1. INTRODUCTION

Dye-sensitized solar cells (DSSCs) are third-generation photovoltaic devices featuring low cost, ease of fabrication, and environmental friendliness.1,2 Due to the decent power conversion efficiency (PCE) of scattered and dim light, which is much superior to the PCE of silicon,1,3 DSSCs are considered a feasible approach for outdoor building-integrated photovoltaics.5,6 Recently, the exponentially growing number of low-power-consumption electronic devices, such as the Internet of Things (IoT) and wireless sensors to name a few, turned the development of cordless powering strategies for indoor applications absolutely relevant. It triggered the development of DSSCs as favorable indoor photovoltaic devices.7 DSSCs effectively compete with other PV technologies offering an amazingly high PCE of ca. 30% under artificial light,2,8–10 they have a pleasant colorful appearance and the ability to be incorporated into semitransparent and flexible devices,11 could be aesthetically integrated into the working and living interior, and are safe, in the sense that they are free from toxic soluble lead or tin compounds.

Since the seminal breakthrough in 1991,1,12 decades of research on DSSCs has led to the certified PCE of ca. 12%;13 still employing the family of Ru-dyes and iodine electrolyte discovered at the outset.12,14 The renaissance of DSSCs happened with the discovery of new one-electron transfer high-potential redox shuttles and dyes with high extinction coefficients, broad absorption spectra, and electron recombination suppressing behavior.15,16 The state-of-the-art best-performing DSSCs are liquid-junction devices with Co(III)/Co(II) and Cu(II)/Cu(I) redox shuttles for generating a high output potential of ca. 1 V.10,17 Cobalt redox couples and porphyrin sensitizers allow attaining a PCE of 13%;16,17 implementation of cosensitization strategies with thienoindoles yielded a PCE as high as 14.2%.18 DSSCs with a Cu(II)/Cu(I) redox mediator were presented in 2005,19 and, at present, they are achieving a promising PCE of ca. 13%.8–10

Efficient DSSCs are assembled in a so-called “conventional” architecture where the photoanode and the counter-electrode, each on a separate conducting glass, are placed opposite to each other with a microgap in between and the electrolyte filling this gap. In an alternative design, the so-called “monolithic” (M-
DSSCs) design, the photoanode and the counter-electrode are on the same glass and an electrical spacer layer is used to separate both electrodes. The monolithic arrangement allows a ca. 30% reduction in material cost and is very straightforward for assembly in a modular configuration, making it the most promising architecture for upscaling these devices. However, the PCE of M-DSSCs is below that of their conventional counterparts, primarily due to the spacer layer. The spacer layer creates an extra resistance for electrolyte diffusion, increasing the charge transport resistance, and inefficiently scatters unabsorbed light back to the photoanode.

Since the first reported M-DSSCs in 1996 with a PCE of 6.7%, they have progressed due to the development of new catalytic and low-cost counter-electrodes and electrical spacer layers. Implementation of counter-electrodes made from platinized graphite/carbon-black resulted in a PCE of 7.6%; physically attached PEDOT films and platinized Cr foil counter-electrodes allowed reaching a PCE of 7.7 and 8.0%, respectively. The use of a highly reflective electrical spacer layer rendered a M-DSSC with the highest reported PCE of 8.3%. Surprisingly, all of the advances in liquid-junction M-DSSCs are presented so far only for the original archetype of DSSCs. The challenge of producing efficient M-DSSCs from liquid-junction monolithic device displaying a 1-sun PCE of 8.3% was achieved for the first time on the ordinary glass, the holes were sealed with a thermoplastic sealant (Meltonix 1170-60, 60 μm Surlyn) were from Solaronix. Co(II)/tris(bipyridyl) redox shuttle and porphyrin sensitizer YD2-ο-C8. Cobalt-mediated monolithic devices require reference devices with high PCEs, which preferably should be feasible for assembly from readily existing commercial parts and reactants. The challenge of producing efficient M-DSSCs from solely commercially available materials is addressed. The most commonly used materials in DSSC electrocatalysts were assessed for counter-electrodes—Pt nanoparticles, Pt metal foil, graphite/carbon-black, and PEDOT:PSS; the exchange current density and apparent activation energy were determined and correlated with the performance of M-DSSCs. To the best of our knowledge, we are reporting for the first time on the apparent activation energy of Pt, graphite/carbon-black, and PEDOT:PSS catalysts for electron transfer in [Co(bpy)3]3+/2+ complexes. Spectral distribution of the photocurrent quantum yield revealed an efficient electrical spacer layer made from polydisperse rutile particles. Dye loading time and electrolyte composition were optimized to produce a record-breaking liquid-junction monolithic device displaying a 1-sun PCE of 9.5%, which is the highest of monolithic-type DSSCs reported so far. A PCE of ca. 22% was attained under artificial 1000 lx light, making the developed M-DSSCs very attractive and straightforward for indoor light conversion.

