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Numerical models are essential tools for the study and analysis of the hydrodynamics of
estuarine systems. However, the model results contain uncertainties, which need to be
minimized to increase the accuracy of predictions. In this work, the ensemble technique
is proposed as a solution to improve hydrodynamic forecasts for estuarine regions. Two
numerical models, openTELEMAC-MASCARET and Delft3D, were considered for the
application of this technique to two Portuguese estuaries. Superensembles for three
scenarios (summer, winter, and extreme event) were built to assess the effectiveness
of the technique in improving water level prediction. Various weighing techniques were
tested in the construction of the ensembles. Weighing techniques that consider the
previous performance of each model alone outperformed other techniques. This was
observed for all scenarios considered, at all sampling points and in both studied
estuaries. The effect of the ensemble size was also analyzed. It was found that the size
of the set is directly related to the prediction accuracy, with the best results provided
by the superensembles with the highest number of elements. It is concluded that the
combined use of several hydrodynamic models reduces the uncertainty of the results
and increases the reliability and consistency of predictions for estuarine regions.

Keywords: estuaries, hydrodynamics, ensemble, numerical models, extreme events

INTRODUCTION

Coastal regions, particularly the estuarine areas, are of strategic importance from an environmental,
economic, and social point of view. They provide multiple ecosystem services, such as fishery and
other food resources, leisure and tourism, energy, water, and raw materials. Coasts are generally
densely populated and highly urbanized. Approximately 40% of the world population lives at
a distance less than 100 km from the coast, and that percentage is increasing. This implies an
increase in economic activities, coastal infrastructures, and urban intensification (Dangendorf
et al., 2012; IPCC, 2012; Hallegatte et al., 2013; Moser et al., 2014; Bell et al., 2018). Estuaries are
particularly dynamic coastal systems, with strong variations in salinity, currents, stratification, and
water quality. They are subject to the influence of meteo-oceanographic and geomorphological
phenomena such as wind, tides, waves, currents, river flows, transport of sediments, erosion, and
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accretion. In terms of ecosystems, they are highly productive,
serving as habitats for numerous species. They usually present
vast urban areas due to their privileged situation in terms
of resources and accessibility. The massive occupation entails
the artificialization of the banks, which leads to a loss of
biodiversity, affecting both the physical and environmental
properties of the water/land interface. This increases the
vulnerability of the system and, therefore, the risk to populations
and their assets, with adverse effects on the economy (Peixoto,
2016). Considering the current context of climate change, an
increase in the frequency and intensity of extreme events is
expected (IPCC, 2012), with serious consequences for society
and the environment, and with impacts on populations,
infrastructures, habitats, and ecosystem services (Vose et al.,
2014; Bell et al., 2018).

There is, therefore, an urgent need for accurate scientific
and technical information to support sustainable coastal
management, to reduce the exposure and vulnerability of
estuarine areas, to mitigate the risks associated with different
climate scenarios and to promote the adaptation and the
resilience of communities to potential adverse impacts (Coelho
et al., 2009; Veloso-Gomes, 2016). To provide this accurate
information, it is necessary to understand, in a comprehensive
way, all the hydrodynamic processes that take place in
estuaries, and their interactions with anthropogenic activities
and ecosystems. In situ measurements can help to understand
these phenomena, enabling the representation of the current state
of the systems and their main historical evolutionary trends.
However, obtaining this type of data is not simple, as it requires
detailed planning and constant monitoring, which is not always
feasible. As a consequence, there is a huge lack of continuous and
long-term observations. The limited knowledge, related to a lack
of systematic monitoring, in combination with the complexity
of estuarine systems, leads to a high degree of uncertainty about
future scenarios and the effects they will have on populations and
ecosystems (Iglesias et al., 2020b).

Numerical models are valuable tools that make it possible to
overcome shortcomings in information (Horritt and Bates, 2002;
Liu et al., 2008; Chen et al., 2015a,b; van Maren et al., 2015;
Pereira, 2016). The efforts of the scientific community and the
developments in computational techniques allowed to increase
the simulation capacity, improve the accuracy and resolution of
the numerical models and reduce the computational processing
time. Numerical simulation of hydrodynamic processes in
estuarine systems is essential to evaluate the effects of forcing
terms, through the imposition of dynamic boundary conditions,
the inclusion of topo-bathymetric characteristics, and the
presence of anthropic structures (Bastos et al., 2016; Teng et al.,
2017). However, each numerical model has its own strengths and
simplifications, and its results and uncertainties are dependent
on many factors, such as its conceptual framework, approach
to physical processes, initial and boundary conditions, and
horizontal and vertical spatial resolutions. The assumptions made
to define and quantify those factors are also a relevant source of
the uncertainty associated with a model (Feng et al., 2011).

Next to the natural randomness associated with the temporal
and spatial variation of natural processes, there are other

sources of numerical model uncertainties. They can result from
model initialization, due to, for example, incomplete required
data, measurement errors or errors in data processing, or
reside in the model itself, due to imprecise parametrization of
physical processes, inaccuracies in the definition of parameters,
the existence of unresolved scales, or errors in the boundary
conditions (Palmer, 2003; Buizza et al., 2005; Weigel et al.,
2008). Uncertainties in the construction and application of
these numerical models can be grouped into: initial conditions
uncertainties, model boundary conditions and model parameters
uncertainties, and structural uncertainties (Tebaldi and Knutti,
2007). Furthermore, it must not be forgotten that any attempt
to represent nature in a set of equations will always be a
simplification of reality that inevitably introduces uncertainties.
Although the partial differential equations that govern estuarine
hydrodynamic phenomena are well known, they must be
truncated to a finite-dimensional set of linear equations to
be computationally integrated and solved. The uncertainties
associated with this process can propagate and produce effects
across the entire spectrum of scales predicted by the model
(Palmer et al., 2004; Hagedorn et al., 2005). To produce a
perfect forecast, a sound knowledge of each process and state
of the system would be needed, and this should be perfectly
implemented in the model. However, this can only be done in an
approximate way, as even the actual quantification of the system
is accompanied by inherent uncertainties. All uncertainties, even
minor ones, propagate through the model processes, adding up
and eventually leading to a large forecast error (Mohan Das
et al., 2017; Deutscher Wetterdienst, 2021). The need for accurate
forecasts, where errors of this type are minimized, highlights the
importance of finding and implementing new solutions to deliver
better numerical results. In this context, ensemble modeling is
considered as one of the best solutions because it can minimize
the combined uncertainty in input data, model parameters and
model structure, improving the performance of the models
(Viney et al., 2009; Suh et al., 2012; Mohan Das et al., 2017).

