
D
Online range-based

SLAM and active vision

for robotic systems
Rômulo Teixeira Rodrigues
Programa Doutoral em Matemática Aplicada
Departamento de Matemática

2022

Orientador
António Pedro Aguiar, Professor Catedrático,

Faculdade de Engenharia, Universidade do Porto

Coorientador
António Pascoal, Professor Associado,

Instituto Superior Técnico, Universidade de Lisboa

UNIVERSIDADE DO PORTO

DOCTORAL THESIS

Online range-based SLAM and active vision
for robotic systems

Author:

Rômulo T. RODRIGUES

Supervisor:

A. Pedro AGUIAR

Co-supervisor:

António PASCOAL

A thesis submitted in fulfilment of the requirements

for the degree of PhD in Applied Mathematics

at the

Faculdade de Ciências da Universidade do Porto

Departamento de Matemática

May 19, 2022

mailto:up200904039@up.pt
mailto:pedro.aguar@fe.up.pt
mailto:antonio@isr.tecnico.ulisboa.pt

Acknowledgements

I would like to express my deepest appreciation to my supervisors Prof. A. Pedro

Aguiar and Prof. António Pascoal for guiding me through this enriching experience.

The insightful discussions and advice will follow me in my professional career.

I am also grateful to Dr. Pedro Miraldo and Prof. Dimos V. Dimarogonas for receiv-

ing me at KTH and the innumerous discussions regarding the active vision problem.

I also had great pleasure of working with Dr. Nikolaos Tsiogkas (KU Leuven) in the

SLAM problem and Pedro Roque (KTH) and Dr. André Mateus (ISR) in the depth

estimation experiments.

Thanks should also go to all the SYSTEC Team, in particular to Paulo Lopes, which

has always backed me up in administrative matters. I also wish to thank Doctoral

program PDMA-NORTE-08-5369-FSE-000061 for financially supporting this work.

I also would like to thank my C2SR colleagues and friends for their companionship

in all these years and the ones yet to come.

Last but not least I am extremely grateful for my family (on both sides of the At-

lantic) whose unconditional love and support was paramount to my daily well-

being.

UNIVERSIDADE DO PORTO

Abstract
Faculdade de Ciências da Universidade do Porto

Departamento de Matemática

PhD in Applied Mathematics

Online range-based SLAM and active vision for robotic systems

by Rômulo T. RODRIGUES

Online Simultaneous Localization and Mapping (SLAM) addresses the problem of

concurrently building a map of the environment and estimating the current pose of the

robot within this map. The standard solution for online SLAM represents the world in

a discrete map known as occupancy-grid. However, in addition to not scaling well for

large environments, this approach also suffers from accuracy loss due to cell/obstacle

misalignment. The first part of this thesis aims at improving online SLAM by represent-

ing the world in a continuous manner, using B-splines. Two efficient SLAM techniques

that tackle the aforementioned limitations of occupancy-grid maps are presented, namely

B-spline curve SLAM and B-spline surface SLAM. The former describes the map in a com-

pact manner, fitting well in long-term autonomous operations where storage is a concern.

The latter keeps the same advantages as occupancy-grid approaches, while improving

the map consistency by avoiding measurement discretization. Simulations, public data

set evaluations and experiments with a real-life robot show that B-spline Surface SLAM

outperforms online SLAM methods in the literature, and performs similarly as methods

relying on offline optimizations.

The second part of this thesis focuses on depth estimation for single camera systems,

aiming at actively controlling the camera to improve the depth estimation with formal

guarantees of convergence. Current techniques providing theoretical guarantees require

the actuation to be such that a projected point appears in the origin of the image plane.

This does not scale well in multiple point scenarios, as this restriction can only be met for

one point at a time. This thesis proposes actuation policies that manage to improve depth

estimation relaxing this requirement. Results on the visual servoing problem show that

adding an active convergence phase increases the chance of success.

mailto:up200904039@up.pt

UNIVERSIDADE DO PORTO

Resumo
Faculdade de Ciências da Universidade do Porto

Departamento de Matemática

Programa Doutoral em Matemática Aplicada

SLAM online e visão ativa para sistemas robóticos

por Rômulo T. RODRIGUES

Localização e Mapeamento Simultâneos (SLAM) online aborda a estimação de um

mapa do ambiente, bem como a posiçãp e orientação do robô, em simultâneo. Soluções

convencionais representam o mundo através de um mapa discreto. No entanto, além de

não escalarem bem para ambientes de grandes dimensões, estas soluções sofrem de im-

precisões, devido a desalinhamentos entre as células do mapa discreto e os obstáculos

no mundo real. A primeira parte desta tese tem como objectivo melhorar os métodos de

SLAM online, explorando mapas contı́nuos com curvas B-spline. A fim de evitar os pro-

blemas mencionados dos métodos atuais, são propostas duas técnicas eficientes, nomea-

damente SLAM de curvas B-spline e SLAM de superfı́cies B-spline. A primeira descreve o

mapa de forma compacta, adequando-se a operações de longa duração com memória de

armazenamento limitada. A segunda técnica, comparada com métodos discretos, permite

obter um mapa mais consistente, ao evitar discretizar as medidas do sensor. Simulação,

dados públicos e experiências com um robô demonstram que o método proposto de

SLAM de superfı́cies B-spline atinge uma precisão superior à de outros métodos online

na literatura, e apresenta um desempenho semelhante ao de métodos offline.

A segunda parte desta tese explora a estimação de profundidade para sistemas visuais

mono-câmara. O objetivo consiste em controlar a câmara ativamente de forma a melhorar

a estimação, com garantias de convergência. Técnicas convergentes atuais exigem que a

atuação seja tal que um ponto observado seja projetado na origem do plano da imagem.

Estes métodos não se adequam a casos com múltiplos pontos, pois esta condição pode ser

aplicada a apenas um ponto de cada vez. Nesta tese são propostas regras de controlo que

permitem relaxar essa restrição. Resultados demonstram que o problema de servovisão é

beneficiado ao acrescentar uma fase activa de convergência.

mailto:up200904039@up.pt

Contents

Acknowledgements iii

Abstract v

Resumo vii

Contents ix

List of Figures xi

List of Tables xiii

Symbols xv

Glossary xix

1 Introduction 1
1.1 Motivation . 1
1.2 Research Problem: SLAM . 4
1.3 Research Problem: 3D Depth Estimation . 8
1.4 Contributions and Publications . 11
1.5 Structure . 14

2 Mathematical Background 17
2.1 Basic notations and definitions . 17
2.2 Estimators . 23

3 Robotics Systems 27
3.1 Plaftorm model . 27
3.2 Camera model . 29
3.3 Navigation filter . 31
3.4 Platform and hardware . 34
3.5 Software . 37

4 B-splines 41
4.1 B-spline theory . 41
4.2 B-spline sparse library . 46

ix

x ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

I Range-based SLAM 57

5 A Review on Simultaneous Localization and Mapping 59
5.1 Formulation . 59
5.2 Mapping . 61
5.3 SLAM . 65
5.4 Datasets and metrics . 75
5.5 SLAM Limitations . 78

6 B-spline Curve SLAM 81
6.1 Introduction . 81
6.2 Pre-processing . 83
6.3 B-spline Curve Mapping . 85
6.4 B-spline Curve SLAM . 92
6.5 Results . 93

7 B-spline Surface SLAM 97
7.1 Introduction . 97
7.2 Pre-processing . 99
7.3 B-spline Surface Mapping . 101
7.4 B-Spline Surface Localization . 107
7.5 Results . 110

II 3D Depth Estimation 121

8 Active Depth Estimation: Theory 123
8.1 Depth Estimation . 123
8.2 Geometric Methods . 125
8.3 Incremental Depth Estimation . 127
8.4 Convergence of the Estimator . 130

9 Active Depth Estimation: Applications 137
9.1 Single Point Applications . 137
9.2 Multiple Points Applications . 144
9.3 Experiments . 149

10 Conclusions and Future Work 159
10.1 Range-based SLAM . 159
10.2 3D Depth Estimation . 161

A Optimal solution for Problem 9.1 163

Bibliography 167

List of Figures

1.1 The perception, planning, and control architecture. 2
1.2 Vacuum cleaners: dead-reckoning vs SLAM based navigation. 3
1.3 Discrete grid maps: cell/measurement misalignment problem. 6
1.4 B-spline curve and surface maps. 8

2.1 Coordination frames and relative poses . 20

3.1 Map and body-fixed coordinate frames. 28
3.2 Pinhole and thin lens camera models . 29
3.3 Central and general projection models . 30
3.4 Navigation filter . 32
3.5 Turtlbot3 Burger by ROBOTIS. 34
3.6 LDS-01 range sensor precision experiments. 36
3.7 LDS-01 range sensor standard deviation. 37
3.8 V-REP and Gazebo simulators. 39

4.1 B-spline local support property. 42
4.2 Cubic B-spline functions. 43
4.3 Evaluating a cubic B-spline function (uniform knot interval). 47
4.4 Normalizing B-spline parametric variable. 48
4.5 Computational performance of proposed B-spline library. 52
4.6 B-spline processing time: localization alike task. 53
4.7 B-spline surface processing time: increasing number of control points. . . . 54

5.1 Graphical model of the SLAM problem . 60
5.2 Metric maps: landmark, discrete grid, and continuous maps. 62
5.3 Landmark based EKF-SLAM . 66
5.4 NLS occupancy-grid based SLAM . 72
5.5 Line-based scan matching . 74
5.6 RADISH and TU-Darmstadt SLAM datasets 77

6.1 B-spline curve SLAM workflow . 82
6.2 Point-cloud segmentation for clustering geometric features 85
6.3 Two overlapping B-splines curves that describe the same geometric feature. 88
6.4 Segmented point cloud to B-spline curve map 91
6.5 Quantitative evaluation of B-spline curve mapping 94
6.6 Scenarios for quantitative analysis of B-spline curve SLAM 94
6.7 B-spline curve SLAM estimation error, scenario #01 95

xi

xii ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

6.8 B-spline curve SLAM estimation error, scenario #02 95

7.1 Classical occupancy-grid map vs B-spline surface SLAM 98
7.2 Pipeline of the B-spline surface SLAM algorithm 99
7.3 Free and occupied space from a range sensor 100
7.4 Visual representation of a B-spline surface map 103
7.5 Mapping result for an artificially generated square room using 112
7.6 Mapping error in a room-alike scenario . 112
7.7 Mapping result for an artificially generated circular room 113
7.8 Statistical analysis using noisy sensor data in a circular room 113
7.9 Experimental results using turtlebot/LiDAR setup in the corridors of FEUP 114
7.10 B-spline SLAM map for TU Darmstadt dataset 116
7.11 B-spline surface SLAM output using the Radish dataset 118

8.1 Single camera depth estimation problem . 124
8.2 Linear triangulation for 2-view . 125

9.1 Visualization of the constraint Jl(si)w ≤ 0 147
9.2 Visualization of the relaxation of constraint Jl(si)w ≤ 0 148
9.3 Evaluation of critically damped system. 149
9.4 Comparison for the depth estimation of a single point 151
9.5 Evaluation of the depth estimation for non-constant depth 152
9.6 Depth estimation for a point that describes a circular trajectory in the image

plane . 152
9.7 Coupled depth estimation and visual servoing for multiple points 155
9.8 A 4-point scenario for the multiple depth estimation and visual servoing

problem . 156
9.9 Multiple points depth estimation: trajectory of the points in the image frame 157

A.1 Geometric visualization of the problem in (A.1) in R2 164

List of Tables

3.1 LDS-01 range sensor specifications . 35

4.1 Processing time to query a B-spline curve and surface. 52
4.2 Processing time to query derivative of B-spline curve and surface. 53

6.1 Control point updating scheme for merging curves 90

7.1 Running-time for building the maps shown in Fig 7.9 114
7.2 Main features of compared methods. 117
7.3 B-spline surface SLAM quantitative comparison using RADISH dataset . . 119

xiii

List of Algorithms

1 Computing B-spline coefficients . 49

2 Computing B-spline tensor coefficients . 50

3 Landmark based EKF SLAM . 65

4 Discrete occupancy-grid SLAM . 70

5 Point cloud segmentation . 84

6 Map building algorithm . 91

7 B-spline surface map algorithm. 105

8 B-spline SLAM algorithm . 110

9 Optimal solution for problem (A.1). 165

xv

Symbols

{M} Map (inertial) frame

{B} Body-fixed frame

{C} Camera-fixed frame

p ∈ R2 Position of the vehicle in {M} m

ψ ∈ R Orientation of the vehicle in {M} rad

ξ ∈ R3 Pose of the vehicle {M} m, rad

u = [vx, vy, wz] ∈ R3 Control input of the vehicle (velocity) m/s, rad/s

v = [vx, vy, vz] ∈ R3 Linear velocity of the camera m/s

w = [wx, wy, wz] ∈ R3 Angular velocity of the camera rad/s

bd B-spline function of degree d

ϕ B-spline tensor

c control points

f focal length of the camera

u0, v0 camera optical center

ρu, ρv pixel scaling factor

xvii

Glossary

SLAM Simultaneous Localization and Mapping

GPS Global Positioning System

IMU Inertial Measurement Unit

2D two-dimensional

3D three-dimensional

LiDAR Light Detection and Ranging

TSDF Truncated Signed Distance Function

EKF Extended Kalman Filter

IDC Iterative Dual Correspondence

PF Particle Filter

RBPF Rao-Blackwellized Particle Filtering

SfM Structure from Motion

NLS Nonlinear Least Squares

ADNN Average Distance to the Nearest Neighbor

w.r.t. with respect to

xix

Chapter 1

Introduction

This chapter provides a brief overview of this thesis: the importance of the research topic,

the considered open challenge, the investigated hypotheses, and the accomplishments.

Section 1.1 motivates the research towards autonomous mobile robots and perception.

Sections 1.2 and 1.3 provide a short introduction to the perception problem known as

Simultaneous localization and Mapping (SLAM) and 3D depth estimation, respectively.

Section 1.4 presents the contributions and publications developed throughout this thesis.

Finally, Section 1.5 addresses the structure of the remainder of this document.

1.1 Motivation

The robotics market has two major segments: industrial robots and autonomous mobile

robots. Industrial robots are fast, reliable, and accurate. They come in different config-

urations, e.g., articulated and cartesian, being well suited for different industrial tasks

such as welding and assembling. Driven by the high demands of production lines all

over the world, industrial robots have been dominating the largest portion of the robotics

market share for the last decades. However, a change is likely to take place soon. The

technological advisory company ABI Research forecasts that the number of shipments of

autonomous mobile robots will increase from less than half million in 2020 to about 6 mil-

lion in 2030 [1]. According to the same report, these shipments represent a revenue of 202

billion euros for the autonomous mobile robot sector, compared to 35 billion euros for the

industrial robot segment. So what exactly is an autonomous mobile robot?

1

2 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 1.1: The main components in the perception, planning, and control architecture.
The workflow is from the left (sensors) to the right (actuators).

Autonomous mobile robots

Autonomous mobile robots, also known as autonomous vehicles or sensor-controlled

robots, are robotics systems capable of travelling through the environment to achieve a

specific goal in an automated or semi-automated manner. Some impactful industrial and

civilian applications for autonomous vehicles include logistics in warehouses, inspec-

tion of plantation fields, and disinfection of hospitals. Autonomous mobile robots are

equipped with on-board sensors, processing power, and actuators. These hardware com-

ponents may vary in nature and quality and have to be chosen accordingly to the desired

application and budget. Regarding the software architecture, the basic functionalities of

sensor-controlled robots are typically split into three modules: perception, planning, and

control [2]. This software architecture is illustrated in Fig. 1.1, with the information flow

going from the top left (sensors) to the top right (actuators)

Sensors provide observations of the robot and environment. On the other end, actua-

tors provide means to interact with the world. The perception block, also known as state

estimation, processes the sensory data for building a meaningful estimation of the state

of the world and the robot. The planning task deliberates the sequence of actions that

the vehicle has to follow to achieve a spatial goal, e.g., a list of waypoints, a path, or a

trajectory. The control task ensures that the vehicle follows the motion planning sequence

by computing the actuation inputs, e.g., velocity, acceleration or torques. The perception

block provides feedback for both planning and control modules. For this reason, a poor

perception typically compromises the performance of the remaining tasks. Before diving

deeper into state estimation, which is the focus of this thesis, the interplay between these

three blocks is analyzed for a well-known application: robotic vacuum cleaners.

1. INTRODUCTION 3

FIGURE 1.2: Comparing vacuum cleaner robots in the same environment: (a) shows
the trajectory of a robot that does not build a model of the environment. (b) shows the

trajectory of a robot that builds a map using an on-board range sensor. Source: [3]

Domestic robots

The first generation of vacuum cleaner robots is equipped with a limited and primitive

set of sensors such as collision and cliff detectors. The perception task reasons whether

the robot has collided with an obstacle or it is close to a staircase. The planning and con-

trol are basic: the robot either moves forward or turns in a different direction if moving

forward is not a safe or possible option. This leads to poor coverage, since the robot is not

able to acknowledge whether it has previously visited a region or not. More modern (and

expensive) vacuum cleaner robots are equipped with range and image sensors. Using the

data collected by these sensors, modern perception algorithms are able to build a map of

the surrounding environment and localise the robot within the map. Therefore, it is possi-

ble to plan an optimal coverage trajectory using for example a lawnmower pattern. More

sophisticated behaviours, such as evading obstacles, docking for automatically recharg-

ing, and deliberately avoid certain regions, are also possible. An experiment comparing

the performance of different vacuum cleaner robots in an industry-standard testing room

is presented in [3]. Figure 1.2a illustrates the trajectory of a robot without a range sensor,

while Fig. 1.2b shows the trajectory of a robot equipped with a LiDAR range sensor. The

former robot takes more than an hour to clean the room, while the latter required less than

25 minutes. Building and using a map of the environment not only boosts the coverage

performance, but also reduces the consumed time and energy.

The perception of most robots equipped with a range sensor - including the one exem-

plified here - is based on a technique known as range-based SLAM and it is the first focus

4 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

of this thesis. The second focus of this thesis, 3D depth estimation, aims at recovering the

3D structure of the environment and it is paramount for vision-based robots.

1.2 Research Problem: SLAM

Simultaneous localization and Mapping, or simply SLAM, is a state estimation technique

for concurrently estimating the pose of a mobile sensor (localization task) and building a

model of its surrounding environment (mapping task). SLAM has been widely adopted

for deploying sensor-controlled robots in scenarios where an external referencing system

works poorly or is not available at all. For example, global positioning systems (GPS) do

not work well in indoor environments like factories, hospitals, and houses.

The challenge in SLAM arises from the fact that localization and mapping are tightly

coupled. The pose of the robot is estimated using the map. In turn, the map is built

using the estimated pose of the robot. As a consequence, if either localization or mapping

degrades, the other also quickly deteriorates. Since SLAM provides feedback to a number

of tasks, including planning and control, a poor SLAM solution may lead to undesired

behaviour, such as mission failure or equipment damage.

The SLAM problem has received considerable attention over the last decades, leading

to theoretical and computational breakthroughs. Different techniques using a variety of

sensors, such as sonars, LiDARs, and cameras, have been developed for ground [4, 5],

aerial [6], and marine vehicles [7]. Robustness has been achieved by relying on a two-

stage architecture, namely the front-end and the back-end stages [8]. The front-end stage,

also known as online SLAM, is responsible for processing the raw sensor data and provid-

ing state estimation at least as fast as the sensor rate. Then, at lower rates, the back-end

optimizes the overall state estimation using graph-based optimization techniques. The

graph to be optimized at the back-end stage is fed with the pose estimated at the front-

end stage. Sources such as wheel encoders and Inertial Measurements Units (IMU) poten-

tially enrich the graph informativeness, leading to better results. An important difference

between the two stages is that the back-end works offline. Thus, it may improve past

estimations using smoothing and backward estimation techniques. However, it does not

deliver real-time feedback, which is important for tasks such as motion control.

The work by Cadena and colleagues [8] presents a solid overview of the SLAM prob-

lem, covering both past and recent strategies. In particular, they discuss several SLAM

1. INTRODUCTION 5

challenges which are yet to be solved, such as long-term autonomy (scalability and robust-

ness), metric maps, semantic maps, active SLAM, theoretical tools, sensors, and machine

learning. The reader is referred to the aforementioned work for an introductory discus-

sion on each of these open challenges. This thesis targets the issues related to metric map

models. Before diving deeper into this problem, the scope of the work is delimited.

Scope

The first focus of this thesis is to propose alternative metric mapping strategies that are

well-suited for the front-end stage of a range-based SLAM. In other words, the proposed

methods aim at overcoming the problems faced by current map models within the context

of SLAM. The output of the methods presented here can be used to build a graph which

is fed into a back-end approach such as [9]. However, back-end optimization is not within

the scope of this work.

Open challenge: metric maps

The IEEE Standard for robot data representation [10] classifies 2D maps in two major

categories: topological and metric. Topological maps are often represented by edges and

nodes of a graph that describe a connectivity relationship. A metric map encodes the

geometry of the environment as perceived by the sensors and can be further categorised

into three groups: feature-based, geometric, and discrete maps. The current predominant

paradigm in SLAM belongs to the latter group and is known as discrete occupancy grid

map, shortened here as discrete grid map or occupancy grid map. An occupancy grid map

splits the world into cells of the same size. Each cell covers a region of the environment

and its value denotes the probability of that region being occupied. Figure 1.3 shows

the grayscale image representation of two occupancy grid maps. The darker a pixel is, the

more likely it is to correspond to occupied space. Loosely speaking, black pixels represent

obstacles, white pixels free area, and grey pixels unexplored (or inaccessible) regions for

which it is equally likely to be free or occupied area.

The occupancy grid map was first proposed by Moravec and Elfes [11] in the late

1980’s for robot navigation using sonar data. However, it was only in the last decade that

occupancy grid maps have become widely adopted by the SLAM community. GMap-

ping [4], Hector-SLAM [5], and Google Cartographer [12] are examples of popular SLAM

strategies that have occupancy grid maps at their front-end stage. The main advantage of

6 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 1.3: Discrete occupancy grid maps: (a) shows the model for an empty room and
(b) illustrates the same room populated with obstacles. The darker a cell is, the more
likely it is to correspond to occupied space. The green arrow represents the robot and the

red dots represent valid scan measurements.

discrete grid maps is the efficiency in updating and evaluating the occupancy values of

the cells. Both tasks are important for building a map and localising the robot within it.

Despite its acceptance, occupancy grid-based SLAM has two major drawbacks:

1. Memory consumption: A considerable amount of memory is wasted in represent-

ing sparse environments and non-visible areas.

2. Discrete resolution: Even though measurements have a high resolution, localiza-

tion accuracy is limited by the discrete (lower resolution) nature of the map.

The memory consumption problem is tightly linked to the scalability issue raised in

[8]. In order to take advantage of modern range sensors, occupancy grid maps can have

high resolution. The resolution of a cell-based map increases as the size of its cells de-

creases. However, since the occupancy grid map divides the world into equally-sized

cells, large areas without meaningful information still consume a considerable amount of

storage memory. Thus, discrete grid maps do not scale well for large environments. This

is shown in Fig. 1.3a, which represents an empty room. Figure 1.3b illustrates the same

room populated with obstacles. Both maps require the same amount of memory despite

having a different amount of obstacles. Furthermore, note that areas outside the room

and in the interior of obstacles also need to be represented, consuming storage memory.

The second problem concerns the discrete nature of the map. Range sensors provide

high resolution measurements, which are discretized into cell resolution. This leads to

approximation errors due to misalignment between a measurement and its correspond-

ing cell in the map. For example, in Fig. 1.3, the discrepancy between an obstacle as

registered in the map (black pixels) and the actual sensor measurements (red dots) is

particularly large for the bottom left wall of the room. The difference between the map

1. INTRODUCTION 7

in memory and the measurements becomes critical when performing localization. This

is because the standard localization technique consists in computing the pose that best

aligns the scan measurements and the map (scan-to-map alignment). An interesting as-

pect which is further explained in Chapter 4 is that scan-to-map alignment is typically

done via gradient-descent methods. However, the limited precision of discrete maps hin-

ders the computation of derivatives (gradients). A work-around is to obtain a continuous

map with sub-cell resolution by interpolating the discrete grid map, e.g., bi-linear inter-

polation [5] or bi-cubic interpolation [12].

Hypotheses

In terms of accuracy, the performance of discrete grid SLAM could be improved in the

front-end by increasing cell resolution. However, in practice this is only possible up to an

extent due to limited on-board memory. Therefore, most recent research efforts have been

drifting either towards alternatives for metric maps or towards back-end optimizations,

such as robust loop-closure detection.

The hypothesis considered here is that it is possible to improve the performance of

SLAM at the front-end stage by using a map that effectively aligns with the high reso-

lution nature of sensor measurements. The hypothesis claims that the two-step process

performed in classic occupancy grid SLAM - discretization followed by interpolation -

may gradually lead to information loss and SLAM deterioration. For this reason, spe-

cial attention is given to continuous functions which may have the potential to be viable

alternatives for discrete grid maps. In particular, we investigate the use of B-spline func-

tions. We believe that SLAM may take advantage of the inherent properties of B-spline

functions for enhancing the estimation of the map of the environment and the pose of the

robot. For this purpose, tailored suited tools for mapping and localization using B-spline

have to be developed.

The first strategy, presented in Chapter 5, explores B-spline curves (see Fig 1.4a). B-

spline curves are compact in terms of memory, yet are able to represent a rich variety of

geometric shapes. Therefore, this approach tackles the memory consumption problem

and avoids discretization.

The second strategy, presented in Chapter 6, resorts to B-spline surfaces (see Fig 1.4b).

A B-spline surface requires a grid of control points, but no discretization is evolved in the

process. Consequently, the surface is able to store with high precision the coordinates in

8 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 1.4: B-spline: (a) illustrates a 2D B-spline curve and (b) shows the 3D view of a B-
spline surface. The control points, shown in red dots, play an important role in defining

the shape of both the B-spline curve and surface.

which a measurement is observed. Therefore, B-spline surface maps have the potential to

tackle the discrete resolution problem of discrete grid maps. In theory, it does not offer an

improvement in terms of memory consumption.

1.3 Research Problem: 3D Depth Estimation

For vision controlled robots recovering the 3D structure of the scene is key for accom-

plishing tasks such as visual servoing and visual SLAM. The recovering process is re-

quired because projecting objects in the 2D image plane of a camera leads to an unknown

scale, called here as depth. The problem has been investigated in the last decades by the

computer vision and the robotics community, and well-established solutions are currently

available. For instance, triangulation is the gold standard for objects registered with a cal-

ibrated stereo pair, i.e., two calibrated cameras for which the relative pose (baseline) of

one camera with respect to the other is known, [13]. However, for monocular systems the

problem is not trivial and additional information about the environment is required. Ac-

cording to the additional information exploited, strategies for recovering the 3D structure

can be broadly classified into two categories: model-based and model-free.

Model-based approaches rely on some previous knowledge about the geometry (or se-

mantics) of the scene, such as the dimensions of the object being observed or its 3D model,

e.g., [14]. On the other hand, model-free methods do not require previous knowledge of

the scene. Instead, they make use of multiple view-points with significant overlapping

area and the relation between these frames. This is the case for a robotic system with an

onboard camera, where the relation between two or more camera frames can be obtained

from proprioceptive sensors, such as IMU and wheel/joint encoders, or extereoceptive

sensors, such as GPS and LiDAR. The relation between frames can be described by 1)

1. INTRODUCTION 9

the relative pose (translation and orientation) between them or 2) the dynamics of the

camera to move from one view-point to the other. Model-free strategies that rely on the

relative pose between frames are called geometric methods, while the ones that explored

the dynamics of the camera are named incremental or filtering methods.

Geometric methods are correlated with the research problem known as structure-from-

motion (SfM). The term SfM has its roots in the computer vision community (see [15]), in

particular in the field of photogrammetry that studies physical properties of the environ-

ment based on images. In general, these methods have two stages. In the first stage, the

goal is to estimate the depth of the 3D points from an ordered or unordered sequence of

image frames for which the relative pose is know - otherwise the structure of the scene

can only be recovered up to an unknown scale. This is achieved via n-view triangulation

using linear least-squares or direct linear transform (DLT) [16]. The second stage strives

for map consistency via offline batch optimization techniques, e.g., bundle adjustment

[17]. The goal is to minimize the re-projection error, i.e., the error between the actual

measurements and the expected feature positions obtained by projecting the estimated

3D points back in the image plane (see [13] for more detail). This is typically formu-

lated as an optimization problem and solved using non-linear least square solvers such

as Levenberg–Marquardt. Offline methods have had success, but 1) triangulation suffers

from small baseline displacements, and 2) it lacks formal guarantees of convergence since

bundle adjustment require a good initial guess to avoid local minima.

Filtering or incremental-based methods (e.g., [18]) explicitly consider the dynamics of 3D

points tracked across a sequence of continuously acquired images. In contrast to geomet-

ric methods, incremental strategies are typically performed online and have low storage

memory requirements due to the iterative nature of online filters, such as non-linear esti-

mators [19], Luenberger observers [20], and Kalman Filters [21]. Furthermore, when com-

pared to geometric methods, filtering techniques are more robust against small baseline

displacement and pure camera rotation because neither situations lead to a singularity

but to a lack of excitement. Last but not least, as it is shown in the aforementioned incre-

mental works, it is possible to derive guarantees of convergence of the filter given that a

particular set of constraints is satisfied. These constraints may be satisfied by chance as

a result of the motion of the camera or enforced by controlling the motion of the camera.

This is the key difference between passive and active vision.

In passive vision, the camera motion is not optimized to map the 3D environment. That

10 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

is to say, the convergence of the estimator is not considered in the control loop. In con-

trast, active vision techniques couple control with perception to assist the environment’s

reconstruction. For example, the authors in [22] include the goal of reconstructing 3D

points, cylinders, straight lines, and spheres in the control policy of the camera. More

recent, the active strategy in [23] consists in choosing the control actions that maximize an

observability index for an observed feature, which is given by a persistency of excitation

condition. The aforementioned strategy has been extended for the active estimation of 3D

planes (in [24]) and 3D straight lines (see [25]).

Scope

The second focus of this thesis thesis is active incremental depth estimation, which

tightly couples the perception and the control loop for improving the estimation of the

3D structure of the scene. In particular, we investigate the requirements for the depth

estimation of 3D points with theoretical guarantees of convergence.

Open challenges

Active depth estimation for multiple points with formal guarantees of convergence is still an

open problem. In the last few years, the active approach described in [24] has gained pop-

ularity. It consists in choosing the control actions that maximize an observability index for

an observed feature, which is given by a persistency of excitation condition. The control

policy is such that the estimated feature moves to the center of the image plane. Since only

a single point may occupy the origin of the image frame at a time, this imposes a limita-

tion for visual servoing and SLAM applications, where one typically wants to estimate

multiple points at the same time. This issue is observed in [26], where the active estima-

tor proposed in [23] is employed in a visual servoing application. The authors aimed at

maximizing the persistency of excitation condition for the tracked points, but could only

achieve local convergence guarantees.

Hypothesis

Chapter 8 investigates the control actions that ensure global convergence of a point relax-

ing the constraints that the point must be driven to the origin of the image frame. This

theoretical result is then applied in Chapter 9 in the single point and multiple points vi-

sual servoing task. Most applications with multiple points will have conflicting objectives,

1. INTRODUCTION 11

and it is unlikely that the theoretical constraints required for global convergence can be

imposed for all points simultaneously during a given task. The hypothesis of this thesis

is that, if global guarantees can be enforced for multiple points during a transient period,

the solution will likely approach a local region of convergence, yielding better results in

tasks such as visual servoing.

1.4 Contributions and Publications

1.4.1 Contributions

The core contribution is the development of two continuous metric map models applied

to the mapping problem:

1. B-spline curve map: The B-spline curve map is a deterministic and compact con-

tinuous representation of the environment designed for long-term operation in vast

areas. It is an alternative for geometric maps. Results shows that the memory re-

quired is considerable lower compared to discrete grid maps - up to 10 times in

some scenarios.

2. B-spline surface map: The B-spline surface map is a probabilistic and accurate con-

tinuous representation of the environment which does not require discretizing mea-

surements. Results show that B-spline surface maps are more accurate than occu-

pancy grid maps for the same storage memory requirements. This is because B-

spline maps are less punished by misaligment between the measurements and grid.

The B-spline surface map can be sampled at any resolution for obtaining a discrete

grid map. Thus, it is easy to integrate with existing motion planning and control

software developed for discrete grid map.

Both B-spline curve and surface maps can be employed in tasks such as planning

and collaborative robotics. However, within the context of sensor-controlled robots, the

primary use of a map is for SLAM. For this reason, tailored-suit localization methods are

developed for both B-spline maps. The following contributions are also presented here:

3. B-spline curve SLAM: localization is obtained by tracking the curves in the map

and minimising the alignment error between the mapped curves and the actual

measurements. Experimental results show that it is possible to obtain an accurate

localization with a low memory consumption map.

12 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

4. B-spline surface SLAM: localization is obtained by matching the sensor measure-

ments against regions of the surface that are likely to correspond to obstacles. Simu-

lation and experimental results show that B-spline SLAM outperforms stand front-

end approaches that rely on a discrete grid map. Since the map is able to retain

better the position of measurements, it allows for a large basin of convergence when

doing gradient-descent during localization. As a consequence, for the same local-

ization accuracy, B-spline surface SLAM ends up consuming less memory than an

occupancy-grid map. Surprisingly, online B-spline SLAM, without any back-end

optimization, was also able to compete with discrete grid SLAM using back-end

approaches, outperforming some of them in real experiments.

The methods developed in this thesis were designed taking into account that the

SLAM front-end must work at least as fast as the sensor rate speed (online SLAM). We had

to develop a tailor-made B-spline library that addresses our computational constraints.

The Python implementation of the B-spline library and the online B-spline surface SLAM

are available on a public repository:

5. B-spline library and open-source SLAM code: The theoretical results presented in

this thesis are backed up by a publicly available package with examples, including

ROS integration. A computational efficient B-spline library which can benefit other

applications is made available. Link to the repository: https://github.com/C2SR/

spline-slam.

The problem of depth estimation with theoretical guarantees of convergence has been

relaxed by allowing the point to be outside of the origin of the image frame:

6. Active depth estimation: The proposed depth estimation framework provides the-

oretical guarantees for the estimation of points that are not located in the origin of

the image frame. Applications for a single point and multiple points are presented.

1.4.2 Publications

The research developed throughout this thesis was published in well-renowned peer-

reviewed robotic journal and conferences.

Journals

https://github.com/C2SR/spline-slam
https://github.com/C2SR/spline-slam

1. INTRODUCTION 13

[SUB22] R. T. Rodrigues, P. Miraldo, and A. Pedro Aguiar, ”On the Guarantees of In-

cremental Depth Estimation and its Coupling with Visual Servoing”, The International

Journal of Robotics Research (IJRR) (submitted) .

[RAL21] R. T. Rodrigues, N. Tsiogkas, A. Pascoal, and A. P. Aguiar, ”Online range-based

SLAM using B-spline surfaces”, in IEEE Robotics and Automation Letters, vol. 6, no. 2,

pp. 1958-1965, April 2021.

[RAL18] R. T. Rodrigues, M. Basiri, A. P. Aguiar and P. Miraldo, ”Low-Level Active Visual

Navigation: Increasing Robustness of Vision-Based Localization Using Potential Fields,”

in IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2079-2086, July 2018.

Conferences

[OCEANS21] M. Reis, G. Andrade, F. Neves, P. Silva, R. T. Rodrigues, and A. P. Aguiar,

”A ROS implementation of the situational awareness and maneuvering systems for an

autonomous marine vessel”. San Diego, CA, Sept. 2021 (Accepted).

[IROS20] R. T. Rodrigues, N. Tsiogkas, A. P. Aguiar, and A. Pascoal, ”B-spline Surfaces

for Range-Based Environment Mapping”, in Proc. of IROS’20 - IEEE/RSJ International

Conference on Intelligent Robots and Systems, Las Vegas, CA, USA, Oct. 2020.

[ICRA20] R. T. Rodrigues, P. Miraldo, D. V. Dimarogonas and A. Pedro Aguiar, ”Active

Depth Estimation: Stability Analysis and its Applications,” 2020 IEEE International Con-

ference on Robotics and Automation (ICRA), Paris, France, 2020, pp. 2002-2008.

[IROS19] R. T. Rodrigues, P. Miraldo, D. V. Dimarogonas and A. P. Aguiar, ”A Framework

for Depth Estimation and Relative Localization of Ground Robots using Computer Vi-

sion,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Macau, China, 2019, pp. 3719-3724.

[AUV18] R. T. Rodrigues, A. P. Aguiar and A. Pascoal, ”A coverage planner for AUVs

using B-splines,” 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV),

Porto, Portugal, 2018, pp. 1-6.

[IROS18] R. T. Rodrigues, A. P. Aguiar and A. Pascoal, ”A B-Spline Mapping Framework

for Long-Term Autonomous Operations,” 2018 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), Madrid, 2018, pp. 3204-3209.

14 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

1.4.3 Robotics Competition

The B-spline library presented in Chapter 4 was employed in the navigation framework

developed by the C2SR Atlantics team, which won the first place in the 2021 Njord - The

Autonomous Ship Challenge1, NTNU, Norway. The Atlantics team, formed by under-

graduate and graduate student of the University of Porto, designed a navigation frame-

work for an autonomous boat operating in a simulated environment - the 2021 competi-

tion was fully virtual. In the scope of the competition, the B-spline library was employed

for motion planning, showing the potential of the package for other tasks not directly

related to state estimation.

1.5 Structure

The remainder of this document is structured as follows:

• Chapter 2, Mathematical Background, introduces the notations, key operations, and

algorithms that are employed in this document.

• Chapter 3, Robotic Systems, presents the class of robotic systems for which the pro-

posed SLAM was designed for.

• Chapter 4, B-Spline library, introduces the main theoretical concepts of B-splines and

the key ideas behind the computational efficient B-spline library implemented in

Python3.

• Chapter 5, Literature Review, discusses the previous work related to range-based

SLAM.

• Chapter 6, B-Spline Curve SLAM, presents the first strategy devised in this thesis: a

continuous geometric SLAM based on B-spline curves.

• Chapter 7, B-Spline Surface SLAM, presents the second strategy: a probabilistic B-

spline surface SLAM.

• Chapter 8, Depth Estimation (theory), discusses active depth estimation and presents

the proposed framework which relaxes current state-of-the-art constraints.

1https://www.njordchallenge.com/

1. INTRODUCTION 15

• Chapter 9, Depth Estimation (applications), applies the active filter presented in the

previous chapter in single and multiple points applications.

• Chapter 10, Conclusions, addresses the final remarks and potential research direc-

tions for future work.