2. EXPERIMENTAL SECTION

2.1. Reagents and Materials. FTO-coated glasses (TEC-7; 7 Ω sq−1) and screen-printable TiO2 paste (30NR-D and WER2-O) were purchased from GreatCell Solar. Titanium disopropoxide bis(acetylacetonate), anhydrous isopropanol alcohol, acetylacetonate, lithium perchlorate, dimethyl sulfoxide (≥99.90%), 4-tert-butylpyridine (TBP), and lithium perchlorate ([LiClO4] ≥99.90%) were purchased from Sigma-Aldrich. Screen-printable graphite/carbon-black paste (Elocarb B/SP), platinum nanoparticle paste (Platisol T/SP), and zirconium dioxide paste (Zr-Nanooxide ZR/SP), as well as the hot-melt sealant (Meltonix 1170-60, 60 μm Surlyn) were from Solaronix. Co(II)/tris(bipyridyl)tetracyanoborate complexes, 0.8–1.4 M TBP, and 0.1 M LiClO4. After electrolyte injection through the predrilled holes in the ordinary glass, the holes were sealed with a thermoplastic film and a lamella glass.

2.2. Fabrication of DSSCs. M-DSSC devices were assembled according to the configuration described elsewhere. An 80 ± 5 nm TiO2 blocking layer was deposited by spray pyrolysis at 450 °C. The precursor solution was composed of 7.0 mL of anhydrous isopropyl alcohol, 0.6 mL of titanium disopropoxide bis(acetylacetonate), and 0.4 mL of acetylacetone. After the spray deposition, the TiO2 layer was annealed at 450 °C for 45 min.

A mesoporous TiO2 (30NR-D paste, 7 ± 1 μm) layer with an active area of 0.13 cm² was deposited by screen-printing and sintered at 500 °C for 1 h. Then, the TiO2 films were immersed in a 40 mM TiCl4 aqueous solution at 70 °C for 30 min, dried, and annealed at 500 °C for 1 h.

An opaque ZrO2 layer (Zr-Nanoxide ZR/SP, 6 ± 1 μm) and a scattering reflector TiO2 layer (WER2-O, 6 ± 1 μm) were used as commercial electrical spacer. The platinum counter-electrode layer was deposited by DC magnetron sputtering; the graphite/carbon-black (Elocarb B/SP) layer was deposited by doctor-blading and sintered for 45 min at 420 °C; and the PEDOT:PSS layer was formed by spinning the PEDOT:PSS commercial solution (Clevios) mixed with 5% of DMSO, followed by annealing at 120 °C for 15 min.