Given that the ensemble technique has not yet been fully
implemented for the assessment of estuarine hydrodynamics,
the main objective of this study is the implementation and
testing of an ensemble technique for estuarine regions to improve
hydrodynamic forecasts and demonstrate its effectiveness in
reducing the uncertainty of the results. The technique will
be selected and tested considering various scenarios, different
estuarine regions, diverse locations inside the estuaries and
several statistical techniques for ensemble construction. In the
following sections we describe the approach used for modeling
the hydrodynamics of the Douro and Minho rivers estuaries
using an ensemble technique.

THE ENSEMBLE TECHNIQUE

A numerical model ensemble is the combination of several
numerical model simulations using statistical methods. This
technique consists of running different numerical models of the
same natural system, or running the same model considering
changes in key input parameters. The obtained results are
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synthesized in a single result that presents smaller bias and
variance than the individual solutions, thus improving the
accuracy, reliability and consistency of the final prediction
(Tebaldi and Knutti, 2007; Re and Valentini, 2010). It is a
technique widely applied in atmospheric and climate sciences
for weather, seasonal, interannual and climate change forecasting
(Gneiting and Raftery, 2005; Weigel et al., 2008; Feng et al.,
2011; WMO, 2012; IPCC, 2021). Other scientific domains
where ensembles techniques have been applied are hydrology
(Ajami et al., 2006), morphodynamics (Thornhill et al., 2012),
geography and remote sensing (Benediktsson et al., 2007), wave
and coastal forecasting (Yang-Ming et al., 2013; Kourafalou
et al., 2015), public health (Thomson et al., 2006), agriculture
(Cantelaube and Terres, 2005), information security (Menahem
et al., 2009), astronomy and astrophysics (Bazell and Aha,
2001), finance (Leigh et al., 2002), medicine (Polikar et al.,
2008) and bioinformatics (Re and Valentini, 2010). In estuarine
hydrodynamics, this technique has not been fully adopted and
most modeling studies are based on a single model. To the
best of our knowledge, few works were carried out in this area.
However, a recent interest is emerging (Mohan Das et al., 2017;
Iglesias et al., 2019b; Taeb and Weaver, 2019; Dinápoli et al., 2021;
Khanarmuei et al., 2021).

The uncertainty in forecasts was first introduced by Lorenz
(1963, 1965), who examined the uncertainties of initial states,
their effect on predictions, and the so-called butterfly effect.
Centered on the atmosphere, Lorenz observed that this system is
chaotic due to the non-linearity of its processes. He demonstrated
that, no matter how good the observations or forecasting
techniques are, there will be a non-transposable limit to how
far into the future it is possible to make a forecast (Roy
Bhowmik and Durai, 2008). After Lorenz’s studies, the idea
of combining predictions from multiple models was explored
for more than 30 years in econometrics and statistics (Bates
and Granger, 1969; Dickinson, 1973; Newbold and Granger,
1974). The leap into the earth sciences was taken by Epstein
(1969); Leith (1974) and Thompson (1977), who included the
concept of ensembles in weather forecasting, considering the
perspective of the randomness of atmospheric motion. However,
it was not until the 1990s that the first ensemble prediction
systems were implemented at the ECMWF and at the NCEP
(Feng et al., 2011).

Therefore, for the case of predictions of future behavior,
an ensemble generates a forecast based on a set of forecasts,
minimizing the systematic bias that occurs when a single
model solution is used (Roy Bhowmik and Durai, 2010).
However, a combination of different forecasts is only useful
if they disagree on some inputs or if they are generated by
different models. There is no gain of information from a
combination of identical models with identical results (Krogh
and Vedelsby, 1995). The numerical models that are members
of the set should therefore include different initial conditions,
boundary conditions, parameterizations, model structures, or
some combination of them, to reflect the uncertainty (Buizza
et al., 2005; Demeritt et al., 2007). The ensemble average of
these different solutions yields a more accurate forecast than
the individual forecasts of each ensemble member, while the

ensemble dispersion provides quantitative information about
forecast uncertainty (Wandishin et al., 2001).

Two main types of ensembles can be distinguished: those that
use results from a single model and those that are computed
with multiple models. Ensembles composed of a single model
combine several runs with different initial and/or boundary
conditions. It has long been accepted that running an ensemble
of numerical forecasts from perturbed initial conditions can have
a beneficial impact on prediction ability (Yang-Ming et al., 2013).
The multimodel ensemble uses several numerical models with
different complexities and structures that are run using similar
initial and boundary conditions (Iglesias et al., 2019b, 2020b).

Using several models in an ensemble is a way to take into
account our lack of knowledge about the system that is being
modeled, as different models make different assumptions and
perform differently (Palmer et al., 2004; Doblas-Reyes et al.,
2010). If multiple initial conditions are used for each model, the
multimodel ensemble is a superensemble (Tebaldi and Knutti,
2007). A superensemble presents advantages when compared
with a multimodel ensemble. A multimodel ensemble reduces
the random component in model errors but does not provide
any reduction in the initial condition uncertainty, which is taken
into account in the superensemble (Doblas-Reyes et al., 2010).
Furthermore, some models may provide better predictions for
some conditions than for others. For example, a model might
provide better predictions for summer conditions than for winter
conditions. Thus better overall forecasts can be obtained using
combinations of different models for different scenarios, also
known as conditional ensembling (Viney et al., 2009).

Although the results of past studies are dependent on
ensemble size and region, one can state that ensembles forecasts
that use multiple models usually outperform single model
deterministic forecasts and often outperform any combination
of solutions from a single model (Krishnamurti et al., 1999;
Georgakakos et al., 2004; Hagedorn et al., 2005; Palmer et al.,
2005; Tebaldi and Knutti, 2007). However, and although it seems
that increasing the sample size of the ensemble by pooling
information from different models presumably offers a reduction
in the variance of the mean of the forecast, it is not clear that such
a strategy will always be effective. This is due to the linear and
non-linear biases in each model (Rajagopalan et al., 2002). The
ensemble’s So, its suitability has thus to be tested for estuarine
hydrodynamic models.

