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Abstract. We prove functional limit theorems for stochastic processes which have clusters
of large values which, when summed and suitably normalised in time and space, get collapsed
in a jump of the limiting process observed at the same time point. In order to keep track
of the clustering information, which gets lost in the usual Skorohod topologies in the space
of càdl‘ag functions, we introduce a new space specially designed for that purpose which
generalises the already more general spaces introduced by Whitt. Our main applications are
to hyperbolic and non-uniformly expanding dynamical systems with heavy tailed observable
functions maximised at dynamically linked maximal sets (such as periodic points). We
also study limits of extremal processes and record times point processes for observables not
necessarily heavy tailed. The applications studied include hyperbolic systems such as Anosov
diffeomorphisms, but also non-uniformly expanding maps such as maps with critical points
of Benedicks-Carleson type or indifferent fixed points such as Manneville-Pomeau maps. The
main tool is a limit theorem for point processes with decorations derived from a bi-infinite
sequence which we call the piling process, designed to keep the clustering information. This
piling process is based on the tail process defined in the regularly varying context rather
than the general stationary stochastic processes we consider here.
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1. Introduction

The Donsker functional limit theorem gives an invariance principle for the sum of indepen-
dent and identically distributed (i.i.d.) random variables with finite second moments. The
functional limit is a Brownian motion which lives in the space C of continuous Rd-valued
functions defined on a subinterval I of the real line, usually taken as either [0, 1] or [0,+∞),
equipped with the uniform norm. Invariance principles such as this have been proved for a
large class of dynamical systems with good mixing properties ([HK82, DP84, MT02, FMT03,
MN05, HM07, BM08, MN09, Gou10]). Note that weak convergence to a Brownian motion
implies the existence of a Central Limit Theorem (CLT) for the ergodic sums of such systems.

For systems with weaker mixing properties such as those modelled by Young towers ([You98,
You99]), with return time functions that are not square integrable, which is the case of certain
Pomeau-Manneville ([PM80]) or Liverani-Saussol-Vaienti ([LSV99]) maps, where the existence
of an indifferent fixed point is a source of non-uniform hyperbolicity, the CLT fails and the
ergodic sums fall into the domain of attraction of α-stable laws ([Gou04]). In [Gou08], Gouëzel
shows that the same regime applies to ergodic sums of unbounded heavy tailed observables
for the doubling map. Later, in [TK10b], Tyran-Kamińska showed a functional limit theorem
for heavy tailed ergodic sums of essentially uniformly expanding maps. The functional limit
obtained was an α-stable Lévy process, which lives in the space D of càdlàg functions, i.e.,
right continuous R-valued functions with left limits defined on I, equipped with Skorohod’s
J1 topology. In this scenario, the heavy tails allow for the occurrence of extremal observations



ENRICHED FUNCTIONAL LIMIT THEOREMS FOR DYNAMICAL SYSTEMS 3

with a considerable impact in the Birkhoff sum, which are ultimately responsible for the
appearance of the jumps in the limit Lévy process.

In [TK10b], Tyran-Kamińska also shows that in the case of certain LSV maps although the
ergodic sums, when properly normalised, converge to an α-stable law (as proved in [Gou04]),
there is no functional version of this result in the J1 topology. The problem lies in the fact
that there is a stacking or piling of observations due to the compression resulting from the
time normalisation, which causes an accumulation of numerous small jumps that aggregate
into a big jump in the limit and this is forbidden by the J1 topology. This issue was solved in
[MZ15] where through inducing arguments it was shown that a functional version encompass-
ing convergence to an α-stable Lévy process does apply if one considers a weaker topology,
namely, the Skorohod M1 topology, which does not preclude the accumulation of many small
jumps into a big jump. Then more recently in [MV20, JPZ20, JMP+19], the authors consid-
ered billiards with cusps. In [JPZ20], the authors prove convergence to a Lévy process in the
M1 topology for observables that do not change sign near the cusp. In order to allow more
freedom in the piling of observations, namely, to allow sign changes of the observable near the
cusp, in [MV20], an even weaker topology was considered, Skorohod’s M2 topology, so that
convergence to a Lévy process would not be precluded. However, though the choice of weaker
topologies does allow for functional limits, the information collapsed in a jump of the limiting
Lévy motion is completely lost.

The main purpose of this paper is to develop tools in order to obtain enriched functional limit
theorems that incorporate the collapsed information without any loss. Above there are two
contexts where Lévy processes arise: ‘good’ dynamical systems and ‘bad’ (heavy) observables;
and ‘bad’ dynamical systems (eg with cusps) and ‘good’ observables. The theory developed
here principally applies to the former context (similar to [Gou08, TK10b]), though it does have
some applications in the latter context, and introduces a framework for further advances.

We illustrate the power of these new tools in generalised versions of the settings in [Gou08,
TK10b]: in cases of vector valued heavy tailed observables for systems modelled by Young
towers, and in the presence of general clusters of extremal observations which get collapsed in
the same jump of the limiting Lévy process. The limits that we will consider have discontinuous
sample paths and therefore live in the space D of càdlàg functions, i.e., right continuous Rd-
valued functions with left limits defined on I. However, this space is not sufficiently rich
to keep a record of the fluctuations occurring during the clusters of high observations. The
height of the limiting jump accounts for the aggregate effect of all the cluster observations.
However, the oscillations observed during the cluster may exceed the height of the jump, for
example. In order to solve this loss of information, in [Whi02], Whitt proposed a new space
that he called E, which decorates each discontinuity of the limit process inD with an excursion
corresponding to a connected set describing the maximum and minimum fluctuations observed.
In fact, when d = 1, the excursion at the discontinuity time t∗ of the limiting process V (t) is
decorated with an interval bounded by the smallest and largest values achieved by the process
during the collapsed cluster, which must contain V (t∗−) and V (t∗), where V (t∗−) denotes the
lefthand limit of the càdlàg function V at t∗.

Nevertheless, most of the information during the cluster is lost and only the maximum os-
cillations are recorded in E, while the intermediate fluctuations are completely disregarded.
In [Whi02], Whitt also proposed the space F , which keeps track in particular of the ordering
in which points are visited within an excursion in E. However, the space F still disregards
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information because while it keeps track of all the changes of direction during the excursions,
it does not keep record of the intermediate jumps observed in the same direction. One of our
main goals is to consider a space where no information collapsed into a jump is lost. For that
purpose we introduce a new space that we will call F ′. We will endow it with a metric and
discuss some of its properties. Then we will use this space to study sums of heavy tailed ob-
servables, general extremal processes and records, for which we will obtain enriched functional
limit theorems in the setting of non-uniformly hyperbolic systems modelled by Young towers,
all of which will be carried out with very minimal loss of information.

Point processes have been used successfully to prove functional limit theorems in D ([Res87]).
Here, since we need to keep control of the information during the excursions, we will use a new
type of point processes introduced in [BPS18], where the authors considered point processes
in non-locally compact spaces, designed to maintain the ordering of the cluster observations
collapsed into the same instant of time, and proved their convergence, under some conditions,
for stationary jointly regularly varying sequences. In [BPS18], the authors then applied this
convergence of point processes to obtain convergence of sums of jointly regularly varying
sequences of random variables in the space E. In order, to prove convergence in F ′, we will
generalise their results to more general stationary processes and under weaker conditions, in
particular, under a much weaker mixing condition, which is essential to apply to processes
arising from dynamical systems. Yet, this generalisation may have an interest on its own, in
the more classical probabilistic setting.

A sketch of a reduced version of one of our main theorems (Theorem 2.9) is as follows.

Theorem. Let (X,T, µ) be a dynamical system as in Section 2.2 and φ : X → [−∞,∞] a
sufficiently regular observable observable with an α-heavy tail for 0 < α < 1, such that the
clustering behaviour of {φ > s} converges as s → ∞. Then there exists a scaling sequence
(an)n and V (t) ∈ F ′ such that the variable

Sn(t) =

bntc∑
i=1

φ ◦ T i

converges in distribution to V (t) in F ′, with excursions determined by the clustering behaviour.

There is also a related result for point processes. Both of these results extend beyond the
dynamical and one-dimensional observable settings, and also to α ∈ [1, 2).

The paper is organised as follows. In Section 2 we outline the theory from the point of view
of dynamical systems, though the theory extends beyond that: we give the relevant observ-
ables, focussing on the heavy tailed cases, and briefly describe some of the basic dynamical
systems models to which the theory applies. We also define out functional spaces, culminat-
ing in the new space F ′, and are then able to state our fist limit theorem on convergence
to Lévy processes. We then put the theory into the context of Extreme Value Theory and
show convergence to the relevant extremal process. This naturally leads to a theorem on the
convergence of record point processes.

In Section 3 we focus on the convergence of point processes for general stochastic processes
and rather general observables (not only heavy tailed). Conditions Дqn and Д′qn are given and
the appropriate sequence spaces to record our exceedances are defined. The tail process is then
defined which then leads to the definition of the piling process. With all of these conditions
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met and the piling process existing, we then prove complete convergence of the point process
to a Poisson point process. We also show the connection to our setting of jointly regularly
varying sequences.

In Section 4 we show how the results from the previous section can be applied in the dynamical
context and then prove the functional limit theorems. In the appendices we cover some of the
required background for the results here: Appendix A contains completely new theory for our
space F ′; Appendices B and C give some adaptations of classical theory for sequence spaces and
point processes; Appendix D gives some adaptations of relatively standard theory in Extreme
Value Theory to the context here; and Appendix E contains the remaining arguments to show
that the theory in this paper applies to the dynamical systems models claimed.

2. Enriched functional limit theorems for non-uniformly hyperbolic
dynamics

In this section we start by introducing the setting and in particular the new space F ′ and its
properties. Then we state the main results regarding the enriched functional limits for sums
of vector valued heavy tailed observables, extremal processes and record point processes. We
emphasise that the results in Section 3 hold well beyond the dynamical setting.

2.1. Dynamically defined stochastic processes. Let (X ,BX , µ, T ) be a discrete time dy-
namical system, where X is a compact manifold equipped with a norm ‖ · ‖, BX is its Borel
σ-algebra, T : X → X is a measurable map and µ is a T -invariant probability measure, i.e.,
µ(T−1(B)) = µ(B) for all B ∈ BX . Let Ψ : X → Rd be an observable (measurable) function
and define the stochastic process X0,X1, . . . given by

Xn = Ψ ◦ Tn, for every n ∈ N0. (2.1)

High values of ‖Ψ(·)‖ will correspond to entrances in a neighbourhood of a zero measure
maximal setM, which we express in the following way. LetM⊂ X be such that µ(M) = 0
and let g : [0,→ ∞) → R ∪ {+∞} be such that 0 is a global maximum, where we allow
g(0) = +∞, and g is a strictly decreasing bijection in a neighbourhood of 0. We assume that,
on a neighbourhood ofM,

‖Ψ(x)‖ = g(dist(x,M)), where dist(x,M) = inf{dist(x, ζ) : ζ ∈M}. (2.2)

where g has one of the three types of behaviour:

Type g1: there exists some strictly positive function1 h : W → R such that for all y ∈ R

lim
s→g1(0)

g−1
1 (s+ yh(s))

g−1
1 (s)

= e−y; (2.3)

Type g2: g2(0) = +∞ and there exists α > 0 such that for all y > 0

lim
s→+∞

g−1
2 (sy)

g−1
2 (s)

= y−α; (2.4)

1A possible choice for h is given in [LFF+16, Chapter 4.2.1].
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Type g3: g3(0) = D < +∞ and there exists γ > 0 such that for all y > 0

lim
s→0

g−1
3 (D − sy)

g−1
3 (D − s)

= yγ . (2.5)

Most of the results regarding hitting times and extreme values for dynamical systems were ob-
tained whenM is reduced to a single point ζ. Recent results have consideredM to be a count-
able set ([AFFR17]), submanifolds ([FGGV18, CHN19]) and fractal sets ([MP16, FFRS20]).
Our results can be applied to general maximal setsM and general Ψ, under the assumption
that the piling process is well defined, which will be verified and illustrated for the more com-
mon case whereM = {ζ}, for some hyperbolic point ζ ∈ X , and where Ψ, on neighbourhood
of ζ, can be written as

Ψ(x) = g(dist(x, ζ))
Φζ(x)

‖Φζ(x)‖
1W (x), (2.6)

where Φζ : V →W denotes a diffeomorphism, defined on an open ball, V , around ζ in TζX, the
tangent space at ζ, onto a neighbourhood,W , of ζ in X, such that Φζ(E

s,u∩V ) = W s,u(ζ)∩W .

Remark 2.1. If g is to type g2 (for example, g(x) = x−1/α), the measure is sufficiently regular
and the geometry of the maximal setM is simple (for example,M = {ζ}, for some ζ ∈ X ),
then the stochastic process X0,X1, . . . is jointly regularly varying.

2.2. Applications to specific systems. The theory developed in this paper applies to gen-
eral stochastic processes, but the applications we focus on are dynamical systems. In this
subsection we give some preliminary examples of such applications ranging from systems with
good exponential mixing properties to some with poor mixing behaviour, leaving further ap-
plications to future works. Since some aspects of the proofs of the facts used here require
the establishment of some new tools, we postpone these to Section E (see also the discussion
following Theorem 4.1).

2.2.1. Non-uniformly expanding systems.
Uniformly expanding systems. We first list some well-behaved dynamical systems which
are essentially uniformly expanding, though they need not have Markov, or compactness,
properties. More details about the required properties are at the beginning of Section 4.

• Uniformly expanding continuous maps of the interval/circle;
• Markov maps;
• Piecewise expanding maps of the interval with countably many branches such as Rych-
lik maps;
• Saussol’s class of higher dimensional expanding maps

Here we are always assuming that µ is an absolutely continuous (with respect to Lebesgue)
invariant probability measure or acip since these are a very natural class, though the theory
extends beyond these.

Non-trivial examples of observables on these systems to which we can apply the theory include
those maximised at a repelling periodic point, first studied in [FFT12], but there is huge scope
to study further clustering behaviour such as that shown in [AFFR16, AFFR17, FFRS20] for
example. We require that the density dµ

Leb , where Leb is Lebesgue, is bounded at the periodic
point so that the conformal properties of T there are reflected in the measure µ as well as
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Leb, but this is automatic in the Rychlik case. Note that in the periodic case qn can be taken
as q, the period of the point.

In the heavy-tail applications we will restrict ourselves to 0 < α < 1 for simplicity, but observe
that techniques to prove (2.21), required in the 1 ≤ α < 2 case, are provided in [TK10b]: these
immediately apply to some of the simpler cases above. Conditions (2.22) and (2.23) are easy
computations in the periodic case.

Finally for this introductory discussion on dynamical applications, we note that there is a
condition on (Qj)j in Theorem 2.11 which is easily satisfied in all the dynamical examples,
see Appendix E.

Remark 2.2. Usually in the context of extreme value theory inducing methods allow us to
handle a wider range of systems, those which induce to systems mentioned above. However,
the tools we develop here are more fine-tuned than previous ones and are not compatible with
inducing. One way to see this is to note that inducing introduces variable time scales, speeding
up different parts of the space at different rates. While the speeding up is asymptotically
uniform, the short-term non-uniformity does not work well with the way our point processes
record exceedances in blocks since the blocks have a fixed time scale.

Nevertheless there are direct methods of proof for some non-uniformly expanding systems, as
below.

Benedicks-Carleson quadratic maps. Here we provide a class of maps which are far from
uniformly expanding, indeed there are critical points. As in Remark 2.2 we cannot apply the
usual inducing techniques.

Here we set I = [−1, 1] and for a ∈ (0, 2] define fa : I → I by fa(x) = 1 − ax2. This map
satisfies the Benedicks-Carleson conditions (here a is close to 2) if there exists c, γ > 0 (c
should be close to log 2 and γ is small) such that

|Dfna (f(0))| ≥ ecn for n ∈ N0 and |fna (0)| ≥ e−γ
√
n for n ∈ N.

It is known that there is a positive Lebesgue measure set BC of a such that fa satisfies these
conditions.

When for definiteness we consider that our observable is maximised at a periodic point of fa,
we note that the fact that the density at our periodic point is bounded is more delicate than
above, but the existence of suitable periodic points for (a positive Lebesgue measure set of)
maps in BC is shown in [FFT13, Section 6].

Manneville-Pomeau maps. Our previous examples all have exponential decay of correla-
tions, but our final interval map example shows that this is not necessary. This is what is
often referred to as the Liverani-Saussol-Vaienti version of the Manneville-Pomeau map: for
γ ∈ (0, 1), define Tγ : [0, 1]→ [0, 1] by

Tγ(x) :=

{
x(1 + 2γxγ) if x ∈ [0, 1/2),

2x− 1 if x ∈ [1/2, 1].

This has an acip µ = µγ and this system does not satisfy decay of correlations against L1(µ),
indeed it has (sharp) polynomial decay of correlations for Hölder observables. To ensure the
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required conditions hold here we will assume γ ∈ (0, 0.289), see the adaptation of [FFTV16,
Section 4.2.2] in Section E, though we would expect them to hold for all γ ∈ (0, 1/2) at least.

2.2.2. Invertible hyperbolic systems. We also consider hyperbolic invertible systems consisting
of Anosov linear diffeomorphism, T : T2 → T2, defined on the flat torus T2 = R2/Z2. We can
associate T to a 2× 2 matrix, L, with integer entries, determinant 1, and without eigenvalues
of absolute value 1. As the determinant of L is equal to 1, the Riemannian structure induces
a Lebesgue measure on T2 which is invariant by T . These systems are Bernoulli and have
exponential decay of correlations with respect to Hölder observables.

2.3. The functional spaces. Let D = D([0, 1],Rd) be the space of càdlàg functions defined
on [0, 1]. One can define several metrics in D. The most usual is the so-called J1 Skorohod’s
metric, which generalises the uniform metric by allowing a small deformation of the time
scale. In this metric a jump in the limit function must be matched by a similar one in
the approximating functions. In order to establish limits with unmatched jumps, Skorohod
introduced the M1 and M2 topologies which use completed graphs of the functions. We will
use a metric motivated by M2, which considers the Hausdorff distance between compact sets.
We refer to [Whi02] for precise definitions and properties.

In order to keep some of the information collapsed in limit jumps, and to broaden the class of
convergent sequences, Whitt introduced the space E = E([0, 1],Rd) (see [Whi02, Sections 15.4
and 15.5]), as the space of excursion triples

(x, Sx, {I(s)}s∈Sx) ,

where x ∈ D, Sx is a countable set containing the discontinuities of x, denoted by disc(x),
i.e., disc(x) ⊂ Sx, and, for each s ∈ Sx, I(s) is a compact connected subset of Rd containing
at least x(s−) and x(s). We may identify each element of E with the set valued function

x̂(t) =

{
I(t) if t ∈ Sx

{x(t)} otherwise
, (2.7)

and its graph Γx̂ = {(t, z) ∈ [0, 1]×Rd : z ∈ x̂(t)}. Letting p` : Rd → R denote the projection
onto the `-th coordinate for ` = 1, . . . , d, we define x̂`(t) = p`(x̂(t)) and Γ`x̂ = {(t, z) ∈
[0, 1]× R : z ∈ x̂`(t)}.

We embed D into E, in the following way. For a, b ∈ Rd, we define the product segment

[[a, b]] := [a1, b1]× · · · × [ad, bd],

where the one dimensional segment [a`, b`] coincides with the interval2 [a` ∧ b`, a` ∨ b`]. If we
have a` = b`, then [a`, b`] = {a`} = {b`}. We identify x ∈ D with the element of E(

x, disc(x), {I(s)}s∈disc(x)

)
, where I(s) = [[x(s−), x(s)]].

We use the Hausdorff metric to define a metric on E. Namely, recall that for compact sets
A,B ⊂ Rd, the Hausdorff distance between A and B is given as

m(A,B) = max

{
sup
x∈A

{
inf
y∈B
‖x− y‖

}
, sup
y∈B

{
inf
x∈A
‖x− y‖

}}
.

2Recall the notation, used throughout this paper, x ∧ y = min{x, y} and x ∨ y = max{x, y}
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For A ⊂ Rd, let d(A) = supx,y∈A{‖x−y‖} be the diameter of A. In order to use the Hausdorff
metric, we assume that the elements of E satisfy the condition:

for all ε > 0, there exist finitely many s ∈ Sx such that d(I(s)) > ε. (2.8)

This guarantees that for each element of E, the associated graph Γx̂ is a compact set. This
way, we endow E with the Hausdorff metric simply by establishing that

mE(x̂, ŷ) = max
`=1,...,d

m(Γ`x̂,Γ
`
ŷ). (2.9)

Endowed with this metric E is separable but not complete. Alternatively, we can define the
stronger metric, called uniform metric given by

m∗E(x̂, ŷ) = max
`=1,...,d

sup
t∈[0,1]

m(x̂`(t), ŷ`(t)). (2.10)

When endowed with the metric m∗E , the space E is complete but not separable. We refer to
[Whi02] for further details about E and its properties.

