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Resumo

Os transformadores eléctricos são equipamentos eléctricos fiáveis e eficientes e um dos compo-
nentes mais caros de um sistema de energia eléctrica. Devido à carga pesada, a fiabilidade pode
variar, motivada pela maximização dos lucros. Assim, é crucial recolher dados a partir deste
equipamento para os monitorizar e encontrar anomalias. Contudo, com o aumento dos dados, a
análise de base humana tornou-se um desafio e pode ser imprecisa, com a possibilidade de resultar
em perdas financeiras e de tempo.

Com isto em mente, o objectivo desta tese é o desenvolvimento de um modelo de machine
learning capaz de detectar anomalias num conjunto de dados não etiquetado.

O passo inicial foi agrupar os dados para obter etiquetas. Para isso foram utilizados DBSCAN
e K-Means. Depois disto, os dados agora rotulados são equilibrados usando SMOTE e depois
submetidos na formação dos modelos de aprendizagem supervisionada, usando alguns algoritmos.

Para os resultados finais, o DBSCAN foi o algoritmo de agrupamento escolhido, e o algo-
ritmo de classificação com o melhor desempenho ROC AUC foi Random Forest com 95,26%. A
empresa validou os resultados finais.

Keywords: Predictive maintenance, machine learning, supervised learning, unsupervised learn-
ing, power transformers, clustering, DBSCAN
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Abstract

Electric power transformers are reliable and efficient electric equipment and one of the most ex-
pensive components of an electric power system. Due to heavy load, the reliability can vary,
motivated by maximizing profits. Hence, it is crucial to gather data from this equipment to mon-
itor them and find anomalies. However, with the increase of data, human-base analysis became
challenging and can be inaccurate, with the possibility of resulting in financial and time losses.

With this in mind, the purpose of this thesis is the development of a machine learning model
capable of detecting anomalies in an unlabeled dataset.

The initial step was to cluster the data to obtain labels. For this was used DBSCAN and K-
Means. After this, the now labeled data is balanced using SMOTE and then submitted in the
training of the supervised learning models by using some algorithms.

For the final results, the DBSCAN was the clustering algorithm chosen, and the classification
algorithm with the better ROC AUC performance was Random Forest with 95,26%. The company
validated the final results.

Keywords: Predictive maintenance, machine learning, supervised learning, unsupervised learn-
ing, power transformers, clustering, DBSCAN
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Chapter 1

Introduction

This chapter describes the context in which the project is framed. It aims to explain the motivations

around the project, the expected project goals in more depth, and presents a timeline of activities

that have been followed since the beginning to the end of the thesis writing. At the end of the

chapter, it is made a brief description of the remain chapters.

1.1 Problem description and motivation

Electric power transformers are reliable and efficient electric equipment essential for supplying

electric energy to users at appropriate voltage levels. On the other hand, power transformers endure

variations in their reliability and operating lifetime over time. These variations in reliability are

primarily due to heavy equipment loading. The motivation for this is the need to maximize profits

and the electric companies’ lack of new equipment investment due to its high cost. However,

with enhanced monitoring and maintenance procedures over time, the equipment’s lifespan has

significantly increased.

This thesis will use data provided by Enging - Make Solutions, S.A., a firm specializing in

sophisticated and disruptive industrial predictive maintenance and fault detection solutions for

transformers, rotating machines, and power electronics.

Human evaluation of sequential approximation data generated by extracting the equipment’s

input and output electrical currents is the company’s current way of monitoring the state of the

equipment. This data contains a considerable number of variables, including the ones listed be-

low that the company has provided, which have a more significant impact on whether or not the

equipment is malfunctioning:

• ld-ratio: the transformer load level is represented by this variable.

• fsv-4: this is our target variable, an indicator that translates the excitation currents’ ampli-

tude and phase deviation.

• iexc-1 to iexc-3: these indicate the electrical current level in each phase;

1



Introduction 2

• unbi-1 and unbi-2: refers to the amplitude imbalance between the primary and secondary

currents.

This human-based analysis can be inaccurate, resulting in severe financial and time losses. As

a result, using the gathered data to build a machine learning system can enhance accuracy and cut

down on time spent on this work.

1.2 Dissertation objectives

The major goal of this dissertation is to research, develop, and test techniques for diagnosing

power transformers using machine learning approaches. The intent is to cluster the gathered data

using unsupervised learning methods to detect outliers. After that, classification methods will

be employed to predict any anomalies in the testing data. The results must next be evaluated to

verify if the outlier corresponds to an anomaly. Because each power transformer has its distinct

behavior, it is necessary to define what constitutes an outlier and determine whether it is viable in

the real world. Finally, to obtain the most accurate results, it is critical to verify the reliability of

the constructed system.

1.3 Dissertation structure

The dissertation is divided into five chapters. Chapter 2 addresses the existing scientific literature

that meets this dissertation’s context, motivation, and objectives. Chapter 3 proposes and explains

the methodology and the tools used to solve the proposed problem. Chapter 4 presents the re-

sults obtained by the trained models. Finally, chapter 5 will present the project’s conclusion and

proposes future work to improve the methodology implemented.



Chapter 2

Literature Review

This chapter discusses the literature review about the maintenance methods for electrical equip-

ment, failure curves in industrial equipment, and the machine learning algorithms.

2.1 Power Transformers

One of the most expensive and strategic components of an electric power system are power trans-

formers. It plays a vital function in the electricity transmission and distribution system by intercon-

necting all stages. Due to its complex operating conditions under numerous circumstances such as

high temperature, emergency overloading, and continuous operation in an outdoor environment,

the power transformer is a piece of high-risk equipment in the electric power system [22].

2.1.1 Failures in power transformer

Because this component is such a crucial part of the electric power system, its failure can result

in huge losses, not only in replacement or repair losses but also in revenue. Another problem

that failures can cause is the reduced reliability of the system over time. It is essential to know its

components to understand the possible failures in power transformers. The transformer has a mag-

netic circuit, electrical circuit terminals, bushings, tank, oil, radiator, conservator, and breathers.

A malfunction in any of these parts can jeopardize transformer usability and lead to its power grid

withdrawal [16].

2.1.1.1 Failure curves in industrial equipment

There are currently six curves that are considered failures models for industrial equipment. These

curves are represented in Figure 2.1, which can be divided into two groups. The first group is

time-based maintenance, and the second group is condition-based maintenance[12, 42]

For time-based maintenance, there are 3 types of curves:

• Bathtub: this curve represents an age-related equipment failure. It starts with infant mor-

tality followed by a constant or gradually increasing failure probability and a pronounced

3



Literature Review 4

wear-out region. An age limit may be desirable, provided many units survive to the age at

which wear-out begins.

• Wear-out: this curve represents a wear-out failure. It starts with a constant or gradually

increasing failure probability and then a pronounced wear-out region.