There is a general agreement on the fact that the combination
of several different forecasts provides significant improvements
in the solutions. After running the models, the computed
forecasts are usually collapsed into a consensus forecast or
ensemble mean. There are many possible methods to obtain
an ensemble result (Clemen, 1989). However, it is not clear
which is the ideal method for different forecasting problems
(Thomson et al., 2006; Rozante et al., 2014). Several statistical
techniques can be used that can be categorized into three types:
simple composite methods, weighted ensemble methods, and
synthetic methods (Suh et al., 2012). The simplest technique
is to use the median or the arithmetic mean, which has the
effect of filtering out features of the forecast that are less
predictable while retaining those features that show agreement
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among the members of the ensemble (Yang-Ming et al., 2013).
This technique is usually selected when no in situ observations
exist for comparison. However, different numerical models often
have different simulation capabilities, and a variable may be
better represented by one model and worse by another. To
improve the ensemble solution, the predictive capability of each
model should be considered as it makes sense to attribute more
weight to the better performing models (Tebaldi and Knutti,
2007). Nevertheless, there is some controversy about the best
way to combine the results of the models, and some previous
studies in the literature found no evidence that the weighted
average system provides results closer to observation than the
establishment of equal or random weights (Déqué and Somot,
2010). In a weighted average method, a weighting coefficient is
allocated to each model according to its forecasting performance
as a single model (Feng et al., 2011). These coefficients are
obtained by comparing numerical results with field observations,
and generally evolve from metrics such as mean squared
errors, correlation coefficients or multiple linear regressions
(Woodcock and Engel, 2005; Chakraborty and Krishnamurti,
2006; Roy Bhowmik and Durai, 2010). Other more complex
methods include linear regressions, non-linear regressions,
principal component regression, singular value decomposition,
composites, linear programming, multimodel superensembles,
Supra Bayesian method or neural networks (Krishnamurti et al.,
1999; Ajami et al., 2006; Roy Bhowmik and Durai, 2008, Roy
Bhowmik and Durai, 2010; Viney et al., 2009; Feng et al., 2011;
Kumar et al., 2012; WMO, 2012; Rozante et al., 2014; Mohan
Das et al., 2017; Bernhofen et al., 2018). However, as stated
by Clemen (1989), simple combinations often outperform more
complex methods.

GEOGRAPHICAL SETTINGS

For the application of the ensembles technique, the estuaries
of the rivers Minho and Douro in northern Portugal were
chosen (see Figure 1). Despite being geographically close and
having similar seasonal flow regimes (minimum in summer and
maximum in winter), these estuaries have distinct dynamics and
environmental conditions. They differ in the river average and
peak discharges, as well as in terms of morphology, bathymetry,
length, and banks configuration and level of urbanization
(Iglesias et al., 2020b).

The river Minho reaches the Atlantic Ocean between A
Guarda (Spain) and Caminha (Portugal). Its 40 km-long shallow
estuary has an average depth of 4 m, although depths around 20 m
can be found along stretches where the narrowing of the main
channel increases current velocities and, consequently, erosion
(Freitas et al., 2009; Reis et al., 2009). The freshwater inflow is
controlled by the Frieira dam, located 80 km upstream from
the mouth. Compared to the river Douro, the river Minho has
lower flow rates, which increase the water residence time up
to 1.5 days (Ferreira et al., 2005). This long residence time, in
conjunction with the small estuarine area and relatively low water
volumes, make the estuary vulnerable to pollutants, which can
endanger its great diversity of habitats (Domínguez García et al.,

2013; Ribeiro et al., 2016). It is a partially mixed estuary, where
vertical stratification can occur due to a salt wedge configuration
(Baeta et al., 2017). Its dynamics is strongly influenced by the
tide, with a direct effect on sediment transport. The lower part of
the estuary, near the mouth, presents a widening that results in a
decrease in current velocity, creating favorable conditions for the
deposition of sediments (Delgado et al., 2011; Portela, 2011; Melo
et al., 2020). The morphodynamic patterns due to silting have
caused restrictions to navigation and the appearance of islands
and sandbanks during low tide (Zacarias, 2007; Reis et al., 2009;
Santos et al., 2021). This fact is most notable in spring low-tide
conditions, when the connection between the estuary and the sea
is restricted to two shallow channels (Iglesias et al., 2019a, Iglesias
et al., 2020b).

The river Douro flows into the Atlantic Ocean through an
estuary surrounded by two large cities: Porto and Vila Nova de
Gaia. The estuary is relatively narrow and highly dynamic, with
torrential regimes that produce strong currents and recurrent
floods (Bastos et al., 2012; Iglesias et al., 2020a). It has an
irregular bathymetric configuration, with depths between 0 and
10 m, and some deeper regions, up to 28 m-deep, located at
narrower sections, outer bends, and former sites of sediments
extraction (Portela, 2008). Its dynamics is conditioned by the
river flow, being highly dependent both on natural conditions
and on the hydroelectric power generation schedules at the
upstream Crestuma-Lever dam, which limits the estuary to
21 km in length. On the southern bank of the estuarine mouth,
there is a wetland and a sand spit that partially obstructs
the entrance and protects the estuary. This sand spit, formed
by fluvial and maritime sediments, is conditioned by natural
(wind, rain, river flows, waves, tides, and storms) and anthropic
(construction of breakwaters and dams, sand extraction, and
dredging) processes (Santos et al., 2010; Granja et al., 2011). In
the past, this sand spit suffered erosion and a slow migration
toward the interior and to the north of the estuary, partially
occupying the navigation channel. To ensure safe navigation,
the northern breakwater at the inlet was extended and a new
detached breakwater was built. These structures, completed in
2008, interfere with the hydromorphodynamic patterns, silting
up the wetland and significantly increasing the sand spit area
and volume in a relatively short period (∼10 years) (Bastos et al.,
2012). Historical records show ruptures of this spit during flood
episodes, allowing for a rapid water discharge and reducing the
risk of urban flooding. Its current configuration, more stable and
robust, reduces the probability of rupture so that more severe
effects are expected in terms of economic losses and structural
damage during floods (Iglesias et al., 2019b).