The space E only records the maximal oscillations when information collapses into a jump
in the limit. In order to keep a closer track of the fluctuations during the excursions, Whitt
introduced the space F , in [Whi02, Section 15.6], which corresponds to the set of equivalence
classes of the set of all the parametric representations of the graphs Γx̂ of elements x̂ of E, by
setting that two parametrisations (continuous functions from [0, 1] into Γx̂) (r1, u1) and (r2, u2)
are equivalent if there exist continuous nondecreasing onto functions λ1, λ2 : [0, 1]→ [0, 1] such
that (r1, u1)◦λ1 = (r2, u2)◦λ2. This means that, in particular, the two functions u1, u2 in the
two equivalent parametric representations of Γx̂ visit all the points of Γx̂ in each I(s) the same
number of times and in the same order. However, note that F still misses some fluctuations
such as intermediate jumps in the same direction which give rise to a big jump in the limit.

2.3.1. The new functional space F ′ recording all fluctuations. In order to keep track of all the
fluctuations without missing information we introduce the space F ′ = F ′([0, 1]). We start by
considering D̃ = D̃([0, 1],Rd) = D([0, 1],Rd)/∼ where x ∼ y if there exists a reparametrisation
λ : [0, 1] → [0, 1], i.e., a continuous strictly increasing bijection such that x ◦ λ = y. Denote
the equivalence class of x by [x]. We define

dD̃([x], [y]) = inf
λ
‖x ◦ λ− y‖,

where λ is the set of continuous strictly increasing bijections of [0, 1] to itself (this could be
thought of as the induced metric from the J1 metric on D̃).

We will abuse notation within D̃ by writing x to refer to both a representative of its equivalence
class [x] and the equivalence class itself.

Now define
F ′ := {x = (x, Sx, {esx}s∈Sx)} ,

where x ∈ D([0, 1],Rd), Sx ⊂ [0, 1] is an at most countable set containing disc(x), the disconti-
nuities of x and esx ∈ D̃([0, 1],Rd) is the excursion at s ∈ Sx, which is such that esx(0) = x(s−)
and esx(1) = x(s).

We can embed D into F ′, by associating to x ∈ D([0, 1],Rd) the element

x =
(
x, disc(x), {esx}s∈disc(x)

)
, (2.11)
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where esx ∈ D̃([0, 1],Rd) is the equivalence class represented, for example, by

esx(t) = x(s−) + (x(s)− x(s−))1[1/2,1](t), t ∈ [0, 1].

We will project F ′ into Whitt’s space E and into D̃, which will give us a metric and a space
with more information than Whitt’s space F .

Let πE(x) = xE := (x, Sx, {I(s)}s∈Sx) where

I(s) =

[
inf
t∈[0,1]

es,1x (t), sup
t∈[0,1]

es,1x (t)

]
×· · ·×

[
inf
t∈[0,1]

es,dx (t), sup
t∈[0,1]

es,dx (t)

]
, with es,`x (t) = p`(e

s
x(t)).

We project F ′ into D̃ as follows. Suppose that Sx is countable and write S = {si}∞i=1, since
the finite case follows more straightforwardly. Let 0 = a1 < a2 < · · · < 1 be such that ai → 1
as i → ∞ (the choice of (an)n really is arbitrary). We insert the intervals [ai, ai+1] at the
points s ∈ Sx. This is a simple idea, but since S may be complicated, we need some notation.
Define for i ∈ N,

āi :=
∑
sj≤si

(aj+1 − aj), ci := si + āi − (ai+1 − ai), di := si + āi, t̄ := sup{āi : si < t}.

Thus [ci, di] is the interval corresponding to si and t̄ is the accumulated length of the intervals
inserted before t, so we can think of t being shunted to t + t̄. Note also that our time line
is now of length 2, so we will need to rescale back to a length 1 interval. We then define a
representative of the equivalence class π̃(x) by

xD̃(t) =

{
x(2t− t̄) if 2t /∈ ∪i[ci, di],
esix

(
2t−ci
di−ci

)
if 2t ∈ [ci, di].

(2.12)

Define
dF ′(x, y) = dE(πE(x), πE(y)) + dD̃(π̃(x), π̃(y)), (2.13)

where dE denotes either mE or m∗E defined in (2.9) and (2.10).

Note that we could also project into Whitt’s F space here (using πE , but with {esx}s∈Sx to give
the order of the parametrisation in I(s)), and that convergence in F ′ implies convergence in F .
In F ′ we keep the information of the displacement in Rd of all (including intermediate) jumps
in the discontinuities, while F only keeps the order and information on the ‘local range’, i.e.,
it only captures local extrema. To see this in a 1d example note that the excursions denoted

ex(t) =


0 if 0 ≤ t < 1

3 ,
1
2 if 1

3 ≤ t <
2
3 ,

1 if 2
3 ≤ t ≤ 1,

ey(t) =

{
0 if 0 ≤ t < 1

3 ,

1 if 1
3 ≤ t ≤ 1,

yield the same representations as part of F : namely the line [0, 1] with any parametrisation
which is an orientation preserving homeomorphism. However, as components of F ′ they are
distinct with dD̃(ex, ey) = 1

2 . Indeed, if x and y differ only by having a discontinuity s having
ex and ey as the corresponding excursion respectively, then dF ′(x, y) = 1

2 .

Remark 2.3. The definition of the space and topology can be generalised trivially to other
compact time domains such as [t1, t2], with 0 ≤ t1 < t2. In order to consider a notion
of convergence on non-compact domains such as F ′((0,∞),Rd), we say that xn → x, in
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j j + 1 j + 2 j + 3

Figure 2.1. A piece of Sn(t) (see (2.20)) in the Gouëzel example [Gou08]
where there is a close approach to zero at time 1 ≤ j ≤ n− 3.

s 0 1

Figure 2.2. A sequence of jumps as in the previous figure, after rescaling in
time and space, may converge to a part of (x, S, {es}s∈S) ∈ F ′. We sketch the
x part on the left and a representative of the corresponding es on the right (this
belongs to an equivalence class up to time rescaling). Clearly this convergence
cannot take place in J1, and, while convergence does hold in M1 or M2 (and
indeed in E and F ), the height of the individual (rather than cumulative)
jumps will not be recorded.

F ′((0,∞),Rd) if the same holds for the respective restrictions to F ′([t1, t2],Rd), for all 0 ≤
t1 < t2 such that t1, t2 /∈ Sx.

We illustrate schematic versions of a sequence of elements in F ′ in Figure 2.1 which converge
to the element of F ′ in Figure 2.2. The jumps stack up to one big jump, but the jump-
ing behaviour is recorded in F ′. Figures 2.3, 2.4 below show more complex behaviours in
simulations.

We discuss some properties such as completeness and separability of the space F ′ in Appen-
dix A.
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2.4. Rare events and point processes. Since [LWZ81, Dav83], it has been known that the
behaviour of the mean of heavy tailed processes is determined by the extremal observations.
Hence, as in the context of extremal processes and records, we are lead to the study of rare
events corresponding to the occurrence of abnormally large observations. In particular, this
means that we need to impose some regularity of the tails of the distributions.

2.4.1. Normalising threshold functions. We assume that X0,X1, . . . have proper tails, in the
sense that there exists a normalising sequence of threshold functions (un)n∈N : R+ → R+,
where R+ = (0,+∞), satisfying the following properties (see [Hsi87]):

(1) For each n, the function un is nonincreasing, left continuous and such that

lim
τ1→0,τ2→∞

P (un(τ2) < ‖X0‖ < un(τ1)) = 1;

(2) For each, τ ∈ R+,
lim
n→∞

nP (‖X0‖ > un(τ)) = τ. (2.14)

We observe that (2.14) requires that the average number of exceedances of un(τ), i.e., events
of the type ‖Xj‖ ≥ un(τ), for j = 0, . . . , n− 1, is asymptotically constant and equal to τ > 0,
which can be interpreted as the asymptotic frequency of exceedances. The nonincreasing
nature of un reflects the fact that the higher the frequency τ of observed exceedances, the
lower the corresponding threshold un(τ) should be.

For every z ∈ R+, we define

u−1
n (z) = sup{τ > 0: z ≤ un(τ)} (2.15)

Observe that for each value z in the range of the r.v. ‖X0‖, the function u−1
n returns the

asymptotic frequency τ = u−1
n (z) that corresponds to the average number of exceedances of a

threshold placed at the value z, among the n i.i.d. observations of the r.v. X0.

Also note that for all τ, s ∈ R+,

u−1
n (s) < τ if and only if s > un(τ). (2.16)

2.4.2. Point processes of rare events. Multidimensional point processes are a powerful tool to
record information regarding rare events (see for example [Pic71, Res87]), which can then be
used to study record times ([Res75, Res87]), extremal processes [Dwa64, Lam64, Pic71, Res75,
HT19], sums of heavy tailed random variables [Dav83, DH95, TK10b, TK10a, BKS12, BPS18].
In particular, they are very useful to keep track of the information within the clusters [Mor77,
Hsi87, DH95, Nov02, BKS12, BPS18, FFMa20, PS20]. More specifically, the Mori-Hsing
characterisation tells us that in nice situations the limiting process can essentially be described
as having two components: a Poisson process determining the occurrences of clusters and an
“orthogonal” point process describing the clustering structure. The description of the clustering
component can be accomplished in different ways. In [Nov02] a natural generalisation of a
compound Poisson point process is used. In [FFMa20], the authors use an outer measure to
describe the piling of observations at the base cluster points of the Poisson process, which
in the dynamical systems setting can be computed based on the action of the derivative of
the map generating the dynamics. In [BS09], the authors introduced the tail process, which
is a mechanism to describe the clusters and was subsequently used in [BKS12, BPS18], for
example.
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Here, we are going to use a description provided by the piling process, which is an adaptation
to a more general setting of the tail process introduced in [BS09]. We will connect this to the
outer measure of [FFMa20] and compute it in the context of dynamical systems.

Although we defer the formal definitions of point processes and point processes of rare events
designed to keep all clustering information to Section 3.4 and Appendix C, we give here a brief
description of the latter, which again has two components. The first is an underlying Poisson
process on R+

0 × R+
0 with intensity measure θLeb× Leb, which can be represented by

M =

∞∑
i=1

δ(Ti,Ui), where δx denotes the Dirac measure at x ∈ R+
0 × R+

0 ,

so that for any measurable disjoint sets A,A1, . . . , A` ⊂ R+
0 × R+

0 , we have that M(A) is
a Poisson distributed random variable of intensity θLeb × Leb(A) and M(A1), . . . ,M(A`)
are mutually independent. The parameter θ is defined formally in Section 3.3.2 and can be
thought of as the reciprocal of the average number of exceedances in a cluster. The second
component is the angular component of the spectral decomposition of the piling process,
which will be defined in Section 3.3.4. It consists of a bi-infinite sequence (Qj)j∈Z which
will decorate the second coordinate of each mass point of M and is such that ‖Qj‖ → ∞,
as |j| → ∞, minj∈Z ‖Qj‖ = 1. The sequences (Qi,j)i,∈N,j∈Z associated to each mass point
of M are mutually independent and also independent of the sequences (Ti)i and (Ui)i. The
distribution of each piling process, which corresponds to a sequence (UiQi,j)j∈Z, is designed
to capture the behaviour the observations within a cluster of exceedances, which was initiated
at time j = 0 and whose most severe exceedance has an asymptotic frequency given by Ui.

Remark 2.4. In order to have some intuition regarding the sequence (Qj)j∈Z, we mention
that in the case Ψ has the form (2.6), with M reduced to a repelling fixed point ζ where
the invariant density is sufficiently regular, then, in the non-invertible case, Q0 has a uniform
distribution on Sd−1, the unit sphere in Rd, and for all j ∈ N,

Qj = ‖(DTζ)j(Q0)‖d
(DTζ)

j(Q0)

‖(DTζ)j(Q0)‖
, (2.17)

where DTζ denotes the derivative of T at ζ and (DTζ)
j its j-fold product. For all negative j

we have Qj =∞ a.s.

2.5. Functional limit theorems for heavy tailed dynamical sums. Throughout this
section we assume that the process X0,X1, . . . is obtained from a system as described in (2.1)
and (2.2), where g is of type g2, which together with some regular behaviour of the invariant
measure µ in the vicinity of the maximal set M, guarantees that there exists a sequence of
positive real numbers (an)n∈N, such that

lim
n→∞

nP(‖X0‖ > yan) = y−α. (2.18)

Hence, taking τ = x−α and un(τ) = anτ
− 1
α , equation (2.14) holds.

We are also going to assume that the piling process given in Definition 3.8 exists and is
well defined, which in particular means that properties (1)–(4) given at the beginning of
Section 3.3.4 hold. Section 2.2 provides examples of systems satisfying all our requirements.

The Lévy-Itô representation gives a nice way to describe the Lévy process as a functional of
Poisson point process, whose intensity measure gives the Lévy measure that determines the
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process (see [Sat13]). In the case of an α-stable Lévy process, it is usually identified through
a limit of a Poisson integral of a Poisson point process Mα =

∑∞
i=1 δ(Ti,Pi) with intensity

measure Leb× να, where the Lévy measure να is such that να({x : ‖x‖ > y}) = y−α. Namely,
when there is no clustering, for example, the limiting Lévy process can be written as

V (t) = lim
ε→0

∑
Ti≤t

Pi1{‖Pi‖>ε} −
∫
ε<‖x‖≤1

x dνα(x)

 .

Hence, in this case, as further elaborated in Section 3.5, we consider a transformed version of
the general rare events point processes by the map

ξ :
(
Rd ∪ {∞}

)
\ {0} −→ Rd

x 7→

{
(‖x‖)−

1
α

x
‖x‖ , if x 6=∞

0, otherwise
, (2.19)

and by application of the continuous mapping theorem one obtains a limiting process, whose
Poisson component can be written as Mα =

∑∞
i=1 δ(Ti,Pi) =

∑∞
i=1 δ(Ti,U

−α
i ), with intensity

measure θLeb × να, with να(y) = d( − y−α), while the piling process is (Qj)j∈Z, with Qj =
ξ(Qj).

Consider the partial sum process in D([0, 1],Rd) defined by:

Sn(t) =

bntc−1∑
i=0

1

an
Xi − tcn, t ∈ [0, 1], (2.20)

where the sequence (cn)n∈N is such that cn = 0 if 0 < α < 1 and

cn =
n

an
E
(
X01‖X0‖≤an

)
, for 1 ≤ α < 2.

Our main goal in this section is to establish an invariance principle for Sn which keeps record
of all the fluctuations during a cluster of high values which are responsible for a jump of Sn.
As usual, for 1 ≤ α < 2, we need that the small contributions for the sum are close to the
respective expectation, namely, for all δ > 0

lim
ε→0

lim sup
n→∞

P

 max
1≤k≤n

∥∥∥∥∥∥
k∑
j=1

(
Xj1‖Xj‖≤εan

)
− E

(
Xj1‖Xj‖≤εan

)∥∥∥∥∥∥ ≥ δan
 = 0. (2.21)

In order to describe the limit, we assume the existence of the piling process, as in Definition 3.8.
For 1 < α < 2, we will also need to assume that the sequence (Qj)j∈Z, obtained from the
spectral decomposition of the piling process, satisfies the assumption

E

∑
j∈Z
‖Qj)‖

α <∞, (2.22)

which in the case α = 1 should be replaced by

E

∑
j∈Z
‖Qj‖ log

(
‖Qj‖−1

∑
i∈Z
‖Qj‖

) <∞. (2.23)
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We can now state our main theorem regarding the behaviour of sums of heavy tailed observ-
ables.

Theorem 2.5. Let (X ,BX , T, µ) be a dynamical system as described in Section 2.2. Let
X0,X1, . . . be obtained from such a system as described in (2.1) and (2.2), where g is of type
g2 and condition (2.18) holds. Assume also that the piling process given in Definition 3.8 is
well defined. Consider the continuous time process Sn given by (2.20). For 1 ≤ α < 2 assume
further that condition (2.21) holds and, for 1 < α < 2, assume also (2.22), while for α = 1
assume (2.23), instead. Then Sn converges in F ′ to V := (V, disc(V ), {esV }s∈disc(V )), where
V is an α-stable Lévy process on [0, 1] which can be written as

V (t) =
∑
Ti≤t

∑
j∈Z

U
− 1
α

i Qi,j ,

for 1 ≤ α < 2 and

V (t) = lim
ε→0

(∑
Ti≤t

∑
j∈Z

U9α
91

i Qi,j1{‖U9α91
i Qi,j‖>ε}

− tθ
∫ +∞

0
E

(
y
∑
j∈Z
Qj1{ε<y‖Qj‖≤1}

)
d(9y9α)

)
for 0 < α < 1; and the excursions can be represented by

esV (t) = V (T−i ) + U
− 1
α

i

∑
j≤btan(π(t− 1

2))c
Qi,j , t ∈ [0, 1],

where (Ti)i∈N, (Ui)i∈N are as described above (see also (3.33)), (Qi,j)i∈N,j∈Z is such that Qi,j =
ξ(Qi,j), where (Qi,j)i∈N,j∈Z are as in (3.23).

We illustrate the theorem in Figures 2.3 and 2.4. The latter blow-up shows how the stacking
of jumps can occur Sn, and the requirement for convergence in F ′ in the limit.

Remark 2.6. Recall that when Ψ is as in (2.6) and M is reduced to an hyperbolic periodic
point, the piling process is well defined and the (Qi,j)i∈N,j∈Z are as in Remark 2.4. Also note
that when M is reduced to a generic point, we have no clustering and then the result holds
with the trivial Qj =∞, for all j ∈ Z \ {0} and Q0 as before.

2.6. Enriched extremal process dynamics in the presence of clustering. Extremal
processes are a very useful tool to study the stochastic behaviour of maxima and records (see
[Res87]). We define the partial maxima associated to the sequence X0,X1, . . . by

Mn := max{‖X0‖, . . . , ‖Xn−1‖} =
n−1∨
i=0

‖Xi‖. (2.24)

Finding a distributional limit for Mn is one of the first goals in Extreme Value Theory.

Definition 2.7. We say that we have an Extreme Value Law (EVL) for Mn if there is a non-
degenerate d.f. H : R+

0 → [0, 1] with H(0) = 0 and, for every τ > 0, there exists a sequence
of thresholds un(τ), n = 1, 2, . . ., satisfying equation (2.14) and for which the following holds:

P(Mn ≤ un(τ))→ H̄(τ), as n→∞. (2.25)

where H̄(τ) := 1−H(τ) and the convergence is meant at the continuity points of H(τ).
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0.2 0.4 0.6 0.8 1.0

-4

-3

-2

-1

Figure 2.3. Plots of a finite sample simulation of Sn(t) with n = 5000, where
Xj = ψ ◦ T j(x), where T (x) = 3x mod 1, ψ(x) = |x − 1/8|−2 − |x − 3/8|−2.
The left plot includes a zoom at one of the jumps and the right plot is the
same simulation, but the completed graph version, to give a different view of
the jumps. Note that ζ = 1/8 is a periodic point of period 2 and T (ζ) = 3/8.
Here DTζ = DTT (ζ) = 3.

0.4095 0.4100 0.4105 0.4110

-4

-3

-2

-1

Figure 2.4. Blowup of the previous graph at the jump observed near 0.4:
asymptotically the four jumps seen here will happen instantaneously, necessi-
tating an appropriate space for convergence.

It turns out that the limit H allows us to describe the functional limit for associated extremal
processes.

In this context, we now consider the continuous time process {Zn(t) : 0 ≤ t ≤ 1} defined by

Zn(t) := u−1
n (Mbntc), t ∈ (0,∞) (2.26)

Recall that u−1
n (z) gives the asymptotic frequency of exceedances of a threshold placed at z

and therefore Zn is non-increasing.

