We observe that the sample size in the South Region counts 1811 wildfires and in the Center
Region counts 2672 events from May to September. Comparing the left graph of Figures 4.14
with 4.26b, we see that the histogram of transformed arrivals in the South Region is better
approximated by the uniform distribution than the histogram of transformed arrivals in the
Center Region. This may be explained by the number of occurrences. If we increase the
number of events, it will be more likely that the events are dependent of each other and the
fitting is worse.

4.4 North Region
In the last section of this chapter we are going to compare the same periods analyzed ear-
lier for the North Region. So, we are going to study the period between 1st May and 30th

September of 2009 to compare with the South Region and the Center Region.
Firstly we compiled a table with the main information about the three regions. We can

observe on table 4.5 that the number of events in North Region is seven times greater than
in the South Region and five times greater than in the Center Region. We will see that the
Poisson Process does not provide a good fitting for this region and given the weight of the
contribution of the number of occurrences in this region for the global number, this may
explain why there is not a good adjustment for the whole country. To check this we plotted
all graphs for the North Region to compare with other regions. Note that, to estimate the
intensity function we took m = 1500.

In Figure 4.29, we can observe that the North Region is not modeled by the Poisson
Process. The transformed arrivals are not linear and one can see di�erent slopes in the graph
4.29a. The histogram 4.29d does not resemble one from an uniform sample, the QQ-plot
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Regions South Center North
Weeks i Mean 1/Mean i Mean 1/Mean i Mean 1/Mean

1 50 3.249 0.308 124 1.336 0.748 284 0.587 1.703
2 19 8.942 0.112 20 8.192 0.122 107 1.514 0.661
3 51 3.311 0.302 33 5.284 0.189 58 2.981 0.335
4 52 3.279 0.305 63 2.657 0.376 141 1.207 0.828
5 67 2.484 0.403 168 0.973 1.028 381 0.439 2.277
6 38 4.464 0.224 8 21.146 0.047 13 12.835 0.078
7 71 2.337 0.428 45 3.802 0.263 98 1.725 0.580
8 103 1.598 0.626 127 1.320 0.758 273 0.615 1.627
9 55 3.137 0.319 45 3.703 0.270 79 2.127 0.470
10 95 1.761 0.568 66 2.568 0.389 169 0.997 1.003
11 83 2.040 0.490 118 1.432 0.699 293 0.574 1.741
12 88 1.904 0.525 137 1.208 0.828 418 0.386 2.592
13 102 1.655 0.604 95 1.772 0.564 194 0.898 1.114
14 82 2.012 0.497 58 2.920 0.342 202 0.835 1.198
15 106 1.603 0.624 160 1.053 0.950 636 0.264 3.784
16 96 1.761 0.568 179 0.929 1.077 829 0.203 4.934
17 121 1.370 0.730 191 0.882 1.134 956 0.176 5.690
18 127 1.333 0.750 238 0.710 1.409 1595 0.105 9.496
19 118 1.415 0.707 257 0.657 1.523 1585 0.106 9.439
20 76 2.233 0.448 251 0.669 1.496 1789 0.094 10.645
21 101 1.651 0.606 107 1.573 0.636 883 0.190 5.253
22 110 1.298 0.770 182 0.778 1.285 1435 0.100 9.980
Total 1811 2.026 0.494 2672 1.373 0.728 12418 0.296 3.382

Table 4.5: Main Statistics of all regions between 1st May and 30th September
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(a) Transformed arrivals in
North Region

(b) Transformed arrivals in
Center Region

(c) Transformed arrivals in
South Region

(d) Histogram of transformed
arrivals in North Region

(e) Histogram of transformed
arrivals in Center Region

(f) Histogram of transformed
arrivals in South Region

(g) QQ-plot of inter-arrival
times µ(Tn) − mu(Tn−1) in
North Region

(h) QQ-plot of inter-arrival
times µ(Tn) − mu(Tn−1) in
Center Region

(i) QQ-plot of inter-arrival
times µ(Tn) − mu(Tn−1) in
South Region

(j) Estimates of intensity func-
tion in North Region

(k) Estimates of intensity
function in Center Region

(l) Estimates of intensity func-
tion in South Region

Figure 4.29: Comparison of Regions during the period between 1st May and 30th September
of 2009
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has a right tail higher than the tail of the exponential distribution and finally the estimates
function is round to 1. We have gained statistical evidence that North Region is not modeled
by Poisson Process.

If we analyze all regions we can see the model suits the region that has less wildfires
which means if the number of events increase there is more probability the occurrences are
dependent. If we look at the graphs from left to right we can see the e�ect of interdependence.
The best plots are on right and the worst in the left.
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Chapter 5

Conclusion

The Poisson Process is an appropriate approach to model the number of occurrences and
their arrival times in rare events which have small probability of occurring.

In our case the model does not work for the whole period and all regions because of
two factors: the seasonality which influences the arrivals because there are huge values of
inter-arrival times which are caused by rains periods and the interdependence. As we men-
tioned above, for a Poisson Process, inter-arrival times must be independent and identically
distributed and, in this case, there is a high likelihood that some of the wildfires occur be-
cause of other ones and, furthermore, if the climate conditions are equally extreme for all
regions there is a huge correlation between occurrences. If we study this model for wildfires
in Norway, Sweden or Denmark (see Mikosch (2009)) the model is more adequate.

However we think the model can be suitable if we divide the country in regions. So, we
grouped districts into regions and we formed three regions. After that, we chose to study the
model for all regions after excluding seasonality, by selecting a period from the 1st May until
30th September.

We started with the South Region because it has less events and we believe the interde-
pendence was smaller. We concluded that in the South Region, the events were reasonably
modeled by an inhomogeneous Poisson Process, which can be transformed into a standard
homogeneous Poisson Process if we change the arrivals Ti into transformed arrivals µ(Ti).
After applying this method, we conclude that the South Region is well modeled by an in-
homogeneous Poisson Process in all years. We estimated λ for all years and we obtained
λ̂ = 0.62, which means that in, every 0.62 hours, a new wildfire occurs in the South Region.

After that, we studied the Center Region for the year that produced better results, which
was 2009. The Center Region showed more occurrences than the South Region. If we increase
the number of events there is an higher risk that the occurrences are dependent. We applied
the model for the same period that was studied in the South Region and the model does not
suit as well as in the South Region. However, it still is reasonable in the Center Region.

Finally, in our analysis we considered the results for the North Region. If we see Figure
4.29 which is the comparison between all regions, the model does not seem to fit well, in the
North Region, for the period between the 1st May and the 30th September, we believe this
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is due to interdependence of increments and consequently of arrivals. The worse fitting in
North Region may explain why there is not a good adjustment for the whole country.
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