MATERIALS AND METHODS

The numerical models for the ensemble were implemented using
the openTELEMAC-MASCARET (OTM) and the Delft3D (D3D)
modeling suites. They solve similar formulations of the shallow
water equations, considering several physical processes such as
tidal forcing, tidal flats, river discharges, the rotation of the
Earth, bottom friction, turbulence, sub- and supercritical flows,
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FIGURE 1 | Minho and Douro estuaries, bathymetry/topography and monitoring stations.

and water density effects (Jones and Davies, 2010; Robins and
Davies, 2010; Monteiro et al., 2011; van Maren et al., 2015).
These two packages were selected because they have shown to
be able to accurately simulate the hydrodynamic behavior in
estuarine areas, to assess the flooding risk, and to quantify the
effects of climate change (Corti and Pennati, 2000; Horritt and
Bates, 2002; Gomes et al., 2015; Putra et al., 2015). These OTM
and D3D models were already calibrated for the Minho and
Douro estuaries, and successfully demonstrated their ability to
accurately represent these estuaries’ characteristic hydrodynamic
patterns for both frequent and extreme events (Iglesias et al.,
2019b, 2020b, 2021; Melo et al., 2020; Weber de Melo et al., 2022).

The ensembles were based on simulations performed with
OTM and D3D modeling suites. These ensemble hindcasts,
performed for a training period, were compared with historical
in situ data, indicating which statistical technique is the
best. An ensemble obtained as a combination of two single
outputs, one from each modeling suite, would produce little
improvement compared to the outputs of the individual models,
as they are insufficient to resolve the inherent uncertainty.
Thus, superensembles are proposed to maximize the number of
members of the ensembles A set of M modified initial conditions
were considered to produce a superensemble hindcast for each
estuary. As two modeling suites are used, there will be a total of

2 M ensemble members, and the superensemble hindcast will be
the combination of the results of all these members.

Superensembles
The models were run for historical conditions to calibrate the
ensemble with in situ measurements of the water elevation
at several locations, namely: stations M1, M2, M3, and M4
for the Minho estuary, and stations D1, D2, D3, and D4 for
the Douro estuary (see Figure 1). The consideration of all
these stations will allow to inspect whether the technique’s
performance varies spatially, i.e., depending on the measuring
location. The simulations, run with both modeling suites,
OTM and D3D, considered three scenarios that represent
three different conditions: summer, winter, and extreme event
(flooding) conditions (Table 1). Measuring station M2 was only
available for the winter scenario.

A deterministic approach was adopted for this study.
Numerical modeling simulations were run for a single day of
2006 to proceed with the calibration of the ensemble results with
in situ data. This allows the maintenance of the characteristics
of each selected scenario. Each model run consisted of a
24 h-long simulation with constant river flow and water
elevation boundary conditions, preceded by a spin-up period
of 3 h to avoid numerical instabilities. The water elevation
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TABLE 1 | Characteristic flow rates.

Minho Douro

Summer Winter Extreme event Summer Winter Extreme event

Data 25/08/2006 23/02/2006 08/12/2006 17/08/2006 19/12/2006 25/11/2006

Q (m3/s) 42 495 2476 49 1205 7795

σQ (m3/s) 61 528 – 201 979 –

Q + σQ (m3/s) 103 1023 – 250 2184 –

Q −σQ (m3/s) 0 0 – 0 226 –

TABLE 2 | Characteristic ocean levels (above MSL).

Tide Minho Douro

h h

(m) (m)

Summer day maximum 1.39 0.78

Summer day minimum −1.30 −0.76

Winter day maximum 0.79 1.06

Winter day minimum −0.64 −1.05

Extreme event day maximum 1.32 1.20

Extreme event day minimum −1.18 −1.07

Extreme event day maximum + storm surge 2.42 2.30

Extreme event day minimum + storm surge −0.08 0.03

Annual highest tide 1.84 1.86

Highest spring tide 1.47 1.48

Highest neap tide 0.66 0.66

Annual lowest tide −1.8 −1.79

Lowest spring tide −1.47 −1.48

Lowest neap tide −0.67 −0.65

modeling results for ensemble construction were extracted at
the end of each performed simulation when the models are
stable. Given the predominant wind direction, the small size
of the estuaries and the close configuration of their mouths,
atmospheric (wind and sea level pressure) and wave forcing were
neglected. The scenarios and respective runs are summarized in
Supplementary Tables 1–3.

A superensemble was built for each of the proposed scenarios.
For each scenario, runs with different combinations of river
flow and oceanic water elevation were considered because
they are the principal hydrodynamic drivers in the considered
estuaries. The river flow rate was included as: (a) registered value,

(b) registered value plus standard deviation of the simulated
month, and (c) registered value minus standard deviation of
the simulated month, to include possible deviations associated
with inaccuracies in the river flow measurements (cf. Table 1).
Standard deviations were computed based on daily mean river
flows measured at Foz do Mouro (1973–2020), for the Minho
estuary, and hourly mean river flows at Crestuma-Lever (1998–
2020), for the Douro estuary (cf. Table 1). The water level
at the ocean boundary considered the (i) maximum and (ii)
minimum tide levels registered on the simulation day, as well
as the (iii) annual highest tide, (iv) highest spring tide, (v)
highest neap tide, (vi) annual lowest tide, (vii) lowest spring
tide, and (viii) lowest neap tide (cf. Table 2). Considering
these different water levels in the ensemble construction will
increase the number of ensemble members to avoid inaccuracies
associated with tidal amplification and asymmetry inside the
estuarine regions, as well as sudden changes in depth or
inaccuracies in the bathymetry included in the numerical grids.
For the extreme event, since extreme events are rare, with
percentiles of non-exceedance above 95% (Iglesias et al., 2021),
the standard deviation of the flow was not taken into account.
An additional ocean elevation of 1.10 m, associated with a
storm surge, was included for both estuaries (Gama et al., 1994;
Almeida et al., 2009).

