
D
Learning from multi-

entity data
Diogo Pernes da Cunha
Doutoramento em Ciência de Computadores
Departamento de Ciência de Computadores

2021

Orientador
Jaime S. Cardoso, Professor Catedrático, Faculdade de Engenharia

“ The original question, ‘Can machines think?’ I believe to be too meaningless to deserve

discussion. ”

Alan Turing

Agradecimentos

Esta tese foi financiada pela Fundação para a Ciência e a Tecnologia (FCT), no âmbito da

bolsa de doutoramento SFRH/BD/129600/2017.

Gostaria de expressar o meu agradecimento ao INESC TEC, instituição de acolhimento

do meu doutoramento, à Faculdade de Ciências da Universidade do Porto, pela oferta do

programa doutoral, e à Faculdade de Engenharia da Universidade do Porto, por me ter

proporcionado a honra e o enorme prazer de lecionar duas unidades curriculares de um

dos seus planos de estudos.

A nı́vel pessoal, manifesto a minha profunda gratidão ao meu orientador, Prof. Jaime

S. Cardoso, inexcedı́vel no apoio, disponibilidade, supervisão, paciência e compreensão

em momentos difı́ceis, qualidades a que alia excelência cientı́fica inquestionável e am-

plamente reconhecida. Não posso também esquecer os meus professores Paula Malo-

nek e Pedro Guedes de Oliveira, que muito me ajudaram e inspiraram no meu percurso

académico anterior e me apoiaram e aconselharam na fase complicada que antecedeu o

meu doutoramento.

Todos os atuais e anteriores membros do VCMI merecem a minha maior consideração

e, em muitos casos, inestimável amizade. Trabalhar ao vosso lado e conviver convosco

fez de mim uma pessoa melhor, tanto no plano profissional como pessoal. Um agrade-

cimento especial aos coautores das minhas publicações, cujo contributo para esta tese foi

absolutamente fundamental. Entre estes, tenho de destacar o Pedro Ferreira, não só pelo

extenso trabalho que desenvolvemos em conjunto, mas também e sobretudo por ser um

amigo insubstituı́vel em todos os momentos.

Agradeço a todos os meus estudantes na FEUP, em particular àqueles que hoje tenho

como amigos. Todas as horas que passámos, em aula e fora dela, ensinaram-me muito

mais do que aquilo que vos lecionei. Espero que continuem a contar comigo e poder

continuar a contar convosco.

Aos meus amigos de sempre e que nunca me falham, estando perto ou longe.

À Rita, por estar sempre comigo e me fazer desejar que assim seja para sempre. À mi-

nha famı́lia, o meu grande suporte. À minha mãe, pelo seu amor infinito e incondicional.

Ao meu pai e avós, com saudade imensa.

UNIVERSIDADE DO PORTO

Resumo
Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

Doutoramento em Ciência de Computadores

Aprendizagem a partir de dados multi-entidade

por Diogo PERNES

A maioria dos algoritmos de aprendizagem automática, em particular os concebidos

para classificação supervisionada, assume que os dados nos quais irão ser treinados resul-

tam de um processo de amostragem independente e identicamente distribuı́da. Este pres-

suposto ignora o facto de que, em muitos casos, o conjunto de treino disponı́vel consiste

numa coleção de subconjuntos, cada um deles proveniente da sua própria distribuição. O

mesmo se aplica aos dados utilizados para teste e inferência, cuja distribuição associada

difere frequentemente da observada durante o treino do modelo.

Nesta tese, abordamos, sob várias perspetivas, o problema de aprendizagem a partir

de múltiplas distribuições. Em primeiro lugar, consideramos a situação em que várias

fontes de dados coabitam no mesmo meio e originam sequências de dados. Neste con-

texto, demonstramos que é possı́vel tirar partido das correlações existentes entre as várias

fontes, obtendo-se um modelo generativo para estes dados cujo desempenho é superior

ao resultante da aprendizagem a partir de cada uma das fontes separadamente.

Posteriormente, dedicamo-nos ao problema da generalização fora da distribuição de

treino, isto é, ao desenvolvimento de modelos robustos quando testados em distribuições

substancialmente diferentes da observada durante o treino. Inicialmente, consideramos

o problema da adaptação de domı́nio a partir de múltiplas distribuições-fonte. Neste

cenário, assume-se que, na fase de treino, estão disponı́veis dados anotados provenien-

tes de múltiplas distribuições-fonte e que se pretende obter um modelo de classificação

com bom desempenho numa distribuição-alvo, fixa à partida, mas diferente de todas as

distribuições-fonte e para a qual apenas estão disponı́veis dados não anotados. No âmbito

deste tema, investigamos diversas arquiteturas de redes neuronais para contagem de ob-

jetos em vı́deos provenientes de múltiplas câmaras e propomos um novo algoritmo de

mailto:diogo.pernes@fc.up.pt

adaptação de domı́nio para dados não sequenciais cujo desempenho supera o do estado

da arte.

Finalmente, focamo-nos na generalização de domı́nio. Este problema difere da adapta-

ção de domı́nio no sentido em que, desta vez, o domı́nio-alvo não é definido a priori, pelo

que, na fase de treino, não estão disponı́veis quaisquer dados provenientes da distribuição-

-alvo. O reconhecimento de lı́ngua gestual é a principal aplicação que utilizamos para

motivar o problema e os algoritmos desenvolvidos, visto que um sistema de reconheci-

mento gestual realmente útil deve apresentar um bom desempenho independentemente

do gestuante que o utiliza. Para este efeito, propomos dois algoritmos que permitem a

obtenção de um classificador de gestos robusto a novos gestuantes. O primeiro destes

consiste numa melhoria de um método pré-existente, baseado em redes neuronais ad-

versárias. O segundo, que é também o que apresenta o melhor desempenho, utiliza um

codificador automático variacional, que permite a aprendizagem de representações laten-

tes independentes do gestuante e altamente discriminativas para a tarefa de classificação

pretendida.

Esta tese é, assim, um trabalho abrangente na área de aprendizagem multi-entidade

e multi-domı́nio. Como explicado anteriormente, tratamos vários problemas que se ade-

quam a diferentes aplicações do mundo real, que frequentemente utilizamos para motivar

e validar os algoritmos propostos. As contribuições aqui apresentadas resultaram em di-

versas publicações em revistas e conferências internacionais, que listamos no decorrer

deste documento.

UNIVERSIDADE DO PORTO

Abstract
Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

Doctor of Philosophy

Learning from multi-entity data

by Diogo PERNES

Most machine learning algorithms, and particularly those conceived for supervised

classification, assume that the data on which they are trained are independent and iden-

tically distributed (i.i.d.). This assumption ignores the fact that, in many circumstances,

the available training data is a collection of sub-datasets, each one being originated at a

distinct data source and hence being sampled from its own distribution. Furthermore,

the data observed at test time often suffer from the same distribution shift problem, again

violating the i.i.d. assumption.

In this thesis, we address the problem of learning from multiple data distributions un-

der various settings. First, we consider the case where multiple data sources are spread

over a given medium and produce sequential data streams. Although the data distri-

butions for each of the sources are different, we show that inter-source correlations can

be exploited to learn a better-performing model for the generative distribution of each

source.

Afterward, we focus on out-of-distribution generalization, i.e. to the setting in which

the test distribution is unknown or only partially known at training time. Initially, we con-

sider the problem of multi-source domain adaptation. Here, annotated data from multiple

data sources are combined to learn a classification model for a fixed target distribution,

for which no labeled data is available at training time. We research several possible deep

neural network architectures for object counting in videos from multiple cameras and

propose a novel algorithm for multi-source domain adaptation for non-sequential data

that achieves state-of-the-art results.

Finally, we address domain generalization. This problem differs from domain adap-

tation in that the target domain is unknown, and therefore no data from this distribution

mailto:diogo.pernes@fc.up.pt

is available at training time, neither labeled nor unlabeled. Sign language recognition is

the main application considered here since a truly useful automatic sign language recog-

nition system should be able to perform accurately regardless of the signer that is using

it. We propose two algorithms to learn a signer-independent sign classifier. The first is

an improvement over an existing method based on adversarial neural networks and the

second and best-performing uses a variational autoencoder to learn highly discriminative

signer-invariant representations.

This thesis is then a broad-scope work on the topic of multi-entity and multi-domain

learning. As explained before, we address multiple problem formulations that fit different

practical applications, which are often used to motivate and validate the proposed algo-

rithms. The contributions presented in this thesis resulted in publications in international

journals and conferences, listed later in this document.

Contents

Agradecimentos v

Resumo vii

Abstract ix

Contents xi

List of Figures xvii

Notation and Conventions xxi

Glossary xxiv

1 Introduction 1
1.1 Motivation, objectives, and contributions . 1
1.2 List of publications . 3

1.2.1 International journal papers . 3
1.2.2 International conference papers . 4

2 Background 5
2.1 Introduction . 5
2.2 Useful definitions and conventions . 5
2.3 Bayesian networks . 7

2.3.1 Definition and structural properties 7
2.3.2 Chains and forks . 8
2.3.3 Immoralities . 9
2.3.4 D-separation . 9
2.3.5 The hidden Markov model . 10

2.4 The expectation-maximization algorithm . 12
2.4.1 General formulation . 12

2.4.1.1 E-step . 13
2.4.1.2 M-step . 13

2.4.2 EM for table CPDs . 14
2.4.3 EM for the discrete-emission HMM 14

2.5 Variational autoencoder . 15
2.5.1 Formulation . 15

xi

xii LEARNING FROM MULTI-ENTITY DATA

2.5.2 Gradient of the decoder . 17
2.5.3 Gradient of the encoder . 18
2.5.4 Loss function . 20

2.6 Conclusion . 20

3 Networked data streams 21
3.1 Introduction . 21
3.2 Hidden Markov models on a self-organizing map for anomaly detection in

802.11 wireless networks . 23
3.2.1 Introduction . 23
3.2.2 Related work . 25
3.2.3 The self-organizing hidden Markov model map for discrete obser-

vations . 27
3.2.4 Extending SOHMMM to Gaussian observations 28
3.2.5 Experiments . 31

3.2.5.1 Synthetic data . 31
3.2.5.2 Wireless simulation data . 35

3.2.6 Conclusion . 39
3.3 SpaMHMM: sparse mixture of hidden Markov Models for graph-connected

entities . 39
3.3.1 Overview . 39
3.3.2 Model formulation . 40

3.3.2.1 Definition . 40
3.3.2.2 Inference . 40
3.3.2.3 Learning . 41

3.3.3 Experiments . 44
3.3.4 Anomaly detection in Wi-Fi networks 46
3.3.5 Human motion forecasting . 50

3.3.5.1 Forecasting . 50
3.3.5.2 Joint cluster analysis . 52

3.3.6 Conclusion . 54
3.4 Summary and directions for future work . 54

3.4.1 SOHMMM vs. SpaMHMM . 54
3.4.2 Generalizing SpaMHMM . 55
3.4.3 Offline, centralized learning . 57
3.4.4 Online, centralized learning . 58
3.4.5 Online, distributed learning . 58

4 Multi-source domain adaptation 61
4.1 Introduction . 61
4.2 Background . 63

4.2.1 Theoretical foundation . 63
4.2.1.1 Single source setting . 63
4.2.1.2 Multi-source setting . 65

4.2.2 State of the art . 66
4.2.2.1 Target shift . 66
4.2.2.2 Conditional shift . 67

CONTENTS xiii

4.2.2.3 Concept shift . 68
4.2.2.4 Covariate shift . 68
4.2.2.5 Invariance of causal mechanisms 71

4.3 Adversarial domain adaptation for object counting in videos 71
4.3.1 Motivation . 71
4.3.2 MDAN: Multi-source domain adversarial networks 72

4.3.2.1 The gradient reversal layer 73
4.3.3 FCN-rLSTM: Spatio-temporal deep neural network for object count-

ing . 74
4.3.4 Combining MDAN and FCN-rLSTM 75

4.3.4.1 Non-Temporal model . 76
4.3.4.2 SingleLSTM model . 76
4.3.4.3 DoubleLSTM model . 77
4.3.4.4 CommonLSTM model . 78
4.3.4.5 Overview . 78

4.3.5 Experiments . 79
4.3.5.1 Experimental protocol . 79
4.3.5.2 UCSDPeds dataset . 80
4.3.5.3 WebCamT dataset . 81

4.3.6 Choice of the optimization problem 83
4.3.7 Unsupervised setting . 84
4.3.8 Semi-supervised setting . 85
4.3.9 Conclusion . 86

4.4 Tackling unsupervised multi-source domain adaptation with optimism and
consistency . 87
4.4.1 Introduction . 87
4.4.2 Motivation . 88

4.4.2.1 An upper bound on the target risk 88
4.4.2.2 The curse of domain-invariant representations 89
4.4.2.3 Choosing the combination of source domains 90

4.4.3 Methodology . 90
4.4.3.1 Domain adaptation from a dynamic mixture of sources . . 91
4.4.3.2 Consistency regularization on the target domain 92

4.4.4 Experiments . 94
4.4.4.1 Experimental protocol . 94
4.4.4.2 Discussion . 97

4.4.5 Conclusion . 98
4.5 Summary . 99

5 Domain generalization 101
5.1 Introduction . 102
5.2 State of the art . 103
5.3 Adversarial domain generalization for signer-independent sign language

recognition . 104
5.3.1 Introduction . 104
5.3.2 Related Work . 107
5.3.3 Methodology . 109

xiv LEARNING FROM MULTI-ENTITY DATA

5.3.3.1 Architecture . 110
5.3.3.2 Adversarial training . 111
5.3.3.3 Signer-transfer training objective 113

5.3.4 Experiments . 114
5.3.4.1 Datasets . 114
5.3.4.2 Baselines . 115
5.3.4.3 Results and discussion . 116
5.3.4.4 Latent space visualization 118

5.3.5 Conclusion . 118
5.4 Adversarial domain generalization for iris presentation attack detection . . 119

5.4.1 Introduction . 119
5.4.2 Related work . 120
5.4.3 Methodology . 122
5.4.4 Experiments . 123
5.4.5 Conclusion . 123

5.5 DeSIRe: deep signer-invariant representations for sign language recognition 124
5.5.1 Introduction . 124
5.5.2 The DeSIRe model . 125

5.5.2.1 Loss function . 126
5.5.2.2 Inference . 129

5.5.3 Experiments . 129
5.5.3.1 Datasets . 129
5.5.3.2 Baselines . 130
5.5.3.3 Results and discussion . 130

5.5.4 Conclusion . 132
5.6 Summary . 133

6 Conclusion 135
6.1 Summary of contributions . 135
6.2 Final remarks and directions for future work 137

A SpaMHMM – supplementary material 139
A.1 Derivation of the EM learning algorithms for MHMM and SpaMHMM . . . 139

A.1.1 EM for MHMM (Algorithm 3.3) . 139
A.1.2 EM for SpaMHMM (Algorithm 3.4) 141

A.2 Posterior distribution of observations . 143

B Tackling unsupervised multi-source domain adaptation with optimism and con-
sistency – supplementary material 145
B.1 Proof of Theorem 4.4 . 145
B.2 Model overview . 146
B.3 Experiments – further results and details . 146

B.3.1 Label distributions . 146
B.3.2 Effect of over-training . 149
B.3.3 Hyperparameter sensitivity analysis 149
B.3.4 Evolution of the source weights . 151
B.3.5 Network architectures . 152

CONTENTS xv

B.3.6 Choice of hyperparameters . 153
B.3.7 Image transformations . 153
B.3.8 Sample images . 154

C DeSIRe: Deep Signer-Invariant Representations for Sign Language Recognition
– supplementary material 157
C.1 Architecture . 157

C.1.1 CVAE . 157
C.1.2 Classifier . 158

C.2 Training strategies . 159
C.3 Implementation details . 159
C.4 Visualization of the latent space . 161
C.5 Cluster analysis in the latent space . 163
C.6 Unveiling the training behavior of DeSIRe . 165
C.7 Hyperparameter sensitivity analysis . 166

Bibliography 169

List of Figures

2.1 A complete Bayesian network. 7
2.2 A chain. 8
2.3 Equivalent three-variable Bayesian networks. 9
2.4 An immorality. 9
2.5 Hidden Markov model represented as Bayesian network. 10

3.1 2× 3 rectangular lattice. 33
3.2 Monte Carlo approximation of the Kullback-Leibler divergence between

the random and reference HMMs before and after applying the SOHMMM
algorithm. 34

3.3 Monte Carlo approximation of the Kullback-Leibler divergence between
the random and reference HMMs with different neighborhood sizes and
sequence lengths. 35

3.4 Wireless network simulated in OMNeT++/INET. 38
3.5 Representation of the model as a Bayesian network. The node z is a par-

ent of all nodes inside the dashed box (the connections were omitted for
clarity). Gray nodes are used for latent variables. 41

3.6 ROC curves for each model on the Wi-Fi dataset, for one of the 10 runs. . . . 49
3.7 Relative sparsity (number of coefficients equal to zero / total number of

coefficients) of the obtained MHMM and SpaMHMM models on the Wi-Fi
dataset (left) and on the Human3.6M dataset for different actions (right).
For the Wi-Fi dataset, the average value over the 10 training runs is shown
together with the standard deviation. Both models for the Wi-Fi dataset
have 150 coefficients. All models for the Human3.6M dataset have 396 co-
efficients. 52

3.8 Assignments of joints to clusters in MHMM (left) and SpaMHMM (right).
The different colors (blue, green, orange, red) and the respective symbols
(‘◦’, ‘A’, ‘x’, ‘+’) on each joint represent the cluster that the joint was as-
signed to. 54

4.1 Graphical representation of the target shift setting as a Bayesian network. . 66
4.2 Graphical representation of the conditional shift setting as a Bayesian net-

work. 68
4.3 Graphical representation of the concept shift setting as a Bayesian network. 68
4.4 Graphical representation of the covariate shift setting as a Bayesian network. 68
4.5 Architecture of the FCN-rLSTM model (reprinted from Zhang et al. [118]). . 75
4.6 Non-Temporal model. Reprinted from de Andrade [63]. 76
4.7 SingleLSTM model. Reprinted from de Andrade [63]. 77
4.8 Double-Temporal model. Reprinted from de Andrade [63]. 77

xvii

xviii LEARNING FROM MULTI-ENTITY DATA

4.9 CommonLSTM model. Reprinted from de Andrade [63]. 78
4.10 Domain vidd from the UCSDPeds dataset. 80
4.11 Domain vidf from the UCSDPeds dataset. 80
4.12 Sample density map for the UCSDPeds dataset. 81
4.13 Domain 511 from WebCamT dataset. 82
4.14 Domain 551 from the WebCamT dataset. 82
4.15 Domain 691 from the WebCamT dataset. 82
4.16 Domain 846 from the WebCamT dataset. 82
4.17 Sample density map for the WebCamT dataset. 83
4.18 Average MAE count across domains for each µd in the unsupervised setting

in UCSDPeds and WebCamT datasets. 85
4.19 Toy illustration of the desired effect of the consistency regularization, where

images are represented as lying on a 2-D space. Green and orange cir-
cles represent (labeled) samples from two distinct source domains; blue
and purple x-markers represent original and augmented (unlabeled) tar-
get samples, respectively. Colored ellipses enclose pairs of augmented and
source samples that are close to each other and therefore are likely to share
the same label. 93

5.1 Inter-signer variability: it is possible to observe not only phonological vari-
ations (e.g. different handshapes, palm orientations, and sign locations) but
also a large physical variability (e.g. different hand sizes) when six signers
are performing the same sign. 106

5.2 The architecture of the proposed signer-invariant neural network. It com-
prises three main sub-networks or blocks, i.e. an encoder, a sign-classifier
and a signer-classifier. 111

5.3 Illustrative samples of the two datasets used in the experiments. 115
5.4 Two-dimensional projection of the latent representation space using the t-

distributed stochastic neighbor embedding (t-SNE). Markers • and + rep-
resent 2 different test signers, while the different colors denote the 10 sign
classes. 118

5.5 Block diagram of the proposed species-invariant neural network. 122
5.6 Illustration of the inter-signer variability using some samples of the CorSiL

database. The six signers are performing the sign “eight” of the Portuguese
sign language. 130

B.1 Block diagram representing the proposed model (MODA-FM). 146
B.2 Label distributions in the digits datasets. 147
B.3 Label distributions in Office-31. 148
B.4 Label distributions in Amazon Reviews. 148
B.5 Test accuracy over 60 training epochs for our model and two baselines in

Office-31. The tendency line for each curve is also shown (dashed lines)
and the respective slope is indicated in brackets in each plot legend. The
domain indicated below each plot is the target. 150

B.6 Test accuracy as a function of hyperparameters µs (a) and µc (b) using the
digits datasets. The domain corresponding to each line is the target. 151

B.7 Source weights α for each domain over 60 training epochs in the digits
datasets. The target domain and the value of µs that was used are indi-
cated below and above each plot, respectively. 152

LIST OF FIGURES xix

B.8 Sample original and transformed images from the digits datasets. The
ground-truth label is in brackets. 154

B.9 Sample original and transformed images from each domain in the Office-31
dataset. The ground-truth label is in brackets. 155

B.10 Sample original and transformed images from each domain in the Domain-
Net dataset. The ground-truth label is in brackets. 155

C.1 The architecture of the proposed DeSIRe deep neural network for signer-
independent SLR. It comprises two main modules or components: a condi-
tional variational atoencoder (CVAE) and a classifier. 158

C.2 Two-dimensional projection of the latent representation space provided by
DeSIRe and both baselines, using t-SNE [185]. Markers • and + represent
two different test signers from the MKLM dataset and the different colors
correspond to the 10 sign classes. The accuracy of each model on each split
is shown below each picture. 162

C.3 Two-dimensional projection of the latent representation space provided by
DeSIRe, DANN, and DTML, using t-SNE [185]. Markers • and + represent
two different test signers from the MKLM dataset and the different colors
correspond to the 10 sign classes. The accuracy of each model on each split
is shown below each picture. 163

C.4 Training behavior of the proposed DeSIRe model: (A) evolution of the
Lsigner inv loss term alongside the corresponding weight α2 according to a
sigmoid annealing schedule; (B) evolution of the Lemb term value; and (C)
evolution of training and validation Lclass curves alongside the correspond-
ing weight λ2 according to a sigmoid annealing schedule. 165

C.5 Hyperparameter sensitivity analysis: (A) DeSIRe accuracy on the Jochen-
Triesch dataset with varying values of λ1 ∈ [0, 10] while α2 = 0.4 and ρ =
0.5; (B) DeSIRe accuracy on the Jochen-Triesch dataset with varying values
of α2 ∈ [0, 10] while λ1 = 0.5 and ρ = 0.5; and (C) DeSIRe accuracy on the
Jochen-Triesch dataset with varying values of ρ ∈ [0, 1] while λ1 = 0.5 and
α2 = 0.4. 167

Notation and Conventions

In this section, we describe the notation adopted in this thesis. We mostly follow the

notation proposed by Goodfellow et al. [1], which is also the recommended one by the

International Conference on Learning Representations (ICLR).