Chapter 2

Mathematical Background

This chapter presents the basic mathematical notation and theoretical background that are

transversal to the remainder of this document and provides a quick refresh on key opera-

tions and state estimation algorithms. It is assumed that the reader has a basic background

in linear algebra and is familiar with operations such as dot (scalar) product, matrix mul-

tiplication, inversion, and determinants. If this is not the case, consider reading first a

linear algebra introductory book, e.g., [27].

2.1 Basic notations and definitions

The basic notations and definitions adopted in this document are as follow.

Real set: R denotes the set of real numbers, Rn the set of n-dimensional vectors, and

Rn×m is the set of n×m-dimensional matrices.

Scalars, vectors, matrices: Scalar values are written in lower-case letter. Let x ∈ R be a

scalar variable, then |x| represents its absolute value. The floor function is denoted as ⌊x⌋

and it returns the largest integer less than or equal to x. Vectors are typed in lower-case

bold letter. Unless otherwise stated, vectors are columns. The vector x = [x1, ..., xn]T ∈

Rn has n rows and the entry xi lies at the i-th row. The upper trailing T stands for the

transpose of a vector. A vector can be described in a shorter notation as x = [xi]
n
i=1. The

norm of x, denoted by ∥x∥, considered here is the class of p-norms, given by

∥x∥p = (|x1|p + ... + |xn|p)1/p, 1 ≤ p ≤ ∞

and

∥x∥∞ = max
i
|xi|.

17

18 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

In particular, the notation ∥x∥ stands for the Euclidean norm:

∥x∥ = ∥x∥2 = (|x1|2 + ... + |xn|2)1/2 = (xTx)1/2.

The vectors 1 and 0 contains all their entries equal to 1 and 0, respectively.

Matrices are typed in upper-case letters. The matrix A ∈ Rn×m has n rows and m

columns. The entry aij sits at the i-th row and j-th column. A shorter notation for the

matrix A is A = [aij]
n,m
i=1,j=1. The transpose of a matrix, represented by AT, contains the el-

ements of A reflected over its main diagonal. Transposing a matrix multiplication reverses

its order, i.e., (AB)T = (BT AT), where A and B are matrices of appropriate dimensions.

A square matrix has the same number of rows and columns. A square matrix S is said to

be symmetric if it is equal to its transpose, i.e., S = ST.

Definition 2.1. A symmetric matrix S ∈ Rn×n is positive definite if and only if

xTSx > 0, ∀x ∈ Rn, x ̸= 0.

This fact is stated as S ≻ 0.

Definition 2.2. A symmetric matrix S ∈ Rn×n is positive semi-definite if and only if

xTSx ≥ 0, ∀x ∈ Rn, x ̸= 0.

This fact is stated as S ⪰ 0.

The identity matrix I ∈ Rn×n contains 1’s in the main diagonal and the other elements

are 0. The inverse of a square matrix A, denoted as A−1, is unique and respects the prop-

erty A−1 A = AA−1 = I , where I is an identity matrix with proper dimension. A matrix

is said to be singular if it is not invertible, and non-singular otherwise. The existence of an

inverse may be verified by the determinant of a matrix – if det(A) = 0, then A is singular1.

The vectorization operator, defined as vec(·), applies a linear transformation that

stacks the columns of a matrix A on top of each other, yielding a single column-vector:

A =

a11 . . . a1m
...

. . .
...

an1 . . . anm

 , vec(A) =

a11

a21
...

anm

.

1Due to numerically instability, it is first evaluated whether |det(A)| is greater than a threshold before
computing the inverse of matrix A.

2. MATHEMATICAL BACKGROUND 19

The Kronecker product of two matrices A ∈ Rn×m and B ∈ Rp×q is denoted as A⊗ B ∈

Rnp×mq, and it is defined as

A⊗ B =

a11B · · · a1mB

...
. . .

...

an1B · · · anmB

. (2.1)

The transposition is distributive over the Kronecker product, that is, (A ⊗ B)T =

(AT ⊗ BT). Let A, B, and C be matrices of appropriate dimensions, one has that

vec(ACB) = (BT ⊗ A) vec(C).

The slicing operator allows to extract a sub-matrix from a matrix. Let A be a matrix,

then the sub-matrix A2:5,: is composed of the rows 2, 3, and 4 and all the columns of matrix

A.

Scalars, vectors, and matrices may represent quantities that are functions of time t, for

example, x(t), x(t), or X(t). Whenever clear from the context, the notation is simplified

by stating the dependency on time with leading subscript, for example, xt, xt, or Xt.

Functions: The notation f (x) : Rn → Rm means that the input of a function f is a

n-dimensional vector and its output is a m-dimensional vector. Whenever clear from the

context, the arguments of a function are omitted, for example, f is equivalent to f (x).

The domain of the function f , denoted as dom f specifies the subset of Rn for which f is

defined.

The function f is said to be continuous at a point x if f (xk) → f (x) as xk → x, that is,

if given ε > 0 there is δ > 0 such that

∥x− y∥ < δ =⇒ ∥ f (x)− f (y)∥ < ε.

The derivative of the continuous function f (x) = [f1(x), . . . , f1(xm)]T with respect to

(w.r.t.) x = [x1, . . . , x2]T is known as the Jacobian matrix, and it is defined as

d f (x)
dx

=

∂ f1(x)

∂x1
. . . ∂ f1(x)

∂xn
...

. . .
...

∂ fm(x)
∂x1

. . . ∂ fm(x)
∂xn

 .

The Jacobian matrix describes how changes in the input impact the output. For ex-

ample, if ∂ f1(x)
∂x1

is large (low), it means that changes on x1 have a large (low) effect on

20 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

{A}

{B} {C}

ξA B

ξ
B

C

xA

xB

x
C

yA

yCyC

ξ
A

C

P

Ap Bp

FIGURE 2.1: Coordination frames and relative poses

f1(x).

Coordination frames: A coordinate frame, also known as Cartesian coordinate sys-

tem, is a set of orthogonal unitary axes that intersect in a point (called the origin of the

coordination frame). Figure 2.1 shows three coordinates frames: {A}, {B}, and {C}. The

term pose, which has been already introduced in the previous chapter, is the position and

orientation of a coordinate frame (target) with respect to another coordinate frame (ref-

erence). The notation AξB denotes the pose of coordinate frame {B} described in {A}.

There are two important operators: composition and its inverse. Composition (⊕) allows

to compound relative poses, for example,

AξC =A ξB ⊕B ξC (2.2)

is the pose of {C} described in {A} obtained via composition. The symbol ⊖ denotes the

inverse operator and it defines the following equality:

⊖A ξB =B ξA (2.3)

A typical manner to represent 2D poses is the vector ξ = [x, y, ψ]T, where (x, y) and ψ

are a translational and rotational component, respectively. However, compounding poses

in the vector representation is complex [28] and, for this reason, homogeneous transfor-

mation are often employed:

ξ(x, y, ψ) ≡

cos ψ sin ψ x

− sin ψ cos ψ y

0 0 1

 ∈ SE(2), (2.4)

where SE(2) stands for special Euclidean group of dimension 2. Then, composition can

2. MATHEMATICAL BACKGROUND 21

be computed as a product of matrices and the inverse operator by inverting the homoge-

neous transformation matrix, which is always non-singular.

The frame in which a vector is described in indicated by a leading superscript, e.g., A p

is the vector p described in {A}. A vector can be transformed from one frame to the other

using the homogeneous transformation matrix as follows:

A p =

cos AψB sin AψB

AxB

− sin AψB cos AψB
AyB

0 0 1

B px

B py

1

 = R(AψB)
A p +

AxB

AyB

 , (2.5)

where R(AψB) ∈ SO(2) is a rotation matrix.

Probability: A probabilistic model describes an uncertain phenomenon using three

components: a sample space, an event space, and a probabilistic law. The sample space

is the set of all possible outcomes of an experiment. The event space is the subset of the

sample space for whose the probability can be measured. The probability law or probabil-

ity function assigns a probability that describes the likelihood of an event to happen. Let

X be a sample space, A an event space, i.e., A ⊆ X , and x, y ∈ E be measurable events.

A valid probability law p : X → R must respect Kolmogorov’s axioms [29]:

1. p(x) ≥ 0, ∀x ∈ A;

2. p(X) = 1.

3. p(x ∪ y) = p(x) + p(y), if x ∩ y = ∅.

Definition 2.3. (Conditional probability) Given two events x and y, the conditional prob-

ability of x given y, denoted as p(x|y), describes the likelihood of event x given the infor-

mation described by y. For p(y) > 0, the conditional probability is defined as:

p(x|y) = p(x, y)
p(y)

. (2.6)

Definition 2.4. (Total Probability Law) Let Y be set of all possible outcomes of an experi-

ment, then

p(x) = ∑
y∈Y

p(x|y)p(y) (Discrete)

p(x) =
∫

p(x|y)p(y)dy (Continuous).

(2.7)

22 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Definition 2.5. (Bayes rule) The Bayes rule is defined as

p(x|y) = p(y|x)p(x)
p(y)

. (2.8)

It can be verified using Definition 2.3. The Bayes rule describes how to update a prob-

ability given evidence (observations, for example). The probabilities are typically named

as follows:

• p(x|y): posterior - probability of event x obtained after incorporating the evidence;

• p(y|x): likelihood - probability of event y given event x happens;

• p(x): prior - probability of event x before incorporating evidence;

• p(y): marginal - probability of event y.

Definition 2.6. (Markov Assumption) The Markov assumes that the conditional proba-

bility of an event does not depend on past outcomes but only on the most recent one, that

is,

p(xt|xt−1, xt−2, . . . , x0) = p(xt|xt−1), (2.9)

where xt stands for the outcome at time t.

Definition 2.7. (Odds) The odds of an event x, denoted as odds(x) ∈ R+ is the ratio of the

probability of the event happening over the probability of not happening, that is,

odds(x) =
p(x)

1− p(x)
. (2.10)

Note that the odds is a positive scalar number. The greater the odds, the more likely is the

event to happen. Given odds(x) the probability p(x) can be easily obtained from (2.10).

Definition 2.8. (Multivariate Normal Distribution) Let x ∈ Rn be a continuous ran-

dom variable that follows a multivariate Gaussian distribution. This is represented as

x ∼ N (µ, Σ), where µ and Σ are the mean and the covariance matrix of the distribution,

respectively. If Σ is positive definite, the probability density function of a multivariable

Gaussian distribution is

f (x) =
exp(− 1

2 (x− µ)TΣ−1(x− µ))√
(2π)n|Σ|

(2.11)

2. MATHEMATICAL BACKGROUND 23

2.2 Estimators

2.2.1 Extended Kalman Filter

The Kalman filter is a well established tool for state estimation and multiple sensor data

fusion. The classical Kalman Filter is a linear estimator, which is optimal if 1) the model

is linear and known, 2) the process and noise covariance follow a Gaussian distribution

and are known, and 3) the noise is uncorrelated. These assumptions often do not hold in

robotics, and more critically, models are typically non-linear.

The Extended Kalman Filter (EKF) is able to deal with non-linear models but the op-

timalities guarantees do not hold and the filter converges locally. Nonetheless, the EKF

is the golden standard within the robotics community, being widely deployed in robotics

navigation. It is employed in this thesis for prediction and data fusion. For a quick intro-

duction, consider the state variable at time t to be denoted as xt ∈ Rn. Similarly, define

the input variable ut ∈ Rm and the input noise qt ∈ Rm. The noise is assumed to be

uncorrelated and Gaussian. The dynamics of the system is defined as

xt+1 = f (xt, ut, qt), qt ∼ N (0, Qt). (2.12)

The EKF keeps track of the state variable xt using two Gaussian distributions: a prior

and a posterior. The prior distribution, denoted as N (x̌t+1, Σ̌t+1), is a projection (pre-

diction) of the state (mean and covariance) at time t + 1 computed at time t. The prior

is obtained before incorporating the measurements. The posterior distribution, given by

N (x̂t, Σ̂t), provides the best estimate of the state (mean and covariance) at time t com-

puted using the measurements obtained at time t.

The prediction step computes the mean and the covariance of the prior distribution of

the state variable. For that, the filter propagates the state variable from time t into t + 1

by exciting the dynamic model with the input variables, that is,

x̌t+1 = f (x̂t, ut, 0), (2.13)

Σ̌t+1 =
∂ f
∂x

Σ̂t
∂ f
∂x

T
+

∂ f
∂u

Qt
∂ f
∂u

T
. (2.14)

In the prediction step the state variables are not (directly or indirectly) observed. The

uncertainty associated to prior distribution grows, that is, the distribution becomes more

flat.

24 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

The correction step incorporates the measurements into the model to compute a poste-

rior distribution (mean and covariance). The measurement model

zt = h(xt, vt), vt ∼ N (0, Vt), (2.15)

where zt ∈ Rp are measurements, maps the state variable into the measurement space.

The measurements are perturbed by uncorrelated Gaussian noise with covariance Vt. The

correction step considers the error between the actual measurement and the expected mea-

surement using the measurement model. The difference between these two quantities

(called innovation) is weighted by the Kalman gain (K) to update the posterior distribu-

tion in the following manner:

Kt = Σ̌t
∂h
∂x

T
(

∂h
∂x

Σ̌t
∂h
∂x

T
+

∂h
∂z

Vt
∂h
∂z

T
)−1 (2.16)

x̂t = x̌t + Kt(zt − h(x̌t, 0)) (2.17)

Σ̂t = (I − Kt
∂h
∂x

)Σ̌t (2.18)

2.2.2 Linear least squares

The linear least squares is a popular method in different fields of science for linear regres-

sion (data fitting). In essence, it estimates the parameters of a linear model using observed

data. For a quick introduction, consider the model

y = f (θ, x) = θ1x1 + · · ·+ θpxp = xTθ (2.19)

where y ∈ R and θ, x ∈ Rp. The vector θ contains the parameters to be estimated. Given

a set of observations {(xi, yi)}n
i=1, the residual error vector is denoted as r ∈ Rn, where its

i-th elements is

ri = yi − xT
i θ (2.20)

The least square formulation minimizes the quadratic error of the residue, that is,

θ∗ = arg min
θ

∑
i
(yi − xT

i θ)2. (2.21)

The residual error to be minimized is the difference between the value predicted by

the model and the values that were observed. The solution for the least square problem

2. MATHEMATICAL BACKGROUND 25

can be found by computing the derivative of (2.21) with respect to θ and equating to zero:

2 ∑
i
(yi − xT

i θ)xT
i = 0 (2.22)

θ ∑
i

xixT
i = ∑

i
xT

i yi, (2.23)

from which the closed-form least square solution is obtained:

θ∗ = (∑
i

xixT
i)
−1 ∑

i
xT

i yi. (2.24)

There must be at least p independent observations such that the matrix in (2.24) is

non-singular. Typically, the number of observations is much greater than the number of

parameters of the model, i.e., n >> p.

2.2.3 Non-linear least squares

The non-linear least square is an iterative method to estimate the parameters of a non-

linear model. An initial solution must be provided and there is no guarantee of conver-

gence for the global optimum value if the model is not convex. Nonetheless, it is a tool

often employed to solve different SLAM formulations. Consider the non-linear function

y = f (θ, x) : Rp ×Rm → R, where x ∈ Rm and θ ∈ Rp. The problem formulation is

similar to the one presented in the previous section:

θ∗ = arg min
θ

∑
i
(yi − f (θ, xi))

2. (2.25)

where {(xi, yi)}n
i=1 is a set of measurements. Finding a solution for this problem is non-

trivial. There are different numerical methods that find a solution for the non-linear least

square problem: Gauss-Newton, Levenberg-Marquardt (Damped Least Square), Newton,

and so on. The Gauss-Newton method, which approximates the non-linear function by

the first order Taylor approximation, is demonstrated next. The idea is computing the first

derivative of the approximated cost function and equating to zero to obtain a gradient.

The method is repeated iteratively until it converges (or a maximum number of iterations

has been made).

Gauss-Newton algorithm: Let θ̌ be an initial guess for the parameter vector, such that

the solution can be written as θ∗ = θ̌ + ∆θ, where ∆θ ≈ 0. First, re-state the problem in

26 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

(2.25) using the first order Taylor expansion of f around θ̌:

min
∆θ

∑
i
(yi − f (θ̌, xi)−

∂ f (θ̌, xi)
T

∂θ
∆θ)2. (2.26)

Next, for the Gauss-Newton algorithm, take the derivative of the cost function w.r.t.

to ∆θ and equate to zero:

2 ∑
i
(yi − f (θ̌, xi)−

∂ f (θ̌, xi)
T

∂θ
∆θ)

∂ f (θ̌, xi)
T

∂θ
= 0. (2.27)

The terms in the previous equation can be manipulated to obtain the update step:

∆θ∗ = −(∑
i

∂ f (θ̌, xi)

∂θ

∂ f (θ̌, xi)
T

∂θ
)−1 ∑

i

∂ f (θ̌, xi)

∂θ
(yi − f (θ̌, xi)). (2.28)

The solution obtained in the current iteration is θ̌ + ∆θ∗. The fitting error in (2.25) is

evaluated with the new candidate. While the cost does not converge, one iterates (2.28)

using the new solution as an initial guess.

2.2.4 Non-linear weighted least squares

The non-linear weighted least squares formulation allows to specify a weight for each

residual error. Thus, it is possible to give more importance to a specific observation than

other, e.g., the uncertainty associated to an observation is smaller due to sensor specifica-

tion. Using the definitions from Sec. 2.2.3, the non-linear weighted least squares formula-

tion is as follows:

θ∗ = arg min
θ

∑
i
[wi(yi − f (θ, xi))]

2, (2.29)

where w = [w1, . . . , wn]T ∈ Rn is the weight vector. Using the Gauss-Newton method

presented in the previous section, the step update step is given by

∆θ∗ = −(∑
i

w2
i

∂ f (θ̌, xi)

∂θ

∂ f (θ̌, xi)
T

∂θ
)−1 ∑

i
w2

i
∂ f (θ̌, xi)

∂θ
(yi − f (θ̌, xi)). (2.30)

Chapter 3

Robotics Systems

This chapter presents the robotic tools employed in this work. Section 3.1 introduces the

mathematical model of the robot and the range sensor. Section 3.2 presents the camera

model. An overview of the supporting navigation filter is discussed in Sec. 3.3. Section 3.4

introduces the Turtlebot3, the robotic platform employed to evaluate the proposed SLAM

framework in the C2SR facilities, at FEUP. Section 3.5 addresses the software tools that

provided the means to simulate as well as deploy the code in experimental datasets and

in the real robot.

3.1 Plaftorm model

In this section we present the mathematical model of a non-holonomic vehicle equipped

with a range sensor. The reader is introduced to concepts such as state, input, and sensor

measurements.

Dynamic System

Consider a map coordinate frame {M} attached to the origin of the map, and a body

fixed coordinate frame {B} attached to the center of mass of a wheeled ground vehicle,

as shown in Fig. 3.1. The map frame is also known as inertial frame. Let the pose of the

vehicle be ξ = [pT, ψ]T, where p = [x, y]T is the position of the vehicle described in the

inertial frame ,and ψ is its orientation.

The input vector of the vehicle is u = [vT, wz]T, where v = [vx, vy]T comprises the

forward (vx) and lateral (vy) velocities of the vehicle described in the body frame, and wz

27

28 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 3.1: A robot equipped with a range sensor detects occupied space (red dots) at
discrete intervals. The pose of the robot ξ is unknown and needs to be estimated online.

is its angular rate. The motion of the robot is given by the nonlinear differential system

ξ̇ = f (ξ, u)⇔

 ṗ

ψ̇

 =

R(ψ)v

wz

 , (3.1)

where R(ψ) is a rotation matrix from {B} to {M} and it is as defined in Sec. 2.1. In partic-

ular, for a non-holonomic ground vehicle that translates either forward or backward, that

is, the vehicle does not move sideways, we have that vy = 0.

Range sensor model

As illustrated in Fig. 3.1, the robot is equipped with a 2D range sensor. For the sake of

simplicity, assume that the sensor lies at the center of mass of the vehicle. If that was

not the case, an additional rigid body transformation from the sensor frame to the body

frame would have to be considered. The sensor provides l range measurements of the

environment (ri)
l
i=1 at discrete angle intervals (αi)

l
i=1 w.r.t. the x-axis of {B}.

The measurements (ri, αi) in polar coordinates are transformed to Cartesian coordi-

nates via the transform

z(ri, αi) ≡ zi = ri

cos αi

sin αi

 . (3.2)

Finally, let zi be a measurement described in body frame ({B}) and ξ be the pose of

the robot when the observation was made. Then, the function T(ξ, zi) transforms the

measurement to the map frame:

T(ξ, zi) ≡ Ti(ξ) =

cos ψ − sin ψ

sin ψ cos ψ

 z +

x

y

 = R(ψ)z + p, (3.3)

3. ROBOTICS SYSTEMS 29

3.2 Camera model

The pinhole camera was a pioneering invention in the history of photography. It consists

of a dark chamber with a single tiny aperture - the pinhole - through which the light rays

travel. . On the image plane Π1, fixed at the inner rear surface of the camera, an inverted

image is formed as illustrated in Fig. 3.2a. The light rays converge to the pinhole, which

is also called center of projection of the optical center, or just optical center. The optical

axis contains the optical center and is perpendicular to image plane. Pinhole cameras

have a major flaw: images are quite dim, since only a small portion of light is capable of

transverse the pinhole. Naturally, the larger the hole, the brighter the image. However,

this is achieved at a high cost - the pinhole camera model does not hold for large holes.

FIGURE 3.2: (a) image formation process in a pinhole camera; (b) a large pinhole contain
multiple projections of the same points; (c) ideal thin lens projection model. Green arrows
represent light reflected by the object and red dashed lines represent the light captured

by the camera.

1The image plane is the surface where the image is projected.

30 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 3.3: (a) central projection model and (b) general central projection model.

As depicts Fig. 3.2, a point in the world becomes associated with multiple points in the

image plane (and vice-versa!). The result is an unfocused image.

Camera lens tackle the lack of brightness by gathering more light while still achieving

an inverted focused image. Let Fig. 3.2 illustrates the ideal thin lens case, according to the

lens law:
1
zi
+

1
z0

=
1
f

(3.4)

where z0 is the distance from the lens to the object, zi the distance from the lens to the

image plane, and f is the focal length. For a given object at z = z0 and fixed focal length,

the lens law gives the position where the image plane must lay for obtaining a sharp

image. Inspecting the lens law equation, one concludes that for a focused image as z0 →

∞, zi → f . Then, for objects at infinity, i.e., z0 ≫ f , the lens of a focal length f can be

approximate to a pinhole a distance f from the image plane.

The reader is now ready to be formally introduced to the simplified central projection

model shown in Fig. 3.3a. First, consider the following coordinate frames:

• {C}: 3D frame fixed to the optical center. Its z-axis coincides with the optical axis;

• {I}: 2D frame fixed to the image plane. Its u and v axes aligned with the x and y

axes of the camera frame, respectively.

Without loss of generality, the image plane is fixed at zi = f ahead of {C}. This time,

a non-inverted image is formed, preserving the orientation of objects. The perspective

projection model that maps a world point described in the camera frame Cq = [xc, yc, zc]T

3. ROBOTICS SYSTEMS 31

to a point in the image plane Iq = [u, v]T is

u = f
xc

zc
, v = f

yc

zc
(3.5)

The simplified model introduced takes for granted (1) the image plane is a discrete

grid of light sensitive elements and its coordinates are measured in picture elements (pix-

els); (2) the pixels are not necessarily square, that is, there are independent scale factors ρu

and ρv for the pixelization of coordinates u and v; and (3) the pixels coordinates are non-

negative. By convention, the top-right pixel corresponds to the element (0, 0) and it is

assumed as the origin of the image coordinate system {I}. The point (u0, v0) corresponds

to the camera optical center coordinate. Fig. 3.3b addresses these notes graphically. The

three aforementioned considerations correspond to a translation and a rescaling of (3.5):

u =
f

ρu

xc

zc
+ u0, v =

f
ρv

yc

zc
+ v0. (3.6)

The parameters f , ρu, ρv, u0, and v0 are called intrisic parameters of the camera and they

are obtained in a process known as camera calibration, e.g., see the seminal work by

Zhang [30]. The normalized homogeneous coordinates in the camera frame are denoted

as s = [x, y] ≡ [xc/zc, yc/zc] and for a calibrated camera one may obtain as:

x =
f

ρu
(u− u0), y =

f
ρv

(v− v0). (3.7)

3.3 Navigation filter

Simultaneous localization and mapping and 3D depth estimation require data collected

by on-board sensors, which are often classified in two groups: proprioceptive and exterocep-

tive. Proprioceptive sensors gather observations about the internal state of the robot, while

exteroceptive sensors collect measurements of the environment where a robot operates.

Wheel encoders and IMU are popular examples of proprioceptive sensors. These sen-

sors provide measurements about the motion of the vehicle, e.g. linear velocity, angular

rates, and accelerations. The pose of the robot can be estimated via a kinematic or dynamic

model of the system by integrating the sensor data - this is known as dead-reckoning.

Naturally, sensors measurements are plagued by noise and subject to errors. Thus, by

integrating noisy and erroneous data, dead-reckoning is prone to accumulate significant

32 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Prediction Correction

Mapping Localization

Navigation Filter

Proprioceptive
sensors

Exteroceptive
sensors (range)

posterior

prior

m

ξ*

ξ̂

ξ

^

ξt-n

^

ξt

^

Prior buffer

ut-n utMeas. buffer

FIGURE 3.4: Navigation filter: proprioceptive sensors (e.g., IMU and encoders) feed the
prediction module, which updates the pose prior. The SLAM algorithms presented in
this thesis takes as input range data and the pose prior for computing the map and the

pose of the robot within the map.

error over time causing pose estimation to drift from the actual pose. However, propri-

oceptive sensors typically work at a fast rate and are useful sources of local information

when a more reliable source is not available.

Camera and LiDAR are representative examples of exteroceptive sensors. If the scene

is known a priori, the robot may use the sensor data to reason about its most likely location

in the environment. In SLAM, the environment is unknown and the robot must concur-

rently build a map and estimate the location in the map that best explains its current

observations. Compared to dead-reckoning, SLAM is less susceptible to pose estimation

drifts since localization takes place in a fixed-reference frame - the map frame. In 3D depth

estimation, the structure of the environment is also unknown but instead of the absolute

pose, one is interested in the relative pose displacement between the frames that features

have been observed.

The navigation framework proposed in this thesis fuses odometry data provided by

proprioceptive sensors with the SLAM estimation. The filter, shown in Fig. 3.4, has a

prediction and correction scheme. The prediction step estimates the pose of the robot

at high rates by propagating the odometry data and control inputs using the system dy-

namics presented in (Sec. 3.1) - this estimate is called prior. The correction step computes

the posterior estimate by fusing the prior with the output of one of the proposed SLAM

algorithms. The simple, yet important feature of the navigation filter is dealing with asyn-

chronous data and algorithms. The prediction module holds a buffer for proprioceptive

data and another buffer for prior estimations. At time t, the correction module queries

the prediction module for the prior at time t− T, which corresponds to the timestamp of

the extereoceptive data. The correction modules computes and shares with the prediction

3. ROBOTICS SYSTEMS 33

module the posterior corresponding to time t − T. Finally, it is possible to improve the

prior at time t by using the latest posterior from time t− T and proprioceptive data from

t− T, . . . , t, which is stored in the buffer.

Implementation

The navigation filter presented in Fig. 3.4 is implemented as a discrete EKF filter. The

reader is referred to Sec. 2.2.1 for a brief introduction on EKF. The motion model is as-

sumed to be as in (3.1), but perturbed by additive Gaussian white noise, that is,

ξt+1 = f (ξt, ut, qt) = ξt +

R(ψ)v

wz

∆t + qt, (3.8)

where ∆t is the sampling time and qt ∼ N (0, Qt) is the process noise. The prediction step

computes f (ξ̂t, ut, 0) and propagates the covariance:

ξ̌t+1 =

x̂t + ∆t vx,t cos(ψ̂t)− ∆t vy,t sin(ψ̂t)

ŷt + ∆t vx,t sin(ψ̂t) + ∆t vy,t cos(ψ̂t)

ψ̂t + ∆twz,t

Σ̌t+1 =

∂ f
∂ξ

Σ̂t
∂ f
∂ξ

T
+

∂ f
∂u

Qt
∂ f
∂u

T
,

(3.9)

where Σ̌t and Σ̂t are the prior and posterior state covariance matrices, respectively. The

discrete model considers that the vehicle first translates and then rotates. Similarly to [28],

it is assumed that the displacement between two consecutive time steps is small enough

for the order of the applied displacements not to matter. The Jacobian matrices evaluated

at ξ̂t are as stated below:

∂ f
∂ξ

=

1 0 −∆t vx,t sin(ψ̂t)− ∆t vy,t cos(ψ̂t)

0 1 ∆t vx,t cos(ψ̂t)− ∆t vy,t sin(ψ̂t)

0 0 1

 and
∂ f
∂u

=

∆t cos(ψ̂t) −∆t sin(ψ̂t) 0

∆t sin(ψ̂t) ∆t cos(ψ̂t) 0

0 0 ∆t

(3.10)

The correction step incorporates the pose estimation ξ∗t provided by a SLAM algo-

rithm. The observation model can be written as

h(ξ̌t, vt) = ξ̌t + vt, (3.11)

34 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

where vt ∼ N (0, Vt) is the observation noise. The correction step of the navigation filter

is obtained as follows:

Kt = Σ̌t
∂h
∂ξ

T
(

∂h
∂ξ

Σ̌t
∂h
∂ξ

T
+ Vt)

−1 = Σ̌t(Σ̌t + Vt)
−1 (3.12)

x̂t = x̌t + Kt(ξ
∗
t − h(x̌t, 0)) (3.13)

Σ̂t = (I − Kt
∂h
∂ξ

)Σ̌t = (I − Kt)Σ̌t, (3.14)

where the Jacobian matrix ∂h
∂ξ is an identity matrix of appropriate dimensions.

For initializating the filter, it is considered that the vehicle starts at the origin of the

map frame, i.e., ξ0 = 0, and that the state covariance Σ̂0 is close to zero.

3.4 Platform and hardware

The experimental tests in the C2SR/SYSTEC facilities were performed using a Turtlebot3

Burger by ROBOTIS (see Fig. 3.5). The Turtlebot3 is a research platform family that has

a similar morphology and on-board sensory as a broad-range of non-holonomic vehi-

cles employed in civil and industrial applications, such as automated carts operating in

warehouses and domestic robots for indoor service robotics. In particular, the Turtlebot3

Burger is equipped with a 360 Laser Distance Sensor LDS-01. Two Dynamixel motors

equipped with encoders provide actuation to the vehicle, which can move forward/back-

ward and rotate clockwise/anti-clockwise. A Raspberry Pi 3 Model B is responsible for

on-board computations.

FIGURE 3.5: Turtlebot 3 Burger by ROBOTIS. Sensory-wise the robot is equipped with
an IMU, wheel enconders, and a LiDAR sensor. Dynamixel motors are responsible for

actuation. A Raspberry Pi 3 provides on-board computational power.

3. ROBOTICS SYSTEMS 35

LDS-01 Range sensor

The main features of the 2D LiDAR sensor LDS-01 can be found in Table 3.11. The sensor

provides 360 measurements of the environment at 5 Hz frequency. All 360 degrees of the

field of view are covered, meaning that the sensor angular resolution is 1 degree. The

minimum and maximum distance registered by the sensor (range distance) is 0.12 m and

3.5 m, respectively.

The accuracy of the sensor is determined by the similarity between measured and

actual distance to an obstacle. For quantifying the accuracy, it is required to accurately

measure 1) the location of the origin of the sensor and 2) the distance between the origin

of the sensor and an observed object. Neither of these quantities is trivial to obtain, and,

for this reason, an approximation of the specifications provided by the manufacturer was

used. It is assumed that the accuracy follows a normal distribution, and the (non-linear)

standard deviation is approximated by the following linear model:

σa(r) = 0.05r. (3.15)

The notation σa(r) stands for the standard deviation of the accuracy as a function of the

measured range. The variable r is the measured range distance. The slope coefficient 0.05

was obtained from Table 3.1, assuming that it also applies for r < 0.5 m.

Consider that the sensor takes multiple measurements of the same object at a fixed

distance. The precision is determined by how repeatable these multiple measurements

are. Note that precision does not imply accuracy - the measurements may be repeatable

but inaccurate. In fact, to quantify the precision we do not need to know the real distance

between the object and the sensor. Therefore, we performed experiments at the C2SR

TABLE 3.1: Performance specifications of range sensor LDS-01. These values were pro-
vided provided by ROBOTIS1.

Property Specifications
Distance range 0.12 ∼3.5 m
Range accuracy (0.12 ∼0.5 m) ± 0.015 m
Range accuracy (0.5 ∼3.5 m) ± 5 %
Range precision (0.12 ∼0.5 m) ± 0.01 m
Range precision (0.5 ∼3.5 m) ± 3.5 %
Angular view 360o

Angular resolution 1o

1https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix lds 01/

https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/

36 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 3.6: Measuring precision of the range sensor. The histograms in (a), (b), (c), and
(d) were built using range measurements obtained to an object placed at a distance of

approximately 0.53 m, 1.55 m, 3.06 m, and 3.98 m, respectively.

facilities for assessing the sensor precision and the normality of the distribution. The ex-

periment consisted in placing the sensor data fixed distance to a wall and capture several

measurements (from 300 to 500 readings). This process was repeated for different range

distances, from 0.3 m to 4 m. The histograms corresponding to the sensor being at ap-

proximately 0.53 m, 1.55 m, 3.06 m and 3.98 m are shown in Fig. 3.6. For building the

histograms, the measurements were classified in 0.005 m wide bins, which is half of the

precision described by the manufacturer. One may conclude that the distribution of the

measurements roughly follows a normal distribution. In a more careful analysis, the set

of measurements collected at 0.05 m and 3.98 m failed the Shapiro Wilk normality test [31]

with an alpha level of 0.05. Nonetheless, on a later stage, it will be assumed that the dis-

tribution is approximately normal. The spread of the distribution grows proportionally

to the distance between the sensor and the obstacle, in accordance with the manufacturer

specifications.

Assuming that the distribution is approximately normal, we computed the standard

deviation for each set of distances. The result is shown in Fig. 3.7. The standard deviation

can be approximated by a linear model:

σp(r) = 0.0026r + 0.00253, (3.16)

3. ROBOTICS SYSTEMS 37

FIGURE 3.7: Standard deviation of the precision of the LiDAR LDS-01 as a function of
the measured distance. A blue line represents the linear model that best fits the points in

a least square sense.

where σp(r) is the standard deviation of the precision of the range sensor. During the

experiments, it was observed that the material reflecting a beam has impact on the stan-

dard deviation and normality of the distribution. For the tests discussed in this section,

it was measured the distance to wall and furniture (office alike environment). Metal and

translucent materials may yield less predictable results.

The standard deviation of the sensor was obtained by combining the precision and

the accuracy distributions. The standard deviation associated to a measurement (σs(r)) is

given by

σs(r)2 = σa(r)2 + σp(r)2. (3.17)

3.5 Software

Python 3

The code was implemented in the programming language Python 3, which is a high-level

object-oriented programming language that runs through an interpreter. The main moti-

vations for choosing Python were its fast prototyping and powerful visualisation tools.

At the time of writing of this thesis, the three most popular range-based SLAM pack-

ages are written in C++. In contrast to Python, C++ is pre-compiled, providing better

performance in terms of memory efficiency and speed. However, C++ is not well suited

for prototyping, a major requirement when choosing the programming language for this

work. In the evaluated setup, the proposed SLAM package achieves online performance

(SLAM runs at least as fast as the sensor rate) thanks to the tailored-suited Python libraries

developed for B-spline SLAM. Nonetheless, a C or C++ implementation would improve

38 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

the computational performance and allows for further improvements, i.e., pose-graph

optimization.

Robot Operating System

Robot Operating System (ROS) [32] is a middleware that aims at encouraging collabora-

tive robotics software development by interfacing communication between processes in

a transparent fashion. Helpful features include device drivers, message formats, graphs,

sensor visualizers and more. Thereby, roboticists may focus on higher level problems.

Research community plays a major role in ROS development and popularisation. For ex-

ample, state-of-the-art SLAM solutions such as Google Cartographer [12], Hector-SLAM

[5], and GMapping [4] are available for free. This encourages code (re)-using, discussions,

and further improvements.

ROS adopts the publisher-subscriber architecture. Its organization relies on four basic

elements: nodes, topics, messages, and services.

• Nodes: A node can be a publisher, subscriber or, more commonly, both. A publisher

advertises a topic, and sends messages in this topic. A subscriber subscribes to a

topic and receives messages in this topic. Most nodes receive input messages, run

routines and publish the outcome;

• Topics: Topics can be regarded as communication pipelines that ”carry” messages.

Only one publisher can send messages in a topic, but several subscribers can listen

to these messages. Each topic has a message type and a name (unique identifier);

• Messages: Messages contain the meaningful data on a well defined format. Sub-

scribers need to know the format upon subscribing to their topic;

• Services: While messages are continuously published under a topic for possibly

multiple subscribers, services are usually a one-shot action for a specific task or

query.

In ROS, there are typically several nodes running on different processes, and mes-

sages are exchanges using a TCP/IP connections (TCPROS). Therefore, the trade-off for

adding a communication layer such as ROS is the introduction of limitations that can be

important on critical real-time applications. For this reason the SLAM package developed

in this thesis is ROS-agnostic, meaning that, it is possible to use the algorithms without

http://www.ros.org/

3. ROBOTICS SYSTEMS 39

FIGURE 3.8: Simulators: (a) V-REP scene with a robot equipped with a range sensor and
(b) Turtlebot3 World scenario in Gazebo.

installing ROS. The library includes a ROS-wrapper, which is a thin layer that supports

ROS compatibility, for those who wish to integrate it in a ROS environment.

Virtual environments

In general, implementation of algorithms is plagued by many sources of errors, from con-

ceptual to rounding errors due numerical precision. Therefore, at an early development

stage, running field tests can be time-consuming, frustrating, and potentially hazardous.

Withing this context, virtual simulators are a suitable option for coding, debugging, as-

sessing performance and improving algorithms before deploying on a real vehicle. It per-

mits performing multiple tests in well controlled environments in a relatively short time

when compared to field tests. Last but not least, it is possible to obtain the actual pose

of the vehicle (also referred as ground truth) from the simulator, which allows evaluating

the performance of a SLAM strategy.

Different simulators are available under free software licenses, like V-REP by Coppelia

Robotics, Gazebo by OSRF, and Morse by LAAS-CNRS Open. In the first stage of this the-

sis, V-REP was employed due to its clear and user-friendly graphical user interface (GUI),

ROS interface, and long-term support from Coppelia Robotics. Figure 3.8a shows V-REP

scene designed for our tests. After the acquisition of the Turtlebot3 Burger, Gazebo Sim-

ulator was preferred motivated by the fact that the Turtlebot3 Burger is fully integrated

with Gazebo and ROS (see Fig. 3.8b). As a consequence, it is possible to develop, debug,

and evaluate the algorithms in simulations, and then transfer them to the real platform,

with minimal modifications.