Conditional Ensembling
Besides the winter and summer superensembles with their
48 members (models’ results), conditional ensembling was
considered to assess the effect of the ensemble size. The
numerical solutions for summer and winter were grouped
into the 24 highest and 24 lowest water elevation predictions.
The 48-member superensembles were calibrated with the mean
water elevation observed during the selected simulation day,

TABLE 3 | Ensembles characteristics.

Superensemble Number of members Included runs Calibrated with

Summer 48 All runs Mean water elevation during the simulation day

Winter 48 All runs Mean water elevation during the simulation day

Extreme event 32 All runs Mean water elevation during the simulation day

Summer, higher values 24 Runs with the highest water elevations Maximum water elevation measured during the simulation day

Winter, higher values 24 Runs with the highest water elevations Maximum water elevation measured during the simulation day

Summer, lower values 24 Runs with the lowest water elevations Minimum water elevation measured during the simulation day

Winter, lower values 24 Runs with the lowest water elevations Minimum water elevation measured during the simulation day

Frontiers in Marine Science | www.frontiersin.org 6 February 2022 | Volume 9 | Article 812255

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-09-812255 January 29, 2022 Time: 15:30 # 7

Iglesias et al. Hydrodynamic Models Ensemble for Estuaries

FIGURE 2 | Methodological flow diagram followed in this study.

FIGURE 3 | Scatter plots of the water elevation (in meters, referred to the MSL) for the Minho and Douro estuaries. The black line represents the perfect hindcast.
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TABLE 4 | Maximum and minimum absolute error, for each station/scenario/estuary/modeling suite, for all runs and their averages.

Estuary Scenario Station D3D OTM

max (LAE ) (m) min (LAE ) (m) max (LAE ) (m) min (LAE ) (m)

Douro Summer D1 2.075 0.376 2.075 0.375

D2 2.012 0.431 2.012 0.438

D3 2.021 0.430 2.021 0.429

D4 1.659 0.402 2.053 0.397

Winter D1 1.941 0.505 2.072 0.286

D2 2.225 0.123 2.128 0.065

D3 1.995 0.249 2.423 0.028

D4 4.627 0.011 2.935 0.040

Extreme event D1 2.080 0.096 2.999 0.609

D2 3.731 1.679 2.227 0.592

D3 3.983 2.036 3.052 1.737

D4 2.962 0.182 0.547 0.041

Minho Summer M1 1.864 0.492 1.963 0.469

M3 2.176 0.291 1.753 0.302

M4 2.154 0.303 1.730 0.303

Winter M1 2.486 0.001 2.587 0.004

M2 3.416 0.074 3.388 0.015

M3 2.066 0.082 1.861 0.253

M4 2.172 0.116 2.002 0.053

Extreme event M1 1.828 0.162 2.022 0.081

M3 1.127 0.053 0.979 0.016

M4 1.138 0.334 0.429 0.035

LAE averages D3D OTM

max (LAE ) (m) min (LAE ) (m) max (LAE ) (m) min (LAE ) (m)

Global 2.352 0.383 2.057 0.299

Global Douro 2.609 0.543 2.212 0.420

Global Minho 2.043 0.191 1.871 0.153

Global summer 1.994 0.389 1.944 0.388

Summer Douro 1.942 0.410 2.040 0.410

Summer Minho 2.065 0.362 1.815 0.358

Global winter 2.616 0.145 2.425 0.093

Winter Douro 2.697 0.222 2.390 0.105

Winter Minho 2.535 0.068 2.460 0.081

Global extreme event 2.407 0.649 1.751 0.444

Extreme event Douro 3.189 0.998 2.206 0.745

Extreme event Minho 1.364 0.183 1.143 0.044

whereas the results of the 24-member superensembles were
compared with the maximum and minimum values registered
at the measuring stations. The superensembles characteristics are
summarized in Table 3.

Weighting Techniques
To construct the ensembles solutions, the following techniques
were selected and evaluated: the simple model average
(SMA), the members’ median (Med), the trimmed mean
(Trim), and weighted average methods (WAM). For the
WAM technique, three weightings were analyzed: a random
weighting (WAM-Rand), the absolute error (WAM-AE) and the
squared error (WAM-SE).

The SMA and the Med techniques are the simplest ones
and will be used as benchmarks for comparison with more
sophisticated techniques. They consist of the arithmetic average
and of the median of the ensemble members. These techniques
are widely used for ensembles construction because there is
no need for comparisons between the models’ results and the
observations (Ajami et al., 2006; Viney et al., 2009; Déqué and
Somot, 2010; Weigel et al., 2010; Feng et al., 2011; Suh et al.,
2012). If the SMA is applied to a single forecast of each model,
the technique it is called a “poor man’s” ensemble (Du et al.,
2018). In both SMA and Med techniques, all model outcomes
have the same weight in the final forecast. This means that they
are likely to include several poor models’ results, degrading the
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TABLE 5 | Maximum and minimum absolute error for each station/scenario/estuary/modeling suite for the highest and lowest water levels.

Estuary Scenario Station D3D OTM

max (LAE ) (m) min (LAE ) (m) max (LAE ) (m) min (LAE ) (m)

Highest Douro Summer D1 0.827 0.252 0.829 0.250

D2 0.815 0.264 0.821 0.255

D3 0.821 0.256 0.877 0.164

D4 0.819 0.157 0.958 0.106

Winter D1 0.645 0.175 0.922 0.002

D2 1.446 0.102 1.440 0.010

D3 0.759 0.054 1.286 0.110

D4 3.530 1.043 1.839 0.270

Minho Summer M1 0.710 0.022 0.733 0.022

M3 0.675 0.059 0.664 0.050

M4 0.744 0.004 0.745 0.007

Winter M1 0.888 0.022 0.869 0.065

M2 1.271 0.048 1.265 0.002

M3 1.686 0.338 1.515 0.445

M4 1.662 0.426 1.627 0.352

Lowest Douro Summer D1 1.424 0.281 1.424 0.278

D2 1.320 0.160 1.320 0.117

D3 1.292 0.113 1.292 0.045

D4 1.234 0.071 1.317 0.014

Winter D1 0.885 0.013 0.882 0.048

D2 1.581 0.193 1.639 0.151

D3 1.554 0.110 1.498 0.051

D4 2.894 0.313 2.024 0.105

Minho Summer M1 0.724 0.296 0.823 0.261

M3 1.371 0.210 0.948 0.062

M4 1.340 0.158 0.916 0.180

Winter M1 1.999 0.761 2.100 0.546

M2 1.724 0.193 1.301 0.056

M3 1.512 0.100 1.411 0.357

M4 3.009 1.618 2.981 1.370

overall results (Roy Bhowmik and Durai, 2008, Roy Bhowmik and
Durai, 2010).

