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Abstract

Time series present great value to several different industries, such as sales, stock market

analysis, process and quality control, etc. Considering the increasing availability of information

and volume of data available, the challenge of forecasting time series is becoming harder. In this

sense, it is crucial to optimize forecasting models, making them more interpretable and valuable

for business practitioners. This work aims to analyze the gain of considering exogenous factors

as input in the forecasting models. Also, this work compares the performance of the ARIMA

model with the performance of three Machine Learning algorithms. Exogenous factors can be

relevant to understand the impact of some business actions. Such information brings insights

into relationships between variables and allows the understanding and discussion of different

scenarios. The proposed approach to integrate exogenous factors is applied to forecast three

different univariate time series. The first data set regards sales in a department store, the second

bike sharing demand and the third insurance quotations. The models used to produce forecasts

include one traditional statistical model, ARIMA, and three Machine Learning methods, Support

Vector Machine (SVM), Random Forest (RF) and Extreme gradient boosting (XGBoost).

Overall, the results indicate that considering exogenous factors as inputs in the forecasting

models improves their forecasting ability for all the cases studied. Furthermore, for these partic-

ular case studies, the Machine Learning models overcome the forecasting ability of the ARIMA

model.

Keywords: time series, forecasting, exogenous factors, dynamic regression
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Resumo

Séries temporais apresentam grande valor para diversos setores, como vendas, análise de

mercado de ações, processos e controle de qualidade, etc. Considerando a crescente disponibil-

idade de informações e o volume de dados, o desafio de prever séries temporais torna-se cada

vez maior. Nesse sentido, é fundamental otimizar os modelos de previsão, tornando-os mais

interpretáveis e assertivos para os profissionais de negocios. Este trabalho tem como objetivo

analisar o ganho ao se considerar fatores exógenos como variáveis dos modelos de previsão.

Adicionalmente, este trabalho compara o desempenho do modelo ARIMA com o desempenho

de três algoritmos de aprendizado de máquina. Fatores exógenos podem ser relevantes para en-

tender o impacto de algumas ações de negócios. Tais informações permitem a compreensão e

discussão de diferentes cenários. A abordagem proposta para integrar fatores exógenos é aplicada

em três diferentes séries temporais univariadas, incluindo vendas, demanda por partilhamento de

bicicletas e cotações de seguros. Os modelos usados para gerar as previsões incluem um mod-

elo estatístico tradicional, ARIMA, e três métodos de aprendizado de máquina, Support Vector

Machine (SVM), Random Forest (RF) e Extreme gradient boosting (XGBoost).

No geral, os resultados indicam que considerar fatores exógenos nos modelos de previsão

melhora a capacidade de previsão para todos os casos estudados. Adicionalmente, para esses

estudos de caso específicos, os modelos de aprendizado de máquina superam a capacidade de

previsão do modelo ARIMA.

Palavras-chave: séries temporais, previsão, fatores externos, regressão dinâmica
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Chapter 1

Introduction

Forecasting future values of a time series is one of the most important problems that ana-

lysts face in many fields, such as finance, sales, meteorology, politics, etc. Forecasting methods

consider historical data and provide estimates for future values of the time series. Since it can be

applied to various practical problems in real-world, techniques to predict time series data have

been a topic of increasing research activity. Many important models have been proposed in the

literature for improving the accuracy and efficiency of time series modelling and forecasting. One

of the most known and used time series forecasting models is the ARIMA (Autoregressive Inte-

grated Moving Average) model. However, since the ARIMA models cannot deal with nonlinear

patterns or relationships, their approximation of complex real-world problems and dynamics is

not always satisfactory. On the other hand, it is possible to find complex patterns in the data

dynamics using supervised Machine Learning algorithms. In this sense, several authors analyzed

the application of Machine Learning for forecasting time series, among Ahmed, Atiya, Gayar,

and El-Shishiny (2010), Cerqueira, Torgo, and Soares (2019) and Makridakis, Spiliotis, and Assi-

makopoulos (2018). The reported results do not converge to a single conclusion. The accuracy

of the generated forecasts depends on the size of the series, the pre-processing methods and the

presence of nonlinear components.

Furthermore, strategic planning for the future is crucial in any business to make definitive

action plans. The inclusion of additional information than the past values of the target variable in

forecasting models can be relevant to understand the impact of some business actions, calendar

effects or external events, such as weather or strikes. Such information may explain some of

the observed historical variations and then lead to more accurate forecasts. The inclusion of

exogenous factors as explanatory variables lends insights into relationships between variables

and allows the understanding and discussion of different scenarios. Unusual behaviour observed

in the series can be caused by some specific factors, e.g., promotion events, price reduction,

weather conditions, etc. If these particular events are repeated periodically, it is possible to add

new features which will indicate these special events and describe the extreme or unusual values of

the target variable. It is important to highlight that considering such external information into the

forecasting model is different from modelling multivariate time series. Nonetheless, exogenous

drivers can be determined by factors or variables outside the causal system under study. In other

words, variables that affect a model without being affected by it.
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Different from classic regression methods, time series models usually do not include addi-

tional information than past observations. Some existing studies in economic field consider the

ARIMAX model to include such factors as explanatory variables, such as Suhartono and Prastyo

(2015) and Alkali (2019). The implementation and the success of a time series model that con-

siders external factors as inputs will require expertise, and it could be challenging to forecast all

the predictors when it is necessary.

1.1 Motivation

Although it is intuitive to assume that some exogenous factors can present relevant influ-

ence on forecasting models, existing time series related works are not so common, and most of

them do not compare the results with alternative time series models, see for instance Bossche

and Brijs (2004). Most of the literature that considers alternative methods for time series fore-

casting aims to evaluate the performance of Machine Learning models on time series data. One

strategy used to apply ML models to forecast time series data is to consider lagged values of the

response variable as input so that the model can learn the dynamics of the series since supervised

Machine Learning models do not have the ability to extrapolate patterns outside of the domain

of training data. However, the application is usually made considering data that do not present

exogenous factors. Makridakis, Hyndman, and Petropoulos (2019) present the state of the art of

forecasting in social settings including, among other topics, the performance ofMachine Learning

methods on time series forecasting tasks and the added value of including exogenous variables.

The authors highlight that more studies are needed to better understand the value of collecting

data for exogenous variables and in which domains their inclusion into the forecasting models

is likely to practically improve forecasting performance. The inclusion of additional information

in forecasting models can contribute to the assertiveness of forecasts, supporting strategic busi-

ness planning and guiding companies regarding production planning. The lack of a comparative

study regarding the inclusion of exogenous factors to predict time series and the applications of

Machine Learning models for time series forecasting have motivated this work.

1.2 Objectives

This dissertation has two main goals. The work first analyzes the performance of different

forecasting models when selected exogenous factors are considered as inputs. The results are

evaluated to assess the impact of additional factors when generating forecasts. Complementary,

the performance of Machine Learning models is compared with the traditional ARIMA model

to analyze the gain of considering such models for time series forecasting. There were several

options of ML models to be applied, and three models were chosen: Support Vector Machine,

Random Forest and XGboost. Such models are well-known Machine Learning algorithms and

successfully performed in several prediction competitions. Monte-Carlo estimates is applied to

guarantee reliable estimates of the performance. The measure considered is this work to evaluate

the performance of the models is the Root Mean Squared Error (RMSE). Therefore, the RMSE

of the forecasts obtained with or without exogenous factors are compared.
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With these purposes, three different case studies are considered. The first case refers to daily

sales in Germany’s drug store called Rossmann and the goal is to predict the sales turnover for

the next 30 days. Sales are affected by many factors, such as weekends, holidays and promotions.

The second case present daily observations from bike rental demand in Washington, D.C. The

target variable is the count of total rental bikes, and the goal is to predict the number of rentals

for the next 30 days. Besides the historical usage patterns, the data combine different exogenous

factors involving holidays, season and temperature. The last case studied aims to analyze the

effect on monthly insurance quotations when TV advertising is disseminated, assuming that the

effect may not be immediate. Hence, different lags of the external predictor are analyzed to

found a correlation with the response variable and then be considered as an exogenous factor in

the model.

1.3 Organization

This dissertation is divided into 5 chapters, following a logical sequence for the development

of the topic addressed. Chapter 1 presents the problem to be studied. Chapter 2 introduces

the theoretical foundations used. Chapter 3 describes the models applied in this work. The

methodology used and the experimental studies are presented in Chapter 4. Chapter 5 concludes

the work, analyzing the results obtained. The appendices contain details of the results obtained

for each model regarding the datasets used.
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Chapter 2

Background knowledge

This chapter introduces some essential concepts of time series analysis and forecasting, as well

as supervised Machine Learning (ML). Furthermore, ML approaches to time series forecasting

are described.

2.1 Time series

This section introduces the essential concepts of time series to support this dissertation. A

time series is an ordered sequence of observations obtained over time. In this work we consider

that the observations are obtained at equally spaced time intervals. A time series can be set as

univariate or multivariate. In the first case, the series contains observations of a single variable,

and in the latter, there are observations of more than one variable. In this work, only univariate

time series are considered. Moreover, a time series are said in continuous time, if observations are

measured at every instance of time, or discrete time if observations are measured at discrete points

of time. Time series analysis is considered for many applications, such as Sales, Economics, Stock

Market, Census analysis and many more. In general, time series analysis involves the following

interests:

• understand the underlying process that generates the series, obtaining information about

the series behaviour and looking for relevant patterns present in the data;

• forecast future observations of short, medium or long term to support business decisions.

Formally, a time series is a set of random variables indexed in time and denoted by yt, t =
0,±1,±2, .... In general, a collection of random variables, yt, indexed by t, is referred to as a
stochastic process. In a stochastic process, the mean, autocovariance and autocorrelation can be

defined respectively as

µt = E(yt) (2.1)

γ(s, t) = cov(ys, yt) = E[(ys − µs)(yt − µt)] (2.2)
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ρ(s, t) = cov(ys, yt) =
γ(s, t)√

γ(s, s)γ(t, t)
(2.3)

An important concept in time series analysis is that of stationarity. There are two types of

stationary processes which can be defined as (i) Strictly Stationary and (ii) Weakly Stationary.