Sensitization was performed using a fresh solution of 0.2 mM YD2-ο-C8 dye in ethanol/toluene (volume ratio, 3:1). Then, the M-DSSCs were rinsed in absolute ethanol, dried in a N2 flow, and sandwiched with an ordinary glass using a hot-pressed thermoplastic sealant. The electrolyte was composed of 0.165 M Co(II) and 0.045 M Co(III) tris(bipyridyl)tetracyanoborate complexes, 0.8–1.4 M TBP, and 0.1 M LiClO4. After electrolyte injection through the predrilled holes in the ordinary glass, the holes were sealed with a thermoplastic film and a lamella glass.

2.3. Fabrication of Symmetrical Half-Cells. The materials used as the counter-electrodes were deposited on FTO substrates by different techniques: platinum metal by DC magnetron sputtering, the platinum nanoparticle (Platisol T/SP) layer by doctor-blading, the graphite/carbon-black (Elocarb B/SP) layer by screen-printing, and the PEDOT:PSS layer by spin-coating. Two identical FTO substrates coated with the same material were sandwiched using a thermoplastic sealant. The electrolyte was injected through the predrilled holes in one of the electrodes, and the holes were sealed.

2.4. Characterization. The photovoltaic performance of the M-DSSC was characterized under simulated solar light (AM1.5G, 100 mW cm−2) from a Solar Simulator Minisol (LSH-7320, Newport) and under artificial light (600 and 1000 lx) using a LED lamp (Osrnam, Class A+, 60 W, 2700 K) as a light source. A radiometer Delta Ohm HD 2102.2 was used to determine the power of the light derived from the LED lamp. A Zennium (Zahner) electrochemical station was used to record photocurrent vs potential characteristics.

The electrochemical impedance spectra were collected in the dark at −0.80 V using an Autolab electrochemical station (PGSTAT 302 N, Metrohm), and ZView software was used to analyze the impedance spectra. The incident photon to current conversion efficiency (IPCE) spectra were recorded using a semiautomatic station (Newport). Measurements were performed at 2 nm wavelength intervals between 300 and 800 nm.

The electrocatalytic activity of counter-electrodes was analyzed in the temperature range between −5 and 60 °C, measuring the electrochemical impedance spectra at 0 V bias using symmetrical half-cells. An in-house made experimental setup was used to control the operating temperature of the half-cells.

The surface morphology of the counter-electrode materials was analyzed using a Quanta 400 FEG ESEM microscope. The reflectance spectra of the electrical spacer layers were measured using a Shimadzu UV-3600 spectrophotometer equipped with an LISR-3100 integrating sphere, with BaSO4 powder compact used for the baseline.
cobalt-mediated DSSCs report a surprisingly high PCE of ca. 10−12% for devices assembled with conventional counter-electrodes made from thermally activated Pt nanoparticles (PtNP) on FTO glass. Further studies suggest that PtNP counter-electrodes show insufficient electrochemical activity to reduce Co(III) complexes. More efficient counter-electrodes have been reported based on graphene, tellurium−graphene composite, PEDOT, PEDOT−graphene composite, poly(3,4-alkylthiophenes), polyaniline, carbon-black, and carbon−graphene composite. The present report assesses the use of PtNP deposited on FTO, Pt metal film (PtM, graphite/carbon-black (GCB) composite, and PEDOT:PSS.

Apart from the electrocatalytic activity toward the redox reaction, the specific surface area of the counter-electrode is critical as polarization and charge-transfer resistances decrease with the interfacial area between the electrode and electrolyte. The morphology of the electrodes was studied by SEM. Figure 1 presents the secondary electron SEM image for the selected materials.