For each n ≥ 1, Zn(t) is a random graph with values in D((0,∞),R)), which can be embedded
into F ′, as in (2.11). The process Zn will be shown to converge, in F ′, to the process Z, whose
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first component in D is ZH , which can be described by the finite dimensional distributions:

P(ZH(t1) ≥ y1, . . . , ZH(tk) ≥ yk)=H̄t1

(
k∨
i=1

{yi}

)
H̄t2−t1

(
k∨
i=2

{yi}

)
· · · H̄tk−tk−1(yk), (2.27)

with 0 ≤ t1 < t2 < · · · < tk ≤ 1. By the Kolmogorov extension theorem such a process is well
defined and we call it an extremal process, although, strictly speaking, this is a transformed
version of the original extremal processes studied by Resnick [Res87]. The relation between the
two is obtained through the connection between the levels un(τ) and the more classical linear
normalising sequences (an)n∈N ⊂ R+ and (bn)n∈N ⊂ R such that we can write un = y/an + bn
and

nP(X0 > un) = nP(an(X0 − bn) > y)→ τ

with τ = f(y) for some homeomorphism f , then, as in (2.24),

P(Mn ≤ un) = P(an(Mn − bn) ≤ y)→ G(y)

where G = H̄ ◦ f . Then, if Yn(t) = an(Mbntc+1 − bn) and YG denotes the respective extremal
process obtained in [Res87], we have that Zn(t) = f(Yn(t)) and ZH(t) = f(YG(t)).

Remark 2.8. Depending on the type of limit law that applies, f(y) is of one of the following
three types: f1(y) = e−y for y ∈ R, f2(y) = y−α for y > 0, and f3(y) = (−y)α for y ≤ 0.

Theorem 2.9. Let (X ,BX , T, µ) be a dynamical system as described in Section 2.2. Let
X0,X1, . . . be obtained from such a system as described in (2.1) and assume that the piling
process given in Definition 3.8 is well defined. Consider the continuous time process Zn defined
by (2.26). Then Zn converges in F ′ to (ZH , disc(ZH), {esZH}s∈disc(ZH)), where ZH is defined
as in (2.27), with H̄(τ) = e−θτ , and the excursions can be represented by

esZH (t) = min

{
ZH(s−), inf

j≤btan(π(t− 1
2))c

ZH(s) ·Qsj

}
, t ∈ [0, 1]

where each sequence (Qsj)j∈N is independent of ZH(s−) and with common distribution given
by (3.23). Moreover, ZH can be seen as a Markov jump process with

P(ZH(t+ s) ≥ y | ZH(s) = z) =

{
e−θty if y < z

0 if y ≥ z
, for t, s > 0.

The parameter of the exponential holding time in state z is θz and given that a jump is due
to occur the process jumps from z to [0, y) with probability

Π(z, [0, y)) =

{
y
z if y < z

1 if y ≥ z
.

Remark 2.10. Alternatively and similarly to extremal processes that can be described as a
projection into D of a point process (see [Res87, Equation (4.20)]), we can describe the limit of
Zn as the projection into F ′ of the point process N =

∑∞
i=1 δ(Ti,UiQ̃i)

, given in (3.33). Namely,
ZH(t) = inf{Ui : Ti ≤ t}, disc(ZH) = {Ti : : i ∈ N} and

eTiZH (t) = min

{
inf{Uj : Tj < Ti}, inf

j≤btan(π(t− 1
2))c

Ui ·Qi,j

}
, t ∈ [0, 1].
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2.7. Record point processes. The study of record times of observational data has important
applications in the study of natural phenomena. Consider the original sequences (Xn)n∈N0

and (Mn)n∈N given in (2.24), and let t1 = 0. Define the strictly increasing sequence (tk)k∈N:

tk := inf{j > tk−1 : ‖Xj‖ > Mj}. (2.28)

This sequence (tk)k corresponds to the record times associated to Mn, namely the times
where Mn jumps. In the presence of clustering, record times may collapse in the limit and it
is important to keep track of possible increments on the number of records occurring during
the clusters. Two possible approaches are to consider the enriched limits in F ′ of the extremal
processes ZH or simply to project directly from the point processes N , as done in [BPS18].
Since following the former approach, to be able to handle the possibility of having vanishing
jump points in the limit we would need to consider more restrictive subspaces to obtain
continuity and then apply the Continuous Mapping Theorem (CMT), we will use the latter
approach so that we can benefit from the work already carried in [BPS18] and reduce the
length of the exposition.

We follow [BPS18, Section 5] closely, although we make some adjustments due to the fact that
the spatial component of our point processes lives in l∞ instead of l0, see Section 3.3.3 for the
definitions of these sequence spaces as well as l̃∞. The main advantage here is that we obtain
the convergence of the record times point processes for stationary vector valued sequences
with much more general distributions rather than regularly varying sequences (or sequences
that could be monotonically transformed into regularly varying ones) as in [BPS18].

In order to count the number of records during the clusters we define, for y ≥ 0 and x =
(xj)j ∈ l∞,

Rx(y) =
∑
j∈Z

1{‖xj‖<(y∧infi<j ‖xi‖)},

which gives the number of record asymptotic frequencies corresponding to the smallest observa-
tions in x that have beaten the frequency y, which must be finite because lim|j|→∞ ‖xj‖ =∞.
For γ =

∑∞
i=1 δ(ti,x̃i) ∈ N

#

R+
0 ×l̃∞\{∞̃}

, let h(γ) ∈ D((0,∞),R) be defined as in (4.1) and define

the record point process in N#
(0,+∞) by

Rγ =
∑
i∈N

δtiR
xi(h(γ)(t−i )), where xi ∈ l∞ is any chosen representative of x̃i.

In order to count the number of records at finite time we consider the empirical process:

N ′′n :=
∞∑
i=0

δ( i
n
,u−1
n (‖Xi‖)

Xi
‖Xi‖

),
which we consider as defined in N#

R+
0 ×l̃∞\{∞̃}

by embedding the second coordinate in Rd into
l∞ by adding a sequence of ∞ before and after that entrance as in (3.19).

Note that RN ′′n indeed counts the number of records of the process X0,X1, . . ., namely,

RN ′′n =
∞∑
i=0

δ i
n
1{‖Xi‖>Mi}.
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Theorem 2.11. Let (X ,BX , T, µ) be a dynamical system as described in Section 2.2. Let
X0,X1, . . . be obtained from such a system as described in (2.1) and assume that the piling pro-
cess given in Definition 3.8 is well defined and that P(all finite Qj’s are mutually different) =

1 . Then RN ′′n converges weakly to RN , in N#
(0,+∞). The limiting process is a compound Poisson

process which can be represented as

RN =
∑
i∈Z

δτiκi ,

where
∑

i∈Z δτi is a Poisson point process on (0,∞) with intensity measure x−1 dx and (κi)i
is a sequence of i.i.d. random variables independent of it with the same distribution as the
integer valued random variable RQ(U−1) where U is a uniformly distributed random variable
independent of Q = (Qj)j.

Remark 2.12. In the periodic point case, condition P(all finite Qj ’s are mutually different) =
1. is trivially satisfied.

3. General complete convergence of multi-dimensional cluster point
processes

In this section we present our technical tools and various results in the context of general
stochastic processes: the shift σ marries this with a dynamical point of view, but the work
here holds in wide generality.

Let V = Rd, for some d ∈ N, where we consider a norm which we denote by ‖ · ‖. For
definiteness, we may consider the usual Euclidean norm. We will be considering the spaces of
one-sided and two-sided V-valued sequences, which we will denote, respectively, by VN0 and VZ,
where we consider the one-sided and two-sided shift operators defined by σ : VN0,Z → VN0,Z,
where

σ((x)i) = ((x)i+1). (3.1)

Consider a stationary sequence of random vectors X0,X1, . . ., taking values on V = Rd,
which we will identify with the respective coordinate-variable process on (VN0 ,BN0 ,P), given
by Kolmogorov’s existence theorem, where BN0 is the σ-field generated by the coordinate
functions Zn : VN0 → V, with Zn(x0, x1, . . .) = xn, for n ∈ N0.

Note that, under these identifications, we can write:

Zi−1 ◦ σ = Zi, for all i ∈ N.

Since, we assume that the process is stationary, then P is σ-invariant. Note that Zi = Z0 ◦σi,
for all i ∈ N0, where σi denotes the i-fold composition of σ, with the convention that σ0

denotes the identity map on VN0,Z.

In what follows, for every A ∈ BN0,Z, we denote the complement of A as Ac := VN0,Z \A.

3.1. Identifying clusters. Our goal is to study the impact of clustering on the convergence
of general multidimensional point processes. As mentioned earlier, information regarding the
observations within the same cluster gets collapsed at the same time point, which makes it
hard to recover it from the limiting process. In order to keep track of that information, we
need to start by identifying clusters.
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There are two main approaches to identify clusters, which are commonly referred to as declus-
tering procedures. One is the blocking method, which involves dividing observations into
blocks and stipulating that all abnormal observations (typically with very high norm) within
one such block belong to the same cluster. The second is the runs declustering procedure,
which determines that a cluster ends when a run of consecutive non-abnormal observations oc-
curs. Here we will impose a condition on the dependence structure of the stochastic processes,
in which case both procedures are essentially equivalent.

We start with the blocking procedure, which, in fact, serves two purposes. Namely, not only
will it separate clusters, it will also introduce time gaps between the blocks in order to restore
some independence between them. The size of the blocks must be sensitively tuned so that
the blocks are neither too long so that they do not separate clusters, nor too small so that
they do not split clusters apart. The same applies to time gaps between the blocks, which are
created by disregarding observations. Hence, one must not disregard too much information,
but on the other hand the time gap must be sufficiently large in order to create sufficient loss
of memory. Following the classical scheme [LLR83], considering a finite sample of size n, we
split the data into kn ∈ N blocks of size rn := bn/knc and take time gaps of size tn ∈ N. This
way, we define sequences (kn)n∈N, (rn)n∈N, (tn)n∈N, which we assume to be such that

kn, rn, tn −−−→
n→∞

∞ and kntn = o(n). (3.2)

Regarding the runs declustering, for a finite sample of size n, we set the run length qn ∈ N
with the aim that all abnormal observations occurring within a time difference of at most qn
units between each other belong to the same cluster. The sequence (qn)n∈N must be chosen
so that

qn = o(rn), (3.3)

and also so that it satisfies conditions Дqn , Д′qn , below. Note that qn = q for all n ∈ N and
some q ∈ N is a possibility here.

3.2. Dependence structure. In order to prove the main convergence results we need to
introduce some conditions on the dependence structure of the stationary processes and there-
fore introduce the the following objects. We use follow more or less the notation used in
[FFMa18, FFMa20].

Let A ∈ BN0,Z be an event, let J be an interval contained in [0,∞). We define

WJ(A) :=
⋂

i∈J∩N0

σ−i(Ac), W c
J (A) := (WJ(A))c =

⋃
i∈J∩N0

σ−i(A). (3.4)

Let i, j ∈ N and set

Wj(A) := W[0,j)(A), Wi,j(A) := W[i,j)(A), when i ≤ j − 1, Wi,j(A) := VN0,Z when i ≥ j.

Moreover, W c
j (A) = (Wj(A))c and W c

i,j(A) = (Wi,j(A))c .

For the event A ∈ BN0,Z and j ∈ N,

A(j) := A ∩ σ−1(Ac) ∩ · · · ∩ σ−j(Ac), (3.5)

and for j = 0 we simply define A(0) := A.
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In what follows, for some a > 0, y ∈ Rd and a set A ⊂ Rd, we set aA = {ax : x ∈ A} and
A+ y = {x+ y : x ∈ A}. We define the class of sets

F =
{
{(xj)j ∈ VN0,Z : xj ∈ Hj , j = 0, . . . ,m} : Hj ∈ BV , j = 0, . . . ,m, m ∈ N

}
, (3.6)

where BV is the Borel σ-algebra of V. Note that F is a field.

For each ` = 1, . . . ,m ∈ N suppose

A` ∈ F and J` = [a`, b`), (3.7)

where 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ am < bm ≤ 1. Then for each n ∈ N define

J̃kn,` := knJ`, Jn,` :=
[
(dkna`e − 1)rn, (bknb`c+ 1)rn

)
, (3.8)

An,` =

{(
u−1
n (‖Xj‖)

Xj

‖Xj‖

)
j

∈ VN0 :

(
u−1
n (‖Xj‖)

Xj

‖Xj‖

)
j

∈ A`

}
, (3.9)

where un is defined as in (2.14), kn is as in (3.2). We discuss this normalisation further in
(3.13) and (3.14).

We introduce a mixing condition which is specially designed for the application to the dynam-
ical setting.

Condition (Дqn). We say that Дqn holds for the sequence X0,X1, . . . if there exist sequences
(kn)n∈N, (rn)n∈N, (tn)n∈N and (qn)n∈N satisfying (3.2) and (3.3), such that for everym, t, n ∈ N
and every J` and A`, with ` = 1, . . . ,m, chosen as in (3.7), we have∣∣∣∣∣P

(
A

(qn)
n,` ∩

m⋂
i=`

WJn,i

(
A

(qn)
n,i

))
− P

(
A

(qn)
n,`

)
P

(
m⋂
i=`

WJn,i

(
A

(qn)
n,i

))∣∣∣∣∣ ≤ γ(n, t), (3.10)

where min{Jn,` ∩ N0} ≥ t and γ(n, t) is decreasing in t for each n and limn→∞ nγ(n, tn) = 0,

where A(qn)
n,` is given by (3.9) and (3.5).

This mixing condition is much milder than similar conditions used in the literature and is
particularly suited for applications to dynamical systems, since it is easily verified for systems
with sufficiently fast decay of correlations, see for example the discussion in Section 2.2.

Condition (Д′qn). We say that Д′qn holds for the sequence X0,X1,X2, . . . if there exist se-
quences (kn)n∈N, (rn)n∈N, (tn)n∈N and (qn)n∈N satisfying (3.2) and (3.3), such that for every
A1 ∈ F , we have

lim
n→∞

nP
(
A

(qn)
n,1 ∩W c

[qn+1,rn) (An,1)
)

= 0,

where A(qn)
n,1 is given by (3.9) and (3.5).

Remark 3.1. Condition Д′qn forbids the appearance of new abnormal observations (the occur-
rence of An,`), within the same block, once a run of qn consecutive non-abnormal observations
has been realised. This means that Д′qn establishes a connection between the two declustering
procedures and, in particular, requires that no more than one cluster should occur within one
block.

Remark 3.2. Suppose (qn)n∈N and (q̃n)n∈N are two sequences satisfying (3.3) and qn ≤ q̃n,
for all n ∈ N. Then Д′qn implies Д′q̃n . As in Section 2.2, for nice dynamical systems when
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clustering is created by a periodic point of prime period q, then condition Д′q holds, in the
sense that qn = q, for all n.

Next we state a stronger version of Д′qn , which, in some cases may be easier to check. We set

U(τ) =
{

(xj)j ∈ VN0,Z : x0 ∈ B(0, τ)
}
∈ F , (3.11)

where, for x ∈ V and ε > 0, we denote by B(x, ε),the ball centred at x of radius ε. Then,
following (3.9) and (3.5), we define:

Un(τ) = {‖X0‖ > un(τ)}

U (qn)
n (τ) = {‖X0‖ > un(τ), ‖X1‖ ≤ un(τ), . . . , ‖Xqn‖ ≤ un(τ)}.

Condition (Д̃′qn). We say that Д̃′qn holds for the sequence X0,X1,X2, . . . if there exist se-
quences (kn)n∈N, (rn)n∈N, (tn)n∈N and (qn)n∈N satisfying (3.2) and (3.3), such that for every
τ > 0, we have

lim
n→∞

nP
(
Un(τ) ∩W c

[qn+1,rn) (Un(τ))
)

= 0. (3.12)

For A`, as in (3.7), let τ∗ > sup{‖x‖ : x ∈ H0}. Then, by (2.16), we have∥∥∥∥u−1
n (‖X0‖)

X0

‖X0‖

∥∥∥∥ < τ∗ ⇔ ‖X0‖ > un(τ∗).

Therefore, it is clear that An,` ⊂ Un(τ∗), so if Д̃′qn holds then so does Д′qn .

Remark 3.3. Condition Д̃′qn is already weaker than [BPS18, Assumption 1.1], which had been
used in previous papers (see, for example, [DH95, Equation (2.8)], [Seg05, Equation (3)],
[BS09, Condition 4.1], [BKS12, Condition 2.1]) and was introduced in [Smi92]. We also
remark that all these conditions allow for the appearance of clustering which already makes
them weaker than conditions D′ from [Dav83] or LD(φ0) from [TK10a], which imply Д′qn with
qn = 1 for all n ∈ N.

3.3. Bookkeeping of clusters. In this section, we introduce a device called the piling process,
which is designed to keep track of the clustering oscillations. It is an adaptation of the tail
process, introduced in [BS09], to a more general setting. In [BS09] and subsequent papers (for
example, [BKS12, BPS18]), the tail process was always defined under the assumption that
the original process X0,X1, . . . is jointly regularly varying (see Definition 3.19), which is not
natural to assume a priori in the dynamical systems setting. This assumption (jointly regularly
variation) together with an assumption on the dependence structure stronger than Д̃′qn ([BS09,
Condition 4.1]) allowed the authors there to prove the existence of the tail process and several
very useful properties about it. Motivated by the applications to dynamical systems, here, we
will work in a more general setting (without assuming, a priori, jointly regular variation) and
since Д′qn is even weaker than Д̃′qn , some of the properties of the tail process will be required
as adapted assumptions in the definition of the piling process. One of the advantages is that
we obtain very general enriched functional limits for extremal processes and record point
processes, for example, without assuming regularly varying tails and much less the restrictive
structure imposed by jointly regular variation.
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3.3.1. The normalisation of the blocks. We recall that under assumption Д′qn the information
regarding to the structure of the clusters is kept in each block of size rn, which we are going
to normalise in the following way, by defining for each i < j ∈ {0, . . . , n}

Xi,jn =

(
u−1
n (‖Xi‖)

Xi

‖Xi‖
, . . . , u−1

n (‖Xj−1‖)
Xj−1

‖Xj−1‖

)
, Xn,i := X(i−1)rn,irn

n (3.13)

so that Xn,i denotes the i-th normalised block. We also use the notation Xjn = Xj,j+1
n , for all

j = 0, . . . , n.

Note that the normalisation used is such that the norm of each normalised variable in each
block is equal to the asymptotic frequency τ = u−1

n (‖Xj‖) corresponding to the mean number
of exceedances of a threshold placed at the value ‖Xj‖, among the first n observations of the
process.

In particular, observe that by (2.16), for all τ > 0, we have∥∥Xjn∥∥ =

∥∥∥∥u−1
n (‖Xj‖)

Xj

‖Xj‖

∥∥∥∥ < τ ⇔ u−1
n (‖Xj‖) < τ ⇔ ‖Xj‖ > un(τ). (3.14)

3.3.2. The Extremal Index. Before we characterise the piling process, we define the Extremal
Index (EI), denoted by θ ∈ [0, 1], which was formally introduced by Leadbetter in [Lea83] and
measures the degree of clustering of exceedances. When θ = 1 we have no clustering and a
small θ means intense clustering. A common interpretation for the EI is that it is reciprocal of
the average cluster size (see [AFF20]). We define the EI following O’Brien’s formula ([O’B87])
and assume that, for all τ > 0, we have

θ = lim
n→∞

P(U
(qn)
n (τ))

P(Un(τ))
. (3.15)

3.3.3. Underlying spaces. Let V̇ = Rd \ {0} =
(
Rd ∪ {∞}

)
\ {0}, V = Rd and define

l∞ =

{
x = (xj)j ∈ V̇Z : lim

|j|→∞
‖xj‖ =∞

}
and l0 =

{
x = (xj)j ∈ VZ : lim

|j|→∞
‖xj‖ = 0

}
.

The piling process will be defined to take values in l∞, while the tail process lives in l0. The
space l∞ will borrow the metric structure of l0 by means of the map P : l∞ −→ l0 given by
P ((xj)j) = (p(xj))j , where

p : V̇ −→ V

x 7→

{
x
‖x‖2 , if x 6=∞
0, otherwise

.

Lemma 3.4. The map P is invertible.

Proof. By definition of P , we only need to show that p is invertible. First note that p(x) = 0

if and only if x =∞. Let x, y ∈ V̇ \ {∞}. Then p(x) = p(y) implies that

x =
‖x‖2

‖y‖2
y. (3.16)
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Let c = ‖x‖2
‖y‖2 . Then x = cy which means that ‖x‖ = c‖y‖. Substituting back in (3.16) we

obtain x = c2y. Hence, we must have cy = c2y, which implies that c = 1 and, therefore,
x = y. Hence P is one-to-one.