Strictly Stationary: the probabilistic behavior of every collection of variables (yt1 , yt2 , ..., ytk)
is identical to that of the time shifted set (yt1+h, yt2+h, ..., ytk+h). That is, for all k = 1, 2, ..., all
time points t1, t2, ..., tk, all numbers c1, c2, ..., ck and all time shifts h = 0,±1,±2

P (yt1 ≤ c1, ..., ytk ≤ ck) = P (yt1+h ≤ c1, ..., ytk+h ≤ ck) (2.4)

Weakly Stationary: time series is a finite variance process where:

1. E[yt] = µ

2. var(yt) = E[(yt − µ)2] = σ2

3. cov(ys, yt) = γ(|s− t|)

In a stationary process, the statistical properties such as mean and variance do not depend

upon time whereas the autocorrelation function depends only on the lag. The concept of station-

arity is important for meaningful estimation of mean, autocovariance and autocorrelation from

data. The autocorrelation in time series represents the correlation between observations of the

same series at different lags (points in time). An important aspect of autocorrelation analysis is

how it can help to discover hidden patterns in the data and support the selection of the correct

forecasting methods. Consider r1 as the measure of the relationship between yt and yt−1, r2 as
the measure of the relationship between yt and yt−2 and so on. Thus, ri can be defined as the
autocorrelation function (ACF) and written as

ri =

∑T
t=i+1(yt − y)(yt−i − y)∑T

t=1(yt − y)2
(2.5)

where T is the length of the time series.

The partial autocorrelation function (PACF) measures the linear correlation between yt and
yt+i with the linear dependence of (yt−1, yt−2, . . . , yt−(i−1)) removed. It differs from ACF,

since the autocorrelation function does not measure the relationship for other lags. Moreover,

analyzing the autocorrelation function (ACF) and partial autocorrelation function (PACF) in con-

junction support the selection of the appropriate ARIMA model for time series prediction.

TIME SERIES COMPONENTS

In general, four main components of a time series may be distinguished: Trend, Cyclical,

Seasonal and Irregular components. A brief description of each component is given as follows

based on Adhikari and Agrawal (2013).
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Trend

A trend can be defined as a long term movement in a time series, representing the general

tendency of a time series to increase, decrease or stagnate over a long period of time.

Cyclical

It describes the medium-term changes in the series, generated by circumstances, which repeat

in cycles. A cycle’s length stretches over a more extended period of time. Most of the economic

and financial time series show some kind of cyclical variation.

Seasonal

Seasonal variations in a time series represent fluctuations within a year during the season.

Some important factors causing seasonal variations are climate andweather conditions, traditional

habits, etc. Seasonal variation is an important factor for making proper future plans.

Irregular components

Irregular variations in a time series are generated by unpredictable influences, which are not

regular and also do not repeat in a unique pattern. These variations are caused by incidences such

as war, strike, earthquake, revolution, etc.

Figure 2.1: An illustration of the four main components of a time series adapted fromDatavedas

(2018).

Considering the effects caused by these four components, two different types of models

are generally considered: Multiplicative and Additive models. The multiplicative model assumes

that the elements of a time series are not independent, and they can affect one another. On

the other hand, the additive model assumes independence among all the components. Thus,

it is possible to write both models as follows, where T, S, C and E are respectively the trend,
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seasonal, cyclical and irregular variation at time t. Note that it is possible to obtain an additive
model from a multiplicative one by applying the logarithmic function to the model.

Multiplicative Model: yt = Tt ∗ St ∗ Ct ∗ Et (2.6)

Additive Model: yt = Tt + St + Ct + Et (2.7)

2.2 ARIMA Models

ARIMA models are one of the most widely used approaches to time series forecasting. De-

spite the fact that the inclusion of relevant external information as predictor variables is allowed

in regression models in general, ARIMA models handle the dynamics of time series data. This

section introduces the AutoRegressive Integrated Moving Average model, ARIMA. Further, it

describes the algorithm proposed by R. Hyndman and Athanasopoulos (2018) for automatic

modelling of a time series with the best ARIMA model. The main references for this section are

Chatfield (2000) and Cryer and Chan (2008).

A pth-order autoregressive process yt, known as AR(p), satisfies the equation

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt (2.8)

where the parameters φi are such that the roots, z1, . . . , zp of the polynomial φ(z) = 1− a1z−
. . . − apz

p are outside the unit circle, |zi| > 1, to guarantee stationarity. The current value of
yt is a linear combination of the past p values plus a term εt that incorporates everything new
in the series at time t and that is not explained by the past values. The term εt is a white noise
process or shock process, that is a sequence of independent and identically distributed random

variables, with zero mean and variance σ2
ε . Thus, for every t, it is assumed that εt is independent

of yt−1, yt−2, yt−3... .
A time series yt is said to be a moving average process of order q, known as MA(q), if it is a

linear combination of the last q forecast errors in a regression model, such as

yt = εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q (2.9)

where the parameters θi are such that the roots, z1, . . . , zq of the polynomial θ(z) = 1− b1z −
. . .− bqz

q are outside the unit circle, |zi| > 1, to guarantee invertibility.
It is possible to write any stationary AR(p) model as an MA(∞) model. For instance, using

repeated substitution, it is possible to show this for an AR(1) model:

yt = φ1yt−1 + εt

= φ1(φ1yt−2 + εt−1) + εt

= φ2yt−2 + φ1εt−1 + εt

= φ3yt−3 + φ2εt−2 + φ1εt−1 + εt

etc.

(2.10)
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Provided −1 < φ1 < 1, the value of φk
1 will get smaller as k gets smaller. Therefore, it is

possible to obtain a MA(∞) process as

yt = εt + φ1εt−1 + φ2
1εt−2 + .... (2.11)

Hence, it is possible to write any invertible MA(q) process as an AR(∞) process. In an

invertible process, the most recent observations have higher weight than observations from the

more distant past. The ARMA model is simply the mix between AR(p) and MA(q) models. The
condition on the coefficients to ensure stationarity and invertibility is that the roots of the AR

and MA polynomials are outside of the unit circle.

In real applications, many time series are non-stationary and then it is not possible to apply

directly none of the processes described above. One alternative to handle not stationary series is

to apply differencing to make them stationary:

y′t = φ1y
′
t−1 + φ2y

′
t−2 + ...+ φpy

′
t−p + θ1εt−1 + θ2εt−2 + ...+ θqεt−q + εt (2.12)

where y′t is the differenced series. Consider the backward shift operator B, that can be defined
as Byt = yt−1. The backward shift operator is convenient for describing the process of differ-

encing. The dth differences can be written as (1 − B)dyt. If the original data is differenced d
times before fitting an ARMA(p, q) process, then the model for the original data is an ARIMA(p,
d, q) process where d denotes the number of differences taken. Thus, a non-seasonal ARIMA
model can be written as

φ(B)(1−B)dyt = θ(B)εt (2.13)

where εt denotes a random process with zero mean and variance σ
2
z , B is the backshift operator,

and φ(B) and θ(B) are polynomials in B of finite order p and q respectively. Table 2.1 provides
examples of some special cases of ARIMA models.

Model ARIMA orders

White noise ARIMA(0,0,0)

Random walk ARIMA(0,1,0) with no constant

Random walk with drift ARIMA(0,1,0) with a constant

Autoregression ARIMA(p,0,0)

Moving average ARIMA(0,0,q)

Table 2.1: Examples of special cases of ARIMAmodels from R. Hyndman and Athanasopoulos

(2018)

If the series are seasonal, with s time periods per year, then a seasonal SARIMA(p,d,q)(P ,D,Q)s
process can be written as

Φ(B)φ(Bs)(1−B)d(1−Bs)Dyt = θ(B)Θ(Bs)εt (2.14)
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where Φ,Θ denote polynomials in Bs of order P,Q, respectively.

AUTO-ARIMA

When fitting autoregressive and moving average models, the main difficulty is evaluating

the order of the process rather than estimating the coefficients. With ARIMA models, there

is an extra problem in choosing the required order of differencing. To handle these type of

issues, some formal procedures are available, such as testing for the presence of a unit root and

visual analysis of the correlogram. However, there are several alternatives to automate ARIMA

modelling, such as described in Hannan and Rissanen (1982) and Gomez and Maravall (2000).

The method chosen to be used in this work is proposed by R. Hyndman and Athanasopoulos

(2018) and will be described in the following.

The main task in automatic ARIMA forecasting is selecting an appropriate model order, that

is the values of p, d, q, P , D, q . If d and D are known, it is possible to select the orders p, q, P
and Q by an information criterion such as the AIC (R. Hyndman & Khandakar, 2008):

AIC = −2log(L) + 2(p+ q+ P+ Q+ k) (2.15)

where L is the maximized likelihood of the model fitted to the differenced data. In order to

choose d and D, the algorithm uses unit-roots tests based on a null hypothesis of no unit-root.

For non-seasonal data, an ARIMA(p, d, q) model is considered, where d is selected based on
successive KPSS unit-root tests (Kwiatkowski, Phillips, Schmidt, & Shin, 1992). That is, keep

testing the data for a unit root; if the test result is significant, it is necessary to test the differenced

data for a unit root; and so on. The stop criteria of this procedure is obtained when the first

not significant result is achieved. For seasonal data, a SARIMA(p, d, q)(P , D, Q)s model is
considered, where s is the seasonal frequency and D = 0 or D = 1 depending on an extended

Canova-Hansen test (Canova&Hansen, 1995). Then, afterD is selected, d is selected by applying
successive KPSS unit-root tests to the seasonally differenced data (if D = 1) or the original data

(if D = 0). Once d and D are selected, the procedure selects the values of p, q, P and Q by

minimizing the AIC. Figure 2.2 illustrates the algorithm.

In summary, this algorithm combines unit root tests and minimization of the AICc to obtain

the parameters of an ARIMA model. Since this procedure selects the best parameters for a

specific ARIMA model, and it is not a model itself, it will be called as Meta-ARIMA model in

this work.

This algorithm is implemented in the package “Forecast” (see R. J. Hyndman & Khandakar,

2020) from Software R (R Core Team, 2013) by a function called auto.arima.

FORECASTING WITH ARIMA MODELS

In time series forecasting, the goal is to predict h steps-ahead, yt+h, with h=1,2,..., based on
the observed data. Considering the ARIMA model described in section 2.2, that is, φ(B)(1 −
B)dyt = θ(B)εt, R. Hyndman and Athanasopoulos (2018) describe the process of generate the
predictions in three steps:
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Figure 2.2: Hyndman-Khandakar algorithm for automatic ARIMAmodelling fromR.Hyndman

and Athanasopoulos (2018)

1. Expand the ARIMA equation so that yt is on the left hand side and all other terms are on
the right;

2. Rewrite the equation by replacing t with T + h;

3. On the right hand side of the equation, replace future observations with their forecasts,

future errors with zero, and past errors with the corresponding residuals.

The process starts with h = 1 and then all the steps are repeated for the next points, h =
1, 2, .... Thus, considering ŷn(h) as the generated point forecast, the forecast error at the ith
step-ahead is given by en(i) = yn+i − ŷn(i). The criterion to compute ŷn(h) is to minimize the
mean squared error, described as

h∑
i=1

(ŷn(i)− yn+i)
2 (2.16)

Regarding the forecasting strategy, there are two possible: the direct forecasting and the

recursive forecasting. The former strategy is less efficient than the latter, which estimates only
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one model and, as the name suggests, reuses it h times. Recursive, in this case, means that there
is a feedback of each forecast as input back to the model to get the next prediction. ARIMA

models utilize recursive forecasting.