Chapter 4

B-splines

This chapter discusses B-spline functions, B-spline curves, and B-spline surfaces. Sec-

tion 4.1 addresses the theoretical concepts behind B-spline functions and shapes. Then,

Section 4.2 presents the algorithms and techniques implemented in our tailor-made Py-

thon3 B-spline library. It is compared the performance of the proposed package with other

Python3 libraries publicly available. Results show that for the tasks required in our SLAM

framework, the proposed library is considerable faster than alternative packages.

4.1 B-spline theory

B-spline basis function

A B-spline is a vector-valued function bd(τ|t) : R→ Rm that spans a polynomial space of

degree d. The variable τ is called the parametric variable and the knot vector t = [ti]
m+d+1
i=1 ,

with ti ≤ ti+1, ∀i is said to support the B-spline function bd(τ|t) = [bd
1 , . . . , bd

m]
T. An

interesting result from the De Boor’s recursive algorithm [33] is that high order B-splines

can be defined by recursion as

br
i (τ|t) =

τ − ti

ti+r − ti
br−1

i (τ|t) + ti+r+1 − τ

ti+r+1 − ti+1
br−1

i+1 (τ|t), i = 1, . . . , m (4.1)

where, in particular, the zero-th order spline is

b0
i (τ|t) =

1 , ti ≤ τ < ti+1

0 , otherwise
. (4.2)

41

42 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

From this point forward, whenever the knot vector and the degree of the B-spline are

clear from the context, the notations bd(τ|t), bd(τ), and b(τ) are employed interchange-

able. The same applies for the notation of B-spline coefficients bd
i (τ|t), bd

i (τ), and bi(τ).

Several B-spline properties can be derived from the recursive definition stated in (4.1)

and (4.2). In particular, the SLAM algorithms proposed in this thesis make extensive

use of four B-spline properties. These are the local knot, the local support, the convex

combination, the continuity, and the differentiation properties.

Property 1. (Local knot) The B-spline coefficient bd
µ(τ) depends only on the knots {ti}

µ+d+1
i=µ .

Figure 4.1 illustrates the local knot property. From the De Boor’s recursive algorithm,

at the lowest level of the recursion, the term bd
µ(τ) is a combination of d + 1 zero-th order

spline coefficients, specifically b0
µ, . . . b0

µ+d. From (4.2), for τ ∈ [tµ, tµ+d+1), one and only

of these zero-th order coefficients is non-null. If τ /∈ [tµ, tµ+d+1), then b0
µ, . . . b0

µ+d are zero

and, consequently, bd
µ(τ) = 0. Therefore, it is said that a B-spline coefficient depends

locally on the knot vector. Mathematically, the local knot property can be stated as

bd
µ(τ)

 ̸= 0 , if tµ ≤ τ < tµ+d+1

= 0 , otherwise
.

Property 2. (Local support) For τ ∈ [tµ, tµ+1), the B-spline function bd(τ) has at most d + 1

non-zeros coefficients. These are the coefficients bd
µ−d, . . . , bd

µ.

For the local support property, consider Fig. 4.2. It shows in different colours several

cubic B-spline coefficients (d = 3). Evaluating a cubic B-spline function at a specific value

τ yields only four non-zero coefficients. Typically the number of B-spline coefficients is

much larger than the degree of the B-spline, i.e., d ≪ m. Hence, by exploiting the local

support property, instead of computing m coefficients, only d + 1 have to be considered.

FIGURE 4.1: Local support: Visualization of the De Boor’s recursive algorithm applied to
bd

µ(τ). The coefficient bd
µ(τ) is non-zero if and only if τ ∈ [tµ, tµ+d+1).

4. B-SPLINES 43

FIGURE 4.2: A cubic B-spline function: colored circles indicate the non-zero coefficients
of the B-spline function at the evaluation point specified by the vertical dashed line. For
a cubic B-spline (d = 3), only four coefficients are non-zero (d + 1). This is called the local

support property and it is employed for speeding up computations.

This increases considerable the computational efficiency for evaluating a B-spline func-

tion.

Property 3. (Convex combination) For τ ∈ [tµ, tµ+1), the non-null coefficients of the B-spline

function bd(τ) are positive and add up to 1, i.e., ∑
µ
i=µ−d bd

i (τ) = 1.

Property 4. (Continuity) Suppose that the knot tµ occurs κ times among the knots (ti)
µ+d
i=µ−d,

with κ some integer bounded by 1 ≤ κ ≤ d + 1. Then, the spline function bd(τ) has

continuous derivatives up to order d− κ at the knot tµ.

Property 5. (Differentiation) Assume that the derivative of a B-spline function bd(τ) w.r.t. τ

exists. Then, the B-spline derivative is denoted as db(τ)
dτ and its i-th coefficient is given by

dbd
i (τ)

dτ
= d

(
bd−1

i (τ)

ti+d − ti
−

bd−1
i+1 (τ)

ti+d+1 − ti+1

)
. (4.3)

The B-spline algorithms derived here employ uniformly spaced non-clamped knot

vectors, which means that the interval between any two consecutive knots is the same

and the initial/final knots are not repeated. Thus, from the continuity property, one may

conclude that B-spline functions have derivatives up to order d− 1 at any point.

For more properties the reader is referred to [33, 34].

B-spline curve

A B-spline curve sd(τ|t) : R → Rp is a linear combination of B-spline basis functions

according to

sd(τ|t) =
m

∑
i=1

cibd
i (τ|t),

44 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

where t ∈ Rm+d+1 is the knot vector and ci ∈ Rp is called a control point. The notation

sd(τ|t), sd(τ), and s(τ) are used interchangeable when the supporting knot vector and

the degree are clear from the context. The B-spline curve is a convex combination of the

control points, see Property 3. Thus, the control points define the shape of the curve and

the curve is always with the convex hull defined by the control points.

Consider the control point matrix C = [c1, . . . , cm] ∈ Rp×m, then the B-spline curve

can be written in matrix form as

s(τ) = Cb(τ). (4.4)

For d > 1 and an uniformly spaced knot vector, the derivative of the B-spline curve

w.r.t. τ exists (see Property 4) and it is described by the following equation:

ds(τ)
dτ

= C
db(τ)

dτ
.

Proposition 4.1. The computational cost to evaluate a B-spline curve is O(d + 1), that is, con-

stant w.r.t. to the number of control points.

Proof. From Property 2 (Local Support) we have that for τ ∈ [tµ, tµ+1) only d + 1 coeffi-

cients of the B-spline bd(τ) are non-null. In fact, (4.4) can be stated as

sd(τ|t) =
µ

∑
i=µ−d

cibd
i (τ|t), ∀τ ∈ [tµ, tµ+1)

Consequently, sd(τ) is a convex (see Property 3) combination of the d + 1 control points

cµ−d, . . . cµ. Therefore, regardless of its length and number of control points, by consid-

ering only the non-null B-spline coefficients, the computational complex to evaluate a

B-spline curve is O(d + 1).

B-spline surface

A B-spline surface is a scalar-valued function sd(τ|tx, ty) : R2 → R defined by the tensor

product of two B-spline functions, bd
x(τx|tx) and bd

y(τy|ty), and the control points cij as

follows:

sd(τ|tx, ty) =
mx

∑
i=1

my

∑
j=1

cijbd
y,j(τy)bd

x,i(τx), (4.5)

where τ = [τx, τy]T ∈ R2. The notation sd(τ|tx, ty), sd(τ), and s(τ) are used interchange-

able when the supporting knot vector and the degree are clear from the context. It is

assumed that both B-spline functions bx and by have the same degree, d. For this reason,

4. B-SPLINES 45

the degree of the B-spline surface is d2. At first glance, the notation of B-spline curve and

surface may look similar. It is highlighted that a B-spline curve s(τ) take the input from

R to Rp. The curve is typed in bold font since it is a vector and its parametric variable is

written in non-bold font because it is a scalar. Meanwhile, a B-spline surface s(τ) maps

from R2 to R. The surface is typed in non-bold font because it is a scalar value and its

parameter is typed in bold font since it represents a vector.

Let C ∈ Rmx×my be a real matrix with entries cij. Then, a B-spline surface can be written

in matrix form as

s(τ) = bx(τx)
TCby(τy). (4.6)

Applying the vectorization operator in (4.6), yields

s(τ) = vec (bx(τx)
TCby(τy))

= (by(τy)
T ⊗ bx(τx)

T) vec (C)

= ϕ(τ)Tc,

where ϕ(τ) = by(τy) ⊗ bx(τx) ∈ Rmxmy and c = vec(C) ∈ Rmxmy . Transposing the

previous equation for the B-spline surface, yields

s(τ) = cTϕ(τ). (4.7)

For a uniformly spaced knot vector, the spline function is continuous up to degree d

(see Property 4). In this case, the first derivative of the surface with respect to the para-

metric variable exists and can be written in compact form as

ds(τ)
dτ

= cT dϕ(τ)

dτ
= cT

[
∂ϕ(τ)

∂τx

∣∣∣ ∂ϕ(τ)
∂τy

]
, (4.8)

where the partial derivatives of the spline tensor are defined as

∂ϕ(τ)

∂τx
= by(τy)⊗

dbx(τx)

dτx

∂ϕ(τ)

∂τy
=

dby(τy)

dτy
⊗ bx(τx)

(4.9)

Proposition 4.2. The computational cost to evaluate a B-spline curve is O(d2 + 2d + 1), that is,

constant w.r.t. to the number of control points.

The proof for this proposition is similar to the one presented in Proposition 4.1 and it

is stated here for the sake of completeness.

46 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Proof. From Property 2 (Local Support) we have that for τ ∈ [tµx , tµx+1)× [tµy , tµy+1) only

d + 1 coefficients of the B-spline bd
x(τ) and bd

y(τ) are non-null and, consequently, (4.5) is

equivalent to

sd(τ|tx, ty) =
µx+1

∑
i=µx

µy+1

∑
j=µy

cijbd
y,j(τy)bd

x,i(τx), ∀τ ∈ [tµx , tµx+1)× [tµy , tµy+1)

In fact, sd(τ) is a combination of the (d + 1)2 control points. Therefore, regardless of its

length and number of control points, by considering only the non-null B-spline coeffi-

cients, the computational complexity to evaluate a B-spline curve is O(d2 + 2d + 1).

4.2 B-spline sparse library

To deal with the computational constraints imposed by online SLAM, a sparse B-spline

library custom-made to our needs was implemented in the programming language Py-

thon3. The key-concepts considered for computational efficiency were:

1. using a non-clamped uniformly spaced knot vector;

2. avoid the recursive relation described by the De Boor’s algorithm (4.1);

3. to take into account only the non-null B-spline coefficients and corresponding con-

trol points;

The advantage of using a non-clamped uniformly spaced knot vector are mainly three.

First, it allows to easily modify the size of the map. Although a wide range of applica-

tions use clamped knot vectors, they are not interesting in SLAM. The reason is that in

clamped knot vectors the final and initial knots are repeated and, therefore, extending the

map would require rebuilding the frontier of the map where the knots are clamped. The

second advantage is that storing a uniformly space knot vector is compact. Let m be the

number of control points, an uniformly spaced knot vector is well defined by three values:

the initial knot (t1), the final knot (tm+d+1), and the knot interval (∆). Finally, and most

important, when the knot interval is constant the B-spline functions are shifted version of

one another. For example, in Fig. 4.3, b(τ2) and b(τ3) can be obtained by shifting the coef-

ficient of b(τ1). This can be easily verified using the recursive relation described in (4.1).

Let τ1 ∈ [tµ, tµ+1) and τ2 = τ1 + ∆, where ∆ is the constant knot interval. To obtain i-th

coefficient of b(τ2) evalute the expression

4. B-SPLINES 47

FIGURE 4.3: Evaluating a cubic B-spline function supported by an uniform knot vector
with constant knot interval ∆. Since τ2 = τ1 + ∆ and τ3 = τ2 + ∆, the non-null B-spline

coefficients of b(τ2) and b(τ3) can be obtained by shifting the coefficient of b(τ1).

br
i (τ2) =

τ2 − ti

ti+r − ti
br−1

i (τ2) +
ti+r+1 − τ2

ti+r+1 − ti+1
br−1

i+1 (τ2).

=
τ1 + ∆− ti

ti+r − ti
br−1

i (τ2) +
ti+r+1 − (τ1 + ∆)

ti+r+1 − ti+1
br−1

i+1 (τ2),

br
i (τ2) =

τ1 − (ti − ∆)
(ti+r − ∆)− (ti − ∆)

br−1
i (τ2) +

(ti+r+1 − ∆)− τ1

(ti+r+1 − ∆)− (ti+1 − ∆)
br−1

i+1 (τ2).

Since the knot interval is constant, tk−1 = tk − ∆, ∀k holds, and the previous equation can

be rewritten as

br
i (τ2) =

τ1 − ti−1

ti+r−1 − ti−1
br−1

i (τ2) +
ti+r − τ1

ti+r − ti
br−1

i+1 (τ2). (4.10)

Now, compare the previous equation with the (i− 1)-th coefficient of b(τ1), that is,

br
i−1(τ1) =

τ1 − ti−1

ti+r−1 − ti−1
br−1

i−1 (τ1) +
ti+r − τ1

ti+r − ti
br−1

i (τ1). (4.11)

The terms in (4.10) multiplying br−1
i (τ2) and br−1

i+1 (τ2) are the same terms multiplying

br−1
i−1 (τ1) and br−1

i (τ1) in (4.11). Applying in a recursive manner, one concludes that

br
i (τ2) =

τ1 − ti−1

ti+r−1 − ti−1
br−1

i−1 (τ1) +
ti+r − τ1

ti+r − ti
br−1

i (τ1) = br
i−1(τ1).

The coefficients of b(τ2) and b(τ1) are related by a single shift in the knot vector.

The recursive relation given by the De Boor’s algorithm is useful to define the basic

B-spline properties. Moreover, it allows to compute the coefficients of a B-spline function

of any degree supported by any valid knot vector. However, such a a generic formu-

lation comes at a cost: computing coefficients in a recursive manner is computationally

expensive. This is because many of the terms computed are actually multiplied by zero,

48 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 4.4: Normalising parametric variable τ = 0.21 defined on a uniform knot inter-
val with ∆ = 0.1. The result τ̄ = 0.1 is obtained via (4.12).

which is returned at the bottom of the recursion by a null zero-th order coefficient. For

this reason, an alternative method was sought.

In fact, there is an efficient manner to compute the coefficients when τ ∈ [0, 1) and

the constant knot interval is unitary, i.e., ∆ = 1. This is addressed in the literature as a

normalised uniform B-spline [35]. To take advantage of this, it is first necessary to map a

non-normalised knot into a normalised knot1. The normalization process is only possible

because the knot interval is constant. Let the constant knot interval be ∆, for some τ ∈ t,

its normalised value is denoted as τ̄ ∈ [0, 1) and it is computed as

τ̄(τ) =
τ

∆
−
⌊

τ

∆

⌋
. (4.12)

This process is shown in Fig. 4.4 for ∆ = 0.1 and τ = 0.21, which yields τ̄ = 0.1. Eval-

uating a B-spline function at τ is similar to evaluate a normalised B-spline function at

τ̄(τ). For example, for a cubic order B-spline function (d = 3), the non-null coefficients at

τ ∈ [tµ, tµ+1) can be obtained via the polynomial form for a normalised B-spline function:

b3
µ(τ) =

1
6
(−τ̄3 + 3τ̄2 − 3τ̄ + 1)

b3
µ−1(τ) =

1
6
(3τ̄3 − 6τ̄2 + 4)

b3
µ−2(τ) =

1
6
(−3τ̄3 + 3τ̄2 + 3τ̄ + 1)

b3
µ−3(τ) =

1
6

τ̄3

(4.13)

For more polynomial forms of normalised B-spline functions the reader is referred to [35].

The derivative of b(τ) can be simplified by substituting the constant knot interval ∆

and τ = τ̄ in (4.3), that is,

dbd
i (τ)

dτ
=

1
∆
[bd−1

i (τ̄)− bd−1
i+1 (τ̄)].

1A normalised knot is always in the interval [0, 1)

4. B-SPLINES 49

Algorithm 1: Computing B-spline coefficients
signature: bµ, dbµ, µ← compute spline(τ)
Input: τ
Output: bµ, dbµ, and µ
Internal parameters: d, ∆, and t1.
1: Normalise τ to the interval [0, 1): τ̄ ← (4.12)
2: Compute d + 1 non-null B-spline coefficients [bi]

µ
i=µ−d: bµ ← (4.13)

3: Compute d + 1 non-null B-spline derivative coefficients [dbi]
µ
i=µ−d: dbµ ← (4.14)

4: Find µ such that τ ∈ [tµ, tµ+1): µ← (4.15)

Applying the polynomial form for a normalised uniform quadratic B-spline function in

the previous equation, yields

db3
µ(τ)

dτ
=

1
6∆

(−2τ̄2 + 6τ̄ − 3)

db3
µ−1(τ)

dτ
=

1
2∆

(3τ̄2 − 4τ̄)

db3
µ−2(τ)

dτ
=

1
2∆

(−3τ̄2 + 2τ̄ + 1)

db3
µ−3(τ)

dτ
=

1
2∆

τ̄2.

(4.14)

Now that only the non-null terms are computed, the algorithm must keep track of the

index µ− d, . . . , µ that these coefficients refers to. For τ ∈ [tµ, tµ+1), µ is given by

µ =

⌊
τ − t1

∆

⌋
+ 1, (4.15)

where t1 is the initial knot.

Algorithm 1 shows the steps for computing a B-spline function in an efficient manner.

The input is the non-normalised scalar parametric value τ and the output are the non-null

coefficients of the B-spline function (bµ) and its derivative (dbµ), and the index (µ). The

index allows later to find the control points associated to the non-null coefficients.

The B-spline tensor is obtained using the previous result. The tensor defined in (4.5)

has (d + 1)2 non-null coefficients. These are computed as follows:

ϕk(τ̄) = by,j(τ̄y)bx,i(τ̄x),

k = (j− 1)(d + 1) + i

i = µx − d, . . . , µx

j = µy − d, . . . , µy

(4.16)

where for a cubic B-spline basis function bx = [bx,i]
µ
i=µ−d and by = [by,i]

µ
i=µ−d are com-

puted as in (4.13). The pairs (τ̄x, τ̄y) and (µx, µy) are obtained using (4.12) and (4.15),

50 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Algorithm 2: Computing B-spline tensor coefficients
signature: ϕµ, dϕµ,x, dϕµ,y, µx, µy ← compute tensor spline(τ)
Input: τ = [τx, τy]
Output: ϕµ, dϕµ,x, dϕµ,y, µx, and µy

Internal parameters: d
1: Compute the B-spline along the x-axis: bµx , µx ← compute spline(τx)
2: Compute the B-spline along the y-axis: bµy , µy ← compute spline(τy)
3: Compute (d + 1)2 non-null coefficients of the B-spline tensor: ϕµ ← (4.16)
4: Compute (d + 1)2 non-null coefficients of B-spline tensor partial derivatives:
dϕµ,x, dϕµ,y ← (4.17)

respectively. Similarly, the derivative of a B-spline tensor is given by
∂ϕk(τ̄)

∂τx
= by,j(τ̄y)

dbx,i(τ̄x)
dτx

∂ϕk(τ̄)
∂τy

=
dby,j(τ̄y)

dτx
bx,i(τ̄x)

,

k = (j− 1)(d + 1) + i

i = µx − d, . . . , µx

j = µy − d, . . . , µy

(4.17)

where the B-spline derivatives [
dbx,i
dτx

]
µx
i=µx−d and [

dby,j
dτy

]
µy
j=µy−d are as in (4.14). These results

are gathered in Algorithm 2, which shows the steps for computing a B-spline. The input is

the non-normalised parametric variable τ ∈ R2. The output are the non-null B-spline ten-

sor coefficients (ϕ), its partial derivatives (dϕµ,x, dϕµ,y), and their corresponding indices

(µx, µy).

B-spline curve

Using the notation as in Algorithm 1, evaluating a B-spline curve boils down to comput-

ing

s(τ) = Cµbµ(τ),

where, for a cubic B-spline basic function, Cµ = [ci]
µ
i=µ−3 has four control points. The

B-spline derivative is given by

ds(τ)
dτ

= Cµdbµ(τ).

B-spline surface

Similarly, resorting to Algorithm 2, a B-spline surface is

s(τ) = cµ
Tϕµ(τ)

4. B-SPLINES 51

where, for a surface with cubic basis functions, cµ = [c(j−1)4+i]
µx ,µy
i=µx−3,j=µy−3 gathers 16

control points. The partial derivative of the B-spline surfaces are

ds(τ)
dτ

= cµ
T
[

dϕµ,x(τ)
∣∣∣ dϕµ,y(τ)

]
.

4.2.1 Computational performance comparison

A lightweight B-spline library that meets our computational needs was implemented in

the programming language Python3. The package, named as spline-sparse, was designed

having in mind that only a few B-spline coefficients are non-zero (as summarised in Al-

gorithm 1 and 2). For evaluation purposes, the performance of the developed library

is compared with other B-spline Python3 packages, namely NURBS-Python, bspline, and

Splipy:

• NURBS-Python: This is an object-oriented B-spline and Non-Uniform Rational Ba-

sis Spline (NURBS) library developed by Onur R. Bingol. It provides functionalities

for B-spline curve, surface, and volume. It has a friendly user-interface and support

for 3D visualization. Available at: https://nurbs-python.readthedocs.io/

• bspline: This is a B-spline library that implements the B-spline basis functions using

the De Boor’s algorithm. The library, designed by John T. Foster and Juha Jeronen,

provides Matlab integration. Available at: https://pypi.org/project/bspline/

• Splipy: This library focuses on B-spline curves, surfaces, and volumes. It claims

to be an alternative for classical CAD tools when fine-grained control over the geo-

metric shape is required. It provides interesting built-in features such as curve and

surface fitting. Available at: https://pypi.org/project/Splipy/

These four libraries were evaluated on a laptop equipped an Intel Core i5-3317U

1.7GHz. Three tests were considered, which aims at assessing the temporal cost to eval-

uate a B-spline curve and its derivative, a B-spline surface and its derivative, and the

impact of increasing the length of the support knot vector. For each combination of task

and library, the same experiment is repeated 100 times (to diminish the impact of out-

lier time measurements). For all the tests, the degree of the B-spline basis and the knot

interval were fixed at d = 3 and ∆ = 0.05, respectively.

The first results, presented in Fig. 4.5, show the cost to evaluate B-spline geometric

shapes as the number of evaluation points increases. For both B-spline curve (Fig. 4.5a)

https://nurbs-python.readthedocs.io/
https://pypi.org/project/bspline/
https://pypi.org/project/Splipy/

52 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 4.5: Assessing the computational performance of four B-spline libraries for a
mapping alike task. The cost to evaluate a B-spline curve and a B-spline surface as the

number of points increases are shown in (a) and (b), respectively.

and B-spline surface (Fig. 4.5b) the proposed library (spline-sparse) and Splipy scored

the best results, that is, the smallest time to perform the task. In our SLAM algorithms,

evaluating a B-spline curve or surface at multiple points is required during the mapping

task - it is a one time operation per observation reported by the sensor. Bear in mind that

modern range sensors provide several observations of the environment at a high rate.

For example, in this thesis it is analyzed datasets from range sensors that provide 180 (at

5 Hz), 360 (at 5 Hz), and 1040 (at 40 Hz) measurements per scan reading. The numerical

results for evaluating a B-spline curve and a surface at these specific number of points

are shown in Table 4.1. The table highlights in bold the values for which a combination

of B-spline library and sensor (number of points per measurements and rate) would be

accepted for online mapping, that is, the operation works at least as fast as the sensor

rate. For example, consider a sensor that works at 5 Hz and captures 180 measurements

per scan reading. Then, processing a single scan reading shall take no longer than 200 ms.

The proposed library was the only one that succeed in all the scenarios considered. Spline-

sparse was specially faster at evaluating a B-spline surface.

TABLE 4.1: Cost to query the value of a curve and a surface at 180, 360, and 1040 points.
Values that respect the time constraints imposed by the sensor rate are typed in bold.

B-spline curve B-spline surface
Number of points 180 360 1040 180 360 1040
Max acceptable time (ms) 200 200 25 200 200 25
NURBS-Python (ms) 7.95 15.64 45.58 121.13 241.33 702.80
bspline (ms) 4.37 6.53 20.54 128.85 214.73 492.80
Splipy (ms) 0.94 1.68 5.14 2.39 5.19 32.23
spline-sparse (ms) 0.33 0.43 0.76 0.91 1.05 1.89

4. B-SPLINES 53

TABLE 4.2: Computational time required for evaluating a curve and a surface as well as
their first order derivatives. Values that respect time constraints imposed by the sensor

rate are typed in bold.

B-spline curve and its derivative B-spline surface and its derivative
Number of points 180 360 1040 180 360 1040
Max acceptable time (ms) 40 40 5 40 40 5
NURBS-Python (ms) 11.68 24.16 67.12 137.60 274.51 797.05
bspline (ms) 69.09 135.99 473.21 442.80 729.85 2043.94
Splipy (ms) 1.08 1.87 13.13 6.48 13.64 77.40
spline-sparse (ms) 0.52 0.61 1.02 1.32 1.56 2.84

The second set of experiments analyses the time to compute B-spline curves and sur-

faces as well as their first order derivatives. These computations are required during the

localization tasks. However, since localization typically resorts to iterative methods, these

operations are done multiple times per scan measurement. Table 4.2 shows the time that

each library takes to complete the task for 180, 360, and 1040 points. The minimum ac-

ceptable time assumes that a localization algorithm runs up to five iterations per scan. As

as consequence, it evaluates the B-spline curve (or surface) and its first order derivative

up to five times. The acceptable time for online operations are highlighted in bold. The

proposed library is from 5 to 100 times faster than alternative Python3 libraries. Also, it

is the only one capable of respecting the time constraints imposed by all the sensor con-

sidered evaluated by our SLAM algorithms. The behaviour of the computational time as

the number of points increases is shown in Fig. 4.6. The graph only shows the results

for the Splipy and spline-sparse libraries because the others were significantly slower. In

the B-spline curve scenario, it is unknown the reason for the sudden increase in the com-

putational time of Splipy from 3.2 ms (640 points) to 8.3 ms (660 points). Regardless of

FIGURE 4.6: Assessing the computational performance of two B-spline libraries for a
localization alike task. (a) shows the temporal cost to evaluate a B-spline curve and its
derivative as the number of point increases. Similarly, (b) shows the cost to evaluate a

B-spline surface and its first order derivative.

54 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

that, the big picture shows that when evaluating a few points, Splipy and spline-sparse

have similar computational time. As the number of point increases, the temporal cost to

complete the task increases faster for Splipy.

The number of control points of the B-spline curves and surfaces employed in this

work is considerable large than the degree of their B-spline basis. From Property 2, local

support, the number of non-null coefficients does not depends on the number of control

points, but rather on the degree of the B-spline. For instance, by fixing the B-spline degree

at d = 3, it is know that there are up to 4 non-null coefficients for a B-spline curve and 16

non-null coefficients for a B-spline surface. Computing the curve or the surface through

(4.1) and (4.5) is not efficient because most of the coefficients are null. Figure 4.7 shows

the time required to evaluate a B-spline curve and its derivative as the number of control

points increases. As a refresher, this is an operation carried out during the localization

and it is the most computational demanding task demanded by our SLAM framework.

The results for the NURBS-Python and bspline libraries are not plotted because as ob-

served in the previous tests these libraries are considerable slower. For the spline-sparse

library the computational time is constant as the length of the B-spline basis increases.

This supports our claim that the cost is constant with respect to the number of control

points. In contrast, for the Splipy library the temporal cost increases as the length of the

control points increases. By analysing their code, it is possible to confirm that it performs

several multiplications between a control points and a null coefficient.

FIGURE 4.7: Computational time required for evaluating a B-spline surface and its
derivative as the number of control points increases. The number of control considered
to plot this graph corresponds to cubic B-spline surface maps of 1 m2 to 100 m2 built with

a constant knot interval ∆ = 0.05.

4. B-SPLINES 55

Final remarks

The design and implementation of the spline-sparse library aimed at computational per-

formance and it was tailored-made for our needs. While the other libraries evaluated excel

in other features, such as user-friendly interfaces, generic approach, and 3D visualization,

they do not satisfy the computational constraints imposed by online SLAM. For instance,

NURBS-python, bspline and Splipy store the entire B-spline function vector b(τ) ∈ Rm.

However, as discussed before, only the coefficients bµ−d(τ), . . . , bµ(τ) for τ ∈ [tµ, tµ+1) are

non-null. As a consequence, since m >> d, the aforementioned libraries perform several

B-spline coefficients and control points multiplication which are meaningless. NURBS-

python and bspline implement the De Boor’s algorithm for computing the B-spline co-

efficients. This is considerable slower than our polynomial approach. It is not clear the

method implemented on Splipy. Implementation-wise, we strive to take advantage of the

characteristics inherent to Python3 to speed up computations, e.g., avoiding f or-loop’s.

Part I

Range-based SLAM

57

Chapter 5

A Review on Simultaneous

Localization and Mapping

The problem of Simultaneous Localization and Mapping has been an active research topic

for approximately 30 years. The goal of this chapter is to present some of the solutions

developed by the community, taking into consideration the historical importance but also

focusing on methods that are relevant for the particular problems discussed in this docu-

ment. The chapter is organized as follows: Sec. 5.1 introduces the SLAM problem; Sec. 5.2

presents different types of maps; Sec. 5.3 covers key SLAM techniques; and Sec. 5.5 high-

lights the limitations which are addressed in this thesis.

5.1 Formulation

The state in SLAM encodes the map and the pose of the robot. Estimating the map is

known as mapping, while estimating the pose of the robot is named localization. The key

elements presented in a SLAM formulation are

• ξ0:t+1 = {ξ0, . . . , ξt+1}: pose of the robot from time 0, . . . , t + 1;

• ξ0:t = {u0, . . . , ut}: odometry (or control input) of the vehicle from time 0, . . . , t;

• z0:t = {z0, . . . , zt}: measurements of the environment from time 0, . . . , t;

• m: map of the environment as perceived by the robot.

The relationships between these quantities are represented in Fig. 5.1. The vehicle ob-

serves the measurement zi at pose ξi. The control ui excites the vehicle, which evolves to

59

60 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

u0

z0 z2

ξ0 ξ1 ξ2 ξ3 ξ4

u1 u2 u3 u4

z4

m
FIGURE 5.1: Graphical model of the SLAM problem: the goal is to estimate the pose of the
robot (ξi) and the map of the environment (m). The control input ui and measurements

zi are known. The causality of a relationship is indicated by the direction of the edge.

pose ξi+1. The pose of the vehicle and the map are not directly observed by the robot and

must be estimated using the odometry (or control input) and the measurements provided

by an exteroceptive sensor. Note that odometry data is often provided at a higher rate

than environment observations1.

Sensor measurements are subject to different source of errors, e.g., sensor noise, erro-

neous data, wrong data association, and so on. For this reason, SLAM is often stated as a

probabilistic problem. Two probabilistic formulations are presented next: full SLAM and

online SLAM.

Problem 1. (Full SLAM) The full SLAM problem computes the probabilistic distribution

of the map and the pose of the robot as

p(ξ1:t, mt|z0:t, u0:t, ξ0). (5.1)

The probability distribution in (5.1) is not causal: the probability of a state is computed

by resorting to data from the future.

Problem 2. (Online SLAM) The online SLAM problem computes the probabilistic distri-

bution of the map and the pose of the robot at time t considering the previous pose and

measurements, that is,

p(ξt, mt|ξ0:t−1, z0:t, u0:t). (5.2)

In essence, in contrast to full SLAM, online SLAM is causal.

1Odometry and environment measurements are not well synchronized as Fig. 5.1 may suggest. The
navigation filter presented in Sec. 3.3 addresses this synchronization issue.

5. A REVIEW ON SIMULTANEOUS LOCALIZATION AND MAPPING 61

Solving the joint probability in (5.2) is decoupled in a localisation and a mapping prob-

lem. For the localization it is assumed that the map is known, that is,

p(ξt|ξ0:t−1, mt, z0:t, u0:t). (5.3)

On the other hand, the mapping problem assumes that the localization is known:

p(mt|ξ0:t, z0:t, u0:t). (5.4)

As discussed in Chapter 1, most sophisticated SLAM frameworks rely on a two stage

architecture called front-end and back-end stages. The front-end runs an online SLAM

algorithm, while the back-end runs an offline SLAM algorithm. The latter is similar to

the full SLAM problem in (5.1), but instead of continuously estimating the probability

distribution for all data, it solves the problem for a finite set of correlated poses and mea-

surements.

There are a variety of mapping and localization techniques which can be combined

to deliver a specific SLAM strategy. The literature review focused on front-end range-

based SLAM, from classical and well-established solutions to more recent approaches that

have shown promising results. Section 5.2 presents the map models as well as mapping

strategies to build them. Then, Sec. 5.3 focuses on SLAM frameworks, discussing the

localization techniques associated to each of them.

5.2 Mapping

A map is an important asset for any mobile robot as it is required for localization, motion

planning, human interaction, task execution and monitoring, etc. Over the years several

mapping techniques have been proposed by the robotics community. In an effort to stan-

dardise the mapping data representation, the IEEE standard for robot maps [36] classified

models into two categories, namely, topological and metric maps. A topological map is

a high-level representation of the world, which is most often encoded in a graph. Nodes

describe places or objects in the world, while edges describe the topological relationship

between those nodes. An edge connecting two nodes usually denotes adjacency of these

two nodes in the real world. A topological map provides vital information for high level

navigation, but it does not preserve the scale or shape of the environment. Metric maps,

on the other hand, encode the metric distance between elements in their model. This is

62 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 5.2: Different representations of the environment presented in (a): landmark-
based map (b), discrete grid map (c), and continous map (d).

convenient for SLAM, since the underlying idea in localization is computing the displace-

ment between the map and sensor readings. As illustrated in Fig. 5.2, metric maps can

be further categorized into landmark, discrete grid, and geometric representations [37].

The last method is categorised here in a more broad group, which it is called continuous

maps.

Landmark maps

Landmark maps store artificial or non-artificial features detected by the sensors of the

robot. The first group contains artifacts introduced by humans, such as reflectors or ar-

tificial tags. Non-artificial landmarks can be seen as critical points extracted from raw

measurements, such as corners or pillars. The Victoria park dataset [38] is a well-known

dataset for evaluating landmark based SLAM. It contains LiDAR readings acquired while

driving in an outdoor scenario populated with trees.

A landmark is described by a short descriptor, which encodes its pose and a few

other parameters to identify it. Also, in general, landmarks are sparsely distributed in

the environment. Consequently, a range sensor may collect a considerable amount of

data but only a small subset is stored in the map (Fig. 5.2b). Since landmark maps are a

compact representation of the environment, the model scales well for large environments

and model-related data exchange among robots is relatively efficient. However, proper

landmark-based localization requires a densely covered environment. The same applies

for the execution of other tasks, including motion planning and exploration.

Discrete maps

[Occupancy-grid] Discrete grid representation consists in decomposing the world into

small cells (Fig. 5.2c). The most well-known paradigm in this category are the discrete

occupancy-grid maps. Early work on occupancy grid maps was done by Moravec and

5. A REVIEW ON SIMULTANEOUS LOCALIZATION AND MAPPING 63

Elfes [39] for robot motion planning and navigation in cluttered environments. The key

idea is assigning to each cell an occupancy probability, which is reinforced as free or oc-

cupied by multiple sensor readings. Mathematically, let the occupancy probability of the

i-th cell of a map be p(mi), then it can be shown that assuming that the pose of the robot

(ξt) is known, the recursive approach holds:

log odds(mi = 1|z1:t, ξ1:t) = log odds(mi = 1|z1:t−1, ξ1:t) + log odds(mi = 1|zt, ξt). (5.5)

The previous equation reads as the occupancy probability of the i-th cell after incorporating

the measurements up to time t (posterior) is equal to the occupancy probability up to the previous

time (prior) updated by the evidence. The cells that the sensor has reported as occupied have

a positive evidence, increasing the occupancy. On the other hand, the cells reported as

free have a negative evidence, decreasing the occupancy. The occupied space is directly

provided by the sensor, while the free space has to be inferred from the data. The occu-

pied space corresponds to the points that the sensor beam was reflected by an obstacle.

The free space is computed via ray rasterisation, e.g., Bresenham’s line algorithm [40]. In

essence, for each sensor beam it is assumed that the cells that lie between the robot and an

obstacle (or the maximum range if no obstacle is detected) correspond to free space. The

cell size can be chosen to be arbitrarily small, which allows for an accurate description of

the environment at the expense of storage memory. The map is stored in an indexed ma-

trix and as a consequence it is fast to evaluate or update a cell state - both are O(1). Most

likely, these are the reasons that led the SLAM community to favor occupancy grid maps,

e.g., [4, 5, 12]. The major drawbacks of this method are: 1) it discretises high resolution

measurements, 2) it does not account for the fact that nearby regions have similar occu-

pancy state, 3) misalignment between cell and obstacles can deteriorate, and 4) it does not

scale well to large environments.

[TSDF] For the particular task of SLAM, it has been observed that non-brute force lo-

calization techniques operating on discrete occupancy grid maps have a small region of

convergence [41]. To alleviate this problem, the use of truncated signed distance function

(TSDF) maps has been investigated. TSDFs maps have been exploited in the vision com-

munity for quite some time [42]. Nonetheless, TSDF maps for range data is a relatively

recent topic with interesting results, see the work in [41, 43] (discussed in the next sec-

tion). Instead of storing the occupancy probability, the cells in a TSDF map represent the

64 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

distance to the nearest object in the map. Therefore, it has two advantages over occupancy

maps: 1) signed distance functions are differentiable and 2) it provides sub-cell accuracy.

However, it is not a probabilistic map: a dynamic obstacle is added to the TSDF map after

a single reading, while in occupancy-grid maps the obstacle must be observed multiple

times before being added to the map.

[Miscellaneous] There are many other flavours of discrete maps, such as the exact and

adaptive cell decomposition maps [40]. In exact cell decomposition maps boundaries are

extracted from critical points, defined by the geometry of the environment. The free con-

figuration space is represent as nodes in a graph. Therefore it can capture large areas in a

compact representation. Also, it is able to represent the connectivity of the environment

and transversable areas. An adaptive cell decomposition map (quadtree) is an hybrid

between the fixed cell and exact cell decomposition. Free space is represented by large

rectangles, while occupied cells are decomposed in smaller ones up to a pre-defined res-

olution. These maps are more commonly employed in motion planning and other tasks

where speed and accuracy are not as critical as in SLAM.