For the Trim technique, the outliers, which are the largest
and smallest values of the dataset that might affect the arithmetic
mean, are removed. Subsequently a simple average of the
remaining values is calculated. Several Trim combinations were
computed, considering the 36–46 centermost predictions for
summer and winter scenarios, the 20–30 centermost predictions
for the extreme event scenario, and the 12–22 centermost
predictions for the higher and lower predictions for the summer
and winter scenarios. It is expected that Trim predictions
lie somewhere between SMA and Med so that the Trim
ensembles with more members approach SME forecasts while
the Trim ensembles with fewer members approach Med forecasts
(Viney et al., 2009).

In a WAM technique, the weighting coefficients are
constrained to be always positive and their sum must be
equal to one. They shall not require large quantities of
data for their estimation and should distinguish between
better and poorer models (Woodcock and Engel, 2005). The

weighting coefficients need to be derived from comparisons
with the observations, taking into consideration the simulation
performance of each model through some statistical property
of the model’s calibration predictions (Viney et al., 2009;
Suh et al., 2012). Different models have in generally different
simulation capacities. At the same time, they forecast capacity
may vary depending on the analyzed variables, the seasons
and the geographic regions. If the different capacities of the
models are taken into account through an assignment of weights
(as done in WAM), the ensemble results can be closer to the
observations than those obtained with the arithmetic mean
method (Feng et al., 2011).

Since the SMA technique can be seen as a WAM technique
with an equal weight applied to each ensemble member, random
weights were considered to investigate the effectiveness of the
WAM methods. In the first random method, WAM-Rand1, the
run with index m gets the weight:

wm =
m

M
∑M

i=1
mi
M

(1)
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FIGURE 4 | Scatter plots of the water elevation (in meters, referred to the MSL) for the various ensemble techniques considered: SMA (+), Med (x), Trim ( ),
WAM-Rand1 (�), WAM-Rand2 (N), WAM-AE (�) and WAM-SE(N). The black line represents the perfect hindcast.

being M the number of simulations that integrate the ensemble
(Casanova and Ahrens, 2009). For the second random method,
WAM-Rand2, the weights are random numbers with a uniform
distribution between 0 and 1 that are then normalized (Déqué
and Somot, 2010).

For the knowledge on the performance of the models to be
incorporated in the construction of the ensemble, two more
techniques were considered. The WAM-AE technique, based on
the absolute error metric,LAE, and the WAM-SE technique based
on the squared error metric, LSE.

The absolute error metric is defined as:

LAE =
∣∣Xf − Xo

∣∣ (2)

Where Xf and Xo are the forecasted and the observed values,
respectively, of the variable X. In a similar way, the squared error
metric is defined as

LSE =
(
Xf − Xo

)2 (3)

In the WAM-AE technique, the weight wm is given by:

wm =

1
LAE∑M

k=1
1

LAE|k

(4)

Where M is the number of members in the ensemble, whereas in
the WAM-SE technique, the weight wm is given by:

wm =

1
LSE∑M

k=1
1

LSE|k

(5)

The performance of each model and ensemble was then evaluated
comparing the results with the 2006 in situ observations of water
elevation. Therefore, the AE (Equation 2) was selected as the
evaluation score. A flow diagram outlining the methodology
performed in this study is presented in Figure 2.
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RESULTS AND DISCUSSION

Prior to the superensemble construction, the results of the
individual numerical models were analyzed. The scatter plots in
Figure 3 showed a strong dispersion of results for all runs and
for all scenarios. This was expected, given the wide range of
variation imposed in the boundary conditions (Tables 1, 2 and
Supplementary Tables 1–3). Stronger dispersion was observed
for the summer and winter scenarios (cf. Figures 3A,B,D,E)
due to the wider range of adopted conditions when compared
to the extreme event scenario (cf. Figures 3C,F), but also
because, during extreme flooding events, the water level inside
the estuaries is only weakly affected by any variation of the
ocean tide level. Even so, the dispersion is larger for the summer
scenarios than for the winter scenarios.

The summer scenario runs were forced with low river flows,
causing the tide to become the main driver of the estuarine
dynamics. For each run, the measured water levels show little
variability along the length of the estuaries (cf. Figures 3A,D).
The modeled water levels at both estuaries show a much wider
variation due to the variations in the tide level among the various
runs. Nevertheless, none of the runs provides a good solution,
given that no solution is on the line of the perfect hindcast.

For the winter scenario, the differences between the upstream
and downstream sampling stations are more pronounced (cf.
Figures 3B,E). The highest elevations for the Minho estuary were
not recorded at the upstream station M3, but at the intermediate
station M2, probably due to the configuration of the estuary.
Again, the modeled solutions for both estuaries feature a wide
range of water levels, and for every station, there is at least one

close-to-ideal solution. This means that the river flow mechanism
that drives the hydrodynamic circulation during winter scenarios
is better represented by the numerical models than the tide.
Inaccuracies in the tidal water elevation could be related
with uncertainties in the model grid, due to imprecisions in
bathymetry and topography data, or inaccuracies in the definition
of the models coefficients, affecting the representation of the tidal
amplification and asymmetry inside the estuarine regions.

For the extreme event scenario (Figures 3C,F), the highest
water levels were registered at the upstream sampling stations
(M4 and D4), reaching 4 m at the Minho estuary and 8 m at
the Douro estuary. As expected, the modeled solutions feature
a wider range of water levels due to variations in river flow
between the various runs. For the Minho estuary, there are close-
to-ideal solutions for all stations. A different situation is found
for in the Douro estuary, at stations D2 and D3, where the
water level is always underestimated. This could be related with
uncertainties in the model grid because D2 and D3 are located on
the estuarine margins.