2.3 Supervised Machine Learning

Machine Learning is a field of computer science, focusing on developing algorithms that can

access data and use it to learn for themselves. In 1959, Arthur Samuel, a pioneer in the field

of computer gaming and artificial intelligence, defined Machine Learning as a “Field of study

that gives computers the ability to learn without being explicitly programmed” (Alpaydin, 2020).

Some examples of Machine Learning applications are:

• Virtual Personal Assistants, like Siri, Alexa and Google Now.

• Email Spam and Malware Filtering.

• Product Recommendations.

• Online Fraud Detection.

• Online Transportation Networks

It is possible to divide ML taks into four types of learning: supervised, semi-supervised, un-

supervised and reinforcement. This work addresses only supervised learning. In the following,

a brief explanation of this method will be described with the support of Torgo (2017). The goal

of a supervised learning algorithm is to find a model that relates a target variable with a set of

independent variables, that can be predictors or attributes. This model can be defined as an

approximation of an unknown function y = f(x1, . . . , xp) that describes the relationship be-
tween the target variable y and the independent variables x1, x2, . . . , xp. The task of supervised

learning is to obtain the model parameters that optimize a certain defined criterion, for instance,

minimize the prediction error of the model. This search is executed with the support of a sample

of observations of the problem involved, that is, it is based on a dataset that contains examples

of the learning concept to be mapped. These examples are particular instances of the variables

x1, x2, . . . , xp. Thus, if the target variable is continuous, the task will me a regression prob-

lem and if the target variable is no nominal, the task will be a classification problem. Figure 2.3

illustrates a general scheme of a supervised learning model.

Considering data containing historical records of a target variable, the problem of time series

forecasting can be formulated as a problem of supervised learning. In particular, for one-step

forecasting, the t previous values of the target variable are available, and the forecasting problem

can be represented in the form of a generic regression problem. In Figure 2.4, the estimate f̂
returns the prediction of the value of the time series at time h = t + 1 as a function of the t
previous values (Bontempi et al., 2013).

Regarding the application of ML methods to time series problems, one of the biggest chal-

lenges is that many ML algorithms cannot extrapolate patterns outside of the domain of training
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Figure 2.3: Supervised Learning Model from Nasteski (2017)

Figure 2.4: One step forecasting as supervised learning from Bontempi et al. (2013). The boxes

with z−1 represents a unit delay operator: yt−1 = z−1yt.Note that the usual notation is z
−1 = B.

data. Further, traditional models used in time series analysis have the ability to generate confi-

dence intervals. Conversely, most Machine Learning models do not present this ability since they

are not all based on statistical distributions.

Nevertheless, and as exposed above, one way to convert a time series problem into a super-
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vised learning problem is using previous time steps as input variables to predict the next time

step(s). This is the basic idea of time delay embedding technique (Takens, 1981). This method

consists of describing the state of the dynamic system that generates the observed time series

values by a set of l recently observed values. The value l is the dimension of the embedding and
it is necessary to determine it. Assuming that the time dependency among the series observations

is not larger than the embed size l, using such simple pre-processing in the data would ensure
the application of any standard modeling method, since the time dependencies among the l past
values can be modeled as relationships between the variables of the new dataset (Torgo, 2017).

In this work, to determine how many lags of the target variable should be consider as inputs

of the supervised ML models, that is, the embed size l, the autocorrelation (ACF) and partial
autocorrelation (PACF) functions were analyzed to identify the significant lags of the variable to

be forecasted.

One contribution of using machine learning models for time series forecasting is that they

allow for the inclusion of important features on the time series. In this sense, it is possible to add

valuable information to data, such as Day of the week, Weekend, Holiday, Season of year, etc.

This information could capture some critical component of the series. Therefore, it becomes

possible to gain insights into the time variables that are influential on the data.

2.4 Machine Learning applications in Time Series Forecast-

ing

Machine Learning models have been established themselves as contenders to classical statis-

tical models in the area of forecasting. This section describes the existing literature regarding the

application of ML methodologies to time series forecasting.

There are several existing works regarding the usage of neural networks for time series fore-

casting. Zhang, Patuwo, and Hu (1998a) present a survey of ANN applications in forecasting.

Zhang et al. (1998a) discuss how effective are neural networks at forecasting and prediction, an-

alyzing the performance of several studies. Zhang and Qi (2005) investigate the issue of how to

effectively model time series with both seasonal and trend patterns considering neural networks.

Zhao (2011) discusses benefits and problems regarding the use of neural networks in time series

forecasting. Moreover, several studies compare neural networks with traditional linear models

for forecasting problems, such as Sharda and Patil (1992), Swanson and White (1995) and “Ap-

proximate Nonlinear Forecasting Methods” (2006).

Ahmed et al. (2010) present a comparison study of Machine Learning models for time series

forecasting. This work aims to predict one-step ahead of the monthly M3 time series compe-

tition data, series that present a variety of applications, such as micro, industry, finance, demo-

graphic, among others (Makridakis & Hibon, 2000). The models considered are multilayer per-

ceptron, Bayesian neural networks, radial basis functions, generalized regression neural networks,

K-nearest neighbour regression, CART, Support Vector Regression and Gaussian processes. In

addition, the authors have tested different pre-processing methods on time series data and then

analyzed the performance of the applied models, such as log transformation, deseasonalization,

differencing and scaling. The authors conclude that the different Machine Learning models differ
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significantly and the results can vary depending on the features of the time series, namely: the

size of the sample and the level of the noise. Moreover, they observed that pre-processing can

have a large effect on model performance and differencing the series usually resulted in much

worse performance. Bontempi et al. (2013) present an overview of ML approaches in time series

forecasting regarding three aspects: the formalization of one-step forecasting problems as super-

vised learning tasks, the discussion of local learning techniques as a useful tool for dealing with

temporal data and the strategies for multi-step time series forecasting.

Makridakis et al. (2018) evaluate the performance of ML models over multiple forecasting

horizons using the same data as Ahmed et al. (2010), the monthly series from M3 competition.

The main goal of this article is to determine, empirically, if the performance of ML models ex-

ceeds the statistical ones and how the usage of these approaches could be exploited to improve

forecasting accuracy. After comparing the accuracy of standard ML methods with the traditional

statistical models, they found that the former are dominated over both accuracy measures used

and for all forecasting horizons examined. The models applied were the same used in Ahmed

et al. (2010) plus two additional methods: Recurrent Neural Network and the Long Short Term

Memory network. Hence, the authors point out that other studies regarding the application of

ML models to forecasting time series present a series of limitations. For instance, the methods

are evaluated for short-term forecasting horizons, often one-step-ahead, not considering medium

and long-term periods, and no benchmarks are used to compare the accuracy of ML methods

with alternative approaches. In this sense, Makridakis et al. (2018) extend the study of Ahmed et

al. (2010), including statistical methods to compare the accuracy of the ML methods, using three

different approaches for obtaining 18-step-ahead forecasts and add the analysis of a computa-

tional complexity measure to determine the computational time required by each method to fit

the model and obtain the forecasts. According to the results of their study, Machine Learning

models need to become more accurate, requiring less computer time, and be less of a black box.

The author suggests that the conclusions may be different if nonlinear components are present.

In such cases, the highly flexible of ML methods could offer a significant advantage over the

traditional statistical ones. Regarding pre-processing to apply ML models for time series data,

Makridakis et al. (2018) affirm that the literature of ML is divided with some studies claiming that

ML methods are capable of effectively modelling any type of data pattern and can, therefore,

be applied to the original data (see Zhang, Patuwo, & Hu, 1998b). However, other studies con-

cluded the opposite, claiming that without appropriate pre-processing, MLmethods may become

unstable, compromising the results (see Zhang & Qi, 2005).

Cerqueira, Torgo, and Soares (2019) compare traditional statistical methods with Machine

Learning models for time series forecasting, controlling for sample size. The models considered

are the Auto-Regressive Integrated Moving Average model (ARIMA), a seasonal random walk

forecasting benchmark (Naive2), Theta (equivalent to simple exponential smoothing with drift),

the exponential smoothing model (ETS) and an exponential smoothing state-space model with

Box-Cox transformation, ARMA errors, trend and seasonal components (Tbats). Their results

oppose Makridakis et al. (2018) conclusions, suggesting that the size of the analyzed data matters

and ML methods improve the performance as the sample size grows. The authors point out that

depending on the data size, the sample may not be representative of the process that generates the

underlying time series. They used 90 univariate time series from several domains of application
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and applied different methodologies to perform one and multi-step ahead forecasts. The pre-

processing steps were similar to those of Makridakis et al. (2018). Further, they have included

an analysis of the computational complexity of each method, evaluating the computational time

spent by a model to complete the prequential procedure applied.

Gilliland (2019) is a recent work that reflects on the results of theM4 forecasting competition,

and in particular, the impact of Machine Learning methods for time series forecasting. The

author exposes that utilizing ML models in combination with traditional statistical methods or a

hybrid model with exponential smoothing not only exceeded the benchmark but performed at

the top. Bojer and Meldgaard (2020) provide an overview of what the forecasting community

can learn from Kaggle’s forecasting competitions, identifying six recent and relevant forecasting

competitions and presenting the top-performing solutions. They reported strong performance

of gradient boosted decision trees, increasing success of neural networks for forecasting, and a

variety of techniques for adapting ML algorithms to the forecasting task.

2.5 Measures of forecasting accuracy

The accuracy of forecasts is essential in all applied fields. The more accurate are the forecasts,

the more confidence users have in the model and the forecasting process. In general, forecast er-

rors measures evaluate the quality of forecasting methods and choose the best forecasting model

in determining application. Shcherbakov et al. (2013) present a survey of forecast error met-

rics, reviewing the commonly used forecast error measurements. According to them, forecasts

measures can be divided into groups: absolute forecasting errors, measures based on percentage

errors, measures based on relative errors, scaled errors, etc.

It is possible to define a forecast error as the difference between an observed value and its

forecast. It is illustrated in equation (2.17), where the forecasted data is given by (ŷt+1, ŷt+2, . . .)
and the observed data is given by (yt+1, yt+2, . . .).

et+h = yt+h − ŷt+h|t (2.17)

There are somewell-knownmetrics usually considered, as RootMean Squared Error (RMSE),

the Mean Absolute Percentage Error (MAPE) and the Mean Absolute Scaled Error (MASE).