Continuous maps

In continuous or geometric representations obstacles are annotated individually using

continuous functions or geometric primitives, e.g., lines or polygons. These features have

a continuous range of values, i.e., floating point resolution [44]. Using the closed-world

assumption, regions of the map that do not contain any annotation correspond to obstacle-

free areas. Crowley [45] proposed one of the first successful geometric models, based on

line segments. Diedrich et al. [46] proposed a representation that uses polygonal curves

and addressed a matching methodology to find previously mapped curves. Vásquez-

Martı́n et al. [47] modelled the environment using points, linear segments, and curved

lines. The computed map is accurate, but it cannot handle the inherent uncertainty that

arises from noisy sensor data. A compact, and yet accurate representation using wire-

frames is shown in [48]. The method performs well while the assumption that the envi-

ronment can be represented by line segments holds, e.g., straight walls. To cope with map

uncertainty, their solution relies on a particle filter that assigns a particle to each wireframe

candidate. The main drawbacks in most geometric approaches are merging the geometric

primitives and the cost to evaluate whether a point in the space belongs to the occupied

or free space. Gaussian Processes (GPs) maps [49, 50] tackle the aforementioned limitations

5. A REVIEW ON SIMULTANEOUS LOCALIZATION AND MAPPING 65

at the expense of computational complexity. Yuan et al. [51] presented for the first time

an online GP-mapping. This promising method was shown to be able to map regions at

rates close to 10 Hz, which is fast enough for some mapping applications.

5.3 SLAM

Landmark

Theoretical tools that deal with the probabilistic uncertainty associated with landmarks

have been developed over the years, making landmark-based SLAM a mature technique

by now [8]. See for instance the seminal book by Thrun et al. [40] that covers landmark-

based SLAM algorithms using the two techniques discussed here: Extended Kalman Fil-

ters (EKF) and Rao-Blackwellized particle filters (RBPF).

[EKF] The landmark based EKF-SLAM was a pioneering solution proposed by Smith

et al. [52] in the early 1990’s. The underlying idea is representing the prior and the pos-

terior distributions of the SLAM state using Gaussian distributions. The algorithms has

two stages: prediction (time-update) and correction (measurement update). The predic-

tion usually runs at a higher rate than the correction step. Based on a motion model

(kinematics or dynamics of the vehicle), the prediction updates the pose of the platform

using odometry data (IMU, wheel enconderes, etc) or simply assuming a constant velocity

Algorithm 3: Landmark based EKF SLAM

Input: q̂t−1, P̂t−1 ut−1, and z
Output: q̂t, P̂t

/* Prediction step: */

1: ξ̌t = f (ξ̂t−1, ut−1, 0)

2: Σ̌t =
∂ f
∂ξ Σ̂t

∂ f
∂ξ

T
+ ∂ f

∂u Qt
∂ f
∂u

T
)

/* Correction step: */

for zi ∈ mt−1 do
/* Landmark is already in the map: */

3: H2i:2i+2,: =
∂hi
∂q (q̌t, 0)

4: r̃i = zi − hi(q̌t, 0)

5: K = P̌tHT(HP̌tHT + Vt)
6: q̂t = q̌t + Kr̃
7: P̂t = (I − KH)P̌t
/* Initialize landmark in the map */

for zi /∈ mt−1 do
8: m̂t, P̂t ← AddLandmarktoMap(m̂t, P̂t, zi)

66 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

(a) (b) (c)

FIGURE 5.3: Landmark based EKF-SLAM. The images show (a) the beginning of the
trajectory, (b) before revisiting initial landmarks, and (c) initial landmarks are revisited.
The true and estimated pose (trajectory) vehicle are indicated by a intermittent and solid
triangle (line). The ellipse around the vehicle and landmarks corresponds to 99.7% con-

fidence interval. Code available at https://github.com/C2SR/pyarena

model. The uncertainty of the pose of the robot grows, but the uncertainty of initialized

landmarks remains constant. In the correction step, measurements of the environment are

incorporated by means of an observation model. Observing the environment decreases

the uncertainty associated to the robot pose and landmark locations. It also allows to

initialize new landmarks that were not observed before.

An online EKF-SLAM is presented in Algorithm 3. Let n be the number of landmarks

in the map and the state be denoted by q ∈ R3+2n, such that

q =

[
ξT | mT

]T

=

[
x y ϕ | m1 . . . mn

]T

, (5.6)

where mi = [mi,x, mi,y]
T ∈ R2 are the coordinates of a 2D landmark described in the

map frame. The prediction (steps 1-2) computes the prior distributionN (q̌t, P̌t) using the

motion model presented in Sec. 3.3. The correction (steps 3-7, Algorithm 3) updates the

state (map and pose) via the measurements to obtain the posterior distributionN (q̂t, P̂t).

Assuming that the Cartesian coordinates of landmarks are observable, the observation

model takes the form

hi(q, vt) = R(ψ)T(mi − p) + vt, (5.7)

where vt is Gaussian white noise. The main advantages of EKF-SLAM is that it is sim-

ple to understand/implement and the results are good if neither the motion model nor

the observation model violates the Gaussian assumptions. Loop-closure is explicitly per-

formed every time the robot re-observes a mapped feature. This is shown in the example

illustrated in Fig. 5.3. The uncertainty associated with the first observed landmark is low.

As the vehicle navigates, pose uncertainty slowly grows and consequently landmarks ini-

tialized along the trajectory have a large uncertainty. Whenever the vehicle revisits the

https://youtu.be/kj-uE26DmMI
https://github.com/C2SR/pyarena

5. A REVIEW ON SIMULTANEOUS LOCALIZATION AND MAPPING 67

landmarks which were observed in the beginning of the trajectory, the overall map un-

certainty decreases. Loop-closure drastically reduces the uncertainty of the pose of the

vehicle and landmarks because the relative localization of landmarks are tightly coupled

via the covariance matrix.

The main drawbacks are that 1) the computational effort to incorporate an observa-

tion grows quadratically in the number of landmarks, 2) the method requires landmark

detection and data association (a major research topic in itself), and 3) the Gaussian model

assumptions are often violated in the real world. The data association step is responsible

for extracting landmarks from the raw laser data and uniquely identifying each feature

in the map. Poor data association, e.g., mismatching, can be catastrophic. Moreover,

bad data association and the non-linearities of the motion model may push the Gaus-

sian assumptions to the limit leading to poor and overconfident state estimation. To keep

the dimension of the filter compact, Dissanayake and colleagues [53] proposed remov-

ing landmarks based on the information content. Later, Guivant and Nebot presented a

computationally efficient online algorithm in [54]. Efficiency increases by using a submap

approach and limiting the maximum number of landmarks, favoring the ones that pro-

vide maximum information. However, it would not be until the introduction of particle

filters that SLAM would jump from a few hundreds to thousands of landmarks.

[RBPF] Murphy [55] was one the first authors to apply Rao-Blackwellized particle fil-

ter to the solution of the SLAM problem. A few years later, Montemerlo et al. presented

FastSLAM [56], an online strategy able to deal with thousands of landmarks revolutioniz-

ing landmark-based SLAM. In FastSLAM, a particle (or sample) represents a hypothesis

on the path of the robot - leading to the term multi-belief filter. It applies the concepts

of particle filter and, similar to EKF-SLAM, it has a prediction and a correction step. A

particle (or sample) represents a hypothesis of the pose of the robot. Each particle has

a set of independent Extended Kalman Filter associate to each landmark initialized in

the map. Therefore, for K particles and M landmarks, there are KM Kalman filters. The

strategy can be split into pose estimation and landmark location estimation. Pose estima-

tion requires first propagating the particles by sampling the probabilistic motion model, a

process called sampling from the proposal distribution. Later FastSLAM 2.0 [57], would

also take into account measurements for computing the proposal distribution improving

the accuracy of the solution. The correction step assigns importance weights to particles

68 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

according to the likelihood of the observations reported by the sensor. High weights in-

dicates particles that are likely to explain the state of the system correctly. A resampling

policy applies the survival of the fitness principle: particle with high weights are likely to

survive and low weight particles are likely to be removed. For landmark location estima-

tion, each particle keeps track of the position of the landmarks. However, in contrast to

EKF-SLAM, only observed landmarks are impacted by measurements. The posterior of

non-observed landmarks remains unchanged. Moreover, for computationally efficiency,

a tree-based structure decreases the complexity from quadratic (EKF) to logarithm in the

number of landmarks. The key advantages of FastSLAM are that it 1) relaxes the Gaussian

assumption, 2) deals better with non-linearities, and 3) is computationally more efficient

than previous approaches. Loop closure is implicitly performed by particle weighting and

re-sampling. The key to avoid the particle depletion problem are increasing the number

of particles, using accurate proposal distributions, and drawing and resampling particles

in an effective way. Since each particle carries an individual map, the maximum number

of particles is limited by the computational power available.

Occupancy grid

In landmark-based SLAM, the environment must be populated with a reasonable number

of landmarks, which have to be extracted from the sensor data and correctly matched

against features in the map at each laser scan. In contrast, occupancy grid-based SLAM is

a dense method that uses all the measurements from the range sensor.

[Scan-to-scan] The popularization of occupancy-grid based SLAM took place after

the first wave of landmark based SLAM. Nevertheless, occupancy grid maps have been

around since 1985, when Moravec and Elfes [39] proposed them as method for registering

dense range measurements. Paramount for its usage in SLAM, was the emergence of scan-

to-scan alignment methods. Mathematically, scan-to-scan can be stated as a maximum

likelihood problem:

ξ∗t = arg max
ξt

p(ξt|ξ̂t−1, zt−1:t). (5.8)

The goal is to find the pose that most likely describes the current scan reading (zt) given

the previous pose (ξ̂t−1) - note that a map itself is not employed (but can be built!). The

IDC (and derived algorithms) is one of the most influential work in scan-matching for

range based SLAM. Originally presented by Lu and Milios [58], IDC stands for Iterative

Dual Correspondence method. It performs a two stage search, where each stage finds the

5. A REVIEW ON SIMULTANEOUS LOCALIZATION AND MAPPING 69

relative pose ξt,t−1 from time t to time t− 1 that minimizes the least square error

ξ∗t,t−1 = arg min
ξt

∑
i
∥zt−1,j − T(ξt,t−1, zt,i)∥2, (5.9)

where zt−1,j is the point j from the the previous scan reading that is matched against

point i in the current iteration according to a rule and the function T(·) is defined as in

(3.3). The first search (closest-point rule) minimizes the translation error by matching the

points that are the closest and minimizing their distance (similar to the computer vision

Iterative Closest Point algorithm by Besl and McKay [59]). The second stage refines the

previous estimate to obtain the rotation by matching range points that are within the

same distance in their respective reference frame (matching-range point rule). The two

stages are performed iteratively until convergence. The output of IDC is the relative pose.

For localization, the relative pose can be integrated throughout the frames to obtain an

absolute pose w.r.t. the initial frame, i.e., map frame.

[Scan-to-map] Hähnel et al. [60] presented a SLAM method inspired in IDC. In the

context of map building and localization via scan matching, the key differences are two:

1) the authors built a local occupancy grid map with the most recent T measurements, de-

noted here as mt−1,T and 2) the motion model is incorporated to the problem formulation.

This is achieved by maximizing the marginal likelihood

ξ∗t = arg max
ξt

p(ξt|mt−1,T, zt)p(ξt|ξ̂t−1, ut−1). (5.10)

The first term on the right-side considers the consistency of the local grid map with the

measurements, while the second term accounts for the consistency of the new estimated

pose at time t with the previous estimated pose and control action (motion model). Af-

ter computing the new pose, the local map is updated as in [11]. Algorithm 4 describes

the steps for a vanilla implementation of three occupancy-grid based SLAM. In the pre-

processing stage (steps 1-2) wrong measurements (e.g., below minimum range) are dis-

carded and the valid polar measurements are transformed to Cartesian coordinates. Dur-

ing localization (step 3) a scan-to-map technique, such as maximum likelihood, finds the

pose that best align the current measurements against a local (or global) map. After that,

mapping takes place (step 4-6): free cells are computed via ray rasterization, detected oc-

cupied and free cells are transformed to the map frame, and the corresponding map cells

are updated.

Locally, maximum likelihood using a local discrete occupancy grid map yields good

70 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Algorithm 4: Discrete occupancy-grid SLAM

Input: ξ̂t−1 and z
Output: ξ∗t , m̂t

/* Pre-processing: */

1: Remove spurious measurements
2: Transform meas. from polar to Cartesian coord.: zi ← (3.2)
/* Localization: */

3: Solve scan-to-map alignment to estimate pose of the robot:
3a: maximum likelihood (single-belief): ξ∗t ← (5.10)
3b: full posterior (multi-belief): ξ∗t ← (5.11)
3c: non-linear least squares (single-belief): ξ∗t ← (5.12)

/* Mapping: */

for zi ∈ z do
4: Compute free space using a ray rasterization technique
5: Transform free and occupied space to inertial frame using estimated pose of
the robot: (3.3)

6: Update cell occupancy: mt ← (5.5)

results, but small drifts still make it hard to deal with large loop closure. In the search for

long-term SLAM, researchers turned to multi-belief filters and offline strategies.

[Scan-to-map PF] Thrun et al. [61] explored particle filters using a local map represen-

tation similar to [60]. Instead of maximum the marginal likelihood, the authors maximize

the full posterior distribution:

Bel(ξt) = p(ξt|mt−1, zt, u1:t),

where Bel stands for the belief of the robot about a particular event. Applying Bayes Law

(Definition 2.5), Markov Assumption (Definition 2.6), and Total Probability Law (Defini-

tion 2.4), it is possible to rewrite the full posterior as

Bel(ξt) = ηp(zt|ξ̂t, mt−1)
∫

p(ξt|ξ̂t−1, ut−1)Bel(ξ̂t−1)dξ̂t−1, (5.11)

where η is a normalizing factor, p(ξt|ξ̂t−1, ut−1) is the motion model derived from the

kinematics of the vehicle, and p(zt|ξt, mt−1) is the observation model. The latter is com-

puted under the assumption that it is not likely that occupied space in previous measure-

ments are detected as free space in the current scan reading. The posterior distribution is

approximated using samples. Then, for each sample, the solution for (5.11) is computed

via gradient ascent. The results are better than single-belief filters. Nonetheless, degra-

dation of the localization becomes critical in long trajectories with loop-closure. This is

5. A REVIEW ON SIMULTANEOUS LOCALIZATION AND MAPPING 71

addressed using an offline method that corrects a batch of pose estimations when the dis-

parity between the maximum a posterior and maximum likelihood estimates is non-null.

[Scan-to-map RPBF] An online grid-based RBPF is presented in [62]. A scan-matching

routine transforms sequences of range measurements into accurate odometry measure-

ments. The range-based odometry has variance lower than pure wheel encoder odometry

and it is employed for generating more accurate proposal distribution for every particle.

The lower the variance of the proposed distribution, fewer samples and less resampling

steps are required, increasing the robustness and speed of the algorithm. In [63], instead

of having a fixed proposal distribution for all the particles, the authors propose running

a scan-matching process for each particle. While it enhances the proposal distribution

for an individual particle, the odometry information is not properly considered. The au-

thors also use an adaptive resampling that estimates the performance of a set of particles,

which allows to reduce the number of resampling operations. The GMapping algorithm

by Grisetti et al. [4], an efficient and mature grid-based RBPF, became a popular SLAM

solution and it is still widely employed by the robotic community. It is an extension of [63]

that considers the odometry information. The enhanced proposal distribution draws new

particles more accurately, decreasing the number of particles required and improving the

results.

[Scan-to-map NLS] Kolbrecher and colleagues developed Hector-SLAM [5], yet an-

other popular method within the robotics community. In fact, Hector-SLAM and the

method proposed in Chapter 7 (B-spline Surface SLAM) have a similar structure. In

Hector-SLAM, a navigation filter incorporates IMU data at high rates to generate predic-

tion of the pose of the robot. For the localization step, it is assumed that an occupied cell

has the value 1 (normalized). The localization is formulated as a non-linear least square

problem:

ξ∗t = arg min
ξt

∑
i
∥1−mc(T(ξt, zi))∥2, (5.12)

where ms(·) is a function that computes the value of the map at a given point using bi-

linear interpolation. In other words, a continuous map and its gradient is obtained from

the discrete map by bi-linear filtering. The localization problem is solved solved using a

Gauss-Newton method. Since bi-linear interpolation is a non-smooth linear approxima-

tion of the map gradient there is no guarantees of local quadratic convergence. Multi-

resolution map representation mitigate local minima issues. The estimation computed

72 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

(a) (b) (c)

(e) (f)

FIGURE 5.4: Occupancy-grid based SLAM. From top left to bottom right, the images
shows a vanilla implementation of the NLS SLAM using bi-linear interpolation. The
vehicle is depicted by a green circle and the trajectory by a dashed line. The code and
dataset for reproducing the results are available at: https://github.com/C2SR/pyarena

using a low resolution map is used as hot start for a higher resolution map. The algo-

rithm is able to work at sensor rate speed and the results using a sensor with high scan

rates and low noise are accurate. Figure 5.4 shows the results for a vanilla implemen-

tation of the NLS SLAM using bi-linear interpolation that follows the steps described in

Algorithm 4. The range data obtained using a turtlebot 3 burger in Gazebo simulator. The

vehicle starts at the top of the map. The method performs well when the vehicle goes

under low rotations. However, due to the low sensor rate (5 Hz), it fails the robot perform

sharp curves (see distortion in Fig. 5.4f).

More recently, Hess and colleagues proposed Google Cartographer [12] - the gold

standard in 2D range based SLAM. This method explicitly detects loop closure through

a branch-and-bound approach and performs offline pose optimisation. The front-end is

very similar to Hector-SLAM, however, continuous maps are obtained using bi-cubic in-

terpolation. As a consequence, the occupied cells of the normalized discrete map which

should have maximum value at 1 - as in (5.12) - are likely to have values higher than the

norm.

Fossel et al. [41] presented the first TSDF-based 2D range based SLAM. The local-

ization technique is very similar to the one presented in Hector-SLAM (Gauss-Newton),

however the map is represented by a signed distance function - instead of representing the

https://github.com/C2SR/pyarena

5. A REVIEW ON SIMULTANEOUS LOCALIZATION AND MAPPING 73

occupancy probability, the map captures the distance to the closest obstacle. Since signed

distance functions are continuous, no interpolation is required for solving the localization

problem. The authors report results for the front-end using as metric the root-mean square

deviation from the ground truth. In simulations, the results are up to 270% better than

Hector-SLAM, while in real data the improvement is 14%. In [43], Daun and colleagues,

extend the previous work to account for loop-closure using the branch and bound tech-

nique developed in [12] and incorporating offline optimization. Their offline TSDF-based

SLAM outperforms Google Cartographer (offline occupancy-grid based SLAM). The au-

thors credits the improvement due to the nature of the map, which is able to represent the

environment more accurately.

Continuous

A few geometric strategies were presented in the very beginning of range based SLAM.

Then, in the period 1990-2010 landmark and occupancy-grid techniques were dominant.

However, in the last decades, as range data becomes more dense and accurate, geometric

SLAM has drawn considerable attention from the research community due to the fact that

it allows representing the data in a continuous manner.

[Lines] Crowley [45] proposed representing the map and estimating the pose of the

robot using lines extracted from the range data. The authors proposed representing the

lines by a set of minimal and redundant parameters. The minimal set comprises the mid-

point of the segment, orientation, half-length and associated uncertainty, while the redun-

dant set includes the distance to the origin, the perpendicular intercept, and end-points.

Line matching is performed by comparing three metrics: orientation, alignment, and dis-

tance of the center points to the sum of the half length of each line. The longest line

segment that conforms to the three metrics is used for estimated the pose of the robot us-

ing an algorithm inspired in the Kalman filter update equations. The position is estimated

using the perpendicular distance between matched segments, and the orientation via the

difference of the angle between the observed segment and the model in the map. The map

is enlarged and updated by recomputing the minimal and redundant parameters.

More recently, Holý [64] presented a line-based algorithm for computing the pose dis-

placement between two consecutive sensor readings. Lines are extracted from a sensor

reading in a two-step algorithm. First, using the split-and-merge algorithm, points are

classified in different lines. Then, via RANSAC, the method attempts to detect more lines

74 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

(a) (b)

FIGURE 5.5: Line-based scan matching: two consecutive laser scans depicted in black
and red lines are shown (a) before and (b) after the alignment process. The gray area

corresponds to the cost function to be minimized. Source: [64].

on the remaining points which split-and-merge failed to match against a line candidate.

The alignment error function is a continuous function of the lines (gray region in Fig. 5.5a)

and gradient descent is applied for obtaining the transform that minimizes the alignment

error (see Fig. 5.5b). The minimization takes place in the sensor space and, therefore, the

method is more robust against wrong line associations. The author does not cover the

problem of map merging and updating.

[Polynomials] The work by Pedraza et al. [65] addressed the SLAM problem using

B-spline curves. Given a point cloud, the first step is clustering the points that belongs

to the same curve, which is accomplished using the distance and orientation between

consecutive points. After fitting a B-spline curve to each cluster, comes the matching step:

finding the curve in the map that corresponds to the one observed in the current reading.

The authors addressed matching by computing the distance between the control points

the curves. This is critical because two similar B-spline curves can be represented with

different control points. The SLAM algorithm is an EKF that keeps tracks of the control

points of the B-spline curves and the pose of the robot. Later, Liu et al. [66] extended the

spline-SLAM framework to take the covariance error of each control point into account

improving the results. Zhao et al. [67] proposed using implicit functions for solving the

SLAM problem. Like B-sspline, implicit functions allow representing a wide variety of

shapes. The authors formulated SLAM as an energy minimization problem, where the

optimisation vector describes the pose of the robot and the changeable parameters of the

implicit functions that model the environment. They show that using implicit functions to

represent geometric features outperforms using pre-fixed geometric shapes such as lines

5. A REVIEW ON SIMULTANEOUS LOCALIZATION AND MAPPING 75

and ellipses.

[Gaussian Process] Li et al. [68] proposed GP-SLAM, a Gaussian Process Simultane-

ous Localization and Mapping technique. The map is a GP model which takes the points

from the scan reading as training data during the regression stage. The space is split

into sub-regions and points are clustered in each of these regions. The normal directions

for each region is computed using Principal Components Analysis (PCA) and the angle

between the normal direction and the map axes. Then, using this data, the GP model

is trained using classical GP-regression. For the localization task, testing points are ex-

tracted from the GP-model and compared with the observed data. However, instead of

minimizing the square distance between two points, the method finds the pose that min-

imizes the difference between the eigenvalues of the covariance matrix associated to the

testing and observed points.

5.4 Datasets and metrics

The previous section presented several SLAM strategies which were designed by con-

sidering different mapping strategies (landmarks, occupancy grid, signal distance func-

tions, etc) and localization algorithms (Extended Kalman Filter, maximum likelihood,

non-linear least square, etc). For comparison, these different SLAM frameworks must

be evaluated using the same metrics and datasets. A metric provides a quantitative or

qualitative performance indicator of a particular method, while a dataset allows to com-

pare (via some metric) different methods operating on the same data. Since SLAM is a

chicken-egg problem, measuring the performance of localization indirectly provides an

insight on the performance of the mapping and vice-versa.

5.4.1 Metrics

The most straightforward metric is a qualitative one: visually inspecting the estimated

map with the expected map. The latter map can be provided by a human operator who is

familiar with the testing environment or by the blue-print of the building where the data

was recorded. For instance, by comparing the SLAM result reported in Fig. 5.4 with the

actual environment shown in Fig. 3.8, it is possible to conclude that the estimated map

exhibits some unexpected artifacts.

76 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Yagfarov et al. [69] compared different SLAM methods using precise ground truth

for the map. In particular, the authors compared Gmapping, Hector-SLAM, and Google

Cartographer, which they claimed to be the most popular range based SLAM techniques

available in ROS in 2018. The data for comparison was collected with a ground vehi-

cle equipped with a LiDAR sensor (range measurements) and wheel encoders (odome-

try). The vehicle navigates in an office room and the data comprises four difference cases

regarding the dynamic of the vehicle: slow forward speed and smooth rotations, fast

forward speed and smooth curves, fast forward speed and sharp curves, and no loop-

closure. For comparing the map accuracy, the authors employed the average distance to

the nearest neighbor (ADNN), which consists in computing the normalized sum of the

distance between the nearest occupied cell in the map to the expected occupied cell in

the ground truth model. The smallest errors in the different scenarios are scored by the

Gmapping (fast ride, sharp rotations) and Google Cartographer (remaining scenarios).

A candidate for quantitative metric would be measuring the absolute pose estimation

error. The issue is that obtaining the ground truth for absolute pose is complicated in

the most simple scenario where the robot transverses a few rooms and corridors. This

is due to the fact that motion capture systems are only viable in a single chamber-alike

environments (e.g., a room), high precision laser distance meters require line of sight, and

measuring instruments such as metric tapes do not provide the accuracy required for a

ground truth. Having that in mind, Kummerle et al. [70] proposed four quantitative

metrics that do not require an inertial reference frame. To introduce the metric, consider

the following quantities:

• ξi, ξ j: ground truth poses at time ti and tj, respectively.

• ξ̂i, ξ̂ j: estimated poses at time ti and tj, respectively.

As previously discussed, in the general case the ground truth poses cannot be easily recov-

ered. However, it is possible to measure the relative ground truth pose, which is denoted

here as ξi,j = ξ j ⊖ ξi, where ⊖ is the inverse of the standard pose composition operator.

The metrics proposed in [70] compare the relative pose estimated by a SLAM algorithm

with the ground truth by individually considering the translational and rotational com-

ponents:

ϵtrans,2(ξ) =
1
N ∑

(i,j)
∥trans(ξi,j ⊖ ξ̂i,j)∥2

2, ϵrot,2(ξ) =
1
N ∑

(i,j)
rot(ξi,j ⊖ ξ̂i,j)

2; (5.13)

5. A REVIEW ON SIMULTANEOUS LOCALIZATION AND MAPPING 77

ϵtrans,1(ξ) =
1
N ∑

(i,j)
∥trans(ξi,j ⊖ ξ̂i,j)∥2, ϵrot,1(ξ) =

1
N ∑

(i,j)
|rot(ξi,j ⊖ ξ̂i,j)|. (5.14)

The motivation for separating the components is clear: translation is measured in me-

ters, while orientation is described in radians (or degrees). The authors states that the

squared metric in (5.13) corresponds to the energy required to transform the estimated

relative pose into the ground truth, while the absolute error (5.14) does not have a prac-

tical meaning but it has been historically well accepted by the community. In both cases,

the metrics are related to local consistency.

5.4.2 Dataset

The Robotics Data Set Repository (Radish for short) [71] is a large collection of data pub-

licly available thanks to the contribution of several research groups around the world.

It contains logs of laser, sonar, and odometry data recorded using real and simulated

robots. The corresponding maps generated by humans and robots are also available for

qualitative assessment. For example, Figure 5.6 illustrates the map for the data recorded

in MIT-CSAIL building dataset. The great advantage of the RADISH repository is that

a fair ground truth for several relative poses were obtained by human operators with

knowledge of the building [70]. As a matter of fact, there are several papers, e.g., [12, 72]

that report results generated using the RADISH data and the metrics described in (5.13)

and (5.14). The RADISH logs for which the relative pose measurements are available

were recorded using a LiDAR sensor with 180 deg field of view (1 deg angular interval)

operating at approximately 5 Hz. The odometry measurements (provided from wheel

FIGURE 5.6: SLAM datasets: (a) map of the MIT-CSAIL building from the RADISH
dataset [71]; (b) map with the blue-print of the Schloss Dagstuhl New Building from

the TU-Darmstadt dataset [5].

78 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

encoders) are about the same rate. For these reasons, these logs are challenging for most

front-end SLAM. In fact, to the author’s knowledge, GMapping is the only pure front-end

SLAM which is able to correctly process all these logs. However, these results, which are

reported in [70], were obtained by pre-processing the scan measurements for enhancing

the odometry before running the SLAM algorithm.

The TU-Darmstadt repository [73] contains data recorded using a Hokuyo UTM-30LX

LiDAR, which operates at 40 Hz and it has a 270 deg field of view, 0.25 deg angular inter-

val. There are three different scenarios, including the Schloss Dagstuhl building shown in

Fig. 5.6. In common, the datasets focus on Urban Search and Rescue missions. However,

in some scenarios the data was recorded using a robot, while in others using a handheld

sensor kit. A ground truth is not available, so these logs are only good for qualitative

comparison.

5.5 SLAM Limitations

The literature review presented in this chapter focuses mainly on map representations and

localization techniques, which are the core of any SLAM framework. However, there are

other active research topics, such as loop-closure detection and validation, robustness in

the presence of dynamic obstacles, and pose-graph optimization. In fact, to the author’s

knowledge, there is no SLAM strategy that solves all the possible scenarios envisioned

for sensor-controlled robots, and it is not the goal of this thesis to provide such a solution.

Instead, special attention is given to the following SLAM limitations:

• [Geometric SLAM] Representation of complex geometric shapes: Lines have been

the default geometric feature for representing geometric shapes in SLAM. The rich-

ness of B-splines has been explored in [65], but tracking control points instead of the

curve itself is not appropriate due to the fact that control points are not observable

and two set of different control points may yield the same curve.

• [Occupancy-grid SLAM] Cell/obstacle misalignment: The cells of a discrete grid-

map are aligned with the coordinates of the map frame. On the other hand, obstacles

in the simplest human-made environment will likely fail to be aligned with the cells

of a discrete map, e.g., an empty square room with straight walls. Once a scan read-

ing has been fully processed by the mapping algorithm, the raw data is discarded

by the front-end stage. Thus, while it is possible to infer whether a cell (a region) is

5. A REVIEW ON SIMULTANEOUS LOCALIZATION AND MAPPING 79

occupied or not, it is not possible to recover the location within the cell that led to

its occupancy. While TSDF-SLAM [43] has shown promising results to diminish the

problem, it is sensible in the presence of outliers and noise due to the fact that it is

not a probabilistic map.

• [Occupancy-grid SLAM] Gradient based localization using discrete maps: The

front-end of current state-of-the-art range-based SLAM algorithms typically runs

a scan-matching routine. Scan-matching can be addressed using brute-force ap-

proaches, e.g., [74]. However, in recent SLAM strategies, scan matching has been

formulated as an optimization problem and solved using gradient descent meth-

ods. The problem is that when storing the map in a discrete grid, interpolation or

smoothing techniques must be employed, e.g., non-smooth linear approximation [5]

or bi-cubic interpolation [12]. In a nutshell, occupancy grid-based SLAM converts

measurements into discrete resolution for efficient storage. Later, scan-matching re-

quires the computation of derivatives and sub-cell accuracy which is achieved by

interpolating the discrete grid. Such a process potentially leads to loss of informa-

tion and degraded performance in the local consistency of SLAM.

The first problem is addressed by in Chapter 6 (B-spline curve SLAM), while the sec-

ond and third issues are addressed in Chapter 7 (B-spline Surface SLAM).

Chapter 6

B-spline Curve SLAM

This chapter presents a geometric 2D B-spline curve SLAM that represents sparse envi-

ronments in a compact fashion. Sec. 6.1 highlights the trade-offs between the proposed

strategy and literature methods. B-spline curve SLAM has three modules, which are pre-

sented in Sec. 6.2 (pre-processing), Sec. 6.3 (mapping), and Sec. 6.4 (localization). Simu-

lated results are presented in Sec. 6.5.

6.1 Introduction

Geometric approaches for the SLAM problem are memory-wise more efficient than dis-

crete maps because geometric primitives are able to represent obstacles in the environ-

ment in a compact manner. For example, a long corridor can be represented by a few

parameters using lines, while representing the same scene with an occupancy grid map

requires multiple grid cells. However, it is often the case that the environment does not

boil down to circles, ellipses or polylines alike geometries.

In the proposed B-spline curve SLAM algorithm the map is a collection of B-spline

curves. Each curve represents an obstacle, which may have a rich geometric shape. For

example, the curve si(τ|ti) corresponds to the i-th object in the map, and it is supported

by a non-clamped uniform knot vector ti. It will be convenient to write the knot vector as

t(n, I, ∆), where n is the number of knots, ∆ ∈ R+ is the uniform step between consecutive

knots, and I ∈ Z is an offset. A particular knot can be recovered as

ti = (i− 1)∆ + I∆, for i = 1, . . . , n.

81

82 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Convert range
data from polar

to cartesian

Compute occupied
space measurements

Range
data

Point cloud
segmentation

Pose
(prediction)

B-spline curve
localization

Fr
o
n
t-

e
n
d

S
LA

M
 P

o
se

Navigation filter
(Section 3.3)

(Section 6.2) (Section 6.4)

B-spline curve SLAM

Transform data
from sensor to

map frame
Tracking

Spline fittingUpdate map

(Section 6.3)

FIGURE 6.1: Workflow of the B-spline SLAM algorithm. From left to right: pre-
processing (red box), mapping (blue box), and localization (green box). Mapping pro-
vides an initial guess to localization. Later, localization provides an optimized estimation

of the pose of the robot and B-spline parameters which allows to improve the map.

This representation allows us to store the knot vector using only three parameters. More-

over, it is simple to increase the size of the knot vector as the robot explores the world -

one has to update the offset (I) and/or the number of knots (n).

The main challenge in the proposed method is acknowledging that two B-spline curves

from different sensor readings represent the same artifact in the map. This is achieved by

tracking a curve across consecutive frames. For this, it is assumed that the dynamics of

the vehicle are slow when compared to the dynamics of the sensor. As a consequence, the

observation of an obstacle in two consecutive readings are close by.

The workflow of B-spline curve SLAM is depicted in Fig. 6.1. The first step, the pre-

processing stage (red box) is addressed in Sec. 6.2. This module is responsible for re-

moving wrong measurements from the raw sensor data, transforming data from polar to

Cartesian coordinates, and most importantly, segmenting them into clusters. In the map-

ping stage (blue box), Sec. 6.3, the clusters are transformed to the map frame using the best

available estimate - the prior provided by the navigation framework. The tracking task

searches for clusters that are nearby in consecutive sensor readings. If tracking succeeds,

it implies that the current cluster corresponds to a B-spline curve which has already been

initialized in the map. Regardless of the tracking result, B-spline fitting is applied to each

cluster. However, the curve obtained from a cluster associated to a mapped curve needs

to be fused (map update). The mapping and the localization stages (green box) happens

interleaved in time. As presented in Sec. 6.4, the key idea in localization is aligning the B-

spline curves obtained in the current sensor readings with the previously mapped curves.

6. B-SPLINE CURVE SLAM 83

The correspondence between curves are obtained via the tracking task. In addition to esti-

mating the pose of the robot, localization also optimizes parameters of the B-spline curve.

These optimized results are fed back into the mapping stage to obtain a more accurate

B-spline map. Finally, localization also provides pose corrections for the navigation filter.

6.2 Pre-processing

Occupied space measurements

A range sensor provides l range measurements of the environment r = (ri)
l
i=1 at discrete

angle intervals α = (αi)
l
i=1 w.r.t. the x-axis of {B} - see red dots in Fig. 3.1. Let rmin and

rmax be the maximum and minimum range of the sensor. A valid range measurement that

corresponds to an obstacle is within the interval [rmin, rmax], that is,

(rocc, αocc) = {(ri, αi)| rmin ≤ ri ≤ rmax, ∀i = 1, . . . , l}, (6.1)

where rocc, αocc ∈ Rlocc . The number of range measurements (l) is fixed, while the number

of valid occupied measurements (locc) may vary due to the absence (or proximity) of an

obstacle in a particular direction.

Polar to Cartesian coordinates

The valid occupied measurements are transformed to Cartesian coordinates as in (3.2),

that is,

z(ri, αi) ≡ zi = ri

cos αi

sin αi

 , (6.2)

where (ri, αi) is a tuple that describes a range beam and its direction, and zi are the Carte-

sian coordinates of a measurement described in the sensor frame.

Point cloud segmentation

Next, the point cloud is divided into clusters or blobs. Points that belong to the same blob

represent the same continuous geometric feature in the scene, e.g., a corridor. Inspired by

[65], we use two metrics to segment the point cloud: the absolute distance between two

84 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

consecutive points and the relative distance between three consecutive points:

∥zi − zi−1∥ ≤ γabs (6.3)

∥zi − zi−1∥ ≤ γrel∥zi−1 − zi−2∥ (6.4)

where γabs, γrel ∈ R+. The parameter γabs enforces that two consecutive points are not

far apart, while γrel imposes the maximum relative distance between three points. In

addition, the parameter γmin ∈ N is introduced. It describes the minimum number of

elements a cluster must have to be considered a valid set.

Implementation note

The point cloud segmentation algorithm was refined after experiments using simulated

data. The final version, which has three phases, is shown in Algorithm 5. The first phase

consists in identifying that the candidate point and the preceding point belongs to the

same blob. For that, the absolute distance between the two consecutive points must be

below the threshold given by γabs (instructions 1.1 to 1.3). In the second stage, once a blob

Algorithm 5: Point cloud segmentation

Input: Point cloud: z1, . . . , zlocc

Output: Segmented point cloud: Z1, . . . ,Zk
Initialization: k← 0, LABELLING ← False
Parameters: γabs, γrel , γmin

for i = 2, . . . , locc do
if LABELLING is False then

/* Searching for a blob based on absolute distance */

if ∥zi − zi−1∥ ≤ γabs then
1.1: Zk+1.append(zi−1)
1.2: Zk+1.append(zi)
1.3: LABELLING := True

/* Add point to blob based on relative distance */

else if ∥zi − zi−1∥ ≤ γrel∥zi−1 − zi−2∥ then
2: Zk+1.append(zi)

/* Removing blobs that do not have enough points */

else
3: LABELLING ← False
if |Zk+1| < γmin then

4: Zk ← {}
else

5: k← k + 1

6. B-SPLINE CURVE SLAM 85

-1 0 1 2 3 4

0

1

2

3

-1

-2

(a) (b) (c)

y
 (

m
)

x (m)

1

2

-1 0 1 2 3 4

x (m)

-1 0 1 2 3 4

x (m)

FIGURE 6.2: Point cloud segmentation: (a) vehicle is represented by a green triangle and
sensor reading by red circles; (b) point cloud segmentation based on the absolute dis-
tance; (c) point cloud segmentation using both relative and absolute metrics, discarding
blobs with a few number of elements. The clusters in (b) and (c) are illustrated using

different colors

candidate has been detected in the previous step, the following points that respect the

relative distance metric are included in the same blob (instruction 2). Note that at this sec-

ond stage only the relative metric in (6.4) must be respected. The third step acknowledges

that a blob has finished, which happens when the relative metric check fails (instruction

3). Clusters with too few points are excluded (instruction 4).

The relative distance metric is more relaxed than the absolute distance and it deals

better with the nature of the measurements. As illustrated in Fig. 6.2a, objects close to the

robot are more densely sampled, while obstacles further away are more sparsely sampled.

The point cloud segmentation presented in Fig. 6.2b was computed using the absolute

distance metric in (6.3) with γabs = 0.1 m. Notice that the top left side of the sensor

reading (annotation ”1”) is segmented into several distinct blobs, while some of them do

not fit in any blob at all. Figure 6.2c show the result using Algorithm 5, which considers

the relative metric and it is more likely to classify points that are far from the sensor in the

correct blob. Note that blobs with few points (annotation ”2”) are discarded.