Conventional thermal activation of the electrode with platinum leads to the formation of a very sparse layer of Pt particles with sizes of ca. 8 nm (Figure 1a). The Pt film obtained
Surprisingly, despite the highest catalytic activity of PEDOT:PSS, M-DSSCs with this electrode showed the weakest photocurrent vs applied potential (I–V) curves for M-DSSCs assembled with counter-electrodes of PtMet, GCB, and PEDOT:PSS. As a space layer, the conventional opaque ZrO2 is more likely due to the conventional thermal platinization, which typically leaves ca. 20% of the platinum surface passivated as PtCl4−.44

The metrics of the photovoltaic performance were extracted from I–V curves and are summarized in Table 1. M-DSSCs with the sputtered PtMet electrode display a Voc of 0.84 V, a Jsc of 9.8 mA cm−2, and a FF of 0.79, resulting in a PCE of 6.5%. The device with an electrode made from GCB displays the highest Jsc (Jsc = 11.3 mA cm−2) and a PCE of 7.1%. Surprisingly, despite the highest catalytic activity of PEDOT:PSS, M-DSSCs with this electrode showed the weakest values at different temperatures were extracted from the model, and J0 values were calculated using eq 1 and are listed in Table S1. Figure 3 shows the Arrhenius plots for the J0 values with different electrodes.

3.2. Performance of M-DSSCs with PtMet, PEDOT:PSS, and GCB Counter-Electrodes

Figure 4 presents the photocurrent vs applied potential (I–V) curves for M-DSSCs assembled with counter-electrodes of PtMet, GCB, and PEDOT:PSS. As a space layer, the conventional opaque ZrO2 (6 ± 1 μm) was used.

The metrics of the photovoltaic performance were extracted from I–V curves and are summarized in Table 1. M-DSSCs with the sputtered PtMet electrode display a Voc of 0.84 V, a Jsc of 9.8 mA cm−2, and a FF of 0.79, resulting in a PCE of 6.5%. The device with an electrode made from GCB displays the highest Jsc (Jsc = 11.3 mA cm−2) and a PCE of 7.1%. Surprisingly, despite the highest catalytic activity of PEDOT:PSS, M-DSSCs with this electrode showed the weakest...
photocurrent and a PCE of only ca. 4%. An EIS study was performed to identify the effect of the counter-electrodes on the device performance (Figure 5a).

![Figure 5. EIS responses in Nyquist plots of M-DSSCs with different counter-electrodes (a). Solid lines show fits to the equivalent circuit presented in (b).](image)

The equivalent electrical circuit presented in Figure 5b fits well the EIS spectra. The elements in the model represent series resistance (R_s), charge-transfer resistance at the electrolyte-counter-electrode interface (R_{ct}), recombination resistance at the photoanode/electrolyte interface (R_{b}), and the diffusion resistance in the electrolyte (R_{d}); CPE$_{CE}$, CPE$_{K}$, and CPE$_{El}$ are the respective constant phase elements. Resistances of the equivalent circuit elements obtained by fitting impedance response are summarized in Table 1.

In a M-DSSC with counter-electrodes of PEDOT:PSS, all internal resistances of the device are incredibly high, yielding a low overall performance. This was related to the way the PEDOT:PSS layer was applied. During the deposition of the PEDOT:PSS solution over the spacer layer, the polymer penetrates the layer and clogs the pores. This hinders the charge transport in both counter-electrode/electrolyte and photoanode/electrolyte interfaces, preventing the diffusion of ions between electrodes, and light-reflective to direct unabsorbed light back to the photoelectrode for more efficient light harvesting.

![Figure 6. I–V curves (a), the reflectance of the TiO$_2$ and ZrO$_2$ electrical spacer layers (b), and the IPCE spectra of M-DSSCs with different spacer layers (c).](image)

Table 1. Photovoltaic Metrics of M-DSSCs and Resistances (in $\Omega \cdot \text{cm}^2$) of the Devices with Different Counter-Electrodes