Root Mean Squared Error (RMSE)

The root mean squared error is a standard measure used for scale-dependent data. When

comparing forecasts of a single time series, or two distinct time series with the same scale units,

the RMSE is popular as it is easier to understand and compute. It measures the accuracy of the

prediction by averaging the square error value of each observed error. It is useful whenmeasuring

prediction errors in the same unit as the original series. The metric is defined as follows, where

ei is the forecast error.

RMSE =
√
mean(e2t ) (2.18)
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Mean Absolute Percentage Error (MAPE)

The percentage errors are the common in forecasting domain and are calculated based on the

value Pt, where Pt =
100et
yt
. The MAPE metric belongs to this group and is described as follows:

MAPE = mean(|Pt|) (2.19)

Shcherbakov et al. (2013) pointed out some disadvantages of this group of measures, such

as if the observed value is equal to the forecasted value, but with opposite sign, or both of them

are zero, then an error occurs when dividing by zero. These metrics are also affected by outliers

as in the errors aforementioned.

Mean Absolute Scaled Error (MASE)

Scale errors were proposed by R. Hyndman andKoehler (2006) as an alternative to percentage

errors to compare forecasts accuracy’s across time series with different scales units. Thus, a scaled

error is defined as follows:

qi =
et

1
n−1

∑n
i=2 |yi − yi−1|

(2.20)

Since both the numerator and denominator involve values on the scale of the original data, qi
is independent of the scale of the data. Then, the mean absolute scaled error (MASE) is defined

as

MASE = mean(|qi|). (2.21)

In this work, the Root Mean Squared Error (RMSE) is used to evaluate the models.
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Chapter 3

Forecasting models with exogenous

factors

The inclusion of additional information in forecasting models can be relevant to understand

the impact of some business actions, calendar effects or external events, such as weather infor-

mation or e.g. strikes. Such information may explain some of the observed historical variations

and then lead to more accurate forecasts. The main advantages of including exogenous factors

as explanatory variables in the forecasting model can be summarized as follows:

• to lend insights into relationships between variables;

• to allow the understanding and discussion of different scenarios.

In this chapter, the forecasting models used to considered such extra information in this work

are introduced.

3.1 Dynamic Regression Models

Classical regression models consider independent and identically distributed observations

from the variable of interest, meaning that that the errors et are uncorrelated. On the other
hand, time series are characterized by serial correlation and therefore the assumption of uncor-

related errors is not appropriate. Thus, to consider regression models for time series data it is

necessary to allow these errors to be correlated. These type of models are known as dynamic re-

gression models. In this section the main concepts regarding these model are presented following

Shumway and Stoffer (2016) and R. Hyndman and Athanasopoulos (2018).

Consider regression models of the form

yt = β0 + β1x1,t + ...+ βkxk,t + ηt (3.1)

where yt is a linear function of the k predictors variables (x1,t, ..., xk,t) and ηt represents the
correlated errors. In ordinary regression, ηt is assumed to be white noise.
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In time series data, it is convenient to assume that the error process ηt is stationary and well
modelled by an ARMA process. To illustrate that, consider a pure AR(p) error, then

φ(B)ηt = εt (3.2)

and φ(B) = 1− φ1B − . . .− φkB
p is the linear transformation that, when applied to the error

process, generates the white noise εt. Multiplying the regression equation expressed in (3.1) by
the transformation φ(B) produces

φ(B)yt =
k∑

i=1

βiφ(B)xt,i + φ(B)ηt (3.3)

which is a linear regression model where the observations have been transformed so that y∗t =
φ(B)yt is the independent variable, x

∗
t,i = φ(B)xt,i for i = 1, 2 . . . k, are the independent

variables, but the βs are the same as in the original model.
To model with ARMA errors, all variables must be stationary. Thus, any regression with an

ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables

with the same differencing operator as in the ARIMA model. Considering that the original data

presents an error term following an ARMA(p, q) process, the regression model can be written as
in (3.1), where φ(B)(1 − B)dηt = θ(B)εt. After differencing all variables y

′
t = β0 + β1x

′
1,t +

...+ βkx
′
k,t + η′t, where φ(B)ηt = θ(B)εt and y

′
t = (1− B)dyt. In particular, considering that

ηt follows an ARIMA(1,1,1) model, it is possible to write the regression model as

yt = β0 + β1x1,t + ...+ βkxk,t + ηt ⇒ (1− φ1B)(1−B)ηt = (1 + θ1B)εt (3.4)

and the parameters of the model are estimated by minimizing the sum of the squared εt errors.
Sometimes a change in xt does not effect yt instantaneously. For instance, when xt=adver-

tising and yt=sales or xt=rainfall and yt=stream flow. These are dynamic systems with input

(xt) and output (yt), and xt is often a leading indicator. The model include present and past

values of the explanatory variables xt, xt−1, xt−1, . . . and can be written as

yt = c+ ϑ0xt + ϑ1xt−1 + . . .+ ϑkxt−k + ηt (3.5)

where ηt is an ARIMA process. It is possible to rewrite the model as yt = c + (ϑ0 + ϑ1B +
. . .+ϑkB

k)xt+ ηt, so yt = c+ϑ(B)xt+ ηt. The function ϑ(B) is called the transfer function
since it describes how change in xt is transferred to yt. The value of k can be selected using the
AICc.

The auto.arima function provided in the package “Forecast” (R. J. Hyndman & Khandakar,

2020) and implemented in the Software R (R Core Team, 2013), will fit a regression model

ARIMA with errors if the argument xreg is used. It is necessary to specify the predictor variables

to include, then the function will select the best ARIMA model for those errors (to see more

details about how this function works, see section 2.2). To consider the lag of one predictor,

such information have to be included as a input variable. As with standard regression mod-

els, to obtain forecasts, it is necessary first to forecast the predictors. When the predictors are
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known in the future (e.g., calendar-associated variables such as holidays, day-of-week, etc.), this is

straightforward. When the future value of the predictors is unknown, it must either model them

separately or use assumed future values for each one of them (R. Hyndman & Athanasopoulos,

2018).

Regarding the existing applications, Bossche and Brijs (2004) discusses the impact of various

explanatory variables on traffic safety, applying a regression model with ARIMA errors (also

called dynamic regression models). The impact of variables on traffic safety is measured, and at

the same time, the influence of additional unknown factors is captured by the error term. The

results show an important effect of weather conditions, laws and regulations on traffic safety.

3.2 Supervised Machine Learning Models

This section describes the Machine Learning models used in this work: Support Vector Ma-

chine (SVM), Random Forest (RF) and ExtremeGradient Boosting (XGBoost). In the following,

a brief description of such models will be made, and some applications of these models for time

series forecasting will be presented.

Support Vector Machine

Support Vector Machine (SVM) is a well-known and very important algorithm in ML field.

SVM is a supervised type of ML algorithm in which, given a set of training examples, each ob-

servation as belonging to one of the many classes, an SVM training algorithm builds a model that

predicts the class of the new observation. SVM has the good ability to generalize the problem,

which is the goal in statistical learning (Pradhan, 2012). SVMs were developed for classification

problems and later adapted for regression problems. Forecasting time series falls under SVM

regression tasks. First the main concepts about this algorithm are introduced and then details for

SVM regression are explained based on Torgo (2017).

The main objective of SVM in a binary classification task is to find the optimal hyperplane

which linearly separates the data points in two components by maximizing the margin, that is,

the distance between the vectors and the hyperplane. In many real cases, where the data points

are not linearly separable, SVM uses a nonlinear mapping of the original data into a very high

dimensional space where the classes can be separated linearly by a hyperplane, Figure 3.1 illus-

trates this process. A relevant question concerning this algorithm, is how to choose the optimal

hyperplane since there is a potentially infinite number of hyperplanes that can separate the cases.

The goal is to ensure that the selected hyperplane leads to higher classification accuracy. Figure

3.2 illustrates an example of the SVM structure for two separating classes.

The scheme that is presented in Figure 3.2 assumes the black solid line as the optimal hy-

perplane, and the two dotted lines represent other hyperplanes passing through the nearest data

points to the optimal hyperplane. The distance between the vectors and the hyperplane is called

margin. The goal of SVM is to maximize this margin. Thus, the hyperplane with maximum mar-

gin is called the optimal hyperplane and the closest data points are defined as support vectors.

In the case of two classes, the best hyperplane is the one that maximizes the margin between the
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Figure 3.1: Mapping of the original data into a very high dimension space from Torgo (2017)

Figure 3.2: Optimal hyperplane for two classes adapted from Medjahed (2015)

points of these two classes, since it decreases the probability of confusion between the classes

and allows the classifier to be able to generalize well for new observations. To determine the

maximum margin hyperplane, SVMs use a quadratic optimization process.

It is possible to express the equation of the separating hyperplane as

w · x+ b = 0 (3.6)

where w is a vector of coefficients, x is the input vector and b is the distance to the origin.
Assuming that the points of one of the classes have Y = +1 while the others have Y = −1,
then the separating hyperplane is described as,

w · xi + b ≥ 0,∀i : yi = +1

w · xi + b ≤ 0,∀i : yi = −1
(3.7)
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Then, assuming that the separating hyperplane is in the centre of the two maximum margin

hyperplanes denoted byH1 andH2 and thatm is the distance from the maximum margin hyper-

plane to both them, the hyperplanes H1 and H2 can be represented by the following equations

w · xi + b = +m

w · xi + b = −m
(3.8)

The points in these two hyperplanes are the support vectors. It is possible to scale the vari-

ables so that m = 1. By definition, it is known that between H1 and H2 there are no instances,

then

w · xi + b ≥ +1,∀i : yi = +1

w · xi + b ≤ −1, ∀i : yi = −1
(3.9)

which can be re-written as,

yi(w · xi + b) ≥ +1, ∀i (3.10)

The goal of SVMs it to maximize the margin between the hyperplanes H1 and H2. The

problem could be resolved by minimising 1
2
||w||2, where ||w|| is the normalized difference be-

tween their constant terms. SVMs calculate the maximum margin hyperplane by solving a dual

optimization problem, that consists of maximizing the following expression,

N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyj(xi · xj), (3.11)

subject to,

N∑
i=1

λiyi = 0, λi ≥ 0, 1 ≥ i ≥ N

where λi are the Lagrangian multipliers. Further details to support the understanding behind the

SVM applied to cases of linearly separable classes are given following Burges (1998) and Torgo

(2017).

Considering the problem when cases are not linearly separable, SVMs move the data into a

higher dimension where the solution is feasible, i.e. where they can apply the same optimization

procedure. When moving the data into a higher dimension, the goal of solving equation (3.11)

in this new space will involve dot products of vectors of a much larger size than the initial data.