6.3 B-spline Curve Mapping

In this section the mapping task is brought to light. To present the mapping strategy, the

pose of the vehicle ξ is assumed to be known and the point cloud has been segmented

into blobs. Said that, the mapping strategy breaks down into four sub-tasks:

86 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

1. Transforming measurements to map frame: transforms the segmented blobs from

the sensor to the map frame.

2. Data association: tracks a cluster between consecutive readings;

3. Spline interpolation: Interpolates the discrete data using a B-spline curve.

4. Map update: Updates the prior map, which includes extending and removing curve

segments.

The mapping steps are performed individually for each set of points Z1, . . . ,Zk. How-

ever, for the sake of simplicity, the algorithm is exposed for a single blob that contains the

first m points, that is, the set {z1, . . . , zm}.

Transformation from sensor to map frame

A Cartesian point zi described in the body frame {B} is transformed to the map frame

{M} by applying the rigid body transform

qi ≡ T(ξ, zi) =

cos ψ − sin ψ

sin ψ cos ψ

 zi +

x

y

 = R(ψ)zi + p, (6.5)

where q ∈ R2 is the notation for a measurement point described in the map frame.

Data association

From the assumption that the sensor sampling rate is sufficiently high with respect to the

dynamics of the vehicle, we induce that between consecutive readings the snapshot of

the environment is almost similar. Based on the aforementioned assumption, tracking is

devised by comparing the distance between the centroids of the clusters at instant t and

t− 1. The centroid of a cluster at time t is computed as

q̄(t) =
1
m

m

∑
i=1

qi, (6.6)

where m is the number of points detected in the blob considered here and may vary from

cluster to cluster. The tracking is said to succeed at time instant t if there is a cluster

detected at a previous time such that

m = arg min
i
∥q̄(t)− q̄i(t− 1)∥ ≤ γtrack, (6.7)

6. B-SPLINE CURVE SLAM 87

where q̄i(t− 1) are the centroids detected in the previous sensor readings and γtrack ∈

R+ is the acceptable distance between two clusters in consecutive sensor readings. If

tracking succeeds, it means that the centroid q̄m(t− 1) observed in the previous reading

corresponds to the centroid q̄(t) of the current reading. The subscript m stands for a map

index - it is assumed that the points represented by the centroid q̄m(t − 1) and q̄(t) are

described in the B-spline map by the curve sm.

B-spline curve fitting

The data points in each cluster are approximated by a B-spline curve. Also known as

spline approximation, spline interpolation can be categorized into local or global meth-

ods. Local approximation methods such as piecewise linear interpolant and cubic Her-

mite interpolant preserve well the shape of the data. In contrast, global approximation

methods relax the constraint that the curve must pass at each point being interpolated,

yielding smoother curves. The reason why we use global interpolation is three-fold: 1)

the number of control points and knot vectors per sensor reading is smaller, 2) it naturally

filters out the sensor noise, and 3) the map update method requires that the same geo-

metric feature yields similar knot vectors across consecutive readings, which can not be

directly obtained using local interpolants due the discrete nature of the input data.

The interpolation problem consists in computing the control points of the curve st(τ|tt) =

Ctb(τ)T, which best fit the m data points of the cluster. The problem can be formulated as

min
Ct

m

∑
i=1
∥Ctb(τi)

T − qi∥
2. (6.8)

To solve this problem, an association (qi, τi) that describes the position of qi along the

curve st(τ|tt) has to be derived. This is obtained using the cord length parameterization:

τi = τi−1 + ∥qi − qi−1∥2, i = 2, . . . , m

τ1 =

 τ̄t : tracking

0 : no tracking

(6.9)

where τ̄t is an estimation of the offset between the first point in the current cluster and the

corresponding point in the mapped curve for which tracking has succeeded. A cheap (in

a computationally sense) estimation is available from the previous iteration: τ̄t = τt−1,1 .

The reader is now ready to be introduced to the non-clamped uniform knot vector

tt(nt, It, ∆) that supports the B-spline st(τ|tt):

88 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

• ∆: knot interval, which is pre-specified.

• It = ⌊ τ1
∆ ⌋ − d: offset of the first point in the current cluster with respect to the origin

of the mapped curve.

• nt = ⌈ τm
∆ ⌉ − ⌊

τ1
∆ ⌋ + 2D + 1: number of knots that supports the patch of the curve

corresponding to the current sensor observation.

The solution for (6.8) that minimizes the error in a least square sense is Ct = PB† ∈

R2×nt−d, where

P = [q1, . . . , qm] ∈ R2×m,

BT =

b1(τ1) . . . bnt−d−1(τ1)

...
. . .

...

b1(τm) . . . bnt−d−1(τm)

 ∈ Rm×nt−d,
(6.10)

and B† = B(BTB)−1 is the right pseudo-inverse of BT.

If the cluster being considered does not correspond to any cluster in the previous sen-

sor reading, i.e., tracking has failed, then τ̄t = 0 and the interpolation task ends here.

Tracking

If track has succeed, the additional constraint st(τ) = sm(τ), ∀τ ∈ ∩(tm, tt) must also

hold. This constraint ensures that both curves yield the same value when evaluated in the

region that both overlap. As illustrated in Fig. 6.3, this is accomplished by introducing

the offset τ̄t that minimizes the curve alignment error defined as

1
2

r

∑
i=1
∥sm(τi|tm)− st(τi|tt)∥2, (6.11)

for τ ∈ ∩(tm, tt). Notice that r can take any value, as samples of the continuous curve

rather than the data points observed in the sensor reading are employed. Simulations

show that a small r suffices. Assume that an initial guess for τ̄t, which is available from

si (τ=0)
si (τ=τj)

si (τ=τi)

si (τ)
si (τ)

si (τ=0)

si (τ=τj - τi)

m

k

m

m

m
k

k k

k

FIGURE 6.3: Two overlapping B-splines curves that describe the same geometric feature.

6. B-SPLINE CURVE SLAM 89

the previous iteration, feeds (6.9). The problem can be posed as finding ∆τ̄t that minimizes

the error
1
2

r

∑
i=1
∥sm(τi)− st(τi + ∆τ̄t)∥2.

The first order Taylor expansion of st(τi + ∆τ̄t) yields

1
2

r

∑
i=1
∥sm(τi)− st(τi)−

st(τi)

dτ
∆τ̄t∥2 (6.12)

The solution for ∆τ̄t is computed using the Gauss-Newton method by taking the

derivative of (6.12) with respect to ∆τ̄t and setting it to zero, yielding

∆τ̄t = −H−1
r

∑
i=1

[
st(τi)

dτ
]T[sm(τi)− st(τi)] (6.13)

H =
r

∑
i=1

[
st(τi)

dτ
]T[

st(τi)

dτ
], (6.14)

where H ∈ R2×2 is typically full rank for a few samples and cheap to invert. Finally, the

interpolation problem (6.8) is solved once again to re-compute st, tt, and Ct , this time

letting τ1 = τ̄t + ∆τ̄t.

Map update

The final step consists in storing or updating the detected curve, that is, the control points

and the knot vector. If tracking has failed, the new curve snew
m = st is initialized in the

map by storing

Cm = Ct Im = It nm = nt α = 1, (6.15)

where α ∈ Rnm−d is the weight associated to the control points of sm. As patches of the

curve that correspond to the same control points are re-observed, the weight associated

to these control points increase up to γweight. The threshold is employed to filter outlier

associated to a static object in the map.

If tracking has succeeded, then the updated curve is a combination of the mapped

curve sm and its corresponding most recently interpolated curve st. For merging both

curves, first we introduce the weighted sum theorem for B-spline curves.

Theorem 6.1. (Weighted sum) Consider sa(τ|ta) and sb(τ|tb), two B-spline curves of degree d,

where ta(na, Ia, ∆) and tb(nb, Ib, ∆). The control points of the weighted sum curve, denoted as

sws(τ|tws), are the weighted sum of the control points of sb and sa associated with the B-spline

B(τ|tws).

90 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Proof. The knot vector tws(nws, Iws, ∆) = ∩(ta, tb) is defined by Iws = d + max (Ia, Ib) and

nws = min (na + Ia, nb + Ib)− Iws − d. Given the weights αa, αb ∈ R, it follows that

sws(τ) = αa

Iws−Ia+nws

∑
i=Iws−Ia+1

ca,iBi(τ|ta) + αb

Iws−Ib+nws

∑
i=Iws−Ib+1

cb,iBi(τ|tb)

= ∑
i
(αaca,i+(Iws−Ia) + αbcb,i+(Iws−Ib))Bi(τ|tws)

= ∑
i

cwsBi(τ)

For the region in which the curves overlap, the weighted sum curve sws(τ|tws) is com-

puted using Theorem 6.1. The control points of sws are given by

cws,i =
(αi+Iws−Im − 1)cm,i+Iws−Im + ct,i+Iws−It

αi+Iws−Im

for j = 1, . . . , nws − d− 1. The updated curve snew
m is defined by the knot vector:

Inew
m = min (Im, It) nnew

m = nm + nt − nws − 2D, (6.16)

and its control points are as described in Table 6.1, where

u1 = Iws −min (Im, It)

u2 = u1 + nws − d− 1

u3 = u2 + max (nm + Im, nt + It)−min (nm + Im, nt + It) + d

= max (nm + Im, nt + It)−min (Im, It)− d− 1

u4 = −u2 + Iws + nws − d− 1 = min (Im, It)

TABLE 6.1: Control point updating scheme for merging curves

cnew
m,i αnew

m,i Condition Interval
cm,i αm,i if Im ≤ It
ct,i 1 otherwise

1 ≤ i ≤ u1

cws,i−u1

min(γweight,
αm,i−u1+Iws−Im + 1)

- u1 + 1 ≤ i ≤ u2

cm,i+u4−Im αm,i if nm + Im ≥ nt + It
ct,i+u4−It 1 otherwise

u2 + 1 ≤ i ≤ u3

6. B-SPLINE CURVE SLAM 91

Algorithm 6: Map building algorithm

Input: Prior pose ξ̌, mapped curves sm, and segmented point cloud Z1, . . . ,Zk
Output: Mapped curves sm

t
Initialization: ξ, τ̄k

i , and sm
t

Parameters: d, ∆, γtrack γweight

for each cluster do
1: Compute the centroid (6.6)
2: Track cluster between readings: (6.7)
3: Solve the fitting problem (6.8)
if track succeeded then

4: Solve the curve alignment problem (6.11),(6.13)
5: Merge interpolated curve and mapped curve (6.16) and Table 6.1.

else
6 Initialize curve in the map (6.15)

Implementation

Algorithm 6 describes the key steps to build the B-spline curve map. From step 1-3 a clus-

ter of discrete points is transformed in a B-spline curve. Tracking requires two additional

operations: computes the displacement between the current and the mapped curves (step

4) and merge them (step 5). However, if a curve does not match against a mapped curve,

then there is nothing to be merged, but only the need to initialialize the curve in the map

(step 6). Fig. 6.4 shows the the segment point-cloud and the resulting B-spline curve map

with d = 3. The curves are a smoothed version of the point cloud. If the B-spline degree

is fixed, the smoothness of the curve is directly attached to the knot interval.

FIGURE 6.4: Transforming a segmented point cloud (left image) on a B-spline curve map
(right image).

92 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

6.4 B-spline Curve SLAM

This section presents the B-spline curve SLAM algorithm. The algorithm pipeline is simi-

lar to the mapping framework presented in Sec. 6.3. However, this time, it is not assumed

that the pose of the vehicle is known, but it is estimated instead. In a nutshell, the pro-

posed solution finds the pose that best aligns the mapped curve and its observation in the

current sensor reading. For every tracked curve, rather than solving (6.11), the following

optimization problem is considered:

min
∆ξ,∆τ̄t

1
2

k

∑
j=1

r

∑
i=1
∥sm,j(τi)− T(∆ξ, st,j(τi + ∆τ̄t,j))∥2,

where ∆τ̄t = [∆τ̄t,1, . . . , , ∆τ̄t,k] ∈ Rk is the knot interval displacement vector for the k

tracked curves. Linearizing the cost function using first order Taylor expansion about

[∆ξT, ∆τ̄T
t]

T = [0T, 0T]T yields

1
2

k

∑
j=1

r

∑
i=1
∥sm,j(τi)− st,j(τi)−

∂T(0, st,j(τi))

∂ξ
∆ξi −

∂T(0, st,j(τi))

∂τ
∆τ̄t,j∥2,

where

∂T(0, st,j(τi))

∂ξ
=

1 0 −st,y

0 1 st,x

 ∈ R2×3

∂T(0, st,j(τi))

∂τ
=

dst,j(τi)

dτ
∈ R2×1.

The solution can be found by matching the partial derivative w.r.t. ∆ξ and ∆τ̄t,j to

zero: ∆ξ

∆τ̄t,j

 = H−1
k

∑
j=1

r

∑
i=1

[
∂T(0,st,j(τi))

∂ξ
dst,1(τi)

d1τ , . . . , dst,k(τi)
dkτ

]T

(sm,j(τi)− st,j(τi)), (6.17)

where

H =
k

∑
j=1

r

∑
i=1

[
∂T(0,st,j(τi))

∂ξ
dst,1(τi)

d1τ , . . . , dst,k(τi)
dkτ

]T [
∂T(0,st,j(τi))

∂ξ
dst,1(τi)

d1τ , . . . , dst,k(τi)
dkτ

]
(6.18)

dst,j

dwτ
=

dst,j
dτ : j = w

0 : j ̸= w
(6.19)

6. B-SPLINE CURVE SLAM 93

Discussion

The parameters d, ∆, γrel , γabs, γmin,γtrack, and γweight play a major a role on the perfor-

mance and robustness of the proposed framework. The spline degree d must be at least 2,

to ensure that the spline curve has continuous first order derivative, a constraint imposed

by (6.13). The uniform knot step ∆ determines the map resolution. A large value smooths

out the sensor noise and sharp geometric shapes, while small values preserves better the

shape of the point cloud, but also leads to more oscillations. Furthermore, due to the na-

ture of interpolation, ∆ cannot be arbitrarily small. By choosing γabs smaller than ∆, one

ensures that B̄ in (6.10) has a pseudo-inverse and the interpolation problem (6.8) can be

solved. As the value of ∆ increases, γrel becomes crucial to correctly separate the data into

clusters. A minimum number of elements per cluster is guaranteed by the threshold γmin.

The parameter γtrack relies on the assumption that the robot does not move between two

consecutive sensor readings. A small value of γtrack increases the false negative tracking

rejection, while a large value increases the false positive tracking success. The last param-

eter, γweight, determines the dynamic of the control points in the presence of noise and

changes in the environment. After several simulations, the following parameter setup is

suggested: d = 3, γrel = 3, γabs = .7∆, γmin = 4(d + 1), γtrack = ∆, γweight = 50, and ∆ is

free.

For better convergence, different map resolutions are employed. This is a well-known

technique in laser-based SLAM [5] and visual-SLAM [75]. In B-spline maps, the resolution

is determined by the knot spacing ∆. First, the estimation (localization and mapping) is

computed for the coarsest map, that is, the one corresponding to the largest knot spacing.

Then, the pose estimation obtained previously is used in the next resolution as an initial

guess.

6.5 Results

The proposed solution was evaluated using the V-REP simulator of Coppelia Robotics.

Figure 6.5 shows the simulator environment and the proposed B-spline map using ∆ =

0.2 m. In a 64-bit size architecture, storing a B-spline curve requires 9 bytes per control

point (2 floats and 1 uint8 t) and 12 bytes per knot vector (1 float and 2 ints). An occupancy

grid map usually requires 1 byte (uint8 t) per cell. In particular, for the scenario shown

94 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 6.5: Qualitative evaluation of the proposed mapping framework in an environ-
ment with different geometric shapes. (left) shows the V-REP simulation scenario and

(right) the B-spline map presented in this work

in Fig. 6.5, the B-spline map is almost 10 times more compact than a similar 0.05 m grid

map.

The performance of the spline-based SLAM algorithm is assessed in two different sce-

narios, as illustrated in Fig. 6.6. In the first scenario, the vehicle follows a wall, while

translating horizontally. In the second scenario, the vehicle rotates around itself, while

mapping the environment. For both scenarios, the map represented by the B-spline curves

is similar to the ground truth. In each scenario, three map resolutions are employed:

∆1 = 0.4 m, ∆2 = 0.2 m, ∆3 = 0.1 m. Also, as previously mentioned in Sec. 6.4, a

multi-resolution approach that uses ∆1, ∆2, ∆3 in pyramid manner is evaluated. The re-

sults for the first scenario are shown in Fig. 6.7. In general, as expected, higher resolution

-3 -2 -1 0 1 2 3
x(m)

-3

-2

-1

0

1

2

3

y
(m

)

Vehicle (GT)
Vehicle (SLAM)

Map (GT)
Map (SLAM)

0 2 4 6 8 10 12
x (m)

-6

-5

-4

-3

-2

-1

0

1

2

3

y
(m

)

Scenario #01

Path (GT)
Path (SLAM)
Map (GT)
Map (SLAM)

Scenario #02

FIGURE 6.6: Missions performed to evaluate the performance of the proposed B-spline
SLAM. (left) vehicle moves in the horizontal plane and (right) vehicle rotates 360o while

standing still. GT stands for ground truth.

6. B-SPLINE CURVE SLAM 95

0 10 20 30 40
time (s)

0

0.02

0.04

0.06

0.08

0.1

er
ro

r (
m

)

Translation error

0.4
0.2
0.1
multi-resolution

0 10 20 30 40
time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

er
ro

r (
de

gr
ee

)

Heading error
0.4
0.2
0.1
multi-resolution

FIGURE 6.7: Estimation error for different knot steps (.4 ,.2, .1) m for the first scenario
shown in Fig. 6.6.

0 10 20 30
time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

er
ro

r (
m

)

Translation error
0.4
0.2
0.1
multi-resolution

0 10 20 30
time (s)

-20

0

20

40

60

80

100

120

er
ro

r (
de

gr
ee

)

Heading error
0.4
0.2
0.1
multi-resolution

FIGURE 6.8: Estimation error using different knot steps (.4, .2, .1) m for the second sce-
nario shown in Fig. 6.6.

maps lead to lower translation and orientation estimation errors because the map is able

to capture better the actual shape of the obstacles. However, using the solution of lower

resolution maps as a hot start still significantly improves the final solution. In the multi-

resolution trial, the final translation error was 0.2% of the total length of the trajectory.

Similar conclusions are drawn from the second scenario, shown in Fig. 6.8. Although the

lowest resolution map (∆1 = 0.4) failed to estimate the orientation, the multi-resolution

approach converges to a good estimation. The orientation error after a 360o. spin is less

then 1o..

96 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

6.5.1 Remarks

B-spline curve SLAM is a memory efficient approach for the SLAM problem. The method

requires clustering measurements, fitting a B-spline curve to each cluster, matching the

current curve against a previously mapped one, and finding the pose that best aligns B-

spline curves registered in the map and in the current reading. The most challenging

parts are clustering and tracking, which are coupled. In particular, a tracking mismatch is

equivalent to a wrong loop-closure and may quickly lead to map and localization degra-

dation. As a consequence, while method works well in sparse environment with small

and large objects, it is prone to fail in cluttered environments (like offices) where small

cluster are either discarded or erroneously matched with nearby objects. In the next chap-

ter, the need for clustering and tracking is removed by representing the map with a B-

spline surface instead of curves.

Chapter 7

B-spline Surface SLAM

This chapter presents an online B-spline surface SLAM algorithm for range based mea-

surements. Section 7.1 highlights the motivation for an alternative method for discrete

occupancy-grid maps and the advantages of B-spline surface mapping for the SLAM

problem. The proposed method is split in three modules: pre-processing (Sec. 7.2), map-

ping (Sec. 7.3), and localization (Sec. 7.4). The performance of the B-spline SLAM algo-

rithm is discussed in Sec. 7.5. For that, the proposed algorithm is compared with other

strategies in both well controlled scenarios using simulated data and more challenging

environments using public datasets.

7.1 Introduction

The proposed B-spline Surface SLAM algorithm aims at overcoming two limitations of

discrete occupancy-grid based SLAM: 1) misalignment between discrete cell and obsta-

cles and 2) the pre-interpolation step for integration with gradient-descent methods. As

shown in Fig. 7.1 the impact of an occupied measurement is greatest at the corresponding

point (not cell) of the map, and smoothness is guaranteed by the inherent properties of

B-splines. No interpolation is required because the map itself is continuous.

[Computational complexity] A valid concern is the computational complexity paid

for a continuous map. The computational complexity of evaluating and updating a B-

spline surface is constant and equal to O(d2), where d is the degree of the B-spline surface

map (see Proposition 4.2). Thus, the proposed B-spline surface mapping is slightly more

expensive than occupancy-grid map, which is O(1). Nonetheless, the computational cost

is low: d is typically lower or equal than 3 and updating the B-spline surface is constant

97

98 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 7.1: Comparing classical (occupancy grid) SLAM and B-spline surface SLAM.
The top of the image shows a mobile robot equipped with a range sensor. Measure-
ments are shown in yellow (before scan-matching) and red dots (after scan-matching).
The middle image illustrates the discrete map which is stored in occupancy-grid SLAM.
Typically, for localization, a smoothed/continuous version of regions of the map is de-
rived for computing scan-matching using gradient-based strategies. The bottom image
shows the proposed B-spline SLAM strategy. The map is stored in a B-spline surface and
localization operates directly on it. The B-spline surface map is less impacted by the mis-
alignment between cells and hits, and potentially yields better scan-to-map alignment

results.

with respect to the size of the map. B-spline surface localization is able to achieve similar

computational complexity as an occupancy-grid based localization that relies on an inter-

polation method. For instance, the method in Google Cartographer [12] applies bi-cubic

interpolation. Similar complexity is obtained using a cubic B-spline surface, that is, d = 3.

[Workflow] The pipeline of the B-spline surface SLAM algorithm is shown in Fig. 7.2.

The algorithm has three modules. The pre-processing step (red box) is addressed in

Sec. 7.2. It takes as input the raw polar range data from the sensor. It filters, infers free

space, and transforms the measurements to Cartesian coordinates. The pose of the robot,

which describes the transform from the sensor frame to the map frame, is provided by

the navigation framework addressed in Sec. 3.3. The B-spline mapping (blue rectangle)

is presented in Sec. 7.3. The core idea is representing the occupancy of the environment

by a B-spline surface map. Traditional techniques for surface fitting, which rely on least

square minimization for a batch of measurements, are ill-advised for the SLAM problem.

The reasons for that are two-fold: 1) the computational cost to obtain the least square solu-

tion is prohibitive for online operation using current onboard computers, and 2) a typical

7. B-SPLINE SURFACE SLAM 99

Convert range data
from polar to cartesian

Compute free space
measurements

Compute occupied
space measurements

Range
data

Transform data from
local to map frame

Pose
(prediction)

B-spline Surface
Localization

B-spline Surface
Mapping

Front-end
SLAM Pose

Navigation filter
(Section 3.3)

(Section 7.2) (Section 7.4) (Section 7.3)

B-spline Surface SLAM

FIGURE 7.2: B-spline surface SLAM pipeline. From left to right: the raw range sensor
is first pre-processed for obtaining the occupied/free points data (red rectangle); local-
ization computes the pose that best explains the current measurements (green rectangle);
and the B-spline surface map is updated (blue rectangle) using the best available pose

estimate.

scan reading is not dense enough for obtaining a full rank matrix as required in the least

square formulation. Thus, a lightweight technique is developed for updating the con-

trol points of a probabilistic B-spline surface in an recursive manner. Section 7.4 presents

the localization method (green rectangle). The localization computes the displacement

between the current sensor reading and the B-spline surface map using a tailor-made

scan-matching algorithm. Although localization comes before mapping in the workflow

of the algorithm, the mapping task is presented first for introducing the notation of the

B-spline map.

7.2 Pre-processing

Compute occupied space measurements

A range sensor provides l range measurements of the environment r = (ri)
l
i=1 at discrete

angle intervals α = (αi)
l
i=1 w.r.t. the x-axis of {B} - see red dots in Fig. 7.3. Let rmin and

rmax be the maximum and minimum range of the sensor. A valid range measurements

that corresponds to an obstacle is within the interval [rmin, rmax], that is,

(rocc, αocc) = {(ri, αi)| rmin ≤ ri ≤ rmax, ∀i = 1, . . . , l}, (7.1)

where rocc, αocc ∈ Rlocc , and locc is the number of valid occupied measurements. The super-

script occ highlights that these measurements correspond to occupied space, i.e., obstacles.

Compute free space measurements

The free space virtual measurements correspond to samples between the end point of

each beam and the robot or a beam that did not detect any obstacle up to rmax - see blue

100 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 7.3: A robot equipped with a range sensor detects occupied space (red dots) at
discrete intervals. The length of the i-th beam is denoted as ri. The points between the
robot and the obstacle are assumed as free space (blue dots) and obtained at sampling

intervals of ∆r along a beam.

dots in Fig. 7.3. These are called virtual measurements because free space is not explicitly

detected by the sensor. The free space is computed as

(r f ree, α f ree) = {(n∆r, αi)| rmin ≤ n∆r ≤ rmax, ∀i = 1, . . . , l, ∀n = 1, . . . , ⌊min(
ri

∆r
,

rmax

∆r
)⌋},

(7.2)

where ∆r is an appropriate sampling interval. It is assumed that there are l f ree virtual

measurements in a sensor reading. The value l f ree is not a fixed number - it depends on

the structure of the world. In general, the following inequalities hold:

• locc ≤ l: some measurements may not be within the valid interval, e.g., obstacle is

very far or very near;

• l < l f ree: multiple free space measurements can be inferred from a single range

beam.

Convert from polar to Cartesian coordinates

Both occupied and free space measurements are transformed to Cartesian coordinates

applying the transform

z(r, α) ≡ z = r

cos α

sin α

 , (7.3)

where (r, α) is a tuple that describes a range and its direction, and z are the Cartesian

coordinates of a measurement described in the sensor frame.

7. B-SPLINE SURFACE SLAM 101

Transform from sensor to map frame

For updating the map and performing scan-to-map alignment1, the measurements de-

scribed in the sensor frame (z) have to be transformed to the map frame. For that, apply

the transform

τ(ξ) ≡ τ =

cos ψ − sin ψ

sin ψ cos ψ

 z +

x

y

 = R(ψ)z + p, (7.4)

where ξ = [p, ψ]T is the pose of the robot and τ is a vector that describes the measurement

z in the map frame. Before the localization step, the best pose estimate available is the

prior (prediction), which is denoted as ξ̌. During the mapping task, the best estimate is

provided by the localization module and it is denoted as ξ∗.

7.3 B-spline Surface Mapping

7.3.1 Probabilistic Mapping

Let mi be a binary discrete random variable that represents the occupancy state at the

position τi = [τi,x, τi,y]. The occupancy state is either free (mi = 0) or occupied (mi = 1).

The probabilistic model derived in this section is similar to the discrete occupancy grid

[40], except that there is no assumption that a measurement corresponds to a cell.

Given the measurements z1:t and the robot poses ξ1:t, the probability of τi being occu-

pied is given by

p(mi = 1|z1:t, ξ1:t) =
p(zt|mi = 1, z1:t−1, ξ1:t)p(mi = 1|z1:t−1, ξ1:t)

p(zt|z1:t−1, ξ1:t)
Bayes rule

=
p(zt|mi = 1, ξt)p(mi = 1|z1:t−1, ξ1:t)

p(zt|z1:t−1, ξ1:t)
Markov Assumption

=
p(mi = 1|zt, ξt)p(zt|ξt)p(mi = 1|z1:t−1, ξ1:t)

p(mi = 1|ξt)p(zt|z1:t−1, ξ1:t)
Bayes rule

=
p(mi = 1|zt, ξt)p(zt|ξt)p(mi = 1|z1:t−1, ξ1:t)

p(mi = 1)p(zt|z1:t−1, ξ1:t)
. Markov Assumption

The probability of τi being free can be computed in a similar fashion, yielding

p(mi = 0|z1:t, ξ1:t) =
p(mi = 0|zt, ξt)p(zt|ξt)p(mi = 0|z1:t−1, ξ1:t)

p(mi = 0)p(zt|z1:t−1, ξ1:t)
.

1Scan-to-map matching could be performed in the sensor space by transforming the map to sensor frame.
Nonetheless, the same transform would still be required but in the opposite direction (inverse transform).

102 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Computing the ratio of the two distributions:

p(mi = 1|z1:t, ξ1:t)

p(mi = 0|z1:t, ξ1:t)
=

p(mi = 1|zt, ξt)p(mi = 1|z1:t−1, ξ1:t)p(mi = 0)
p(mi = 0|zt, ξt)p(mi = 0|z1:t−1, ξ1:t)p(mi = 1)

.

Since mi is a binary variable, it is clear that p(mi = 0) = 1− p(mi = 1). Substituting in

the previous equation:

p(mi = 1|z1:t, ξ1:t)

1− p(mi = 1|z1:t, ξ1:t)
=

p(mi = 1|zt, ξt)

1− p(mi = 1|zt, ξt)

p(mi = 1|z1:t−1, ξ1:t)

1− p(mi = 1|z1:t−1, ξ1:t)

1− p(mi = 1)
p(mi = 1)

The previous ratio describes how much more likely it is to τi being occupied than free.

Using the odds notation, it can be written as

odds (mi = 1|z1:t, ξ1:t) =
odds (mi = 1|zt, ξt)odds (mi = 1|z1:t−1, ξ1:t)

odds (mi = 1)
.

Applying the logarithm in both sides

log-odds(mi = 1|z1:t, ξ1:t) = log-odds(mi = 1|zt, ξt) + log-odds(mi = 1|z1:t−1, ξ1:t)+

− log-odds(mi = 1).

These terms corresponds to:

• log-odds(mi = 1|z1:t, ξ1:t) ≡ log-odds(m̂i = 1): Posterior at time t;

• log-odds (mi = 1|z1:t−1, ξ1:t) ≡ log-odds(m̌i = 1): Prior at time t;

• log-odds (mi = 1|zt, ξt): Inverse sensor model;

• log-odds (mi = 1): Prior knowledge of the environment;

The posterior and the prior at time t consider all measurements up to time t and t− 1,

respectively. The prior knowledge of the environment describes the knowledge about the

occupancy state before any observation has been made by the robot. The latter can be

incorporated by the prior at time t− 1, leading to the compact equation

log-odds(m̂i = 1) = log-odds(m̌i = 1) + log-odds(mi = 1|zt, ξt). (7.5)

Thus, the posterior stated on the left hand side of the previous equation is obtained in

a recursive manner by updating the prior with the information provided by the current

observation, using the inverse sensor model.

7. B-SPLINE SURFACE SLAM 103

7.3.2 B-spline surface mapping

The core idea of B-spline mapping is representing the log-odds probability map obtained

in the previous section using a continuous B-spline surface. For that, first rewrite (7.5) as

ŝ(τi) = š(τi) + log-odds(mi = 1|zt, ξt),

where ŝ(τi) = ϕ(τi)
T ĉ and š(τi) = ϕ(τi)

T č are the posterior and prior B-spline surface

map, respectively. The B-spline tensor is a function of the coordinates of the measure-

ments, while the control points describe the shape of the surface.

A 3D and 2D view of a B-spline surface map is illustrated in Fig. 7.4. The darker an

area is, the more likely it is to represent occupied space. The 2D view is the preferred

visualisation scheme because the 3D view quickly becomes cumbersome for large maps.

For an intuitive way to understand the B-spline map consider that the control points,

shown in red dots, are stitched to the surface. As the control points are moved upward

(downward), a local patch of the surface also moves in the same direction. Thus, the

key idea formulated in the problem below is how to update the control points such that

the map represents the occupancy of the environment as perceived by the onboard range

sensor.

Problem 3. (B-spline surface mapping problem) Given a prior map š(τ) and a measurement

at the map coordinates τi, compute the posterior map ŝ(τ) that drives the mapping error

defined in (7.6) to the origin:

ei(ĉ) = ϕ(τi)
T ĉ−ϕ(τi)

T č− log-odds(mi = 1|zt, ξt). (7.6)

FIGURE 7.4: Visual representation of a B-spline surface map: (left) shows the 3D view of
a B-spline surface and (right) illustrates a top view of the surface using a grayscale code

to represent the value of s(τ). Control points are shown in red circles.

104 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

In other words, the tasks is computing the control points of the posterior map that updates

the prior map using the inverse sensor model.

For solving Problem 3, the following cost function is employed:

Ji(ĉ) =
1
2
∥ei(ĉ)∥2.

Solving the mapping problem is equivalent to finding the control points ĉ that minimize

J(·). In order to do this, start with the classical gradient descent:

ĉ = č− µ

[
∂Ji

∂ĉ

]T

, (7.7)

where µ ∈ R+ is the step size. The derivative of the cost function w.r.t. the posterior

control points is given by
∂Ji

∂ĉ
=

dJi

dei

∂ei

∂ĉ
= ei(ĉ)ϕ(τi)

T. (7.8)

Thus, by substituting (7.8) into the recursive equation (7.7), the gradient descent step is

computed as

ĉ = č− µϕ(τi)e(ĉi). (7.9)

A possible solution is to move forward with the gradient descent method. For that,

one can take the prior as an initial guess for the posterior and perform iterations until

the mapping error has converged to a minimum. However, iterative methods are com-

putationally expensive and shall be avoided whenever possible. Next, it is shown that

one may obtain a closed-form solution by exploiting the recursive nature of the mapping

error and the properties of the B-spline tensor.

[Closed-form solution] Apply the definition of the mapping error (7.6) into the gradi-

ent descent solution (7.9) to obtain

ĉ = č− µϕ(τi)[ϕ(τi)
T ĉ−ϕ(τi)

T č− log-odds(mi = 1|zt, ξt)]. (7.10)

With some algebraic manipulation, the previous equation is re-arranged as

[I + µϕ(τi)ϕ(τi)
T]ĉ = [I + µϕ(τi)ϕ(τi)

T]č + µϕ(τi)log-odds(mi = 1|zt, ξt),

where I is an identity matrix with appropriate dimensions. The matrix [I +µϕ(τi)ϕ(τi)
T]

is full rank and, therefore, invertible. Multiplying both sides of the equality by its inverse,

7. B-SPLINE SURFACE SLAM 105

Algorithm 7: B-spline surface map algorithm.

Input: Pose ξ, Range Scans (ri)
l−1
i=0

1: Pre-process occupied space: (7.1)
2: Pre-process free space: (7.2)
3: Transform polar to Cartesian coordinates: (7.3)
4: Transform free and occupied space to global coordinate frame: (7.4)
5: Update the B-spline map: (7.14)
6: Clamp control points: (7.15)

yields

ĉ = č + [I + µϕ(τi)ϕ(τi)
T]−1ϕ(τi)µlog-odds(mi = 1|zt, ξt). (7.11)

Using the Sherman-Morrison formula [76], the following equality holds:

[I + µϕ(τi)ϕ(τi)
T]−1 = I − µ

ϕ(τi)ϕ(τi)
T

1 + µ∥ϕ(τi)∥2 . (7.12)

Replacing the inverse matrix in (7.11):

ĉ = č + [I − µ
ϕ(τi)ϕ(τi)

T

1 + µ∥ϕ(τi)∥2]ϕ(τi)µlog-odds(mi = 1|zt, ξt)

= č + [ϕ(τi)−
µϕ(τi)ϕ(τi)

Tϕ(τi)

1 + µ∥ϕ(τi)∥2]µlog-odds(mi = 1|zt, ξt)

= č + ϕ(τi)[1−
µ∥ϕ(τi)∥2

1 + µ∥ϕ(τi)∥2]µlog-odds(mi = 1|zt, ξt).

The control points of the posterior map are

ĉ = č +
µϕ(τi)

1 + µ∥ϕ(τi)∥2 log-odds(mi = 1|zt, ξt) (7.13)

The mapping error can be evaluated by applying the previous equation in (7.6):

ei(ĉ) = ϕ(τi)
T µϕ(τi)

1 + µ∥ϕ(τi)∥2 log-odds(mi = 1|zt, ξt)− log-odds(mi = 1|zt, ξt).

The goal is to drive the mapping error to zero, that is, ei(ĉ) = 0. This can be accomplished

by selecting µ (which can be arbitrarily chosen) such that µ∥ϕ(τi)∥2 >> 1. Finally, ap-

plying this result in (7.13), the map update equation upon reception of a measurement at

τi is obtained as

ĉ = č +
ϕ(τi)

∥ϕ(τi)∥2 log-odds(mi = 1|zt, ξt). (7.14)

106 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Implementation

Algorithm 7 shows the main steps for implementing the proposed mapping strategy, in-

cluding the pre-processing stage.

Clamping control points: In theory, the log-odds occupancy probability can grow (or de-

crease) indefinitely. In practice, this behaviour is not desired for three reasons. First, it

leads to memory overflow in data representation. Second, it becomes relatively hard to

change the state of a region after it has being observed many times as either free or occu-

pied. For example, a closed door initially mapped as an obstacle may be opened and the

map should be able to quickly react to that change in the environment. Finally, for local-

ization purpose, one needs to infer with confidence that an area is indeed occupied using

the log-odds map. However, if the log-odds probability can grow indefinitely, it means

that one can always be more certain about its occupancy. The B-spline map is forced to be

always within the values [−cmax, cmax] by clamping its control points, that is,

ĉ = min(max(ĉ,−cmax), cmax). (7.15)

This follows from Property 3 (Convex Hull), which states that a B-spline surface is a con-

vex combination of its control points.

Inverse sensor model: The proposed mapping technique absorbs sensor measurements

by updating the control points (red dots in Fig. 7.4) , which locally impacts the height

of the surface. The value of the update is given by the inverse sensor model, that is,

log-odds(mi = 1|zt, ξt). It is an empirical value that reflects the probability of our hy-

pothesis (τi is occupied) given our data at time t (free or occupied measurement and

robot pose). For an intuitive idea of the map update in (7.14), consider that the measure-

ment zt reports that τi is occupied. Since the coefficients of the B-spline tensor ϕ(τi) are

non-negative, it follows that:

• p(mi = 1|zt, xt) > 0.5 → log-odds(mi = 1|zt, xt) > 0. By increasing the height of

the control points, the occupancy state is reinforced;

• p(mi = 1|zt, xt) = 0.5→ log-odds(mi = 1|zt, xt) = 0. Control points update has no

impact in the map;

• p(mi = 1|zt, xt) < 0.5 → log-odds(mi = 1|zt, xt) < 0. By decreasing the control

points’ height, the occupancy state is weakened.

7. B-SPLINE SURFACE SLAM 107

If a measurement corresponds to occupied space, a value p(mi = 1|zt, xt) > 0.5 must

be chosen. Conversely, if it corresponds to a free space measurement, a value p(mi =

1|zt, xt) < 0.5 must be chosen.