• Fatigue: this curve represents a fatigue failure. This curve is similar to the wear-out curve

but shows a gradual increasing failure probability without a pronounced wear-out region.

For condition-based maintenance, there are 3 types of curves:

• Initial break-in period: this curve represents when a new component is installed. In the

initial stage, the equipment is not working at total capacity, so the failure probability is

lower in this period.

• Random: This curve represents a random failure. It is a constant failure probability curve.

• Infant mortality: this curve represents the accentuated failure probability in an initial period,

and then the probability is gradually reduced until it reaches a constant value.

Figure 2.1: Failure curves. Source [12]

2.1.2 Maintenance methods for power transformers

Maintenance is considered a strategic activity that ensures the operation reliability of equipment

and industrial processes. Maintenance should seek the intervention in equipment by reducing the
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intervention time, leaving the system unavailable for the shortest time possible [6]. Between the

various kinds of maintenance, we can highlight three main types, which are:

• Corrective maintenance (CM): refers to any task that is performed in order to restore the

equipment. The correction is performed as the faults and failures occur [6];

• Preventive maintenance (PM): the objective of this type of maintenance is to prevent that

any possible flaws occur, and seeks to improve the reliability and availability of the equip-

ment. The preventive actions are programmed (e.g., performed periodically) in order to

avoid failure (e.g., replace a critical part of the equipment [6];

• Predictive maintenance (PdM): this type of maintenance is an additional preventive and

corrective maintenance tool. His function is to collect data of the equipment that we want

to examine and with that run a diagnosis and trend analysis in order to seek for potential

problems. The actions of maintenance are guided by predictions (predict the occurrence of

fault/failure) obtained by associated data [6];

PdM is the one that most relates to the theme of this thesis. Therefore the following subsection

will explain the cycle of a PdM system.

2.1.2.1 Predictive maintenance system workflow

In PdM, it is essential to know all the possible types of failures because PdM is based on a decision

support system with indicators representing the state of the equipment. Therefore, various types of

analysis are done to detect these failures, such as physical-chemical analysis, electrical signature

analysis, furfural, particle analysis, thermographic inspection, method of acoustic emission, and

dissolved gas analysis, among others.

In order to make predictions about the state of the equipment, a good approach is to use

machine learning algorithms. With this said, it is possible to highlight four main steps in a PdM

workflow.

The acquiring data phase collects data from the sensors and previously mentioned analysis.

The acquiring data phase collects data from the sensors and previously mentioned analysis. After

this, it is essential to go through a preprocessing phase to clean the acquired data. Hence, the

processed data is passed to a machine-learning algorithm to train a model. Finally, the created

model is used to predict anomalies in a new set of data. If some anomaly is detected, the user must

be warned to decide if an intervention is needed.

2.1.3 Machine learning applied to PdM

The rising use of data-driven approaches such as machine learning is one of the main reasons

for the rise in PdM systems. Maintenance has been transformed due to developments in machine

learning. It has been used to anticipate equipment failure, and other relevant events on equipment

lifecycle [37].
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Depending on the data available, the machine learning approaches employed in predictive

maintenance systems may differ. Numerous research articles have been released on this topic.

Clustering, classification, regression, and anomaly detection are PdM’s most important machine

support methodologies. Later in this section, we will go through these strategies in greater depth.

2.2 Machine Learning

With the increase of the data gathered, machine learning techniques became more and more rele-

vant. This subfield of data science is very important because it allows it to extract useful informa-

tion from the data, which is impossible for an average human to do due to the data size [4].

Machine learning can be divided into four main subfields:

• Supervised Learning:

• Unsupervised Learning:

• Semi-supervised Learning:

• Reinforcement Learning:

For this thesis, the relevant machine learning subfields are supervised learning, unsupervised

learning, and semi-supervised learning, which will be discussed later on.

2.2.1 Methodologies

In recent years, data science has gotten much attention, and it has put much effort into developing

sophisticated analytics, improving data models, and cultivating new algorithms. However, these

projects can face organizational and socio-technical challenges as they progress, such as a lack of

vision, strategy, and clear objectives, a biased emphasis on technical issues, a lack of reproducibil-

ity, and ambiguity of roles, to name a few. These challenges contribute to a low level of maturity

in data science projects that are managed haphazardly [18].

With that said, project management and process methodologies are beneficial to data science

projects. Methodologies like these can help succeed and overcome some of the problems men-

tioned earlier. On the other hand, data science teams may find it challenging to stick to a project

methodology. Data science projects can be planned using many methodologies. A survey con-

ducted by KDnuggets in 2014 shows that the most used methodology is CRISP-DM, with 43% of

the responders [14].

2.2.1.1 CRISP-DM

CRISP-DM stands for Cross-Industry Standard Process for Data Mining, and it was created in

the mid-1990s by SPSS and Teradata. It describes common approaches used by data mining

experts. It breaks down into 6 phases of the lifecycle of a data mining project, as can be seen in
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the Figure: business understanding, data understanding, data preparation, modeling, evaluation,

and deployment [28, 32].

• Business Understanding - This is the first stage, and it is here that the project objectives and

needs are defined from a business standpoint. Here is also the time where the project plan is

projected.

• Data Understanding - It is critical to analyze and become familiar with the data once it has

been collected. The main focus in this phase is to study the data and ensure its quality. This

phase is frequently linked to the business understanding phase since it is critical to consider

the quality and features of the data in order to ensure that the project objectives are clearly

defined.

• Data Preparation - The primary goal of this phase is to handle the data and create the final

dataset fed into the modeling. The feature selection, data transformation, and cleaning are

conducted in this process.

• Modeling - The modeling techniques are chosen and applied in this phase. The dataset is

partitioned, test and train datasets are generated, and models are constructed and applied.

This step might also be related to the data preparation phase if some transformation or

selection is required to produce better results.

• Evaluation - This is the stage in which the model’s output is analyzed and reviewed to see if

the defined objectives from the business understanding phase were met or not.

• Deployment - The model is organized and delivered to the customer at this step of the

lifecycle.

The usage of machine learning in these types of problems is a widespread practice nowadays.

2.3 Supervised Learning

In this machine learning subfield, the goal is to predict the outcome of a task based on the data’s

features. The model receives a set of features and a target variable. With this, the model learns the

function that relates the features to the target variable [4, 15, 17, 23].

Supervised learning can be divided into two main types:

• Regression: Find a relation model (mathematical function) that relates a set of numerical or

categorical variables to one numerical variable;

• Classification: Find a relation model (mathematical function) that relates a set of numerical

or categorical variables to one categorical variable;
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2.3.1 Supervised Learning Models

Many supervised learning algorithms can be used to solve classification problems. The most

relevant ones to this work are Bayesian networks, Naive Bayes (NB), Support Vector Machine

(SVM), Decision Tree (DT), Random Forest, K-Nearest Neighbors (KNN), Artificial Neural Net-

work (ANN).