D3D hindcasts displayed higher errors, with a global average
minimum error of 0.383 m, while the global average minimum
error for OTM hindcasts was 0.299 m (cf. Table 4). For
winter and extreme event scenarios, OTM outperformed D3D
with average minimum errors of 0.145 and 0.093 m, for
winter, and 0.649 and 0.444 m, for extreme event. However,
for the summer scenario, D3D’s and OTM’s performances
are similar, with an average minimum error of 0.389 and
0.388 m, respectively. Regarding the estuary, the Minho estuary
presented more accurate hindcasts, with a global average
minimum error of 0.191 and 0.153 m, for D3D and OTM,

TABLE 6 | Best and second-best ensemble technique for each measurement station/scenario/estuary and associated absolute error.

Estuary Scenario Station Best LAE (m) 2nd best LAE (m)

Douro Summer D1 WAM-AE 0 WAM-SE 0.206

D2 WAM-AE 0 WAM-SE 0.173

D3 WAM-AE 0 Med 0.128

D4 SMA 0.024 Trim 46 0.031

Winter D1 WAM-AE 0 Trim 36 0.015

D2 WAM-AE 0 Trim 36 0.024

D3 WAM-SE 0.013 WAM-AE 0.115

D4 WAM-SE 0.008 WAM-AE 0.109

Extreme event D1 WAM-SE 0.012 WAM-Rand1 0.113

D2 WAM-SE 1.390 WAM-AE 1.723

D3 WAM-SE 2.506 WAM-AE 2.637

D4 WAM-SE 0 WAM-AE 0.030

Minho Summer M1 WAM-AE 0 Med 0.066

M3 WAM-AE 0 WAM-SE 0.197

M4 WAM-AE 0 Med 0.152

Winter M1 WAM-SE 0.001 WAM-AE 0.005

M2 WAM-SE 0.009 WAM-AE 0.132

M3 WAM-SE 0.009 WAM-Rand1 0.120

M4 WAM-SE 0.004 WAM-AE 0.214

Extreme event M1 SMA 0.037 Trim 30 0.054

M3 WAM-SE 0.002 SMA 0.013

M4 WAM-SE 0.028 WAM-AE 0.048
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respectively. Global average minimum errors for the Douro were
0.543 and 0.420 m (Table 4). Although small, the differences
between the OTM and D3D errors could be related with
the numerical grid implemented for each modeling suite.
While D3D uses a regular curvilinear gird, OTM uses an
unstructured irregular computation grid of triangular elements.

This unstructured grid suits the shape of the estuaries better,
providing better results.

The highest minimum errors were calculated for the extreme
event scenario at D3. Extreme events can be difficult to model due
to the complexity of their dynamics, namely the strong erosive
processes they give rise to, and the flooding of the riverbanks,

FIGURE 5 | Scatter plots of the water elevation (in meters, referred to the MSL) for the different ensemble techniques considered: SMA (+), Med (x), Trim ( ),
WAM-Rand1 (�), WAM-Rand2 (N), WAM-AE (�) and WAM-SE (N). The 24 highest forecasts were considered. The black line represents the perfect hindcast.
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which present a hydrodynamic behavior distinct from that of
the main estuarine channel. We assumed that measured data is
representing the reality. However, it cannot be ruled out that
these large differences between measured and hindcasted water
levels may be related to errors in the field campaigns, or to

inaccuracies in the numerical models for that specific locations.
Similarly to Figure 3 and Table 4 also reveals a strong dispersion
in the modeling results. The average maximum absolute error
for D3D was 2.352 m, but it reached a maximum value of
4.627 m for winter scenarios at D4 station. For OTM, the average

FIGURE 6 | Scatter plots of the water elevation (in meters, referred to the MSL) for the different ensemble techniques considered: SMA (+), Med (x), Trim ( ),
WAM-Rand1 (�), WAM-Rand2 (N), WAM-AE (�), and WAM-SE (N). The 24 lowest forecasts were considered. The black line represents the perfect hindcast.
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maximum absolute error was 2.057 m, reaching 3.388 m for the
winter scenario at M2.

Models results of the summer and winter scenarios were
divided into two groups, one group for the 24 highest water
level ocean boundary conditions and the other for the 24 lowest
ones. The results for these two groups were compared with
the highest and lowest field recorded water levels, and the
absolute errors were computed and presented in Table 5. It is
noticeable that OTM performs slightly better than D3D and that
dispersion is now lower for both modeling suites, with most
maximum absolute errors below 1.6 m and minimum dispersion
values below 0.3 m.

The results of the techniques selected for the 48-member
superensembles are displayed in Figure 4 and Table 6. The
scatter plots showed that, despite the existing variability for all
considered scenarios, estuaries and measuring stations, some
superensembles results lie on the perfect hindcast line. The
techniques that present the best hindcasts are WAM-AE and

WAM-SE and the ones that present the worst hindcasts are
WAM-Rand1 and WAM-Rand2. This revealed the importance
of selecting a WAM method that considers the previous
performance of the numerical models. The Trim, SMA and Med
techniques showed an average performance, with Trim between
SMA and Med, as expected.

Table 6 presents the best technique for each scenario, estuary
and measuring station. Notice that, for some ensembles, the
absolute error is null, i.e., below 1 mm, and the hindcast
can be considered perfect. WAM-SE stood out as the best
technique for the high river flow scenarios (winter and extreme
event), while WAM-AE performed the best for the summer
scenarios. The results seem to be independent of the chosen
measuring stations and the estuary under study. For all but
the Douro extreme event simulations at D2 and D3, the
simulations presented lower absolute errors than those obtained
for the single numerical modeling runs (see Table 4). Measuring
stations D2 and D3 displayed the highest absolute errors

TABLE 7 | Best and second-best ensemble technique but for the 24 highest hindcasts for each measurement station/scenario/estuary and associated absolute error.