Memory storage requirements: Assume that we want to represent an area of 50 m ×

50 m with a knot interval 10 cm. For a cubic B-spline surface map (d = 3), (50/.1 +

3)(50/.1 + 3) = 253, 009 control points need to be stored (float data type). There is no

need to store the knot vector because the knots are uniformly spaced (see Chapter 4). In

the same scenario an occupancy grid requires (50/.1)(50/.1) = 250, 000 cells (float data

type). Thus, in this example, a B-spline surface map requires 1.2% more memory than a

discrete occupancy grid with the same resolution. Now, increasing the resolution of the

discrete occupancy-grid by 1 cm: (50/.09)(50/.09) = 308, 642 floats. This is 20% more

than the storage memory required by the B-spline map using 10 cm resolution. In the

more generic case, let ∆ be the resolution of the map and L be the size of the map, the

relative difference in terms of storage between the two representations is given by

(L/∆ + 3)(L/∆ + 3)
(L/∆)(L/∆)

− 1 = 6
∆
L
+ 9(

∆
L
)2. (7.16)

Since the resolution is typically much smaller than the size of the map, i.e., ∆ ≪ L, the

difference in storage memory becomes negligible in critical cases: small resolution, large

map, or both.

7.4 B-Spline Surface Localization

The localization stack computes an estimate of the pose of the robot via scan-to-map align-

ment. First, the B-spline surface map is normalized such that s(τ) → 1 as the log-odd

likelihood occupancy at τ converges to cmax and s(τ)→ −1 as it converges to −cmax:

s̄(τ) =
s(τ)
cmax

,

where s̄(τ) is the normalized B-spline map. Thus, given the pose of the robot, the error

between the map and the i-th scan measurement (that corresponds to an obstacle) is

ei(ξ) = 1− s̄(τi(ξ)),

108 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

where τi(ξ) is the map coordinate of the endpoint of a range beam using ξ, as defined in

(7.4). Now, it is defined the scan-to-map alignment cost function as 1

J(ξ) =
locc

∑
i=1

ei(ξ)Ωiei(ξ) (7.17)

where ei is assumed to be a Gaussian error with covariance Ω−1
i . The scan-to-map cost

function describes how well a pose aligns the current scan measurements and the map.

The goal in localization is to find the pose that minimizes the cost, that is,

ξ∗ = arg min
ξ

locc

∑
i=1

ei(ξ)Ωiei(ξ)

This problem has no closed form solution, but it is possible to find a (locally optimal)

solution using iterative local linearizations given that an initial guess is provided. Thus,

the prior ξ̌ is taken as an initial guess, and decompose the optimal pose that minimizes

the cost in (7.17) as ξ∗ = ξ̌ + ∆ξ. The localization problem is reformulated as

∆ξ = arg min
∆ξ

locc

∑
i=1

ei(ξ̌ + ∆ξ)Ωiei(ξ̌ + ∆ξ) (7.18)

that is, one must compute the pose displacement that minimizes the scan-to-map align-

ment cost function. For solving this non-linear least square problem, it is assumed that

the dynamic of the sensor is fast enough such that the displacement ∆ξ is small. In this

case, the non-linear function can be approximated using Taylor expansion around ∆ξ = 0,

as

s̄(τi(ξ̌ + ∆ξ)) ≈ s̄(τi(ξ̌)) +
∂s̄(τi(ξ))

∂ξ

∣∣∣∣∣∣
ξ=ξ̌

∆ξ. (7.19)

Define the variables bi and hi as

bi = 1− s̄(τi(ξ̌)) (7.20)

hT
i =

∂s̄(τi(ξ))

∂ξ

∣∣∣∣∣∣
ξ=ξ̌

(7.21)

Approximating the non-linear function in (7.18) by (7.19) and substituting (7.21)(7.20),

yields

min
∆ξ

locc

∑
i=1

(bi − hT
i ∆ξ)Ωi(bi − hT

i ∆ξ)

1For simplicity of presentation, a quadratic loss function is adopted. The proposed approach supports
other functions like for example the robust loss functions Cauchy, German-McClure, and Welsch [77].

7. B-SPLINE SURFACE SLAM 109

The least square solution can be obtained by derivating with respect to ∆ξ and equat-

ing to zero:
locc

∑
i=1

hiΩi(bi − hT
i ∆ξ) = 0,

locc

∑
i=1

ΩihihT
i ∆ξ = −

locc

∑
i=1

Ωihibi,

which give us the update:

∆ξ = −(
locc

∑
i=1

ΩihihT
i)
−1

locc

∑
i=1

Ωihibi. (7.22)

For the sake of completeness, the derivation of the term hi is described next. From the

definition of a B-spline surface in (4.7), its derivative w.r.t. ξ is

hi = cT ∂ϕ(τi(ξ))

∂ξ

∣∣∣∣
ξ=ξ̌

= cT

[
∂ϕ(τi)

∂τi

∂τi

∂ξ

]∣∣∣∣
ξ=ξ̌

,

where ∂ϕ(τi)
∂τi

is as defined in (4.8) and

∂τi

∂ξ
=

1 0 −zi,x sin ψ− zi,y cos ψ

0 1 zi,x cos ψ− zi,y sin ψ

 .

Implementation

The B-spline SLAM algorithm is described in Algorithm 8. When solving the optimization

problem described in (7.18) via the Gauss-Newton method, an adaptive step λ is used.

The stop criterion are 1) the maximum number of iterations and 2) the tolerance ∆Jtol . The

former parameter ensures that the solver finishes in an online-acceptable time. The latter

parameter describes the maximum value required in improving the objective function

before accepting a solution. Moreover, in a multi-map resolution approach is employed,

similar to [5]. The resolution of a B-spline map is given by the knot interval: the smaller

the interval, the higher is the resolution. A solution to the scan-matching problem is first

computed for the lowest map resolution. Then, the obtained solution for the localization

problem is used as a ”hot start” for the next map resolution and so on (from the lowest

to the highest resolution). This process increases the robustness of the localization stack

against local minima.

110 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Algorithm 8: B-spline SLAM algorithm

input : Prior pose ξ̌, prior map č, range scans (ri)
l−1
i=0

output : Posterior pose ξ̂, posterior map ĉ
initialize : ∆J ← ∞, #iterations← 0, λ← 1
parameters: ∆Jtol , max iterations

1: Pre-process occupied space: (7.1)
2: Pre-process free space: (7.2)
3: Transform polar to Cartesian coordinates: (7.3)

// Localization
for each map resolution (low to high) do

while ∆J > ∆Jtol and #iterations < max iterations do
4: Transform measurements from sensor to global frame via ξ̌: (7.4)
5: Compute scan-to-map alignment error using prior: {bi}n

i=1 ←(7.20)
6: Compute Jacobian: (7.21)
7: Pose update: ∆ξ ← (7.22)
8: Cost improvement: ∆J ← J(ξ̌ + ∆ξ)− J(ξ̌)
if ∆J < 0 then

9.1: ξ̌ ← ξ̌ + λ∆ξ
9.2: λ← 1.5λ

else
9.3: λ← .5λ

10: #iterations← #iterations + 1

11: Update posterior: ξ̂ ← ξ̌

// Mapping
for each map resolution do

12: Update the B-spline map: (7.14)
13: Clamp control points: (7.15)

7.5 Results

7.5.1 Mapping

In this section, the B-spline surface mapping algorithm is compared against other meth-

ods described in the literature review. The goal is to present and evaluate the trade-offs

between B-spline maps and other techniques before moving forward to localization (and

thus, SLAM). The comparison is performed using both simulated and real-world data.

The simulations are used to discuss quantitative performance, while qualitative results

are shown using a real robot. For a fair comparison, the proposed solution and a vanilla

version of the occupancy-grid mapping algorithms were implemented in Python3. Both

7. B-SPLINE SURFACE SLAM 111

are available in our repository1. The occupancy-grid implementation follows the Algo-

rithm 7, but it updates discrete cells instead of points in the surface map. For free space

detection in occupancy-grid mapping, Bresenham’s line algorithm is the chosen ray ras-

terization method.

Simulations

The proposed method is compared against occupancy-grid based strategies in a con-

trolled environment, using extensive computer simulations. The simulated sensor is equiv-

alent to the LDS-01 range sensor, presented in Sec. 3.4 - 360 degrees, 1 degree angular res-

olution. Both noiseless and noisy range measurements are considered. The occupancy-

grid map cell resolution and the B-spline map knot interval are set to 10 cm and, therefore,

having about the same memory storage requirements. For obtaining a continuous map,

bilinear and bicubic interpolations are applied to the resulting occupancy-grid maps, as

proposed in [5] and [12], respectively. The maps are finally normalized into the floating

interval -1 (free) to 1 (occupied).

In order to compare the mapping accuracy of the continuous maps, the scan to map-

alignment cost function stated in a more generic form is employed:

locc

∑
i=0

[1−Mcont(τi)]
2, (7.23)

where Mcont is a continuous map. The metric, which is also referred here as the mapping

error, translates as the alignment between the measurements detected as obstacles and the

actual continuous map belief.

The first simulated environment evaluates the limitations of a continuous map ob-

tained from an occupancy-grid map versus the inherent continuous B-spline map. The

robot stands still in the center of a square room, while taking measurements. There were

enough sensor readings to stabilize the map cells/control points, such that additional

readings did not have any impact on the map. The resulting maps for a square room

of side length 4 m can be seen in Fig. 7.5. The methods managed to accurately map the

given environment. Then, to analyze the discretization error that rises in occupancy grid

mapping, the side length of the square room is varied from 4 m to 4.18 m (one experiment

per side length). Figure 7.6 shows the mapping error. It can be seen that the mapping

error using the proposed approach is consistently lower than any of the other approaches.

1https://github.com/C2SR/spline slam/

112 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 7.5: Mapping result for an artificially generated square room using: (a)
occupancy-grid, (b) occupancy-grid + bilinear interpolation, (c) occupancy-grid + bicubic

interpolation, and (d) proposed B-spline map. The robot is in the center of the room.

When the length of the square is 4 m the walls are aligned with the cell representation of

the occupancy grid. Therefore, the occupancy grid based methods are able to achieve null

error, which is slightly better than the spline map. Then, as the length increases, there

is an increasing offset between the walls and the cells that represent them in the discrete

map. The critical point occurs around half-cell resolution. The interpolation methods fail

to capture the reality. In essence, the position within a cell which corresponds to a mea-

surement is not registered by occupancy-grid map approaches. Meanwhile, the error in

the B-spline map is considerable lower because when building the map, it is considering

the exact place where the obstacle was detected.

The second simulated environment assesses the impact of noise in the range measure-

ments provided by the sensor. This time, the robot stands still at the center of a circular

space of 2 meters radius. The sensor range data is perturbed with zero mean Gaussian

noise. The standard distribution of the noise varies from .025 m to .1 m, which corre-

sponds from a quarter to one cell/knot interval length. The final map was built after 500

FIGURE 7.6: Mapping error using the room scenario shown in Fig. 7.5. Both the cell
resolution and knot vector grid have a resolution of 0.1 m. Throughout the scenarios, the

shortest distance from the robot to the wall varies from 2 m to 2.09 m.

7. B-SPLINE SURFACE SLAM 113

FIGURE 7.7: Mapping result for an artificially generated circular room using: (a)
occupancy-grid, (b) occupancy-grid + bilinear interpolation, (c) occupancy-grid + bicubic

interpolation, and (d) proposed B-spline map.

sensor readings. The resulting maps for the noiseless case are shown in Fig. 7.7. The oc-

cupancy based methods have regions of unknown space caused by their discrete nature

and due to the ray-casting used, where sensor rays are not intersecting all the cells. The

B-spline map does not present the gaps because a measurement has impact on nearby

regions. The statistical analysis for the noisy case can be seen in Fig. 7.8. In total, 33

simulations for each set of map and standard deviation were performed. The proposed

method behaves better in all the scenarios. A reason for that is because B-splines naturally

filter the noise while building the map.

Real-data

The results using real-data were obtained using a Turtlebot3 (see Sec. 3.4). The robot was

teleoperated through the corridors of the Faculty of Engineering of the University of Porto

(FEUP), Building I, first floor, rooms I 119 and I 173. For generating the maps, first it is

FIGURE 7.8: Statistical analysis using noisy sensor data for the scenario shown in Fig. 7.7.
The noise follows a zero-mean Gaussian distribution. Different standard deviations were
considered. Lin., Cub., and Spl. stands for the bilinear, the bicubic, and the B-spline map,

respectively.

114 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

TABLE 7.1: Running-time for building the maps shown in Fig 7.9

Occupancy-grid Fast-GPOM Spline-Map
Time (ms) 5.94 142.60 1.13

recorded a bag file with the encoder and sonar data. Then, the pose of the robot is esti-

mated using GMapping [4, 72]. The estimated pose and LiDAR measurements were fed

into different mapping techniques - all of them implemented in Python. The maps were

generated using 5 cm resolution for both the discrete cells and knot spacing. The degree

of the B-spline function is d = 3. Figure 7.9(a) shows the occupancy-grid map obtained

using our vanilla implementation. Figure 7.9(b) illustrates the output of Fast-GPOM [78],

a continuous Gaussian Process map. Figure 7.9(c) shows the map obtained using the pro-

posed B-spline surface method. A few annotations are shown in red numbers. The three

methods perform rather well. A careful inspection shows that the upper right section of

the Fast-GPOM map is slight deformed, representing the region larger than it actually is.

As highlighted in annotation 1, Fast-GPOM is not able to register well features with high

curvature. Although this is a typical limitation of continuous maps, our method is able to

capture sharp regions significantly better. The proposed B-spline map is also capable of

handling small objects. For example, annotation 2 corresponds to the three legs of a large

bench, each leg is 5 cm wide.

FIGURE 7.9: Experimental results using turtlebot/LiDAR setup in the corridors of FEUP.
The results shown correspond to the output of occupancy-grid (a), Fast-GPOM (b), and
the proposed B-spline map (c). The proposed approach is representing the environment
in an accurate manner being able to capture even small obstacles. Annotations are de-

picted in red numbers.

7. B-SPLINE SURFACE SLAM 115

The average time per iteration for building the maps is shown in Table I. The time were

obtained by running the code in a notebook Intel Core i5-3317U 1.7GHz, 4 GB RAM. The

results show that the B-spline map is the fastest one, followed by the occupancy-grid map.

This was not expected, because an occupancy-grid map updates one cell per (occupied or

free space) measurement, while the proposed strategy updates 16 control points (d = 3)

per (occupied or free space) measurement. It is most likely that our B-spline map imple-

mentation is more optimized than our occupancy-grid map implementation. While both

aforementioned methods have computational complexity O(1) per measurement update,

Gaussian Process maps have computational complexity O(n3) [79], where n is the size

of the sub-matrix of the kernel to be updated. This explains the high average time per

iteration.

7.5.2 SLAM Results

In this section the proposed algorithm is evaluated using public data sets that provide

different sensors and odometry measurements. In our tests, the main characteristic that

has an impact on our algorithm is the sensor rate. The higher the rate of the sensor, the

better the assumption that the pose displacement between two readings is small holds,

i.e., ∆ξ ≈ 0. Therefore, when using low rate sensors more map resolutions are required

to avoid getting trapped in a local minimum during localisation. The parameters of the

proposed algorithm are the same for all experiments, except for the number of map reso-

lutions, which is clearly stated. For visualisation, the B-spline surface is sampled at 0.05

m interval and displayed as a gray-scale image. The darker a pixel is, the more likely it is

to correspond to an occupied area.

TU Darmstadt data set

(Map resolutions: 1, knot interval: 5 cm) The TU Darmstadt data set contains data

recorded using an IMU and a Hokuyo UTM-30LX LIDAR (45 Hz). The resulting map for

two scenarios computed by B-spline SLAM are shown in Fig. 7.10. The two sensors (IMU

and LiDAR) were assembled in a handheld kit. For instance, the data from the Dagstuhl

building (Fig. 7.10a) was acquired by a human walking through the environment carrying

the sensors by hand. The sensor was subject to roll, pitch, and vertical oscillations break-

ing the planar movement constraint. The results presented in [5] (Hector-SLAM) correct

the measurements by incorporating the IMU data to obtain a stabilised coordinate frame.

116 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 7.10: B-spline SLAM map for TU Darmstadt dataset: (a) Dagstuhl, (b) RoboCup
2010, and (c) RoboCup 2011 Rescue Arena.

In our SLAM framework the IMU data is not taken into account. Since no ground truth is

provided, it is hard to assert whether a mapping structure presented in our solution but

not in [5] represents an advantage or disadvantage. Given that both maps in Fig. 7.10 are

coherent, one may conclude that our results are good in a qualitative sense.

Radish data set

(Map resolutions: 3, knot interval: 5, 12.5, 30 cm) The Robotics Data Set Repository

(Radish) [71] contains odometry data and range scan measurements (approx. 5 Hz fre-

quency). Figure 7.11 shows the qualitative results using the proposed algorithm in four

of the five scenarios evaluated. For quantitative results, the metric proposed by Kum-

merle et al. [70] is used. The authors show that using global pose (i.e., a fixed reference

frame) is sub-optimal for comparing SLAM algorithms. Instead, they propose comparing

the translational and rotational errors between two relative poses (absolute and squared

errors). For more about this metric, the reader is referred to Sec. 5.4.

7. B-SPLINE SURFACE SLAM 117

Tables 7.2 and 7.3 show the comparison of our algorithm with others in the literature.

Table 7.2 describes the properties inherent to each strategy. Table 7.3 quotes the results

for RBPF with 50 particles (GMapping) [70], Cartographer [12], two-level optimisation

[80], and TSDF [43]. The best results are highlighted in bold and a dash indicates no

information was provided by the authors for the corresponding data set. The methods

being compared use the odometry data available in the log files. Attempts were made

to process the datasets using Hector-SLAM, but unfortunately it was failing to produce

a correct map despite extensive tuning efforts. It is hypothesized that the high angular

displacement between consecutive readings did not allow the correct operation of that

SLAM method. On the other hand, B-spline SLAM fails only in the MIT Killian Court due

to the long and narrow corridors which result to the infinite corridor problem. Other than

this, it performs well. In the RBPF (50 part) algorithm there are 50 particles, and for each

particle a scan matching on a discrete occupancy grid map is performed. The fact that

the proposed algorithm is consistently better than RBPF shows the potential of B-spline

based SLAM. Comparing with more recent methods that run back-end optimisation, the

proposed strategy is still competitive: it outperforms Cartographer for the MIT CSAIL

dataset and it is able to achieve either the smallest absolute or squared rotational error in

the ACES, Intel, and Freiburg bld 69 data sets. It is likely that the accuracy of the proposed

SLAM comes from the fact that the continuous B-spline maps are more accurate than dis-

crete maps (as discussed in Sec. 7.5.1) and allow for a larger basin of convergence when

performing scan-matching. There is still room to improve B-spline SLAM, since in con-

trast to these other methods neither loop-closure mechanism nor back-end optimisation

is performed.

The implementation of the proposed algorithm can process the Radish data set 1.5 to

2 times faster than the sensor rate (evaluated on a computer with an Intel Core i5-3317U

TABLE 7.2: Main features of compared methods.

Map Belief Loop-closure Back-end
B-spline SLAM B-spline single no no
RBPF discrete grid multi yes1 no
Cartographer discrete grid single yes yes
Two-level landmarks single yes yes
TSDF TSDF single yes yes

1Particles that do not explain the loop closure are likely to be removed.

118 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 7.11: B-spline SLAM output using the Radish dataset [70]: (a) ACES Bulding,
(b) Intel Research Lab, (c) MIT CSAIL building, and (d) Freiburg building 69. The blue

dashed line is the path travelled by the robot.

1.7GHz). For the mapping task, updating or evaluating the map has computational com-

plexity O(1). Regardless of the size of the map, by exploiting the local property of B-

spline, only 16 control points (for d = 3) have to be evaluated or updated. For the locali-

sation task the computational cost is similar to the front-end of Cartographer or any other

grid-based method that relies on bi-cubic interpolation. The complexity grows linearly

with the number of iterations of the nonlinear least squares solver. In the worst case, the

computational time is limited by the maximum number of iterations.

7. B-SPLINE SURFACE SLAM 119

TA
B

L
E

7.
3:

C
om

pa
ri

so
n

us
in

g
th

e
m

et
ri

cs
pr

op
os

ed
in

[7
0]

.F
or

ea
ch

m
et

ri
c,

be
st

re
su

lt
s

ar
e

hi
gh

lig
ht

ed
in

bo
ld

.D
as

he
s

in
di

ca
te

th
at

no
in

fo
rm

a-
ti

on
w

as
pr

ov
id

ed
by

th
e

au
th

or
s

fo
r

th
at

da
ta

se
t.

B-
sp

lin
e

SL
A

M
R

BP
F

(5
0

pa
rt

)
C

ar
to

gr
ap

he
r

Tw
o-

le
ve

lo
pt

.
TS

D
F

A
ce

s
A

bs
ol

ut
e

tr
an

sl
at

io
na

l(
m

)
0.

04
04
±

0.
04

52
0.

06
0
±

0.
04

9
0.

03
75
±

0.
04

26
0.

02
83
±

0.
03

97
-

Sq
ua

re
d

tr
an

sl
at

io
na

l(
m

2)
0.

00
36
±

0.
01

27
0.

00
6
±

0.
01

1
0.

00
32
±

0.
02

85
0.

00
27
±

0.
01

00
-

A
bs

ol
ut

e
ro

ta
ti

on
al

(d
eg

)
0.

34
0
±

0.
39

2
1.

2
±

1.
3

0.
37

3
±

0.
46

9
0.

35
1
±

0.
42

8
-

Sq
ua

re
d

ro
ta

ti
on

al
(d

eg
2)

0.
27

0
±

1.
65

7
3.

1
±

7.
0

0.
35

9
±

3.
69

6
0.

29
4
±

1.
25

3
-

In
te

l
A

bs
ol

ut
e

tr
an

sl
at

io
na

l(
m

)
0.

02
62
±

0.
02

81
0.

07
0
±

0.
08

3
0.

02
29
±

0.
02

39
0.

01
50
±

0.
02

04
-

Sq
ua

re
d

tr
an

sl
at

io
na

l(
m

2)
0.

00
14
±

0.
00

66
0.

01
1
±

0.
03

4
0.

00
11
±

0.
00

40
0.

00
09
±

0.
00

09
-

A
bs

ol
ut

e
ro

ta
ti

on
al

(d
eg

)
0.

44
5
±

0.
96

9
3.

0
±

5.
3

0.
45

3
±

1.
33

5
0.

39
0
±

0.
40

2
-

Sq
ua

re
d

ro
ta

ti
on

al
(d

eg
2)

1.
13

7
±

6.
65

4
36

.7
±

18
7.

7
1.

98
6
±

23
.9

88
1.

62
9
±

9.
73

6
-

M
IT

K
il

li
an

C
ou

rt
A

bs
ol

ut
e

tr
an

sl
at

io
na

l(
m

)
1.

03
79
±

2.
57

19
0.

12
2
±

0.
38

61
0.

03
95
±

0.
04

88
0.

03
67
±

0.
04

73
0.

02
76
±

0.
02

35
Sq

ua
re

d
tr

an
sl

at
io

na
l(

m
2)

7.
69

18
±

24
.8

11
8

0.
16

4
±

0.
81

41
0.

00
39
±

0.
01

44
0.

00
31
±

0.
01

34
0.

00
13
±

0.
00

95
A

bs
ol

ut
e

ro
ta

ti
on

al
(d

eg
)

0.
77

9
±

1.
24

6
0.

8
±

0.
81

0.
35

2
±

0.
35

3
0.

29
4
±

0.
27

5
0.

28
07
±

0.
24

62
Sq

ua
re

d
ro

ta
ti

on
al

(d
eg

2)
2.

16
0
±

5.
65

2
0.

9
±

1.
71

0.
24

8
±

0.
61

0
0.

21
8
±

0.
43

9
0.

13
94
±

0.
26

86
5

M
IT

C
SA

IL
A

bs
ol

ut
e

tr
an

sl
at

io
na

l(
m

)
0.

02
68
±

0.
02

23
0.

04
9
±

0.
04

91
0.

03
19
±

0.
03

63
-

-
Sq

ua
re

d
tr

an
sl

at
io

na
l(

m
2)

0.
00

12
±

0.
00

41
0.

00
5
±

0.
01

31
0.

00
23
±

0.
00

99
-

-
A

bs
ol

ut
e

ro
ta

ti
on

al
(d

eg
)

0.
31

5
±

0.
27

4
0.

6
±

1.
21

0.
36

9
±

0.
36

5
-

-
Sq

ua
re

d
ro

ta
ti

on
al

(d
eg

2)
0.

17
5
±

0.
30

6
1.

9
±

17
.3

1
0.

27
0
±

0.
63

7
-

-
Fr

ei
bu

rg
bl

dg
69

A
bs

ol
ut

e
tr

an
sl

at
io

na
l(

m
)

0.
04

10
±

0.
03

15
0.

06
1
±

0.
04

41
0.

04
52
±

0.
03

54
0.

04
21
±

0.
03

49
0.

03
82
±

0.
02

92
Sq

ua
re

d
tr

an
sl

at
io

na
l(

m
2)

0.
00

27
±

0.
00

44
0.

00
6
±

0.
02

01
0.

00
33
±

0.
00

55
0.

00
29
±

0.
00

48
0.

00
23
±

0.
00

44
A

bs
ol

ut
e

ro
ta

ti
on

al
(d

eg
)

0.
42

0
±

0.
47

2
0.

6
±

0.
61

0.
53

8
±

0.
71

8
0.

48
3
±

0.
57

1
0.

42
45
±

0.
46

10
Sq

ua
re

d
ro

ta
ti

on
al

(d
eg

2)
0.

39
9
±

1.
31

0
0.

7
±

2.
01

0.
80

4
±

3.
62

7
0.

68
2
±

1.
53

3
0.

39
26
±

1.
23

08
1 O

do
m

et
ry

w
as

im
pr

ov
ed

us
in

g
a

pr
e-

pr
oc

es
si

ng
sc

an
-m

at
ch

in
g

st
ep

(s
ee

[7
0]

).

Part II

3D Depth Estimation

121

Chapter 8

Active Depth Estimation: Theory

This chapter presents an active incremental structure-from-motion framework for single

camera systems. Section 8.1 introduces the problem addressed. Well-established solu-

tions derived from geometric approaches are presented in Sec. 8.2. Afterwards, Sec. 8.3

discusses incremental methods for depth estimation that consider the dynamics of the

camera. Finally, Sec. 8.4 presents the key results, namely the conditions that the percep-

tion and control loop must satisfy to ensure convergence of the estimator.

8.1 Depth Estimation

Depth estimation addresses the problem of recovering the 3D structure of the world from

observations recorded by an image sensor. Triangulation is the gold standard for objects

registered with a calibrated stereo pair, i.e., two calibrated cameras for which the relative

pose (baseline) of one camera with respect to the other is known. On the other hand,

depth estimation using a single camera is not a trivial problem, as projecting the world in

the image frame leads to an unknown scaling factor. Consequently, information beyond

the image frame itself is required. The same problem arises in the stereo camera case for

far-away objects: if the baseline of the camera pair is significantly shorter than the distance

to the observed objects, stereo vision degenerates to monocular vision.

This problem is illustrated in Fig. 8.1: cameras are bearing sensors, meaning that they

capture angular information, and not distance. It is possible to recover the line (i.e., the

direction) where a projected 3D point lies, but not its depth within this line. In fact, for

the image feature Iq (represented by a small red solid circle in the image plane), any of

the re-projections along the line (illustrated by hollow red circles) is a valid candidate for

123

124 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

{C}

{C}

{C}

q

?
?
?

Iq

FIGURE 8.1: Depth estimation problem: using a single image frame, one may only re-
cover the direction of a 3D point. Without previous knowledge of the structure of the

world, different viewpoints are required for 3D reconstruction.

the observed 3D point. In essence, it is only possible to reconstruct the 3D point up to a

scale.

It is possible to recover the 3D structure of an object from a single image frame if

previous knowledge about the geometry of the points is known. One example is to use

artificial tags with known dimensions (fiducial markers) [14]. This thesis investigates the

generic case where the environment is unknown. In such circumstances, recovering the

3D structure of the world requires observing an object from two or more different view-

points, and the relation between these view-points must be known or estimated. This is

typically the case for a robotic system with an onboard camera: the camera sensor moves

in the environment, capturing a temporally and spatially ordered sequence of images,

and consecutive images are likely to contain significant overlapping area. The relation

between two or more camera frames can be obtained from proprioceptive sensors, such

as IMU and encoders, or exterceoptive sensors, such as GPS or LiDAR (for example, the

SLAM covered in previous chapters).

Depth estimation is correlated with the computer vision topic structure-from-motion

(SfM). However, SfM tackles the problem of estimating the relative poses of the camera

and the 3D structure of the environment from a large collection of ordered or unordered

images in a process which is typically done offline [81].

8. ACTIVE DEPTH ESTIMATION: THEORY 125

0R1,
0p1

C0 C1

q1

q0

q

λ0s0
λ1s1

^
^

FIGURE 8.2: Linear triangulation for 2-view: the same camera observes a 3D point from
two different view-points.

The following two sections cover geometric and incremental (filtering) methods for

depth estimation. The former relies on basic geometric relations, while the latter accounts

for the dynamics of the camera observing the world. Since no previous knowledge about

the environment is given, both methods require two or more view-points.

8.2 Geometric Methods

Geometric-based techniques such as [16, 82] resort to triangulation for estimating the

depth of the points detected in two or more different image frames, at different posi-

tions/orientations. The results obtained in [13, 83] are summarized next.

[2-view triangulation] The simplest geometric method consists in linearly triangulat-

ing point correspondences in two views. As illustrated in Fig. 8.2, consider a camera that

captures a first image at {C0} and a second image at {C1}. Both images capture a 3D

point q = [xc, yc, zc]T, described in the coordinate system {C0}. si = [xi, yi]
T denotes the

normalized projection of the 3D point q in the i-th image frame, obtained using the cali-

bration parameters as in (3.7). Converting to homogeneous coordinates, the normalized

projection vector becomes
¯
si = [xi, yi, 1]T. Let 0R1 and 1p0 be the rotation and transla-

tion of the camera from {C0} to {C1}. Then, the estimated coordinates of the 3D point q

described in {C0} are given by

q̂0 = λ0

x0

y0

1

 , q̂1 = λ1
0R1

x1

y1

1

+ 0p1, (8.1)

126 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

where λi ∈ R is an unknown scaling factor. Due to measurement noise, it is unlikely

that the rays described by
¯
s0 and

¯
s1 intercept. Nonetheless, one may compute the closest

point to the interception, which lies in the center of the shortest possible line that is or-

thogonal to both rays. This line is defined by q̂0 and q̂1, which must satisfy the following

constraints:

(q̂0 − q̂1)
T

¯
s0 = 0 and (q̂0 − q̂1)

T

¯
s1 = 0 (8.2)

These constraints can be stacked in matrix form, obtaining the linear system¯
sT

0 ¯
s0 −(0R1¯

s1)
T

¯
s0

¯
sT

0 ¯
s1 −(0R1¯

s1)
T

¯
s1

λ0

λ1

 =

0p1
T

¯
s0

0p1
T

¯
s1

 (8.3)

The solution is computed by inverting the matrix on the left side of the equation. Once

the scales are recovered, the 3D point may be assumed to be the average of q̂0 and q̂1.

This method allows estimating the depth of a 3D point using two view-points, if the

correspondence between points in different image frames is known. However, it does

not work if the two view-points differ only in orientation (no translation). In this case,

the left side of (8.3) becomes zero, and the only solution is the null vector, which does

not correspond to the actual scale. Therefore, camera translation is required to solve the

depth estimation problem.

[n-view triangulation] The described method may be extended to n view-points, if the

point correspondences for a 3D point are known across the different view-points. In that

case, the projection model of a 3D point q in the i-th camera frame using homogeneous

coordinate is stated as follows:

ui

vi

1

 ∝

1
ρu

0 u0

0 1
ρv

v0

0 0 1

f 0 0 0

0 f 0 0

0 0 1 0

iR0

ip0

0T 1

xc

yc

zc

1

= Pi

¯
q, (8.4)

where the symbol ∝ indicates that the equality holds up to an unknown scale. The cam-

era parameters (ρu, ρv, u0, v0, f) are as described in Chapter 3. The matrix Pi, known as

projection matrix, projects a point in the 3D world into the image plane. Let pj
i be the j-th

8. ACTIVE DEPTH ESTIMATION: THEORY 127

column of the matrix Pi. Then, the cross product
ui

vi

1

×

p1T
i

¯
q

p2T
i

¯
q

p3T
i

¯
q

 = 0 (8.5)

holds, because the two vectors are aligned. Thus, for each point, two constraints can be

derived:

(p3
i uT

i − p1
i)

T

¯
q = 0, (p3

i vT
i − p2

i)
T

¯
q = 0 (8.6)

The 3D point q can be recovered by assembling a system of 2n linear equations, where

n is the number of observations. There are two ways of computing the solution. One can

set the last coordinate of the homogeneous vector to 1 (as shown here), and obtain the

solution using linear least squares. On the other hand, some authors, e.g., [16], assume

the last coordinate of the homogeneous vector to be a variable, and obtain the solution

via the Direct Linear Transformation method (DLT). The underlying idea is to compute the

singular value decomposition of the matrix A in a system Ax = 0, that is, decompose the

matrix as A = USVT, where S is the matrix of singular values. The solution is the column

of V associated with the smallest eigenvalue of S (the column that spans the null space of

A). One can further refine the solution by forcing the eigenvalue to be 0 and recomputing

the matrix A and its eigenvalue decomposition [13].

The disadvantage of triangulation methods is that the computational cost increases

noticeably with more view-points. Furthermore, the solution is ill-conditioned when the

baseline is relatively small relatively to the distance of the point being observed.

8.3 Incremental Depth Estimation

Filtering or incremental-based methods [84, 85] explicitly consider the dynamics of 3D

points tracked across a sequence of continuously acquired images. While geometric-based

techniques suffer from small baseline camera displacements, incremental-based methods

take advantage of these small continuous motions of the cameras to continuously estimate

the 3D structure of the scene and provide a robust estimation of the model uncertainties.

Also, the computational cost for filtering methods is constant for multiple observations,

while geometric strategies do not scale well.

128 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Problem Definition

For a short introduction, consider a 6 Degrees of Freedom (DoF) camera moving freely

in space, and the frame {C} attached to the origin of the sensor. The camera observes a

3D point described in {C} as q := [xc, yc, zc]T ∈ R3 and the dynamics of q relative to the

camera frame are

q̇ = −w× q− v =

ẋc = ycwz − zcwy − vx

ẏc = zcwx − xcwz − vy

żc = xcwy − ycwx − vz

, (8.7)

where v := [vx, vy, vz]T ∈ R3 and w := [wx, wy, wz]T ∈ R3 are the camera linear and

angular velocities described in {C} (assuming that the body and camera frames coincide).

Both v and w are bounded by the actuation limits. Let s := [x, y]T = [xc/zc, yc/zc]T ∈ R2

be the projection of q into the camera’s normalized image plane1.

Consider the change of variable χ = 1/zc. The time-derivative of the new variables is

given by
ẋ = (ẋczc − xc żc) /z2

c

ẏ =
(
ẏczc − yc żc

)
/z2

c

χ̇ = −żc/z2
c

. (8.8)

Substituting (8.7) in (8.8) and writing in the new coordinate system, yields
ẋ

ẏ

χ̇

 =

−χ 0 xχ xy −(1 + x2) y

0 −χ yχ 1 + y2 −xy −x

0 0 χ2 yχ −xχ 0

v

w

 . (8.9)

The dynamics of the system can be stated in a more compact form:
ṡ = Jvvχ + Jww

χ̇ = Jqvχ2 + Jlwχ

, (8.10)

1The normalized coordinates of a pixel in the image plane of a calibrated camera may be computed as in
(3.7).

8. ACTIVE DEPTH ESTIMATION: THEORY 129

where

Jv =

−1 0 x

0 −1 y

 , Jw =

 xy −(1 + x2) y

1 + y2 −xy −x

 ,

Jq =

[
0 0 1

]
, Jl =

[
y −x 0

] . (8.11)

The linear and angular velocity of the camera are assumed to be known, as well as the

projection of the point to the image plane s (also called measurable variable). The chal-

lenge lies in estimating the unknown depth described by χ (also denoted as unmeasurable

variable). The difference between passive and active depth estimation is that, while the

former uses the velocities (v, w) provided by some high level task, the later computes

the velocities that guarantee convergence of the 3D depth estimation and/or improve the

transient response of the estimator. Introducing the estimated variables ŝ and χ̂ and the

respective estimation errors s̃ = s− ŝ and χ̃ = χ− χ̂, the problem tackled in this thesis is

formally stated:

Problem 4. Consider the system described in (8.10) with control input (v, w) and known

camera calibration parameters. Design observers (ŝ,χ̂) and a control policy for (v, w), such

that the state estimation errors s̃ and χ̃ converge to zero as time approaches infinity, i.e.,

s̃→ 0 and χ̃→ 0 as t→ ∞.

Estimator

For a calibrated camera, the normalized projection of a 3D point in the image plane is

straightforward obtained from the pixel coordinates of the corresponding feature. For this

reason, s is called a measurable variable. The challenge is to estimate the unknown depth

described by χ – called here as an unmeasurable variable. The problem is addressed using

an estimator inspired in [23], however the control input of the camera is not combined

with the matrix Jv, Jw, Jq, and Jl :
˙̂s = Jvvχ̂ + Jww + ks s̃

˙̂χ = Jqvχ̂2 + Jlwχ̂ + kχ(Jvv)T s̃
, (8.12)

130 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

where ks, kχ ∈ R+ are the control gains. The corresponding estimation error dynamics is
˙̃s = Jvvχ̃− ks s̃

˙̃χ = χ̃(Jqv(χ + χ̂) + Jlw)− kχ(Jvv)T s̃
. (8.13)

Since one may observe s, the error s̃ is measurable (known), while the depth estima-

tion error χ̃ is unmeasurable (unknown). Both variables are coupled by the term Jvv,

which is essential to the performance of the estimator. In the next section, we analyse the

constraints that must be respected to enforce that the estimation error in (8.13) converges

to the origin.

Active vision

In the last decade, some authors studied the use of active vision techniques, that is, in-

cluding in the control loop the goals of 3D reconstruction. An observer similar to (8.12)

is employed in an active framework in [86]. The authors show that the depth estimation

error globally converges to the origin provided in the special case χ̇ = 0, meaning that

the parameter is unknown, but constant. Their optimal actuation policy computes the

angular velocity that forces the point to move to and remain in the origin of the image

plane, i.e., s = (0, 0), while the camera translates. In fact, the proposed optimal linear

velocity is perpendicular to the camera optical axis, i.e., vz = 0. This maximizes the rate

of convergence dictated by the observability measurement σ2 = ∥Jvv∥2
2, which is a met-

ric to be discussed in more detail in the next section. The framework was later used for

environments containing cylinders, spheres (see [23]), 3D planes (in [24]), and 3D straight

lines (see [87])

8.4 Convergence of the Estimator

In this section we present the stability analysis of the depth estimation filter while map-

ping a 3D point, i.e., Problem 4 defined in the previous section. The goal is to provide

guarantees for the convergence of the unmeasurable depth for recovering the 3D struc-

ture of the world given by qT = [s, 1]/χ using the actuation input of the camera. We will

make use of the following assumption.