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by

context

diag(a) A square, diagonal matrix with diagonal entries

given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

xxi

xxii LEARNING FROM MULTI-ENTITY DATA

Sets and Graphs

R The set of real numbers

{0, 1} The set containing 0 and 1

{1, . . . , n} The set of all integers between 1 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e. the set containing the ele-

ments of A that are not in B

G A graph

PaG(x) The parents of node x in G

Indexing

ai Element i of vector a, with indexing starting at 1

Ai,j Element i, j of matrix A

ai Element i of the random vector a

Linear Algebra Operations

A> Transpose of matrix A

det(A) Determinant of A

a� b Element-wise product of a and b

NOTATION AND CONVENTIONS xxiii

Calculus
dy
dx

Derivative of y with respect to x

∂y
∂x

Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇X y Matrix derivatives of y with respect to X∫
f (x)dx Definite integral over the entire domain of x∫

X
f (x)dx Definite integral with respect to x over the set X

Probability and Information Theory

p(x) A probability distribution over the random vari-

able x

x ∼ p Random variable x has distribution p

Supp(x) Support of the random variable x

Ex∼p[f (x)] Expectation of f (x) with respect to p(x)

DKL(p‖q) Kullback-Leibler divergence of p and q

N (x; µ, Σ) Gaussian distribution over x with mean µ and co-

variance Σ

xxiv LEARNING FROM MULTI-ENTITY DATA

Functions

f : A → B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f (x; θ) A function of x parametrized by θ. (Sometimes

we write f (x) and omit the argument θ to lighten

notation)

log x Natural logarithm of x

σ(x) Logistic sigmoid,
1

1 + exp(−x)

||x||p Lp norm of vector x

||x|| L2 norm of vector x

||X|| Frobenius norm of matrix X

1condition is 1 if the condition is true, 0 otherwise

Sometimes we use a function f whose argument is a scalar but apply it to a vector or

matrix: f (x) or f (X). This denotes the application of f to the array element-wise. For

example, if C = σ(X), then Ci,j = σ(Xi,j) for all valid values of i and j.

Glossary

AP access point

CNN convolutional neural network

CPD conditional probability distribution

CVAE conditional variational autoencoder

DA domain adaptation

DeSIRe deep signer invariant representations (model name)

DG domain generalization

ELBO evidence lower bound

EM expectation-maximization

HMM hidden Markov model

LSTM long short-term memory

KL Kullback-Leibler

MAE mean absolute error

MAP maximum a posteriori

MDAN multi-source domain adversarial networks

ME movement of epenthesis

MHMM mixture of hidden Markov models

MKLM Microsoft Kinect and Leap Motion (dataset)

MLLR maximum likelihood linear regression

MLP multi-layer perceptron

MODA multi-source mildly optimistic domain adaptation (model name)

xxv

xxvi LEARNING FROM MULTI-ENTITY DATA

MODA-FM MODA with FixMatch regularization (model name)

OOD out-of-distribution

PAD presentation attack detection

PAI presentation attack instrument

PAIS presentation attack instrument species

ReLU rectifier linear unit

RNN recurrent neural network

SOHMMM self-organizing hidden Markov model map

SOM self-organizing map

SpaMHMM sparse mixture of hidden Markov models

SLR sign language recognition

SSL self-supervised learning

STA wireless station

SVM support vector machine

t-SNE t-distributed stochastic neighbor embeddings

UBM universal background model

UMSDA unsupervised multi-source domain adaptation

VAE variational autoencoder

VC Vapnik-Chervonenkis

VSIA Visible Spectrum Iris Artefact (dataset)

wLBP weighted local binary pattern

Chapter 1

Introduction

1.1 Motivation, objectives, and contributions

We live in the era of big data and most of us are an active part of that process, produc-

ing a continuous, heterogeneous, and multi-modal stream. It is estimated that almost

5 petabytes of internet data are created every single minute in the US only [2], which

include more than 250,000 Instagram stories being uploaded, 4,500,000 YouTube videos

being watched, and 500,000 tweets being posted [3]. Each internet user and, more gen-

erally, each data source has its own characteristics, and thus corresponds to a different

entity, whose data distribution we may want to learn. For this purpose, it is useful to ac-

count for the similarities and correlations that exist between different entities, being able

to transfer knowledge from an entity’s model to another.

Nonetheless, most machine learning theory and algorithms assume that the data used

at training and inference time are independent and identically distributed (i.i.d.). This as-

sumption has proven successful and is a sensible one in many practical applications: the

outstanding results achieved by deep learning in recent years have been largely driven by

supervised learning with large-scale annotated datasets like ImageNet (Deng et al. [4]),

where the i.i.d. assumption holds. However, one can think of a wide variety of scenarios

where this assumption is violated. Will an image classifier trained with photo images be

accurate when asked to classify sketch images? Is it possible to exploit similarities be-

tween neighboring access points in a Wi-Fi infrastructure to build a better model for the

traffic on each specific access point? Should we expect that an automatic sign language

recognition system performs well when tested on unseen signers? All these questions, al-

though motivated by substantially different applications, relate to the problem of learning

1

2 LEARNING FROM MULTI-ENTITY DATA

from a particular kind of non-i.i.d. data, which we refer to as multi-entity data.

In multi-entity data, the i.i.d. setting is assumed to hold only locally, i.e. when each en-

tity is considered separately. When the data from multiple entities are aggregated, the as-

sumption is violated as a result of the distribution shift between the entities. An apparent

solution to this problem would be to consider the data stratified per entity and apply con-

ventional algorithms that rely on the i.i.d. assumption. However, such a solution might

be greatly inconvenient or even impossible. Consider, for instance, the situation where

the number of entities is large but the amount of data for each entity is relatively scarce.

In this situation, a separate model for each entity would likely exhibit high variance and

hence have a bad performance, due to the small amount of data it had been trained on.

Moreover, if there is no annotated data available for some of the entities or if they are not

observed at all in the training data, following the aforementioned procedure is infeasible.

These observations motivate the need for algorithms specially designed to learn from

multi-entity data, which will be the main focus of this thesis. We shall address three

main scenarios and each of them will correspond to a chapter of this document. First,

we consider the setting where all entities are observed in the training data and each of

them produces a continuous stream whose generative distribution we want to model.

The entities are assumed to have some degree of interaction and similarity between them,

which are exploited by the proposed learning algorithms. In the following chapter, we

address the problem of learning a model for a specific target entity for which no annotated

data is available at training time, by using labeled data from the remaining entities and

unlabeled data from the target. Finally, we drop the assumption that the target entity is

known at training time and focus on the problem of learning a model that generalizes

well to new, unseen entities.

The remainder of this document is organized into the following chapters:

• Chapter 2 – Background: The main algorithms used in this thesis and the theory

that supports them are reviewed and explained.

• Chapter 3 – Networked data streams: The problem of modeling the generative dis-

tribution of multi-entity data streams is considered and two algorithms are pro-

posed to address it.

• Chapter 4 – Multi-source domain adaptation: The problem of learning a model for a

specific target entity is formalized. We formulate and discuss several possible deep

1. INTRODUCTION 3

neural network architectures for object counting in videos and we present a novel

general algorithm for multi-source domain adaptation.

• Chapter 5 – Domain generalization: The assumption that the target entity is known

at training time is dropped and two novel algorithms for this setting are presented.

Most parts of this chapter are motivated by the problem of automatic sign language

recognition, where the model performance is desirably signer-independent.

• Chapter 6 – Conclusion: The thesis is concluded with some final remarks and obser-

vations.

Additionally, we include three appendix chapters. These provide supplementary mate-

rial for some sections in each chapter and the reader will be referred to them whenever

applicable. This material includes mathematical proofs and derivations as well as further

details and experimental results that complement those provided in the main document

and support some of the conclusions derived therein.

1.2 List of publications

The research work conducted by the Ph.D. candidate and author of this thesis resulted in

the publications listed below.

1.2.1 International journal papers

• D. Pernes∗, K. Fernandes∗, and J. S. Cardoso, “Directional support vector machines,”

Applied Sciences, vol. 9, no. 4, 2019. [unrelated publication]

• P. M. Ferreira∗, D. Pernes∗, A. Rebelo, and J. S. Cardoso, “DeSIRe: Deep signer-

invariant representations for sign language recognition,” IEEE Transactions on Sys-

tems, Man, and Cybernetics: Systems, 2019.

• A. Allahdadi, D. Pernes, J. S. Cardoso, and R. Morla, “Hidden Markov models on

a self-organizing map for anomaly detection in 802.11 wireless networks,” Neural

Computing and Applications, 2021.

• P. M. Ferreira, D. Pernes, A. Rebelo, and J. S. Cardoso, “Signer-independent sign

language recognition with adversarial neural networks,” International Journal of

Machine Learning and Computing, vol. 11, no. 2, 2021.

4 LEARNING FROM MULTI-ENTITY DATA

• D. Pernes and J. S. Cardoso, “Tackling unsupervised multi-source domain adapta-

tion with optimism and consistency,” Expert Systems With Applications, 2021. [sub-

mitted, waiting for decision]

1.2.2 International conference papers

• D. Pernes and J. S. Cardoso, “SpaMHMM: Sparse mixture of hidden Markov mod-

els for graph connected entities,” in 2019 International Joint Conference on Neural

Networks (IJCNN), IEEE 2019.

• P. M. Ferreira, A. F. Sequeira, D. Pernes, A. Rebelo, and J. S. Cardoso, “Adversarial

learning for a robust iris presentation attack detection method against unseen attack

presentations,” in 2019 International Conference of the Biometrics Special Interest

Group (BIOSIG), IEEE 2019.

• P. M. Ferreira∗, D. Pernes∗, A. Rebelo, and J. S. Cardoso, “Learning signer-invariant

representations with adversarial training,” in Twelfth International Conference on

Machine Vision (ICMV 2019), vol. 11433. International Society for Optics and Pho-

tonics, 2020.

• J. A. Pereira, A. F. Sequeira, D. Pernes, and J. S. Cardoso, “A robust fingerprint

presentation attack detection method against unseen attacks through adversarial

learning,” in 2020 International Conference of the Biometrics Special Interest Group

(BIOSIG), IEEE 2020.

∗ equal contribution

As part of the ongoing research in the group, I investigated and proposed new meth-

ods of supervised learning for directional data in the first phase of the PhD. This work

led to the publication ’Directional support vector machines’ mentioned above. Although

the original plan was to continue the work and extend it to the central topic of the thesis,

learning from multiple data distributions, the research eventually took a different path

and the work was not pursued. Therefore, the work on directional support vector ma-

chines is not considered further in this document. All the other publications find their

place in the following chapters of this document.

Chapter 2

Background

2.1 Introduction

We will use deep neural networks and probabilistic models extensively throughout this

thesis. Although the basic concepts of the former should be fairly familiar to most readers,

the latter might be less widely known. Moreover, some of the tools and algorithms we

will use are not so trivial, and therefore, for the sake of completeness and readability, it is

better to introduce them first.

This chapter will then focus on providing a brief yet comprehensive background on

the aforementioned subject. We start by clarifying some of the notations and conven-

tions we will adopt (Section 2.2). We then proceed with a short introduction to Bayesian

networks, motivated by the factorization properties of joint probability functions (Sec-

tion 2.3). Under this subject, the hidden Markov model is highlighted (Section 2.3.5)

as a particular case since this model will play a central role in Chapter 3. Expectation-

maximization is presented as an efficient algorithm for learning the parameters of prob-

abilistic models with unobserved variables (Section 2.4) and the procedure is illustrated

using the hidden Markov model as an example (Section 2.4.3). The procedure is then

extended to the variational setting and the variational autoencoder is introduced (Sec-

tion 2.5) since it will be one of the models employed in Chapter 5.

2.2 Useful definitions and conventions

In this section, we introduce some further notations and definitions that will be used

throughout this document.

5

6 LEARNING FROM MULTI-ENTITY DATA

It is important to remark that the same notation is used to denote discrete and con-

tinuous random variables as well as to denote probability mass functions and probability

density functions. Specifically, given a random variable x taking values in the set Val(x),

p(x) denotes the probability mass of x, if Val(x) is discrete, or the probability density of

x, otherwise. In either case, the support of p(x) is defined as Supp(p(x)) , {x ∈ Val(x) :

p(x = x) > 0}. Moreover, when we want to denote the probability (density) of some

arbitrary but fixed value x ∈ Val(x), we often use p(x) as a short for p(x = x).

The joint probability function of x and y is denoted by p(x, y) and the corresponding

conditionals of y given x and x given y are denoted by the usual notations p(y | x) and

p(x | y), respectively. Again, x and y can be both discrete, both continuous, or one contin-

uous and the other discrete. The notation generalizes naturally for three or more random

variables.

The marginalization of p(x, y) with respect to a discrete y is written as:

∑
y

p(x, y) , ∑
y∈Val(y)

p(x, y) = p(x), (2.1)

and the marginalization of p(x, y) with respect to a continuous x is written as:∫
p(x, y)dx ,

∫
Val(x)

p(x, y)dx = p(y). (2.2)

Note that, for brevity, we omit the domain of the summation or integration, as this is

defined implicitly by the set where the random variable is defined. The integral nota-

tion is also used for the marginalization with respect to random variables whose type is

unspecified. Similarly, if f (x) is a function of a random variable x,

∑
x

f (x) , ∑
x∈Val(x)

f (x) or
∫

f (x)dx ,
∫

Val(x)
f (x)dx, (2.3)

depending on whether x is discrete or continuous, respectively. Hence, we can write the

expectation of f (x) with respect to p(x) as:

Ex∼p(x)
[

f (x)
]
,∑

x
f (x)p(x) or Ex∼p(x)

[
f (x)

]
,
∫

f (x)p(x)dx, (2.4)

for discrete and continuous x, respectively.

2. BACKGROUND 7

2.3 Bayesian networks

2.3.1 Definition and structural properties

Given m random variables x(1), x(2), . . . , x(m), the chain rule of probability allows the factor-

ization of their joint distribution as a product of conditional distributions:*

p(x(1), x(2), . . . , x(m)) = p(x(1))
m

∏
j=2

p(x(j) | x(1), x(2), . . . , x(j−1)). (2.5)

Starting from a factorization of a joint distribution into conditionals, we may build a di-

rected graph G with m vertices, one for each random variable, where there exists an edge

i→ j if and only if there is a factor where x(j) is conditioned on x(i). Such a graph is known

as a Bayesian network. From its definition, we see that the factorization in equation (2.5)

corresponds to the graph in Figure 2.1. Clearly, a Bayesian network defines a bijection

between random variables and graph nodes, so with a slight abuse of terminology we

represent and refer to nodes by the random variable they are associated with, rather than

by their index.

x(1) x(2) . . . x(m−1) x(m)

FIGURE 2.1: A complete Bayesian network.

Since the factorization in equation (2.5) is general (i.e. it does not assume any con-

ditional independencies between random variables), the Bayesian network in Figure 2.1

is said to be complete. When conditional independencies are present, the graph becomes

sparser. For instance, if, for all j ≥ 3, x(j) is conditionally independent of x(1), x(2), . . . , x(j−2)

given x(j−1), then p(x(j) | x(1), x(2), . . . , x(j−1)) = p(x(j) | x(j−1)) and thus the Bayesian net-

work reduces to the chain represented in Figure 2.2. A sparser graph implies a more com-

pact parameterization of the model. If each of the m random variables takes values on a

discrete set of size s, defining the joint distribution corresponding to a complete Bayesian

network (Figure 2.1) would require sm − 1 parameters. However, in the same setting, the

*The expression on the right-hand side of equation (2.5) is not well defined outside
Supp(p(x(1), x(2), . . . , x(m−1))). For those values, one has p(x(1), x(2), . . . , x(m)) = 0.

8 LEARNING FROM MULTI-ENTITY DATA

joint distribution corresponding to a chain (Figure 2.2) can be fully described using table

conditional probability distributions (CPDs) with less than s2m parameters in total.

x(1) x(2) . . . x(m−1) x(m)

FIGURE 2.2: A chain.

An important property of Bayesian networks is the fact that they are always directed

acyclic graphs. The non-existence of cycles allows us to recover the factorization of the

joint distribution by examining the structure of the graph G and applying the formula:

p(x(1), x(2), . . . , x(m)) =
m

∏
j=1

p(x(j) | PaG(x(j))), (2.6)

where PaG(x(j)) are the parents of node x(j) in G. It is important to highlight that, although

there is a one-to-one correspondence between a factorization of a joint distribution into

conditional distributions and a Bayesian network, the same joint distribution can some-

times be factorized in multiple different but equivalent forms, each one corresponding to

a different Bayesian network. Note, for instance, that equation (2.5) is just one out of m!

possible ways of factorizing p(x(1), x(2), . . . , x(m)) using the chain rule and any of those fac-

torizations would yield a different graph. This is also the case for chains and forks, which

we discuss next. The set of all Bayesian networks that imply a given set of conditional

independencies is called a Markov equivalence class.

2.3.2 Chains and forks

Let us consider the case where we have three random variables x(1), x(2), x(3) and assume

that x(1) and x(3) are independent given x(2). Under this setting, we have:

p(x(1), x(2), x(3)) = p(x(1))p(x(2) | x(1))p(x(3) | x(2)) (2.7)

= p(x(2))p(x(1) | x(2))p(x(3) | x(2)) (2.8)

= p(x(3))p(x(2) | x(3))p(x(1) | x(2)) (2.9)

The three equivalent factorizations (2.7) – (2.9) correspond to the three Bayesian networks

in Figure 2.3, respectively from left to right, and constitute a Markov equivalence class.

2. BACKGROUND 9

x(1) x(2) x(3)

(A) A three-variable chain.

x(1) x(2) x(3)

(B) A fork.

x(1) x(2) x(3)

(C) A three-variable reversed
chain.

FIGURE 2.3: Equivalent three-variable Bayesian networks.

2.3.3 Immoralities

Now, let us assume that x(1) and x(3) are marginally independent, which notably does not

imply that they are conditionally independent given x(2). In this case, the joint distribu-

tion factorizes as:

p(x(1), x(2), x(3)) = p(x(1))p(x(3))p(x(2) | x(1), x(3)) (2.10)

and this factorization is unique in the sense that no other implies the same set of condi-

tional independencies. The corresponding Bayesian network is represented in Figure 2.4.

A subgraph consisting of three nodes where two of them are not connected and the other

one is a child of both is an immorality. The node where the two incoming edges coincide is

a collider. Thus, in the present example, x(1), x(2), and x(3) form an immorality where x(2)

is the collider.

x(1) x(2) x(3)

FIGURE 2.4: An immorality.

2.3.4 D-separation

Armed with the notions of chains, forks, and immoralities, and the conditional indepen-

dencies implied by them, we are ready to introduce the concept of blocked paths and d-

separation. The latter provides a powerful graphical method to discover all the conditional

independencies implied by any Bayesian network.

Specifically, we say that an undirected path between two nodes x and y is blocked by

a (potentially empty) conditioning set S if at least one of the following two conditions

holds:

• Along the path there is a chain or a fork which includes at least one node in S .

10 LEARNING FROM MULTI-ENTITY DATA

• Along the path there is a collider and neither the collider nor any of its descendants

are in S .

The two nodes x and y are d-separated by a set of nodes S if conditioning on S blocks

all paths between x and y. Remarkably, if x and y are d-separated by S , then they are

conditionally independent given S (see Koller and Friedman [5] for a proof).

2.3.5 The hidden Markov model

A classical example of a Bayesian network is the hidden Markov model (HMM), repre-

sented in Figure 2.5. The HMM will be the backbone of both models presented in Chapter

3 and hence it is appropriate to introduce it here.

h(1) h(2) . . . h(T)

x(1) x(2) x(T)

FIGURE 2.5: Hidden Markov model represented as Bayesian network.

The structure of the graph in Figure 2.5 corresponds to the following factorization:

p(x(1), x(2), . . . , x(T), h(1), h(2), . . . , h(t)) = p(h(1))p(x(1) | h(1))
T

∏
t=2

p(h(t) | h(t−1))p(x(t) | h(t))

(2.11)

Here, x(1), x(2), . . . , x(T) is the sequence of observations and h(1), h(2), . . . , h(T) is the se-

quence of hidden states.* Observations can be either discrete or continuous, while hidden

states are usually discrete, although continuous-state versions exist (Turin [6]).

By analyzing d-separation in Figure 2.5, two fundamental assumptions of the HMM

are revealed:

• For all t, the hidden state h(t) is conditionally independent of all past hidden states

h(1), h(2), . . . , h(t−2) given the previous hidden state h(t−1) — Markov assumption.

• For all t, the observation x(t) is conditionally independent of all past and future

observations x(1), . . . , x(t−1), x(t+1), . . . , x(T) and of all past and future hidden states

*The word hidden refers to the fact that the states are usually not observed in the training data.

2. BACKGROUND 11

h(1), . . . , h(t−1), h(t+1), . . . , h(T) given the current hidden state h(t) — output indepen-

dence assumption.

Furthermore, it is also assumed that both the state transition distribution p(h(t) | h(t−1))

and the emission distribution p(x(t) | h(t)) are stationary, i.e. they are the same for all t.

Besides reducing the number of parameters required to describe the model, the stationar-

ity assumption allows the model to work with sequences of arbitrary length T. It should

be noted that, in some applications, these assumptions are relaxed yielding HMMs where

the hidden state depends on the k previous hidden states (k-th-order HMM) or where the

distributions are time-dependent (non-stationary HMM).

The independence assumptions of the HMM also have the advantage of making infer-

ence in this model a tractable problem. Here, we will be particularly interested in comput-

ing p(x(1), x(2), . . . , x(T)), p(h(t) | x(1), x(2), . . . , x(T)), and p(h(t−1), h(t) | x(1), x(2), . . . , x(T)),

which can be obtained with Algorithm 2.1 (see Bishop [7] for the derivation).

Algorithm 2.1 Forward-backward algorithm (Rabiner and Juang [8]).

1: Inputs: An observation sequence x(1), x(2), . . . , x(T) and an HMM with defined initial
state, state transition, and emission distributions.

2: Initialize αh(1) := p(h(1) = h)p(x(1) | h(1) = h) and βh(T) := 1 for all h in the state
dictionary.

3: Compute the forward recursion αh(t) := p(x(t) | h(t) = h)∑h(t−1) αh(t−1)(t− 1)p(h(t) =

h | h(t−1)) for all h in the state dictionary and t = 2, 3, . . . , T.

4: Compute the backward recursion βh(t) := p(x(t+1) | h(t+1) = h)∑h(t+1) βh(t+1)(t +
1)p(h(t+1) | h(t) = h) for all h in the state dictionary and t = T − 1, T − 2, . . . , 1.

5: Obtain the marginal likelihood of the observed sequence as p(x(1), x(2), . . . , x(T)) :=
∑h(T) αh(T)(T).

6: Obtain the state posterior distribution as p(h(t) = h | x(1), x(2), . . . , x(T)) :=
αh(t)βh(t)

p(x(1),x(2),...,x(T))
for all h in the state dictionary.

7: Obtain the joint posterior distribution of two consecutive states as p(h(t−1) = h, h(t) =

h′ | x(1), x(2), . . . , x(T)) =
αh(t−1)p(h(t)=h′|h(t−1)=h)p(x(t)|h(t)=h′)βh′ (t)

p(x(1),x(2),...,x(T))
for all h, h′ in the state

dictionary.

12 LEARNING FROM MULTI-ENTITY DATA

2.4 The expectation-maximization algorithm

2.4.1 General formulation

Given a dataset {xi}n
i=1 and a probabilistic model with m random variables, the param-

eters Θ of the model are often estimated using the maximum likelihood criterion, i.e. the

optimal parameters maximize:

J(Θ) ,
n

∑
i=1

log p(xi; Θ). (2.12)

When every example xi is a vector containing an observation for each of the m random

variables in the model and p is a usual family of distributions (e.g. exponential family

or table CPD), objective (2.12) is concave and therefore it has a unique maximizer Θ∗.

For instance, when Θ corresponds to the parameters of table CPDs, Θ∗ is given by the

empirical conditional probabilities obtained from the provided dataset (see Koller and

Friedman [5] for a proof).

However, if there exist xi which do not contain observations for some of the m ran-

dom variables, the maximum likelihood objective becomes non-concave and admits mul-

tiple local optima. A procedure to find one of those optimum values is (stochastic) gra-

dient ascent over the likelihood function. A usually better alternative is the expectation-

maximization (EM) algorithm, explained next, since it exhibits faster convergence.