Each algorithm will be described now in its own section.

2.3.1.1 Bayesian networks

A Bayesian Network is a graphical model for probability relationships among a set of variables.

The network has to be depicted. Then the parameters are determined, making it challenging to

implement without an expert opinion. BN is also not successful with larges datasets because large

networks are not feasible in terms of time and space [33].

2.3.1.2 Naive Bayes

Naive Bayes is a probabilistic classifier based on Bayes’ theorem. It relies on the naive assump-

tions that each pair of features is independent, which means each feature is independent of the

other features for a given class. This method is simple, intuitive, and can work with high effi-

ciency [17].

2.3.1.3 Support Vector Machine

Support vector machines are supervised learning algorithms that use a kernel function to transform

the features of the data into a high-dimensional space. The goal is to find a hyperplane that

separates the data into two classes. The algorithm is based on the idea that the distance between

the data points and the hyperplane is the most critical factor in determining the class of the data

point [17].

2.3.1.4 Decision Tree and Random Forest

Decision trees are a widely used algorithm for classification problems. They are straightforward

to understand and explain once it shows the decision to split the data. This algorithm is robust

to the noise in the data. It also provides high performance for relatively fast computation time.

One problem with this algorithm is that it finds it difficult to handle high-dimensional datasets.

Another problem is that without the proper use of pruning can easily lead to overfitting. In order

to solve this problem, random forests are used. A random forest is a collection of decision trees

trained using a bootstrap sample of the original data. The goal is to find a set of decision trees that

are more robust to the noise in the data [4, 17, 34].
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2.3.1.5 K-Nearest Neighbors

K-nearest neighbors (KNN) is a non-parametric method for classification. It is a simple algorithm

that can be used to find the nearest neighbors of a given point in a dataset. The goal is to find

the class of the nearest neighbors. This algorithm is a simple lazy learning algorithm that largely

depends on the value of the k parameter and the size of the data for its efficiency [4, 17, 34].

2.3.1.6 Artificial Neural Network

Artificial neural networks (ANN) are an interconnection between computational models and a

layered structure. This network consists of nodes (artificial neurons), weighted connections, and

functionality. ANNs idea is to parameterize a structure repetitively to tweak the parameters during

training.

The neurons are arranged in layers, and each one is associated with 2 variables, a set of weights

and a bias. We can see this structure in Figure 2.2. ANN can be divided into 3 phases, input,

processing, and output. The larger the processing phase is, the deeper the neural network is [4, 17,

34].

Figure 2.2: An example of an ANN network [4]

2.3.2 Imbalanced data problems

Imbalanced data sets are a common problem in machine learning. This section will discuss some

common issues that arise when dealing with imbalanced data sets. It is often to encounter problems

with imbalanced datasets in the real world. For example, there is a vast difference between the

number of faults and the number of non-faults data points in fault detection.

This can be a problem when training a model to detect faults since the algorithms perform

poorly because they are generally designed to handle balanced data sets. One of the most common

solutions to handle this type of problem is to use resampling techniques [40, 44, 45].
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2.3.3 Overfitting and Underfitting

Overfitting and underfitting are two problems commonly found in machine learning algorithms.

Overfitting occurs when the algorithm fits the training data and memorizes its noise. This leads to

deterioration of generalization of properties of the model, which results in poor performance when

applied to the testing data.

Datasets with small sizes are more prone to overfit than datasets with large sizes, although

it can occur in large datasets due to the complexity of the data. On the other hand, underfitting

occurs when the algorithm cannot detect the variability of the data. This leads to poor performance

in both the training and testing data [1, 2, 30, 31, 43].

In order to solve overfitting and underfitting, several techniques can be used. Some of them

are:

• Cross-validation: This technique divides the data into one or more training and testing sets.

The goal is to train the model only using the original training set.

• Regularization: this is a technique that penalizes the model to avoid overfitting. This also

can be a hyperparameter that can be tuned depending on the algorithm used.

• Feature selection: this is a technique that selects the most relevant features in the data.

• Early stopping: this is a technique that stops the training process when the model is not

improving.

• Train with more data: training with more data can be useful to algorithms to detect the signal

better. The problem is that if the data added adds noise, this technique is not useful.

The techniques relevant to this work are feature selection and training with more data.

2.3.4 Most common metrics for Classification

It is crucial to evaluate the performance of the model in order to know if it has a good performance

and validate it. Many metrics can be used to evaluate the performance of the model. The most

common metrics will be described now, each in its section [20, 13].

2.3.4.1 Accuracy

Accuracy is the percentage of correct predictions. It is the most common metric used in machine

learning. It is calculated by dividing the number of correct predictions by the total number of

predictions. Accuracy is a good metric if the data is balanced. Otherwise, it can give a false sense

of achieving high performance.

Accuracy =
(T P+T N)

(T P+T N +FP+FN)

Where:
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• TP: true positive

• TN: true negative

• FP: false positive

• FN: false negative

2.3.4.2 Precision

Precision is used to measure the conventionally assumed positive patterns correctly predicted from

the total predicted patterns in a positive class. Therefore, it is calculated by dividing the number

of true positives by the sum of the true positives and the false positives.

Precision =
T P

(T P+FP)

2.3.4.3 Recall

Recall is used to measure the fraction of positive patterns that are correctly classified. It is cal-

culated by dividing the number of true positives by the sum of the true positives and the true

negatives.

Recall =
T P

(T P+FN)

2.3.4.4 ROC AUC

Area Under Curve (AUC) is one of the most popular metrics that measure the performance of a

binary classifier. This metric evaluates the overall performance of a classifier.

AUC ROC is a probability curve that plots the Recall against the False Positive Rate (FPR).

This curve is represented in Figure 2.3

FPR =
FP

(T N +FP)
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Figure 2.3: Representation of ROC AUC curve [20]

2.3.4.5 F1 Score

F1 score is the harmonic mean of precision and recall. This metric can tell how precise and how

robust the model is. F1 score tries to find a balance between precision and recall.

F1 =
2∗ (Precision∗Recall)
(Precision+Recall)

Usually, for binary classification problems, the confusion matrix is the main base for evaluat-

ing the model’s performance.

The most used metric derived from the confusion matrix is accuracy. However, this metric is

not appropriate when dealing with imbalanced data sets. Since the majority class is more impactful

than the minority class, which can lead to the model does not perform well to the minority class

even if the accuracy is high.

On the other hand, some metrics can be used to evaluate the model’s performance when dealing

with imbalanced data sets. For example, where can be highlighted, the F1 score, which is a

weighted average of the precision and recall, and ROC AUC, which is the area under the ROC

curve. Both these measures are not biased towards both majority and minority classes [44].