Estuary Scenario Station Best LAE (m) 2nd best LAE (m)

Douro Summer D1 WAM-AE 0 Trim 12 0.098

D2 WAM-AE 0 Med 0.080

D3 WAM-AE 0 WAM-Rand1 0.092

D4 WAM-AE 0 WAM-Rand1 0.080

Winter D1 WAM-SE 0.002 WAM-AE 0.004

D2 WAM-SE 0.007 WAM-AE 0.110

D3 WAM-SE 0.060 WAM-Rand1 0.071

D4 WAM-SE 0.867 WAM-AE 1.155

Minho Summer M1 WAM-Rand2 0.007 SMA 0.015

M3 SMA 0.015 Trim 22 0.023

M4 WAM-SE 0.001 Trim 16 0.006

Winter M1 WAM-SE 0.027 WAM-AE 0.066

M2 WAM-SE 0.002 WAM-AE 0.022

M3 WAM-SE 0.605 WAM-Rand1 0.656

M4 WAM-SE 0.631 WAM-AE 0.826

TABLE 8 | Best and second-best ensemble technique but for the 24 lowest hindcasts for each measurement station/scenario/estuary and associated absolute error.

Estuary Scenario Station Best LAE (m) 2nd best LAE (m)

Douro Summer D1 WAM-SE 0.351 WAM-AE 0.520

D2 WAM-SE 0.213 WAM-AE 0.343

D3 WAM-SE 0.032 WAM-AE 0.212

D4 WAM-SE 0.023 WAM-AE 0.055

Winter D1 WAM-SE 0.012 WAM-AE 0.035

D2 WAM-SE 0.123 WAM-Rand1 0.275

D3 WAM-SE 0.008 WAM-Rand1 0.017

D4 WAM-SE 0.410 WAM-AE 0.530

Minho Summer M1 WAM-SE 0.126 WAM-AE 0.205

M3 WAM-SE 0.071 WAM-AE 0.363

M4 WAM-SE 0.223 WAM-AE 0.362

Winter M1 WAM-SE 0.941 WAM-Rand2 0.984

M2 WAM-SE 0.013 WAM-AE 0.041

M3 WAM-Rand1 0.026 SMA 0.111

M4 Med 1.858 WAM-SE 1.875
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when comparing computed and recorded water levels. As
pointed out before, this could have been caused by errors in
the filed campaigns. For the second-best technique, WAM-
SE or WAM-AE are still the prime contenders, but now
other techniques can perform better (cf. Table 6). Nevertheless,
for some ensembles, the second-best technique displays an
absolute error larger than those computed for the single models
(Table 4). These techniques are thus not recommended for
ensembles construction.

The effect of the size of the ensemble can be analyzed in
Figures 5, 6 and Tables 7, 8. The scatter plot constructed
with the results considering the 24-highest water elevation
predictions revealed a good performance of the superensembles
(cf. Figure 5), with the best techniques being those that
consider weights depending on the performance of the models.
However, not all superensembles produced results on the perfect
prediction line, revealing that the size of the ensemble affects its
predictive ability.

This fact is confirmed by the AEs (Table 7). The best technique
was WAM-AE for Douro summer and WAM-SE for Minho
and Douro winter. The best Minho summer ensemble technique
depends on the location, which could be related with errors in
the observations or numerical causalities (as, for example, WAM-
Rand2). AEs were generally below 0.1 m. However, in 5 of the
15 scenarios/sampling points, ensembling did not improve the
hindcast skills of the individual models, demonstrating that the
ensemble size is crucial in producing the best hindcast. The
second-best technique revealed even worse hindcasts, with AE
values surpassing those obtained for the comparison between
models results and measurements.

For the 24-member superensemble for the lower water
elevation predictions, the scatter plot in Figure 6 shows a vaster
dispersion of ensembles results compared to the previously
analyzed superensembles (cf. Figures 4, 5). Most solutions are
very distant from the perfect hindcast, which could be due
to uncertainties in the modeling of low tide conditions. This
suggests that the larger superensembles were able to absorb these
uncertainties, providing better results, which is confirmed by
the absolute error values (cf. Tables 4–6, 8). The 24-member
superensembles outperform the single model hindcasts in 7
out of the 15 runs/measuring stations, with values higher than
those obtained for the 48- and 32-member superensembles and
for the 24-member superensembles for higher water elevation
conditions. The technique that presented the best results was the
WAM-SE (cf. Table 8).

CONCLUSION

Numerical models are essential tools for a better understanding
of estuaries. They can anticipate and predict simultaneously
the effects of anthropogenic interventions, extreme events, and
climate change, providing the basis for an efficient estuarine
management. However, as modeling results present uncertainties,
mainly related to inaccuracies or assumptions in the initial and
forcing conditions, we need to increase the forecasting accuracy

by developing and implementing new solutions that avoid or
mitigate such errors.

The approach used in this work, based on the integration of
the D3D and OTM modeling suites, proved to efficiently map
the response of two Portuguese open water systems —the Douro
and Minho estuaries. Three scenarios were considered: summer,
winter and extreme event conditions. For each estuary and
scenario, a superensemble was constructed including modified
conditions of river inflows and ocean surface elevation. The
single model’s and the superensembles’ results were compared
with in situ measurements of water elevation to assess their
accuracy. It was demonstrated that the superensembles were
able to circumvent the models’ inaccuracies and produce better
results than the individual models, providing solutions that were
closer to the observed values than those resulting from the
individual models.

Several techniques of ensemble construction were
implemented to find the one that yields the best results for
each estuary, scenario, and measuring station. The results
revealed that an adequate ensemble technique effectively
improves the forecasting results of the individual models.
Among the applied techniques (SMA, Med, Trim, WAM-Rand1,
WAM-Rand2, WAM-AE, and WAM-SE), the best results were
obtained with those that considered the hindcast capabilities of
the single models (WAM-AE and WAM-SE). Namely, WAM-SE
stood out as the best technique for scenarios with high river
inflow (winter and extreme event scenarios), whereas WAM-AE
was the best for summer scenarios. No relevant differences were
found between the two estuaries or associated with the location
of the field measurements, demonstrating that this technique
can be widely applied to any estuarine system. However, the
ensemble size affected the predictability, and the most accurate
solutions were obtained with the superensemble constructed
with more members.

It was demonstrated that, even for the scenarios presenting
more difficulties in being hindcasted by a single model, such
as extreme event scenarios, the application of the ensemble
technique reduced the inaccuracy of the forecasts and improved
their results. This is of upmost importance, especially for
predicating future conditions under the effect of climate change,
when stronger and more frequent extreme events are expected.
Therefore, hydrodynamic modeling ensembles have the potential
to provide accurate information for estuarine management
activities and to reduce the risk and the vulnerability of
populations, infrastructures, habitats and environment.
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