This issue increases significantly the computational complexity of the problem. To deal with this

drawback, there is the so-called kernel trick. A kernel function, K(·), takes as its inputs vectors
in the original space and returns the dot product of the vectors in the new extended feature

space. Hence, considering data x, z ∈ X and a mapping from the original space into a new

higher dimension space φ : X → RN then K(x, z) = φ(x) · φ(z). The “trick” in the so-called
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kernel trick is to replace the dot products in this high dimension on equation (3.11), by cheaper

kernel calculations in the original low-dimensional space. Some usual kernel functions in SVM

are Gaussian, Polynomial and Radial.

In real-world applications, it is hard to get a perfect linear separation between the classes.

Thus, SVM allows misclassifications by introducing the concept of the soft margin optimization

problem. Basically, it allows a few cases to be on the “wrong” side of the separating hyperplane,

and for each of these misclassifications, a penalty is established. Therefore, the optimization

problem can be re-defined considering the same as before, equation (3.11), with the addition of

an extra constraint stating that λi ≤ C , where C is the penalty given for each case misclassified

for the model.

SVMs were adapted to regression problems by Vapnik (1995). In this article, the author

has proposed ε-SV regression as a method that searches for an hyperplane whose distance to all
training cases is at most ε. Figure 3.3 illustrates this procedure.

Figure 3.3: SVMs for regression from Smola and Schölkopf (2004)

Following Smola and Schölkopf (2004) and Awad andKhanna (2015), it is possible to provide

a brief description of how Support Vector Regression (SVR) works. SVR uses the following error

metric

|ξ|ε =

{
0 if |ξ| ≤ ε

|ξ| − ε otherwise
(3.12)

The optimization problem for SVR is similar to classification. Therefore, for the more gen-

eral case where the model accepts misclassifications, SVR presents the following minimization

problem,

1

2
||w||2 + C

l∑
i=1

(ξ + ξ∗i ) (3.13)

subject to,
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yi − w · x− b ≤ ε+ ξi

w · x+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

As in SVM for classification, it is possible to use Lagrangian multipliers to obtain the function

that leads to the optimization problem of maximizing{
−1

2

∑N
i=1

∑N
j=1(λi − λ∗

i )(λj − λ∗
j)(xi · xj)

−ε
∑N

i=1(λi − λ∗
i ) +

∑N
j=1 yi(λi − λ∗

i )
(3.14)

Subject to, {∑N
i=1(λi − λ∗

i ) = 0

λi, λ
∗
i ∈ [0, C]

Several parameters can be considered when using SVM. In this work, two common and

useful parameters were considered. Table 3.1 summarizes these parameters and presents a brief

description of each one.

Parameter Description

Cost Cost of constraints violation. It represents the penalty as-

sociated with errors larger than epsilon.

Gamma Parameter that controls the size of the acceptable bound-

ary around the hyperplane. Increasing gamma usually in-

creases the number of support vectors.

Table 3.1: SVM Parameters

The ability of SVM to solve nonlinear regression estimation problems while not requiring

prior knowledge of the structure of the data, makes SVM successful in time series forecasting.

Sapankevych and Sankar (2009) presents a survey of time series prediction using this method.

Müller et al. (2006) also presents a case study applying SVM to forecast time series and finds

that SVM methods work particularly well if the data are sparse, i.e. few data available in a high

dimensional space. This is due to their good inherent regularization properties.

Random Forest

Tree-based methods for classification and regression tasks are presented by Breiman, Fried-

man, Stone, and Olshen (1984), and are widely applied in supervised learning problems. These

are intuitive methods, easy to read and to interpret. Classification trees are used when the target

variable is categorical, and regression trees are applied when the target variable continuous.

A tree is grown from a “root” node that contains all the observations from the initial dataset.

The instances in this node are sent to one of two descendant nodes, using a split on a single
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predictor variable. Figure 3.4 illustrates the general scheme of a decision tree. The split used by

a tree to partition a node into its two descendants is given by considering every possible split on

every predictor variable. The value given by the combination between the predictor and the split

is used to partition the node. One example of splitting criteria is the sum of squared residuals for

regression trees and entropy for classification trees, (Cutler, Cutler, & Stevens, 2009).

In general, the trees are grown until a stopping criterion is met. After this criterion is reached,

pruning back the tree is necessary to prevent over-fitting. Once a tree has been grown and pos-

sibly pruned, the non-partitioned nodes are known as leaf nodes. For regression problems, the

predicted values are obtained from the observations in a leaf node by averaging their responses.

For classification problems, the predicted values are given by calculating either category propor-

tions or the most frequent class.

Figure 3.4: General structure of a decision tree

Tree-based ensembles combine the predictions of many different trees to give an aggregated

prediction. Random Forests algorithms can be classified as one of these methods. It is a learning

method that operates by constructing multiple decision trees. The final decision is made based

on the majority of the trees and is chosen by the Random Forest. The main idea behind the

ensemble model is that a group of weak learners come together to form a strong learner. There

are two common techniques to perform ensemble decision trees: bagging and boosting. Random

Forest uses the first. It creates several subsets of data from the training sample chosen randomly

with replacement. Therefore, each subset of data is used to train a decision trees. As a result,

the algorithm ends up with an ensemble of different models, where averaging predictions from

different trees is more robust than a single decision tree. Additionally, when deciding the best test

for each node of the trees, Random Forests choose this test by only considering a random subset

of the predictors. This is another way of increasing the diversity among trees. The resulting

trees are combined by unweighted voting if the response variable is categorical (classification)

or unweighted averaging if the response variable is continuous (regression) (Cutler et al., 2012).

Figure 3.5 illustrates how RF works.

A formal definition of the algorithm is given by Breiman (2001) as the following. A Random

Forest is a classifier that consists of a collection of tree-structured classifiers {h(x,Θk), k =
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Figure 3.5: The flow chart of Random Forest adapted from Feng et al. (2018)

1, ...} where {Θk} are independent identically distributed random vectors and each tree lists a

single vote for the most popular class at input x. In his article, the author presents a strong
theoretical background for Random Forests.

Cutler et al. (2012) define a tree as ĥ(x, θj, D), with D = (x1, y1), ..., (xN , yN), where
xi = (xi,1, ..., xi,p)

T denotes the p predictors, yi denotes the response and θj denotes a particular
realization ofΘj . Each tree is fit to an independent bootstrap sample from the original data. The

randomization involved in bootstrap sampling gives one part ofΘj . Then, when splitting a node,

the best split is found over a randomly selected subset of m predictor variables instead of all p
predictors, independently at each node. The randomization used to sample the predictors gives

the remaining part of Θj . Figure 3.6 shows the pseudo-code of Random Forest algorithm.

The number of the attributes used in each node is limited to some percentage of the total

(known as the hyperparameter). As a result, the ensemble model does not rely too heavily on any

individual feature and makes fair use of all potentially predictive features. Furthermore, Random

Forest has the ability to prevent overfitting, once it adds a further element of randomness when

each tree draws a random sample from the original data set.

Based on the Strong Law of Large Numbers, the generalization error for Random Forests

converges to a limit as the number of trees in the forest becomes large. On average, the gener-

alization accuracy of Random Forest does not deteriorate when more trees are included in the

ensemble. The largest the number of trees considered, the most probable the ensemble has con-
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Figure 3.6: Random Forest algorithm from Cutler et al. (2012)

verged to its asymptotic generalization error (Breiman, 2001). Despite that, in this dissertation, a

different number of trees were tested as a parameter of this algorithm to analyze the performance

of each ensemble model generated.

Further, it is possible to enumerate some advantages of using Random Forest to solve super-

vised learning problems:

• Can handle both regression and classification;

• Can be used directly for high-dimensional problems;

• Do not require tuning of many parameters;

• Have an inbuilt method of assessing generalization error;

• Provide measures of variable importance.

Regarding the application of Random Forests for time series forecasting, Kane, Price, Scotch,

and Rabinowitz (2014) present an application of RandomForest for forecasting of avian influenza

H5N1 outbreaks and a comparison to ARIMA. The authors founded that Random Forest pro-

vides enhanced predictive ability over the ARIMA model for the prediction of infectious disease

outbreaks.
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XGBoost

XGBoost stands for eXtreme Gradient Boosting. It is an algorithm that has recently been

dominating applied Machine Learning and recognized competitions. It is an implementation

of gradient boosted decision trees designed for speed and performance. It is a decision-tree-

based ensemble ML algorithm that uses a gradient boosting framework. Different from bagging

methods, boosting learners are learned sequentially with early learners fitting simple models to

the observations and then analyzing the errors. Consecutive trees (random sample) are fit, and

at every step, the goal is to improve the accuracy from the prior tree.

Proposed by Chen and Guestrin (2016), XGBoost is a system optimized for fast parallel tree

construction and designed to be fault-tolerant under the distributed setting. The algorithm can

handle tens of millions of samples on a single node and scales beyond billions of samples with

distributed computing. To describe the main idea behind XGBoost, some essential concepts of

gradient boosting machines will be first introduced.

In Gradient Boosting Machines (or GBMs), the learning procedure consecutively fits new

models to provide a better estimate of the target variable. The main idea behind GBMs is to

build the new base-learners to be maximally correlated with the negative gradient of the loss

function, associated with the entire ensemble. In general, the user can decide what loss func-

tion to use. This flexibility makes the GBMs highly customizable to any particular data mining

task. Moreover, the gradient boosting machines algorithms were successfully applied in several

machine learning challenges, such as Johnson and Zhang (2014),Hutchinson, Liu, and Dietterich

(2011), and Bissacco, Yang, and Soatto (2007). In the following, a brief introduction to the ba-

sic methodology of the algorithm is described based on Bentéjac, Csörgő, and Martínez-Muñoz

(2020). Further details can be seen in Natekin and Knoll (2013).

Given a dataset (xi, yi)
N
i=1, where x=(x1, ..., xd) represents the explanatory variables and

y refers to the labels of the target variable, the goal of the gradient boosting is to find an ap-
proximation, F̂ (x), of the function F ∗(x) which maps instances x to their outputs values y, by
minimizing the expected value of a given loss function, L(y, F (x)). The algorithm builds an

additive approximation of F ∗(x) as a weighted sum of functions

Fm(x) = Fm−1(x) + ρmhm(x) (3.15)

where ρm is the weight ofm
th function, hm(x). These functions represent the models of the

ensemble, i.e., the decision trees. The approximation is built in an iterative form. First, a constant

approximation of F ∗ is obtained as

F0(x) = argmin
α

N∑
i=1

L(yi, α) (3.16)

Therefore, subsequent models are expected to minimize

(ρm, hm(x)) = argmin
ρ,h

N∑
i=1

L(yi, Fm−1(xi) + ρh(xi)) (3.17)
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Finding the solution for this optimization problem can be a hard task. Instead, each hm can

be considered as a greedy step in a gradient descent optimization for F ∗. With this purpose, each

model, hm, is trained on a new dataset D = (xi, rmi
)Ni=1, where the pseudo-residuals, rmi

, are

calculated by

rmi
=

[
δL(yi, F (x))

δF (x)

]
F (x)=Fm−1(x)

(3.18)

The value of ρm is then computed by solving a linear optimization problem. Friedman (2000)
states that gradient boosting algorithm can suffer from over-fitting if the iterative process is not

properly regularized. Several regularization parameters are considered to control the additive

process of gradient boosting. One natural way to regularize gradient boosting is to apply shrink-

age to reduce each gradient descent step Fm(x)=Fm−1(x) + υρmhm(x), with υ = (0, 1]. The
value of υ is usually set to 0.1 (Bentéjac et al., 2020). Further regularization can also be achieved
by limiting the complexity of the trained models. Figure 3.7 presents the general idea behind the

GBM algorithm.