<table>
<thead>
<tr>
<th>counter-electrode</th>
<th>V_{OC}/V</th>
<th>J_{SC}/mA·cm$^{-2}$</th>
<th>FF</th>
<th>PCE/%</th>
<th>R_s</th>
<th>R_{ct}</th>
<th>R_E</th>
<th>R_{CE}</th>
<th>R_K</th>
<th>R_{EL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt$_{Met}$</td>
<td>0.84</td>
<td>9.8</td>
<td>0.79</td>
<td>6.5</td>
<td>7.4</td>
<td>12.7</td>
<td>75.6</td>
<td>45.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCB</td>
<td>0.81</td>
<td>11.3</td>
<td>0.78</td>
<td>7.1</td>
<td>10.4</td>
<td>28.9</td>
<td>82.4</td>
<td>40.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEDOT:PSS</td>
<td>0.75</td>
<td>7.0</td>
<td>0.73</td>
<td>3.8</td>
<td>44.7</td>
<td>117.7</td>
<td>450.7</td>
<td>1288</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The devices assembled with Pt$_{Met}$ and GCB electrodes show similar values of R_s, R_{ct}, and R_{EL}. A low R_s value of ca. 10 Ω·cm2 indicates that the conductivity of the 15 μm GCB layer is comparable to that of the solid 100 nm Pt layer obtained by sputtering. Practically identical for both devices, R_s is ca. 80 Ω·cm2 and R_{EL} is ca. 40–45 Ω·cm2, indicating that the photoanode/electrolyte interface and diffusion of the electrolyte through the spacer layer are not affected by the counter-electrode. The R_{CE} on the GCB of ca. 30 Ω·cm2 is higher than the R_{CE} of 13 Ω·cm2 on the Pt$_{Met}$ electrode. This is opposite to the R_{CT} values obtained for the dummy cells, ca. 0.2 and 9 Ω·cm2 for GCB and Pt$_{Met}$ respectively (Table S1). This is because, in the dummy cells, the surface of the electrode is exposed to the electrolyte, while in the M-DSSC device, the counter-electrode is monolithically attached to the porous spacer. A higher R_{CE} causes loss of potential, specifically at low current densities; as a result, the V_{OC} of the device with the GCB electrode is slightly lower than the V_{OC} of the M-DSSC with Pt$_{Met}$ (Figure 4). Nevertheless, the developed surface of the GCB counter-electrode ensures a high rate for the diffusion-limited process; a higher saturation photocurrent is achieved (Figure 4), rendering a device with a PCE of 7.1%. Further improvements were achieved by optimizing the electrical spacer layer, the photoanode sensitization time, and the concentration of the recombination-suppressing additive.

3.3. Spacer Layer in M-DSSCs

The PCE of M-DSSCs is significantly affected by the electrical spacer layer. The spacer layer must be insulating to prevent the electron flow between the photoanode and the counter-electrode, porous to ensure a good flow of ions between electrodes, and light-reflective to direct unabsorbed light back to the photoelectrode. A spacer made from porous titania improved the J_{SC}
up to ca. 13.9 mA cm\(^{-2}\), while the M-DSSCs with the ZrO$_2$ layer display a J_{SC} of 11.9 mA cm\(^{-2}\).

Considering that titania and zirconia spacers have an identical thickness of ca. 6 μm and practically the same morphology and porosity (Figure S1), the improvement of the photocurrent with the TiO$_2$ spacer was attributed to its higher reflectivity when compared with ZrO$_2$ (Figure 6b). The titania spacer contains scattering particles of rutile, which has one of the highest refractive indexes of ca. 2.8\(^{48,49}\), contributing to better light scattering and reflection. The reflectivity of the titania spacer is superior to that of zirconia at wavelengths above 400 nm; therefore, more unabsorbed light is reflected to the photoanode leading to the uniform increase of the IPCE response in the spectral range 400–750 nm (Figure 6c), which renders M-DSSCs to routinely display a PCE of 9.0% and a champion device with a PCE of 9.5%.

In the last couple of years, DSSCs have been established as one of the most promising PV devices for indoor applications\(^{7–10}\). Being a recent trend, none of the standard indoor-light sources were yet recognized. We recorded the $I–V$ curves of M-DSSC devices with indoor light using a LED lamp with an intensity of 600 lx (175 μW cm\(^{-2}\)) and 1000 lx (286 μW cm\(^{-2}\)) (Figure 7). The PCE was determined considering the ratio of the maximum power delivered by the device to the incident light power of the LED lamp.