Assumption 1. The observed 3D point cannot lie behind the camera. Consequently, we

restrict our analysis to the domain where χ is positive, that is, we assume χ ≥ 0, ∀t.

8. ACTIVE DEPTH ESTIMATION: THEORY 131

This assumption has an explicit physical meaning. In fact, cameras are not able to

observe 3D points that are behind them. This would require a negative depth.

Lemma 8.1. Consider the dynamic system ẋ(t) = ϕ(x, u)g(x), where u is the input of the

system. If ẋ(t) converges to the origin as time approaches infinity, that is, lim
t→∞

ẋ = 0, it must be

the case that either ϕ(x, u) → 0 or g(x) → 0. By designing ϕ(x, u) such that it is persistently

exciting through all time, then one may conclude that g(x) converges to zero. The signal ϕ is

persistently exciting if the integral ∫ t

t0

ϕ(x, u)Tϕ(x, u)dτ (8.14)

is positive definite ∀t ≥ t0. Hence, the persistency of excitation (PE) condition holds if

ϕ(x, u)Tϕ(x, u) > 0. (8.15)

The proof for Lemma 8.1 can be found on [88]. The following result can now be stated.

Theorem 8.2. Consider the estimator in (8.12) for the dynamic system (8.10) under Assump-

tion (1), and with v, w, and their time-derivatives bounded signals. The equilibrium point

(s̃, χ̃) = 0 is stable and the estimation error converges to zero as t → ∞, provided that ∀t ≥ t0

the following constraints hold simultaneously:

1. Jlw ≤ 0;

2.

Jqv ≤ 0 , if χ̂ > 0

Jqv = 0 , otherwise
;

3. σ2 = (xvz − vx)2 + (yvz − vy)2 > 0.

Proof. Consider the Lyapunov function candidate

V(s̃, χ̃) =
1
2
∥s̃∥2 +

1
2kχ

χ̃2, (8.16)

with kχ > 0, and its time-derivative

V̇ = s̃T ˙̃s +
1
kχ

χ̃ ˙̃χ. (8.17)

132 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Substituting (8.13) in the previous equation:

V̇ = s̃T(Jvvχ̃− ks s̃)+

+
1
kχ

χ̃(Jqv(χ + χ̂)χ̃ + Jlwχ̃− kχ(Jvv)T s̃) (8.18)

= −s̃Tks s̃ +
1
kχ

χ̃Jqv(χ + χ̂)χ̃ +
1
kχ

χ̃Jlwχ̃. (8.19)

By combining Assumption 1 and the input constraints stated in Theorem 8.2, the fol-

lowing upper bounds can be derived: Jqv(χ + χ̂) ≤ 0 and Jlw ≤ 0. This means that the

three terms in the right-hand side of (8.19) are non-positive. Hence, V̇ ≤ 0 and the equi-

librium point (s̃, χ̃) = 0 is stable. We also conclude that V(t) ≤ V(t0), and therefore, that

the signals s̃ and χ̃ are bounded.

The critical case that precludes asserting asymptotically stability from (8.19) occurs

when Jqv = 0 and Jlw = 0, and consequentially, V̇ = −s̃Tks s̃. This happens either

because the feature lies in the origin of the image plane, or because v ∈ N(Jq) and w ∈

N(Jl), simultaneously. For Jqv = 0 and Jlw = 0, the second derivative of the Lyapunov

candidate function is

V̈ = −2s̃Tks ˙̃s = −2s̃Tks(Jvvχ̃− ks s̃). (8.20)

As s̃, χ̃, and v (by definition) are bounded, the function V̈ is also bounded. Thus, V̇

is uniformly continuous and from Barbalat’s Lemma [89], we have that s̃ → 0 as t → ∞.

Now, for the asymptotic behaviour of χ̃ when Jqv = 0 and Jlw = 0 from (8.13) we have,

as t→ ∞,
lim
t→∞

˙̃s = lim
t→∞

Jvvχ̃

lim
t→∞

˙̃χ = 0
. (8.21)

The second equation states that the depth estimation error becomes a constant, but not

necessarily zero. To show that indeed it will converge to zero, we first show that ˙̃s is

uniformly bounded because its time derivative given by

¨̃s = J̇vvχ̃ + Jvv̇χ̃ + Jvv ˙̃χ− ks ˙̃s (8.22)

= J̇vvχ̃ + Jvv̇χ̃− kχ Jvv(Jvv)T s̃− ks Jvvχ̃ + k2
s s̃ (8.23)

8. ACTIVE DEPTH ESTIMATION: THEORY 133

is a function of bounded signals. Thus, since s̃ converges to the origin and ˙̃s is uniformly

bounded, we conclude that ˙̃s→ 0 as t→ ∞. Consequently, we have that

lim
t→∞

˙̃s = lim
t→∞

Jvv lim
t→∞

χ̃ = 0. (8.24)

One may apply Lemma 8.1 with ϕ(·) = Jvv and g(·) = χ̃. If the function Jvv is persistently

exciting as in (8.14), then the depth estimation error converges to zero. The persistency

of excitation (PE) condition holds if (Jvv)T Jvv > 0, which is the case from condition (3)

in Theorem 8.2. Thus, one can now conclude that the equilibrium point (s̃T, χ̃) = 0 is

asymptotically stable.

Based on Theorem 8.2 and its proof, we draw the following remarks.

Remark 8.3. The practical meaning of the constraints described in Theorem 8.2 are:

1. The persistency of excitation condition given by

σ2 = (Jvv)T Jvv > 0 (8.25)

is related to the fact that the camera must translate for recovering the depth of a 3D

point. This condition is also derived in [86]. The authors show that σ2 plays the role

of an observability index and increasing its value improves the rate of convergence

of the estimator. Also, from (8.13), notice that Jvv is a cross-coupling term linking

the dynamics of the estimation of the measurable and the unmeasurable variables.

In fact, if Jvv = 0, then the ˙̂s and ˙̂χ become independent from one another;

2. Jqv ≤ 0 =⇒ vz ≤ 0. By inspection of (8.9), vz < 0 contributes to move s to

the origin of the image frame. When vz = 0, the motion of the camera must be

perpendicular to the camera’s principal axis (i.e. the camera’s z−axis [13]); and

3. Jlw ≤ 0 =⇒ ywx − xwy ≤ 0. The first two components of the angular velocity

vector must be belong to a hyperplane defined by s.

The three constraints cover the well-known trivial case where the camera performs

a pure translation perpendicular to the optical axis. Mathematically, this scenario is ex-

pressed as vz = 0, σ2 = v2
x + v2

y > 0 and w = 0. However, as the vehicle moves, the point

may leave the finite image frame. Therefore, v and w can be such that the observed point

remains within a region of interest of the image frame while still observing the required

constraints for convergence.

134 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Next, it is discussed a meaningful manner to select values for the gains ks and kχ,

which are the only magic numbers in the estimator that have to be chosen by the designer.

8.4.1 Gain analysis

For choosing suitable gains (as described in the sequel) for the estimator in (8.12), the

convergence rate for χ̂ is analyzed. For that purpose, consider the simplified behavior of

the error when Jqv = 0, that is,
˙̃s = Jvvχ̃− ks s̃

˙̃χ = Jlwχ̃− kχ(Jvv)T s̃
. (8.26)

This simplification, which corresponds to set vz close to zero, allows us to remove the

unknown depth χ from the gain analysis. Let the gain ks can be chosen arbitrarily large

and define Ψ(s, v) def
= Jlw and Ω(s, v) def

= Jvv. The second-order dynamics of the depth

estimation error can be described as

¨̃χ = Ψ̇χ̃ + Ψ ˙̃χ− kχΩ̇T s̃− kχΩT ˙̃s (8.27)

= Ψ̇χ̃ + Ψ ˙̃χ− kχΩ̇T s̃− kχΩT(Ωχ̃− ks s̃) (8.28)

= (Ψ̇− kχΩTΩ)χ̃ + Ψ ˙̃χ− kχΩTΩχ̃+

kχ(ksΩT − Ω̇T)s̃. (8.29)

Considering that the velocity of the camera varies smoothly and that the coordinates

of the points in the normalized image plane are small, it is possible to choose a ks suffi-

ciently large such that ks∥ΩT s̃∥ ≫ ∥Ω̇T s̃∥. A lower bound for ks can be obtained from

the kinodynamics constraints of the camera and the calibration parameters of the camera.

The former imposes limits on the velocity of the camera, while the later in the coordinates

of the feature being tracked. Now, the previous equation can be simplified

¨̃χ = (Ψ̇− kχΩTΩ)χ̃ + Ψ ˙̃χ− kχΩTΩχ̃ + ks(Ψχ̃− ˙̃χ). (8.30)

Re-arranging the terms of the previous equation, one may re-write it similar to a re-

sponse of the Mass-Spring-Damper system:

¨̃χ + (ks −Ψ) ˙̃χ + (kχΩTΩ− ksΨ− Ψ̇)χ̃ = 0, (8.31)

8. ACTIVE DEPTH ESTIMATION: THEORY 135

where the damping ratio is written as

ζ =
ks −Ψ

2
√

kχΩTΩ− ksΨ− Ψ̇
, (8.32)

with natural frequency

ωn = kχΩTΩ− ksΨ− Ψ̇. (8.33)

To obtain a close to critically damping factor (i.e., ζ = 1):

kχ =
(ks −Ψ)2

4ΩTΩ
+

ksΨ
ΩTΩ

+
Ψ̇

ΩTΩ
. (8.34)

Applying (8.34) in (8.33), we have that ωn ∝ (ks −Ψ)2, which is always positive for a

system that follows the constraints in Theorem 8.2 - Ψ is non-positive and ks is positive.

From this relation, we draw the following remark.

Remark 8.4. Consider the observer in (8.12) and the inputs as defined in Theorem 8.2. For

ks such that ks∥ΩT s̃∥ ≫ ∥Ω̇T s̃∥ and kχ as in (8.34), the depth estimation error converges

to the origin with a close to a critically damped oscillation behaviour.

The results of Theorem 8.2 may be employed in a passive manner because it provides

means to validate for some arbitrary control policy whether there are guarantees that

depth estimation for any tracked point is actually converging. In the next section, we

focus on the active case. The key challenge is how to derive a control policy that com-

plies with the required constraints for convergence of the estimator and a high-level goal.

The high-level task investigated here is visual servoing for a single point (Sec. 9.1) and

multiple points (Sec. 9.2).

Chapter 9

Active Depth Estimation:

Applications

This chapter applies the active depth estimation filter presented in Chapter 8 in more con-

crete applications where the camera has a limited field of view and conflicting objectives

often prevent the actuation that best excites the estimator. More specifically, application

for single point depth estimation is discussed in Sec. 9.1, while Sec. 9.2 covers applica-

tions for multiple points. Section 9.3 present the results and comparisons with literature

methods for both single point and multiple points use-cases.

9.1 Single Point Applications

This section proposes an active depth estimation framework for a single 3D point. The key

idea is exploring the theoretical stability guarantees derived in Sec. 8.4, while ensuring

that the projected point does not leave the image space. In essence, the control input that

respects Theorem 8.2 ensures that the depth estimation globally converges, but there is

no guarantees that the feature coordinates remains within a bounded region of the image

plane. This is a natural requirement that arises in practical applications due to the finite

field of view of a camera. Therefore, first, define the visual servoing error for a single

feature as follows:

e(t) = s(t)− sdes(t), (9.1)

where the continuous and smooth signal sdes(t) is the desired position of the feature in

the image plane. The signal sdes is chosen such that the feature remains within the field of

view of the camera during the depth estimation process.

137

138 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Assume that the feedback control law π(t, s, sdes) drives the tracking error to the ori-

gin, i.e., ṡ = π, ∀t ≥ t0 =⇒ e → 0 as t → ∞. For example, if sdes is constant, then the

proportional controller π = −kp(s− sdes), where kp ∈ R+ ensures the desired behaviour.

The dynamic system is given by (8.10), which is repeated here for the sake of com-

pleteness:
ṡ = Jvvχ + Jww

χ̇ = Jqvχ2 + Jlwχ

. (9.2)

From inspection, ṡ depends on the unknown depth χ and the camera velocities. Since the

depth is estimated online, it is only possible to shape the dynamics of ṡ up to an estimation

error. That being said, the goal is to design a control law for (v, w) such that ṡ(χ̂, v, w)

tracks the signal π(t, s, sdes), while:

i. imposing the constraints stated in Theorem 8.2, to assure that the stability property

holds;

ii. improving the performance of the estimator, by maximizing σ2 as defined in (8.25);

and

iii. accounting for the kinodynamics constraints of the camera described by ∥v∥ ≤ vmax

and ∥w∥ ≤ wmax, where vmax and wmax are the maximum linear and angular speed

of the camera, respectively.

Simultaneously tracking π and respecting all the forementioned constraints can lead

to an infeasible problem. A workaround is proposed by introducing a scale factor λπ ∈

[0, 1] such that ṡ(χ̂, v, w) is required to track the reference λππ. As the depth converges,

tracking the scaled vector λππ – rather than minimizing a norm error – ensures that the

path of the feature in the image frame follows the assignment specified by π. This allows

us to design a path for the feature that does not visit the origin of the image frame. The

problem is formulated next:

maximize
v,w,λπ

λπ

subject to Jvχ̂v + Jww = λππ

0 ≤ λπ ≤ 1

constraints (i), (ii), and (iii)

. (9.3)

9. ACTIVE DEPTH ESTIMATION: APPLICATIONS 139

This problem is addressed in two configurations. The estimation strategy proposed in

Section 9.1.1 does not implicitly impose the unknown depth to be constant. In contrast,

Sec. 9.1.2 addresses the particular case that requires null depth rate (similar to [24]). Both

cases take advantage of the following Theorem:

Theorem 9.1. Consider the non-convex problem:

maximize
λ1,λ2,vr

λ1

subject to λ1v1 + λ2v2 = rvr

∥vr∥ = 1

0 ≤ λ1 ≤ 1

− b ≤ λ2 ≤ b

, (9.4)

where r, b ∈ R+, v1, v2 ∈ Rn, ∥v1∥ > 0, and ∥v2∥ = 1. The problem is always feasible if r ≤ b.

The reader is referred to Appendix A for the proof of Theorem 9.1 and a closed form

solution for the problem in (9.4). The solution does not impose restrictions on the feature

coordinates, except the origin of the image frame, i.e., s = [0, 0]T, which is a singularity.

9.1.1 Case: non-constant depth

The first scenario covers the generic case when the unknown depth of the 3D point may

vary over time, i.e., χ̇ ̸= 0, for some t ≥ t0. By choosing a control policy for v and w

that respects Jqv = 0 and Jww ≤ 0, one may take advantage of Theorem 9.1, while still

respecting the requirements for global convergence stated in Theorem 8.2. In addition to

that, the PE condition in (8.25) simplifies to σ2 = v2
x + v2

y = ∥v(1:2)∥2 and its maximum

attainable value is limited by the kinodynamic constraint of the camera, σ2
max = vmax.

Under this specific scenario, problem in (9.3) can be formulated as

maximize
v,w,λπ

λπ

subject to ṡ(χ̂, v, w) = λππ

0 < λπ ≤ 1

Jqv = 0, Jlw ≤ 0

∥v∥ = vmax, ∥w∥ ≤ wmax

(9.5)

and solved with the following proposition:

140 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Proposition 1. Let the camera control input be

v = vmax

vr

0

 and w =

Sλs/∥s∥

0

 . (9.6)

and S and λs be defined as follow:
S =

[
− s⊥
∥s⊥∥

s
∥s∥

]
λs = [λs⊥ , λs]T

, (9.7)

where λs⊥ ∈ R+, λs ∈ R, and s⊥ = [−y, x]T is a vector perpendicular to s. In particular,

take λs to be

λs =

λw∥s∥(Jw̄S)−1π/∥π∥ if (∥π∥ − χ̂vmax)sTπ < 0

λw∥s∥[0, 1]T otherwise
, (9.8)

where Jw̄ is defined as

Jw̄ =

 xy −(1 + x2)

1 + y2 −xy

 . (9.9)

A sub-optimal solution1 for the problem in (9.5) can be obtained by casting it in the

form of the problem in (9.4), where the input variables are written as

v1 = −π

v2 =

π/∥π∥ if (∥π∥ − χ̂vmax)sTπ < 0

s⊥/∥s⊥∥ otherwise

r = χ̂vmax, b = wmax

(9.10)

and the outputs mapped into
λπ = λ∗1 , λw = λ∗2

vr = v∗r

. (9.11)

Proof. First, we show that the control inputs are described as in (9.6). The constraint Jqv =

0 implies that vz = 0. Combining with ∥v∥ = vmax, the linear velocity vector can be stated

as v = vmax[vT
r , 0]T, where vr ∈ R2 is a unit vector. For the angular velocity, re-write the

1The sub-optimality of the solution is discussed in Remark 9.2, in the end of this section.

9. ACTIVE DEPTH ESTIMATION: APPLICATIONS 141

constraint Jlw ≤ 0 using the slack variable λs⊥ , such that

Jlw ≤ 0 =⇒

Jlw = λs⊥

λs⊥ ≤ 0
. (9.12)

From Jlw = λs⊥ one concludes that wy = (y/x)wx − (1/x)λs⊥ . Applying this result into

Jww:

Jww = Jw

wx

(y/x)wx − (1/x)λs⊥

wz

 (9.13)

=

−y/x y

1 −x

wx

wz

+

(1/x + x)

y

 λs⊥ . (9.14)

The column space of the first matrix on the right hand side of the previous equation can

be generated assuming wz = 0. Thus, the following equivalence holds:

Jlw = λs⊥ =⇒ −sT
⊥w(1:2) = λs⊥ , (9.15)

where wz = 0 and s⊥ = [−y, x]T. In turn, under these assumptions, any feasible angular

velocity can be described as

w(1:2) = −
s⊥
∥s⊥∥2 λs⊥ +

s
∥s∥2 λs (9.16)

=
1
∥s∥

[
− s⊥
∥s⊥∥

s
∥s∥

] λs⊥

λs

 (9.17)

=
1
∥s∥Sλs, (9.18)

where S and λs are as defined in (9.7). With this setup the kinodynamics constraint ∥w∥ ≤

wmax is equivalent to ∥λs∥ ≤ ∥s∥wmax:

∥w∥ = ∥w(1:2)∥ =
1
∥s∥

√
λT

s STSλs (9.19)

=
∥λs∥
∥s∥ ≤ wmax. (9.20)

This concludes the proof of (9.6) and (9.7).

142 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Now, applying the control inputs into the first constraint of (9.5) and re-organizing the

terms yields

λπ(−π) + Jw

Sλs/∥s∥

0

 = −χ̂vmax Jv

vr

0

 (9.21)

λπ(−π) +
1
∥s∥ Jw̄Sλs = χ̂vmaxvr. (9.22)

Let ν = (1/∥s∥)Jw̄Sλs and notice that if ∥π∥ > χ̂vmax, λs must be such that πTν > 0. On

the contrary, if ∥π∥ < χ̂vmax, then one has to ensure (−π)Tν > 0. Maximizing the dot

product in both cases requires that ν∥π and, consequentially,

λs ∝ (Jw̄S)−1π. (9.23)

The matrix S is orthogonal and, therefore, full rank. The matrix Jw̄ is also full rank:

det(Jw̄) = 1 + x2 + y2 ̸= 0. From the Sylvester rank inequality, we have:

rank(S) + rank(Jw̄)− 2 ≤ rank(Jw̄S). (9.24)

Since both S and Jw̄ are 2× 2 full rank matrices, one concludes that their product is always

full rank (and invertible).

For feasibility, the first component of λs – corresponding to λs⊥ – must be non-positive.

Solving the right hand side of (9.23), λs⊥ can be described up to a positive scalar as

λs,⊥ ∝

sTπ if ∥π∥ > χ̂vmax

−sTπ if ∥π∥ ≤ χ̂vmax

. (9.25)

If λs,⊥ is positive in either cases, it means that λs⊥ = 0 is the largest feasible value that

maximizes the projection of ν into π or (−π). Putting the pieces together in a compact

notation:

λs =

λw∥s∥(Jw̄S)−1 π

∥π∥ if (∥π∥ − χ̂vmax)sTπ < 0

λw∥s∥[0, 1]T otherwise
, (9.26)

where λw ∈ R. For the maximum feasible value of λw, one may compute the norm of the

previous equation and compare it with (9.20). When (∥π∥ − χ̂vmax)sTπ > 0, we have

∥λs∥ =
∥λw∥∥s∥
∥π∥ ∥(Jw̄S)−1π∥ ≤ ∥s∥wmax. (9.27)

9. ACTIVE DEPTH ESTIMATION: APPLICATIONS 143

The singular values of (Jw̄S)−1 are 1 and 1/(1 + x2 + y2). Since the maximum singular

value is the unit, the upper bound ∥(Jw̄S)−1π∥ ≤ ∥π∥ holds. Applying it in (9.20), yields

∥λs∥ ≤ ∥λw∥∥s∥ ≤ ∥s∥wmax (9.28)

∥λw∥ ≤ wmax. (9.29)

The same bound is obtained when λs = λw∥s∥[0, 1]T in (9.26):

∥λw∥s∥[0, 1]T∥ ≤ ∥s∥wmax ⇒ ∥λw∥ ≤ wmax (9.30)

Finally, substituting (9.26) in (9.22):

χ̂vmaxvr =
λπ(−π) + λw

π
∥π∥ if (∥π∥ − χ̂vmax)sTπ > 0

λπ(−π) + λw
s⊥
∥s⊥∥

otherwise.
(9.31)

Remark 9.2. The sub-optimality of the proposed solution comes from the fact that the

solution consists in projecting λs into π when (∥π∥ − χ̂vmax)sTπ < 0. The projection is

done via the mapping Jw̄S. The singular values of Jw̄S are 1 and 1 + x2 + y2. Therefore, if

s ̸= [0, 0]T, there can exist a λs that is not projected into π, but the shear transformation

performed by Jw̄S allows for a higher value of λπ. Since in practical applications 1 + x2 +

y2 ≈ 1, the solution obtained is not far from the optimal solution. The main advantage in

the proposed approach is that it is possible to compute a direction for λs in a closed-form.

9.1.2 Case: s ̸= 0 and χ̇ = 0, ∀t ≥ t0

Now, consider the specific scenario where the depth must be kept constant throughout the

entire estimation process, that is, χ̇ = 0, ∀t ≥ t0. This is the case for the estimator in [24]

and it is shown here for comparison. However, note that this imposes motion constraints

that are not required for non-constant depth. For an unknown χ in (8.10), setting Jqv = 0

and Jlw = 0 guarantees that χ̇ = 0. Both aforementioned constraints are in accordance

with Theorem 8.2. The problem, which is stated next:

144 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

maximize
v,w,λπ

λπ

subject to ṡ(χ̂, v, w) = λππ

0 ≤ λπ ≤ 1

Jqv = 0, Jlw = 0

∥v∥ = vmax, ∥w∥ ≤ wmax

, (9.32)

is a particular case of problem (9.5). According to the following corollary, an optimal

solution can be obtained using Theorem 9.1.

Corollary 9.3. Let the camera control input be described as

v = vmax

vr

0

 and w = λw

s/∥s∥

0

 . (9.33)

Then, the problem in (9.32) is equivalent to the problem in (9.4), where
v1 = −π, v2 = s⊥/∥s⊥∥

r = χ̂vmax, b = wmax

; (9.34)

and the outputs are mapped as:
λπ = λ∗1 , λw = λ∗2

vr = v∗r

. (9.35)

The proof is similar to the one presented in Sec. 9.1.1 by imposing λs⊥ = 0, that is, no

slackness. In this case, the solution is optimal because the shear mapping is not involved.

9.2 Multiple Points Applications

It is often the case in vision applications that one wants to estimate the depth of multi-

ple points concurrently, examples include visual servoing and mapping. Motivated by

this, this section addresses the coupled depth estimation and visual servoing problem

for multiple points. The proposed active visual servoing method considers an estimate

of the uncertainty of depth of the points. In essence, when the uncertainty is high, the

constraints of Theorem 8.2 must hold. As the uncertainty decreases, the constraints are

9. ACTIVE DEPTH ESTIMATION: APPLICATIONS 145

relaxed in favor of the visual servoing goal. As a result, depth convergence is favored in

the initial phase, and after that focus is given to the visual servoing task.

The notation and formulation of the multiple points visual servoing problem is ad-

dressed in Sec. 9.2.1. Then, Sec. 9.2.2 shows a metric for measuring the uncertainty as-

sociated with the estimated depth. Finally, Sec. 9.2.3 presents the proposed method for

active visual servoing, which tackles the problem by considering a trade-off between con-

vergence of the estimator and the visual servoing goal.

9.2.1 Formulation

For the sake of simplicity, consider with a slight abuse of notation s = [sT
1 , . . . , sT

n]
T ∈

R2n a vector of n image features and sdes = [sT
1,des, . . . , sT

n,des]
T ∈ R2n a constant vector

that describes the desired coordinates of the features. Borrowing some of the notation

employed in Sec. 9.1, the visual servoing error of a vector of features and its dynamics are

defined as

e = s− sdes. (9.36)

Computing the time derivative of (9.36) and applying (8.10), the dynamic of the visual

servoing error can be described as

ė = ṡ− ṡdes =

Jv(s1)vχ1 + Jw(s1)w

...

Jv(sn)vχn + Jw(sn)w

− ṡdes (9.37)

=

Jv(s1)χ1 , Jw(s1)

...

Jv(sn)χn , Jw(sn)

v

w

− ṡdes (9.38)

= Ls(s, χ)u− ṡdes, (9.39)

where χ = [χ1, . . . , χn]T ∈ Rn, u = [vT, wT] ∈ R6, and Ls ∈ R2n×6 is known as the inter-

action matrix . When ṡdes = 0 (typical case), the visual servoing error is forced to converge

exponentially fast to the origin by modelling the error dynamics using the following con-

trol law:

u∗ = −λeL†
s e (9.40)

where λe ∈ R+ and L†
s = (LT

s Ls)−1LT
s . This requires Ls to be full rank, which means that

at least three features must be fed into the visual servo control loop.

146 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

In the problem discussed here, the structure of the world is unknown. In fact, this is

the case in most realistic scenarios. Thus, the controller does not have access to Ls and

resorts to an estimation of the interaction matrix given by L̂s(s, χ̂). The coupling between

depth estimation and visual servoing arises from the fact that the controller attempts to

drive the visual servoing error to the origin using the depth estimation generated by the

observers. Therefore, if the depth does not converge, most likely, neither does the visual

servoing error. In fact, as discussed in [90], the control law in (9.40) is only guaranteed to

converge when the estimation error of the interaction matrix (L̂s) is small. An exception

is when the depth at sdes is known a priori.

Next, we briefly introduce a method for measuring the uncertainty associated to the

unknown depth. This metric is later employed in our method for imposing or relaxing

the constraints that guarantee asymptotically stability of the estimator.

9.2.2 Measuring uncertainty

The uncertainty of the unmeasurable variable χi, denoted as Ei(t), can be described by

the following metric:

Ei(t) =
1
T

∫ t

t−T
s̃i(τ)

T s̃i(τ)dτ. (9.41)

This is valid if during the time interval of length T the associated PE condition is

non-zero and, therefore, the dynamics of s̃i and χ̃i are tightly coupled (see (8.13) and

Remark 8.3). The interested reader is referred to [26], Appendix C.

9.2.3 Proposed method (Active)

For global depth convergence, each point being tracked must fulfill the properties stated

in Theorem 8.2, while the camera concurrently performs the visual servoing task. This

is potentially too restrictive. For instance, consider the case shown in Fig. 9.1(a) that il-

lustrates Jl(si)w ≤ 0 for n = 3 points. Each constraint defines a halfspace, represented

in different colors. The admissible w(1:2) lies in the intersection of the three constraints,

which is a polyhedron (painted in a white wave pattern). As the number of points in-

crease, the size of the polyhedron decreases and ultimately becomes a single point - the

origin. In that case, only a specific set of problems which require no camera rotation can

be accomplished. The strategy devised splits the visual servoing in three phases (each

point may be in a particular phase of the task):

9. ACTIVE DEPTH ESTIMATION: APPLICATIONS 147

FIGURE 9.1: Constraint Jl(si)w ≤ 0 (a) and its relaxed version (b) applied in a multiple
points scenario. Each constraint is represented using a different color. In the shaded
region, the corresponding constraint is satisfied. In the area painted in a white wave

pattern, all the constraints are satisfied (intersection of the halfspaces).

• Phase 1: the convergence of the estimator is prioritized over the visual servoing

goal. This is achieved by choosing a control input that enforces the constraints of

Theorem 8.2.

• Phase 2: the more the measured depth uncertainty decreases, the more the con-

straints required for convergence of the estimator are relaxed (up to a threshold).

• Phase 3: visual servoing becomes the main goal, while the constraints for conver-

gence are still imposed but relaxed according to a desired threshold.

The key idea is to remain in Phase 1 (constraints holds) until the 3D points has been

properly estimated. The reason for that is that in Phase 2 the guarantees of convergence

stated in the last two constraints of Phase 3 are relaxed. The relaxation for a specific point

considers the uncertainty associated to its depth estimation. For that, let the constraints

be re-stated as
Jl(si)w ≤ bi, i = 1, . . . , n

Jqv ≤ c
. (9.42)

where bi ∈ R and c ∈ R will be soon introduced. Figure 9.1 shows that for some positive

bi and c this increases the set of feasible w.

Taking into consideration the maximum angular velocity of the camera, define bi,max =

wmax max(|xi|, |yi|). Then, the coefficient bi is described as follows

bi =

0, if Ei ≥ Eub

bi,max
(Eub−Ei)
(Eub−Eub)

, if Elb ≤ Ei ≤ Eub

bi,max, otherwise ,

(9.43)

148 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 9.2: Relaxation of constraint Jl(si)w ≤ 0 using the uncertainty measurement Ei.

where Ei is the measurement of the depth estimation uncertainty of the i-th feature given

by (9.41) and Eub, Elb ∈ R+ defines an upper and lower bound of the uncertainty, respec-

tively. A graphical interpretation is shown in Fig. 9.2. When the uncertainty is above the

threshold Eub, the constraint stated in Theorem 8.2 must be respected. As the uncertainty

decreases, the constraints are partially relaxed. If the uncertainty drops below Elb, the

constraint is fully relaxed. The coefficient c is defined in a similar fashion:

c = min(ci), i = 1, . . . , n; (9.44)

ci =

0, if Ei ≥ Eub

vmax
(Eub−Ei)
(Eub−Eub)

, if Elb ≤ Ei ≤ Eub

vmax, otherwise .

(9.45)

Finally, the coupled depth estimation and visual servoing problem are formulated as

a convex optimization problem:

minimize
v,w

1
2
∥λee + L̂su∥2

subject to Jl(si)w ≤ bi, i = 1, . . . , n

Jqv ≤ c

∥v∥ ≤ vmax

∥w∥ ≤ wmax

(9.46)

where vmax and wmax are the maximum linear and angular velocity of the camera, respec-

tively. If min{χ̂1, . . . , χ̂n} < 0, the second constraint must be replaced by vz = 0. We

highlight that such a situation should be avoided in a coding level, as χi = 0 leads to a

9. ACTIVE DEPTH ESTIMATION: APPLICATIONS 149

FIGURE 9.3: Evaluation of critically damped gain k∗χ given by (8.34). The depth estima-
tion results shown in this figure were obtained using the strategy described in Sec. 9.1.1.

singularity and χi < 0 does not have a valid physical interpretation. The problem can be

solved at frame rate speed using a numerical solver such as [91, 92].

9.3 Experiments

The theoretical results derived in this work are validated using a numerical simulator.

Simulations run at 20 Hz with the following fixed parameters: vmax = 0.1 m/s, wmax =

0.15 rad/s, and ks = 10. The latter is the estimator gain in (8.12). For choosing the gain kχ,

we first analyze the approximation discussed in Sec. 8.4.1 for the critically damped gain

k∗χ. In order for that, the strategy in Sec. 9.1.1 is evaluated using different values of kχ. The

results are shown in Fig. 9.3. Doubling the critical gain leads to overshooting. In contrast,

the system response is considerable slower due to overdamping when decreasing k∗χ by

half. These results confirm that the approximation for computing the critically damped

gain are valid. Thus, remaining simulations presented here employed the fixed value

kχ = k∗χ. In particular, for the considered setup: kχ = 2500 and σ2
max = 0.01 (maximum

value for the PE condition).

9.3.1 Single point

In this section, three single points depth estimation strategies that ensure global conver-

gence are compared:

• Spica et al. 14: Presented in [23, 86], for global convergence it requires the projection

of the tracked 3D point to lie in the origin of the image plane and its corresponding

depth to be constant, i.e., sdes = [0, 0]T and χ̇ = 0.;

150 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

• Sec. 9.1.1: The method proposed here ensures global convergence for any feature

that does not lie in the origin of the image plane and does not impose its corre-

sponding depth to be constant.

• Sec. 9.1.2: This is a particular case of the previous method. However, similar to

Spica et al. 14, it keeps the unknown depth constant throughout the trajectory of the

camera.

The method named here as Spica et al. 14 requires sdes = [0, 0]T, while the strategies

proposed in this work require sdes ̸= [0, 0]T. Aiming at a fair comparison, the initial visual

servoing error and the inverse depth estimation error are the same in the three cases. The

simulations discussed here have the following initial configuration: ∥e(t0)∥ = 0.2 m and

χ̃(t0) = 0.9 m−1 (with χ(t0) = 1 m−1 and χ̂(t0) = 0.1 m−1). The results are show in

Fig. 9.4, where the literature method is represented in a red continuous line, the strategy

in Sec. 9.1.1 in a dashed green line, and the method in Sec. 9.1.2 in a continuous blue line.

The behaviour of the depth estimation error is almost the same for the three meth-

ods - see Fig. 9.4a. In fact, the three strategies continuously hold the PE condition, given

by σ2, at its maximum value (Fig. 9.4c). The visual servoing error converges slower for

the method described in Sec. 9.1.2. This is because the constraint Jlw = 0 imposes severe

limitations on the the angular velocity vector. Spica et al. 14 guarantees asymptotically sta-

bility by driving the feature to the origin of the image frame, while the strategies proposed

here ensure that the constraints described in Theorem 8.2 hold throughout the entire esti-

mation process. In particular, the constraint associated to Jlw can be seen in Fig. 9.4d. For

the method in Sec. 9.1.1, Jlw is smaller or equal to zero. For the method in Sec. 9.1.2, the

constraint is always zero.

For the same scenario, Fig. 9.5 shows the ground truth and the depth estimation using

the method in Sec. 9.1.1. In contrast to other continuous estimation strategies presented

in the literature (including [23]), the method proposed in Sec. 9.1.1 ensures global conver-

gence even thought the depth of the point with respect to the camera is not constant.

In our formulation, the desired feature coordinate sdes can be time-varying. Figure 9.6

shows a scenario where the goal is to have the projection of the feature moving in a circu-

lar pattern. More specifically, we define sdes = 0.1[cos(2π/10t), sin(2π/10t)]T. As shown

in Fig. 9.6(a), the speed of convergence of the depth estimation error does not change

when compared to the previous case (constant sdes). Finally, Fig. 9.6(b) and (c) show that

9. ACTIVE DEPTH ESTIMATION: APPLICATIONS 151

FIGURE 9.4: Comparison of the estimation strategies described in [23] (Spica et al. 14),
Sec. 9.1.1 (χ̇ ̸= 0 relaxed), and Sec. 9.1.2 (χ̇ = 0) . The initial inverse depth estimation
error is χ̃ = 0.9 m−1 and the initial visual servoing error is ∥e∥ = 0.2 m. From top
to bottom, the results of (a) the inverse depth estimation error, (b) the visual servoing
error, (c) persistence of excitation measurement σ2, and (d) constraint Jlw described in

Theorem 8.2.

while the depth estimation converges, the proposed control law is able to follow the time-

varying signal sdes.

In summary, the results for single point applications show that our method is able to

guarantee global convergence without moving the feature to the origin of the image plane

and the corresponding feature depth does not necessarily need to be constant throughout

152 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 9.5: True depth (z = 1/χ) and its estimation (ẑ = 1/χ̂) using the strategy de-
scribed in Sec. 9.1.1 and the same setup as in Fig. 9.4

FIGURE 9.6: Assessing the performance of the proposed depth estimation framework
when the desired feature coordinates (sdes(t)) is time-varying. (a) shows the depth es-
timation error, (b) shows the desired and the current projection of the 3D point in the
image plane, (c) illustrates the trajectory of the camera in a black line, the z–axis in a blue

arrow, and the 3D point in black, and (d) the two previous signals over time per axis.

the estimation process. These new properties do not compromise the speed of conver-

gence of the estimator when compared to other methods in the literature, namely [23, 86].

9. ACTIVE DEPTH ESTIMATION: APPLICATIONS 153

9.3.2 Multiple points

In this section we discuss the results for the concurrently multiple points depth estimation

and visual servoing problem. The evaluation is carried out through an statistical analysis

by simulating both the proposed (Sec. 9.2.3) and a passive method in several scenarios,

which is briefly introduced next.

Baseline (passive method)

The passive approach for visual servoing is inspired in [90] using the kinodynamics con-

straints, that is, the solution for the following problem:

minimize
v,w

1
2
∥λee + L̂su∥2

subject to ∥v∥ ≤ vmax

∥w∥ ≤ wmax

. (9.47)

Notice that this is similar to our formulation without the constraints inherited from

Theorem 8.2 and their respective relaxations. While it would be interesting to compare our

method with [26], their code is not public available. Their method aims at maximizing the

persistency of excitation condition, which yields results better than the passive method.

However, in contrast to our method, throughout the visual servoing task the guarantees

of convergence of the estimator are not considered.

Experiments

• Initial pose of the camera r(t0): the camera always starts at the origin of the world

at t = t0;

• Final pose of the camera rdes(T): A desired final pose is randomly selected using

an uniform distribution. The translation is within 0.2 m and 1 m from the initial

position and the camera is rotated up to 20o in each axis. The desired final pose of

the camera is employed for projecting the 3D points in the image frame, obtaining

sdes;

• Number of points (n): the number of tracked 3D points varies from 4 to 9;

• 3D points q1, . . . , qn : Four points are fixed, mimicking the corners of a square tag

of side length 0.2 m. These points are placed 1.5 m away from the z−axis of the

154 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

world frame. When n > 4, the remaining points are randomly generated. The x

and y coordinates of the n − 4 points are within the corresponding coordinates of

the virtual square tag, while their depth is 1 m to 2 m away from the z-axis of the

world frame;

• Visual servoing goal sdes: The vector sdes is computed using the randomly generated

final pose of the camera and 3D points; and

• Initial depth estimation: the initial guess for a point’s depth is randomly chosen

between 0.1 m to 3 m.