2.3.5 Related Work

As seen in Table 2.1, the literature presents a vast amount of developed work in this area. The

approaches are similar around the papers where the DGA data is used to predict possible failures.

The most popular algorithms used are ANN and DT.
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Methodology-wise, all the articles used a similar approach. That can be divided into three main

parts, data analysis and pre-processing, application of the chosen machine learning algorithms, and

finally, comparing the results to understand which one gives the best performance.

Table 2.1: Research papers related to the usage of Classification on predictive maintenance

Transformer failure types Algorithms Accuracy (%)

Irregular dissolved gas concentration [19]
ANN 82
SVN 80

Leakage and other anomalies[46]
ANN 97.4
NB 95.9
DT 95.9

Irregular dissolved gas concentration [7]
DT 85
SVN 82

Irregular dissolved gas concentration, transformer oil insulation [8]
DT 77
SVN 70

Irregular dissolved gas concentration[36] ANN 93.5
Summary on transformer faults[21] ANN 96.8

In [45] is used a transformer dissolved gas analysis to detect faults in a gas system. The dataset

has 9595 healthy data points and 993 faulty data points. This paper compares the performance of

the model with various resampling techniques and various classical classifiers with a proposed new

approach to the problem named self-paced ensemble (SPE). The results show that the proposed

method SPE leads better recall and G-mean than the traditional methods, showing that SPE can

deal well with imbalanced data sets.

In [44] is done a review of some popular methods to handle imbalanced data sets. It is used

15 different datasets in this experiment. It is applied undersampling and oversampling techniques

and various classifiers to the datasets. F-score and AUC are used to measure the performance

of the models in this experiment. The results show that the linear algorithms perform better af-

ter applying imbalance techniques in terms of AUC without changing F-score. For the more

complex ensemble methods, the application of those techniques does not significantly impact the

performance. Lastly, for the simple non-linear algorithms, applying imbalance techniques lacks a

consistent performance improvement.

2.4 Unsupervised Learning

Unsupervised learning aims to find patterns and relations among the features of the input data.

Hence, unsupervised learning methods work primarily with unlabeled data. Using these methods

can help find previously unknown patterns in the dataset [17, 27, 35].

The most common uses of unsupervised learning are:

• Clustering: an approach to finding similar patterns and relations between features in the

dataset, grouping the data points with common characteristics[17].
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• Association rules: as the name suggests, are simple associations rules to help discover rela-

tionships between seemingly independent datasets. This approach is used with large trans-

actional datasets. More specifically, in market basket studies to analyze customers’ purchase

habits [35].

• Dimensionality reduction: is the process of projecting high-dimensional datasets to a lower-

dimensional space. One of the most used methods is the Principal Component Analysis

(PCA)[25].

For this thesis, clustering is the methodology explored. The following section presents an

overview of the existing clustering algorithms.

2.4.1 Clustering Algorithms

Due to the increase of data and computational power, new algorithms are constantly being devel-

oped to answer business needs. With this increase, it is essential to structure a taxonomy to catalog

the different algorithms [41].

The most used approach in the literature is to distinguish between partitioning-based, hierar-

chical, density-based, grid-based, and model-based clustering algorithms.

Partitioning-based algorithms divide the data into a set of k clusters and then assign each

data point to the closest cluster. Some examples of partitioning-based algorithms are k-means,

k-medoids, fuzzy c-means [41].

Hierarchical algorithms organize the data in a tree-like structure. The tree’s root is the first

cluster, and the leaves are the closest clusters to the root. Some examples of hierarchical algorithms

are BIRCH, CURE, ROCK [41].

Density-based algorithms are used to find clusters in the data close to each other in high-

density regions. Some examples of density-based algorithms are DBSCAN, OPTICS, and Mean-

Shift [41].

In Grid-based algorithms, the data is divided into a defined grid structure. It quantizes the

object areas into a finite number of cells that form a grid structure on which all of the operations

for clustering are implemented. The benefit of the method is its quick processing time, which is

generally independent of the number of data objects, still dependent on only the multiple cells in

each dimension in the quantized space. Some examples of grid-based algorithms are WaveCluster,

STING, CLIQUE [41].

Finally, model-based algorithms aim to optimize the fit between the given database and a

particular model for each cluster. Some examples of model-based algorithms are EM, COBWEB,

SOM [41].

For this thesis were used partitioning-based algorithms and density-based algorithms, in more

particular, DBSCAN and k-means.
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2.4.1.1 K-Means

K-means is a partitioning-based algorithm that divides the data into k different clusters. Initial-

izing k different centroids, the algorithm then assigns each data point to the closest cluster. The

algorithm then recalculates the centroids of each cluster and repeats the process until the centroids

do not change. The algorithm is fast and can be used to find patterns in the data [3]. In Figure 2.4

it is possible to see an example of K-Means with k=2 and k=3.

Figure 2.4: Example of K-Means in action with two different k

2.4.1.2 DBSCAN

DBSCAN is a density-based algorithm that finds clusters in the data that are closely packed to-

gether and marks the outliers that are not close to any region. The algorithm is straightforward

and fast and can be used to find patterns in the data [29, 10]. In Figure 2.5 it is possible to see the

performance of DBSCAN using the same datasets in the K-Means example.

Figure 2.5: Example of DBSCAN in action in the same datasets used in the K-Means example
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2.4.2 Metrics for Unsupervised Learning

After using the clustering algorithms, it is essential to evaluate the algorithm’s performance. Sev-

eral aspects are crucial to consider when evaluating the performance of the clustering [11, 24].

These aspects are:

• The clustering tendencies in the data

• The correct number of clusters

• The quality of the clusters without external information

• Comparing the results with external information

Hence, there are two types of validations for clustering algorithms, internal validation, and

external validation.

Internal validation is the evaluation of the algorithm’s performance without external infor-

mation, using only the information provided by the input data. There are two types of metrics:

cohesion and separation measures. Cohesion evaluates how closely the elements of the same clus-

ter are to each other, while separation measures quantify the level of separation between clusters.

Some examples of metrics that measure separation and cohesion at the same time:

• The Calisnki-Harabasz coefficient: also known as the variance ratio criterion, is based on

the internal dispersion and the dispersion between clusters [24];

• The Xie-Beni score: this metric was designed for fuzzy clustering. However, it can be

applied to hard clustering. It is a ratio that divides the level of compaction of the data within

the same cluster and the separation of the data from different clusters [24];

• The Ball-Hall index: The Ball-Hall index: is based on the quadratic distances between the

cluster points and the cluster centroid [24];

• Silhouette coefficient: the most common measure that combines cohesion and separation.

This measure is defined in the interval [-1, 1] for each data point. In the case of a positive

value, a high separation between clusters is experienced. On the other hand, if negative, the

clusters are mixed. Finally, if it is zero, it indicates that the dataset is uniformly distributed

throughout the euclidean space [24];

External validation is the evaluation of the algorithm’s performance with external information.