![Figure 7. $I–V$ curves of the M-DSSC device under artificial light with different light intensities.](image)

M-DSSCs with an average of 1-sun PCE of 9.0%—champion cells displayed 9.5% of PCE—displayed the maximum output powers of 22.8 and 62.7 μW cm\(^{-2}\) and PCEs of 13.0 and 21.9% under 600 and 1000 lx, respectively. It is worth noting that the artificial light PCEs derived from M-DSSCs have achieved and even slightly surpassed the PCEs of the recently reported counterparts, assembled in a priori more efficient conventional configurations\(^{50,51}\), with the use of, however, an expensive Pt metal film as a counter-electrode.

3.4. Sensitization of Photoanodes in M-DSSCs

The sensitization conditions must ensure good dye loading at the photoanode for effective light absorption and efficient photon current generation\(^{32,33}\). Excessive dye adsorption leads to the agglomeration of the dye molecules, which causes quenching of the excited states and decreases electron injection into TiO$_2$. Dye agglomerates clog the mesopores in the photoanode, preventing electrolyte diffusion, dye regeneration, and charge transfer at the photoanode. It is possible to effectively mitigate the excessive dye adsorption controlling the sensitization time\(^{32}\). For the conventionally assembled device, the optimum time for TiO$_2$ sensitization using YD2-α-C8 dye solution was determined to be 12–16 h\(^{35}\), when the mesoporous TiO$_2$ layer was directly exposed to the sensitizing solution. In M-DSSCs, dye delivery to the TiO$_2$ occurs through the porous spacer and counter-electrode layers. Then, the sensitization time has to be optimized for the monolithic architecture\(^{27}\), a crucial parameter often neglected by researchers. Figure 8 shows the normalized metrics (PCE, J_{SC}, V_{OC}, and FF) of M-DSSCs vs time of sensitization in YD2-α-C8 solution.

![Figure 8. Normalized PCE and J_{SC} (a), V_{OC} and FF (b) of M-DSSCs vs sensitization time.](image)

After 16 h of sensitization, M-DSSCs display rather low photocurrent and the FF values indicate insufficient dye loading. The tested M-DSSCs show the highest PCE after ca. 46 ± 2 h of sensitization, which is mainly related to the current density (Figure 8a); however, a small drop in V_{OC} and FF is also observed (Figure 8b). After 48 h of sensitization, J_{SC} starts to drop (Figure 8a), which should be related to the dye aggregation onset.

3.5. Concentration of the Recombination-Suppressing Additive in the Electrolyte

The cobalt electrolyte 4-tert-butylpyridine (TBP) is used to suppress the back electron recombination, increase the concentration of electrons on the conduction band of TiO$_2$, and attain high V_{OC} and decent photocurrents\(^{29,54–57}\). An increase in the TBP concentration increases the amount of TBP adsorbed on the TiO$_2$ surface, increasing the recombination resistance at the TiO$_2$/electrolyte interface, improving the V_{OC} up to ~1 V\(^{53}\). Koh et al.\(^{58}\) reported that excessive TBP concentration decreases the diffusion of Co species and reduces the photocurrent. The optimum concentration of TBP in conventional DSSCs was determined to be ca. 0.8 M\(^{59}\). Our study suggests that this could not be straightforwardly translated to M-DSSCs, and adjusting the TBP concentration is crucial for achieving high PCE.

Table 2 presents the normalized photovoltaic parameters of M-DSSCs loaded with electrolytes containing different concentrations of TBP (from 0.8 to 1.4 M).