To see that P is onto, we let y ∈ l0 and show that there exists x ∈ l∞ such that P (x) = y.
For all the j ∈ Z such that yj = 0, we set xj = ∞. For all the other j ∈ Z, we require
xj/‖xj‖2 = yj , which implies that ‖yj‖ = 1/‖xj‖. But then, xj = ‖xj‖2yj = yj/‖yj‖2, which
means that by setting xj = p(yj), for all such j ∈ Z, we have defined the desired x ∈ l∞. �

As in [BPS18], in l0, we consider the supremum norm given by

‖x‖∞ = sup
j∈Z
‖xj‖,

and the complete metric defined on l0 \ {0}, where 0 = (0)j ,

d′(x,y) = (‖x− y‖∞ ∧ 1) ∨
∣∣∣∣ 1

‖x‖∞
− 1

‖y‖∞

∣∣∣∣ . (3.17)

Now, we consider the metric d defined on l∞ \ {(∞)j} given by

d(x,y) = d′(P (x), P (y)). (3.18)

Recall that l0 \{0} equipped with the metric d′ is a complete separable metric space. Since P
is invertible and componentwise continuous, one can easily show that l∞ \ {(∞)j} equipped
with the metric d is a complete separable metric space.

Note that we can embed ∪n∈NV̇n (∪n∈NVn) into l∞ (l0) simply by adding a sequence of ∞
(0) before and after the n entrances of any element of V̇n (Vn). For example, Xi,jn can be seen
as an element of l∞ by identifying it with(

. . . ,∞,∞, u−1
n (‖Xi‖)

Xi

‖Xi‖
, . . . , u−1

n (‖Xj−1‖)
Xj−1

‖Xj−1‖
,∞,∞, . . .

)
. (3.19)

We define the quotient spaces l̃∞ = l∞/∼ and l̃0 = l0/∼, where ∼ is the equivalence relation
defined on both l∞ and l0 by x ∼ y if and only if there exists k ∈ Z such that σk(x) = y,
where σ is the shift operator defined in (3.1). Also let π̃ denote the natural projection from
l∞ (l0) to l̃∞ (l̃0), which assigns to each element x of l∞ (l0) the corresponding equivalence
class π̃(x) = x̃ in l̃∞ (l̃0).

Observe that, since P is invertible, we may define P̃ : l̃∞ → l̃0 so that P̃ (π̃(x)) = π̃(P (x)).

Consider the metric d̃′ in l̃0 \ {0̃} given by

d̃′(x̃, ỹ) = inf{d′(x′,y′) : x′ ∈ π−1(x̃), y′ ∈ π−1(ỹ)} = inf{d′(σk(x), σm(y)) : k,m ∈ Z}.
(3.20)

This metric makes l̃0\{0̃} a complete separable metric space. (See Lemma 2.1 and Lemma 6.1
of [BPS18]). Accordingly, on l̃∞ \ {∞̃}, where ∞̃ = (∞)j , we define the metric

d̃(x̃, ỹ) = d̃′(P̃ (x̃), P̃ (ỹ)),

which also gives a complete separable metric space.
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Remark 3.5. The choice of the metric implies that a set A ⊂ l̃∞ \ {∞̃} is bounded if and
only if there exists ε > 0, such that for all x̃ ∈ A we have ‖P̃ (x̃)‖∞ > ε or, equivalently, that
infj∈Z ‖xj‖ < 1/ε.

For A ∈ F , as in (3.6), we define

Ã = {x̃ ∈ l̃∞ : π̃−1(x̃) ∩A 6= ∅}; J̃ = {Ã : A ∈ F}. (3.21)

Using that F is a field, one can show that the class of subsets J̃ is closed for unions. Indeed,
this follows easily by observing that

Ã ∪ B̃ = {x̃ ∈ l̃∞ : π̃−1(x̃) ∩A 6= ∅ or π̃−1(x̃) ∩B 6= ∅} = {x̃ ∈ l̃∞ : π̃−1(x̃) ∩ (A ∪B) 6= ∅}.
Let R̃ denote the class of subsets of l̃∞, l̃0 corresponding to the ring generated by J̃ , which
is actually a field because by definition of F , we have that l∞, l0 ⊂ F .

For A ∈ F , let

A = {x ∈ l∞ : π̃(x) ∈ Ã} =

x ∈ l∞, l0 : x ∈
⋃
j∈Z

σ−j(A)

 , (3.22)

J = {A : A ∈ F} and R be the ring generated by J .

If we start with some A` ∈ F here, we correspondingly write A`. Note that σ−1(A) = A,
which means that both J and R are σ-invariant classes of subsets of l∞, l0. Also observe
that R = π̃−1(R̃) and J = π̃−1(J̃ ), which is also closed for unions.

3.3.4. The piling process. We can now define the piling process, which presupposes the exis-
tence of a process (Yj)j∈Z ∈ l∞ satisfying the following assumptions:

(1) L
(

1
τX

rn+s,rn+t
n

∣∣∣ ‖Xrn‖ > un(τ)
)
−−−→
n→∞

L ((Yj)j=s,...,t) , for all s < t ∈ Z and all
τ > 0;

(2) the process (Θj)j∈Z given by Θj =
Yj
‖Y0‖ is independent of ‖Y0‖;

(3) lim|j|→∞ ‖Yj‖ =∞ a.s.;
(4) P (infj≤−1 ‖Yj‖ ≥ 1) > 0.

Remark 3.6. In the setting of a jointly regularly varying sequence (Xj)j∈Z, the process (Yj)j∈Z
defined here (which lives in l∞) is a transformed version of the tail process introduced in [BS09],
which takes values in l0 and was used later in [BKS12, BPS18], for example. Lemma 3.9 is
one reason we choose to base our piling process in l∞. Observe that joint regular variation of
(Xj)j∈Z implies the existence of the sequence (Yj)j∈Z assumed in (1) (see [BS09, Theorem 2.1])
and also the independence of the respective polar decomposition assumed in (2) (see [BS09,
Theorem 3.1]).

Remark 3.7. If, instead of Д′qn , we assume the much stronger conditions considered in [BPS18,
Assumption 1.1] and other previous works, going back to [Smi92], one can show that both (3)
and (4) hold. See [BS09, Proposition 4.2].

Definition 3.8. Assuming the existence of a sequence (Yj)j∈Z satisfying conditions (1)–(4),
we define the piling process (Zj)j∈Z as a sequence of random vectors satisfying

L ((Zj)j∈Z) = L
(

(Yj)j∈Z

∣∣∣∣ inf
j≤−1

‖Yj‖ ≥ 1

)
.
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We consider a polar decomposition of the piling process by defining the random variable LZ
and the process (Qj)j∈Z by

LZ = inf
j∈Z
‖Zj‖ Qj =

Zj
LZ

. (3.23)

We carry this polar decomposition to l̃∞ by letting S = {x̃ ∈ l̃∞ : ‖P̃ (x̃)‖∞ = 1} and defining
the map

ψ : l̃∞ \ {∞̃} −→ R+ × S

x̃ 7→
(

1

‖P̃ (x̃)‖∞
,

x̃

(‖P̃ (x̃)‖∞)−1

)
. (3.24)

We define Q̃ := π̃((Qj)j∈Z) and observe that ψ(π̃((Zj)j∈Z)) = (LZ , Q̃).

In order to understand how the piling process contains the details of the cluster structure, we
start by discussing some properties of the objects just introduced.

Observe that by (3.14),
∥∥∥ 1
τX

rn+j
n

∥∥∥ < 1⇔ ‖Xrn+j‖ > un(τ), which, in particular, implies that
‖Y0‖ < 1 a.s. Hence, an exceedance of un(τ) at time rn + j, given that such an exceedance
occurred at time rn, is associated to the event ‖Yj‖ < 1. Therefore, loosely speaking, the
sequence (Yj)j∈Z keeps the information about what happens around the time of an abnormal
observation corresponding to an exceedance of an high threshold. Note that, in this case,
we just know that an exceedance detected by ‖Y0‖ < 1 has occurred but we do not know
where the corresponding cluster was initiated. On the other hand, the piling process (Zj)j∈Z
keeps the information around the time of an abnormal observation, given that this exceedance,
associated with ‖Y0‖ < 1, actually initiated a cluster because infj≤−1 ‖Yj‖ ≥ 1 has occurred
and therefore we are certain that such exceedance does not belong to a cluster initiated earlier.

Note that due to assumption (3) both (Yj)j∈Z and the piling process (Zj)j∈Z take values in
l∞.

3.3.5. Properties of the piling process. As noted in Remark 3.6 the following lemma is a nice
consequence for ‖Y0‖ of our piling process being based in l∞.

Lemma 3.9. The random variable ‖Y0‖ is uniformly distributed.

Proof. Using stationarity (2.14) and (2.16), it follows that for all v ∈ [0, 1],

P(‖Y0‖ < v) = lim
n→∞

P
(∥∥∥∥u−1

n (‖Xrn‖)
τ

Xrn

‖Xrn‖

∥∥∥∥ < v

∣∣∣∣ ‖Xrn‖ > un(τ)

)
= lim

n→∞
P (‖Xrn‖ > un(τv) | ‖Xrn‖ > un(τ)) = lim

n→∞

nP (‖X0‖ > un(τv))

nP(‖X0‖ > un(τ))
=
τv

τ
= v.

�

Next we show a relation that will provide a connection between the piling process and the
outer measure used in [FFMa20]: this describes clustering by splitting the events into annuli
of different cluster lengths.
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Proposition 3.10. Let A1 ∈ F . Under Д′qn,

lim
n→∞

∣∣∣knP(Xn,1 ∈ A1)− nP(A
(qn)
n,1 )

∣∣∣ = lim
n→∞

∣∣∣knP (W c
rn(An,1)

)
− nP(A

(qn)
n,1 )

∣∣∣ = 0,

where An,1 is defined in (3.9) and A1 is from (3.22) applied to A1.

Proof. We start by estimating P(Xn,1 ∈ A1) = P(W c
rn(An,1)), which we do by decomposing

W c
rn(An,1) according to the last occurrence of event An,1. Namely,

P(W c
rn(An,1)) =

rn−1∑
j=0

P(σ−j(An,1))−
rn−1∑
j=0

P(σ−j(An,1),W c
j+1,rn(An,1))).

It follows that∣∣∣∣∣P(W c
rn(An,1))−

rn−qn−2∑
j=0

P(σ−j(An,1))−
rn−qn−2∑
j=0

P(σ−j(An,1),W c
j+1,rn(An,1)))

∣∣∣∣∣
≤

rn−1∑
j=rn−qn−1

P(σ−j(An,1),Wj+1,rn(An,1))) ≤ (qn + 1)P(An,1) (3.25)

Using stationarity,
rn−qn−2∑
j=0

P(σ−j(An,1),W c
j+1,rn(An,1)) =

rn∑
s=qn+2

P(An,1,W
c

1,s(An,1)).

For s ≥ qn + 2,

P(An,1,W
c

1,s(An,1))− P(An,1,W
c

1,qn+1(An,1)) = P(A
(qn)
n,1 ,W

c
qn+1,s(An,1))

and therefore∣∣∣∣∣
rn∑

s=qn+2

P(An,1,W
c

1,s(An,1))−
rn∑

s=qn+2

P(An,1,W
c

1,qn+1(An,1))

∣∣∣∣∣ ≤
rn∑

s=qn+2

P(A
(qn)
n,1 ,W

c
qn+1,s(An,1))

≤ rnP(A
(qn)
n,1 ,W

c
qn+1,rn(An,1)). (3.26)

Combining (3.25) and (3.26) and using stationarity, we obtain∣∣∣∣∣P(W c
rn(An,1))−

 rn∑
s=qn+2

P(An,1)−
rn∑

s=qn+2

P(An,1,W
c

1,qn+1(An,1))

∣∣∣∣∣
≤ (qn + 1)P(An,1) + rnP(A

(qn)
n,1 ,W

c
qn+1,rn(An,1))

Noting that the term between big brackets is equal to (rn − qn + 1)P(An,1,W1,qn+1(An,1)) =

(rn − qn + 1)P(A
(qn)
n,1 ) then∣∣∣∣∣P(W c

rn(An,1))− rnP(A
(qn)
n,1 )

∣∣∣∣∣ ≤ 2qnP(An,1) + rnP(A
(qn)
n,1 ,W

c
qn+1,rn(An,1)).

Multiplying by kn we obtain∣∣∣knP(Xn,1 ∈ A1)− nP(A
(qn)
n,1 )

∣∣∣ ≤ 2qnknP(A
(qn)
n,1 ) + nP(A

(qn)
n,1 ,W

c
qn+1,rn(An,1)).
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The second term on the right vanishes by Д′qn . Since by definition of An,1, we have that
An,1 ⊂ {‖X0‖ > un(h0)}, where h0 = inf{‖x‖ : x ∈ H0} ≥ 0, then nP(An,1) ≤ nP(‖X0‖ >
un(h0)) −−−→

n→∞
h0. Recalling that qn = o(rn), it follows that the first term on right also

vanishes. �

Corollary 3.11. Under Д′qn,

lim
n→∞

knP(W c
rn(Un(τ)) = θτ and lim

n→∞

P(W c
rn(Un(τ))

rnP(Un(τ))
= θ.

Proof. By Proposition 3.10, (2.14) and (3.15),

lim
n→∞

knP(W c
rn(Un(τ)) = lim

n→∞
nP(U qnn (τ)) = lim

n→∞
nP(Un(τ))

P(U qnn (τ))

P(Un(τ))
= τθ.

It follows that

lim
n→∞

P(W c
rn(Un(τ))

rnP(Un(τ))
=
knP(W c

rn(Un(τ))

nP(Un(τ))
=
τθ

τ
= θ.

�

Lemma 3.12. Recalling the definition of the EI given in (3.15),

θ = P
(

inf
j≥1
‖Yj‖ ≥ 1

)
= P

(
inf
j≤−1

‖Yj‖ ≥ 1

)
.

Proof. By (3.15), stationarity and definition of the process (Yj)j∈Z, given in assumption (1),
we may write

θ = lim
n→∞

P
(
U (qn)
n (τ)

∣∣∣ Un(τ)
)

= lim
n→∞

P
(

1

τ
Xrn,rn+qn
n ∈ Wrn+1,rn+qn+1 (U(1))

∣∣∣∣ ‖Xrn‖ > un(τ)

)
= P

(
inf
j≥1
‖Yj‖ ≥ 1

)
.

By stationarity,

P
(
Wrn+1,rn+qn+1 (Un(τ)) ∩ σ−rn(Un(τ)

)
= P (Wrn+1,rn+qn+1 (Un(τ)))− P (Wrn,rn+qn+1 (Un(τ)))

= P (Wrn−qn,rn (Un(τ)))− P (Wrn−qn,rn+1 (Un(τ))) = P
(
Wrn−qn,rn (Un(τ)) ∩ σ−rn((Un(τ))

)
= P

(
Xrn−qn,rn+1
n ∈ Wrn−qn,rn (U(τ)) ∩ σ−rn((U(τ))

)
.

The second equality in the statement of the lemma follows now easily. �

The next result is instrumental because it shows how the piling process can be used to encode
the information regarding the clustering. Essentially, it says that the joint distribution of the
random variables in a block where an exceedance is observed (which makes it a cluster) is
given by the piling process. Recall that by (3.19), Xn,i can be thought of as lying in l∞.

Proposition 3.13. Under the assumptions used to define the piling process and condition
Д′qn, for every τ > 0,

L
(
π̃

(
1

τ
Xn,1

) ∣∣∣∣ Xn,1 ∈ W c
rn (U(τ))

)
−→ L (π̃ ((Zj)j∈Z)) .
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Proof. In what follows we write U τ for U(τ). As in Appendix B, J̃ is a convergence deter-
mining class and therefore we need to show that for all A ∈ F and corresponding Ã ∈ J̃ ,
such that P

(
π̃ ((Zj)j∈Z) ∈ ∂Ã

)
= 0, we have

P
(
π̃

(
1

τ
Xn,1

)
∈ Ã

∣∣∣∣ Xn,1 ∈ W c
rn (U τ )

)
−→ P

(
π̃ ((Zj)j∈Z) ∈ Ã

)
,

which will follow if we show that

P
(

1

τ
Xn,1 ∈ A

∣∣∣∣ Xn,1 ∈ W c
rn (U τ )

)
−→ P

(
(Yj)j∈Z ∈ A

∣∣∣∣ inf
j≤−1

‖Yj‖ ≥ 1

)
,

for all A ∈J , such that P((Yj)j∈Z ∈ ∂A) = 0. Recall that A is σ-invariant, i.e., σ−1(A) = A.

We start estimating P(Xn,1 ∈ τA ∩W c
rn (U τ )) by decomposing the event on the right (which

essentially says that at least one exceedance of un(τ) has occurred up to time rn− 1) with re-
spect to the first time, i = 0, . . . , rn−1, when that exceedance occurs, i.e., {Xn,1 ∈ σ−i(U τ} =
{‖Xi‖ > un(τ)}:

P
(
Xn,1 ∈ τA ∩W c

rn (U τ )
)

=

rn−1∑
i=0

P
(
Xn,1 ∈ τA ∩Wi (U τ ) ∩ σ−i(U τ )

)
=:

rn−1∑
i=0

Bn,i

Since Bn,i ≤ P(‖Xi‖ > un(τ)),∣∣∣∣∣∣P (Xn,1 ∈ τA ∩W c
rn (U τ )

)
−
rn−1∑
i=qn

Bn,i

∣∣∣∣∣∣ ≤ qnP(‖Xi‖ > un(τ)) = qnP(Un(τ)) =: I(n) (3.27)

For i ≥ qn, we now estimate Bn,i by Dn,i := P
(
Xn,1 ∈ τA ∩Wi−qn,i (U τ ) ∩ σ−i(U τ )

)
. Namely,

|Bn,i −Dn,i| = P
(
Xn,1 ∈ τA ∩W c

0,i−qn (U τ ) ∩Wi−qn,i (U τ ) ∩ σ−i(U τ )
)

≤ P
(
Xn,1 ∈ W c

0,i−qn (U τ ) ∩Wi−qn,i (U τ ) ∩ σ−i(U τ )
)

=
i∑

t=qn+1

P
(
Xn,1 ∈ U τ ∩W1,t (U τ ) ∩ σ−t(U τ )

)
= P

(
Xn,1 ∈ U τ ∩W1,qn+1 (U τ ) ∩W c

qn+1,i+1 (U τ )
)

Therefore,∣∣∣∣∣∣
rn−1∑
i=qn

Bn,i −
rn−1∑
i=qn

Dn,i

∣∣∣∣∣∣ ≤
rn−1∑
i=qn

P
(
Xn,1 ∈ U τ ∩W1,qn+1 (U τ ) ∩W c

qn+1,i+1 (U τ )
)

≤ (rn − qn)P
(
U (qn)
n (τ) ∩W c

qn+1,rn (Un(τ))
)

=: II(n) (3.28)

By stationarity and because A is σ-invariant, for all i = qn, . . . , rn − 1,

Dn,i = P
(
Xn,2 ∈ τA ∩Wrn+i−qn,rn+i (U τ ) ∩ σ−(rn+i)(U τ )

)
= P

(
Xrn−qn,2rnn ∈ τA ∩Wrn−qn,rn (U τ ) ∩ σ−rn(U τ )

)
=: Dn

Then using estimates (3.27) and (3.28), we obtain∣∣∣P (Xn,1 ∈ τA ∩W c
rn (U τ )

)
− (rn − qn)P (Dn)

∣∣∣ ≤ I(n) + II(n)
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and therefore ∣∣∣P (Xn,1 ∈ τA ∩W c
rn (U τ )

)
− rnP (Dn)

∣∣∣ ≤ 2I(n) + II(n).

Hence, we can write∣∣∣∣∣P
(

1

τ
Xn,1 ∈ A

∣∣∣∣ Xn,1 ∈ W c
rn (U τ )

)
− rnP(Un(τ))

P
(
Xn,1 ∈ W c

rn (U τ )
)P (Dn | ‖Xrn‖ > un(τ))

∣∣∣∣∣
≤ (2I(n) + II(n))

1

P
(
Xn,1 ∈ W c

rn (U τ )
) =: E(n).

Note that we can write

E(n) = (2I(n) + II(n))
rnP(Un(τ))

P
(
Xn,1 ∈ W c

rn (U τ )
) kn
knrnP(Un(τ))

.

Since, by Corollary 3.11, limn→∞
rnP(Un(τ))

P(Xn,1∈W c
rn

(Uτ ))
= θ−1 and, by definition of Un(τ) we have

limn→∞ knrnP(Un(τ)) = limn→∞ nP(Un(τ)) = τ , it follows that

E(n) ≤ C(knI(n) + knII(n))

for some C > 0. By definition of the sequences (kn)n and (qn)n, we have that

lim
n→∞

knqnP(Un(τ)) = 0,

which means that limn→∞ knI(n) = 0.