The external validation methods are divided into 3 major groups, which are: matching sets, peer-

to-peer correlation, and information theory. The matching sets methods compare the clusters

detected with the natural correspondence. Some examples of matching sets methods are:

• Precision: measure the true positives, that is, the number of data points classified adequately

within the same cluster;

• Recall: measure the percentage of elements that are adequately included in the same cluster;
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• F1 score: the combination of precision and recall;

• Purity: measures whether each cluster contains only samples from the same class;

The peer-to-peer correlation measures the similarity between two partitions under similar con-

ditions, such as a grouping process for the same set. It is assumed that the examples in the same

cluster should be in the same class and vice versa. Some examples of peer-to-peer correlation

methods are:

• Jaccard coefficient: evaluates the similarity of a detected cluster to a provided partition [24];

• Rand coefficient: is the equivalent to accuracy in a supervised learning approach [24];

• Folkes and Mallows coefficient: calculates the similarity between the clusters found by the

algorithm concerning the independent markers [24];

Lastly, the information theory methods are based on Information Theory concepts, such as

the current uncertainty in predicting the natural classes provided by other partitions. This family

includes basic measures such as entropy and mutual information and their respective normalized

variants. Some examples of information theory methods are:

• Entropy: a reciprocal measure of purity that measures the degree of disorder in the clustering

[24];

• Mutual information: a metric that measures the reduction in uncertainty about clustering

results given prior knowledge [24];

2.4.3 Related work

In [9], it is presented an analysis of the different operating periods of a power transformer through

dissolved gas concentration using unsupervised learning methods.

First, Principal Component Analysis (PCA) is applied as a pre-process to represent the data

with fewer variables. This gives a compact representation of the data. After that, a k-means

classification method is performed to group the operating periods. Lastly, the Total Dissolved

Combustible Gas (TDCG) analysis is done.

The results showed that the k-means approach is consistent and can give helpful information

about the operating periods.

In [38] it is used data from three sensors from a selective laser melting to build a condition

monitoring system with unsupervised learning methods.

The data is analyzed pre-processed, and after that, a clustering method is applied. In this case,

k-means is the chosen method. The mean sum of squared distances to centers is used to select the

k and the statistical features, also referred to as distortion. The lower this distortion is, the more

accurate the number of clusters is.

After analyzing the results, it is possible to identify four distinct clusters, regular operation,

protection gas failure, pressure failure, and machine stopped.
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These works can relate to this thesis since clustering methods are used to find patterns and

group the data points into different clusters. With this, it is possible to identify different anomalies,

which is the objective of this thesis.

2.5 Semi-supervised learning

Semi-supervised learning is a branch of machine learning that combines supervised and unsu-

pervised learning techniques. This methodology uses both labeled and unlabeled data to train the

model. Typically, it is used to help improve the performance on one of those types of learning tasks

by using methods that belong to the other learning task. Most usage of semi-supervised learning

is focused on classification. For situations with limited labeled data, semi-supervised classifica-

tion approaches are helpful because supervised learning techniques are insufficient to solve the

problem and are unreliable. This is possible because labeled data can be expensive or difficult to

collect. If unlabeled data is sufficient in those circumstances, it can improve model performance.

Semi-supervised learning is based on three main assumptions that are the foundation of the most

semi-supervised learning algorithms [5, 26, 39, 47].

These assumptions are:

• Smoothness assumption: According to this assumption, if two input points in the input

space are close to each other, they are most likely in the same class. This assumption is also

common in supervised learning, but the advantage of semi-supervised learning is that it can

handle unlabeled data [39].

• Low-density assumption: According to this assumption, the decision border should run

through low-density areas rather than high-density areas. The smoothness assumption is

strongly related to this assumption [39].

• Manifold assumption: The manifold assumption asserts that the input space is made up of

lower-dimensional manifolds on which all data points are located and that data points in the

same manifold belong to the same class [39].
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Figure 2.6: Semi-supervised classification taxonomy. Each leaf in the taxonomy corresponds to a
specific approach to incorporating unlabelled data into classification methods [39]

In Figure 2.6, semi-supervised taxonomy is depicted. Inductive and transductive approaches

are the two primary groups. The following sections will discuss each group and its subgroups in

more detail.

2.5.1 Inductive methods

Inductive methods aim to build a model that can create predictions for any type of data available

in the input space. These methods are an extension of supervised learning methods to include

unlabeled data.

2.5.1.1 Wrapper methods

Wrapper methods train classifiers on labeled data and then produce more labeled data using the

predictions. The classifier is then re-trained using the newly labeled data in addition to the previ-

ously labeled data. A wrapper approach converts the unlabeled data to labeled data, then is utilized

to build the final model using a purely supervised learning algorithm.

Wrapper approaches include the following, which are the most well-known:
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• Self-training is the simplest pseudo-labeling method. These methods use a supervised clas-

sifier to train iteratively on labeled and pseudo-labeled data until no more data is classified

[39].

• Co-training: an extension of self-training in which two or more supervised classifiers are

utilized instead of just one. The supervised classifiers must not be too closely connected in

their predictions for this to work. If this is the case, the amount of new data generated will

be limited [39].

• Boosting: A classifier ensemble is constructed by successively creating individual classi-

fiers, similar to standard boosting algorithms [39].

2.5.1.2 Unsupervised preprocessing

Unsupervised preprocessing uses the labeled and the unlabeled data in two different stages, unlike

the wrapper methods. Usually, the unlabeled data is processed first through the unsupervised stage

to extract features, cluster the data to label afterward, or pre-train a based learner and initialize with

proper weights. The next process is the application of a supervised learning algorithm.

The techniques used in this stage are:

• Feature extraction: This is an advantageous technique, and it has played an essential role

in the construction of classifiers. This technique finds transformations in the input data that

can improve the classifier’s performance or efficiency [39].

• Cluster-then-label: As the name suggests, this approach joins the clustering and the classifi-

cation processes. First, all the available data is clustered, and then the resulting clusters are

used to guide the classification process [39].

• Pre-training: Pre-training is a very used technique nowadays in deep learning. Unlabeled

data suggests the boundary towards potentially interesting regions before applying the su-

pervised algorithm [39].

2.5.1.3 Intrinsically semi-supervised methods

Intrinsically semi-supervised methods mainly focus on optimizing the objective function with la-

beled and unlabeled data components. These methods do not rely on any intermediate step or

supervised base learner. These methods generally rely on one of the semi-supervised learning

assumptions discussed before.

The methods used in this stage are:

• Maximum-margin: the most straightforward method and attempts to maximize the distance

between the input data points and the decision boundary. This technique corresponds to the

semi-supervised low-density assumption [39].