The highest PCE was observed at a TBP concentration of 1.2 M. EIS of M-DSSCs was performed to identify the effect of TBP concentration on the M-DSSC performance (Figure 9). The Nyquist plots show typical patterns with three capacitive semicircles, which are associated with the interfacial charge transfer and diffusion in the electrolyte, as described in Section 3.2 (Figure 5). The assigned values to the corresponding resistances are summarized in Table 2. The series resistance of the devices (R_s) is not affected by TBP. The interfacial resistances R_{CB} and R_{SC} gradually increase with the TBP concentration. Higher interfacial resistances are due to the TBP adsorption on the photoanode\(^{60}\) and the counter-electrode\(^{57,58}\) and higher transport resistance in the electrolyte.
During aging, the PCE was mostly affected by the decrease in the photocurrent (Figure 10a), which is most likely due to the acetoni trile leakage through polymeric sealants.60 The VOC remained practically constant, while the FF suffered a slight decrease of up to 600 h of aging (Figure 10b). The PCE deterioration factor determined from the declination of the plot is relatively high, ca. 1.6×10^{-4} per day. The stability of the devices should be addressed in future studies by preventing electrolyte leakage using the highly hermetic laser-assisted encapsulation with glass materials recently developed by the authors;51,52 alternatively, quasi-solid state electrolytes may be implemented.50,51

4. CONCLUSIONS

The challenge of preparing highly efficient liquid-junction cobalt-mediated monolithic DSSCs, using commercially available materials, was addressed. The electrochemical activity of conventional counter-electrodes, light-reflecting properties of the electrical spacer layers, photoanode sensitization conditions, and the concentration of back electron recombination suppressing additive in the electrolyte were studied and optimized. Conventional counter-electrodes made from Pt nanoparticles, Pt metal film, graphite/carbon-black composite, and PEDOT:PSS display apparent activation energies of 26.5, 20.7, 16.9, and 15.6 kJ mol$^{-1}$, respectively, in the reduction of Co(bpy)$_3^{2+}$.53 Extremely low saturation current densities were obtained while using the Pt nanoparticle electrode, making it an inappropriate choice for preparing an efficient device. The use of Pt and graphite/carbon-black counter-electrode layers allowed reaching decent photocurrents and PCEs of ca. 6.5 and 7%, respectively. An unexpectedly low PCE of ca. 4% was obtained with the PEDOT:PSS electrode due to its infiltration on the spacer layer, which clogs the pores hindering the charge transport and electrolyte diffusion. The highly reflecting electrical spacer layer made from rutile TiO$_2$ counter-electrode of graphite/carbon-black, and optimized photoanode sensitization conditions and recombination-suppressing additive (4-tert-buty lpyridine) concentration rendered a M-DSSC with a record-breaking PCE of 9.5% under 1-sun illumination and a decent PCE of 21.9% under 1000 lx artificial light.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.1c00616.

Values of charge-transfer resistance (R_{CT}) and exchange current density (J_0) at different temperatures; SEM images of the electrical spacer layers (PDF)

AUTHOR INFORMATION

Corresponding Authors

Dzmitry Ivanou – LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; orcid.org/0000-0002-5313-4016; Phone: +351 920427795; Email: ivanou@fe.up.pt; Fax: +351 225081449

Adélio M. Mendes – LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;

https://doi.org/10.1021/acsaem.1c00616

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the financial support from the “SunStorage” project, POCI-01-0145-FEDER-016387, funded by the European Regional Development Fund (ERDF) through COMPETE2020; the projects POCI-01-0145-FEDER-006939, NORTE-01-0145-FEDER-000005, and LEPABE-2-ECO-INNOVATION were all funded by FEDER funds through COMPETE 2020 and the Materials Centre of the University of Porto. This work was also financially supported by the UIDB/00511/2020 Energy—LEPABE—funded by national funds through the FCT/MCTES (PIIADC); F.S. and C.H. acknowledge the FCT for their Ph.D. grants (reference SFRH/BD/129761/2017, respectively).

REFERENCES