Figure 3.7: Gradient Boosting algorithm from Natekin and Knoll (2013)

Regarding XGBboost, the algorithm focuses only on decision trees as base classifiers. There-

fore, the following variation of the loss function is used to control the complexity of the trees

L(φ) =
N∑
i=1

L(yi, F (xi)) +
M∑
i=1

Ω(hm) (3.19)

28



where,

Ω(h) = γT +
1

2
λ||w||2

Hence, L is the loss function that measures the quality of prediction ŷi, T is the number of

leaves of the tree, and w are the output scores of the leaves. Ω penalizes the complexity of the

model. The additional regularization term, λ, helps to smooth the final learnt weights to avoid
over-fitting. Finally, the value of γ controls the minimum loss reduction gain needed to split an

internal node.

Furthermore, XGBoost implements randomization techniques to reduce over-fitting and to

increase training speed. These techniques included in XGBoost involve random subsamples to

train individual trees and column subsampling at tree and tree node levels. The key question and

the most time-consuming part in tree learning algorithms is how to find the best split. These

algorithms usually enumerate all possible candidate splits and select the one with the highest

gain. Therefore, it requires applying a linear scan over each sorted attribute to find the best split

for each node. XGBoost focuses on reducing the computational complexity of this part since

it avoids sorting the data repeatedly in every node, using a specific compressed column-based

structure in which the data is stored pre-sorted. As a result, each attribute needs to be sorted

only once. This structure allows the algorithm to find the best split for each attribute in parallel.

Besides, instead of scanning all possible candidate splits, XGBoost implements a method based

on percentiles of the dataset where only a subset of candidate splits is tested, and their gain is

computed using aggregated statistics.

Several parameters can be considered when using XGBoost. Such parameters can be divided

in (1) general parameters, (2) booster parameters and (3) learning task parameters. For this work,

three common and useful parameters were considered. Table 3.2 summarizes these parameters

and presents a brief description of each one.

Parameter Description

Nrounds The number of rounds for boosting.

Eta Step size shrinkage used in update to prevents over-fitting. After

each boosting step, it is possible to directly get the weights of new

features, and this parameter shrinks the feature weights to make the

boosting process more conservative

Gamma Minimum loss reduction needed to make another partition on a leaf

node of the tree. The larger gamma is, the more conservative the

algorithm will be.

Max-depth Maximum depth of a tree. Increasing this parameter will make the

model more complex and more likely to overfit.

Table 3.2: XGBoost Parameters

In summary, the implementation of XGBoost offers several advanced features for model

tuning, computing environments and algorithm enhancement. It is capable of performing the
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main forms of gradient boosting, and it is robust enough to support fine tuning and addition of

regularization parameters. Nielsen (2016) highlights the advantages of using XGBoost in Kaggle

competitions.

Regarding the implementation in time series forecasting, Pan (2018) applies XGBoost algo-

rithm to predict hourly PM2.5 concentration in China, that is one of the six pollutants analyzed to

measure the Air Quality Index (AQI). The XGBoost method is compared with other MLmodels,

such as Random Forest, multiple linear regression, decision tree and support vector machines.

Although the author does not compare the results with statistical methods, they conclude that

the XGBoost algorithm outperforms other data mining methods.
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Chapter 4

Experimental study

This chapter presents the approach adopted in this work to address the issues raised in Chap-

ter 1, namely: to analyze the performance of forecastingmodels when considering exogenous fac-

tors and to compare the forecasting performance of ML models and ARIMA time series models.

Moreover, this section presents case studies and discusses the main results.

4.1 Methodology and implementation

The overall procedure developed during this work has four main steps as represented in

Figure 4.1: Preliminary analysis; Data Set creation; Model fitting; Performance analysis.

Figure 4.1: Description of the study

A short description of these steps follows.

Preliminary analysis In this step, the goal is to analyze the data and identify possible season-

alities, outliers and missing values. Furthermore, if the series present non-stationarity in variance
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hindering the use of ARIMA models, then a log transformation must be considered. Such pre-

processing is not applied to the data for ML models since the purpose is to uncover the potential

of these models for forecasting time series with complex patterns, in particular non-linear rela-

tionships between the components trend and seasonality. In addition, the autocorrelation and

partial autocorrelation functions are analyzed to determine the number of lags of the target vari-

able should be considered as inputs in the Machine Learning models.

Data sets creation In this step, two datasets are created to work with: one that contains just

the target variable and the appropriate lags and another with the additional exogenous factors

selected. The purpose is to assess the gain of considering external information in time series

forecasting problems as well analyze the performance of the ML models over Meta-ARIMA.

Fitting the models In this step, the models, Meta-ARIMA, Support Vector Regression, Ran-

dom Forest and XGBoost are fitted to the data sets. Recall that ARIMA modelling is imple-

mented via the auto.arima functionminimizing AICc criterion, procedure here designated asMeta-

ARIMA model. Regarding ML models, for ensuring a fair comparison with the Meta-ARIMA

model, a range of values, usual in the literature, was considered for eachmethod and are presented

in Table 4.1. A brief explanation of such parameters can be found in section 3.2. The parameter

combination led to twenty SVM models, three RF models and eighteen XGBoost models.The

choice of the best model for each method was carried out based on RMSE.

Model Parameter Range

SVM Cost {1:10}

SVM Gamma {0.01,0.05}

RF # of Trees {200,700,1500}

XGBoost Eta {0.1,0.3,0.5}

XGBoost Gamma {0,5,10}

XGBoost Max Tree depth {5,10}

Table 4.1: Set of parameters considered for the ML models

Performance analysis Forecasts are evaluated with RMSE since the comparison is between

approaches for the same data set. To obtain reliable estimates, a Monte Carlo experimental

procedure, described in detail in section 4.2 is adopted.

Implementation All the computations carried out during this work were performed with R (R

Core Team, 2013) and relevant packages namely: “performanceEstimation” (Torgo, 2014), “xg-

boost” (Chen et al., 2019), “e1071”, (Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2019)

and “randomForest” (Liaw & Wiener, 2018). One of the essential packages is “performanceEs-

timation” (Torgo, 2014). This package allows for estimating the predictive performance of dif-

ferent approaches in predictive tasks. In the context of this package, these approaches are called
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workflows. The package is generic and dynamic since it can estimate the values of any performance

metric, for any workflow on different predictive tasks, such as classification, regression and time

series tasks. There are several standard workflows already implemented in the package, making

easier the comparison between different well-known Machine Learning algorithms and a bunch

of predictive performance metrics for different tasks. According to Torgo (2014), the main goal

of the standard workflows implemented in the package is to receive as input a predictive task

for which training and test samples are given and to produce predictions for the given test set.

These predictions will then be used to obtain the predictive metrics chosen by the user to obtain

reliable estimates.

The “performanceEstimation” package allows considering two types of workflows: standard

and user-defined. In this work, the standard workflow was used for Random Forest and SVM

models, since these methods are configured in the package and ready for use. For XGBoost

and Meta-ARIMA models, it was necessary to develop specific workflows to guarantee that all

models are considering the same train and test in all samples. It was considered a Monte-Carlo

experiment to obtain reliable estimates of the evaluation metric. This method was implemented

by using the functionMonteCarlo on the same package. More details about this procedure will be

described in the next section.

4.2 Methods of performance estimation

The usual procedure to assess the performance of a predictive model is to compute a loss

function, e.g. RMSE, for new data set. According to Cerqueira, Torgo, and Mozetic (2019), the

most common approach for independent and identically distributed data is cross-validation. It is

a re-sampling method used for performance evaluation and to tune model parameters commonly

applied to predictive models to prevent over-fitting. In time series data, due to the dependency

among observations, it is essential to preserve the temporal order and to guarantee that a model

will never be tested on past data, with the risk of obtaining estimates that are not reliable. As a

result, standard cross-validation procedures do not apply to time series.

Berrar (2018) provides an introduction to the most common types of cross-validation and

related data re-sampling methods. Cross-validation methodology has a unique parameter k that
represents the number of equal size groups that a sample will be split into. Hence, by definition,

the procedure is often called k-fold cross-validation. As stated by the author, the data splitting
is performed by randomly sampling cases from the learning set without replacement. Moreover,

the basic idea behind this procedure is to train the model using k−1 subsets and then apply it to
the remaining subset, called the validation set so that the performance can be measured in each

iteration. This procedure is repeated until each of the k subsets has served as the validation set.
The average of the k performance measurements on the k validation sets is considered as the
performance of the model.

Although cross-validation is a widely used standard procedure in many evaluation processes,

when it comes to time series forecasting its application is not straightforward, as a consequence of

the implicit serial correlation, potential non-stationarity of the data and intrinsic order of the ob-

servations. Bergmeir, Hyndman, and Koo (2017) support that in the case of a purely autoregres-
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sive model, the use of standard k-fold CV is possible as long as the models present uncorrelated
errors. Cerqueira, Torgo, and Mozetic (2019) compare different variants of cross-validation and

out-of-sample approaches for evaluating time series forecasting models, concluding that there

are notable differences in the performance estimation under these two scenarios. The authors

argue that despite empirical experiments suggest that cross-validation approaches can be applied

to stationary time series, in real-world applications, where different sources of non-stationarity

variation are present, the most accurate estimates are produced by out-of-sample (OOS) methods

that preserve the temporal order of observations. Thus, no random re-sampling of the obser-

vations or any other procedure that may affect the time ordering of the data can be applied to

time series. However, to ensure the statistical reliability of the performance estimates, some

randomness should be included in the estimation of the performance measure.