2.5 Semi-supervised learning 21

• Perturbation-based methods: This technique relies on the smoothness assumption. The

predictive model should be robust to local perturbations in the input space, meaning that

when a data point is perturbed by a small amount of noise, the prediction to the noisy data

and the clean data should be similar. These methods are often implemented with neural

networks [39].

• Manifold methods: as seen before with perturbation-based methods, adding small perturba-

tions to the input space works well under the smoothness assumption. However, in some

low-dimensional datasets, the perturbations may differ from the input data. For this reason,

here is used the manifold assumption [39].

• Generative models: the methods above are all discriminative. Their only goal is to assume

a function that can classify data points. In contrast, generative models’ goal is to model the

distribution p(x, y), from which samples(x, y) can be drawn [39].

2.5.2 Transductive methods

Unlike the inductive methods discussed before, which produce a predictor that can operate over

the entire input space, the transductive techniques cannot distinguish between training and test-

ing phases. Labeled and unlabeled data are provided as the input, and the output is exclusively

predictions for the unlabeled data [39].

These methods are usually defined by a graph over all data points, encoding the pairwise

relationships between data points with possibly weighted edges [47]. It is defined and optimized

as an objective function that ensures that the predicted labels match the actual labels for labeled

data and that similar data points represented by the similarity graph should have the exact label

predictions.

There is a similarity between transductive and inductive manifold methods since both build a

graph over the data points and use pairwise relationships to approximate more complex structures.

The main difference is that inductive methods aim to create a classifier capable of operating over

the entire input space, while transductive methods only give predictions for a given unlabeled data.

2.5.3 Related work

In [5] is proposed three semi-supervised learning algorithms:

• Deriving graph-based distances that emphasize low-density regions between clusters fol-

lowed by an SVM classifier (graph).

• Optimizing the Transductive SVM objective function by gradient descent (∇T SV M).

• The combination of the two previous algorithms (LDS).

This experiment used two artificial datasets and three real-world datasets with different prop-

erties. For the experience, besides the proposed algorithms, methods from literature and other
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research groups were used. The results showed that LSD achieves lower test errors than the other

algorithms.

This research paper is helpful because it is proposed a semi-supervised classification algorithm

based on cluster assumptions. This type of algorithm could be used in a future iteration of this

project.



Chapter 3

Development Work

In this section, it will be presented the development of the project. First, the data set and each

feature will be discussed and essential for developing the model. Then, the approach taken to solve

the fact that the data provided does not have labels will be presented. Finally, the classification

models will be presented.

3.1 Technologies

For this project, we used Jupyter Notebook, a web-based environment for interactive computing

in Python. It ables the creating and sharing of live code, equations, visualizations, and narrative

text. In terms of python libraries, it was used the following pandas, NumPy, matplotlib, sklearn.

Pandas is a powerful, flexible, open-source library for data manipulation and analysis. Numpy

is an open-source library that aims to enable numerical computing. Matplotlib is a Python 2D

plotting library with a focus on interactive visualization. Sklearn is an open-source library with

simple and efficient data mining and analysis tools.

3.2 Project overview

The project will be divided into two main phases: the clustering and classification phase.

In the clustering phase, the goal is to find patterns in the data and understand what features

presents the most impact on the model’s decision. First, data understanding is done, which is the

process of understanding the data and its structure. Then, the clustering is performed. After the

clustering, the data points are labeled with the label of the same cluster (arbitrary label), and it is

submitted to a decision tree algorithm to know the impact of each feature in the decision of the

model.

After this, it is performed the classification phase. In this phase, the data labeled with the

clusters can be treated as a classification problem. The classification problem is solved using

various algorithms, and the best algorithm is chosen. For this, some techniques are used, such as

23
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splitting the data into training and test sets, oversampling and undersampling the data, and using

different metrics to evaluate the algorithm’s performance.

3.3 Dataset

It is crucial to be familiar with the dataset used in a project to make the right decisions about the

development of the model.

3.3.1 Data understanding

The data provided by the company was already cleaned, so it was already without missing values.

However, it was necessary to clean some existing noise. The company provided three datasets, two

from the same device and one from a different one. The first dataset was a three-mouth dataset

with 9864 entries and 7 features. The second dataset was from the same machine and had 21838

entries and 8 features. The last dataset was from a different device and had 31087 entries and 8

features.

The goal is to make a model that can work with the first and the second dataset and then later

try the same model to the third dataset and see if it can be used to predict the labels.

All datasets have these 7 features:

• ld-ratio: Refers to the percentage of transformer charge;

• fsv-4: Is an artificial feature that is created by the company to try to diagnose the state of

the machine;

• iexc-1 to iexc-3: indicates the electrical current level in each phase;

• unbi-1 and unbi-2: refers to the amplitude imbalance between the primary and secondary

currents.

The first dataset was used to train the model, so from now on, the dataset will be named as the

training dataset. The second dataset will be directed to as the validation dataset. Lastly, the third

dataset will be referred to as the validation dataset.

Figure 3.1 shows the scatterplots that reveal the relationship between the features of the train-

ing dataset.
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Figure 3.1: Relation between training dataset’s features

To a better look at the outliers, Figure 3.2 shows the relationship between the features but with

a simple binning. This binning is done by getting the minimum and maximum value of fsv-4 and

dividing the range into two bins, 0 and 1.
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Figure 3.2: Relation between training dataset’s features with binning

As can be seen, it is possible to see some data points that can be tagged as outliers. To better

understand the relationship between the features, it is used three types of correlations between

them:

• The Pearson correlation coefficient measures the linear correlation between two variables.

• The Spearman correlation coefficient measures the monotonic relationship between two

variables.

• The Kendall correlation coefficient measures the concordance between two variables.
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Figure 3.3: Correlation between features using Pearson method.

Figure 3.4: Correlation between features using Spearman method.

Figure 3.5: Correlation between features using Kendall method.
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As can be seen, both unbi-1 and unbi-2 have a low correlation with the others features. The rest

of the features presents from moderated to high correlation with each other. The same observation

is found in the Pearson, Spearman and Kendall correlation.

3.4 Modeling

Modeling in machine learning is the process of feeding data into an algorithm to detect patterns in

the dataset. After this, new data is presented, and the trained model may predict the labels of this

new data.

This project was divided into two phases. The first phase used a clustering model to generate

labels for the training dataset. The second phase used a classification model to predict the labels

of the validation dataset.

3.4.1 Splitting data

Splitting data is essential in model development since it allows evaluating the model without using

the validation dataset. The training dataset is split into training and testing datasets. This also

prevents the model from overfitting.

The training dataset was split into two parts for the classification model, one for training and

one for testing. The data was divided into 70% training and 30% testing datasets.