Observe also that Д′qn implies that

lim
n→∞

knrnP
(
U (qn)
n (τ) ∩W c

qn+1,rn (Un(τ))
)

= 0,

which means that limn→∞ knII(n) = 0 and therefore limn→∞E(n) = 0.

In order to get the result we need to check that

lim
n→∞

rnP(Un(τ))

P
(
Xn,1 ∈ W c

rn (U τ )
)P (Dn | ‖Xrn‖ > un(τ)) = P

(
(Yj)j∈N ∈ A

∣∣∣∣ inf
j≤−1

‖Yj‖ ≥ 1

)
.

Since by Corollary 3.11 and Lemma 3.12, we have limn→∞
P(Xn,1∈W c

rn
(Uτ ))

rnP(Un(τ)) = θ = P(infj≤−1 ‖Yj‖ ≥
1), then we need to show that

lim
n→∞

P
(
Xrn−qn,2rnn ∈ τA ∩Wrn−qn,rn (U τ )

∣∣ ‖Xrn‖ > un(τ)
)

= P
(

(Yj)j∈N ∈ A, inf
j≤−1

‖Yj‖ ≥ 1

)
,

which we can rewrite as

lim
n→∞

P
(

1

τ
Xrn−qn,2rnn ∈ A ∩W−∞,rn

(
U1
) ∣∣∣∣ ‖Xrn‖ > un(τ)

)
= P

(
(Yj)j∈N ∈ A ∩W−∞,0

(
U1
))
,

(3.29)
Note that {(Yj)j∈N ∈ ∂W−∞,0

(
U1
)
} ⊂ ∪j≤1{‖Yj‖ = 1}. Since, by assumption (2), for every

j ∈ Z, we have Yj = ‖Y0‖Θj , with Θj independent of ‖Y0‖ and since the latter is uniformly
distributed by Lemma 3.9, then P(‖Yj‖ = 1) = 0, for all j ∈ Z. Therefore, P((Yj)j∈N ∈
∂W−∞,0

(
U1
)
) = 0. Since P((Yj)j∈N ∈ ∂A) = 0 and ∂

(
A ∩W−∞,0

(
U1
))
⊂ ∂A ∪ ∂W−∞,0

(
U1
)

it follows that P
(
(Yj)j∈N ∈ ∂

(
A ∩W−∞,0

(
U1
)))

= 0. Then (3.29) follows by definition of the
sequence (Yj)j∈N given in assumption (1). �
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Corollary 3.14. Under the assumptions of Proposition 3.13, we have that LZ and the process
(Qj)j∈Z defined in (3.23) satisfy

(1) LZ is uniformly distributed on [0, 1];
(2) LZ and π̃ ((Qj)j∈Z) are independent.

Proof. For part (1), note that LZ ≤ ‖Z0‖ ≤ ‖Y0‖ ≤ 1 a.s. Let 0 ≤ v ≤ 1. By Proposition 3.13,
(3.14) and Corollary 3.11, we may write

P(LZ < v) = lim
n→∞

P
(

1

τ
Xn,1 ∈ W c

rn (U(v))

∣∣∣∣ Xn,1 ∈ W c
rn (U(τ))

)
= lim

n→∞
P
(
W c
rn (Un(τv))

∣∣ W c
rn (Un(τ))

)
= lim

n→∞

P
(
W c
rn (Un(τv)) ∩W c

rn (Un(τ))
)

P
(
W c
rn (Un(τ))

)
= lim

n→∞

P
(
W c
rn (Un(τv))

)
P
(
W c
rn (Un(τ))

) = lim
n→∞

knP
(
W c
rn (Un(τv))

)
knP

(
W c
rn (Un(τ))

) =
τvθ

τθ
= v.

To prove (2), we start by observing that 1
‖P (x)‖∞ = infj∈Z ‖xj‖ and that the map x̃ 7→(

x̃, 1
‖P̃ (x̃)‖∞

)
is continuous on l̃∞ \ {∞̃}. Then, by Proposition 3.13 and the CMT

L

(
π̃

(
1

τ
Xn,1

)
,

1

‖P̃
(
π̃
(

1
τXn,1

))
‖∞

∣∣∣∣∣ Xn,1 ∈ W c
rn (U(τ))

)
−→ L (π̃ ((Zj)j∈Z) , LZ)

Since the map (x̃, a) 7→
(
x̃
b , a
)
is continuous on l̃∞ \ {∞̃} × (0,∞), then

L

(∥∥∥∥P̃ (π̃(1

τ
Xn,1

))∥∥∥∥
∞
π̃

(
1

τ
Xn,1

)
,

1

‖P̃
(
π̃
(

1
τXn,1

))
‖∞

∣∣∣∣∣ Xn,1 ∈ W c
rn (U(τ))

)
−→ L (π̃ ((Qj)j∈Z) , LZ) (3.30)

Since J̃ is a convergence determining class (see Appendix B), the result will follow if we show
that for all A ∈ F and corresponding Ã ∈ J̃ , such that P(π̃ ((Qj)j∈Z) ∈ ∂Ã) = 0, and all
v ∈ [0, 1], we have

P
(
π̃ ((Qj)j∈Z) ∈ Ã, LZ < v

)
= P

(
π̃ ((Qj)j∈Z) ∈ Ã

)
· P(LZ < v) (3.31)

Letting A ∈J be such that A = π̃−1(Ã) and mrn = min{‖X0
n‖, . . . , ‖Xrn−1

n ‖}, by (3.30), we
can write that

P
(

(Qj)j∈Z ∈ A, LZ < v
)

= lim
n→∞

P
(

1

mrn

Xn,1 ∈ A
∣∣∣∣ Xn,1 ∈ W c

rn (U(τv))

)
knP

(
W c
rn (Un(τv))

)
knP

(
W c
rn (Un(τ))

)
= P

(
π̃ ((Qj)j∈Z) ∈ Ã

)
· v = P

(
π̃ ((Qj)j∈Z) ∈ Ã

)
· P(LZ < v).

�

The next result, an analogue of [BPS18, Lemma 3.3] in our setting, formally establishes the
convergence of the intensity measures of the cluster point processes we introduce later. We
refer to Appendix C for the definitions of weak# convergence and boundedly finite measures.
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Corollary 3.15. Under the assumptions used to define the piling process and condition Д′qn,
the sequence of boundedly finite measures µn = knP(π̃(Xn,1) ∈ ·) inM#

l̃∞\{∞̃}
converges in the

w# topology to µ = θ(Leb× PQ̃) ◦ ψ, where PQ̃ is the distribution of π̃((Qj)j∈Z)).

Proof. By Lemma B.4, we only need to check the convergence for all bounded Ã ∈ J̃ such
that µ(∂Ã) = 0. By Remark 3.5, since Ã is bounded, there exists τ > 0 such that for all
x̃ ∈ Ã, we have infj∈Z ‖xj‖ < τ . Hence, by 3.14, if π̃(Xn,1) ∈ Ã, then ‖Xj‖ > un(τ) for
j = 0, . . . , rn − 1 and hence Xn,1 ∈ W c

rn (U(τ)). Let, as before, A = π̃−1(Ã). Then

knP(π̃(Xn,1) ∈ Ã) = knP(Xn,1 ∈ A) = knP
(
Xn,1 ∈ A ∩W c

rn (U(τ))
)

=
n

rn

P(‖X0‖ > un(τ))

P(‖X0‖ > un(τ))
P
(
Xn,1 ∈ W c

rn (U(τ))
)
P
(
Xn,1 ∈ A

∣∣ Xn,1 ∈ W c
rn (U(τ))

)
= nP(‖X0‖ > un(τ))

P
(
Xn,1 ∈ W c

rn (U(τ))
)

rnP(‖X0‖ > un(τ))
P
(
Xn,1
τ
∈ τ−1A

∣∣∣∣ Xn,1 ∈ W c
rn (U(τ))

)
By (2.14) and Corollary 3.11, we have that the first term converges to τ and the second to
θ, as n → ∞. By Proposition 3.10, the third term goes to P((Zj)j∈Z ∈ τ−1A). We now use
Corollary 3.14 in order to finish the proof.

P((Zj)j∈Z ∈ τ−1A) = P(τ(Zj)j∈Z ∈ A) =

∫ 1

0
P (τ(Zj)j∈Z ∈ A | LZ = v) dv

=

∫ 1

0
P (τv(Qj)j∈Z ∈ A | LZ = v) dv =

1

τ

∫ τ

0
P (s(Qj)j∈Z ∈ A) ds =

µ(Ã)

τθ
.

�

3.4. Complete convergence of point processes. We define and prove the weak conver-
gence of the point processes that keep all the cluster information. We refer to Appendix C
for the precise definition of point processes and their weak convergence. Essentially, we con-
sider a random element on the space N#

R+
0 ×l̃∞\{∞̃}

of boundedly finite point measures on

R+
0 × l̃∞ \ {∞̃}. Namely, similarly to [BPS18], we define the point point processes of clusters

by

Nn =

∞∑
i=1

δ(i/kn,π̃(Xn,i)). (3.32)

Now, we define the point process that will appear as the limit of the cluster point process.
Let (Ti)i∈N and (Ui)i∈N be such that

∑∞
i=1 δ(Ti,Ui) is a bidimensional Poisson point process

on R+
0 × R+

0 with intensity measure θLeb × Leb. Also let (Q̃i)i∈N be an i.i.d. sequence of
random elements in S such that each Q̃i has a distribution given by (3.23). We assume that
the sequences (Ti)i∈N, (Ui)i∈N and (Q̃i)i∈N are mutually independent. We define

N =

∞∑
i=1

δ(Ti,UiQ̃i)
. (3.33)

Note that N just defined is a Poisson point process on R+
0 × l̃∞ \ {∞̃} with intensity Leb×µ,

where µ is as in Corollary 3.15.

We are now ready to state a general complete convergence result.
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Theorem 3.16. Let X0,X1, . . . be a stationary process of random vectors in Rd with have
proper tails, in the sense given in Section 2.4.1. Assume that the piling process given in
Definition 3.8 is well defined and conditions Дqn and Д′qn hold. Then point process Nn, given
in (3.32) converges weakly in N#

R+
0 ×l̃∞\{∞̃}

to the Poisson point process N given by (3.33).

In order to prove the theorem, we need essentially to show two things. The first is a sort of
independent increments property together with convergence in distribution of joint random
variables using the avoidance function, i.e., by computing the probability of having no extremal
occurrences (see the definition of the avoidance function in Appendix C). This is done in
Proposition 3.17, whose complete proof is rather lengthy because we are using the very weak
mixing assumption Дqn , though a lot of the work for that has been done in previous papers
by the authors. Then, in the second step, we need to show that the intensity measures of
the processes converge to the right intensity measure. This has actually already been done in
Corollary 3.15. Finally we need to join the pieces using the theory of weak# convergence on
non locally compact spaces developed in [DVJ03, DVJ08]. In fact, we needed to redo one of
the results to correct a typo and improve it in order to be able to use the convergence of the
intensity measures (see Appendix C).

In [FFMa20] the existence of a σ-finite outer measure ν on VN0,Z was assumed, so that the
following limit exists

lim
n→∞

nP(A
(qn)
n,` ) = ν(A`), (3.34)

for all A` ∈ F and A(qn)
n,` given by equation (3.9). This outer measure described the piling of

points on the multidimensional point processes created by clustering in [FFMa20]. Note that if
we associate Ã`, A` to A` ∈ F as in (3.21) and (3.22), respectively, then using Proposition 3.10
and Corollary 3.15, it follows that when we have the existence of a piling process and condition
Д′qn then (3.34) holds and

ν(A`) = µ(Ã`). (3.35)

We state now the main result that provides independence of disjoint time pieces and conver-
gence of joint distributions by use of the avoidance function.

Proposition 3.17. Let m ∈ N and for each ` = 1, . . . ,m let J`, A` be given, as in (3.7). For
n ∈ N, consider the respective versions Jn,`, An,` given in (3.8) and (3.9). Assume that Дqn

and Д′qn hold. Also assume that there exists a σ-finite outer measure ν such that (3.34) holds.
Then

lim
n→∞

P

(
m⋂
`=1

WJn,` (An,`)

)
= lim

n→∞
P

(
m⋂
`=1

WJn.`

(
A

(qn)
n,`

))
=

m∏
`=1

e−ν(A`)|J`|.

The following proposition gives the first equality in Proposition 3.17 from the definition of
An,` and since qn = o(n). The idea is that the non-occurrence of the asymptotically rare
event An,` can be replaced by the non-occurrence of the event A(qn)

n,` , up to an asymptotically
negligible error. This goes back to [FFT12, Proposition 1] and was further developed in
[FFT15, Proposition 2.7]. We refer to [FFMa20, Proposition 3.2] for a proof.
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Proposition 3.18.∣∣∣∣∣P
(

m⋂
`=1

WJn,`

(
A

(qn)
n,`

))
− P

(
m⋂
`=1

WJn,` (An,`)

)∣∣∣∣∣ ≤ qn
m∑
`=1

P(An,`).

The second equality in Proposition 3.17 follows essentially the same argument used to prove
[FFMa20, Theorem 3.3], with the natural adjustments to compensate for the fact that the
version of condition Д′ used here is weaker. For completeness, we include it in Appendix D.

We are now ready to prove the weak convergence of the cluster point processes.

Proof of Theorem 3.16. By Proposition C.2 and Lemma B.2, we first need to check that for
all bounded sets B ∈ I, defined in (C.6) we have limn→∞ P(Nn(B) = 0) = P(N(B) = 0). Let
B = ∪m`=1J` × Ã`, where for each ` = 1, . . . ,m, we have J` = [a`, b`) and Ã` is associated to
some A` ∈ F as in (3.21).

Since π̃(Xn,i) ∈ Ã` corresponds to the event Xn,i ∈ A` = ∪i∈Zσ−i(A`), then, by definition of
the sets Jn,` and An,` given in (3.8) and (3.9), we have

P(Nn(B) = 0) = P

(
m⋂
`=1

{Nn(J` × Ã`) = 0}

)
= P

(
m⋂
`=1

WJn,` (An,`)

)
.

Now, by definition of the Poisson point process N , we have P(N(B) = 0) =
∏m
`=1 e−|J`|µ(Ã`).

Hence, condition (i) of Proposition C.2 follows from Proposition 3.17 and (3.35).

In order to check condition (II) of Proposition C.2, we observe that by stationarity and Corol-
lary 3.15 we have

E(Nn(B)) = E

 m∑
`=1

dknb`e−1∑
i=dkna`e

1{π̃(Xn,i)∈Ã`}

 ∼ m∑
`=1

|J`|knP
(
π̃(Xn,i) ∈ Ã`

)

−−−→
n→∞

m∑
`=1

|J`|µ(Ã`) = E(N(B)).

�

3.5. Application to jointly regularly varying sequences.

Definition 3.19. A k-dimensional random vector X is said to be jointly regularly varying,
with index α > 0, if there exists a sequence of constants (an)n∈N and a random vector Θ with
P(‖Θ‖ = 1) = 1, such that

nP(‖X‖ > xan, X/‖X‖ ∈ ·) w−−−→
n→∞

x−αP(Θ ∈ ·).

where we are considering weak convergence of measures on Sk−1, the unit sphere in Rk. An
Rd-valued sequence X0,X1, . . . is said to be jointly regularly varying, with index α > 0, if all
the finite dimensional vectors (Xk, . . . ,X`), k ≤ ` ∈ N0, are jointly regularly varying, with
index α > 0.



ENRICHED FUNCTIONAL LIMIT THEOREMS FOR DYNAMICAL SYSTEMS 35

For a jointly regularly varying sequence X0,X1, . . ., in particular, condition (2.18) holds.
Hence, taking τ = x−α and un(τ) = anτ

− 1
α , equation (2.14) holds. We also have that

u−1
n (z) = z−αaαn. We define Ξ: l∞ −→ l0 given by Ξ((xj)j) = (ξ(xj))j , where ξ is defined as

in (2.19). Observe that, as P , the function Ξ is invertible and we may define Ξ̃ : l̃∞ → l̃0 so
that Ξ̃(π̃(x)) = π̃(Ξ(x)). Observe that

ξ

(
u−1
n (‖Xj‖)

Xj

‖Xj‖

)
=

Xj

an
. (3.36)

Corollary 3.20. Let X0,X1, . . . be a stationary Rd-valued jointly regularly varying sequence,
with tail index α > 0, satisfying conditions Дqn and Д′qn. Then the piling process given in
Definition 3.8 is well defined and the point process

N ′n =

∞∑
i=1

δ(i/kn,Ξ̃(π̃(Xn,i))) =

∞∑
i=1

δ(
i
kn
,π̃

(
X(i−1)rn

an
,...,

Xirn−1
an

)). (3.37)

converges weakly in N#

R+
0 ×l̃0\{0}

to the Poisson point process N ′ given by

N ′ =

∞∑
i=1

δ
(Ti,U

− 1
α

i Ξ̃(Q̃i))
, (3.38)

where (Ti)i∈N, (Ui)i∈N and (Q̃i)i∈N are as in (3.33).

This corollary of Theorem 3.16 follows from a direct application of the CMT for the map
Ξ# : N#

R+
0 ×l̃∞\{∞̃}

→ N#

R+
0 ×l̃0\{0}

defined by

Ξ#

( ∞∑
i=1

δ(ti,x̃i)

)
=
∞∑
i=1

δ(ti,Ξ̃(x̃i)).

Note that the existence of piling process and the respective properties are guaranteed by the
joint regular variation of the process X0,X1, . . . (See [BS09]).

4. Proofs of the dynamical enriched functional limit theorems

The major step to obtain the invariance principles stated in Theorems 2.5, 2.9 and 2.11 for
dynamically defined stochastic processes is the the complete convergence of point processes
stated as follows

Theorem 4.1. Let (X ,BX , T, µ) be a dynamical system as described in Section 2.2 and
X0,X1, . . . be obtained from such a system as described in (2.1) and assume that the pil-
ing process given in Definition 3.8 is well defined. Consider the point process Nn defined as
in (3.32). Then Nn converges weakly in N#

R+
0 ×l̃∞\{∞̃}

to the Poisson point process N given by

(3.33).

The systems and the observables that we consider give rise to stochastic processes for which
Дqn and Д′qn hold and then the conclusion follows immediately by Theorem 3.16. A property
which can be used to prove these conditions is in the next definition
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Definition 4.2. Let C1 and C2 be Banach spaces of real-valued measurable functions on X .
Define the correlation of non-zero functions φ ∈ C1 and ψ ∈ C2 with respect to µ at time n ∈ N
by

Corµ(φ, ψ, n) :=
1

‖φ‖C1‖ψ‖C2

∣∣∣∣∫ φ(ψ ◦ Tn) dµ−
∫
φ dµ

∫
φ dµ

∣∣∣∣ .
Then say that the system has decay of correlations, with respect to µ, for observables in C1

against observables in C2 if there exists a rate function ρ : N→ [0,∞) with

lim
n→∞

ρ(n) = 0,

and for every φ ∈ C1, ψ ∈ C2,
Corµ(φ, ψ, n) ≤ ρ(n).

The systems in Section 2.2.1 have decay of correlations against L1(µ), i.e., where C2 = L1(µ).
In that setting we also require a suitable space C1, a key feature being that the characteristic
functions on our sets of interest, like the annuli A(j) in (3.5) do not have large norm. In fact in
the interval setting C2 will be the BV norm which we recall here. If ψ : I → R is a measurable
function on an interval I then its variation is defined as

Var(ψ) := sup

{
n−1∑
i=0

|ψ(xi+1)− ψ(xi)|

}
,

where the supremum is taken over all finite ordered sequences (xi)
n−1
i=0 in I. The BV norm is

‖ψ‖BV := sup |ψ|+Var(φ) and BV := {ψ : I → R : |ψ‖BV <∞}. In Saussol’s class of higher
dimensional expanding maps C1 is a quasi-Hölder norm.

Remark 4.3. While our conditions on the rate of decay of correlations here may appear very
weak, in fact summable decay of correlations against L1(µ) implies exponential decay of cor-
relations for L∞ observables against Hölder observables, as in [AFLV11].

We make a brief list of references where one can find the arguments to prove Дqn and Д′qn
for the systems mentioned in Section 2.2. For non-invertible systems admitting decay of
correlations against L1 and observables with maximal setsM consisting on periodic points or
a countable number of points in the same orbit, we note that our conditions on the system
and the observable can be expressed as requiring, for A(qn)

n,` , as in (3.9) and (3.5),

(1) limn→∞ ‖1A(qn)
n,`

‖nρ(tn) = 0 for some sequence (tn)n with tn = o(n),

(2) limn→∞ ‖1A(qn)
n,`

‖
∑n

j=qn
ρ(j) = 0.