For the proposed method, the camera control inputs are computed according to (9.46),

while for the passive strategy the actuation commands follow from (9.47). In both meth-

ods, the depth of each 3D point is estimated using the observer described in (8.12) with

the same parameters as discussed in the previous section for single points. When decreas-

ing the visual servoing error, the passive accounts only for the kinodynamics constraints.

Therefore, convergence of the depth estimation filters may happen as a consequence of the

camera’s motion. Meanwhile the active method is concerned with the control inputs that

simultaneously decrease the visual servoing error and ensure convergence of the depth

estimators. As the uncertainty on the depth estimation decreases, the global convergence

constraints are relaxed. We perform 1000 simulations for n = 4, . . . , 9, running both the

proposed and the passive methods for each scenario setup. In addition, to evaluate the

temporal performance, we also run the visual servoing task assuming the depth is known

a priori. In the ideal case, the control inputs are computed according to (9.47) using χ

rather than χ̂. The duration of each task is 15 s, i.e., T = 15 s. The results obtained after

6000 simulations are summarized in Fig. 9.7. The passive strategy is shown in red and the

active in blue.

The visual servoing task is said to have succeeded if the visual servoing error ∥e∥ is

smaller than 0.01 m. Figure 9.7a shows the success rate of both strategies. The passive

method is able to complete about 40%− 50%, while the proposed method accomplished

85% − 95% of the scenes. Within the considered setup, this means that the proposed

method doubles the chance to successfully accomplish the task. In none of our experi-

ments there was a scenario where the passive worked, but the proposed did not. As the

number of points being tracked increases, the success rate slowly decreases. In fact, as n

increases and since we cannot ensure a 100% convergence for all depth estimation filters,

9. ACTIVE DEPTH ESTIMATION: APPLICATIONS 155

FIGURE 9.7: Coupled depth estimation and visual servoing for multiple points: 6000
simulations were performed using a passive and the proposed active strategy. Scenarios
with 4 to 9 points were considered. (a) shows the success rate, (b) the average depth error,

and (c) the time difference with respect to the ideal case (known depth).

it will also increase the probability of at least one filter not converging. As a consequence,

the interaction matrix does not converge to its true value and the visual servoing error gets

trapped in a local minima. The slight increase in the passive method from n = 4 to n = 6

is not expected. It may be better explained by an unexpected poor performance when the

number of points was low. From the definition of the cost function in both strategies, once

the visual servoing error reaches a local minima, the camera stops moving. In this case,

the PE condition and the depth observer dynamics becomes zero.

By the end of the task, at T = 15 s, the depth estimation error in each scenario is com-

puted as ∑n
i=1 |1/χi − 1/χ̂i|. Figure 9.7b shows the average error, which was computed

considering only the cases that the passive strategy accomplished the visual servoing task.

The proposed active method performed significantly better: its average final depth esti-

mation errors were about 10 times (n = 5, 6, 8) to 100 times (n = 4, 7, 9) smaller than the

ones presented by passive method. The results in terms of time are depicted in Fig. 9.7.

The box plot addresses the additional time a strategy required to decrease the visual ser-

voing error to ∥e∥ ≤ 0.01 m with respect to (w.r.t.) the ideal case - known depth. Once

again, only the cases where the passive method succeeded are compared. The additional

156 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE 9.8: A 4-point scenario for the multiple depth estimation and visual servoing
problem.(a) shows the visual servoing error, (b) the translation error with respect the
desired final position of the camera as required by the visual servoing task, and (c) the
depth estimation error. In the green region the constraints of Theorem 8.2 are active, in
the yellow are the constraints are partially relaxed, and in the white region the constraints

are totally relaxed.

constraints imposed by the proposed active method may lead to a slower performance

in some scenarios. Notice, however, that the median time of the proposed method was

less than 1 s longer than the ideal case (versus 0.2 s for the passive strategy). Moreover,

irrespective of the number of points, the worst case performance of the passive method is

almost two times longer than the active method.

A scenario with n = 4 is explored in more details in Fig. 9.8 and Fig. 9.9. The color code

is similar as before: results for the active method are shown in a blue continuous line and

for the passive in a dashed red line. For the proposed strategy, consider as a relaxation

metric the value of c in (9.44). Fig. 9.8 contains three colored regions that describes the

different relaxation steps. In the green area the constraints stated in Theorem 8.2 area

active (c = 0), in the yellow region the constraints are partially relaxed (0 < c < vmax),

and in the white area the constraints are totally relaxed (c = vmax). As shown in Fig. 9.8a,

9. ACTIVE DEPTH ESTIMATION: APPLICATIONS 157

FIGURE 9.9: Mutiple points depth estimation and visual servoing: For the same 4-point
setup presented in Fig. 9.8 (a) shows the trajectories of the points in the image frame.
The initial features coordinates are painted in black circles and the desired final features
coordinates are illustrated by the symbol ×. (b) shows the 3D view of the trajectory of
the camera for the passive (red) and active strategy (blue). The desired final position is

represeted by a black circle at the world coordinates [0.1, 0.1, 0.4]T .

the visual servoing error decreases almost as fast in both cases. However, for the passive

method, about t = 4 s, the error stops decreasing in a non-zero value and there it remains

until the end of the simulation (∥e(T)∥ ≈ 0.03 m). The method fell into a local minima.

Meanwhile, the proposed method is able to continuously decrease the visual servoing

error, such that ∥e(T)∥ ≈ 10−5 m. Although it leads to a relatively small visual servoing

error, the final pose of the camera using the passive method is not close to the desired

value (see Fig. 9.8b). Once again, the proposed active method presents better results,

leading the camera to the desired final pose. The reason the passive method does not drive

the camera to the desired pose and, consequently, presents a non-zero visual servoing

error is because the depth estimation does not converge - nor does the interaction matrix

L̂. As shown in Fig. 9.8c, the final value of the inverse depth estimation error is almost

3 m−1 for the passive method, while for the active it converges to zero.

For the same 4-point setup, the trajectory of the points in the image frame throughout

the simulation is illustrated in Fig. 9.9a. The initial and the desired coordinates of the

features are represented by black dots and black symbols ×, respectively. Colored circles

indicate the final position of the features using the passive (red) and the proposed (blue)

strategies. Considering the bottom left feature, it seems that passive method is able to

drive this particular feature to its desired image coordinates. While for the remaining

158 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

features there is a reasonable mismatch. In contrast, the active strategy drives all the

features to the desired position in the image plane. The difference in the final visual

servoing error and in the trajectories of the features in the image plane suggest that the

trajectory of the camera itself is not the same for both methods. The 3D vizualization of

the trajectory of the camera and the 3D points is illustrated in Fig. 9.8b. An arrow indicates

the z-axis of the camera frame. For both strategies, the camera starts at the origin of the

world. While the camera converges to the desired pose (goal position is represented by a

black circle) using the active method, for the passive strategy it does not.

These simulation results show that the active strategy increases the success rate of the

simultaneous multiple point depth estimation and visual servoing problem when com-

pared to a passive method. Although the proposed method may slightly increase the task

time in some configurations, in the worst case scenario it performs significantly faster

than the passive strategy.

Chapter 10

Conclusions and Future Work

This chapter presents final remarks and future work that have the potential to improve

the methods proposed in this thesis. Sec. 10.1 covers B-spline SLAM, while Sec. 10.2 con-

cludes the 3D depth estimation track.

10.1 Range-based SLAM

The first research problem investigated in this thesis concerns two issues that arise in

state-of-the-art range-based Simultaneous Localization and Mapping: memory consump-

tion and map degradation due to discrete resolution. This thesis proposes two techniques

that tackle each of these problems individually.

B-spline curve SLAM, presented in Chapter 6, addresses the memory consumption

issue by representing the world using B-spline curves. Results show that the proposed

framework may be one order of magnitude more efficient than discrete occupancy-grid

based strategies. When contrasted to other geometric SLAM techniques, e.g. line and

circle based, B-spline curve SLAM is more versatile for describing complex geometric

shapes. Localization and mapping is formulated as a single optimization problem that

finds the best place (in parametric variable space) for merging two B-spline curves that

refer to the same structure in the environment, as well as the pose of the robot that best

explains the current measurements based on the current map. The curves are updated

with a short processing time, by taking advantage of the fact that B-spline curves that

have been previously aligned can be merged by a weighted sum of their control points.

The proposed strategy can be specially valuable as a state estimation module in long-

term autonomous operations, for which map scalability is a major concern. Furthermore,

159

160 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

since a B-spline curve lies in the convex hull of its control points, the map itself is suitable

for path and motion planning algorithms that require representing the obstacles with a

convex shape (e.g. OMG-Tools[93]).

Each B-spline curve in the map represents a continuous artifact in the environment, for

instance such as walls and boxes. In future work, the map can be further explored for high

level task planning and semantic navigation, by enhancing the current implementation to

deal with queries such as: Where is the next obstacle? What is the length of the obstacle with

a certain ID?. Moreover, re-detection of B-spline curves can be improved by integrating

data structures that are specialised in fast spatial search, such as R-Tree.

B-spline surface SLAM, proposed in Chapter 7, tackles the map degradation prob-

lem due to discretization. The corner stone of the method is the B-spline surface map,

a 2.5D continuous map based on B-spline surfaces. This approach allows for more ac-

curate representations of the world, combining floating point resolution of continuous

metric maps with the fast update, access and merging of discrete metric maps. In terms

of representation error, it outperformed a vanilla state-of-the-art implementation using

occupancy grid maps. As for speed, the proposed technique achieved shorter process-

ing times in comparison with Gaussian process maps, a state-of-the-art approach that

also generates continuous maps. This work shows that discretizing the map results in

quality degradation, as measurements of the world are not registered at their observed

locations, but might be slightly displaced to fit in cells. As a consequence localization

also degrades, as it queries the map for estimating the pose of the robot that best explains

the current sensor measurements. Results reveal that B-spline surfaces handle the dis-

cretization problem more effectively. In fact, even though loop closure is not explicitly

performed, results using public data sets show that the proposed B-spline surface SLAM

framework can build accurate maps at sensor rate speed. Quantitative results also show

that the proposed online B-spline SLAM outperforms multi-hypothesis grid-based SLAM

(GMapping), and competes with state-of-the-art solutions that perform offline optimisa-

tion (Google Cartographer and TSDF-SLAM). Thus, B-spline surface SLAM presents a

favourable trade-off between the accuracy of geometric maps and the speed of discrete

grid maps.

In future work, the accuracy of B-spline surface SLAM can be further improved by

adding loop closure detection and offline optimisation. As for computational perfor-

mance, implementing the code in a lower level language such as C or C++ will improve

10. CONCLUSIONS AND FUTURE WORK 161

the speed of the algorithm.

10.2 3D Depth Estimation

The second part of this thesis focuses on active incremental depth estimation for image

systems. In particular, we investigate the problem of actively controlling the camera such

that depth estimation converges with stability guarantees. Unlike most state-of-the-art

approaches, the proposed method does not require moving the observed features to the

origin of the image plane.

The active depth estimation framework presented in Chapter 8 builds on top of the

incremental depth estimator addressed in [24], where some stability guarantees are pre-

sented, as well as a way to maximize its convergence speed in an active fashion. However,

asymptotic stability only holds for a single point for which the unknown depth must be

kept constant throughout the estimation process. This leads to the issues raised in [26],

where the previous framework is extended to couple depth estimation and visual servo

control, in a scenario with multiple points. The strategy strives to increase the conver-

gence speed, but stability guarantees are not met, as at most one feature can be at the

image origin at a given time.

In Chapter 8 we take a step back to first analyze the camera actuation policies that

provide global stability guarantees to the depth estimation of a single feature. More im-

portantly, it is shown that, for a set of actuation inputs, stability holds regardless of the

position of the feature in the image plane. Afterwards, in Chapter 9 these theoretical re-

sults are applied in the concurrent depth estimation and visual servoing problems, using

both single and multiple points. The proposed single point framework is asymptotically

stable. In contrast to previous works with similar stability properties, the tracked feature

does not have to lie in (or move to) the origin of the image frame. Moreover, the un-

known depth does not need to be kept constant throughout the estimation process. For

multiple points, the proposed strategy imposes constraints on the control input of the cam-

era, ensuring that asymptotic stability holds when the associated uncertainty is high. As

uncertainty decreases, these constraints are relaxed, allowing the camera to achieve the vi-

sual servoing goal. Generally, this requires an accurate depth estimation, and thus we can

conclude that our method increases the chance of successfully solving the coupled depth

estimation and visual servoing problem. This is supported through several comparative

numerical simulations.

162 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

In future work, the active depth estimation framework may be put into practice in 6

degree-of-freedom robotic platforms, such as airborne systems, underwater vehicles or

manipulators. Meanwhile, the theoretical stability of the filter when the camera’s velocity

is subjected to noise is still an open problem.

Appendix A

Optimal solution for Problem 9.1

This appendix provides a a proof for the following Theorem:

Theorem A.1. Consider the non-convex problem

maximize
λ1,λ2,vr

λ1

subject to λ1v1 + λ2v2 = rvr

∥vr∥ = 1

0 ≤ λ1 ≤ 1

− b ≤ λ2 ≤ b

, (A.1)

where λ1, λ2 ∈ R+, v1, v2 ∈ Rn, ∥v1∥ > 0, and ∥v2∥ = 1. The problem is always feasible if

r ≤ b.

Proof. The problem in (A.1) can be seen as computing the constrained weighted sum of

two vectors (v1, v2) that lies in a circle of radius r, while maximizing the weight λ1 associ-

ated with v1. Figure 1 supports the geometric proof described here. Consider the equality

described by the first constraint in (A.1):

λ1v1 + λ2v2 = rvr. (A.2)

Applying the norm function and squaring both sides yields

∥v1∥2λ2
1 + 2vT

1 v2λ1λ2 + ∥v2∥2λ2
2 = r2∥vr∥2, (A.3)

163

164 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

FIGURE A.1: Geometric visualization of the problem in (A.1) in R2. The problem consists
in finding a constrained weighted sum of λ1v1 +λ2v2 that lies in a circle of radius r, while
maximizing the weight λ1. A lagging asterisk indicates an optimal variable. Intermediate

steps and alternative solutions are depicted in dashed lines.

where by definition ∥v2∥ = ∥vr∥ = 1. Now, let us introduce the quadratic function

f (λ1, λ2) defined as

f (λ1, λ2) = ∥v1∥2λ2
1 + 2vT

1 v2λ1λ2 + λ2
2 − r2. (A.4)

Given admissible v1, v2, and r, the roots of f (·) are candidate solutions for the prob-

lem in (A.1). Feasibility requires checking the last two constraints, which define lower

and upper bounds for the pair (λ1, λ2). The optimal solution (λ∗1 , λ∗2 , v∗r) contains the

maximum achievable λ1. For computing it, we address the problem according to ∥v1∥:

• ∥v1∥ ≤ r: This case is illustrated in Fig. A.1(a). From (31), λ∗1 = 1 is always feasible.

The optimal weight λ∗2 is obtained by evaluating the roots of (33) using λ∗1 . As

∥v1∥ → 0, λ∗2 → ±r and the sufficient condition must hold : r = ∥λ2∥ ≤ b =⇒ r ≤

b.

• ∥v1∥ > r: This more challenging case is shown in Fig. A.1(b). First, we compute

a candidate solution for λ′1 that respects (A.2), but not necessarily the bound con-

straints. If v1 ∥ v2, then vr must be parallel to both vectors and we can take λ′1 = 1

as an initial candidate solution. If v1 and v2 are not parallel, define the vector

v2,⊥ = v1 − (vT
1 v2)v2, which is perpendicular to the unit vector v2. A candidate

solution that respects (A.2) is given by:

A. OPTIMAL SOLUTION FOR PROBLEM 9.1 165

λ′1 = r ∥v2,⊥∥

vT
1 v2,⊥

λ′2 = −r∥v2,⊥∥
vT

1 v2

vT
1 v2,⊥

v′r =
v2,⊥
∥v2,⊥∥

(A.5)

For the proof, apply the candidate into the left hand side of (A.2):

r
∥v2,⊥∥
vT

1 v2,⊥
v1 − r∥v2,⊥∥

vT
1 v2

vT
1 v2,⊥

v2 = (A.6)

=r
∥v2,⊥∥

(v2,⊥ − (vT
1 v2)v2)Tv2,⊥

(v1 − (vT
1 v2)v2) (A.7)

=r
∥v2,⊥∥

∥v2,⊥∥2 − (vT
1 v2)vT

2 v2,⊥
v2,⊥ (A.8)

=r
v2,⊥
∥v2,⊥∥

= rv′r. (A.9)

Geometrically, the projection λ′1v1 onto v′r and v2 have length r and |λ2|, respec-

tively. Also, the pair (λ′1, λ′2) have the maximum absolute value that satisfies (A.2).

Now, we have to ensure that the bound constraints hold. The next candidates are

λ′′1 = min(1, λ′1) and λ′′2 is a root of f (λ′′1 , λ2). Choose λ′′2 to be the smallest root

in absolute value. Finally, checking the bounds for λ2 leads to the optimal solution

λ∗2 = sign(λ′′2)min(b, |λ′′2 |) and λ∗1 is the largest positive root of f (λ1, λ∗2).

Algorithm 9: Optimal solution for problem (A.1).

Input: v1, v2, r, b;
Output: λ∗1 , λ∗2 , v∗r ;
if ∥v1∥ ≤ r then

λ∗1 ← 1;
λ∗2 ← roots of f (λ∗1 , λ2) ∈ [−b, b];

else
v2,⊥ ← v1 − (vT

1 v2)v2;
if vT

1 v2,⊥ == 0 then
λ′1 ← 1

else
λ′1 ← r ∥v2,⊥∥

vT
1 v2,⊥

end
λ′′1 ← min(1, λ′1);
λ′′2 ← root of f (λ′′1 , λ2) with the smallest absolute value;
λ∗2 = sign(λ′′2)min(b, |λ′′2 |);
λ∗1 ← most positive root of f (λ1, λ∗2);

end
v∗r ← (1/r)(λ∗1v1 + λ∗2v2)

166 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

After computing the optimal values (λ∗1 , λ∗2), evaluate (A.2) to obtain v∗r .

A closed-form strategy for computing the optimal solution of Problem (A.5) is sum-

marized in Algorithm 9.

Bibliography

[1] “Abi: Robotics market to shift from fixed automation to mobile systems,”

Dec 2019. [Online]. Available: https://industryeurope.com/abi-robotics-market-to-

shift-from-fixed-automation-to-mobile-systems/ [Cited on page 1.]

[2] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous Mobile

Robots, Second Edition, 2nd ed. The MIT Press, 2011. [Cited on page 2.]

[3] B. Bennett, “Why your robot vacuum’s random patterns make total sense,” Jun

2019. [Online]. Available: https://www.cnet.com/news/how-to-choose-the-best-

robot-vacuum-for-your-home-roomba-neato-ecovacs-2019/ [Cited on page 3.]

[4] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping

with Rao-Blackwellized particle filters,” IEEE Transactions on Robotics, 2007. [Cited

on pages 4, 5, 38, 63, 71, and 114.]

[5] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible and scalable

SLAM system with full 3D motion estimation,” in 9th IEEE International Symposium

on Safety, Security, and Rescue Robotics, SSRR 2011, 2011. [Cited on pages 4, 5, 7, 38,

63, 71, 77, 79, 93, 109, 111, 115, and 116.]

[6] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile Monocular Visual-

Inertial State Estimator,” IEEE Transactions on Robotics, 2018. [Cited on page 4.]

[7] F. Hidalgo and T. Bräunl, “Review of underwater slam techniques,” in 2015 6th In-

ternational Conference on Automation, Robotics and Applications (ICARA), Feb 2015, pp.

306–311. [Cited on page 4.]

[8] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and

J. J. Leonard, “Past, present, and future of simultaneous localization and mapping:

167

https://industryeurope.com/abi-robotics-market-to-shift-from-fixed-automation-to-mobile-systems/
https://industryeurope.com/abi-robotics-market-to-shift-from-fixed-automation-to-mobile-systems/
https://www.cnet.com/news/how-to-choose-the-best-robot-vacuum-for-your-home-roomba-neato-ecovacs-2019/
https://www.cnet.com/news/how-to-choose-the-best-robot-vacuum-for-your-home-roomba-neato-ecovacs-2019/

168 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Toward the robust-perception age,” IEEE Transactions on Robotics, 2016. [Cited on

pages 4, 6, and 65.]

[9] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R. Vincent,

“Efficient sparse pose adjustment for 2d mapping,” in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Oct 2010, pp. 22–29. [Cited on page 5.]

[10] “IEEE standard for robot map data representation for navigation,” 1873-2015 IEEE

Standard for Robot Map Data Representation for Navigation, pp. 1–54, Oct 2015. [Cited

on page 5.]

[11] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and Navigation,”

Computer, 1989. [Cited on pages 5 and 69.]

[12] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar slam,”

in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp.

1271–1278. [Cited on pages 5, 7, 38, 63, 72, 73, 77, 79, 98, 111, and 117.]

[13] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.

USA: Cambridge University Press, 2003. [Cited on pages 8, 9, 125, 127, and 133.]

[14] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marı́n-Jiménez,

“Automatic generation and detection of highly reliable fiducial markers under oc-

clusion,” Pattern Recognit., vol. 47, pp. 2280–2292, 2014. [Cited on pages 8 and 124.]

[15] H. C. Longuet-Higgins, A Computer Algorithm for Reconstructing a Scene from Two Pro-

jections. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1987, p. 61–62.

[Cited on page 9.]

[16] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” in IEEE Conf.

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4104–4113. [Cited on

pages 9, 125, and 127.]

[17] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment

— a modern synthesis,” in Vision Algorithms: Theory and Practice, 2000, pp. 298–372.

[Cited on page 9.]

[18] A. Martinelli, “Vision and imu data fusion: Closed-form solutions for attitude, speed,

absolute scale, and bias determination,” IEEE Trans. Robotics (T-RO), vol. 28, no. 1, pp.

44–60, 2012. [Cited on page 9.]

BIBLIOGRAPHY 169

[19] R. Benyoucef, L. Nehaoua, H. Hadj-Abdelkader, and H. Arioui, “Depth estimation

for a point feature: Structure from motion amp; stability analysis,” in 2019 IEEE 58th

Conference on Decision and Control (CDC), 2019, pp. 3991–3996. [Cited on page 9.]

[20] O. Tahri, D. Boutat, and Y. Mezouar, “Brunovsky’s linear form of incremental struc-

ture from motion,” IEEE Trans. Robotics (T-RO), vol. 33, no. 6, pp. 1491–1499, 2017.

[Cited on page 9.]

[21] E. Bjørne, T. A. Johansen, and E. F. Brekke, “Cascaded bearing only slam with uni-

form semi-global asymptotic stability,” in 2019 22th International Conference on Infor-

mation Fusion (FUSION), 2019, pp. 1–8. [Cited on page 9.]

[22] F. Chaumette, S. Boukir, P. Bouthemy, , and D. Juvin, “Structure from controlled mo-

tion,” IEEE Trans. Pattern Analysis and Machine Intelligence (T-PAMI), vol. 18, no. 5, pp.

492–504, 1996. [Cited on page 10.]

[23] R. Spica, P. Robuffo Giordano, and F. Chaumette, “Active structure from motion:

Application to point, sphere, and cylinder,” IEEE Trans. Robotics (T-RO), vol. 30, no. 6,

pp. 1499–1513, 2014. [Cited on pages 10, 129, 130, 149, 150, 151, and 152.]

[24] ——, “Plane estimation by active vision from point features and image moments,”

in IEEE Int’l Conf. Robotics and Automation (ICRA), 2015, pp. 6003–6010. [Cited on

pages 10, 130, 139, 143, and 161.]

[25] A. Mateus, O. Tahri, A. P. Aguiar, P. U. Lima, and P. Miraldo, “On incremental struc-

ture from motion using lines,” IEEE Trans. Robotics (T-RO), pp. 1–16, 2021. [Cited on

page 10.]

[26] R. Spica, P. R. Giordano, and F. Chaumette, “Coupling active depth estimation and

visual servoing via a large projection operator,” The International Journal of Robotics

Research, vol. 36, no. 11, pp. 1177–1194, 2017. [Cited on pages 10, 146, 153, and 161.]

[27] G. Strang, Introduction to Linear Algebra, 5th ed. Wellesley - Cambridge Press, 2016.

[Cited on page 17.]

[28] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, 1st ed.

Springer Publishing Company, Incorporated, 2013. [Cited on pages 20 and 33.]

170 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

[29] A. Hájek, “Interpretations of Probability,” in The Stanford Encyclopedia of Philosophy,

Fall 2019 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University, 2019.

[Cited on page 21.]

[30] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000. [Cited

on page 31.]

[31] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete

samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965. [Online]. Available:

http://www.jstor.org/stable/2333709 [Cited on page 36.]

[32] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.

Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source

software, vol. 3, 2009, p. 5. [Cited on page 38.]

[33] C. de Boor, A Practical Guide to Splines. New York, NY: Springer-Verlag, 1978. [Cited

on pages 41 and 43.]

[34] T. Lyche and K. Morken, Spline Methods. Norway: Unpublished, 2018. [Cited on

page 43.]

[35] H. Kano, H. Nakata, and C. F. Martin, “Optimal curve fitting and smoothing

using normalized uniform b-splines: a tool for studying complex systems,” Applied

Mathematics and Computation, vol. 169, no. 1, pp. 96–128, 2005. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0096300304007556 [Cited on

page 48.]

[36] , “IEEE standard for robot map data representation for navigation,” 1873-2015 IEEE

Standard for Robot Map Data Representation for Navigation, pp. 1–54, Oct 2015. [Cited

on page 61.]

[37] J. O. Wallgrün, Hierarchical voronoi graphs: Spatial representation and reasoning for mobile

robots, 1st ed. Springer Publishing Company, Incorporated, 2010. [Cited on page 62.]

[38] J. Nieto, J. Guivant, E. Nebot, and S. Thrun, “Real time data association for fastslam,”

in 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422),

vol. 1, 2003, pp. 412–418 vol.1. [Cited on page 62.]

http://www.jstor.org/stable/2333709
https://www.sciencedirect.com/science/article/pii/S0096300304007556

BIBLIOGRAPHY 171

[39] H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” in Proceed-

ings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, Mar 1985,

pp. 116–121. [Cited on pages 63 and 68.]

[40] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and Au-

tonomous Agents). The MIT Press, 2005. [Cited on pages 63, 64, 65, and 101.]

[41] J.-D. Fossel, K. Tuyls, and J. Sturm, “2d-sdf-slam: A signed distance function based

slam frontend for laser scanners,” in 2015 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), 2015, pp. 1949–1955. [Cited on pages 63 and 72.]

[42] B. Curless and M. Levoy, “A volumetric method for building complex models from

range images,” in Proceedings of the 23rd Annual Conference on Computer Graphics and

Interactive Techniques, ser. SIGGRAPH ’96. New York, NY, USA: Association for

Computing Machinery, 1996, p. 303–312. [Online]. Available: https://doi.org/10.

1145/237170.237269 [Cited on page 63.]

[43] K. Daun, S. Kohlbrecher, J. Sturm, and O. von Stryk, “Large scale 2d laser slam using

truncated signed distance functions,” in 2019 IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR). IEEE, 2019, pp. 222–228. [Cited on pages 63,

73, 79, and 117.]

[44] D. Sack and W. Burgard, “A comparison of methods for line extraction from range

data,” in In Proc. of the 5th IFAC Symposium on Intelligent Autonomous Vehicles (IAV,

2004. [Cited on page 64.]

[45] J. L. Crowley, “World modeling and position estimation for a mobile robot using

ultrasonic ranging,” in Proceedings, 1989 International Conference on Robotics and Au-

tomation, 1989, pp. 674–680 vol.2. [Cited on pages 64 and 73.]

[46] D. Wolter, L. J. Latecki, R. Lakämper, and X. Sun, “Shape-based robot mapping,”

in KI 2004: Advances in Artificial Intelligence, S. Biundo, T. Frühwirth, and G. Palm,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 439–452. [Cited on

page 64.]

[47] R. Vázquez-Martı́n, P. Núñez, A. Bandera, and F. Sandoval, “Curvature-based envi-

ronment description for robot navigation using laser range sensors,” Sensors, 2009.

[Cited on page 64.]

https://doi.org/10.1145/237170.237269
https://doi.org/10.1145/237170.237269

172 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

[48] A. Caccavale and M. Schwager, “Wireframe Mapping for Resource-Constrained

Robots,” in 2018 IEEE International Conference on Intelligent Robots and Systems (IROS),

2019. [Cited on page 64.]

[49] S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy maps,” The Interna-

tional Journal of Robotics Research, vol. 31, no. 1, pp. 42–62, 2012. [Cited on page 64.]

[50] M. G. Jadidi, J. V. Miro, and G. Dissanayake, “Gaussian processes autonomous map-

ping and exploration for range-sensing mobile robots,” Autonomous Robots, vol. 42,

no. 2, pp. 273–290, 2018. [Cited on page 64.]

[51] Y. Yuan, H. Kuang, and S. Schwertfeger, “Fast gaussian process occupancy maps,”

in 2018 15th International Conference on Control, Automation, Robotics and Vision

(ICARCV). IEEE, 2018, pp. 1502–1507. [Cited on page 65.]

[52] R. Smith, M. Self, and P. Cheeseman, Estimating Uncertain Spatial Relationships in

Robotics. New York, NY: Springer New York, 1990, pp. 167–193. [Online]. Available:

https://doi.org/10.1007/978-1-4613-8997-2{ }14 [Cited on page 65.]

[53] G. Dissanayake, H. Durrant-Whyte, and T. Bailey, “A computationally efficient solu-

tion to the simultaneous localisation and map building (slam) problem,” in Proceed-

ings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and

Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, 2000, pp. 1009–1014

vol.2. [Cited on page 67.]

[54] J. E. Guivant and E. M. Nebot, “Optimization of the simultaneous localization and

map-building algorithm for real-time implementation,” IEEE Transactions on Robotics

and Automation, vol. 17, no. 3, pp. 242–257, 2001. [Cited on page 67.]

[55] K. P. Murphy, “Bayesian map learning in dynamic environments,” in Advances in

Neural Information Processing Systems, 2000. [Cited on page 67.]

[56] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored so-

lution to the simultaneous localization and mapping problem,” in Proceedings of the

National Conference on Artificial Intelligence, 2002. [Cited on page 67.]

[57] M. Montemerlo, S. Thrun, D. Roller, and B. Wegbreit, “FastSLAM 2.0: An improved

particle filtering algorithm for simultaneous localization and mapping that provably

https://doi.org/10.1007/978-1-4613-8997-2{_}14

BIBLIOGRAPHY 173

converges,” in IJCAI International Joint Conference on Artificial Intelligence, 2003. [Cited

on page 67.]

[58] F. Lu and E. E. Milios, “Robot pose estimation in unknown environments by match-

ing 2d range scans,” Journal of Intelligent and Robotic Systems, vol. 18, pp. 249–275,

1997. [Cited on page 68.]

[59] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 14, no. 2, p. 239–256, Feb. 1992. [Online]. Available:

https://doi.org/10.1109/34.121791 [Cited on page 69.]

[60] D. Hahnel, D. Schulz, and W. Burgard, “Map building with mobile robots in pop-

ulated environments,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems, vol. 1, 2002, pp. 496–501 vol.1. [Cited on pages 69 and 70.]

[61] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile robot mapping

with applications to multi-robot and 3d mapping,” Proceedings 2000 ICRA. Millen-

nium Conference. IEEE International Conference on Robotics and Automation. Symposia

Proceedings (Cat. No.00CH37065), vol. 1, pp. 321–328 vol.1, 2000. [Cited on page 70.]

[62] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, “An Efficient FastSLAM Algorithm for

Generating Maps of Large-Scale Cyclic Environments from Raw Laser Range Mea-

surements,” in IEEE International Conference on Intelligent Robots and Systems, 2003.

[Cited on page 71.]

[63] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based SLAM with Rao-

Blackwellized particle filters by adaptive proposals and selective resampling,” in

Proceedings - IEEE International Conference on Robotics and Automation, 2005. [Cited

on page 71.]

[64] B. Holý, “Registration of lines in 2d lidar scans via functions of angles,” Eng. Appl.

Artif. Intell., vol. 67, pp. 436–442, 2018. [Cited on pages 73 and 74.]

[65] L. Pedraza, D. Rodriguez-Losada, F. Matia, G. Dissanayake, and J. V. Miro, “Extend-

ing the limits of feature-based slam with b-splines,” IEEE Transactions on Robotics,

vol. 25, no. 2, pp. 353–366, April 2009. [Cited on pages 74, 78, and 83.]

[66] M. Liu, S. Huang, G. Dissanayake, and S. Kodagoda, “Towards a consistent slam al-

gorithm using b-splines to represent environments,” in 2010 IEEE/RSJ International

https://doi.org/10.1109/34.121791

174 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

Conference on Intelligent Robots and Systems, Oct 2010, pp. 2065–2070. [Cited on

page 74.]

[67] J. Zhao, L. Zhao, S. Huang, and Y. Wang, “2d laser slam with general features repre-

sented by implicit functions,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp.

4329–4336, 2020. [Cited on page 74.]

[68] B. Li, Y. Wang, Y. Zhang, W. jie Zhao, J. Ruan, and P. Li, “Gp-slam: laser-based

slam approach based on regionalized gaussian process map reconstruction,” Auton.

Robots, vol. 44, pp. 947–967, 2020. [Cited on page 75.]

[69] R. Yagfarov, M. Ivanou, and I. M. Afanasyev, “Map comparison of lidar-based 2d

slam algorithms using precise ground truth,” 2018 15th International Conference on

Control, Automation, Robotics and Vision (ICARCV), pp. 1979–1983, 2018. [Cited on

page 76.]

[70] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stachniss, and

A. Kleiner, “On measuring the accuracy of slam algorithms,” Autonomous Robots,

vol. 27, no. 4, p. 387, Sep 2009. [Cited on pages 76, 77, 78, 116, 117, 118, and 119.]

[71] A. Howard and N. Roy, “The robotics data set repository (radish),” 2003. [Online].

Available: http://radish.sourceforge.net/ [Cited on pages 77 and 116.]

[72] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based

slam,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43, winter

2010. [Cited on pages 77 and 114.]

[73] “Tu-darmstadt ros pkg,” 2011. [Online]. Available: https://code.google.com/

archive/p/tu-darmstadt-ros-pkg/downloads [Cited on page 78.]

[74] E. B. Olson, “Real-time correlative scan matching,” in 2009 IEEE International Confer-

ence on Robotics and Automation, 2009, pp. 4387–4393. [Cited on page 79.]

[75] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,”

in Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality

(ISMAR’07), Nara, Japan, November 2007. [Cited on page 93.]

[76] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd

Edition: The Art of Scientific Computing, 3rd ed. USA: Cambridge University Press,

2007. [Cited on page 105.]

http://radish.sourceforge.net/
https://code.google.com/archive/p/tu-darmstadt-ros-pkg/downloads
https://code.google.com/archive/p/tu-darmstadt-ros-pkg/downloads

BIBLIOGRAPHY 175

[77] J. T. Barron, “A general and adaptive robust loss function,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2019. [Cited

on page 108.]

[78] Y. Yuan, H. Kuang, and S. Schwertfeger, “Fast gaussian process occupancy maps,”

in 2018 15th International Conference on Control, Automation, Robotics and Vision

(ICARCV). IEEE, 2018, pp. 1502–1507. [Cited on page 114.]

[79] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adap-

tive Computation and Machine Learning). The MIT Press, 2005. [Cited on page 115.]

[80] H. Xiong, Y. Chen, X. Li, and B. Chen, “A two-level optimized graph-based simulta-

neous localization and mapping algorithm,” Industrial Robot: An International Journal,

2018. [Cited on page 117.]

[81] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE Robotics Au-

tomation Magazine, vol. 18, no. 4, pp. 80–92, 2011. [Cited on page 124.]

[82] A. Bartoli and P. Sturm, “Structure-from-motion using lines: Representation, trian-

gulation, and bundle adjustment,” Computer Vision and Image Understanding (CVIU),

vol. 100, no. 3, pp. 416–441, 2005. [Cited on page 125.]

[83] J. J. Koenderink and A. J. van Doorn, “Affine structure from motion,” J. Opt. Soc. Am.

A, vol. 8, no. 2, pp. 377–385, 1991. [Cited on page 125.]

[84] S. Soatto, R. Frezza, and P. Perona, “Motion estimation via dynamic vision,” IEEE

Trans. Automatic Control (T-AC), vol. 41, no. 3, pp. 393–413, 1996. [Cited on page 127.]

[85] A. P. Dani, N. R. Fischer, and W. E. Dixon, “Single camera structure and motion,”

IEEE Trans. Automatic Control (T-AC), vol. 57, no. 1, pp. 238–243, 2012. [Cited on

page 127.]

[86] R. Spica and P. Robuffo Giordano, “A framework for active estimation: Application

to Structure from Motion,” in 52nd IEEE Conference on Decision and Control, 2013, pp.

7647–7653. [Cited on pages 130, 133, 149, and 152.]

[87] A. Mateus, O. Tahri, and P. Miraldo, “Active estimation of 3d lines in spherical coor-

dinates,” in American Control Conf. (ACC), 2019, to appear. [Cited on page 130.]

176 ONLINE RANGE-BASED SLAM AND ACTIVE VISION FOR ROBOTIC SYSTEMS

[88] I. M. Y. Mareels and M. Gevers, “Persistency of excitation criteria for linear, multi-

variable, time-varying systems,” Mathematics of Control, Signals and Systems, vol. 1,

pp. 203–226, 1988. [Cited on page 131.]

[89] J.-J. E. Slotine and W. Li, Applied nonlinear control. Prentice-Hall, 1991. [Cited on

page 132.]

[90] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic approaches,” IEEE

Robotics & Automation Magazine, vol. 13, pp. 82–90, 2006. [Cited on pages 146

and 153.]

[91] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

2004. [Cited on page 149.]

[92] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,”

in Recent Advances in Learning and Control, ser. Lecture Notes in Control and Informa-

tion Sciences, V. Blondel, S. Boyd, and H. Kimura, Eds. Springer-Verlag Limited,

2008, pp. 95–110. [Cited on page 149.]

[93] T. Mercy, R. Van Parys, and G. Pipeleers, “Spline-based motion planning for au-

tonomous guided vehicles in a dynamic environment,” IEEE Transactions on Control

Systems Technology, vol. 26, no. 6, pp. 2182–2189, 2018. [Cited on page 160.]