For simplicity, assume that if a random variable is observed in a given example xi

then it is observed in all remaining n − 1 examples as well, i.e. assume that the m ran-

dom variables can be partitioned as {x(j)}o
j=1 ∪ {z(j)}l

j=1 where the x(j) are the o observed

variables and the z(j) are the l unobserved (or latent) variables and o + l = m.* Let

x ,
(

x(1), . . . , x(o)
)

and z ,
(

z(1), . . . , z(l)
)

be the vectors of observed and latent vari-

ables, respectively. Under this setting, objective (2.12) becomes:

J(Θ) =
n

∑
i=1

log
∫

p(xi, z; Θ)dz. (2.13)

Now, let q(z) be an arbitrary distribution such that Supp(q(z)) ⊇ Supp(p(z | xi; Θ)) for

all i. Then,

J(Θ) =
n

∑
i=1

log
∫ p(xi, z; Θ)

q(z)
q(z)dz

*This assumption is not necessary for the EM algorithm to be valid. However, it makes the exposition
simpler and it will hold for all latent variable models considered in this thesis.

2. BACKGROUND 13

=
n

∑
i=1

log Ez∼q

[
p(xi, z; Θ)

q(z)

]

≥
n

∑
i=1

Ez∼q

[
log

p(xi, z; Θ)

q(z)

]
, ELBO(q, Θ), (2.14)

where the inequality is a particular case of Jensen’s inequality. The EM algorithm maxi-

mizes this evidence lower bound (ELBO) in the following block coordinate ascent manner,

until a convergence criterion is satisfied:

• Keep Θ = Θ(−) (fixed) and find q∗ = arg maxq ELBO(q, Θ(−)) — E-step.

• Keep q = q(−) (fixed) and find Θ∗ = arg maxΘ ELBO(q(−), Θ) — M-step.

2.4.1.1 E-step

Maximizing the ELBO with respect to q is obviously equivalent to the minimization of

the difference J(Θ(−))− ELBO(q, Θ(−)) with respect to the same distribution. It is easy to

verify that:

J(Θ(−))− ELBO(q, Θ(−)) =
n

∑
i=1

Ez∼q

[
log

q(z)
p(z | xi; Θ(−))

]
= DKL(q(z)‖p(z | xi; Θ(−))),

(2.15)

where DKL(q(z)‖p(z | xi; Θ(−))) denotes the Kullback-Leibler (KL) divergence between

the distributions q(z) and p(z | xi; Θ(−)). This quantity is always non-negative, being zero

if and only if the two distributions coincide. Thus, the optimal q is q∗(z) = p(z | xi; Θ(−)).

2.4.1.2 M-step

Having found the optimal q, we now maximize the ELBO with respect to the parameters

Θ. Plugging in q(−)(z) = p(z | xi; Θ(−)) yields:

ELBO(q(−), Θ) =
n

∑
i=1

Ez∼p(z|xi ;Θ(−))

[
log p(xi, z; Θ)

]
−

n

∑
i=1

Ez∼p(z|xi ;Θ(−))

[
log p(z | xi; Θ(−))

]
,

(2.16)

where the second term is constant with respect to Θ and therefore can be discarded. The

first term is often concave and the maximizer Θ∗ can be written in closed form. This is for

instance the case for table CPDs, whose closed-form EM update equations are described

next.

14 LEARNING FROM MULTI-ENTITY DATA

2.4.2 EM for table CPDs

We now provide the E-step and M-step update equations applicable to any Bayesian net-

work G whose conditional distributions are described by table CPDs. The derivation of

these formulas can be found in Koller and Friedman [5].

E-step At this stage, using the parameters Θ(−) obtained at the previous M-step (or the

initial parameters, if at the beginning), we should obtain the expected sufficient statistics.

For this purpose, for each random variable w in the Bayesian network G and for each

(w, v) ∈ Val(w, PaG(w)):

• Compute the posterior distributions p(w, PaG(w) | xi; Θ(−)) and p(PaG(w) | xi; Θ(−))

for each i.

• Compute the expected sufficient statistics as:

M(w, v) ,
n

∑
i=1

p(w, v | xi; Θ(−)), (2.17)

M(v) ,
n

∑
i=1

p(v | xi; Θ(−)). (2.18)

M-step Now, given the expected sufficient statistics computed at the previous E-step,

we update the parameters Θ using:

θw|v =
M(w, v)

M(v)
, (2.19)

where θw|v denotes the table entry corresponding to the probability p(w = w | PaG(w) =

v). The set Θ is the union of all these parameters.

2.4.3 EM for the discrete-emission HMM

An example of a table CPD model with latent variables is the HMM with discrete emission

distribution. Under this setting, the hidden state h(t) and the observation x(t) both take

values in discrete and finite sets. Thus, we can use equations (2.17) and (2.18) together

with the structure of the Bayesian network in Figure 2.5 and Algorithm 2.1 to obtain the

EM training procedure for this model, which is summarized in Algorithm 2.2.

The parameters to be learned here are:

• the initial state probabilities πh , p(h(1) = h), for all h in the state dictionary;

2. BACKGROUND 15

• the state transition probabilities Ah,h′ , p(h(t) = h′ | h(t−1) = h), for all h, h′ in the

state dictionary;

• the emission probabilities Bh,x , p(x(t) = x | h(t) = h), for all h and x in the state

and observation dictionaries, respectively.

Algorithm 2.2 Baum-Welch algorithm (Baum [9]).

1: Inputs: A training set {xi}n
i=1 of observation sequences x(1)i , x(2)i , . . . , x(Ti)

i , a set of
initial parameters Θ(0) for the HMM, and the number of training iterations trainIter.

2: for j = 1, . . . , trainIter do

3: E-step:

4: Obtain the state posteriors γi,h(t) := p(h(t) = h | xi; Θ(j−1)) and ξi,h,h′(t) :=
p(h(t−1) = h, h(t) = h′ | xi; Θ(j−1)) for i = 1, . . . , n, t = 1, . . . , Ti, and h, h′ in the state
dictionary, as done in Algorithm 2.1.

5: M-step:

6: πh := 1
n ∑n

i=1 γi,h(1), for all h in the state dictionary;

7: Ah,h′ := ∑n
i=1 ∑

Ti
t=1 ξi,h,h′ (t)

∑n
i=1 ∑

Ti
t=1 γi,h(t)

, for all h, h′ in the state dictionary;

8: Bh,x :=
∑n

i=1 ∑
Ti
t=1 γi,h(t)1

x(t)i =x

∑n
i=1 ∑

Ti
t=1 γi,h(t)

, for all h and x in the state and observation dictionar-

ies, respectively;

9: Θ(j) :=
⋃

h,h′,x
{

πh, Ah,h′ , Bh,x
}

.

10: end for

2.5 Variational autoencoder

2.5.1 Formulation

In Section 2.4.1.1, we have shown that the posterior distribution p(z | x; Θ) was the opti-

mal solution for the maximization of the ELBO with respect to the variational distribution

q(z). In the general case, this posterior is given by:

p(z | x; Θ) =
p(x, z; Θ)∫
p(x, z; Θ)dz

, (2.20)

16 LEARNING FROM MULTI-ENTITY DATA

where the integral in the denominator is usually designated as the partition function. When

z is high-dimensional, computing the partition function becomes intractable and, there-

fore, the computation of the exact posterior is infeasible. This is where variational meth-

ods come into play.

Variational methods are used as approximation methods in a wide variety of settings,

from quantum mechanics (Sakurai and Napolitano [10]) to statistics (Rustagi [11]). In

the context of statistics and Bayesian inference, variational methods are used not only to

find an approximate posterior in the E-step of the EM algorithm, but also as a general

approximate inference tool.

Suppose now that we want to learn a conditional distribution p(X | z; θe) of images X

conditioned on latent codes z by implementing a neural network with parameters θd. This

distribution combined with a prior p(z) over the latent codes define the image likelihood

p(X; θd) as:

p(X; θd) =
∫

p(X | z; θd)p(z)dz. (2.21)

Therefore, in principle, this model can be trained using the maximum likelihood criterion

and the EM algorithm. Note, however, that equation (2.21) is the partition function of

this model. The issue here is the marginalization over z, which is intractable since one of

the integrands is a neural network and z is usually high-dimensional. To overcome this

problem, a parametric variational distribution q(z | X; θe) is introduced as a replacement

for the true posterior p(z | X; θd). This variational distribution is itself implemented with

a deep neural network. If the family of distributions parameterized by the network is rich

enough, it will be able to provide a tight approximation of the true posterior and hence

maximize the ELBO. Formally, the objective is:

max
θe,θd

ELBO(θe, θd) =
n

∑
i=1

Ez∼q(z|Xi ;θe)

[
log

p(Xi | z; θd)p(z)
q(z | Xi; θe)

] . (2.22)

Note that the network q(z | X; θe) defines a stochastic mapping from input images to

latent codes and the network p(X | z; θd) defines its inverse mapping. Hence, the former

is an encoder, the latter is a decoder, and the model itself is called a variational autoencoder

(VAE, Kingma and Welling [12]). Regarding the choice of prior p(z) and approximate

2. BACKGROUND 17

posterior q(z | X; θe), both are often set as Gaussian, specifically:

p(z) , N (z; 0, I), (2.23)

q(z | X; θe) , N (z; µe(X; θe), diag(σ2
e (X; θe)), (2.24)

where, in the latter, µe(X; θe) and σ2
e (X; θe) are the two outputs of the encoder network.

The conditional likelihood p(X | z; θd) is usually a Bernoulli distribution, for black and

white images, or a Gaussian, for grayscale and color images. In the latter case,

p(X | z; θd) , N (X; µd(z; θd), σ2
d I), (2.25)

where σ2
d > 0 is a hyperparameter. Note that, despite all distributions are simple Gaus-

sians, the marginal density p(X) is then a continuous mixture of Gaussians, which is an

expressive model.

2.5.2 Gradient of the decoder

As with most deep learning models, the VAE is usually trained using backpropagation

and some form of stochastic gradient descent. For this purpose, the gradients of the ELBO

with respect to both the decoder parameters θd and encoder parameters θe must be com-

putable using automatic differentiation. As we see next, computing the former poses no

significant difficulties.

Let us assume that p(X | z; θd) is as defined in equation (2.25) since this is the version

that will be considered later in this document. Under this setting,

∇θd ELBO(θe, θd) = ∇θd

n

∑
i=1

Ez∼q(z|Xi ;θe)

[
log

p(Xi | z; θd)p(z)
q(z | Xi; θe)

]

=
n

∑
i=1

Ez∼q(z|Xi ;θe)

[
∇θd log

p(Xi | z; θd)p(z)
q(z | Xi; θe)

]

=
n

∑
i=1

Ez∼q(z|Xi ;θe)

[
∇θd log p(Xi | z; θd)

]
= − 1

2σ2
d

n

∑
i=1

Ez∼q(z|Xi ;θe)

[
∇θd ||Xi − µd(z; θd)||2

]
, (2.26)

where the second equality is due to the linearity of expectations and the last one comes by

plugging in the formula of the Gaussian density and discarding constant terms. This ex-

pression makes it clear that the decoder is trained to reconstruct the original image given

18 LEARNING FROM MULTI-ENTITY DATA

its latent code by minimizing the L2 distance between the original image and its recon-

struction, just like a traditional (i.e. non-variational) autoencoder. Finally, the expectation

in equation (2.26) is replaced by its empirical approximation with one sample:

∇θd ELBO(θe, θd) ≈ −
1

2σ2
d

n

∑
i=1
∇θd ||Xi − µd(zi; θd)||2, (2.27)

where the zi are sampled from q(z | Xi; θe), which is Gaussian, so this process is compu-

tationally easy and efficient.

2.5.3 Gradient of the encoder

Finding the gradient of the ELBO with respect to the encoder parameters is not as easy

since the distribution we are taking the expectation with respect to depends on the en-

coder parameters. Thus, the expectation and the gradient operator do not commute and

we get:

∇θe ELBO(θe, θd) = ∇θe

n

∑
i=1

Ez∼q(z|Xi ;θe)

[
log

p(Xi | z; θd)p(z)
q(z | Xi; θe)

]

= ∇θe

n

∑
i=1

Ez∼q(z|Xi ;θe)

[
log p(Xi | z; θd)

]
−∇θe

n

∑
i=1

DKL(q(z | Xi; θe)‖p(z)),

(2.28)

where the KL divergence is between two Gaussian distributions and hence can be com-

puted analytically as:

DKL(q(z | Xi; θe)‖p(z)) =
l

∑
j=1

(
µ
(i)
j

2
+ σ

(i)
j

2
− 1− 2 log σ

(i)
j

)
, (2.29)

where l is the dimension of the latent vector z and µ
(i)
j and σ

(i)
j denote the j-th elements of

the vectors µe(Xi; θe) and σe(Xi; θe), respectively.

Now, all that remains is the computation of the gradient with respect to the first term

in equation (2.28). Note that:

∇θe

n

∑
i=1

Ez∼q(z|Xi ;θe)[log p(Xi | z;θd)] = ∇θe

n

∑
i=1

∫
q(z | Xi; θe) log p(Xi | z; θd)dz

=
n

∑
i=1

∫
∇θe q(z | Xi; θe) log p(Xi | z; θd)dz

=
n

∑
i=1

∫
q(z | Xi; θe)∇θe log q(z | Xi; θe) log p(Xi | z; θd)dz

2. BACKGROUND 19

=
n

∑
i=1

Ez∼q(z|Xi ;θe)

[
∇θe log q(z | Xi; θe) log p(Xi | z; θd)

]
,

(2.30)

where the third equality comes by applying the log derivative trick (∇u = u∇ log(u)).

In the last expression, the gradient operator appears inside the expectation and so, in

principle, it can be approximated using an empirical expectation:

∇θe

n

∑
i=1

Ez∼q(z|Xi ;θe)[log p(Xi | z; θd)] ≈
1
k

n

∑
i=1

k

∑
j=1
∇θe log q(zi,j | Xi; θe) log p(Xi | zi,j; θd),

(2.31)

where the zi,j are sampled from q(z | Xi; θe) and k is the number of samples. The problem

with this approach is that, early in training, p(Xi | zi,j; θd) ≈ 0 and hence log p(Xi |

zi,j; θd) is negative and has large magnitude. This, combined with the fact that log q(zi,j |

Xi; θe) can be either positive or negative, leads to large variance in the gradient estimator.

Reducing the variance implies using a large number of samples which in turn leads to an

increased computational cost.

The reparameterization trick is an efficient solution to this problem. Note that, if ε ∼

N (ε; 0, I), then z , σe � ε + µe ∼ N (z; µe, diag(σe)2), where � denotes the element-wise

product. Thus,

Ez∼q(z|X;θe)[log p(X | z; θd)] = Eε∼N (ε;0,I)
[
log p(X | σe � ε + µe; θd)

]
(2.32)

and therefore

∇θe

n

∑
i=1

Ez∼q(z|Xi ;θe)[log p(Xi | z; θd)] =
n

∑
i=1

Eε∼N (ε;0,I)

[
∇θe log p(Xi | σ

(i)
e � ε + µ

(i)
e ; θd)

]
,

(2.33)

where µ
(i)
e and σ

(i)
e are shorthand notations for µe(Xi; θe) and σe(Xi; θe), respectively. In

this case, there is no product of logarithms inside the expectation and so the high-variance

problem is mitigated. The most common approach is again to use an empirical approxi-

mation with one sample, which yields:

∇θe

n

∑
i=1

Ez∼q(z|Xi ;θe)[log p(Xi | z; θd)] ≈
n

∑
i=1
∇θe log p(Xi | σ

(i)
e � εi + µ

(i)
e ; θd), (2.34)

where the εi are sampled from a standard Gaussian.

20 LEARNING FROM MULTI-ENTITY DATA

2.5.4 Loss function

Most deep learning libraries follow the principle that models are trained to minimize

a user-defined loss function. In the case of the VAE, we have derived the (approximate)

gradients directly. Finding an expression for the corresponding loss (i.e. for a loss function

that yields the same gradients) is straightforward, but we write it for completeness and

also because it provides useful insights into the behavior of the VAE.

From equations (2.27), (2.28), and (2.34), it should be clear that maximizing the ELBO

is equivalent to the minimization of:

LVAE(θe, θd) ,
n

∑
i=1
||Xi − µd(zi; θd)||2 + λ

n

∑
i=1

DKL(q(z | Xi; θe)‖p(z)), (2.35)

where zi , σ
(i)
e � εi + µ

(i)
e , εi is sampled from a standard Gaussian, λ = 2σ2

d > 0 is

a hyperparameter, and DKL(q(z | Xi; θe)‖p(z)) is as written in equation (2.29). Equa-

tion (2.35) shows that the VAE is trained to satisfy two objectives: i) reconstructing the

original samples and ii) approximating the distribution of latent codes to the prior p(z),

which is a standard Gaussian. If both are accomplished, new images X can be generated

efficiently by sampling a latent code z from a standard Gaussian and performing a for-

ward pass through the decoder, a procedure that corresponds to forward sampling in the

chain z→ X.

2.6 Conclusion

We have reviewed the main probabilistic models theory and algorithms used throughout

this document. The structural properties of Bayesian networks will be crucial in Chapter

3, where we shall present a novel generative model for networked data streams, and

also important in Chapter 4 for a review of the most common underlying assumptions

for the problem of domain adaptation. The EM algorithm will be used and adapted to

a regularized maximum likelihood objective in Chapter 3. Finally, a slightly modified

version of the VAE, known as conditional VAE, will be employed in Chapter 5 to learn

signer-invariant representations for sign-language recognition.

Chapter 3

Networked data streams

Some parts of this chapter were originally published in or adapted from:

[13] A. Allahdadi, D. Pernes, J. S. Cardoso, and R. Morla, “Hidden Markov models

on a self-organizing map for anomaly detection in 802.11 wireless networks,” Neural

Computing and Applications, pp. 1–18, 2021 (presented in Section 3.2)

[14] D. Pernes and J. S. Cardoso, “SpaMHMM: Sparse mixture of hidden Markov

models for graph connected entities,” in 2019 International Joint Conference on Neural

Networks (IJCNN). IEEE, 2019, pp. 1–10 (presented in Section 3.3)

In [13], Diogo Pernes worked primarily on the mathematical derivation of the algorithm

and provided some advice about the experimental protocol. Allahdadi was responsible for

motivating the application, researching related work, conducting the experimental evalu-

ation, and generating the wireless simulation dataset. Cardoso and Morla supervised the

work.

3.1 Introduction

A broad range of real-life settings can be well modeled by an arbitrary number of network-

connected entities that share and interact in the same medium and generate data streams

in real-time. The streams produced by each of these entities form a set of time series with

both intra and inter-correlations between them. In neuroimaging studies, the brain can

be regarded as a network: a connected system where nodes, or units, represent different

specialized regions and links, or connections, represent communication pathways. From

a functional perspective, communication is coded by temporal dependence between the

activities of different brain areas (De Vico Fallani et al. [15]). Also team sports intrinsically

21

22 LEARNING FROM MULTI-ENTITY DATA

involve fast, complex and interdependent events among a set of entities (the players),

which interact as a team (Tora et al. [16], Theagarajan et al. [17]). The emergence of ve-

hicular networks is also generating an ever-increasing amount of network data (Cheng

et al. [18]), where interactions between neighboring vehicles may be exploited to build

more accurate and reliable learning algorithms. Thus, in all these scenarios the behavior

of each individual entity is better understood if its context information (i.e. the behavior

of the neighboring instances) is leveraged. However, the extraction of knowledge from

these streams to support the decision-making process is still challenging. Moreover, con-

ventional algorithms that assume ability to store and centralize all the data in memory at

the same time are impractical for many applications (Gama and Gaber [19]).

Modeling the generative process of distributed stream data is an unsupervised learn-

ing problem and, hence, a model can be learned directly from the large amounts of data

that might be continuously produced or gathered at each network connected entity, with-

out the requirement of any special human supervision or annotation. Moreover, genera-

tive models are powerful tools for a wide variety of problems that arise naturally in net-

worked data streams, like anomaly and novelty detection, sequence forecasting, cluster-

ing, and network simulation. Hence, generative models for stream data have been devel-

oped and applied in several previous works (e.g. Laxman et al. [20], Hayat and Hashemi

[21], Hofmann and Sick [22]). However, to the best of our knowledge, this problem is

seldom explored in the distributed setting.

Given the distributed nature of network data and the high information rate that those

streams could have, we argue that such generative model and/or the associated learning

algorithm should ideally satisfy the following properties:

1. Learning and inferring distributedly, i.e. each entity should be able to update its

own model and perform inference on it without observing the streams or the models

associated with the remaining entities.

2. Learning online, i.e. in real-time and without the requirement of storing the whole

dataset in memory.

3. Leveraging contextual information by incorporating prior knowledge about simi-

larities and dissimilarities among sets of entities.

4. The model should be applicable to a wide variety of distributed stream data, of

diverse nature.

3. NETWORKED DATA STREAMS 23

In this chapter, we present two solutions to this problem, each with its own advantages

and disadvantages. Both are inspired by the concept of sparse representations, which ex-

presses a signal/model f , defined over an independent variable x, as a linear combination

of a few atoms from a pre-specified and overcomplete dictionary of size m:

f (x) =
m

∑
z=1

szφz(x), (3.1)

where φz(x) are the atoms and only a few of the scalars sz are non-zero, providing a

sparse representation of f (x). Distributed sparse representation (Baron et al. [23]) is an

extension of the standard version that considers networks with k nodes. At each node, the

signal sensed at the same node has its sparsity property because of its intra-correlation,

while, for networks with multiple nodes, signals received at different nodes also exhibit

strong intercorrelation. The intra and inter-correlations lead to a joint sparse model. An

interesting scenario in distributed sparse representation, which we exploit here, is when

all signals/models share the common support but with different non-zero coefficients.

Our contributions in this chapter are summarized as follows: i) we extend an existing

model based on a combination of self-organizing maps (SOM) and HMMs and evaluate it

in the context of anomaly detection in Wi-Fi networks (Section 3.2); ii) we present a novel

algorithm that learns an entity-dependent model based on a mixture of shared HMMs

(Section 3.3); iii) we discuss how the two models intersect each other and, importantly,

how the latter can be viewed as a particular case of a general family of generative models

for distributed data (Section 3.4).

3.2 Hidden Markov models on a self-organizing map for anomaly

detection in 802.11 wireless networks

3.2.1 Introduction

In large-scale 802.11 wireless networks, acquiring a baseline knowledge of the entire in-

frastructure is not straightforward. Owing to the time-varying and physically distributed

nature of these networks, learning the usage characteristics of access points (APs), users,

and locations becomes more and more challenging. The wireless channel conditions

evolve over time, as does the usage behavior of the wireless users in different parts of

the network. Thus, wireless users are likely to suffer from many types of connectivity

and performance problems, e.g. interference, intermittent connections, or authentication

24 LEARNING FROM MULTI-ENTITY DATA

failures. To constantly ensure that wireless users have reliable connections, network man-

agers require tools and techniques to monitor the network, identify the problems, and

resolve them efficiently.

Naive approaches, e.g. using a single HMM common to all APs, lose the flexibility to

adapt to the specificities of each AP, while using one HMM per AP, trained independently

from the others, fails to leverage the relations between observations of neighboring APs.

An HMM initialized with a universal background model (HMM-UBM, Allahdadi et al.

[24]) is an improvement in the right direction. However, the relations between APs are

only used in the initial phase, when one trains the UBM to then initialize the individ-

ual HMM models for each AP. Thereafter, the individual HMMs evolve independently,

only benefiting from the AP’s own data. Although this is a very sensible approach in the

biometrics and speech modeling fields, where HMM-UBM has been used to train robust

user-specific models, in our setting, it fails to properly explore the dependencies between

data from APs with similar behavior.

In the current section, we focus on the actual proximity of APs as a determining fac-

tor in connectivity and performance problems. Anomalous cases, e.g. across-AP-vicinity

interference, AP overloads, or AP shutdown/halt, could eventually affect the usage be-

havior of the other APs in the neighborhood. To consider such behavioral changes in the

local area and their respective influences, we employ the synergistic approach of the self-

organizing hidden Markov model map (SOHMMM) to exploit the semantic connectivity

between adjacent HMMs.

The self-organizing map is an artificial neural network that defines a nonlinear trans-

formation from the input space to the set of nodes in the output space (Somervuo [25]).

Each node or neuron in the SOM is associated with a model of the input space. Through

an unsupervised-learning process, the models are tuned and organized in a lattice topol-

ogy according to the input patterns. In SOHMMM, each neuron is literally associated

with an HMM.