These conditions can be found in, for example [AFFR17, FFRS20]. Along with decay of
correlations against L1(µ), they imply Дqn , Д′qn : for proofs see those references. See also
[FFMa20, Section 4.3].

Regarding the Benedicks-Carleson maps equipped with observables maximised at periodic
points, the required estimates to satisfy Дqn can be found in [FF08] and [FFT13, Sections 5,6].

As for the slowly mixing systems of the Manneville-Pomeau type and observables maximised
at periodic points distinct from the indifferent fixed point, we defer the proof that this is
sufficient to satisfy Дqn and Д′qn to the Section E, though most of the ideas of the proof are
in [FFTV16].
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For Anosov linear diffeomorphisms on the torus and observables maximised at periodic points,
we refer to [CFF+15].

4.1. Proof of Theorem 2.5. As a consequence of Theorem 4.1, since in this case we are
assuming that g appearing in (2.2) is of type g2 and condition (2.18) holds, we obtain, by
direct application of the CMT for the map Ξ# given in Section 3.5, that the convergence of
point processes stated in Corollary 3.20 holds. Therefore, we are left to show that such point
process convergence implies the convergence in F ′ of the continuous time process Sn to V .

Proposition 4.4. Let X0,X1, . . . be a stationary Rd-valued process for which condition (2.18)
holds and moreover N ′n defined in (3.37) converges weakly# in N#

R+
0 ×l̃0\{0}

to N ′ given in (3.38)
then, under the same assumptions of Theorem 2.5, the conclusion regarding the convergence
of Sn to V holds, in F ′.

Proof. Recall that the convergence in F ′([0, 1],Rd) consists of showing that the respective
projections into E([0, 1],Rd) and D̃([0, 1],Rd) converge. The choice of metric in E([0, 1],Rd)
(see (2.9)) implies that the convergence in this space will follow from the convergence of the
coordinate projections, in E([0, 1],R), which follows immediately from [BPS18, Theorem 4.5].
Hence, we are left to check the convergence of the D̃([0, 1],Rd) counterparts, which we prove
by splitting the argument into the same steps considered in [BPS18, Theorem 4.5] so that we
can keep track of the required adjustments.

We start by defining a projection Υ: N#

R+
0 ×l̃0\{0}

→ F ′([0, 1],Rd). Suppose we are given

γ =
∑∞

i=1 δ(ti,x̃i) ∈ N
#

R+
0 ×l̃0\{0}

. At time ti we have x̃i ∈ l̃0: let (. . . , x−1, x0, x1, . . .) be a
representative of this in l0 and define

etix (t) =

btan(π(t− 1
2))c∑

i=−∞
xi, x(t) =

∑
Ti<t

eTix (1), Sx = {ti}i.

Note that since etix is really an element of an equivalence class, the particular representative
of x̃ chosen does not matter. Finally, let Υ(γ) = (x, Sx, {etix }i).
We start assuming α ∈ (0, 1).

Step 1. For ε > 0, we define an ε-truncated projection Υε. We do this as follows. For x̃ ∈ l̃0
set

uε(x̃)(t) =

btan(π(t− 1
2))c∑

j=−∞
xj1{|xj |>ε}.

Then for γ =
∑∞

i=1 δTi,x̃i ∈ N
#
X , define Sε = {Ti : ‖x̃i‖∞ > ε} and

Υε(γ) =


∑
Ti≤t

uε(x̃i)(1)


t∈[0,1]

, Sε, {uε(x̃s)}s∈Sε
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(here we understand x̃s for s = Ti ∈ Sε as being x̃i).
To show that given γn →w# γ, we have π̃(Υε(γn))→ π̃(Υε(γ)), we first define a simpler space
which is not essential here, but is intended to help the reader’s visualisation of the situation.

Given an element z ∈ D̃, let (ti)i be the set disc(z) of discontinuities of a representative of
z, which we abuse notation and also call z. Let vi(z) = supti≤s1,s2<ti+1

‖z(s1) − z(s2)‖ and
j(ti) = ‖z(t−i )− z(ti)‖. Then for ε > 0 set

D̃ε := {z ∈ D̃ : #disc(z) <∞, vi(z) = 0 and ji(z) > ε for all i}.

Now notice that since we are based in N#

R+
0 ×l̃0\{0}

, which only allows a finite number of jumps

of norm higher than ε, each element of {uε(x̃s)}s∈Sε lies in D̃ε. Moreover for x = Υε(γ),
π̃(x) = xD̃ ∈ D̃ε. We can easily see in this simpler space that if γn →w# γ then for xn = Υε(γn)

and x = Υε(γ), we have xD̃n → xD̃.

These arguments together complete the proof of Step 1.

Step 2. The aim here is to show that π̃(Υε(N ′)) = xD̃ε → π̃(Υ(N ′)) = xD̃ as ε → 0. It is
easy to see that

dD̃(xD̃ε , x
D̃) ≤

∞∑
i=1

∑
j∈Z

U
− 1
α

i ‖H(Qij)‖ · 1
{U−

1
α

i ‖H(Qij)‖≤ε}

And this is shown to converge to zero almost surely because condition (2.22) implies that
Wi =

∑
j∈Z ‖H(Qij)‖ is a.s. finite. Moreover, as noted in [BPS18, Remark 4.6], we have

sup
i∈N

∑
j∈Z

U
− 1
α

i ‖H(Qi,j)‖1
U
− 1
α

i ‖H(Qi,j)‖≤ε
→ 0, a.s. as ε→ 0.

Note that condition (2.22), which is assumed by hypothesis for 1 < α < 2, holds for 0 < α < 1,
as a byproduct of the convergence of the point processes stated in Theorem 3.16 as observed
in [DH95, Theorem 2.6]. For α = 1, a similar argument holds by making use of assumption
(2.23).

Step 3. This step looks to compare the projection into D̃ of empirical process Υ(N ′n) with its
ε-truncated version Υ(N ′n). Namely, we set xD̃n,ε := π̃(Υε(N ′n)), xD̃n := π̃(Υ(N ′n)) and observe
that

dD̃(xD̃n,ε, x
D̃
n ) ≤

knrn∑
j=1

‖Xj‖
an

1{‖Xj‖≤anε}.

Then, as in [BPS18, Proof of Theorem 4.5], it follows by Markov’s inequality and Karamata’s
Theorem that

lim sup
n→∞

P(dD̃(xD̃n,ε, x
D̃
n ) > δ) ≤ lim sup

n→∞

knrn
δan

E(‖X1‖1{‖X1‖≤anε})

≤ lim
n→∞

n

δan

αanεP(‖X1‖ > anε)

1− α
=

α

δ(1− α)
ε1−α −−−→

ε→0
0,

since we are assuming α < 1.
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Step 4. Here we wish to compare the D̃ component of the embedding of Sn into F ′ with the
respective D̃ projection of Υ(N ′n). But we need only notice that the representations of each of
these elements is in fact identical so there is nothing to do: in the Υ(N ′n) case all the jumps in
a block are compressed into a single sequence, but the D̃ component undoes this compression,
capturing all the jumps as an element of D([0, 1]), which is equivalent to that obtained from
Sn.

The proof of the 1 ≤ α < 2 case does not require further arguments, though we do need to
employ condition (2.21) in order to bound the error term in the equivalent to step 3 above. �

4.2. Proof of Theorem 2.9. We split the proof of Theorem 2.9 into several steps given in a
series of lemmas.

We start by defining a map Υ: N#

R+
0 ×l̃∞\{∞̃}

→ F ′((0,∞),R), which to each γ ∈ N#

R+
0 ×l̃∞\{∞̃}

,

such that γ =
∑∞

i=1 δ(ti,x̃i), assigns

Υ(γ) =
(
h(γ), {ti : i ∈ N}, etiγ

)
,

where h(γ) is defined for all t > 0 by

h(γ)(t) :=

{
inf{‖P̃ (x̃i)‖−1

∞ : ti ≤ t} if t > t

y if t ≤ t
(4.1)

with t = inf{(ti)∞i=1}, y = sup{inf{‖P̃ (x̃i)‖−1
∞ : ti ≤ t} : t > t} and, for t ∈ [0, 1]

etiγ (t) = min{h(γ)(t−i ), inf
j≤btan(π(t− 1

2))c
‖xij‖}.

Note that since we are using P here, we are looking for our observations to go down in value,
so the objects here are all non-increasing functions.

Let Λ =
{
γ =

∑∞
i=1 δ(ti,x̃i) : ti 6= tj , ∀i 6= j; γ((0, a)× l̃∞ \ {∞̃}) > 0, ∀a > 0

}
⊂ N#

R+
0 ×l̃∞\{∞̃}

.

Lemma 4.5. The map Υ: N#

R+
0 ×l̃∞\{∞̃}

→ F ′((0,∞),R) is continuous on Λ.

Proof. Assume that γn →w# γ =
∑∞

i=1 δ(ti,x̃i) ∈ Λ. Let 0 < a < b ∈ {ti : i ∈ N}c, we need to
verify that

m(Γa,b,xEn ,Γa,b,xE ) + dD̃

(
xn

D̃
a,b, x

D̃
a,b

)
→ 0,

where Γa,b,xE and xD̃a,b denote the restrictions to the time interval [a, b] of the respective objects.
Let α = h(γ)(a) ∈ (0,∞) and consider the bounded set B̃α = {x̃ ∈ l̃∞ : ‖P̃ (x̃)‖−1

∞ < α} of
l̃∞ \ {∞̃}. There are finitely many ti such that (ti, x̃

i) ∈ [a, b]× B̃. Let (ti1 , x̃
i1), . . . , (tik , x̃

ik)
be an enumeration of those points. Then, as in [Res87, Proposition 3.13], one can show that
for n sufficiently large there exists a shadow enumeration

(
t
(n)
i1
, x̃(n),i1

)
, . . . ,

(
t
(n)
ik
, x̃(n),ik

)
of

the mass points of γn in [a, b]× B̃α so that

t
(n)
ij
→ tij and x̃(n),ij → x̃ij , as n→∞, for all j = 1, . . . , k (4.2)
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Let ti be such that h(γ)(a) = ‖P̃ (x̃i)‖−1
∞ . Then applying the same argument to the bounded

set [ti − ε, a] × Bα+ε where ε is chosen so that no mass point of γ lies on the border of this
set, one obtains that h(γn)(a)→ h(γ)(a), as n→∞. It follows that

h(γn)(t) −−−→
n→∞

h(γ)(t), for all t ∈ [a, b] \

(⋃
n∈N

{
t
(n)
i1
, . . . , t

(n)
ik

}
∪ {ti1 , . . . , tik}

)
. (4.3)

The convergence stated in (4.2) regarding the quotient space l̃∞ \ {∞̃} means that we can
take representatives for which the convergence is obtained componentwise, which allows us
to choose corresponding representatives on the space of excursions D̃([0, 1],R) for which the
following holds

e
t
(n)
i
γn (t)→ etiγ (t) as n→∞, for all t ∈ [0, 1], which, in turn, implies (4.4)

inf

{
e
t
(n)
i
γn (t) : t ∈ [0, 1]

}
−−−→
n→∞

inf{etiγ (t) : t ∈ [0, 1]}, (4.5)

From (4.2), (4.5) and (4.3), it follows that m(Γa,b,xEn ,Γa,b,xE ) −−−→
n→∞

0. In a similar way, (4.2),

(4.4) and (4.3) imply that dD̃
(
xn

D̃
a,b, x

D̃
a,b

)
−−−→
n→∞

0. �

Lemma 4.6. We have that dF ′,∞(Zn,Υ(Nn)) → 0 as n → ∞, in probability, where Nn is
defined in (3.32)

Proof. The processes Zn and Υ(Nn)) have different internal clocks, but h(Υ(Nn)))(i/kn) =
Zn(irn/n), for all i ∈ N0. Observe that h(Υ(Nn))) is constant between i/kn and (i + 1)/kn,
having a possible jump at (i + 1)/kn if inf{u−1

n (Xj) : j = irn/n, . . . , (i + 1)rn/n − 1} <
h(Υ(Nn)))(i/kn). Note that when such a jump occurs, Zn is not necessarily constant between
irn/n and (i+1)rn/n, namely, it may jump several times corresponding to the several moments
j = irn/n, . . . , (i+ 1)rn/n at which u−1

n (Xj) beats the running minimum until the threshold
inf{u−1

n (Xj) : j = irn/n, . . . , (i+ 1)rn/n− 1} is reached. Nevertheless, these oscillations are
recorded by the excursion decorating Υ(Nn) at the discontinuity point (i+ 1)/kn.

Note that by definition of rn,
i

kn
≥ irn

n
≥ i

kn
− i

n
⇒ i

n
≥ i

kn
− irn

n
≥ 0 and similarly

i+ 1

n
≥ i+ 1

kn
− (i+ 1)rn

n
≥ 0.

(4.6)

Hence, the maximum distance between one instant point of the time interval [i/kn, (i+1)/kn)
and another from [irn/n, (i+ 1)rn/n) is at most i+1

n .

Let 0 < a < b ∈ R, i− = min{j ∈ N0 : j/kn ≥ a} and i+ = max{j ∈ N0 : jrn/n < b}.
Note that the range of the graphs Γi−jrn/n,i+jrn/n,ZEn and Γi−jrn/n,i+jrn/n,Υ(Nn)E is exactly
the same, which means that the Hausdorff distance between the graphs is given by the time
component, i.e.,

m
(

Γi−jrn/n,i+jrn/n,ZEn ,Γi−jrn/n,i+jrn/n,Υ(Nn)E

)
≤ i+ 1

n
−−−→
n→∞

0.

We only need to worry with the observations corresponding to j ∈ N0 such that a ≤ j/n <
i−/kn where the range of the process Zn may differ from the value of h(Υ(Nn))(a) =: τ ,
by either being above or below. Note that there are at most kn such observations. This
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means that for |ε| < τ , we have that m
(

Γa,i−/kn,ZEn ,Γa,i−/kn,Υ(Nn)E

)
> |ε| implies that

there must be at least one of these possible kn observations such that ‖Xj‖ > un(τ + ε).
Since knP(‖Xj‖ > un(τ + ε)) → 0, we conclude that m

(
Γa,i−/kn,ZEn ,Γa,i−/kn,Υ(Nn)E

)
→ 0 in

probability. A similar argument applies for the time frame between i+jrn/n and b.

Hence, m
(

Γa,b,ZEn ,Γa,b,Υ(Nn)E

)
−−−→
n→∞

0, in probability. This takes care of the E component
of the distance in F ′ and we need now to conclude that the same applies to the projections
into D̃.

Let i− < i ≤ i+ and assume that there is a jump of h(Υ(Nn)) at i/kn. Recall that while
h(Υ(Nn))) is constant between (i−1)/kn and i/kn, the process Zn may have oscillations in the
corresponding interval [(i−1)rn/n, irn/n]. But, by construction, the excursion ei/knΥ(Nn) exactly

mimics these oscillations of Zn. Observe now that the projection Υ(Nn)D̃ reconstructs the
behaviour of Zn by incorporating in the time frame the excursions. Then, since the metric D̃
allows for time deformations, it is clear that the distance between the projections Υ(Nn)D̃ and
ZD̃n , when restricted to [i−rn/n, irn/n] is actually equal to 0. Again, we are left to analyse the
time periods [a, i−rn/n) and [i+rn/n, b], where some pieces of information may be missing.
However, as observed with the projections into E, the missing information corresponds to at
most max{kn, rn} random variables and the probability of these producing oscillations that
will not be mimicked is bounded by max{kn, rn}P(‖Xj‖ > un(τ+ε))→ 0. Again, we conclude
that dD̃

(
Υ(Nn)D̃a,b, Zn

D̃
a,b

)
−−−→
n→∞

0, in probability. �

Proof of Theorem 2.9. By Lemma 4.5, we may apply the CMT and conclude from Theorem 4.1
that Υ(Nn) converges weakly to Υ(N), in F ′((0,+∞)). By Lemma 4.6 and a Slutsky argument
we conclude that Zn converges weakly to Υ(N), in F ′((0,+∞)). Therefore, we are only left
to show that h(Υ(N)) has the prescribed finite-dimensional distributions of ZH .

For each α > 0, let B̃α = {x̃ ∈ : ‖P̃ (x̃)‖−1
∞ < α} ⊂ l̃∞ \ {∞̃}. For the unidimensional

distribution, with t, y ≥ 0 and H̄(τ) = e−θτ , we have

P(h(Υ(N))(t) ≥ y) = P(N([0, t]× B̃y) = 0) = e−θty = H̄t(y).

For the bidimensional distribution, with 0 ≤ t1 < t2 and y1 ≥ y2 ≥ 0,

P (h(Υ(N))(t1) ≥ y1, h(Υ(N))(t2) ≥ y2) =

= P (N([0, t1]×By1) = 0, N((t1, t2]×By2) = 0) = H̄t1(y1)H̄t2−t1(y2).

In case 0 ≤ y1 < y2,

P (h(Υ(N))(t1) ≥ y1, h(Υ(N))(t2) ≥ y2) = P(h(Υ(N))(t2) ≥ y2) = H̄t2(y2),

so in general

P(h(Υ(N))(t1) ≥ y1, h(Υ(N))(t2) ≥ y2) = H̄t1(y1 ∨ y2)H̄t2−t1(y2).
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By induction we get for the k-dimensional distribution

P(h(Υ(N))(t1) ≥ y1,Υ(N))(t2) ≥ y2 . . . , h(Υ(N))(tk) ≥ yk) =

= H̄t1

(
k∨
i=1

{yi}

)
H̄t2−t1

(
k∨
i=2

{yi}

)
· · ·H̄tk−tk−1(yk)

= P(ZH(t1) ≥ y1, . . . , ZH(tk) ≥ yk).

Regarding the statements about the Markov structure of the process ZH , we give brief indi-
cations how to prove them and refer to [Res87, Chapter 4.1] for some useful properties of the
theory of Markov processes. The fact that ZH is Markov with the given transition probability
follows from the form of the finite dimensional distributions. Namely, for 0 < y < z,

P(ZH(t+ s) ≥ y | ZH(s) = z) = P(h(Υ(N))(t+ s)) ≥ y | h(Υ(N))(s)) = z)

= P(N((s, s+ t]×By) = 0) = e−θty. (4.7)

The exponential holding time parameter at state z, which is denoted by λ(z), can be derived
from

P(ZH(t+ s) = ZH(s) | ZH(s) = z) = P(N((s, s+ t]×Bz) = 0) = e−θtz ⇒ λ(z) = θz.

The jump distribution Π(z, [0, y)) can be computed from the equation

lim
t→0

t−1P(ZH(t+ s) < y) | ZH(s) = z) = λ(z)Π(z, [0, y)).

But from (4.7), for y < z, we have t−1P(ZH(t+ s) < y) | ZH(s) = z) = t−1(1− e−θty) −−→
t→0

θy

and therefore Π(z, [0, y)) = y/z. �

4.3. Proof of Theorem 2.11. Consider the subset of N#

R+
0 ×l̃∞\{∞̃}

defined by

Λ =

{
γ =

∞∑
i=1

δ(ti,x̃i) : tj 6= t` and ‖xij‖ = ‖xi`‖ ⇒ j = ` or ‖xij‖ =∞

}
.

Since (0,∞) is locally compact and separable, then the weak# topology in N#
(0,+∞) coincides

with the vague topology and by a trivial adjustment of [BPS18, Lemma 5.1] one obtains that
the map γ → Rγ from N#

R+
0 ×l̃∞\{∞̃}

to N#
(0,+∞) is continuous at every γ ∈ Λ.

Proposition 4.7. Let X0,X1, . . . be a stationary Rd-valued sequence, with tail index α > 0,
for which the point process Nn defined in (3.32) converges weakly in N#

R+
0 ×l̃∞\{∞̃}

to the Poisson

point process N given by (3.33). Then, under the same assumptions of Theorem 2.11, then the
conclusion regarding the convergence of RN ′′n to RN holds, in N#

(0,+∞), and the limit process
has the representation given there.

Together with Theorem 3.16, this concludes the proof of Theorem 2.11.

We elaborate a bit further on the representation of the limit record point process, which in
this case is given in a more natural way through the use of the variable U with a uniform
distribution. The rest of the proof of this proposition follows from trivial adjustments to the
proof of [BPS18, Theorem 5.2].
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Let M =
∑∞

i=1 δ(Ti,Ui) be the Poisson point process on R+
0 ×R+

0 defining the point process N
in (3.33). Recall that ‖Qj‖ ≥ 1 for all j, but there exists one index j for which the equality
holds. Let (τn)n∈Z denote the ordered sequence of record times of M counted by RM . For
definiteness, fix a certain s > 0 and let τ1 denote the first record time larger than s, i.e.,
τ1 = inf{τj : τj < s}, and now denote the respective record frequencies by Yn = infTi≤τn Ui,
with Y0 = infTi≤s Ui. The fact that

∑
n∈Z δτn is a Poisson process with intensity x−1 dx follows

for example from [FFMa20, Theorem 5.7]. Note that for all n we have Yn/Yn−1 < 1 and, in
fact, from the jump distribution Π computed in Theorem 2.9 we obtain that (Yn/Yn−1)n∈N is
a sequence of independent and uniformly distributed random variables.