With this objective, Torgo (2017) proposes to use aMonte-Carlo experiment to obtain reliable

estimates performance estimates from time series data. Monte-Carlo methods rely on random

sampling to obtain their results. This sampling method will be used to generate a set of R points

in the series. The procedure can be described as follows:

1. Considering a series of size n, choose the number of iterations, R and the set of R points

in the series;

2. For each randomly selected time point r chose the number of observations, i, of the series
that will be used to train the models and the subsequent t observations that will be used
to test them;

3. At the end of the R iterations, it will be R estimates for each of the evaluation metrics

considered. The final estimate is given by the average of the R estimates obtained.

Each of these estimates is obtained on a randomly selected window ofQ = i+t observations
of data, being the first i observations used for training and the remaining t observations for
testing. It will ensure that the experiments always respect the time ordering of the time series

data. Thus, repeating the process R times will ensure sufficient variability on the train+test

conditions, which increases the reliability of the estimates. Since it is necessary to ensure that for

every random point r there are i observations of data before and t observations after, some of the
data from the random selection of the R points are eliminated. Figure 4.2 shows the difference

between both estimation processes, cross-validation and the Monte-Carlo procedure.

4.3 Case studies

The data sets considered in this work are time series for which explanatory variables are

available. The three time series under analysis present a variety of characteristics such as trend,

seasonality and different sample sizes.

4.3.1 Case 1: Bike Sharing Data

As urbanization reach remarkable levels, road traffic has become a modern day issue. It

is possible to highlight some adverse effects of heavy traffic, such as air pollution, safety risks,
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Figure 4.2: (A) k-fold cross-validation and (B) Monte-Carlo estimates adapted from from Torgo

(2017)

reduction of accessibility and sustainability. Bike sharing is one alternative to this problem that has

been gaining popularity in recent years. It refers to rental schemes, by which people can pick up,

ride and drop off bicycles at diverse points across the city. The benefits of such systems include

transport flexibility, reductions to vehicle emissions, health benefits, etc. The data generated

by these systems make them attractive for general modelling analysis and research. The data

characteristics turn bike sharing schemes into a virtual sensor network that can be applied for

sensing mobility in the city. Therefore, it is expected that most of the significant events in the

city could be detected via monitoring data from these systems.

The bike sharing dataset used in this work is from UCI Machine Learning repository, and it is

public. It provides daily rental data from January/2011 toDecember/2012. In total, there are 731

days observed. The target variable is the daily number of rented bikes. For this work, 30 days will

be forecasted, considering the historical observations of the rental bikes and exogenous drivers.

Figure 4.3 represents the time series of the daily number of rented bikes from January/2011 to

December/2012.

The time series presents an overall increasing trend superimposed on an annual cycle. Short-

term cycles, possibly weekly cycles, may be present. The exogenous factors are constituted by

continuous and categorical variables, namely:

• Season: 1-winter, 2-spring, 3-summer or 4-fall;

• Holiday: indicates if the day is a holiday;

35



Figure 4.3: Bike Rentals series

• Weather: 1-Clear/Sunny, 2-Cloudy/Mist and 3-Rain/Snow/Fog;

• Weekend: indicates if the day is weekday or weekend, where 0=weekday, 1=Saturday and

2=Sunday;

• Temperature - Normalized in Celsius;

• Feeling temperature - Normalized in Celsius;

• Normalized humidity;

• Normalized wind speed

The data do not present missing values for any variable. When analyzing the continuous

features, Figure 4.4 shows that there is a strong contemporaneous correlation between the bike

rentals and the Temperature. Humidity and wind speed also present some impact on the number

of rented bikes, although they are less correlated. Figure 4.5 shows the bike rentals per day of the

week in 2011, and Figure 4.6 shows that bike rentals per day in 2012, where 1 represents Monday.

For the both periods, all weekdays seems to present a similar range of bike rentals, although in

2012 there is an increase in the level of the rentals.

Regarding the variable Season, Figure 4.7 shows that there is more demand for bike rentals

in drier seasons, such as Summer and Fall. It is possible to see that in Winter of 2012 there is

a day with almost none bike rentals. Furthermore, to understand the distribution of the data

regarding the variable Weather, Figure 4.8 presents an intuitive behaviour, showing that there are

more bike rentals when the weather is clear or sunny.
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Figure 4.4: Continuous exogenous factors for Bike Sharing data

Figure 4.5: Bike Rentals per weekday in 2011, with 1 representing Monday

Regarding the characteristics of the series, Figure 4.9 shows the autocorrelation and partial

autocorrelation functions of the bike rentals. The ACF is decreasing very slowly, indicating that

the series is non-stationary. In the PACF plot, there is a significant correlation at the first six lags

followed by correlations that are not significant. Then, the lags of the target variable up to six
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Figure 4.6: Bike Rentals per weekday in 2012, with 1 representing Monday

Figure 4.7: Bike Rentals per season

will be considered as inputs for the ML models.

Considering the size of the available data, n = 731 days, and assuming that in the businesses
field a company would use the maximum information as possible to predict the future, a training

sample of size i = 500 is considered in this work. Since the goal is to predict the next 30 days,
the test sample is fixed equals t = 30. The number of iteration in the Monte-Carlo experiment
were set to R = 100.
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Figure 4.8: Bike Rentals per season

Figure 4.9: ACF and PACF of Bike Rentals

Table 4.2 summarizes the average error obtained by the bestmodel within each class: ARIMA,

SVM, RF and XGBoost.The lowest RMSEs are highlighted in bold.
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Meta-ARIMA SVM RF XGboost

Without drivers 1201 1035 1154 1306

With drivers 1129 854 938 940

Table 4.2: Performance of the forecasting models data with and without exogenous information

- Bike Sharing data

In general, considering additional information factors leads to forecasts with small RMSE

for all the models fitted. The best accuracy is observed for the SVM model in both cases. The

Meta-ARIMA model does not show a significant improvement with the inclusion of additional

information. To illustrate the behaviour of the forecast obtained from each model, the data set

corresponding to the first iteration of the Monte-Carlo procedure was chosen, and the results

are presented in Figure 4.10. Overall, the results are in accordance with the RMSE in table 4.2

and clearly in this particular dataset the forecasts generated without the exogenous factors under

estimate the number of rented bikes.

Figure 4.10: Forecasts produced by each model for the Bike Sharing dataset. The dotted lines

represent the forecasts generated from the data without exogenous factors.

For the data without additional information, it is possible to see that the Meta-ARIMAmodel

is not able to capture the long-term series pattern. After the first two steps-ahead, the forecasts

are simply the mean. RF e XGboost models presented similar behaviours, and in general, they

can capture the general trend of the series. Note that SVM is the model that generates the closest

forecasts to the observed data. For the data considering exogenous factors, the ML models
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generate better results, and the Meta-Arima model seems to capture much better the behaviour

of the data. However, this model still generates the worst forecasts than others. Note that, the

results can vary from iteration to iteration since the series that are being forecasted change from

one iteration to the next.

The complete performance estimation results are discussed in Appendix A.1. The final ML

models considered are the ones with the lowest RMSE for eachmethod (SVM, RF andXGBoost).

4.3.2 Case 2: Sales Data

Sales forecasting is a big concern for modern business intelligence nowadays. It is an integral

part of the decision-making process in any company to help in the adjustment of the strategy to

improve sales or productivity in the coming future. Predicting sales can be considered as a time

series problem since its behaviour strongly depends on time. It is crucial to take into account

some key exogenous factors which have an impact on sales to adapt the forecast model and

improve the predictions.

Thus, data from Germany’s drug store called Rossmann was used to forecast sales. The data

are available on the website Kaggle, and it is public. Store sales are influenced by many factors,

including promotions, school and state holidays and weekends. The data do not present missing

values for any variable. For this dissertation, the goal is to predict the sales turnover for the next

30 days for a selected store.

The observed period involves two years of daily data from January/2013 to July/2015. It

represents 942 days in the total. Selected stores that are open on holidays and weekends were

chosen to analyze the seasonality presented in the data. From these stores, one of them were

randomly chosen and studied in this work. Figure 4.11 represents the sales for the selected store

in 2013, showing that there is some seasonality in the data but not a clear trend.

Figure 4.11: Rossmann Sales in 2013

There are four exogenous factors considered for this data, all of them categorical variables:

• Promo: indicates whether a store is running a promotion on that day;
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• Weekend: indicates if the day is weekday or weekend, where 0=weekday, 1=Saturday and

2=Sunday;

• State Holiday: indicates a state holiday, where a = public holiday, b = Easter holiday, c =

Christmas and 0 = None;

• School Holiday: indicates the closure of public schools.

Figure 4.12 represents the sales behaviour by weekday, showing that on Sundays (day 7), the

sales baseline is greater than the sales observed in the other days. Regarding the distribution of the

data when promotions are applied, Figure 4.13 shows that there are no promotions on weekends.

Overall, weekdays with promotions present larger sales than those without promotions. Sunday

is the day of the week with larger sales.

Figure 4.12: Rossmann Sales per weekday in 2013, where 1 represents Monday

Figure 4.14 represents the autocorrelation and partial autocorrelation functions for the series.

The plots confirm strong weekly seasonality and hint at other seasonalities in the data. Therefore,

past information about sales will be considered until lag seven as input to the Machine Learning

models.

Considering the size of the available data, n = 942 days, and assuming that in the businesses
field a company would use the maximum information as possible to predict the future, a training

sample of size i = 500 is considered. The goal is to predict the next 30 days of sales, and then, the
test sample is fixed equals t = 30. Regarding the Monte-Carlo experiment, R = 100 iterations
are performed.

Table 4.3 summarizes the average error obtained by the bestmodel within each class: ARIMA,

SVM, RF and XGBoost.The lowest RMSEs are highlighted in bold.
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Figure 4.13: Sales distribution regarding promotions events, where 1 represents ”Monday”

Figure 4.14: ACF and PACF of Rossmann Sales

In general, considering additional information factors leads to forecasts with small RMSE for

all ML models fitted. The Meta-ARIMA model presents a slight worsening that can be related to

the characteristics of the available drivers. Furthermore, all ML models have performed better

than the traditional ARIMA for both cases. To illustrate the behaviour of the forecast obtained

from each model, the data set corresponding to the first iteration of the Monte-Carlo procedure

was chosen, and the results are presented in Figure 4.15. Overall the results are in accordance
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Meta-ARIMA SVM RF XGboost

Without drivers 1536 1336 1475 1452

With drivers 1588 1035 972 975

Table 4.3: Performance of the forecasting models data with and without exogenous information

- Sales data

with the RMSE in table 4.3 and clearly in this particular dataset the forecasts generated with the

exogenous factors are closer to the observed data.

Figure 4.15: Forecasts produced by each model for the Rossmann Sales dataset. The dotted

lines represent the forecasts generated from the data without exogenous factors.

When external drivers are included in the models, theMLmethods can better map the pattern

of the data and then generate forecasts closer to the observed data. On the other hand, the

Meta-ARIMA model seems to lose the ability to detect the observed peaks when considering the

additional information.