The training processes of the SOM and HMM sub-units are, in most cases, disjoint

and conducted independently. There are two main approaches regarding these hybrid

techniques. The first approach considers the SOM as a front-end processor (e.g. vector

quantization, preprocessing, feature extraction); HMMs are then used in the higher pro-

cessing stages (Somervuo [25], Kurimo and Somervuo [26], Morimoto [27]). The second

3. NETWORKED DATA STREAMS 25

approach places the SOM on top of the HMM (Ferles and Stafylopatis [28], Ferles et al.

[29], Lebbah et al. [30]).

In SOHMMM, the SOM unsupervised learning approach is well combined with the

HMM dynamic programming technique. The structure of both corresponding compo-

nents is unified in an integrated super-model. The presented online gradient descent

unsupervised learning algorithm is inspired by the SOHMMM algorithm previously pro-

posed by Ferles and Stafylopatis [28] and motivated by Baldi and Chauvin [31]. We ex-

tend the model to fit the requirements of our anomaly detection problem and extend the

presented algorithm by Ferles and Stafylopatis [28] to multivariate Gaussian emissions*.

3.2.2 Related work

A number of studies in the literature have integrated the SOM and HMM in different

manners. Niina and Dozono [32] proposed the spherical self-organizing map (S-SOM),

which uses HMM models as neurons (S-HMM-SOM) to classify the time-series data. This

work only considers discrete observations and the model parameters are updated using

the Baum-Welch algorithm (Baum [9]). Yamaguchi [33] extended the self-organizing mix-

ture models for multivariate time-series, assuming that the time-series are generated by

HMMs. This model, which is called a self-organizing hidden Markov model (SOHMM),

uses constrained EM for HMM parameter estimation. The self-organization in this work

is used for meteorological-state visualization.

In another direction of work, Caridakis et al. [34] present a SOMM-based architecture

for hand-gesture recognition. The approach involves a combination of SOMs and Markov

models for gesture-trajectory classification. In this work, the neurons on the SOM map

correspond to the states of the Markov models. Jaziri et al. [35] also exploit the combina-

tion of the SOM and HMM (SOS-HMM: self-organizing structure of HMM) and automat-

ically extract the structure of an HMM without any prior knowledge of the application

domain. In this model, the macro-HMM is represented as a graph of macro-states, where

each state represents a micro-HMM. In summary, each neuron in the SOM-HMM col-

laborative architecture is either an HMM by itself or a hidden state. In our work, each

particular neuron on the SOM lattice is associated with an HMM.

Lebbah et al. [30] present a probabilistic self-organizing map called PrSOMS for clus-

tering and visualization of dependent and non-identically distributed data. In this model,

*Ferles and Stafylopatis [28] only address the discrete-observation setting.

26 LEARNING FROM MULTI-ENTITY DATA

the SOM learning paradigm to produce topology-preserving maps is combined with the

probabilistic learning scheme of the HMM. The SOM is considered to be a grid, form-

ing a discrete topology in which each cell represents a state; the parameters of the model

are estimated by maximizing the likelihood of the sequential data set. Morimoto [27] in-

vestigates the effects of meteorological factors on the occurrence of strokes. The authors

used the SOM to obtain weather patterns that would serve as states of the HMMs. They

showed that HMMs with states given by the SOM are useful for describing a background

process of stroke incidence. This approach considers the SOM as a front-end processor.

Ferles and Stafylopatis [28, 36], Ferles et al. [37] apply the fusion and synergy of SOMs

and HMMs in biological-molecule studies to meet the increasing requirements imposed

by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein

chain molecules. The authors proposed a stochastic unsupervised-learning algorithm

based on the integration of the SOM and HMM principles, called self-organizing hidden

Markov model map. The SOHMMM characteristics and capabilities are demonstrated

through two series of experiments, based on artificial sequence data and splice-junction

gene sequences. However, in these papers, only the discrete-observation setting is ad-

dressed. Here, we extend the algorithm for multivariate Gaussian in order to fit the re-

quirements of our anomaly detection project.

Incremental learning of HMM parameters is the core function of the SOHMMM al-

gorithm, which is based on a stochastic gradient descent technique. The incremental

learning of new data sequences allows the HMM parameters to adapt as new data be-

come available, without having to be retrained from scratch on all the accumulated train-

ing data. Various techniques in the literature address this topic. These techniques are

classified according to the objective function, optimization technique, and target applica-

tion, and include the block-wise and symbol-wise learning of parameters. Khreich et al.

[38] presented a comprehensive survey of techniques that are suitable for the incremental

learning of HMM parameters, mentioning the stochastic gradient-descent technique of

the SOHMMM as one of the numerical optimization methods.

Additionally, few efforts exist in the literature that exploit the SOM and HMM for

anomaly detection purposes (Cho [39], Wang et al. [40]). Cho [39] presented an intrusion-

detection system in which the SOM determines the optimal measures of audit data and

reduces them to an appropriate size for efficient modeling by the HMM. Two types of

HMM are applied: a single model for all the users and individual models for each user.

3. NETWORKED DATA STREAMS 27

Wang et al. [40] investigated the HMM and the SOM separately as intrusion-detection

techniques. The testing results show that the HMM method using the events’ transition

property outperformed the SOM using the events’ frequency property. Regarding the

same subject of intrusion detection, the SOM and HMM have a collaborating connection

in [39] and competitive roles in [40].

In this work, we intend to benefit from the collaboration of these two techniques (SOM

and HMM), as proposed by Ferles and Stafylopatis [36], to extend previous anomaly de-

tection frameworks applying only HMM (Allahdadi et al. [24, 41], Allahdadi and Morla

[42]).

3.2.3 The self-organizing hidden Markov model map for discrete observations

We start by reviewing SOHMMM as initially formulated by Ferles and Stafylopatis [36].

This model defines a mapping between an observed sequence x ,
(

x(1), . . . , x(T)
)

and

a two-dimensional lattice of HMMs, which constitute its atoms. Each observation is as-

sumed to be discrete, so x(t) ∈ {1, . . . , o}, being o the size of the dictionary of observations.

The topology of a 2-D lattice of m HMMs is defined by a function r : {1, . . . , m} 7→ R2,

mapping the indices of the m nodes to the respective coordinates in the plane. Given the

lattice topology, a neighborhood function v : {1, . . . , m}2 7→ [0, ∞) can be defined map-

ping two nodes in the lattice to a scalar representing how close the two atoms are. In

SOHMMM, v is a Gaussian kernel:

v(z, z′) , exp
(
−λ||r(z)− r(z′)||2

)
, (3.2)

where λ > 0 is a hyperparameter controlling the rate of the decay. Following the idea of

SOMs, the SOHMMM algorithm aims to minimize an energy function, defined below:

E(x; Θ) , −∑
z

p(x | z; Θ)v(z, z∗), (3.3)

where Θ summarizes all parameters of the HMMs, z indexes the m HMMs in the lattice,

and p(x | z) is the marginal distribution of observations of a standard HMM:

p(x | z) = ∑
h

p(h(1) | z)p(x(1) | h(1), z)
T

∏
t=2

p(h(t) | h(t−1), z)p(x(t) | h(t), z), (3.4)

where h =
(

h(1), . . . , h(T)
)

is the sequence of hidden states of the HMM and h(t) ∈

{1, . . . , s}, being s the number of hidden states. Finally, z∗ corresponds to the index of

28 LEARNING FROM MULTI-ENTITY DATA

the winner node for the observation x:

z∗ , arg max
z′∈{1,...,m}

∑
z

p(x | z; Θ)v(z, z′). (3.5)

The set Θ consists of the following parameters:

• the s-dimensional initial state probabilities, π(z), where π
(z)
h , p(h(1) = h | z = z),

for h ∈ {1, . . . , s} and z ∈ {1, . . . , m};

• the s× s state transition matrices, A(z), where A(z)
h,h′ , p(h(t) = h′ | h(t−1) = h, z = z),

for h, h′ ∈ {1, . . . , s} and z ∈ {1, . . . , m};

• the s× o emission probability matrices, B(z), where B(z)
h,x , p(x(t) = x | h(t) = h, z =

z), for h ∈ {1, . . . , s}, x ∈ {1, . . . , o}, and z ∈ {1, . . . , m}.

Thus, Θ , {(π(z), A(z), B(z))}m
z=1, where each triplet (π(z), A(z), B(z)) completely defines

one HMM in the lattice. The SOHMMM online learning algorithm corresponds to stochas-

tic gradient descent over the energy function (3.3). Constrained optimization is avoided

by reparameterizing the model using softmax functions, so that standard, unconstrained

stochastic gradient descent can be performed over the new parameters u(z), W (z), and

R(z):

π
(z)
h =

exp(u(z)
h)

∑s
h′=1 exp(u(z)

h′)
, A(z)

h,h′ =
exp(W(z)

h,h′)

∑s
h′′=1 exp(W(z)

h,h′′)
, B(z)

h,x =
exp(R(z)

h,x)

∑o
x′=1 exp(R(z)

h,x′)
. (3.6)

The full algorithm, comprising the update equations for each parameter, is presented in

Algorithm 3.1 and its derivation can be found in Ferles and Stafylopatis [36].

3.2.4 Extending SOHMMM to Gaussian observations

For the purpose of modeling AP usage data, we should consider a slightly different set-

ting where each observation x(t) takes values on the d-dimensional plane Rd, rather than

being drawn from a discrete and finite set. Hence, now, sequences X ,
(

x(1), . . . , x(T)
)

take values on Rd×T. A sensible option, which may be useful in a broad range of appli-

cations, is considering the case of multivariate Gaussian emissions, i.e. x(t) | (h(t), z) ∼

N
(

x; µ
(z)
h , Σ

(z)
h

)
, where µ

(z)
h ∈ Rd is the mean and Σ

(z)
h ∈ Rd×d is the covariance of the

Gaussian component corresponding to state h in the lattice node z. These means and co-

variances replace the emission probability matrices B(z) defined for the case of discrete

observations.

3. NETWORKED DATA STREAMS 29

Algorithm 3.1 SOHMMM learning algorithm for discrete observations [36]

1: Inputs: the lattice r with m nodes, the hyperparameter λ of the neighborhood function
v, the set of initial parameters Θ(0), the learning rate η, and the number of training
iterations trainIter.

2: for i = 1, . . . ,trainIter do

3: Observe x = x, with length T.

4: for z = 1, . . . , m do (forward-backward algorithm)

5: α
(z)
h (1) := π

(z)
h B(z)

h,x(1)
, for h = 1, . . . , s;

6: α
(z)
h (t) := B(z)

h,x(t) ∑s
h′=1 α

(z)
h′ (t− 1)A(z)

h′,h, t = 2, . . . , T, for h = 1, . . . , s;

7: β
(z)
h (T) := 1, for h = 1, . . . , s;

8: β
(z)
h (t) := B(z)

h,x(t+1) ∑s
h′=1 β

(z)
h′ (t + 1)A(z)

h,h′ , for t = T − 1, . . . , 1 and h = 1, . . . , s.

9: end for

10: z∗ := arg maxz′∈{1,...,m} ∑m
z=1 p(x | z, Θ(i−1))v(z, z′).

11: for z = 1, . . . , m do

12: u(z)
h := u(z)

h + ηπ
(z)
h

[
B(z)

h,x(1)
β
(z)
1 (h)− p(x | z, Θ(i−1))

]
, for h = 1, . . . , s;

13: W(z)
h,h′ := W(z)

h,h′ + ηv(z, z∗)A(z)
h′,h ∑T−1

t=1

[
α
(z)
h (t)B(z)

h,x(t+1) β
(z)
t+1(h

′)− α
(z)
h (t)β

(z)
h (t)

]
, for

h, h′ = 1, . . . , s;

14: R(z)
h,x′ := R(z)

h,x′ + ηv(z, z∗)∑T
t=1

[
1x(t)=x′α

(z)
h (t)βh(t)− B(z)

h,x′α
(z)
h (t)β

(z)
h (t)

]
, for h =

1, . . . , s and x′ = 1, . . . , o;

15: π
(z)
h := exp(u(z)

h)
/

∑s
h′=1 exp(u(z)

h′), for h = 1, . . . , s;

16: A(z)
h,h′ := exp(W(z)

h,h′)
/

∑s
h′′=1 exp(W(z)

h,h′′), for h, h′ = 1, . . . , s;

17: B(z)
h,x′ := exp(R(z)

h,x′)
/

∑o
x′′=1 exp(R(z)

h,x′′), for h = 1, . . . , s and x′ = 1, . . . , o.

18: end for

19: Θ(i) :=
{
(u(z), W (z), R(z))

}m

z=1
.

20: end for

30 LEARNING FROM MULTI-ENTITY DATA

We shall now derive the necessary readjustments in Algorithm 3.1. Let us denote by

x the observation at a given time t (i.e. x(t) = x) and consider the corresponding state h(t)

and the node z as fixed at h and z, respectively. Thus, we use the notation p(x | h, z) as a

short for p(x(t) = x | h(t) = h, z = z). We have:

∂p(X | z)
∂p(x | h, z)

=
∂

∂p(x | h, z)

[
∑
h

p(X, h | z)

]

=
∂

∂p(x | h, z)

[
∑
h

p(h(1) | z)
T

∏
t′=1

p(h(t′) | h(t′−1), z)p(x(t
′) | h(t′), z)

]

=
1

p(x | h, z) ∑
h: h(t)=h

p(X, h | z)

=
p(X, h | z)
p(x | h, z)

=
α
(z)
t (h)β

(z)
t (h)

p(x | h, z)
. (3.7)

Note that, for discrete observations, p(x | h, z) = B(z)
h,x . However, when we consider the

multivariate Gaussian case,

p(x | h, z) = N
(

x; µ
(z)
h , Σ

(z)
h

)
=

1√
(2π)ddet(Σ(z)

h)
exp

(
−1

2
(x− µ

(z)
h)
>

Σ
(z)
h

−1
(x− µ

(z)
h)

)
, (3.8)

where the covariance matrix Σ
(z)
h must be positive definite. This constraint can be easily

guaranteed by reparameterizing this matrix as Σ
(z)
h = S(z)

h S(z)
h

>
, where S(z)

h ∈ Rd×d is

constraint-free (although assumed to be non-singular). The required gradients are:

∇
µ
(z)
h

p(x | h, z) = p(x | h, z)(SS>)−1(x− µ), (3.9)

∇
S(z)

h
p(x | h, z) = p(x | h, z)S−1

[
(x− µ)(x− µ)>(SS>)−1 − Id

]
, (3.10)

3. NETWORKED DATA STREAMS 31

where we have abbreviated µ
(z)
h as µ and S(z)

h as S to alleviate the notation. Now, by the

chain rule,

∇
µ
(z)
h

p(X | z) =
T

∑
t=1

∂p(X | z)
∂p(x(t) | h, z)

∇
µ
(z)
h

p(x(t) | h, z)

=
T

∑
t=1

α
(z)
t (h)β

(z)
t (h)

p(x(t) | h, z)
∇

µ
(z)
h

p(x(t) | h, z)

=
T

∑
t=1

α
(z)
t (h)β

(z)
t (h)(SS>)−1(x(t) − µ), (3.11)

∇
S(z)

h
p(X | z) =

T

∑
t=1

α
(z)
t (h)β

(z)
t (h)S−1

[
(x(t) − µ)(x(t) − µ)>(SS>)−1 − Id

]
. (3.12)

Finally, by applying the chain rule once again, we get the desired gradients of the energy

function E with respect to µ
(z)
h and S(z)

h :

∇
µ
(z)
h

E(X) =
∂E

∂p(X | z)
∇

µ
(z)
h

p(X | z)

= −v(z, z∗)∇
µ
(z)
h

p(X | z)

= −v(z, z∗)
T

∑
t=1

α
(z)
t (h)β

(z)
t (h)(SS>)−1(x(t) − µ), (3.13)

∇
S(z)

h
E(X) = −v(z, z∗)

T

∑
t=1

α
(z)
t (h)β

(z)
t (h)S−1

[
(x(t) − µ)(x(t) − µ)>(SS>)−1 − Id

]
. (3.14)

Given equations (3.13) and (3.14), it is straightforward to adapt Algorithm 3.1 to our set-

ting. For completeness, the full algorithm is provided in Algorithm 3.2.

3.2.5 Experiments

In this section, we consider two types of experiments to analyze the capabilities of the

SOHMMM algorithm for nonlinear projection and unsupervised clustering. We validate

first the accuracy and convergence of the SOHMMM using synthetic data, and then explore

its significance and efficiency in anomaly detection using wireless simulation data.

3.2.5.1 Synthetic data

In this experiment, we generate observations from two reference HMMs, with one third of

the observations coming from one of the models, and the remaining two thirds from the

other reference model. Then, we train a SOHMMM with six nodes, randomly initialized,

with the data from the reference models. It is expected that the SOHMMM nodes would

32 LEARNING FROM MULTI-ENTITY DATA

Algorithm 3.2 SOHMMM learning algorithm for Gaussian observations

1: Inputs: Same as in Algorithm 3.1.

2: for i = 1, . . . ,trainIter do

3: Observe X = X, with length T.

4: Proceed as in lines 4–8 of Algorithm 3.1, replacing all occurrences of B(z)
h,x(t)

with

N
(

x(t); µ
(z)
h , S(z)

h S(z)
h

>
)

.

5: z∗ := arg maxz′∈{1,...,m} ∑m
z=1 p(X | z, Θ(i−1))v(z, z′).

6: for z = 1, . . . , m do

7: Proceed as in lines 12 and 13 of Algorithm 3.1, replacing all occurrences of B(z)
h,x(t)

with N
(

x(t); µ
(z)
h , S(z)

h S(z)
h

>
)

and all occurences of x with X;

8: µ
(z)
h := µ

(z)
h + ηv(z, z∗)∑T

t=1 α
(z)
t (h)β

(z)
t (h)(S(z)

h S(z)
h

>
)−1(x(t) − µ

(z)
h), for h =

1, . . . , s;

9:

S(z)
h := S(z)

h + ηv(z, z∗)
T

∑
t=1

α
(z)
t (h)β

(z)
t (h)S(z)

h

−1
·

·
[
(x(t) − µ

(z)
h)(x(t) − µ

(z)
h)>(S(z)

h S(z)
h

>
)−1 − Id

]
, for h = 1, . . . , s;

10: Proceed as in lines 15 and 16 of Algorithm 3.1.

11: end for

12: Θ(i) :=
{
(u(z), W (z), (µ(z)

h , S(z)
h)s

h=1)
}m

z=1
.

13: end for

converge to the reference models, with the majority of nodes grouping around the domi-

nant reference model. The SOHMMM nodes (HMMs initialized randomly) are organized

in a 2× 3 rectangular lattice, as displayed in Figure 3.1. This figure shows the positions

and connections of the HMMs. The Euclidean distance between adjacent HMMs is set to

1 and the other distances are computed accordingly. For example, the distance between

hmm0 and hmm4 is 2, and between hmm0 and hmm3 is
√

2.

In order to perform this experiment, we need a quantitative measurement of simi-

larity between two HMMs, so that we can evaluate how close each HMM in the lattice

is from each of the two reference HMMs. It is known that two HMMs representing the

same marginal distribution of observations may be parameterized by different parame-

ters (Rabiner [43]), so the dissimilarity should not be computed in parameter space. An

3. NETWORKED DATA STREAMS 33

FIGURE 3.1: 2× 3 rectangular lattice.

alternative metric to compare two HMMs z and z′, proposed by Juang and Rabiner [44],

is the following divergence function:

D(z, z′) =
1
T
[
log p(X | z)− log p(X | z′)

]
, (3.15)

where X has length T and is sampled from p(X | z). Equation (3.15) is a Monte Carlo

approximation of the KL divergence between two HMMs and therefore measures how

well model z′ matches observations generated by model z, relative to how well model z

matches observations generated by itself. Since this relationship is asymmetric, we use

the following symmetrized version instead:

Ds(z, z′) =
D(z, z′) + D(z′, z)

2
. (3.16)

Figure 3.2 demonstrates the initial and final distances between the trainable HMMs and

the reference HMMs, upon applying the SOHMMM algorithm. The training set con-

tains 60 observation sequences from the two reference HMMs (the ref0 model generates

40 observation sequences and ref1 generates 20). We trained the HMMs with these obser-

vation sequences. Our main goal in analyzing the aforementioned distance is to examine

how the observation sequences influence the trainable HMMs and whether they maintain

their proximity while moving in different directions. Measuring this distance will indicate

whether the trainable HMMs converge to a specific reference HMM.

As the heatmap plots of Figure 3.2 show, hmm4 is initially assigned to the ref1 cluster,

as there is a shorter distance between these two models. After applying the algorithm,

hmm4 becomes closer to ref0. As another example, hmm3 is closer to ref0, before and after

applying the algorithm; however, the overall distance to the reference models decreases

and hmm3 moves closer to both of them while maintaining its relative distance to the

references.

34 LEARNING FROM MULTI-ENTITY DATA

FIGURE 3.2: Monte Carlo approximation of the Kullback-Leibler divergence between the
random and reference HMMs before and after applying the SOHMMM algorithm.

The minimum distance between a given trainable HMM and the reference HMMs

defines the cluster that the HMM belongs to. In this experiment, the trainable HMMs

belong to the (re f 1, re f 1, re f 1, re f 0, re f 1, re f 0) and (re f 1, re f 1, re f 0, re f 0, re f 0, re f 0) clus-

ters, before and after applying the learning algorithm, respectively. The latter clusters

show that {hmm2, hmm3, hmm4, hmm5} belong to the re f 0 cluster, the dominant reference

model; {hmm0, hmm1} are assigned to the re f 1 cluster, the reference model generating

less data. Having analyzed the Euclidean distances of the HMM nodes, Figure 3.1 shows

that nearby HMMs are grouped in the same cluster.

We repeated the experiment for various sequence lengths and different types of neigh-

borhood, in terms of the vicinity. We selected a large neighborhood and updated the win-

ner neuron, in addition to all the other neurons in the SOM lattice, based on their relative

distances in the lattice. The large neighborhood experiment employs the SOHMMM al-

gorithm in its original form, so all neurons are updated. In the medium-neighborhood

experiment, only the winner HMM and the adjacent neighbors are updated. In the small-

neighborhood experiment, only the winner HMM is updated (this setting is known as

Z-SOHMMM).

Figure 3.3 displays the Monte Carlo approximation of the KL divergence between the

random and reference HMMs, with large, medium, and small neighborhood sizes, and se-

quence lengths of 10, 20, and 50. In each experiment, the sum of the distance between the

trainable HMMs and the assigned reference HMM is computed. As Figure 3.3 shows, the

sum of the distances to the assigned reference HMMs decreases as the sequence length in-

creases. In addition, the lower distance values are obtained in the large-neighborhood ex-

periment rather than the medium- and the small-neighborhood experiments. This shows

that the SOHMMM algorithm provides a better estimation of the reference models by

including all the HMMs in the vicinity. The heatmap plots of Figure 3.2 belong to the

3. NETWORKED DATA STREAMS 35

large-neighborhood experiment with a sequence length of 50, which produced the best

overall distance estimate according to Figure 3.3.

FIGURE 3.3: Monte Carlo approximation of the Kullback-Leibler divergence between the
random and reference HMMs with different neighborhood sizes and sequence lengths.

3.2.5.2 Wireless simulation data

We implemented a set of wireless simulations using the OMNeT++ [45] simulator to-

gether with the INET framework [46]. OMNeT++ is a C++-based discrete-event simulator

(DES) for modeling communication networks, multiprocessors, and other distributed or

parallel systems. As in any discrete-event simulator, events in OMNeT++ take place at

discrete instances in time, and they take zero time to occur. It is assumed that nothing

important occurs between two consecutive events. Thus, the simulation time depends on

the order of events in the events queue; it could take more or less time than the real CPU

time, based on the number of nodes, amount of traffic transferred, and other network

details. In our experiment, with the current number of nodes (10 APs and 100 wireless

stations (STAs)) and the defined traffic plan, 10 minutes of simulation time took around

two hours of CPU time.