The number of records of RN observed at τn = Ti, say, corresponds to the number of j’s for
which Yn‖Qi,j‖ < (Yn−1 ∧ inf`<j{Yn‖Qi,`‖}) ⇔ ‖Qi,j‖ < (Yn−1/Yn ∧ inf`<j{‖Qi,`‖}), i.e., is
equal to RQi(Yn−1/Yn), where Qi = (Qi,j)j is independent of the sequence (Yn/Yn−1)n∈N for
all i. Since s was arbitrary, the given representation of RN holds.

Appendix A. Completeness and separability of the space F ′

As in Whitt’s space E, there are two natural metrics to use for the E component of our space
F ′. These are denoted mE and m∗E (see (2.9) and (2.10)). We keep the same metric on the
D̃ part.

Lemma A.1. D with the sup norm is complete.

Proof. Let xn ∈ D define a Cauchy sequence w.r.t. ‖ · ‖∞. Then set x(t) = limn→∞ xn(t).
Note that ∪ndisc(xn) is an at most countable set. Observe also that in this metric (unlike
M1 say), each discontinuity t of x must correspond to a limit of discontinuities (tn)n of (xn)n
(indeed we can take a sequence (tn)n which is eventually constant). So x must have at most
countably many discontinuities disc(x). The fact that x is continuous on the right of the
discontinuities follow from the continuity of xn on the right. Hence x ∈ D. �

Lemma A.2. D̃ is separable and complete.

Proof. Completeness follows since D with the sup norm is complete: if [xn] ∈ D̃ gives a
Cauchy sequence then there are yn ∈ [xn] such that (yn)n is Cauchy in D with the sup norm.
Then the limit y, which exists as in Lemma A.1, defines a class in D̃.

Separability follows since the set of piecewise constant Q-valued functions in D with rational
discontinuity points (the discontinuity points can be any countable set here) is countable and
defines a set of equivalence classes which is dense in D̃. �

As shown in [Whi02, Theorem 15.4.3], (E,mE) is separable, and in [Whi02, Example 15.4.2]
this space is not complete. On the other hand for (E,m∗E) is complete, but not separable.

Assume we are dealing with real valued functions rather than Rd-valued for d ≥ 2.

Proposition A.3. (a) F ′ with the mE-metric on the E-component is not complete, but
is separable.

(b) F ′ with the m∗E-metric on the E-component is complete, but is not separable.
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Proof. (a) [Whi02, Example 15.4.2] would not give a convergent sequence in F ′ since we
would not be able to get convergent excursions: there are large jumps in adjacent terms
of the sequence which cannot be matched up. Hence we need an alternative example for
non-completeness.

For each n we define

φn(x) =

{
nx if x ∈ [0, 1

n)

1 if x ∈
[

1
n , 1
]

Also let, for each k ∈ N, xk,1, . . . , xk,n+k be the set of n+ k points in [ 1
2k
, 1

2k−1 ] so that these
points, along with the boundary points, are equidistributed through this interval. Define
εn,k = 1

n2k+2 . Then define

xn =
∞∑
k=1

n+k∑
i=1

φn · 1[xk,i−εn,k, xk,i+εn,k).

Then Sn = {xk,i ± εn,k}k,n and the excursions are for example φn(xk,i − εn,k) · 1[1/2,1] at the
points xk,i − εn,k and φn(xk,i + εn,k) · 1[0,1/2) at the points xk,i + εn,k, producing an element
xn ∈ F ′ (note the damping effect of φn ensuring that (2.8) holds). Then (xn)n is Cauchy with
the m-metric, but this sequence does not have a limit in F ′ (eg the graph of the limit would
have to be [0, 1]× [0, 1] as in [Whi02, Example 15.4.2]). Hence the space is not complete.

To show separability, we use the usual approximation by objects with rational coordinates.
As shown in [Whi02, Theorem 15.4.3], the E-part of the space is separable. We then use
Lemma A.2 to give separability of the excursion part.

(b) Completeness follows from the E-component being complete as in [Whi02, Section 15.4],
which is the same type of argument as completeness in D (see Lemma A.1) and D̃ since this
is uniform convergence. The latter facts give convergence to a limit in D̃ for the excursions
also.

Non-separability of E (with m∗) implies the non-separability of F ′: in fact this is the same
type of argument as for D. Note that for non-separability it is sufficient, for a given positive
distance, to find an uncountable collection of elements of the set all at least that distance
apart. So for example for D, {1[a,1]}a∈[0,1) are all distance 1 apart in the m∗ metric. �

Remark A.4. [Whi02, Example 15.4.2] would not give a convergent sequence in F ′ since we
would not be able to get convergent excursions. Hence we needed an alternative example
above for non-completeness.

Appendix B. Weak and weak# convergence

The purpose of this section is to review notions of convergence of measures on the metric
spaces l̃∞ and l̃0. We are particularly interested in weak convergence of probability measures
and, since we want to consider point processes which are random elements corresponding to
boundedly finite measures, we are also interested in weak# convergence. Recall that l̃∞ and
l̃0 are complete, separable, metric spaces, which are not locally compact and therefore vague
convergence is not useful here. We remark that weak# convergence is equivalent to vague
convergence when the ambient space is locally compact (see [DVJ03, Appendix A2.6]).
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The Portmanteau Theorem (see for example [Bil99, Theorem 2.1]) is the following.

Theorem B.1. Given a metric space, the following conditions are equivalent to weak conver-
gence of probability measures.

(1) limn→∞
∫
fdPn =

∫
fdP, for all bounded, uniformly continuous real f ;

(2) lim supn→∞ Pn(F ) ≤ P(F ) for all closed set F ;
(3) lim infn→∞ Pn(E) ≥ P(E) for all open set E;
(4) limn→∞ Pn(A) = P(A) for all set A such that P(∂A) = 0.

A set A such that P(∂A) = 0 is called a P-continuity set. A class U of sets is called a
convergence determining class if the convergence limn→∞ Pn(A) = P(A) for all P-continuity
sets A ∈ U implies the weak convergence of Pn to P.

Lemma B.2. The class of sets J̃ is a convergence determining class for weak convergence
on the metric space l̃∞ \ {∞̃}.

Proof. We start by proving a claim.

Claim. For all x̃ ∈ l̃∞ \ {∞̃} and all ε > 0, there exists a P-continuity set Ã ∈ J̃ such that
x̃ ∈ ˚̃A ⊂ Ã ⊂ B(x̃, ε).

Proof of Claim. Let z,w ∈ l0 \ {0}. Since |‖z‖∞ − ‖w‖∞| ≤ ‖z − w‖∞ and h(x) = 1
x

is continuous on R \ {0}, then there exists δ > 0 such that ‖z − w‖∞ < δ implies that
d′(z,w) < ε, where d′ is the metric on l0 \ {0} defined in (3.17).

Let z = P (x) ∈ l0 \ {0} and let k ∈ N be such that ‖zj‖ < δ for all |j| ≥ k. Define

Bρ =
⋂
|j|<k

σ−j(B(zj , ρ)),

for some ρ ≤ δ. Let Aρ = P−1(Bρ) and let Ãρ ∈ J̃ be associated to Aρ as in (3.21). Then Ãρ
will be the open set in the statement of the claim. We choose ρ so that Ãρ is a P-continuity set.
We can always choose such ρ because ∂Ãρ ⊂ π̃

(
∪i∈Z(σ−i(∪|j|<k{w : ‖p(wj)− zj‖∞ = ρ}))

)
,

which means that each ∂Ãρ can intersect at most countably many other such sets. Therefore,
there is an uncountable number of disjoint sets ∂Ãρ, for 0 < ρ < δ, and since there cannot be
an uncountable number of them with positive probability, at least one of them must have 0
probability, which means one of the Ãρ is a P-continuity set.

We claim that Ãρ ⊂ B(x̃, ε). To see this, let w ∈ l∞ be such that w̃ = π̃(w) ∈ Ãρ. By
definition of Ãρ we must have σ`(w) ∈ A, for some ` ∈ Z. Hence, P (σ`(w)) = σ`(P (w)) ∈ Bρ,
which means that ‖P (x)− σ`(P (w))‖∞ < δ and therefore d′(P (x), σ`(P (w))) < ε. It follows
that, by definition of the metric d̃′ on l̃0, given in (3.20), we have d̃′(P̃ (x̃), P̃ (w̃)) < ε and
hence d̃(x̃, w̃) < ε. �

Let E be an open set. By the claim, for each x̃ ∈ E there exists a P-continuity set Ã ∈ J̃ such
that x̃ ∈ ˚̃A ⊂ Ã ⊂ E. This means we have an open cover of E by sets ˚̃A, where Ã ∈ J̃ is a
P-continuity set. Since on a separable metric space (such as l̃∞ \{∞̃}) each open cover admits
a countable subcover (see [Bil99, Appendix M3], for example)then there exists a sequence
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(Ãi)i∈N such that each Ãi ∈ J̃ is a P-continuity set, Ãi ⊂ E and, moreover, E ⊂ ∪i∈N ˚̃Ai,
which means that E = ∪i∈NÃi.

We are assuming that limn→∞ Pn(Ã) = P(Ã) for all P-continuity sets Ã ∈ J̃ . Since J̃ is
closed for finite unions and ∂(Ã ∪ B̃) ⊂ ∂Ã ∪ B̃ (see [DVJ03, Proposition A1.2.I]), we have
that ∪mi=1Ãi ∈ J̃ is a P-continuity set and therefore

lim
n→∞

Pn(∪mi=1Ãi) = P(∪mi=1Ãi).

Since E = ∪i∈NÃi, for ε > 0, let m ∈ N be such that P(∪mi=1Ãi) > P(E)− ε. Then,

P(E)− ε < P(∪mi=1Ãi) = lim
n→∞

Pn(∪mi=1Ãi) ≤ lim inf
n→∞

Pn(E).

Since the last inequalities hold for all ε > 0 then

P(E) ≤ lim inf
n→∞

Pn(E), for all E open

and therefore by Theorem B.1(3), Pn converges weakly to P. �

In order to study point processes, we need to consider σ-finite measures taking finite measures
on bounded sets. Namely, we define:

Definition B.3. A Borel measure µ on a complete, separable, metric space is boundedly
finite if µ(A) <∞ for every bounded Borel set A.

Let X denote a complete, separable, metric space such as l̃∞ \ {∞̃}. We denote by M#
X

the space of boundedly finite Borel measures on X . Following [DVJ03, DVJ08], we con-
sider a notion of convergence inM#

X called the weak hash or weak# convergence, denoted by
µk →w# µ which can be defined by any of the following equivalent conditions (see [DVJ03,
Proposition A2.6.II]):

(i) limk→∞
∫
fdµk =

∫
fdµ for all bounded continuous functions f defined on X and

vanishing outside a bounded set;
(ii) There exists an increasing sequence of bounded open sets Bn converging to X such that

if µ(n)
k and µ(n) denote the restrictions of the measures µk and µ to Bn, respectively,

then µ(n)
k converges weakly to µ(n), as k →∞, for all n ∈ N. Note that µ(n)

k and µ(n)

are not necessarily probability measures, so when we say that there is weak convergence
we mean that either (1) and (4) from Theorem B.1 apply or (2) and (3) apply with
the extra assumption that limk→∞ µ

(n)
k (Bn) = µ(n)(Bn), for all n ∈ N.

(iii) limk→∞ µk(A) = µ(A) for all bounded Borelean A such that µ(∂A) = 0.

Similarly to Lemma B.2, we show that in order to prove weak# convergence on l̃∞ \ {∞̃}, we
only need to check limk→∞ µk(Ã) = µ(Ã) for all bounded, µ-continuity sets Ã ∈ J̃ , as in
property (iii).

Lemma B.4. The class of bounded sets in J̃ is a convergence determining class for weak#

convergence on the metric space l̃∞ \ {∞̃}.

Proof. Suppose µk →w# µ. For all a > 1, let F 3 Ba := {x ∈ V̇Z : 1/a < ‖x0‖ < a}
and B̃a ∈ J̃ be associated to Ba as in (3.21). Observe that d̃(x̃, w̃) ≤ a − 1/a, for all
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x̃, w̃ ∈ B̃a. Since there are uncountably many sets of the form Ba and ∂Ba ⊂ {x ∈ V̇Z : 1/a =
‖x0‖ or ‖x0‖ = a}, then we can find a strictly increasing, diverging sequence (an)n∈N, such
that Bn := Ban is such that µ(∂B̃n) = 0, for all n ∈ N.

Hence, (Bn)n∈N is an increasing sequence of bounded, open, µ-continuity sets converging to
l̃∞\{∞̃}. Note that by hypothesis we are assuming that limk→∞ µk(Ã) = µ(Ã) for all bounded,
µ-continuity sets Ã ∈ J̃ and therefore that applies to all the B̃n, namely, limk→∞ µk(B̃n) =

µ(Bn). Therefore, we can apply (3) to prove weak convergence of µ(n)
k (the restriction of µk

to Bn) to µ(n) (the restriction of µ to Bn), which was the main tool used in the proof of
Lemma B.2. It follows then, by assumption and Lemma B.2 that µ(n)

k converges weakly to
µ(n), for all n ∈ N and, by (ii), we obtain the weak# convergence of µk to µ. �

Appendix C. Convergence of point processes on non locally compact spaces

We closely follow [DVJ03, Appendix A2.6] and [DVJ08, Sections 9 and 11]. As before, let
X be a complete separable metric space. The notion of weak# convergence is metrizable, in
the sense that M#

X admits a metric generating what the so-called w#-topology so that the
weak# convergence corresponds to convergence in the w#-topology. Denote by B(M#

X ) the
corresponding Borel σ-algebra. A random measure is a random element in (M#

X ,B(M#
X )). A

point process N is an integer valued random measure. Let N#
X denote the space of boundedly

finite integer valued measures. We have that N#
X is a closed subset ofM#

X ([DVJ08, Propo-
sition 9.1.V]) and let B(N#

X ) denote the corresponding σ-algebra for the w#-topology. We
remark that µ ∈ N#

X has the following form ([DVJ08, Proposition 9.1.III]):

µ =
∑
i∈N

kiδxi , where δxi is the Dirac measure at distinct xi ∈ X , and ki ∈ N. (C.1)

For any µ ∈ N#
X given by (C.1), we define its support counting measure µ∗ as:

µ∗ =
∑
i∈N

δxi . (C.2)

The boundedly finite measure µ ∈ N#
X is simple if and only if µ = µ∗, which is equivalent to

say that ki = 1 for all i ∈ N.

Now, we give formally now the definition of point process.

Definition C.1. A point process N on state space X is measurable mapping from a probabil-
ity space (Ω,B,P) into (N#

X ,B(N#
X )). A point process N is said to be simple if P(N({x}) >

1) = 0, for all x ∈ X . To each point process N on state space X we denote by N∗ the
corresponding support point process obtained from N as in (C.2).

Let (Nn)n∈N be a sequence of point processes and N another point process, all with state space
X . We say that Nn converges weakly to N , when the respective distributions Pn, defined by
Pn(A) := P(Nn ∈ A), for all A ∈ B(N#

X )), converge weakly (in the sense of weak convergence
of probability measures on the metric space N#

X ) to the distribution P associated to N .

Tightness is a very useful property which gives relative compactness and ultimately weak
convergence. We state two conditions that are necessary and sufficient to show that a family
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of probability measures {Pt, t ∈ T } is uniformly tight, see [DVJ08, Proposition 11.1.VI].
Given any closed sphere S ⊂ X and any ε, δ >, there exists a real number M and a compact
set C ⊂ S such that for t ∈ T ,

Pt(Nt(S) > M) < ε, (C.3)
Pt(Nt(S \ C) > δ) < ε. (C.4)

We remark that if X was locally compact, (C.4) would be unnecessary.

Based on these criteria for tightness, in [DVJ08, Proposition 11.1.VII] it is shown that weak
convergence of Nn to N follows from the convergence:

(Nn(A1), . . . , Nn(Ak)) −→ (N(A1), . . . , N(Ak)),

of joint distributions as random vectors in Rk, for all finite collections {A1, . . . , Ak} of bounded
continuity sets Ai ∈ BX , for all i = 1, . . . , k and all k ∈ N. Here, continuity set means that
N(∂Ai) = 0 a.s.

When the limiting point process is simple, a simpler criterion for convergence can be used.

Proposition C.2. Let (Nn)n∈N be a sequence of point processes on the state space X and let
N be simple point process on the same state space. Let R be a covering dissecting ring3 of
continuity sets of X . Then, Nn converges weakly to N if the two following conditions hold:

(i) limn→∞ P(Nn(A) = 0) = P(N(A) = 0) for all bounded A ∈ R;
(ii) for all bounded A ∈ R and a nested sequence of partitions Tr = {Ari : i = 1, . . . , kr}

of A by sets of R that ultimately separate the points of A,

inf
Tr

lim sup
n→∞

kr∑
i=1

P(Nn(Ari) ≥ 2) = 0.

Alternatively, we may replace condition (ii) by the following:

(II) limn→∞ E(Nn(A)) = E(N(A)), for all bounded A ∈ R.

Remark C.3. This proposition is very similar to [DVJ08, Proposition 11.1.IX]. However, note
that the corresponding statement to our condition (ii), namely [DVJ08, equation (11.1.4)],
is incorrectly stated there. Essentially, this condition is supposed to require that there is no
accumulation of mass points as the point processes approach the limiting point process. This
is related to a property called ordinary in [DVJ08, equation (11.1.4)], which is then used in
the proof of [DVJ08, Proposition 11.1.IX]. When one observes the condition giving the notion
of ordinary point process one realises the need to use the infimum over all partitions, as we
did in (ii), which contrasts with the use of the supremum over all partitions used in [DVJ08,
equation (11.1.4)].

For completeness we redo the proof of [DVJ08, Proposition 11.1.IX], correcting this typo. We
also extend the result by showing that condition (II) can be used to replace condition (ii)
when trying to prove weak convergence to a simple point process.

3A dissecting ring is a ring generated by finite unions and intersections of the elements of a dissecting
system, which consists on a nested sequence of finite partitions of the whole space that eventually separate
points. See [DVJ03, Appendices A1.6 and A2.1] for further details.
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Proof. We closely follow the proof of [DVJ08, Proposition 11.1.IX]. At the core of the proof
this proposition is a result attributed to Rényi and Mönch, see [DVJ08, Theorem 9.2.XII],
which states that the distribution of a simple point process on a complete separable metric
spaces X is determined by the values of the avoidance function P0 on the bounded sets of a
dissecting ring R for X , where P0 is defined by:

P0(A) = P(N(A) = 0), for A ∈ R.

We are then left to show that the family {Pn : n ≥ n0} is uniformly tight and that the limit of
any convergent subsequent is a simple point process, where Pn is the distribution of the point
process Nn.

Assuming that (ii) holds, let A be a closed ball in R. Observing that {Nn(A) > kr} implies
{Nn(Ari) ≥ 2}} for at least one i, then

kr∑
i=1

P(Nn(Ari) ≥ 2) ≥ P(Nn(A) ≥ kr).

Note that the sum on the left is non-increasing with r. Hence, given ε > 0, by (ii), there exists
an r0 such that for all r ≥ r0, we have lim supn→∞

∑kr
i=1 P(Nn(Ari) ≥ 2) < ε. In particular,

there exists n0 ∈ N such that for all n > n0, we have P(Nn(A) ≥ kr0) ≤
∑kr0

i=1 P(Nn(Ar0i) ≥
2) < ε. Therefore, choosing M > kr0 large enough, we have P(Nn(A) ≥M) < ε, for all n ∈ N,
which means that C.3 holds.

Now, we verify that the same happens when we assume (II) instead of (ii). Using Chebyshev’s
inequality, we obtain for all n ∈ N

P(Nn(S) > M) ≤ E(Nn(S))

M
.

By (II), there exists K ∈ N such that E(Nn(S)) < K, for all n ∈ N. Therefore, taking M
sufficiently large so that K/M < ε, we obtain that P(Nn(S) > M) < ε, for all n ∈ N and,
therefore, C.3 holds.