3.4.2 Feature engineering

Feature engineering is the process of transforming the data into a form that can be useful for

machine learning algorithms. The datasets provided by the company were already cleaned, so it is

not necessary to do it again. Although it was created one new feature, this feature is a binary that

indicates if the fsv-4 is higher than the mean value of the fsv-4.

Another feature engineering method used in the training dataset was normalization, once the

feature’s range varies massively between them. In this case, it was used the z-norm.

3.4.3 Overfitting and Underfitting

Oversampling and undersampling are techniques used to balance the dataset to improve the model’s

veracity. In case of oversampling, random instances from the minority class are duplicated to bal-

ance the dataset. On the other hand, in undersampling, random samples from the majority class

are deleted to balance the dataset.

In this case, the techniques used during the development were SMOTE to deal with over-

sampling, RandomUnderSampler to deal with undersampling, and TomekLinks to deal with both.

SMOTE is a helpful technique since instead of duplicating instances from the minority class. It

generates new ones. With this, the problem of adding redundant data is solved.
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3.4.4 Optuna

It is essential to use the best hyperparameters of a model to achieve the best performances possible.

In this project, the best hyperparameters were found using Optuna.

This library was used to optimize the hyperparameters of the classification model.

3.4.5 Clustering

Clustering is a machine learning technique used to group the data into clusters to make a better

analysis of the data and possibly create labels for the unlabeled data.

For this project, it is used two clustering algorithms: K-Means and DBSCAN.

To choose the hyperparameters of the DBSCAN algorithm, a grid search was done.

The grid search was done using the parameters:

• eps: The eps parameter is the maximum distance between two samples for them to be con-

sidered in the same neighborhood.

• min_samples: The min_samples parameter is the number of samples (or total weight) in a

neighborhood for a point to be considered a core point. This includes the point itself.

Figure 3.6: Grid search to find the best DBSCAN hyperparameters. In the first column, there
are the eps, and the first row is min_samples. In each cell, the number of clusters and outliers
produced by the pair is shown.

In Figure 3.6, it is possible to see an example of a grid search for the DBSCAN model.

3.4.6 Classification

Classification is a machine learning technique used to learn the relationship between the features

and the labels.

In this project, the classification algorithms used were:
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• Random Forest (Described in section: 2.3.1.4);

• Decision Tree (Described in section: 2.3.1.4);

• SVM (Described in section: 2.3.1.3);

• KNN (Described in section: 2.3.1.5).

3.4.7 Metrics

In terms of metrics, in 2.3.4 and 2.4.2 it was done a explanation of various metrics used in machine

learning. This project used the Silhouette score for the clustering model and the F1 score, recall,

precision, and ROC AUC for the classification model.



Chapter 4

Results

In this section, it will be presented and discussed the results of the proposed solution.

This section is divided into two subsections, clustering and classification. The first subsection

presents the results from both clustering algorithms used, namely KMeans and DBSCAN. The

second subsection presents the results from the classification algorithm used, namely Random

Forest, decision tree, and SVM.

4.1 Feature selection

During the development of the project, various tests were performed, and after the first feedback

from the company, it was realized that some features were not necessary for the clustering.

This was decided because there were too many anomalies in the predictions with all the fea-

tures.

31
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Figure 4.1: Here it is presented the graphs of the number of anomalies predicted per day and the
representation of each feature. The anomalies were expected to appear in the highlighted zone. As
can be seen, a considerable number of anomalies were predicted outside that zone.

As shown in Figure 4.1, there were predicted anomalies during all year, which does not cor-

respond with the expected results. The anomalies were supposed to be predicted only in the

highlighted zones. This happened because some features had too much weight in creating the

clusters.

With this said, it was selected three features for the rest of the development, fsv-4, ld-ratio and

fsv-4_higher_than_mean.

4.2 First phase

Initially, all the features were used for the clustering because we had little information about the

dataset and the expected results. The leading information that we had was that there were some

anomalies in the data in the 10, 12, and 16 of March and on the 5 of August of the validation

data. We did not know the reason for the anomalies, and we did not know in which instances the

anomalies were.

The goal here was to find the best way to cluster the data to find the outliers, using DBSCAN

and KMeans.

4.2.1 DBSCAN

Here we used the DBSCAN algorithm to cluster the data. The parameters that were used were the

epsilon and the min_samples.
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Table 4.1: Grid search for DBSCAN with only ld-ratio, fsv-4 and fsv-4_higher_than_mean as
features

min_sample

eps

5 10 15 20
0.1 (8, 132) (8, 262) (6, 504) (7, 758)
0.2 (7, 38) (5, 69) (4, 98) (3, 130)
0.3 (5, 20) (4, 56) (4, 62) (4, 72)
0.4 (3, 16) (3, 22) (4, 48) (4, 49)
0.5 (3, 14) (3, 15) (3, 18) (3, 27)
0.6 (3, 14) (3, 14) (3, 15) (3, 17)
0.7 (3, 14) (3, 14) (3, 14) (3, 14)

Table 4.2: Grid search for DBSCAN with all the features

min_sample
5 10 15 20

eps

0.1 (108, 4394) (42, 6428) (31, 7914) (19, 8959)
0.2 (37, 878) (16, 1457) (17, 1899) (12, 2289)
0.3 (20, 368) (11, 574) (9, 782) (10, 930)
0.4 (13, 184) (6, 313) (6, 414) (5, 505)
0.5 (8, 93) (5, 195) (4, 265) (4, 300)
0.6 (5, 54) (6, 98) (5, 163) (4, 210)
0.7 (5, 43) (5, 56) (4, 111) (4, 124)
0.8 (5, 38) (5, 46) (4, 82) (4, 96)
0.9 (5, 37) (5, 39) (4, 60) (4, 79)

As can be seen in Table 4.1 and Table 4.2, each resulting cell gives a pair. This pair contains

the number of created clusters and the number of outliers detected.

The criteria to choose the best eps/min_sample pair was to select the cell with the fewer clus-

ters and outliers detected.

4.2.1.1 Using only ld-ratio, fsv-4 and fsv-4_higher_than_mean as features

In this case with only ld-ratio, fsv-4 and fsv-4_higher_than_mean as features the chosen pair was

eps = 0.5 and min_sample = 5.
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Figure 4.2: Relation with only ld-ratio, fsv-4 and fsv-4_higher_than_mean as features and with
the clusters signalized

As it is shown in Figure 4.2, there is a clear distinction between the clusters. Mainly between

cluster -1 and the others.

Figure 4.3: Decision tree with the decisions made by the clustering

In this decision tree 4.3, it can be seen the decisions made to divide the data into the clusters.

When the fsv-4 is below 0.2, every instance is labeled cluster 0. If the fsv-4 is greater than 0.426,

the instances are labeled cluster -1. And finally, the rest are labeled as cluster 1.
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4.2.1.2 Using all features

In this case with all features the chosen pair was eps = 0.9 and min_sample = 15.