The normal scenario contains 10 APs and 100 STAs. Each STA is initially associated

with one of the available APs, depending on its location. During the simulation, the STAs

36 LEARNING FROM MULTI-ENTITY DATA

are handed over to other APs, based on their mobility models, when moving around the

simulation ground. Furthermore, according to the defined traffic plans, each node sends

and receives packets to the existing servers. Figure 3.4 shows images of a normal scenario,

the location of the APs, STAs, and servers, and the location of the wireless stations. More

details on the mobility models of the wireless stations, traffic generation, available servers,

and path-loss models can be found in Allahdadi et al. [24].

Each sequence contains 40 consecutive time-slots of 15s simulation time each. Our

simulation consists of one normal scenario and four anomalous scenarios: AP shutdown/

halt, AP overload, noise, and flash crowd. We simulated 15 instances of 3000s of simula-

tion time for the normal scenario, and five instances of 3000s of simulation time for each

of the anomalous scenarios. In the following paragraphs, we explain how we employed

these data for training and testing the SOHMMM algorithm. Data is divided into training

and test sets according to a 80%/20% random split.

In the SOHMMM adapted to the problem of anomaly detection in AP usage data,

the self-organization learning process is elaborated as follows. The models associated

with the SOM neurons are three-state HMMs (according to the best practice found by

Allahdadi et al. [24], Allahdadi and Morla [42]). As the new sequence arrives, the HMM

with the lowest energy is selected as the winner model, as specified by equation (3.5).

In the AP usage data, as the newly arrived sequence belongs to a pre-determined AP, in

most cases, the winner model is related to the same AP that originated the observation

sequence. However, this is not always the case, and the competition defines the winner

HMM eventually. Thereafter, the HMM model of the winner AP z∗ is updated by the new

data sequence, and the HMMs in the neighborhood of the winner AP are also updated

through a gradient descent step over the energy function (3.3).

At this point, it should be noted that the APs in the vicinity of the winner AP are

updated, to some extent, relative to their proximity (or similarity) to the winner AP. In our

case, the neighborhood area has an irregular shape and contains the first-level adjacent

APs in the vicinity of the winner AP. As the locations of the APs are already determined

in the wireless ground (Figure 3.4), the Euclidean distances between all APs are calculated

and kept in a complete graph. Then, a filter is applied to update only APs with a certain

distance from the winner AP (in this case, half of the maximum distance between AP pairs

in the distance graph).

During the learning process, the nearby HMMs, up to a certain distance, activate each

3. NETWORKED DATA STREAMS 37

other to gain some information from the new observation sequence. As the distant HMMs

should gain only an insignificant amount of information from the new observation se-

quence, we utilized the aforementioned filter to avoid updating very distant HMMs, and

quicken the process. The neighborhood function that we used in this experiment is a

slightly modified version of equation (3.2) (with λ = 10), based on the relative distances

of the winner AP and all its adjacent neighbors:

v(z, z′) , exp

(
−10

||r(z)− r(z′)||2

∑z′′∈Adj(z′) ||r(z′′)− r(z′)||2

)
, (3.17)

where Adj(z′) denotes the set of nodes adjacent to node z′.

We compared the SOHMMM algorithm to two other approaches: i) hidden Markov

model initialized with universal background model (HMM-UBM), addressed in detail by

Allahdadi et al. [24], and ii) the SOHMMM algorithm with a zero neighborhood, which

utilizes the incremental-learning part of the SOHMMM algorithm, without updating the

HMMs in the vicinity (Z-SOHMMM).

Equivalent amounts of normal and anomalous data were used to initialize the HMM-

UBM model: five weeks of normal data and one week for each of the five anomalous cases,

i.e. ten weeks of data overall. Each week contains five working days. In the anomalous

cases, the time and period of the anomalies are different for each day. We used one more

week of each scenario to train the model and then used the one remaining week of each

case to test the model. The results are represented as receiver operating characteristic

(ROC) curves on the test set.

The following anomalous scenarios were simulated:

• AP shutdown/halt, where the AP simply stops working (e.g. due to power failure);

• AP overload, which happens when excessive channel utilization occurs as a conse-

quence of excessive traffic by a number of wireless users;

• noise in the wireless communication channel;

• flash crowd, where multiple users associate (flash crowd arrival) or dis-associate

from the same AP almost simultaneously;

• miscellaneous anomalies, where multiple anomalies occur on the same day.

38 LEARNING FROM MULTI-ENTITY DATA

FIGURE 3.4: Wireless network simulated in OMNeT++/INET.

Table 3.1 presents the results for anomaly detection in the aforementioned scenarios.

In this table, the AUC values of each anomalous scenario are presented for the HMM-

UBM, Z-SOHMMM, and SOHMMM models. The anomalous APs are also indicated. The

higher AUC values show that SOHMMM outperforms the other models since it is better

at discriminating normal and anomalous samples.

Please refer to Allahdadi et al. [13] for more details about the experiments and further

experimental results.

HU ZS S

AP Shutdown/Halt AP2 0.91 0.95 0.99
AP4 0.71 0.93 1.00

AP Overload AP2 0.99 0.99 1.00

Noise AP2 0.78 0.62 0.82

Flash Crowd - Arrival AP2 0.80 0.91 0.94

Flash Crowd - Departure AP2 0.96 0.97 0.97

Miscellaneous Anomalies AP2 0.74 0.73 0.88
AP3 0.69 0.69 0.71

TABLE 3.1: AUC values for each model in each anomalous scenario. The best results for
each scenario are in bold. (HU– HMM-UBM, ZS– Z-SOHMMM, S– SOHMMM)

3. NETWORKED DATA STREAMS 39

3.2.6 Conclusion

In the current section, we applied a hybrid integration of the self-organizing map and the

hidden Markov model, called the SOHMMM, for anomaly detection in 802.11 wireless

networks. We further extended the online gradient-descent unsupervised-learning algo-

rithm of the SOHMMM for multivariate Gaussian emissions. We employed this algorithm

specifically for anomaly detection in 802.11 wireless AP usage data.

The experimental analysis investigated two main data sets: synthetic data and wire-

less simulation data. In the synthetic data analysis, we generated six random HMMs and

trained them with the observation sequences of two reference HMMs with predefined

parameters. We then estimated the distance between HMMs as the Monte Carlo approx-

imation of the KL divergence, and computed the final HMM clusters, based on the min-

imum distance between the trained HMMs and the reference HMMs. We repeated the

experiment for various sequence lengths and different neighborhood sizes and showed

that, for the large neighborhood, the SOHMMM algorithm provided a better estimation

of the reference models, including all the HMMs in the vicinity. Moreover, we presented

the decay of the learning rate and the convergence of the loss function.

In the analysis regarding the wireless simulation data, we showed how the SOHMMM

algorithm improved the anomaly detection accuracy and sensitivity, compared to the

HMM-UBM and Z-SOHMMM techniques in the AP shutdown/halt, AP overload, noise,

and flash-crowd anomalous scenarios. We further investigated the combination of several

anomalies in one observation sequence as miscellaneous anomalies and showed that the

SOHMMM was capable of detecting contrasting anomalous cases while the HMM-UBM

was not.

3.3 SpaMHMM: sparse mixture of hidden Markov Models for

graph-connected entities

3.3.1 Overview

Inspired by the formulation of equation (3.1), we propose to model the generative distri-

bution of the data coming from each of the k nodes of a network as a sparse mixture ob-

tained from a dictionary of generative distributions. Specifically, we shall model the dis-

tribution for each node as a sparse mixture over a large shared dictionary of HMMs, where

40 LEARNING FROM MULTI-ENTITY DATA

each HMM corresponds to an individual atom from the dictionary. The field knowledge

about the similarities between nodes is summarized in an affinity matrix. The objective

function of the learning process promotes reusing HMM atoms between similar nodes.

We now formalize these ideas.

3.3.2 Model formulation

3.3.2.1 Definition

Assume we have a set of nodes Y = {1, . . . , k} connected by an undirected weighted

graph G, expressed by a symmetric adjacency matrix G ∈ Rk×k. These nodes thus form

a network, in which the weights are assumed to represent degrees of affinity between

each pair of nodes (i.e. the larger the edge weight, the more the respective nodes like to

agree). The nodes y in the graph produce d-dimensional sequences X =
(

x(1), . . . , x(T)
)

,

x(t) ∈ Rd, whose conditional distribution we shall model using a mixture of HMMs:

p(X | y) = ∑
z

p(z | y)p(X | z), (3.18)

where z ∈ {1, . . . , m} is a latent random variable, being m the size of the mixture. This is a

particular realization of equation (3.1) where f is the probability density function p(X | y)

and the coefficients sz correspond to the probabilities p(z = z | y). Here, p(X | z) is the

marginal distribution of observations of a standard first-order stationary HMM:

p(X | z) = ∑
h

p(h(1) | z)p(x(1) | h(1), z)
T

∏
t=2

p(h(t) | h(t−1), z)p(x(t) | h(t), z), (3.19)

where h =
(

h(1), . . . , h(T)
)

is the sequence of hidden states of the HMM and h(t) ∈

{1, . . . , s}, being s the number of hidden states. Note that the factorization in equa-

tion (3.18) enforces conditional independence between the sequence X and the node y,

given the latent variable z. This is a key assumption of this model since in this way the

distributions for the observations in the nodes in Y share the same dictionary of HMMs,

promoting parameter sharing among the k mixtures. The Bayesian network representing

this model is presented in Figure 3.5.

3.3.2.2 Inference

Given an observed sequence X and its corresponding node y ∈ Y , the inference problem

here consists in finding the likelihood p(X = X | y = y) (from now on, abbreviated as

3. NETWORKED DATA STREAMS 41

y z h(1) h(2) . . . h(T)

x(1) x(2) x(T)

FIGURE 3.5: Representation of the model as a Bayesian network. The node z is a parent
of all nodes inside the dashed box (the connections were omitted for clarity). Gray nodes

are used for latent variables.

p(X | y)) as defined by equations (3.18) and (3.19). The marginals p(X | z) of each HMM

in the mixture can be computed efficiently, in O(Ts2) time, using Algorithm 2.1. Then,

p(X | y) is obtained by applying equation (3.18), so inference in the overall model is done

in at most O(Ts2m) time. As we shall see, however, the mixtures we obtain after learning

will often be sparse (see Section 3.3.2.3), leading to even smaller time complexity.

3.3.2.3 Learning

Given an i.i.d. dataset consisting of n tuples (Xi, yi) of sequences of observations Xi =(
x(1)i , . . . , x(Ti)

i

)
and their respective nodes yi ∈ Y , the model defined by equations (3.18)

and (3.19) may be easily trained using the EM algorithm, (locally) maximizing the usual

log-likelihood objective:

J(θ) ,
n

∑
i=1

log p(Xi | yi; Θ), (3.20)

where Θ represents all model parameters, namely:

1. the m-dimensional mixture coefficients, α(y), where α
(y)
z , p(z = z | y = y), for

z ∈ {1, . . . , m} and y ∈ {1, . . . , k};

2. the s-dimensional initial state probabilities, π(z), where π
(z)
h , p(h(1) = h | z = z),

for h ∈ {1, . . . , s} and z ∈ {1, . . . , m};

3. the s× s state transition matrices, A(z), where A(z)
h,h′ , p(h(t) = h′ | h(t−1) = h, z = z),

for h, h′ ∈ {1, . . . , s} and z ∈ {1, . . . , m};

4. the emission probability means, µ
(z)
h ∈ Rd, for z ∈ {1, . . . , m} and h ∈ {1, . . . , s};

5. the emission probability diagonal covariance matrices, Σ(z)
h = diag(σ(z)

h)2, where

σ
(z)
h ∈ Rd, for z ∈ {1, . . . , m} and h ∈ {1, . . . , s}.

42 LEARNING FROM MULTI-ENTITY DATA

Here, we are assuming that the emission probabilities p(x(t) | h(t), z) are Gaussian with

diagonal covariances. This introduces almost no loss of generality since the extension of

this work to discrete observations or other types of continuous emission distributions is

straightforward.

The procedure to maximize objective (3.20) using EM is described in Algorithm 3.3.

The update formulas follow from the standard EM procedure and can be obtained by

considering the Bayesian network in Figure 3.5 and following the derivation detailed in

Section A.1.1. However, the objective (3.20) does not take advantage of the known struc-

ture of G. In order to exploit this information, we introduce a regularization term, maxi-

mizing the following objective instead:

Jr(Θ) ,
1
n

n

∑
i=1

log p(Xi | yi; Θ) +
λ

2

k

∑
y,y′=1,
y′ 6=y

Gy,y′Ez∼p(z|y;Θ)[p(z | y′; Θ)]

=
1
n

n

∑
i=1

log p(Xi | yi; Θ) +
λ

2

k

∑
y,y′=1,
y′ 6=y

Gy,y′α
(y)>α(y′), (3.21)

where λ ≥ 0 controls the relative weight of the two terms in the objective. Note that

this regularization term favors nodes connected by edges with large positive weights to

have similar mixture coefficients and thus share mixture components. On the other hand,

nodes connected by edges with large negative weights will tend to have orthogonal mix-

ture coefficients, being described by disjoint sets of components. These observations agree

with our prior assumption that the edge weights express degrees of similarity between

each pair of nodes. Proposition 3.1 formalizes these statements and enlightens interesting

properties about the expectations Ez∼p(z|y)[p(z | y′)].

Proposition 3.1. For any integer m > 1, let Pm be the set of all probability distributions over the

set {1, . . . , m}. We have:

1. minp,q∈Pm Ez∼p[q(z)] = 0;

2. arg minp,q∈Pm
Ez∼p[q(z)] = {p, q ∈ PM | ∀ z ∈ {1, . . . , m} : p(z = z)q(z = z) = 0};

3. maxp,q∈Pm Ez∼p[q(z)] = 1;

4. arg maxp,q∈Pm
Ez∼p[q(z)] = {p, q ∈ PM | ∃ z ∈ {1, . . . , m} : p(z = z) = q(z = z) =

1} .

3. NETWORKED DATA STREAMS 43

Proof. By the definition of expectation, for any p, q ∈ Pm,

Ez∼p[q(z)] = ∑
z

p(z)q(z). (3.22)

Statements 1 and 2 follow immediately from the fact that every term on the right-hand

side of (3.22) is non-negative and m > 1. For the remaining, we rewrite (3.22) as the dot

product of two m-dimensional vectors αp and αq, representing the two distributions p

and q, respectively, and we use the following linear algebra inequalities to build an upper

bound for this expectation:

Ez∼p[q(z)] = α>p αq ≤ ||αp||2||αq||2 ≤ ||αp||1||αq||1 = 1, (3.23)

where || · ||1 and || · ||2 are the L1 and L2 norms, respectively. The equality Ez∼p[q(z)] = 1

holds if p and q are chosen from the set defined in statement 4, where the distributions

p and q are the same and they are non-zero for a single assignment of z. This proves

statement 3. Now, to prove statement 4, it suffices to show that there are no other max-

imizers. The first inequality in (3.23) is transformed into equality if and only if αp = αq,

which means p ≡ q. The second inequality becomes equality when the L1 and L2 norms

of the vectors coincide, which happens if and only if the vectors have only one non-zero

component, concluding the proof.

Specifically, given two distinct nodes y, y′ ∈ Y , if Gy,y′ > 0, the regularization term

for these nodes is maximum (and equal to Gy,y′) when the mixtures for these two nodes

are the same and have one single active component (i.e. one mixture component whose

coefficient is non-zero). On the contrary, if Gy,y′ < 0, the term is maximized (and equal to

zero) when the mixtures for the two nodes do not share any active components. In both

cases, though, we conclude from Proposition 3.1 that we are favoring sparse mixtures.

We see sparsity as an important feature since it allows the size m of the dictionary of

models to be large and therefore expressive without compromising our rationale that the

observations in a given node are well modeled by a mixture of only a few HMMs. This

way, some components will specialize in describing the behavior of some nodes, while

others will specialize on different nodes. Moreover, sparse mixtures yield faster inference,

more interpretable models and (possibly) less overfitting. By setting λ = 0, we clearly get

the initial objective (3.20), where inter-node correlations are modeled only via parameter

sharing. As λ→ ∞, two interesting scenarios may be anticipated. If Gy,y′ > 0, ∀y, y′ ∈ Y ,

all nodes will tend to share the same single mixture component, i.e. we would be learning

44 LEARNING FROM MULTI-ENTITY DATA

one single HMM to describe the whole network. If Gy,y′ < 0, ∀y, y′ ∈ Y , and m ≥ K, each

node would tend to learn its own HMM model independently from all the others. Again,

in both scenarios, the obtained mixtures are sparse.

The objective function (3.21) can still be maximized via EM (see details in Section A.1.2).

However, the introduction of the regularization term in the objective makes it impossible

to find a closed form solution for the update formula of the mixture coefficients. Thus, in

the M-step, we need to resort to gradient ascent to update these parameters. In order to

ensure that the gradient ascent iterative steps lead to admissible solutions, we adopt the

following reparameterization from Yang et al. [47]:

α
(y)
z =

max(0, β
(y)
z)2

∑m
z′=1 max(0, β

(y)
z′)

2
, (3.24)

and so we can treat β(y) as an unconstrained parameter vector. This reparameterization

clearly resembles the softmax function, but, contrary to that one, admits sparse outputs.

The squared terms in equation (3.24) aim only to make the optimization more stable. The

optimization steps for the objective (3.21) using this reparameterization are described in

Algorithm 3.4.

3.3.3 Experiments

The model was developed on top of the library hmmlearn (Lebedev [48]) for Python,

which implements inference and unsupervised learning for the standard HMM using a

wide variety of emission distributions. Both learning and inference use the hmmlearn

API, with the appropriate adjustments for our models. For reproducibility purposes, we

make our source code, pre-trained models and the datasets publicly available*.

We evaluate four different models in our experiments: a model consisting of a single

HMM (denoted as 1-HMM) trained on sequences from all graph nodes; a model consist-

ing of k HMMs trained independently (denoted as k-HMM), one for each graph node;

a mixture of HMMs (denoted as MHMM) as defined in this work (equations (3.18) and

(3.19)), trained to maximize the usual log-likelihood objective (3.20); a mixture of HMMs

(denoted as SpaMHMM) as the previous one, trained to maximize our regularized objec-

tive (3.21).

Models 1-HMM, k-HMM and MHMM will be our baselines. We shall compare the

performance of these models with that of SpaMHMM and, for the case of MHMM, we

*https://github.com/dpernes/spamhmm

https://github.com/dpernes/spamhmm

3. NETWORKED DATA STREAMS 45

Algorithm 3.3 EM algorithm for the mixture without regularization (MHMM).

1: Inputs: The training set, consisting of n tuples (Xi, yi), a set of initial parameters Θ(0),
and the number of training iterations trainIter.

2: for j = 1, . . . , trainIter do

3: E-step:

4: ny := ∑n
i=1 1yi=y, for y = 1, . . . , k;

5: Obtain the mixture posteriors η
(z)
i := p(z | Xi, yi), for i = 1, . . . , n and z =

1, . . . , m, by computing η̃
(z)
i := p(Xi | z)p(z | yi) and normalizing it;

6: Obtain the state posteriors γ
(z)
i,h (t) := p(h(t) = h | z, Xi) and ξ

(z)
i,h,h′(t) :=

p(h(t−1) = h, h(t) = h′ | z, Xi), for i = 1, . . . , n, t = 1, . . . , Ti, z = 1, . . . , m, and
h, h′ = 1, . . . , s, as done in Algorithm 2.1.

7: M-step:

8: α
(y)
z := ∑n

i=1 η
(z)
i 1yi=y

ny
, for y = 1, . . . , k and z = 1, . . . , m, obtaining αy;

9: π
(z)
h := ∑n

i=1 η
(z)
i γ

(z)
i,h (0)

∑n
i=1 η

(z)
i

, for z = 1, . . . , m and h = 1, . . . , s, obtaining π(z);

10: A(z)
h,h′ :=

∑n
i=1 η

(z)
i ∑

Ti
t=1 ξ

(z)
i,h,h′ (t)

∑n
i=1 η

(z)
i ∑

Ti−1
t=0 γ

(z)
i,h (t)

, for z = 1, . . . , m, and h, h′ = 1, . . . , s, obtaining A(z);

11: µ
(z)
h := ∑n

i=1 η
(z)
i ∑

Ti
t=1 γ

(z)
i,h (t)x(t)i

∑n
i=1 η

(z)
i ∑

Ti
t=1 γ

(z)
i,h (t)

, for z = 1, . . . , m and h = 1, . . . , s;

12: σ
(z)
h

2
:= ∑n

i=1 η
(z)
i ∑

Ti
t=1 γ

(z)
i,h (t)(x(t)i −µ

(z)
h)2

∑n
i=1 η

(z)
i ∑

Ti
t=1 γ

(z)
i,h (t)

, for z = 1, . . . , m and h = 1, . . . , s;

13: Θ(j) :=
⋃

y,z,h

{
α(y), π(z), A(z), µ

(z)
h , σ

(z)
h

}
.

14: end for

shall also verify if SpaMHMM actually produces sparser mixtures in general, as argued in

Section 3.3.2.3. In order to ensure a fair comparison, we train models with approximately

the same number of possible state transitions. Hence, given an MHMM or SpaMHMM

with m mixture components and s states per component, we train a 1-HMM with ≈ s
√

m

states and a k-HMM with≈ s
√

m/k states per HMM. We initialize the mixture coefficients

in MHMM and SpaMHMM randomly, while the state transition matrices and the initial

state probabilities are initialized uniformly. Means are initialized using k-means, with k

equal to the number of hidden states in the HMM, and covariances are initialized with

the diagonal of the training data covariance. Models 1-HMM and k-HMM are trained

46 LEARNING FROM MULTI-ENTITY DATA

Algorithm 3.4 EM algorithm for the mixture with regularization (SpaMHMM).

1: Inputs: The training set, consisting of n tuples (Xi, yi), the matrix G describing the
graph G, the regularization hyperparameter λ, a set of initial parameters Θ(0), the
number of training iterations trainIter, the number of gradient ascent iterations
mIter to perform on each M-step, and the learning rate ρ to perform gradient ascent
over the mixture coefficients.

2: for j = 1, . . . ,trainIter do

3: E-step: same as in Algorithm 3.3.

4: M-step:

5: for l = 1, . . . ,mIter do

6: ψ
(y)
z := 1

n ∑n
i=1

(
η
(z)
i − α

(y)
z

)
1yi=y, for y = 1, . . . , k and z = 1, . . . , m;

7: ω
(y)
z := α

(y)
z ∑k

y′=1 Gy′,y

(
α
(y′)
z − α(y′)>α(y)

)
1y′ 6=y, for y = 1, . . . , k and z =

1, . . . , m;

8: δ
(y)
z := 2

β
(y)
z

(
ψ
(y)
z + λω

(y)
z

)
1

β
(y)
z >0

, for y = 1, . . . , k and m = 1, . . . , z;

9: β
(y)
z := β

(y)
z + ρδ

(y)
z , for y = 1, . . . , k and z = 1, . . . , m, obtaining β(y);

10: α
(y)
z := max(0,β(y)

z)2

∑m
z′=1 max(0,β(y)

z′)
2
, for y = 1, . . . , k and z = 1, . . . , m, , obtaining α(y).

11: end for

12: Proceed as in lines 9–12 of Algorithm 3.3;

13: Θ(j) :=
⋃

h,y,z

{
β(y), π(z), A(z), µ

(z)
h , σ

(z)
h

}
.

14: end for

using the Baum-Welch algorithm, MHMM is trained using Algorithm 3.3 and SpaMHMM

is trained using Algorithm 3.4. However, we opted to use Adam (Kingma and Ba [49])

instead of vanilla gradient ascent in the inner loop of Algorithm 3.4 since its per-parameter

learning rate proved to be beneficial for faster convergence.

3.3.4 Anomaly detection in Wi-Fi networks

A typical Wi-Fi network infrastructure is constituted by k APs distributed in a given space.