The complete performance estimation results are discussed in Appendix A.2. The final ML

models considered are the ones with the lowest RMSE for eachmethod (SVM, RF andXGBoost).

4.3.3 Case 3: Insurance Data

Considering external predictors in a regression model can present an impact that is not always

immediate. For instance, if a store promotes some online marketing campaign during a period,
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the effect on sales can grow as the information is spread and it may not be in the next day or next

week. In these situations, it is necessary to consider the lagged effects of the predictor (more

details are given in section 3.1).

To illustrate forecasting with lagged drivers, a data set concerning the effect of TV advertising

on insurance quotations is considered. This case of study was inspired by the example provided

by R. Hyndman and Athanasopoulos (2018). The data set is from the R package “fpp2” from

R. J. Hyndman (2013), and present monthly information about insurance advertising and quota-

tions from January/2002 to April/2005. The data do not present missing values for any variable.

Figure 4.16 shows both series. It is possible to note that there is a strong correlation between

them.

Figure 4.16: Insurance quotes and TV Advertising series

Analysis of 4.17 helps to determine the lagged relationships between quotations and adver-

tising expenditure. It is clear that the strong correlations are contemporaneous, lag 0 , and with

the previous month, lag 1. Therefore, as external predictors, only the advertising in the current

month and the previous month will be considered. This result following the analysis of R. Hyn-

dman and Athanasopoulos (2018) when analyzing the ARIMA with lowest AICc.

Besides, it is necessary to choose how many lags of the target value to consider as an input of

the ML models. Considering the autocorrelation and partial autocorrelation functions at Figure

4.18, just the first lag seems to be significant. Thus, it will be used as input for the ML models.

The exogenous factors considered for this data are: (i) TV advertising expenditure in the current

month and (ii) TV advertising expenditure in the previous month.

There are just n = 40 months observed in the data. Therefore, a training set of size i = 30
was used, and the goal is to forecast the next three months, t = 3. To evaluate the performance
of the models, it was performed R = 5 simulations.

Table 4.4 summarizes the average error obtained by the bestmodel within each class: ARIMA,

SVM, RF and XGBoost. The lowest RMSEs are highlighted in bold.

In general, considering additional information factors leads to forecasts with small RMSE for

all the models fitted, being observed the best accuracy in the SVM and Meta-ARIMA models.
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Figure 4.17: Correlation between the quotations and different lags of TV Advertising

Figure 4.18: ACF and PACF of Insurance quotations

Meta-ARIMA SVM RF XGboost

Without drivers 2.65 1.98 2.76 2.22

With drivers 0.73 0.60 1.58 1.33

Table 4.4: Performance of the forecasting models data with and without exogenous information

- Insurance data

To illustrate the behaviour of the forecast obtained from each model, the data set corresponding
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to the first iteration of the Monte-Carlo procedure was chosen, and the results are presented

in Figure 4.19. Overall the results are in accordance with the RMSE in table 4.4. Although

models with exogenous factors generate better forecasts, the forecasts over-estimate the number

of insurance quotations for both cases.

Figure 4.19: Forecasts produced by each model for the Insurance quotes dataset. The dotted

lines represent the forecasts generated from the data without exogenous factors.

When external drivers are included, all the models generate forecasts closer to the observed

data. However, the models SVM and Meta-ARIMA seem to capture better the dynamics espe-

cially for the second month forecasted.

The complete performance estimation results are discussed in Appendix A.3.

4.3.4 Discussion

In general, considering exogenous factors as inputs for the forecasting methods improved the

performance of the models and achieved better forecasts. The exception is the Meta-ARIMA for

the Sales dataset. This may be due to the characteristics of the time series as well as the ARIMA

model chosen by the auto-arima function. A summary of the average RMSE obtained for each

model for all cases studied is shown in Figure 4.20.

For the Bike Sharing and Insurance datasets, the best performance was achieved by the SVM

model. However, for the latter, Meta-ARIMA model also presents a good performance as SVM.

The success of the SVM model can be associated with the ability of SVM to solve non-linear

regression estimation problems, making the model promising for time series forecasting. For
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Figure 4.20: Summary RMSE comparison for data considering or not exogenous factors

the Sales dataset, the lowest errors are achieved by Random Forest and XGBoost models. The

main difference between these data and the other two cases is that the drivers considered are all

categorical variables.
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Chapter 5

Conclusions

Generating assertive forecasts is challenging for time series data in general. The search for

models that can better capture all the particularities of the data involves several studies and the use

of alternative methods, such as supervisedMachine Learning algorithms, has become increasingly

present. However, generating forecasts that incorporate the effects of external variables on time

series while comparing statistical models and ML still seems to be little explored. Including such

factors in the forecasting models can be challenging since it may require the support of an expert

and sometimes depend on generating the forecasts for those factors. This dissertation discussed

the effect of considering exogenous factors as input variables for forecasting time series data and

compared the ARIMA model with ML approaches.

As such, in this work, two different datasets with distinct characteristic and containing ex-

ogenous variables were studied, and the performance of different models was evaluated in terms

of the RMSE metric. Thus, diverse models were fitted in the data, and the performances were

compared. The first dataset of each case contains just information about the past values of the

target variable. The second dataset includes data from the first dataset and the additional exoge-

nous factors. Furthermore, four models were applied, one traditional time series model, ARIMA,

and other three supervised Machine Learning models, Support Vector Machine, Random Forest

and XGBoost. Also, a range of parameters for the Machine Learning models was tested. The

conclusions refer to the models that present the lowest RMSE.

Overall, the results converge to a universal finding. The main conclusion drawn from this

work indicates that considering exogenous factors as inputs for the forecasting methods improve

the performance of the models and achieved better forecasts. Nevertheless, the conclusions

can vary depending on the model. In the first case studied, the prediction for the number of

bike rentals has shown an improvement in all applied models. The information regarding the

temperature seems to be significantly correlated with the rentals. Regarding the performance

of the ML models and Meta-ARIMA, the three models outperformed the former when extra

information is available, and the best performance achieved by the SVM model.

For the Sales prediction, in case two, the ARIMAmodel used to generate the forecast does not

show improvement when the external information is incorporated. In fact, it developed the worst

predictions. It can be associated with the characteristics of the additional predictors considered

in the model. For the other ML models tested, the results were positive when considering such
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factors. Regarding the added value to the business, knowing that the incorporation of these

factors generate better forecasts may lead to an improvement in the collection of data to be used

in the models. As a result, knowing the indicators allows stores to better plan sales logistics.

For the third and last case, the forecasts for the insurance quotes, also have shown a general

improvement on the results when considering advertising information as an input of the models.

The SVM model presented the best improvement and as a consequence, the best performance.

The results from the Meta-ARIMA model overcome the decision-tree based models.

Despite the results show a general improvement in the forecasts when external information

is present in the dataset, the task of choosing which variables to consider as predictors strongly

depend on expert analysis and may generate biased results. Further, it is not common to find

time series data that contain such drivers. This work shows that including exogenous factors as

predictors generates better forecasts for most of the models studied, regarding the three particular

series considered. In this sense, more research on this topic is needed to expand the results and

to encourage data owners to collect extra information when dealing with time series problems.

Moreover, considering ML approaches to this problem seems to be valuable, bringing more

precision to the forecasts.

5.1 Future Work

This work focuses on comparing the performance of different forecasting models when con-

sidering or not exogenous factors as predictors. Besides, a comparative analysis between ML

models and ARIMA for this problem is also performed. In the datasets used, the future values

for the exogenous factors in the forecast period were known from the beginning. However, in

practice, after mapping the relationship between the response variable and this information, it

may be necessary to forecast or make some assumption for these factors when generating the

forecasts. For instance, when using temperature as a predictor in a forecasting model, it can be

necessary to forecast values of this variable or to assume some average from past values to make

the forecasts. Also, the procedure of feature engineering could add value to the interpretation

of the models and allow the optimization of the selected external variables. Besides, this work

focuses on generating and analysing long-term forecasts, not one-step-ahead. In this sense, a

study that replicates the analysis done by including the comparison of different terms would be

interesting. Then, three aspects that could be exploited in future research are:

• To extend this work by analyzing the performance of the models when the exogenous

factors are unknown for the forecasted period. Therefore, compare the results with data

that not contain such factors. The proposal is to analyze if, when an extra task is added to

the models, similar results are achieved.

• To perform different methods of feature engineering and see if it generates more accurate

forecasts and give more precisely business insights.

• To replicate the analysis done in this work by comparing long-term and short-term fore-

casts.

50



Furthermore, it would be interesting to create a framework indicating which factors could be

valued depending on the applied field. It could lead to a more assertive data collection.
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Appendix

A Monte-Carlo performance estimation results

A.1 Bike Sharing data

The Monte-Carlo performance estimation results for the data without exogenous factors are

shown in Figure A.1. Figure A.2 represents these results for data with the additional information.

The results show that, for data without external information, the performance of SVM seems

to be consistency regarding the choice of parameters, being the model with best performance.

However, SVM results are more sensitive to the parameters tested when exogenous factors are

included. However, for the right choice of parameters SVM presents the smallest RMSE vari-

ability across samples. The final ML models considered are the ones with the lowest RMSE for

each method (SVM, RF and XGBoost).

Figure A.1: Results from the Monte-Carlo procedure for the Bike Sharing series considering

data without exogenous factors

i



Figure A.2: Results from the Monte-Carlo procedure for the Bike Sharing series considering

data with exogenous factors

A.2 Sales data

The Monte-Carlo performance estimation results for the data without exogenous factors are

shown in Figure A.3. Figure A.4 shows these results for data with the additional information.

The results show that the performance of SVM is sensitive to the choice of parameters for the

both cases studied and RF e XGboost present similar results, being RF the model with smallest

RMSE variability across samples. The final ML models considered are the ones with the lowest

RMSE for each method (SVM, RF and XGBoost).

A.3 Insurance data

The Monte-Carlo performance estimation results for the data without exogenous factors are

shown in Figure A.5. Figure A.6 show these results for data with the additional information.

Note that, the series is too short and just five iterations were performed, so the analysis can not

be conclusive. The final ML models considered are the ones with the lowest RMSE for each

method (SVM, RF and XGBoost).
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Figure A.3: Results from the Monte-Carlo procedure for the Rossmann Sales series considering

data without exogenous factors

Figure A.4: Results from the Monte-Carlo procedure for the Rossmann Sales series considering

data with exogenous factors
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Figure A.5: Results from the Monte-Carlo procedure for the Insurance quotations series con-

sidering data without exogenous factors

Figure A.6: Results from the Monte-Carlo procedure for the Insurance quotations series con-

sidering data with exogenous factors
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