Figure 4.4: Relation with the all features and with the clusters signalized

As it is shown in Figure 4.4, there is a clear distinction between cluster -1 and the others.

However, the other clusters overlap, making it difficult to distinguish them.
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Figure 4.5: Decision tree with the decisions made by the clustering
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In Figure 4.5, it is possible to see that it is challenging to understand and to get some knowledge

about the decisions made.

4.2.2 K-Means

Here we used the K-Means algorithm to cluster the data. The parameters that were used were the

number of clusters.

4.2.2.1 Using only ld-ratio, fsv-4 and fsv-4_higher_than_mean as features

The number of clusters used was calculated by the elbow method. The elbow method is a heuristic

to determine the number of clusters in a dataset. A graph with K-Means inertia against the number

of clusters created is plotted.

Figure 4.6: The Elbow Method showing the optimal k

As seen in Figure 4.6, the elbow method is used to determine the optimal k. After an analysis,

it is possible com conclude that k=3 is the optimal k for these settings.
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Figure 4.7: Clusters created by K-Means with k=3

In this case, as can be seen in Figure 4.7, it is possible to identify the 3 clusters clearly. The

problem with these results is that the outliers are not detected expectedly.

4.2.2.2 Using all features

The number of clusters used was calculated by the elbow method.

Figure 4.8: The Elbow Method showing the optimal k
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As seen in the Figure 4.8 the elbow method is used to determine the optimal k. After an

analysis, it is possible com conclude that k=4 is the optimal k for these settings.

Figure 4.9: Clusters created by K-Means with k=4

In this case, as can be seen in Figure 4.9, it is possible to identify the 4 generated clusters

clearly. Here it is possible to identify some outliers grouped in cluster 3. However, this clustering

is not as good as the one performed by the DBSCAN.

4.2.3 First phase conclusions

With the obtained results from the DBSCAN and K-Means clustering, it is possible to conclude

that the best approach is to use DBSCAN. The clustering using DBSCAN proved to identify the

outliers more effectively, and it is possible to observe that this is a density-based problem.

Using only ld-ratio, fsv-4 and fsv-4_higher_than_mean as features clearly distinguishes clus-

ters and gives us a simple decision tree to get knowledge about the decisions made.
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In summary, the features used were ld-ratio, fsv-4 and fsv-4_higher_than_mean, and it was

used DBSCAN with eps = 0.5 and min_sample = 5 to create the clusters and find the outliers.

These clusters are used to label the training data to perform classification.

4.3 Second phase

After the first phase is completed, the now labeled data is used to classify the validation data. To

make it easier for the classifiers, the labels will change for 1 if they are an outlier and 0 if not.

So, now the training dataset has only two labels, which can be treated as a binary classification

problem.

One problem that the dataset has is that the labels are imbalanced. There were only 49 data

points labeled as outliers (1) and 9805 labeled as normal behavior (0). To solve this was used

techniques to overcome this problem. It was used oversampling, undersampling, and both. For the

oversampling, SMOTE was used, for the undersampling was used RandomUnderSampler, and for

both was used TomekLinks. After this process, the data is submitted to the classification model.

For the classification, it was used, Random Forest, KNN, SVM, and Decision Trees.

Table 4.3: ROC AUC Performance for the chosen algorithms

Random Forest Decision trees KNN SVM
over 0.9526 0.8791 0.8358 0.7625

under 0.9478 0.8871 0.7886 0.7346
tomek 0.8881 0.8636 0.6626 0.5673

In Table 4.3 it is possible to see that the best ROC AUC performance was using Random Forest

and oversampling.
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Figure 4.10: The first graph shows the number of anomalies and normal behavior per month. The
second graph shows the percentage of anomalies and normal behavior per month

In Figure 4.10 can be seen the number and percentage of anomalies per month. In October of

2021, there was a high percentage of anomalies because some noisy instances were found in this

period.
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Figure 4.11: The first graph shows the number of anomalies and normal behavior in August. The
second graph shows the percentage of anomalies and normal behavior in August
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Figure 4.12: The first graph shows the number of anomalies and normal behavior in March. The
second graph shows the percentage of anomalies and normal behavior in March

As can be seen in Figure 4.11 and Figure 4.12, the percentage of anomalies is higher in the

periods expected to found anomalies, between 10 and 17 of March and 5 and 6 of August.
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Figure 4.13: The first graph shows the occurrences of anomalies and values of fsv-4 over the year.
The second graph shows the occurences of anomalies and values of ld-ratio over the year.

Finally, in Figure 4.13 it is possible to see the anomalies found over the year. It is possible to

observe that the fsv-4 has a significant impact on the decision of the predictions.

4.3.1 Second phase conclusions

After receiving the new labeled data from the first phase, it was essential to perform some tech-

niques to overcome the imbalanced data problem. The strategies used were SMOTE, TomekLink,

and RandomUnderSampler.

It was performed each of these techniques with a different supervised learning algorithm to

find the one that gives the best ROC AUC. The one that performed better was using Random

Forest with SMOTE with 0.9526.

After analyzing the prediction for the validation dataset, it is possible to see that the anomalies

were found in the expected timezone.
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Conclusion and future work

This final chapter includes the overview of this dissertation, the discussion of the obtained results,

and the future improvements to this work.

5.1 Conclusion

This dissertation had the primary goal of discovering a way to find anomalies in datasets from

electric transformers applying machine learning techniques.

In order to do that, first, the research was done and explored the literature available that was

related to the subject of this thesis. This research was addressed in Chapter 2, where it was

discussed machine learning techniques and methods used in predicting malfunctions in power

transformers.

In Chapter 3 and Chapter 4 it was presented the development and results of the project, respec-

tively. The project was divided into two phases: the clustering and classification phases. Initially,

the goal was to find the clusters where the data could be divided to create labels. After this, the

classification algorithms pass the labeled data, making the validation dataset predictions.

With the results in hand, we sent them to the company to get feedback in order to improve the

model. After receiving feedback, some adjustments were made, and the model was enhanced in

the best direction.

After we sent the new and improved predictions, the company discovered that these anomalies

that we were trying to predict were, in fact, measurement errors on the part from the company’s

client. However, the company validated the project since the produced model could detect these

measurement errors, bringing value to the project.

5.2 Future work

In terms of future work, there is always room for improvement in a machine learning project.

Some techniques can be explored for this project as long as some improvements can be made.

45
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One technique that can be explored is to treat this problem as a Time Series problem. This can

be done once we have sequential data with timestamps.

Another noticeable improvement that can be done is, deploying the model to a machine to be

used in the company.

The testing in another dataset from a different machine is also future work that can be done to

test the robustness of the model.

An essential improvement is to find other types of anomalies. In this case, it is crucial that the

model predicts an anomaly and indicates what features were at the cause of that decision.
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