Network users can seamlessly switch between these APs, typically connecting to the clos-

est one. There is a wide variety of anomalies that can occur during the operation of such

3. NETWORKED DATA STREAMS 47

a network and their automatic detection is, therefore, of great importance for future mit-

igation plans. Some anomalous behaviors are: overloaded APs, failed or crashed APs,

persistent radio frequency interference between adjacent APs, authentication failures, etc.

However, obtaining reliable ground truth annotation of these anomalies in entire wireless

networks is costly and time-consuming. Under these circumstances, using data obtained

through realistic network simulations is a common practice.

In order to evaluate our model in the aforementioned scenario, we have followed the

procedure of Allahdadi et al. [24], performing extensive network simulations in a typical

Wi-Fi network setup (IEEE 802.11 WLANg 2.4 GHz in infrastructure mode) using OM-

NeT++ [45] and INET [46] simulators. Our network consists of 10 APs and 100 users

accessing it. The pairwise distances between APs are known and fixed. Each sequence

contains information about the traffic in a given AP during 10 consecutive hours and is

divided in time slots of 15 minutes without overlap. Thus, every sequence has the same

length, equal to 40 samples (time slots). Each sample contains the following seven fea-

tures: the number of unique users connected to the AP, the number of sessions within

the AP, the total duration (in seconds) of association time of all current users, the num-

ber of octets transmitted and received in the AP and the number of packets transmitted

and received in the AP. Anomalies typically occur for a limited amount of time within

the whole sequence. However, in this experiment, we label a sequence as “anomalous”

if there is at least one anomaly period in the sequence and we label it as “normal” other-

wise. One of the simulations includes normal data only, while the remaining include both

normal and anomalous sequences. In order to avoid contamination of normal data with

anomalies that may occur simultaneously in other APs, we used the data of the normal

simulation for training (150 sequences) and the remaining data for testing (378 normal

and 42 anomalous sequences).

In a Wi-Fi network, when users move in the covered area, they disconnect from one

AP and immediately connect to another in the vicinity. As such, the traffic in adjacent

APs may be expected to be similar. Following this idea, the weight Gy,y′ , associated with

the edge connecting nodes y and y′ in graph G, was set to the inverse of the distance

between APs y and y′ and normalized so that maxy,y′ Gy,y′ = 1. Following Allahdadi

et al. [24], sequences were preprocessed by subtracting the mean and dividing by the

standard deviation and applying PCA, reducing the number of features to three. For

MHMM, we did three-fold cross-validation of the number of mixture components m and

48 LEARNING FROM MULTI-ENTITY DATA

hidden states per component s. We ended up using m = 15 and s = 10. We then used

the same values of m and s for SpaMHMM and we did 3-fold cross-validation for the

regularization hyperparameter λ in the range [10−4, 1]. The value λ = 10−1 was chosen.

We also cross-validated the number of hidden states in 1-HMM and k-HMM around the

values indicated in Section 3.3.3. Every model was trained for 100 iterations of EM or until

the loss plateaus. For SpaMHMM, we did 100 iterations of the inner loop on each M-step,

using a learning rate ρ = 10−3. We repeat training 10 times for each model, starting from

different random initializations, in order to reduce the likelihood of erroneous results due

to local minima trapping.

Models were evaluated by computing the average log-likelihood per sample on nor-

mal and anomalous test data, plotting the receiver operating characteristic (ROC) curves

and computing the respective areas under the curves (AUCs). The small standard devia-

tions in Table 3.2 attest the robustness of the adopted initialization scheme and learning

algorithms. Figure 3.6 shows that the ROC curves for MHMM and SpaMHMM are very

similar and that these models clearly outperform 1-HMM and k-HMM. This is confirmed

by the AUC and log-likelihood results in Table 3.2. Although k-HMM achieved the best

(lowest) average log-likelihood on anomalous data, this result is not relevant, since it also

achieved the worst (lowest) average log-likelihood on normal data. This is in fact the

model with the worst performance, as shown by its ROC and respective AUC.

The bad performance of k-HMM likely results mostly from the small amount of data

that each of the k models is trained with: in k-HMM, each HMM is trained with the data

from the graph node (AP) that it is assigned to. The low log-likelihood value of the nor-

mal test data in this model confirms that the model does not generalize well to the test

data and is probably highly biased towards the training data distribution. On the other

hand, in 1-HMM there is a single HMM that is trained with the whole training set. How-

ever, the same HMM needs to capture the distribution of the data coming from all APs.

Since each AP has its own typical usage profile, these data distributions are different and

one single HMM may not be sufficiently expressive to learn all of them correctly. MHMM

and SpaMHMM combine the advantages and avoid the disadvantages of both previous

models. Clearly, since the mixtures for each node share the same dictionary of HMMs,

every model in the mixture is trained with sequences from all graph nodes, at least in the

first few training iterations. Thus, at this stage, the models can capture behaviors that

are shared by all APs. As mixtures become sparser during training, some components

3. NETWORKED DATA STREAMS 49

in the dictionary can specialize in the distribution of a few APs. This avoids the prob-

lem observed in the 1-HMM, which is unaware of the AP where a sequence originates

from. We would also expect SpaMHMM to be sparser and have better performance than

MHMM, but only the former supposition was true (see Figure 3.7). The absence of per-

formance gains in SpaMHMM might be explained by the fact that this dataset consists

of simulated data, where users are static (i.e. they do not swap between APs unless the

AP where they are connected stops working) and so the assumption that closer APs have

similar distributions does not bring any advantage.

FIGURE 3.6: ROC curves for each model on the Wi-Fi dataset, for one of the 10 runs.

Average log-likelihood
AUC Normal data Anomalous data

1-HMM 0.806 (±0.01) −6.36 (±0.66) −129.40 (±22.22)
k-HMM 0.776 (±0.01) −22.09 (±1.12) −130.36 (±26.30)
MHMM 0.830 (±0.01) −3.31 (±0.21) −10.99 (±1.10)
SpaMHMM 0.829 (±0.01) −3.26 (±0.12) −11.29 (±1.39)

TABLE 3.2: AUC and average log-likelihood per sample for each model in the Wi-Fi
dataset averaged over 10 training runs. Standard deviations are in brackets. Best results

are in bold.

50 LEARNING FROM MULTI-ENTITY DATA

3.3.5 Human motion forecasting

The human body is constituted by several interdependent parts, which interact as a whole

producing sensible global motion patterns. These patterns may correspond to multiple ac-

tivities like walking, eating, etc. Here, we use our model to make short-time prediction of

sequences of human joint positions, represented as motion capture (mocap) data. The cur-

rent state-of-the-art methodologies use architectures based on deep recurrent neural net-

works (RNNs), achieving remarkable results both in short-time prediction (Fragkiadaki

et al. [50], Martinez et al. [51]) and in long-term motion generation (Jain et al. [52], Pavllo

et al. [53]).

Our experiments were conducted on the Human3.6M dataset from Ionescu et al. [54,

55], consisting of mocap data from 7 subjects performing 15 distinct actions. In this ex-

periment, we have considered only four of those actions, namely “walking”, “eating”,

“smoking”, and “discussion”. In this dataset, the human skeleton is represented with 32

joints whose position is recorded at 50 Hz. We build our 32x32-dimensional symmetric

matrix G representing the graph G in the following sensible manner: Gy,y′ = 1, if there is

an actual skeleton connection between joints y and y′ (e.g. the elbow joint is connected to

the wrist joint by the forearm); Gy,y = 1, if joints y and y′ are symmetric (e.g. left and right

elbows); Gy,y′ = 0, otherwise.

3.3.5.1 Forecasting

We reproduced as much as possible the experimental setup followed in Fragkiadaki et al.

[50]. Specifically, we down-sampled the data by a factor of 2 and transformed the raw 3-D

angles into an exponential map representation. We removed joints with constant expo-

nential map, yielding a dataset with 22 distinct joints, and pruned our matrix G accord-

ingly. Training was performed using data from 6 subjects, leaving one subject (denoted

in the dataset by “S5”) for testing. We did three-fold cross-validation on the training data

of the action “walking” to find the optimal number of mixture components m and hid-

den states s for the baseline mixture MHMM. Unsurprisingly, since this model can hardly

overfit in such a complex task, we ended up with m = 18 and s = 12, which were the

largest values in the ranges we defined. Larger values are likely to improve the results,

but the training time would become too large to be practical. For SpaMHMM, we used

these same values of m and s and we did three-fold cross-validation on the training data

of the action “walking” to fine-tune the value of λ in the range [10−4, 1]. We ended up

3. NETWORKED DATA STREAMS 51

using λ = 0.05. The number of hidden states in 1-HMM was set to 51 and in k-HMM it

was set to 11 hidden states per HMM. The same values were then used to train the models

for the remaining actions. Every model was trained for 100 iterations of EM or until the

loss plateaus. For SpaMHMM, we did 100 iterations of the inner loop on each M-step,

using a learning rate ρ = 10−2.

In order to generate predictions for a joint (node) y starting from a given prefix se-

quence Xpref, we compute the posterior distribution p(X|Xpref, y) (see details in Section A.2)

and we sample sequences from this posterior. Our evaluation method and metric again

followed Fragkiadaki et al. [50]. We fed our model with 8 prefix subsequences with 50

frames each (corresponding to 2 seconds) for each joint from the test subject and we pre-

dicted the following 10 frames (corresponding to 400 miliseconds). Each prediction was

built by sampling 100 sequences from the posterior and averaging. We then computed

the average mean angle error for the 8 sequences at different time horizons.

Results are in Table 3.3. Among our models (1-HMM, k-HMM, MHMM, and Spa

MHMM), SpaMHMM outperformed the remaining in all actions except “eating”. For this

action in particular, MHMM was slightly better than SpaMHMM, probably due to the

lack of symmetry between the right and left sides of the body, which was one of the prior

assumptions that we have used to build the graph G. “Smoking” and “discussion” activ-

ities may also be highly non-symmetric, but results in our and others’ models show that

these activities are generally harder to predict than “walking” and “eating’. Thus, here,

the skeleton structure information encoded in G behaves as a useful prior for SpaMHMM,

guiding it towards better solutions than MHMM. The worse results for 1-HMM and K-

HMM likely result from the same limitations that we have pointed out in Section 3.3.4:

each component in k-HMM is inherently trained with less data than the remaining mod-

els, while 1-HMM does not make distinction between different graph nodes. Extending

the discussion to the state-of-the-art solutions for this problem, we note that SpaMHMM

compares favorably with ERD, LSTM-3LR and SRNN, which are all RNN-based architec-

tures. Moreover, ERD and LSTM-3LR were explicitly designed for this task, which is not

the case of SpaMHMM. This is also true for GRU supervised and QuaterNet, which clearly

outperform all remaining models, including ours. This is unsurprising, since RNNs are

capable of modeling more complex dynamics than HMMs, due to their intrinsic non-

linearity and continuous state representation. This also allows their usage for long-term

52 LEARNING FROM MULTI-ENTITY DATA

motion generation, in which HMMs do not behave well due to their finite and discrete dy-

namics and lack of long-term memory. However, unlike GRU supervised and QuaterNet,

SpaMHMM models the probability distribution of the data directly, allowing its applica-

tion in domains like novelty detection. Regarding sparsity, the experiments confirm that

the SpaMHMM mixture coefficients are actually sparser than those of MHMM, as shown

in Figure 3.7.

Walking Eating Smoking Discussion
miliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
1-HMM 0.91 1.04 1.22 1.31 1.00 1.08 1.15 1.21 1.45 1.55 1.70 1.75 1.19 1.42 1.55 1.56
k-HMM 1.29 1.33 1.34 1.38 1.16 1.22 1.28 1.34 1.70 1.77 1.90 1.95 1.47 1.61 1.68 1.63
MHMM 0.78 0.93 1.13 1.21 0.77 0.87 0.98 1.06 1.44 1.53 1.69 1.77 1.14 1.36 1.52 1.54
SpaMHMM 0.80 0.93 1.11 1.18 0.81 0.90 0.99 1.06 1.29 1.39 1.61 1.67 1.09 1.30 1.44 1.49
ERD [50] 0.93 1.18 1.59 1.78 1.27 1.45 1.66 1.80 1.66 1.95 2.35 2.42 2.27 2.47 2.68 2.76
LSTM-3LR [50] 0.77 1.00 1.29 1.47 0.89 1.09 1.35 1.46 1.34 1.65 2.04 2.16 1.88 2.12 2.25 2.23
SRNN [52] 0.81 0.94 1.16 1.30 0.97 1.14 1.35 1.46 1.45 1.68 1.94 2.08 1.22 1.49 1.83 1.93
GRU sup. [51] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09
QuaterNet [53] 0.21 0.34 0.56 0.62 0.20 0.35 0.58 0.70 0.25 0.47 0.93 0.90 0.26 0.60 0.85 0.93

TABLE 3.3: Mean angle error for short-term motion prediction on Human3.6M for differ-
ent actions and time horizons. The results for ERD, LSTM-3LR, SRNN, GRU supervised
and QuaterNet were extracted from Pavllo et al. [53]. Best results among our models are

in bold, best overall results are underlined.

Wi-Fi
0

0.2

0.4

0.6

0.8

1

Sp
ar

si
ty

Walking Eating Smoking Discussion
0

0.2

0.4

0.6

0.8

1

MHMM
SpaMHMM

FIGURE 3.7: Relative sparsity (number of coefficients equal to zero / total number of
coefficients) of the obtained MHMM and SpaMHMM models on the Wi-Fi dataset (left)
and on the Human3.6M dataset for different actions (right). For the Wi-Fi dataset, the
average value over the 10 training runs is shown together with the standard deviation.
Both models for the Wi-Fi dataset have 150 coefficients. All models for the Human3.6M

dataset have 396 coefficients.

3.3.5.2 Joint cluster analysis

We may roughly divide the human body in four distinct parts: upper body (head, neck

and shoulders), arms, torso and legs. Joints that belong to the same part naturally tend

to have coherent motion, so we would expect them to be described by more or less the

3. NETWORKED DATA STREAMS 53

same components in our mixture models (MHMM and SpaMHMM). Since SpaMHMM is

trained to exploit the known skeleton structure, this effect should be even more apparent

in SpaMHMM than in MHMM. To confirm this conjecture, we have trained MHMM and

SpaMHMM for the action “walking” using four mixture components only, i.e. m = 4, and

we have looked for the most likely component (cluster) for each joint:

Cy , arg max
z∈{1,...,m}

p(z | y) = arg max
z∈{1,...,m}

α
(y)
z , (3.25)

where Cy is, therefore, the cluster assigned to joint y. The results are in Figure 3.8. From

there, we can see that MHMM somehow succeeds on dividing the body into two main

parts, by assigning the joints in the torso and in the upper body mostly to the red/’+’

cluster, while those in the hips, legs and feet are almost all assigned to the green/‘A’ clus-

ter. Besides, we see that in the vast majority of the cases, symmetric joints are assigned

to the same cluster. These observations confirm that we have chosen the graph G for this

problem in an appropriate manner. However, some assignments are unnatural: e.g. one

of the joints in the left foot is assigned to the red/‘+’ cluster and the blue/‘◦’ cluster is

assigned to one single joint, in the left forearm. We also observe that the distribution of

joints per clusters is highly uneven, being the green/‘A’ cluster the most represented by

far. SpaMHMM, on the other hand, succeeds on dividing the body in four meaningful re-

gions: upper body and upper spine in the green/‘A’ cluster; arms in the blue/‘◦’ cluster;

lower spine and hips in the orange/‘x’ cluster; legs and feet in the red/‘+’ cluster. Note

that the graph G used to regularize SpaMHMM does not include any information about

the body part that a joint belongs to, but only about the joints that connect to it and that

are symmetric to it. Nevertheless, the model is capable of using this information together

with the training data in order to divide the skeleton in an intuitive and natural way.

Moreover, the distribution of joints per cluster is much more even in this case, which may

also help to explain why SpaMHMM outperforms MHMM: by splitting the joints more or

less evenly by the different HMMs in the mixture, none of the HMM components is forced

to learn too many motion patterns. In MHMM, we see that the green/‘+’ component, for

instance, is the most responsible for modeling the motion of almost all joints in the legs

and hips and also some joints in the arms and the red/‘+’ component is prevalent in the

prediction of the motion patterns of the neck and left foot, which are presumably very

different.

54 LEARNING FROM MULTI-ENTITY DATA

FIGURE 3.8: Assignments of joints to clusters in MHMM (left) and SpaMHMM (right).
The different colors (blue, green, orange, red) and the respective symbols (‘◦’, ‘A’, ‘x’,

‘+’) on each joint represent the cluster that the joint was assigned to.

3.3.6 Conclusion

We proposed a method to model the generative distribution of sequential data from nodes

connected in a graph with a known fixed topology. The method is based on a mixture of

HMMs where its coefficients are regularized during the learning process in such a way

that affine nodes will tend to have similar coefficients, exploiting the known graph struc-

ture. We also prove that pairwise optimization of the coefficients leads to sparse mix-

tures. Experimental results suggest that sparsity holds in the general case. We evaluate

the method performance in two completely different tasks (anomaly detection in Wi-Fi

networks and human motion forecasting), showing its effectiveness and versatility.

3.4 Summary and directions for future work

After a detailed presentation of SOHMMM and SpaMHMM algorithms in sections 3.2 and

3.3, respectively, it is instructive to offer a brief comparative overview of the two models.

Additionally, we shall discuss how these frameworks could be extended and generalized.

3.4.1 SOHMMM vs. SpaMHMM

The similarities between SOHMMM and SpaMHMM go beyond the obvious fact that

both models use the hidden Markov model as their core component. It should be noted

that equations (3.3) and (3.18), which govern the learning dynamics of these models, are

both structurally similar to equation (3.1) and, therefore, similar to each other. Despite the

fact that the former is an energy function and the latter is a proper density, the SOHMMM

3. NETWORKED DATA STREAMS 55

energy (3.3) could also be transformed into a density by normalization:

p(X; Θ) =
E(X; Θ)∫

E(X; Θ)dX
. (3.26)

This observation makes it clear that, in the learning stage, SOHMMM can also be regarded

as a mixture of HMMs.

However, major differences arise when we examine how the two models associate en-

tities y with atoms z. SOHMMM does not include any explicit dependency on y since

there is a one-to-one correspondence between entities and atoms in the lattice (e.g. in the

experiment with wireless simulation data, each AP is modeled by one HMM and there are

not two APs sharing the same HMM). Moreover, for the mixture model to exist, the topol-

ogy of the lattice must be known or at least a distance must be defined between each pair

of nodes. On the other hand, in SpaMHMM, the mixture is defined by an explicit many-

to-many relationship between entities and atoms, defined by the distribution p(z | y). As

a result, the model for each entity is a mixture of HMMs and nothing impedes two dis-

tinct entities of sharing the same HMM, although possibly assigned to different mixture

weights. Thus, SpaMHMM is a more expressive model than SOHMMM, which comes at

the cost of having a few extra parameters to model p(z | y). This would also allow new

entities to be added to the model in a simple manner and without affecting the remain-

ing entities’ models, as will be discussed in Section 3.4.5. Additionally, in SpaMHMM, the

graph structure is used as a regularization term only, so, in case this information is absent,

the model can still be learned and the correlations between multiple entities would still be

exploited, although no prior information about them would be provided to the learning

algorithm.

Another apparent difference between the two models is the fact that SOHMMM was

conceived to be learned online and SpaMHMM was presented with an offline learning

algorithm. These were mere design choices, though. For instance, it is straightforward to

replace SOHMMM stochastic gradient descent (SGD) algorithm with a batch version, and

SGD for SpaMHMM could also be derived following the same principles that were used

in its derivation for SOHMMM.

3.4.2 Generalizing SpaMHMM

Two obvious limitations of SpaMHMM are its inherent dependency on hidden Markov

models, which have limited expressiveness, and the fact that its learning algorithm was

56 LEARNING FROM MULTI-ENTITY DATA

conceived to an offline and non-distributed setting. In this section, we discuss how these

two drawbacks could be overcome by an extended and generalized framework, of which

SpaMHMM is a particular case. Specifically, we consider again the setting where each

entity y in a set Y produces sequences X =
(

x(1), ..., x(T)
)

. The prior knowledge about the

pairwise affinity degrees between entities in Y is summarized in an undirected weighted

graph G, where each entity corresponds to a graph node. The ultimate goal is to find the

distribution of the observed sequences given the corresponding node, that is, to model

the generative distribution p(X | y). For this purpose, we shall consider models of the

form:

p(X | y) =
∫

p(X | z)p(z | y)dz. (3.27)

This model comprises a latent space that is shared by all entities and where all obser-

vations X are produced, according to a conditional observation density p(X | z). Through

the latent density p(z | y), each entity chooses regions of the latent space that are more

likely to explain its own sequences. While not specifying the structure of both p(X | z)

and p(z | y), this is a meta-model that makes no assumptions on the nature of the ob-

served data streams. However, depending on those choices, exact inference on the result-

ing model may or may not be a tractable problem.

Clearly, the SpaMHMM model is a particular case of equation (3.27), where the latent

space is discrete and finite and the latent generative model is an HMM parameterized by

z. The discrete nature of the latent space and the underlying independence assumptions

of the HMM allow for efficient exact inference in the resulting model using Algorithm 2.1.

An interesting, more expressive, and still unexplored possibility would be to imple-

ment the conditional observation model p(X | z) through a recurrent mixture density

network (RMDN) [56–58]. An RMDN consists of a recurrent neural network whose out-

puts at each time step parameterize a Gaussian mixture model with c components:

p(X | z) =
T

∏
t=1

p(x(t) | x(1), ..., x(t−1), z) =
T

∏
t=1

c

∑
j=1

α
(t)
j N (x(t); µ

(t)
j , Σ(t)

j), (3.28)

{α(t)
j , µ

(t)
j , Σ(t)

j }
c
j=1 = RNN(x(1), ..., x(t−1); z). (3.29)

The latent space may be discrete, in which case we shall end up with a discrete mixture

of RMDNs, where exact inference is straightforward. Another possibility is to choose

a continuous latent space and, in such scenario, a sensible option is using a Gaussian

3. NETWORKED DATA STREAMS 57

density for the latent density model:

p(z | y) = N (z; µy, Σy). (3.30)

Under this setting, computing equation (3.27) becomes infeasible and, hence, exact in-

ference is not possible. However, the marginals p(X | y) may be approximated using a

Monte Carlo estimation:

p(X | y) ≈ 1
n

n

∑
i=1

p(X | zi), (3.31)

where the zi are sampled from p(z | y) and n is the desired number of samples, which

should be sufficiently large for the estimator to have a small variance.

Although very different in terms of their internal structure, all aforementioned models

share the external structure defined by equation (3.27). In the forthcoming sections, we

outline how training and inference could be done in this broad family of models under

multiple settings.

3.4.3 Offline, centralized learning

It is reasonable to assume that an initial dataset composed of sequences from all entities

may be gathered and used to learn an initial model for all entities. This model could then

be refined online in each instance using a distributed algorithm. Hence, it makes sense

to derive a algorithm to learn the meta-model defined by equation (3.27) in an offline

and centralized setting. This is the idea we followed in Section 3.3, which solves this

problem for the particular of the SpaMHMM model using EM. This algorithm is based on

the alternated maximization over variational densities q(z) and model parameters of the

evidence lower bound:

log p(X | y) ≥ Ez∼q(z)
[
log p(X, z | y)

]
−Ez∼q(z)

[
log q(z)

]
= ELBO. (3.32)

For fixed model parameters, maximization of the ELBO with respect to q(z) is attained

when this distribution matches the true posterior p(z | X, y). For the case of SpaMHMM,

computing this posterior is a tractable problem. When this is not the case, some options

are constraining the variational density to have a simpler, factorizable form (e.g. mean-

field approximation [59]) or approximating the posterior with a parametric model, like a

deep neural network (e.g. variational auto-encoders [12]).