We next show that (i) implies C.4, which can be restated here in the following form: given
ε > 0. there exists a compact set C such that P(Nn(S \ C) = 0) > 1 − ε, for all n ∈ N.
We choose C so that for the limit distribution (which corresponds to that of a simple point
process), we have

P(N(S \ C) = 0) > 1− ε/2.
From (i), we have that limn→∞ P(Nn(S \ C) = 0) = P(N(S \ C) = 0), from which we obtain
that P(Nn(S \C) = 0) > 1−ε, for all n sufficiently large and, by taking a larger C if necessary,
for all n ∈ N, which means C.4 holds.

Since, both conditions C.3 and C.4 hold then Nn admits a weakly convergent subsequence,
say (Nn`)`∈N, which converges weakly to N̄ . By (i), we have

P(N(A) = 0) = P(N̄ = 0),

but we still do not know if N̄ is simple, hence this only gives us that N and N̄∗ have the same
distribution, where N̄∗ is the support point process associated to N̄ .

Hence, we are left to prove that both (ii) and (II) imply that N̄ is simple, i.e., N̄ = N̄∗, a.s.
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Note that for all r, we have
kr∑
i=1

P(N̄(Ari) ≥ 2) = lim
`→∞

kr∑
i=1

P(Nn`(Ari) ≥ 2).

Assuming (ii), we obtain

inf
Tr

kr∑
i=1

P(N̄(Ari) ≥ 2) = inf
Tr

lim
`→∞

kr∑
i=1

P(Nn`(Ari) ≥ 2) ≤ inf
Tr

lim sup
n→∞

kr∑
i=1

P(Nn(Ari) ≥ 2) = 0.

This means that the point process N̄ is ordinary, as defined in [DVJ08, Definition 9.3.XI],
and, therefore, by [DVJ08, Proposition 9.3.XII], N̄ is simple.

Now, assuming (II) instead, we have for all bounded A ∈ R,
E(N(A)) = E(N̄∗(A)) ≤ E(N̄(A)) = lim

`→∞
E(Nn`(A)) = lim

n→∞
E(Nn(A)) = E(N(A)),

which means that E(N̄∗(A)) = E(N̄(A)) for all bounded A ∈ R, which implies that N̄ must
be simple. �

Remark C.4. In fact, since given any sequence of positive random variables (Xn)n∈N con-
verging in distribution to X, we have lim infn→∞ E(Xn) ≥ E(X), then we can strengthen
Proposition C.2 by replacing (II) by lim supn→∞ E(Nn(A)) ≤ E(N(A)), which actually only
need verifying for all bounded sets in semi-ring generating R.

We consider now the particular case where X = R+
0 × l̃∞ \ {∞̃}. In this space, we consider

the ring R and its subclass of sets I defined by:

R : =

{
m⋃
`=1

J` × Ã` : m ∈ N, J` = [a`, b`), and Ã` ∈ R̃

}
; (C.5)

I : =

{
m⋃
`=1

J` × Ã` : m ∈ N, J` = [a`, b`), and Ã` ∈ J̃

}
. (C.6)

Lemma C.5. The conclusion of Proposition C.2 holds if the condition are verified only for
all bounded sets of I.

Proof. We focus on the condition (i), which is the strongest. The others follow easily as one
can already guess from Remark C.4. The statement follows from the fact that J̃ is closed for
unions and then using the inclusion exclusion formula, one can write the probability involving
any set Ã` ∈ R̃ using the probability of events involving only elements of J̃ .

For example, assume that Ã1 = B̃1 ∩ D̃1, where B̃1, D̃1 ∈ J̃ . Observe that

P(N(∪m`=1J` × Ã`) = 0) =P
(
{N(J1 × (B̃1 ∩ D̃1)) = 0} ∩ {N(∪m`=1J` × Ã`) = 0}

)
=P
(
{N(J1 × B̃1) = 0} ∩ {N(∪m`=1J` × Ã`) = 0}

)
+ P

(
{N(J1 × D̃1) = 0} ∩ {N(∪m`=1J` × Ã`) = 0}

)
− P

(
{N(J1 × (B̃1 ∪ D̃1)) = 0} ∩ {N(∪m`=1J` × Ã`) = 0}

)
,
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which means that all events on the 3 last terms correspond to valued of the avoidance function
over sets of I, as we wanted. In the same way, if Ã1 = B̃1 \ D̃1, for B̃1, D̃1 ∈ J̃ , for example,
we could use the fact that P(N(Ã1) = 0) = P(N(B̃1 ∪ D̃1) = 0) − P(N(D̃1) = 0) and obtain
a similar formula for the avoidance function using only sets in I as we did above.

Hence, we have just shown that we can handle unions, intersections and exclusions of sets of
J̃ . Noting that Ã` ∈ R̃ can always be written by using a finite number of these set operations
involving elements of J̃ , the conclusion follows. �

Appendix D. Asymptotic independence in disjoint time intervals

We now state a series of auxiliary lemmas which will enable us to establish the second equality
in Proposition 3.17. The first lemma, essentially says that in order to create a gap between
the blocks we create an error which is the size of gap times the probability of having a rare
event. We refer to [FFMa20, Lemma 3.5] for a proof.

Lemma D.1. For any fixed A ∈ BV and s, t′,m ∈ N, we have:∣∣P(W0,s+t′+m(A))− P(W0,s(A) ∩Ws+t′,s+t′+m(A))
∣∣ ≤ t′P(A).

The second lemma gives the error for estimating the probability of having at least one rare
event inside a block by the sum of the probabilities of having one individual rare event.

Lemma D.2. For any fixed A ∈ BV and integers s, t,m, we have:

|P(W0,s(A) ∩Ws+t,s+t+m(A))− (1− sP(A))P(W0,m(A))| ≤∣∣∣∣∣∣sP(A)P(W0,m(A))−
s−1∑
j=0

P(A ∩Ws+t−j,s+t−j+m(A))

∣∣∣∣∣∣+ sP(A ∩W c
1,s(A)).

Proof. Note that the first term in the bound is measuring the mixing across a time gap of
size t and the second term is measuring the probability that two events A cluster in the first
block. Adding and subtracting and using the triangle inequality we obtain that∣∣P(W0,s(A) ∩Ws+t,s+t+m(A))− (1− sP(A))P(W0,m(A))

∣∣ ≤∣∣∣∣∣∣sP(A)P(W0,m(A))−
s−1∑
j=0

P(A ∩Ws+t−j,s+t−j+m(A))

∣∣∣∣∣∣+
+

∣∣∣∣∣∣P(W0,s(A) ∩Ws+t,s+t+m(A))− P(W0,m(A)) +

s−1∑
j=0

P(A ∩Ws+t−j,s+t−j+m(A))

∣∣∣∣∣∣ . (D.1)

For the second term on the right, by stationarity, we have

P(W0,s(A) ∩Ws+t,s+t+m(A)) = P(Ws+t,s+t+m(A))− P(W c
0,s(A) ∩Ws+t,s+t+m(A))

= P(W0,m(A))− P(W c
0,s(A) ∩Ws+t,s+t+m(A)).
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Now, decomposing the event W c
0,s(A) =

⋃s−1
i=0 σ

−i(A) according to the last occurrence of the
event A, we have

P(W c
0,s(A) ∩Ws+t,s+t+m(A)) =

s−1∑
i=0

P(σ−i(A) ∩Wi+1,s(A) ∩Ws+t,s+t+m(A))

=
s−1∑
i=0

P(σ−i(A) ∩Ws+t,s+t+m(A))−
s−1∑
i=0

P(σ−i(A) ∩W c
i+1,s(A) ∩Ws+t,s+t+m(A))

=
s−1∑
i=0

P(A ∩Ws+t−i,s+t−i+m(A))−
s−1∑
i=0

P(A ∩W c
1,s−i(A) ∩Ws+t−i,s+t−i+m(A)).

Therefore, we may write

0 ≤
s−1∑
i=0

P(A ∩Ws+t−i,s+t−i+m(A))− P(W c
0,s(A) ∩Ws+t,s+t+m(A)) ≤

s−1∑
i=0

P(A ∩W c
1,s−i(A))

Hence, using these last three computations we get:∣∣∣P(W0,s(A) ∩Ws+t,s+t+m(A))− P(W0,m(A)) +

s−1∑
j=0

P(A ∩Ws+t−j,s+t−j+m(A))
∣∣∣

≤
s−1∑
i=0

P(A ∩W c
1,s−i(A)) ≤ sP(A ∩W c

1,s(A))

The result now follows from plugging the last estimate into (D.1). �

We are now ready to prove Proposition 3.17.

Proof of Proposition 3.17. We split time into blocks of of length rn := bn/knc, I1 = [0, rn),
I2 = [rn, 2rn),. . . , Ikn = [(kn − 1)rn, knrn), Ikn+1 = [knrn, n). Let S` = S`(kn) be the number
of blocks Ij contained in Jn,`, i.e., ,

S` := #{i ∈ {1, . . . , kn} : i ∈ J̃kn,`} = d(b` − a`)kne.

For each ` = 1, . . . ,m, we define

A` :=
m⋂
i=`

WJn,i

(
A

(qn)
n,i

)
.

Set i` := min{j ∈ {1, . . . , kn} : Ij ⊂ Jn,`} = dkna`e. Then Ii` , Ii`+1, . . . , Ii`+S`−1 ⊂ Jn,`. Now,
fix ` and for each i ∈ {i`, . . . , i` + S` − 1} let

Bi,` :=

i`+S`−1⋂
j=i

WIj (A
(qn)
n,` ), I∗i := [(i− 1)rn, irn − tn) and I ′i := Ii \ I∗i .

Note that |I∗i | = rn − tn =: r∗n and |I ′i| = tn.
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Using Lemmas D.1 and D.2, we obtain∣∣∣P(Bi,` ∩A`+1)− (1− rnP(A
(qn)
n,` ))P(Bi+1,` ∩A`+1)

∣∣∣ ≤ r∗nP(A
(qn)
n,` ∩W1,r∗n(A

(qn)
n,` )) + 2tnP(A

(qn)
n,` )

+

r∗n−1∑
j=0

∣∣∣P(A
(qn)
n,` )P(Bi+1,` ∩A`+1)− P

(
σ−j−(i−1)rnA

(qn)
n,` ∩Bi+1,` ∩A`+1

) ∣∣∣,
Now using condition Д∗q(un), we obtain∣∣∣P(Bi,` ∩A`+1)− (1− rnP(A

(qn)
n,` ))P(Bi+1,` ∩A`+1)

∣∣∣ ≤ Υkn,n,`

where
Υkn,n,` := r∗nP(A

(qn)
n,` ∩W1,r∗n(A

(qn)
n,` )) + 2tnP(A

(qn)
n,` ) + r∗nγ(q, n, tn).

By (3.34), we may assume that n is sufficiently large so that by induction, we obtain:∣∣∣P(Bi`,` ∩A`+1)−
(

1− rnP(A
(qn)
n,` )

)S`
P(A`+1)

∣∣∣ ≤ S`Υkn,n,`.

and consequently, again by an induction argument,∣∣∣P(A1)−
m∏
`=1

(
1− rnP(A

(qn)
n,` )

)S` ∣∣∣ ≤ m∑
`=1

S`Υkn,n,`.

Since, for each ` = 1, . . . ,m, we have S` = d(b` − a`)kne ∼ kn|J`|, it follows that, by (3.34),
we have

lim
n→+∞

m∏
`=1

(
1−rnP(A

(qn)
n,` )

)S`
= lim
n→+∞

m∏
`=1

(
1−
⌊
n

kn

⌋
P(A

(qn)
n,` )

)kn|J`|
=

m∏
`=1

e−ν(A`)|J`|

To conclude the proof it suffices to show that limn→+∞
∑m

`=1 S`Υkn,n,` = 0, which means that
the following terms need to vanish

r∗n

m∑
`=1

kn|J`|P
(
A

(qn)
n,` ∩W1,r∗n(A

(qn)
n,` )

)
+ 2tn

m∑
`=1

kn|J`|P(A
(qn)
n,` ) + r∗n

m∑
`=1

kn|J`|γ(q, n, tn).

The first term vanishes by Д′q(un). The second term also vanishes because, by (3.2), we have
kntn = o(n) and, by (3.34), we have nP(A

(qn)
n,` ) → ν(A`) ≥ 0. The third term vanishes on

account of condition Д∗q(un). �

Appendix E. Remaining proofs for the dynamical examples

Section 2.2 gave concrete dynamical examples where the theory in this paper holds. As noted
in the discussion after Theorem 4.1, previous work shows that many of the required conditions
hold. In this section we fill in the missing proofs, starting by showing that the piling process
is well-defined for observables whose norm is maximised at periodic points. Note that the
existence of the limit in (3.15) follows from a simpler version of the ideas here.

Recall that we are dealing with an acip µ and that for our periodic point ζ we are always
assuming that the density exists and is bounded, say dµ

Leb = D ∈ (0,∞). For definiteness
assume that we are dealing with a non-invertible map, the observable is as in (2.6),M = {ζ}
and ζ is a repelling fixed point (therefore p = 1). In this case the process (Yj)j∈Z is such that,
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for some s ∈ N0, we have Yj =∞, for all j ≤ −s and Yj = U · ‖(DTζ)j(Θ)‖d (DTζ)j(Θ)

‖(DTζ)j(Θ)‖ , for all
j > −s, where U is a uniformly distributed random variable on the interval [0, 1] independent
of Θ, which has a uniform distribution on Sd−1 and (DT )iζ denotes the i-fold product of the
derivative of T at ζ (which is invertible since we are assuming that ζ is repelling).

This clearly satisfies (2)–(4) for the piling process, so we need to show (1), i.e.,

L
(

1

τ
Xrn+s,rn+t
n

∣∣∣∣ ‖Xrn‖ > un(τ)

)
−−−→
n→∞

L ((Yj)j=s,...,t) , for all s < t ∈ Z and all τ > 0.

Without loss of generality we assume that g is positive in a neighbourhood of ζ, so ‖Xrn(x)‖ >
un(τ) can be written g (dist(T rn(x), ζ)) > un(τ). From (2.14) we see that asymptotically
un(τ) ∼ g

((
τ
Cn

)1/d), where C = DLζ for Lζ = limr→0
Leb(Br(ζ))

r (this exists in the cases
considered here). In this section we will assume that this is an equality since all our es-
timates are asymptotic in n, so similarly u−1

n (z) = Cn
(
g−1(z)

)d, where we will also as-
sume this is well-defined. Since we are assuming that ‖Xrn(x)‖ = un(τ), let v < 1 be such
that Xrn(x) = un(vτ), which translates as dist(T rn(x), ζ) =

(
vτ
Cn

)1/d. Using the lineari-
sation domain around the fixed point ζ from Hartman-Grobman theory, dist(T rn+k(x), ζ) ∼(
vτ
Cn

)1/d ‖(DTζ)k(w)‖, where w =
Φζ(T rn (x))
‖Φζ(T rn (x))‖ and Φζ is as in (2.6). It follows that Xrn+k(x) ∼

g
((

vτ
Cn

)1/d ‖(DTζ)k(w)‖
)

(DTζ)k(w)

‖(DTζ)k(w)‖ , from which we find

u−1
n (Xrn+k(x))

τ

Xrn+k(x)

‖Xrn+k(x)‖
∼ v‖(DTζ)k(w)‖d

(DTζ)
k(w)

‖(DTζ)k(w)‖
.

All of these asymptotics become equalities as n→∞. The fact that T rn(x) is chosen according
to the invariant measure µ on the small neighbourhood Bg−1(un(τ))(ζ) = {‖Xrn(x)‖ < un(τ)}
of ζ and the fact that µ behaves asymptotically like Lebesgue measure on small neighbourhoods
of ζ give that the finite Yjs are indeed of the form required. The infinite terms appear because,
due to the repelling nature of ζ, the entrance of the orbit of x at time rn in Bg−1(un(τ))(ζ)
can only be preceded by a finite number, s ∈ N0, of consecutive hits to Bg−1(un(τ))(ζ). But
then T rn−s−1(x), for example, must belong to neighbourhood of T−1(ζ) \ {ζ}, which are at a
fixed distance from ζ: let c = dist(ζ, T−1(ζ) \ {ζ}) > 0. Then for n sufficiently large we have
dist(T rn−s−1(x), ζ) > c/2 and hence u−1

n (‖Xrn−s−1‖) ∼ Cn(c/2)d, which clearly diverges to
∞ as n→∞.

In the invertible case, for the toral diffeomorphisms considered, we have T−1(ζ) = ζ and
therefore for all j ∈ Z, we have Yj = U · ‖(DTζ)j(Θ)‖d (DTζ)j(Θ)

‖(DTζ)j(Θ)‖ , where U and Θ are as
above.

We observe that if instead ζ were a periodic point of period q > 1 then elements of Y would
be the same as for the fixed point case, but with q − 1 ∞ terms between the entries qk and
q(k + 1), for all k ∈ Z.

Now that we understand (Yj)j it is easy to see that the condition

P(all finite Qj ’s are mutually different) = 1

in Theorem 2.11 is also trivially satisfied in these examples as it can be interpreted as ζ being
hyperbolic.
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In the one dimensional case, concerning most of the examples given in the noninvertible
scenario in Section 2.2, if we consider ζ as a repelling fixed point such that |DTζ | = χ > 1
then, in this case, (Yj)j assumes the simpler form:

(. . . , ∞, ∞, Uχ−s, . . . , Uχ−1, U, Uχ, Uχ2, . . .)

Finally, to obtain the piling process we need to condition the Yj on the event infj≤−1 ‖Yj‖ ≥ 1,
which is to say that in the computation of the Yj , the exceedance occurring at time rn is indeed
the first exceedance of the cluster, which means s = 0 and therefore (Zj)j is of the form

(. . . , ∞, ∞, U, Uχ, Uχ2, . . .)

It remains to show that the Manneville-Pomeau case satisfies our conditions. We first show
Д′qn . We use the same technique as in [FFTV16], which is to employ [HSV99, Lemma 3.5]
which estimates for a set U ,

N∑
j=1

1

µ(U)
µ(U ∩ T−jγ (U)) ≤ N sup

j=τU ,...,N
sup
U

P j(1Uh)

h

where h is the density and P is the transfer operator and τU is the first return time of U to
itself. For the next estimates, the argument in [HSV99] required that the set U is a cylinder set,
but in fact the distortion properties follow from the iterates of interest remaining a bounded
distance from 0. Hence the same methods will work for a small Borel set in the linearisation
domain of z. Using the facts that Ph = h and P is a positive operator along with some
distortion estimates,

P j(1Uh)

h
.

1

inf h

µ(U)

Leb(T τUγ U)

where Leb is Lebesgue. Since inf h > 0 we can ignore the first term.

In our setting this translates to an estimate of Д′qn becoming:

n

rn∑
j=max{qn,τ ′n}

µ(U (qn)
n ∩ T−jγ Un) . rn

µ(U
(qn)
n )

Leb(T
τ ′n
γ U

(qn)
n )

,

where τ ′n is the smallest j ≥ 1 with U (qn)
n ∩ T−jγ Un 6= ∅.

We will suppose that ζ is a periodic point of period q and |DT qγ (ζ)| > 1. We set qn = q for
all n ∈ N. Hartman-Grobman theory around a repelling periodic point says that before the
set Un can return to hit U (qn)

n it must have (after � log n iterates) reached the scale of the
linearisation domain, which we can treat as order 1. Hence Leb(T

τ ′n
γ U

(qn)
n ) & 1, and we find,

since also µ(U
(qn)
n ) ∼ τ/n,

n

rn∑
j=τ ′n

µ(U (qn)
n ∩ T−jγ Un) .

rn
n
.

Therefore we can obtain our required estimates with rn = o(n). Adding this fact to [FFTV16,
(19)] we find that the requirement on γ so that both Дqn and Д′qn hold is 3 + γ+ 2γ2− 1

γ < 0,
eg γ ∈ (0, 0.289).
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As final remark, we recall that the theory developed here applies to higher dimensional cases,
where d > 1. We include here a finite time sample path generated by a uniformly expanding
2-dimensional system covered by Theorem 2.5.

Figure E.1. Plot of finite sample simulation of Sn(t) with n = 5000, where
Xj = ψ ◦ T j(x, y), where T (x, y) = (3x mod 1, 3y/2 mod 1), ψ(x, y) = (|x−
1/8|−2 − |x − 3/8|−2, |y − 8/19|−2 − 2|y − 12/19|−2 + |y − 12/13|−2). Here
we have completed the graph in order to make the jumps more visible. Note
that ζ = 8/19 is a periodic point of period 3 of the map 3y/2 mod 1 and
12/19, 12/13 are its orbital points.
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