58 LEARNING FROM MULTI-ENTITY DATA

In any of those cases, leveraging the prior contextual information represented by the

graph G through the introduction of a regularizer term like in equation (3.21) poses no

significant additional difficulties to the optimization algorithm.

3.4.4 Online, centralized learning

Assuming that a few new training examples (Xi, yi) are periodically uploaded to a central

unit and that entities are able to download updated model parameters from this unit, it is

a reasonable goal to be able to update the conditional observation model p(X | z) and the

latent density model p(z | y).

Incremental training of HMMs has been widely treated in literature. Existing ap-

proaches fall into one of three categories: direct gradient-based optimization over the

log-likelihood objective (Baldi and Chauvin [31]), incremental versions of EM (Digalakis

[60], Mongillo and Deneve [61]), and recursive maximum likelihood estimation (Rydén

[62]). Khreich et al. [38] provided an overview of these methods. Both gradient-based

optimization and incremental EM can be applied to SpaMHMM, making it suitable for

an online learning setting. More complex models, particularly those based on neural

networks, are typically trained using stochastic gradient descent (or any of its many vari-

ants), which is inherently applicable in an online setting. If an updated graph G is avail-

able, this information can also be incorporated into the learning objective as before.

3.4.5 Online, distributed learning

We now consider a scenario where each entity aims to update its own model autonomously,

that is, without observing any information from the remaining entities. Therefore, we as-

sume y is fixed at some y ∈ Y and, therefore, all new training examples are of the form

(Xi, y).

This particular setting is favorably accommodated by the structure of equation (3.27).

By comprising a shared (and desirably rich) conditional observation model p(X | z) and

a (presumably simpler) entity-dependent latent density model p(z | y), an entity y can

adapt its own model p(X | y) without changing the model p(X | y′) for any other entity

y′ 6= y. The idea here is to freeze the parameters of the conditional observation model and

update only the latent density model p(z | y) to accommodate the new data. By doing

this, the entity y is performing a search over the latent space to find regions where the

new observations have a higher likelihood. If the resulting model is still unsatisfactory,

3. NETWORKED DATA STREAMS 59

this likely means that the shared latent space was still not diverse enough to explain the

new data. In this circumstance, the entity may decide to upload its observations (Xi, y) to

a central unit, which in turn may update the whole model as outlined in Section 3.4.4.

Chapter 4

Multi-source domain adaptation

Some parts of this chapter were originally published in or adapted from:

[63] F. T. de Andrade, “Adversarial domain adaptation for sensor networks,” Mas-

ter’s thesis, Faculdade de Engenharia da Universidade do Porto, 2020 (presented in

Section 4.3)

[64] D. Pernes and J. S. Cardoso, “Tackling unsupervised multi-source domain adap-

tation with optimism and consistency,” CoRR, vol. abs/2009.13939, 2020 (presented

in Section 4.4)

The Master’s thesis [63] was supervised by Jaime S. Cardoso and co-supervised by Diogo

Pernes.

4.1 Introduction

In Chapter 3, we addressed the situation where the set of entities is the same at training

and testing time. The goal was to exploit inter-correlations between entities to learn better

generative models for each individual entity. Now, we focus on the problem of learning

a discriminative model for a particular entity (the target) for which no annotated data is

available. Assuming some invariance properties, we can hope to accomplish this task

by learning a discriminative model using the combination of annotated data from the

remaining entities (the sources) and unlabeled data from the target entity. Since entities

need not (and generally do not) correspond to physical objects and may refer to different

contexts in which the data was collected, they are more commonly called domains and

the problem itself is known as domain adaptation (DA). In what follows, we motivate the

practical importance of this problem and summarize our contributions.

61

62 LEARNING FROM MULTI-ENTITY DATA

Supervised training of deep neural networks has achieved outstanding results on mul-

tiple learning tasks greatly due to the availability of large and rich annotated datasets.

Unfortunately, annotating such large-scale datasets is often prohibitively time-consuming

and expensive. Furthermore, in many practical cases, it is not possible to collect anno-

tated data with the same characteristics as the test data, and, as a result, training and

test data are drawn from distinct underlying distributions. As a consequence, the model

performance tends to decrease significantly on the test data. The goal of DA algorithms

is to minimize this gap by finding transferable knowledge from the source to the target

domain. Sometimes, it is assumed that a small portion of labeled target data are avail-

able at training time – a setting that is known as semi-supervised DA (e.g. Daumé III et al.

[65], Donahue et al. [66], Kumar et al. [67], Saito et al. [68], Yao et al. [69]). In this chap-

ter, we focus mostly on the more challenging scenario, where no labeled target data are

available for training – known as unsupervised DA (e.g. Baktashmotlagh et al. [70], Ganin

and Lempitsky [71], Kang et al. [72], Long et al. [73], Zhao et al. [74]). The DA problem,

in its semi-supervised and unsupervised variants, has received increased attention in re-

cent years, both from theoretical (e.g. Ben-David et al. [75, 76], Blitzer et al. [77], Cortes

and Mohri [78], Gopalan et al. [79], Hoffman et al. [80], Zhao et al. [81]) and algorith-

mic perspectives (e.g. Ajakan et al. [82], Becker et al. [83], Fernando et al. [84], Jhuo et al.

[85], Long et al. [86], Louizos et al. [87], Sun et al. [88], Tzeng et al. [89]). In many situa-

tions, the annotated training data may consist of a combination of distinct datasets, some

of which may be closer or farther away from the target data. Finding non-trivial ways

of combining multiple datasets to approximate the target distribution and extracting rel-

evant knowledge from such combination is the purpose of multi-source DA algorithms

(e.g. Zhao et al. [74], Hoffman et al. [80], Kim et al. [90], Guo et al. [91], Mansour et al.

[92], Schoenauer-Sebag et al. [93], Zhang et al. [94]) and is also our main focus in this

chapter.

The remainder of the chapter is organized as follows: i) we formalize the problem and

provide some useful background by reviewing some important theoretical results and

state-of-the-art algorithms (Section 4.2); ii) we discuss some exploratory solutions for this

problem in the context of sensor networks (Section 4.3); and finally iii) we present our

own novel algorithm for unsupervised multi-source domain adaptation (Section 4.4).

4. MULTI-SOURCE DOMAIN ADAPTATION 63

4.2 Background

We begin with an analysis of the problem of DA from a theoretical point of view and then

we survey the main approaches that represent the state of the art. Although some authors

have considered the problem of DA for regression problems (e.g. Cortes and Mohri [95],

Zhao et al. [74]), the literature on classification is far more vast. Moreover, many of the

results and methods explained in this section can be extended to regression problems

with minor modifications. For these reasons, we shall focus our discussion mostly on

classification.

4.2.1 Theoretical foundation

4.2.1.1 Single source setting

Ben-David et al. [75] developed a rigorous yet comprehensive theoretical model for do-

main adaptation that we summarize here. This formulation enlightens the intrinsic diffi-

culties associated with this task and provides a deep foundation to many of the algorithms

we discuss in this chapter and, particularly, to our own approach, presented in Section 4.4.

Before we present and discuss the most important results, let us introduce a few pre-

liminary definitions. A domain D is defined by a joint distribution pD(x, y) over input

features x ∈ X and target variables y ∈ Y , where X and Y denote the input and target

spaces, respectively. For the domain adaptation task to be well defined, at least two do-

mains must be considered: a source domain S , with joint distribution denoted by pS (x, y),

from which abundant annotated data is usually available, and a target domain T , with

joint distribution pT (x, y), from which scarce or even zero annotated data is available

at training time. Following most classical results from statistical learning theory, Ben-

David et al. [75] focused on binary classification, thus Y = {0, 1}. Under this setting,

it is possible to define a labeling function fD : X 7→ [0, 1] for each domain, given by

fD(x) = pD(y = 1 | x). A hypothesis is any function h : X 7→ {0, 1} and a set H of

these functions is called a hypothesis class. The expected absolute difference between h

and fD is called the risk (or error) of hypothesis h (with respect to the labeling function

fD):

ε(h, fD) , Ex∼pD
[
|h(x)− fD(x)|

]
. (4.1)

64 LEARNING FROM MULTI-ENTITY DATA

We use εS (h) and εT (h) as shorthands for ε(h, fS) and ε(h, fT) and refer to them as the

source and target risks (or errors), respectively. The empirical estimates of these are de-

noted as ε̂S (h) and ε̂T (h), respectively.

Given two domains D and D′ and a hypothesis class H, the H-divergence provides a

distance measure between the marginal distributions of features in D and D′ (according

toH):

dH(D,D′) , sup
h∈H

2|PrD(1h)− PrD′(1h)|, (4.2)

where 1h , {x ∈ X : h(x) = 1} and PrD(1h) is the probability assigned by the density

pD(x) to the subset 1h ⊆ X . As is often the case, when the true underlying marginal

distributions are unknown or intractable but finite sets of (unlabeled) samples from both

domains are available, an empiricalH-divergence can be constructed by replacing the true

probabilities PrD(1h) and PrD′(1h) by the respective empirical estimates. Remarkably,

under weak conditions on the hypothesis class, computing this empiricalH-divergence is

equivalent to finding the hypothesis inH that maximally discriminates between samples

of the two domains. This result is enunciated formally in Lemma 4.1 and, as we shall see

later, is exploited by adversarial-based approaches for domain adaptation.

Lemma 4.1. (Lemma 2 from Ben-David et al. [75]) LetH be a hypothesis class such that if h ∈ H

then 1− h ∈ H. Given two sets D̂ and D̂′ of n samples each drawn from two domains D and D′,

respectively, the empiricalH-divergence between D and D′ is given by:

d̂H(D,D′) = 2

1−min
h∈H

 1
n ∑

x: h(x)=1
1x∈D̂ +

1
n ∑

x: h(x)=0
1x∈D̂′

 . (4.3)

Note that if the two sets D̂ and D̂′ can be discriminated perfectly by a hypothesis

h ∈ H (i.e. if there is an h ∈ H such that h(x) = 0 if x ∈ D̂ and h(x) = 1 if x ∈ D̂′), then

d̂H(D,D′) is maximum and equal to 2.

For any hypothesis class H, we may define the symmetric difference hypothesis class

H∆H as:

H∆H , {l : l(x) = h(x)⊕ h′(x), h, h′ ∈ H}, (4.4)

where⊕ denotes the “exclusive or” (xor) operation. Combining this definition with equa-

tion (4.2), the definition ofH∆H-divergence, which happens to play a major role in Theo-

rem 4.2, follows immediately. This theorem is the main result in this section as it provides

4. MULTI-SOURCE DOMAIN ADAPTATION 65

an upper bound for the target risk given the source risk and theH∆H-divergence between

the source and target domains.

Theorem 4.2. (Theorem 2 from Ben-David et al. [75]) Let H be a hypothesis class with VC

dimension d. Consider n unlabeled samples drawn from each of the two domains S (source) and T

(target). Then, for every h ∈ H and any δ ∈ (0, 1), with probability at least 1− δ over the choice

of samples,

εT (h) ≤ εS (h) +
1
2

d̂H∆H(S , T) + λ + 2

√
2d log(2n) + log(2

δ)

n
, (4.5)

where λ , minh∈H εS (h) + εT (h).

This bound immediately confirms the intuition that a low target error can be achieved

by training a classifier to minimize the error in the source domain, provided that the

marginal distributions of features are similar (i.e. d̂H∆H(S , T) is small) and a low error on

the combination of the two domains can be achieved (i.e. λ is also small). A deeper and

more complete interpretation of this bound shall be provided later on, when we take into

account the fact that, by applying deep neural networks, we can not only construct rich

hypothesis classes but also manipulate and learn feature representations. The latter ob-

servation suggests that this kind of classifiers may also have an impact on the d̂H∆H(S , T)

and λ terms in equation (4.5), which will indeed be the case.

4.2.1.2 Multi-source setting

So far, we have only considered the setting where a single source domain was available.

However, in many practical cases, the annotated training dataset consists of a collection of

subdatasets, each one belonging to its own domain. Therefore, it makes sense to consider

k distinct source domains S1,S2, . . . ,Sk and, in particular, to see how Theorem 4.2 can be

generalized to this setting.

Theorem 4.3. (Theorem 2 from Zhao et al. [74]) Let H be a hypothesis class with VC dimension

d. Consider n unlabeled samples drawn from the target domain T and n/k annotated samples

drawn from each of the k source domains S1,S2, . . . ,Sk. Then, for every h ∈ H, any α ∈ [0, 1]k :

∑k
j=1 αi = 1, and any δ ∈ (0, 1), with probability at least 1− δ over the choice of samples,

εT (h) ≤
k

∑
j=1

αj

(
ε̂Sj(h) +

1
2

d̂H∆H(Sj, T)
)
+ λα + O

√ 1
n

(
log

1
δ
+ d log

n
d

) , (4.6)

66 LEARNING FROM MULTI-ENTITY DATA

where λα , minh∈H εT (h) + ∑k
j=1 αjεSj(h).

Unsurprisingly, the bound in Theorem 4.3 is essentially a convex combination of the

bounds provided by Theorem 4.2 for each individual source domain. Thus, the same

interpretation applies here. Nonetheless, the source weights α provide an extra degree

of freedom that should be taken into account. Depending on how much each source

domain differs from the target, it may be beneficial to weight each source domain dif-

ferently. Therefore, adjusting these weights is an extra non-trivial task, exclusive to the

multi-source setting, that may have a significant impact on the performance of the domain

adaptation algorithm.

4.2.2 State of the art

We now do a brief overview of the most relevant DA algorithms, both in the single source

and multi-source settings.

As we have just seen from a theoretical point of view, the success of the DA task de-

pends on how similar the target domain is to the source(s), which is equivalent to saying

that some properties of the underlying distributions must be invariant across domains.

Different DA algorithms can therefore be categorized according to the invariance proper-

ties they assume.

4.2.2.1 Target shift

D y x

FIGURE 4.1: Graphical representation of the target shift setting as a Bayesian network.

In the target shift setting, only the marginal distribution of labels is allowed to vary

across domains. A practical example where this assumption may be realistic is when

the label y represents having or not having a particular disease and the input features

x are symptoms. It is plausible to assume that the prevalence of the disease may vary

over time or across different populations, but the probability of some symptom being

present or absent given that one has or not the disease should remain constant. Thus, as

implied by Figure 4.1, the joint distribution of any domain D is assumed to factorize as

pD(x, y) = p(x | y)pD(y), where p(x | y) is domain-invariant. By further assuming that

4. MULTI-SOURCE DOMAIN ADAPTATION 67

Supp(pT (y)) ⊆ Supp(pS (y)), we have:

pT (y | x) ∝ p(x | y)pT (y)

= p(x | y)pS (y)
pT (y)
pS (y)

∝ pS (y | x)
pT (y)
pS (y)

. (4.7)

Thus, if the class ratios pT (y)/pS (y) are known, the problem of DA under target shift

is solved by learning a probabilistic classifier on the source domain, reweighting it with

the class ratios, and then normalizing the class scores. Therefore, the literature for DA

under target shift focuses on estimating class ratios when these are unknown and cannot

be estimated directly from the training data, due to the absence of labels for the target

samples.

An elegant and simple solution to this problem was proposed by Lipton et al. [96].

Specifically, for any classifier h : X 7→ Y trained with labeled data from the source do-

main, the target shift assumption implies that pT (h(x) | y) = pS (h(x) | y) and hence:

pT (h(x)) = ∑
y

pT (h(x) | y)pT (y)

= ∑
y

pS (h(x) | y)pT (y) (4.8)

= ∑
y

pS (h(x), y)
pT (y)
pS (y)

. (4.9)

Note that pS (h(x) | y), pS (h(x), y), and pS (y) can all be estimated from labeled source

samples and pT (h(x)) can be estimated from unlabeled target samples. Thus, one can

either use equation (4.8) to estimate pT (y) or equation (4.9) to estimate class ratios directly.

Other approaches involve learning class-dependent weights to match the mean con-

ditional features of source data with the mean marginal features of target data in a re-

producing kernel Hilbert space (e.g. Iyer et al. [97], Zhang et al. [98]), or require density

estimation to model p(x | y) (e.g. Chan and Ng [99], Storkey [100]).

4.2.2.2 Conditional shift

In the conditional shift setting, the marginal distribution of labels is constant and the con-

ditional of features given labels may change across domains. This scenario is repre-

sented in Figure 4.2, from which it becomes clear that the joint distribution takes the form

pD(x, y) = p(y)pD(x | y), where p(y) is domain-invariant. Besides being less realistic

68 LEARNING FROM MULTI-ENTITY DATA

y x D

FIGURE 4.2: Graphical representation of the conditional shift setting as a Bayesian net-
work.

than other assumptions, DA under conditional shift is, in general, an ill-posed problem.

Nonetheless, Zhang et al. [98] show that identifiability of pT (x | y) holds when it is as-

sumed that, for any given y, pT (x | y) only differs from pS (x | y) in location and scale

and derive a kernel-based approach to estimate these parameters.

4.2.2.3 Concept shift

x y D

FIGURE 4.3: Graphical representation of the concept shift setting as a Bayesian network.

Concept shift refers to the situation where the marginal feature distributions p(x) are

constant but the conditional distribution of the target variable pD(y | x) is domain-

dependent, thus pD(x, y) = p(x)pD(y | x), as implied by Figure 4.3. When the change

happens over time, this setting is also known as concept drift (Webb et al. [101]). The liter-

ature on concept drift is vast and focuses mostly on the detection of its occurrence so that

the model can be updated using new data. Gama et al. [102] overview the most popular

techniques to address this problem.

4.2.2.4 Covariate shift

D x y

FIGURE 4.4: Graphical representation of the covariate shift setting as a Bayesian network.

Covariate shift is by far the most common assumption and therefore the most widely

addressed setting in the DA literature. As implied by the graphical representation in

Figure 4.4, here the conditional distribution of labels given features is constant and the

marginal distribution of features is domain-dependent. Thus, pD(x, y) = p(y | x)pD(x),

where p(y | x) is constant across domains. This assumption might hold for instance in

4. MULTI-SOURCE DOMAIN ADAPTATION 69

image classification problems where the domain shift is caused by different sensors or

lighting conditions.

Since pT (y | x) = pS (y | x), infinite labeled data from the source domain and a

consistent estimator of this conditional distribution would solve this DA task. However,

the former is obviously unrealistic and therefore the problem should be analyzed taking

into account that the available data is finite. Let `(·, ·) be any loss function for the su-

pervised learning problem. The goal is then to find an unbiased estimator of the target

loss Ex,y∼pT
[
`(h(x), y)

]
when no labeled samples from the target domain are available.

Following Sugiyama et al. [103], if the marginal densities pS (x) and pT (x) are known and

assuming Supp(pT (x)) ⊆ Supp(pS (x)), this estimator can be obtained using importance

weights w(x) , pT (x)/pS (x):

Ex,y∼pT
[
`(h(x), y)

]
= ∑

y

∫
l(h(x), y)pT (x, y)dx

= ∑
y

∫
`(h(x), y)p(y | x)pT (x)dx

= ∑
y

∫ pT (x)
pS (x)

`(h(x), y)p(y | x)pS (x)dx

= ∑
y

∫
w(x)`(h(x), y)pS (x, y)dx

= Ex,y∼pS
[
w(x)`(h(x), y)

]
. (4.10)

Hence, (1/n)∑n
i=1 w(xi)`(h(xi), yi) is an unbiased estimator of the target loss, constructed

using only source data, which can be used as the loss for the supervised learning problem.

When the marginal distributions are unknown and the feature space is low-dimensional,

kernel density estimation techniques can be employed to estimate them (e.g. Sugiyama

et al. [103], Shimodaira [104], Cortes et al. [105]). An alternative that removes the con-

straint on the support of the marginal target distribution is learning a transformation

T : X 7→ X such that pS (T(x)) = pT (x), which can be accomplished using optimal

transport theory (Courty et al. [106]). Later approaches aim to relax the covariate shift

assumption by trying to align the joint source and target distributions (Courty et al. [107])

and extend the same principles to the multi-source setting (Turrisi et al. [108]).

For high-dimensional data (e.g. images), where the marginal distributions are typi-

cally unknown and hard to estimate from finite data, deep learning models play an im-

portant role by providing a successful tool to learn semantically rich low-dimensional

feature representations. It is then possible to learn a function g : X 7→ Z mapping

70 LEARNING FROM MULTI-ENTITY DATA

input data to a new feature space Z such that pT (g(x))/pS (g(x)) ≈ 1, i.e. where the

marginal feature distributions of the two domains coincide. This approach has the ad-

ditional benefit of moving the overlapping support assumption to a lower-dimensional

space, where it is less likely to be violated than in the original space (e.g. pixel space).

In this new feature space, the covariate shift has vanished and therefore any classifier

h : Z 7→ Y that achieves low error on the source domain will also perform well in the

target. An alternative way of motivating these approaches follows from analyzing again

the target risk bound provided in equation (4.5). When we presented this bound, we

assumed for simplicity that the feature space was fixed and therefore the upper bound

would be minimized by minimizing the source risk. However, if the feature space can

itself be optimized, the term d̂H∆H(S , T) can be minimized by finding a feature space

where the source and target marginal distributions coincide. This idea has been exploited

extensively in recent years, either by matching the distributions using maximum mean

discrepancy (e.g. Long et al. [86], Guo et al. [91]) or, in most cases, using an adversarial

neural network (e.g. Ganin and Lempitsky [71], Zhao et al. [74], Schoenauer-Sebag et al.

[93], Pei et al. [109]).

Adversarial-based DA was originally introduced by Ganin and Lempitsky [71] and re-

sults from the observation that computing d̂H∆H(S , T) is equivalent to finding a classifier

that maximally discriminates between samples of the source and target domains (Lemma

4.1). Intuitively, if no classifier exists that can distinguish between source and target fea-

tures, then the distributions of these two must coincide. Thus, if we have access to sets Ŝ

and T̂ of labeled samples from the source domain and unlabeled samples from the target,

respectively, we can train a feature extractor network g : X 7→ Z , a classifier h : Z 7→ Y ,

and a domain discriminator d : Z 7→ {0, 1} to solve the following minimax problem*:

min
g,h

max
d

ε̂S (h ◦ g) + 1−

 1
n ∑

x:d(g(x))=1
1x∈Ŝ +

1
n ∑

x:d(g(x))=0
1x∈T̂

 , (4.11)

where ◦ denotes function composition. Several variations to this idea have been proposed

so far, aiming to extend it to the multi-source setting (Zhao et al. [74]), or beyond the

covariate shift assumption (Pei et al. [109]), or both (Schoenauer-Sebag et al. [93]).

*This objective is merely formal since the 0-1 loss is non-smooth and intractable. In practice, the usual
classification losses are used instead.

4. MULTI-SOURCE DOMAIN ADAPTATION 71

4.2.2.5 Invariance of causal mechanisms

The settings we have discussed so far consider all features x as atomic and hence do not

take into account how different features interact to produce the target variable y. Other

approaches drop this limitation by decomposing the feature vector into individual fea-

tures x(1), x(2), . . . , x(m), taking into account the structure of the causal Bayesian network

governing the data generating process, and using causal inference tools to identify the

target distribution. These methods assume that the flow of cause and effect cannot be

reversed by domain shift and therefore changes in distribution are due to different in-

terventions in the same causal graph G (e.g. presence of additional exogenous variables

inducing non-causal associations between features and the target variable). Bareinboim

and Pearl [110] assume G is known and all interventions are perfect (i.e. all interventions

consist of edge removal operations) and, given some subset x̄ ⊂ x, derive conditions for

identifiability of pT (y | x̄) given G and pS (x, y). Rojas-Carulla et al. [111] and Magliacane

et al. [112] relax the covariate shift setting by assuming that there exists a strict subset

x̄ ⊂ x such that pD(y | x̄) is domain-invariant and propose algorithms to infer x̄ given

data from multiple source domains.

Despite being (arguably) more trustworthy than purely data-driven approaches, cau-

sality-based methods still struggle to be applied in practice. First of all, they depend to

some extent on G being given. In many applications, domain knowledge is insufficient

to build such a graph. Moreover, causal discovery algorithms, which aim to learn the

structure of the graph from data, are computationally expensive and, given observational

data, can only recover G up to its Markov equivalence class, at least when no parametric

assumptions are made (Peters et al. [113]). Furthermore, these methods are unsuitable to

be applied to image data as no meaningful causal reasoning can be built in pixel space

and even deep neural networks are still incapable of finding suitable representations for

this goal (Schölkopf et al. [114]).

4.3 Adversarial domain adaptation for object counting in videos

4.3.1 Motivation

As different sensors are added to and excluded from a network, we should consider the

fact that the sensors used at training time are different from the ones where the model will

make predictions. Since domain shifts between different sensors in a network are usually

72 LEARNING FROM MULTI-ENTITY DATA

substantial, it is imperative that robust domain adaptation methods are developed that

take into account the constraints of the sensor network.

There is a dearth of domain adaptation methods focusing on how to handle the tem-

poral component of data. Chen et al. [115] proposed an algorithm called Temporal At-

tentive Alignment to implement DA in video datasets that explicitly considers temporal

dynamics and Liu and Li [116] proposed a spatio-temporal DA model named TrCbrBoost

for classifying land use. It should be noted, though, that both only deal with a single-

source-single-target setting, which is simpler than the multi-source encountered in sensor

networks.

Adversarial approaches have proven successful for dealing with a multi-source set-

ting. Zhao et al. [74] introduced an algorithm called multi-source domain adversarial

networks (MDAN), which uses k domain discriminators to distinguish between the tar-

get and the k source domains. MDAN showed superior performance compared to other

state-of-the-art methods in the task of counting vehicles in images obtained from videos

taken from city cameras. Given the positive results, and the fact that MDAN does not

consider the temporal component of the video frames, we consider it is worthwhile to

investigate adapting this model to receive a temporal sequence as input.

The setting where sensors correspond to video cameras is especially interesting since

video data is very high-dimensional. Moreover, the fact that different cameras are located

in different places, and therefore have distinct points of view, increases the domain shift

and therefore makes this task even more challenging.

Here, we shall explore how to adapt the MDAN model so that its two main subnet-

works exploit the temporal nature of the data by using long short-term memory (LSTM,

Hochreiter and Schmidhuber [117]) cells. We decided to go with this type of network

since it has already shown promising results in our task: Zhang et al. [118] introduced an

LSTM network architecture for counting vehicles in images obtained from city cameras

and reported an improvement in mean absolute error compared to other state-of-the-art

methods.

4.3.2 MDAN: Multi-source domain adversarial networks

We now review the MDAN model introduced by Zhao et al. [74]. This model is motivated

by the target risk bound provided in Theorem 4.3 and is an extension to the multi-source

4. MULTI-SOURCE DOMAIN ADAPTATION 73

setting of the single-source model by Ganin and Lempitsky [71]. Specifically, the follow-

ing formal objective is considered:

min
g,h

max
j∈{1,··· ,k}

ε̂Sj(h ◦ g) +
1
2

d̂H∆H(S
g
j , T g), (4.12)

where g : X 7→ Z and h : Z 7→ Y are, as before, the feature extractor and the classifier

networks and S g
j and T g are, respectively, the j-th source domain and the target domain

representations in the new feature space Z (i.e. pDg(x) , pD(g(x)) for any domain D).

Here, the empiricalH∆H-divergence between S g
j and T g is also implemented with an ad-

versarial domain discriminator dj : Z 7→ {0, 1} aiming to discriminate between samples

of the two domains. Thus, the model comprises k domain discriminator networks, i.e.

one for each source domain. This objective is, therefore, identical to equation (4.11), with

the only difference being that, since here there are multiple source domains, the model

is optimized for the hardest source domain at each training iteration. In this formula-

tion, α in equation (4.6) is a one-hot vector whose active component corresponds to the

hardest source domain. Because the bound holds for any convex combination of source

domains, the authors also explore a soft-max version of this problem, where smaller pos-

itive weights are assigned to the easier source domains:

min
g,h

1
γ

log
k

∑
j=1

exp
(

γ(ε̂Sj(h ◦ g) +
1
2

d̂H∆H(S
g
j , T g))

)
. (4.13)

Here, γ > 0 is a hyperparameter controlling the softness of the max operation (γ → ∞

corresponds to the hard-max). In our experiments, we will also evaluate the scenario

where the weights α are equal for all domains, i.e. the multi-domain loss consists of the

simple average of the losses across source domains.

4.3.2.1 The gradient reversal layer

Adversarial DA algorithms, of which MDAN is a particular case, all aim to solve some

variant of the following minimax problem:

min
θg,θh

max
θd

{
L(θg, θh, θd) = Ltask(θg, θh)− µdLdisc(θg, θd)

}
, (4.14)

where Ltask is the supervised loss for the desired task, Ldisc is the classification loss for the

domain discrimination task, θg, θh, and θd are the parameters of the feature extractor, task

74 LEARNING FROM MULTI-ENTITY DATA

classifier, and domain discriminator networks, respectively, and µd > 0 is a hyperparam-

eter. Larger values of µd imply a stronger enforcement of domain-invariant representa-

tions. This is a treatable surrogate of objective (4.11).

Solving this problem then consists of finding a saddle point of this loss function. Using

automatic differentiation libraries (e.g. PyTorch or TensorFlow), the naive solution would

involve declaring two optimizers, one for parameters θg and θh and another for θd, and

then performing gradient descent with the former and gradient ascent with the latter:

θg ← θg − ρ
(
∇θg Ltask − µd∇θg Ldisc

)
, (4.15)

θh ← θh − ρ∇θh Ltask, (4.16)

θd ← θd + ρ
(
−µd∇θd Ldisc

)
, (4.17)

where ρ > 0 is the learning rate. This implies an extra computational burden because

gradients need to be backpropagated through the discriminator network twice, one for

computing ∇θd Ldisc and another for computing ∇θg Ldisc.

The gradient reversal layer (Ganin and Lempitsky [71]) is an ingenious solution to this

problem. This layer is a pseudo-function r that behaves as the identity in the forward pass

but inverts the sign of the gradient in the backward, i.e.:

r(x) , x,
∂r
∂x
, −I. (4.18)

By placing it in between the feature extractor g and the domain discriminator d, the gra-

dient ∇θg Ldisc will come with its sign inverted. Thus, performing gradient descent over

all parameters of

Ltask(θg, θh) + µdLdisc(θg, θd), (4.19)

yields exactly update equations (4.15), (4.16), and (4.17).

4.3.3 FCN-rLSTM: Spatio-temporal deep neural network for object counting

Zhang et al. [118] proposed FCN-rLSTM, a deep neural network architecture for counting

vehicles in low-quality videos captured by city cameras, which will constitute the back-

bone of our models.

Although each video frame should contain all the information required to identify the

number of vehicles in it, issues with the quality of the captured data can make vehicle

counting a challenging problem, namely low resolution, vehicle occlusion, and different

4. MULTI-SOURCE DOMAIN ADAPTATION 75

vehicle scales, particularly noticeable when the camera is too close to the road. Thus,

assuming that the frame rate is sufficiently large when compared to the vehicle speed,

leveraging information from the previous frames should help to improve the accuracy

of the prediction for the current frame. For this reason, FCN-rLSTM combines a fully

convolutional network with a recurrent module, which preserves memory from the pre-

vious frames in the LSTM cells. This is a density-based estimation method that can deal

well with low frame rates, low resolutions, and vehicle occlusions, but has difficulty in

accounting for different vehicle scales.

FIGURE 4.5: Architecture of the FCN-rLSTM model (reprinted from Zhang et al. [118]).

Figure 4.5 shows the full architecture of this model, from which it can be observed

that the convolutional part outputs a density map D̂. The density maps are normalized

so that the sum of the pixels corresponding to each vehicle equals 1, and, therefore, the

sum of all pixels in the density map sum up to the total number of vehicles in the frame.

Thus, the final predicted count ŷ(t) is the result of this sum plus a residual provided by a

recurrent neural network, which is designed to correct the predicted count by leveraging

information from the previous frames.

Training this model implies that each input frame X(t) is annotated with the corre-

sponding ground-truth density map D(t) and vehicle count y(t). The loss function is de-

fined as:

L(θ) =
1
n

n

∑
i=1
||D̂(t)

i − D(t)
i ||

2 +
λc

n

n

∑
i=1
||ŷ(t)i − y(t)i ||

2, (4.20)

where λc > 0 is a hyperparameter controlling the relative weight of the vehicle counting

loss, and the dependency of D̂(t)
i and ŷ(t)i on the network parameters θ is omitted to ease

the notation.

4.3.4 Combining MDAN and FCN-rLSTM

We now explore several possibilities to combine MDAN and FCN-rLSTM into a single

model capable of accurately counting vehicles in images from a target camera, provided

76 LEARNING FROM MULTI-ENTITY DATA

that at training time we only have access to annotated data from other cameras and unla-

beled data from the target.

4.3.4.1 Non-Temporal model

The Non-Temporal model uses a subnetwork of the FCN-rLSTM model as its backbone.

It consists of a simplification of the latter, in that no LSTMs are used and no other consid-

eration on the temporal or sequential nature of the data are made. Figure 4.6 shows the

architecture of the Non-Temporal model.

FIGURE 4.6: Non-Temporal model. Reprinted from de Andrade [63].

The component F-HAC in this figure corresponds to all layers of the FCN-rLSTM up

to the hyper-atrous combination. It is used as a feature extractor, whereas the rest of the

convolutional layers are used for the object counting task. The k domain discriminators

consist of two fully connected layers, preceded by a gradient reversal layer.

This model will be our baseline as we are primarily interested in merging the benefits

of DA techniques and sequential modeling.

4.3.4.2 SingleLSTM model

The SingleLSTM model uses the whole FCN-rLSTM model for the desired regression task,

but the domain discriminators are still non-sequential, as shown in Figure 4.7. Thus, in

this model, the domain discrimination task only takes into account the domain-specific

4. MULTI-SOURCE DOMAIN ADAPTATION 77

information provided by each frame individually and does not account for the domain-

specific temporal dynamics that may exist.

FIGURE 4.7: SingleLSTM model. Reprinted from de Andrade [63].

4.3.4.3 DoubleLSTM model

The DoubleLSTM model overcomes the limitations of the SingleLSTM model by incorpo-

rating three LSTM layers in each domain discriminator. These aim to learn the domain-

specific temporal dynamics that might be helpful for the discrimination task. The scheme

can be seen in Figure 4.8.

FIGURE 4.8: Double-Temporal model. Reprinted from de Andrade [63].

78 LEARNING FROM MULTI-ENTITY DATA

4.3.4.4 CommonLSTM model

An alternative to the DoubleLSTM model is to extract temporal features that are common

to the desired object counting task and to the domain discrimination task. This is accom-

plished by the CommonLSTM model, which pushes the domain discriminators after the

LSTMs and just before the final fully connected layer, as shown in Figure 4.9.

FIGURE 4.9: CommonLSTM model. Reprinted from de Andrade [63].

This model is fundamentally different from all previous ones since here the feature

space in which domain-invariance is promoted arises much later in the network. Specif-

ically, the density maps D̂ are a few layers earlier, so they should not be significantly

affected by the domain-invariance constraint. This could have a positive impact on the

performance: the density maps are defined by the positions in the image where vehicles

appear and these positions depend on the shape of the street that each camera is captur-

ing, so domain-invariant density maps will certainly be inaccurate.

4.3.4.5 Overview

All of the proposed models have specific strengths and weaknesses that make them suit-

able for certain scenarios and unlikely to perform well in others. Here, we anticipate a

few of those scenarios.

When the video frame rate is low compared to the objects speed, the number of ob-

jects in a given frame is not a good predictor of the number of objects in a subsequent

frame. In this setting, the non-temporal model is ideal, as it does not make any temporal

consideration. In this case, using a temporal model would likely only disrupt the model

performance.

4. MULTI-SOURCE DOMAIN ADAPTATION 79

If the frame rate is sufficiently high and the temporal dynamics in the target domain

are close to the dynamics in the sources, the SingleLSTM model is likely the best choice.

By using an LSTM for the task executor but none for the domain discriminators, minor ad-

justments in the predicted object count can be made, and the unnecessary computational

cost of having a sequential model in the domain discriminator can be avoided.

When there is a strong correlation between the object count in consecutive video

frames and the dynamics in the target domain are dissimilar to the sources, it may be

beneficial to employ sequential models in both the task executor and domain discrimina-

tors. Thus, DoubleLSTM and CommonLSTM models are likely to outperform the others.

Their approach differs, as DoubleLSTM model uses an LSTM network for the task ex-

ecutor and another one for each domain discriminator, whereas CommonLSTM includes

an LSTM network in the feature extractor. As the CommonLSTM model will not enforce

similarity between the predicted density maps as much as the DoubleLSTM, it is probably

the best choice when the density maps of the target domain differ significantly from the

sources.

4.3.5 Experiments

4.3.5.1 Experimental protocol

We will run experiments with the domain adaptation models presented in Section 4.3.4.

Additionally, we will use FCN-HA and FCN-rLSTM as baselines, which do not employ

any technique to tackle domain shift. The former is a subnetwork of the latter consist-

ing of all layers excluding the LSTM network, i.e. it coincides with the Non-Temporal

model when its domain discriminator is removed. Therefore, it does not account for any

temporal correlations between consecutive frames.

In every experiment, assume we have k + 1 domains D1,D2, ...,Dk+1. In a domain

adaptation scenario, we do k + 1 runs, so that in run number t, domain Dt will be chosen

as the target domain and all the others will be source domains. For each experiment,

we have computed results in both unsupervised and semi-supervised settings, described

below:

• Unsupervised: In this case, we do not have a validation dataset, and, for each run t,

we calculate the testing results with the model we obtained at the end of the training

epochs, for all the samples extracted from domain Dt.

80 LEARNING FROM MULTI-ENTITY DATA

• Semi-supervised: In this setting, we have a validation dataset that corresponds to

30% of the samples extracted from target Dt. We use these samples to select the best

model obtained throughout the training epochs. This model is then tested with the

remaining 70% of the samples from Dt.

For each dataset, we ran a total of 5 experiments for the DA models, where we varied

the value of hyperparameter µd in the range [10−5, 10−1]. Recall that µd controls the weight

to give to the domain discrimination loss, relative to the task execution loss.

In all experiments, we train the model for 50 epochs, using Adam optimizer (Kingma

and Ba [49]) with a learning rate of 10−4. The adopted evaluation metric is the mean

absolute error (MAE) between the predicted object count and the ground truth for each

frame.

4.3.5.2 UCSDPeds dataset

UCSDPeds (Chan and Vasconcelos [119]) is a crowd counting dataset that contains videos

of pedestrians on University of California, San Diego, walkways, taken from a stationary

camera in two different viewpoints. All videos are 8-bit grayscale, with dimensions 158×

238 at a 2 frames per second rate. For each video frame, the dataset has a mask indicating

the region of interest in the image and another file indicating the coordinates of the central

point of every person in the frame.

Each camera point of view corresponds to a domain in our experiments, named vidd

and vidf. Figures 4.10 and 4.11 show examples of frames in each one of the two domains.

FIGURE 4.10: Domain vidd
from the UCSDPeds dataset.

FIGURE 4.11: Domain vidf
from the UCSDPeds dataset.

Table 4.1 shows the mean and standard deviation for the number of people in a frame,

for each domain. There is a strong target shift between domains as the mean number of

people in domain vidf is more than 4 times higher than the mean number of people in

domain vidd and, therefore, the DA task is challenging for this dataset.

4. MULTI-SOURCE DOMAIN ADAPTATION 81

mean std. dev.
vidd 6.448 3.089
vidf 27.570 7.393

TABLE 4.1: Mean number of people and respective standard deviation for each domain
in the UCSDPeds dataset.

For each frame, the density map was computed by placing a 15× 8 Gaussian kernel

with sum 1 on the center of each person. Figure 4.12 shows an example of a density map

with the Gaussian kernel around each person shown in red. The region of interest is also

indicated in the figure. As we had only 800 frames in each domain, we performed data

augmentation by adding the mirrored image of each frame to the dataset.

FIGURE 4.12: Sample density map for the UCSDPeds dataset.

4.3.5.3 WebCamT dataset

WebCamT (Zhang et al. [120]) is a vehicle counting dataset that contains city camera

videos, taken from a stationary camera in different points of the city of New York. All

videos are in color, with dimensions 240× 352, at a 1 frame per second rate. Every frame

in the dataset has a ground truth file with annotations that indicate the center of each

vehicle and also its bounding box.

There are 14 cameras that cover multiple scenes, camera perspectives, congestion

states, and weather conditions. We chose four cameras from those 14 to correspond to

our domains. Each of those four cameras had several videos, from which we selected

82 LEARNING FROM MULTI-ENTITY DATA

1000 frames. The frames were selected consecutively, so that if frames f1 and f2 from the

same video V were selected, then every frame between f1 and f2 in V was also selected.

Figures 4.13-4.16 show examples of frames in each of the four domains. Table 4.2

shows the mean and standard deviation for the number of vehicles in a frame, for each

domain. As it is possible to observe, the mean number of vehicles in each frame differs

significantly across domains, being more than three times larger in domain 691 than in

domain 846. Hence, there is significant target shift in this dataset and, consequently, the

covariate shift assumption does not hold.

FIGURE 4.13: Domain 511
from WebCamT dataset.

FIGURE 4.14: Domain 551
from the WebCamT dataset.

FIGURE 4.15: Domain 691
from the WebCamT dataset.

FIGURE 4.16: Domain 846
from the WebCamT dataset.

mean std. dev.
511 12.039 6.32
551 18.362 4.21
691 25.470 10.738
846 6.873 2.477

TABLE 4.2: Mean number of vehicles and respective standard deviation for each domain
in the WebCamT dataset.

After extracting each frame from the videos, we computed its density map by placing

a 4× 4 Gaussian kernel with sum 1 on the center of each car. We then had to resize the

4. MULTI-SOURCE DOMAIN ADAPTATION 83

frames and density maps to size 120× 176 to deal with speed and memory constraints.

Figure 4.17 shows an example of a density map in a resized frame, where the Gaussian

kernel around each car is shown in red.

FIGURE 4.17: Sample density map for the WebCamT dataset.

4.3.6 Choice of the optimization problem

The DA task for the UCSDPeds dataset is single source, so there is no choice to be made

regarding the combination of source domains. In this setting, the MDAN model boils

down to the original adversarial DA algorithm proposed by Ganin and Lempitsky [71],

where one single domain discriminator is used to distinguish between source and target

samples.

In the WebCamT dataset, we have three different source domains, so this is a multi-

source scenario. As discussed in Section 4.3.2, we consider three possible optimization

problems for our DA models to solve, namely hard-max, soft-max, and average. Table 4.3

shows results for each of our models on these formulations, evaluated in an unsuper-

vised setting. These indicate that averaging tends to perform better than the other two

approaches in this dataset. This is somewhat intuitive: given the wide range of values for

the mean number of vehicles in each frame across domains, it would be likely that one

source domain would have a significantly higher loss than the others. If we were to use

either of the other two optimization problems, our models would dedicate an outweighed

84 LEARNING FROM MULTI-ENTITY DATA

importance to the hardest source domain and disregarding the other domains. For this

reason, we shall adopt the averaging formulation in all subsequent experiments.

Hard-max Soft-max Average
Non-Temporal 18.15 11.16 9.91

SingleLSTM 10.54 9.33 11.10
DoubleLSTM 9.59 7.73 6.14

CommonLSTM 9.85 12.07 10.22

TABLE 4.3: Comparison of different optimization problems. The values indicate the av-
erage MAE count across domains in the WebCamT dataset. The experiments were run

with µd = 10−3.

4.3.7 Unsupervised setting

Table 4.4 shows the results in the unsupervised setting for both datasets. For each domain,

the best MAE obtained with different values of µd is shown.

UCSDPeds WebCamT
vidd vidf Avg 511 551 691 846 Avg

FCN-HA 15.23 7.14 11.19 5.01 2.58 17.22 4.67 7.37
FCN-rLSTM 11.04 5.98 8.51 6.26 8.79 13.63 6.31 8.75

Non-Temporal 6.24 22.52 14.38 9.63 3.50 18.27 5.58 9.85
SingleLSTM 7.75 9.07 9.32 6.58 5.10 15.26 9.55 10.53

DoubleLSTM 8.04 3.89 6.49 5.01 4.58 10.97 3.03 6.15
CommonLSTM 6.83 4.80 6.18 6.11 5.55 10.51 3.56 8.15

TABLE 4.4: MAE count per domain in UCSDPeds and WebCamT datasets (unsupervised
setting). Column Avg indicates the average MAE count across domains.

In UCSDPeds, CommonLSTM showed the best results, followed by DoubleLSTM. In

fact, any LSTM-based model showed a better average performance than any model where

LSTMs are absent. This validates our initial hypothesis that making temporal consider-

ations would significantly improve the accuracy. When it comes to the comparison be-

tween DA models and non-DA models, we can verify that DA models performed better,

as models DoubleLSTM and CommonLSTM showed the best results for average MAE

count. Still, in this case, the advantage of promoting domain-invariant representations

is not as clear as the advantage of leveraging temporal information. For example, the

Non-Temporal model, which includes a domain discriminator, showed worse results than

FCN-rLSTM.

In WebCamT, even though the DoubleLSTM showed the best results, the second best

was the FCN-HA, a model that does not make any temporal consideration. We also could

4. MULTI-SOURCE DOMAIN ADAPTATION 85

not verify a marked difference in the average MAE count of the DA and non-DA methods.

These observations ascertain that it is not enough to apply domain adaptation or consider

the temporal nature of data to obtain good results. Thus, the careful design of models and

their integration with the two mentioned techniques is essential.

We find that the model with the most balanced performance across domains and

datasets was the DoubleLSTM as its MAE count in a given domain was always in the

top-3. This observation, coupled with the fact that the DoubleLSTM was also the model

with the best average MAE count in UCSDPeds and the second-best in WebCamT, allows

us to conclude that this method was the best-performing overall.

Results regarding the sensitivity to the hyperparameter µd are shown in Figure 4.18.

(A) UCSDPeds (B) WebCamT

FIGURE 4.18: Average MAE count across domains for each µd in the unsupervised setting
in UCSDPeds and WebCamT datasets.

This plot confirms that the DoubleLSTM model was the best-performing in the Web-

CamT dataset and is at least comparable to CommonLSTM in UCSDPeds. Setting µd =

10−3 achieves close to optimal performance for all models in both datasets, except for

SingleLSTM in UCSDPeds and DoubleLSTM in WebCamT, whose performance improves

significantly for larger values of µd.

4.3.8 Semi-supervised setting

Table 4.5 shows the results in the semi-supervised setting for both datasets. As before, the

best MAE obtained with different values of µd is shown.

There is a noticeable difference between these results and those for the unsupervised

setting (Table 4.4), with the former being significantly better than the latter. Since the

experiments we performed with the WebCamT had more data and more domains, the

resulting models have smaller variance, which meant that the difference in accuracy be-

tween the two settings not to be as large as for UCSDPeds.

86 LEARNING FROM MULTI-ENTITY DATA

UCSDPeds WebCamT
vidd vidf Avg 511 551 691 846 Avg

FCN-HA 1.43 4.48 2.96 2.05 2.59 6.56 2.394 3.40
FCN-rLSTM 2.01 2.07 2.04 5.40 3.49 9.15 3.54 5.39

Non-Temporal 0.84 3.49 2.21 3.11 3.57 10.96 2.05 5.04
SingleLSTM 0.94 5.07 3.00 4.24 4.39 7.03 1.52 4.34

DoubleLSTM 0.95 2.84 1.89 4.22 4.55 6.46 1.58 4.27
CommonLSTM 0.88 2.61 1.94 4.23 4.54 8.67 1.63 4.98

TABLE 4.5: MAE count per domain in UCSDPeds and WebCamT datasets (semi-
supervised setting). Column Avg indicates the average MAE count across domains.

In UCSDPeds, we can discern the same general remarks we made when we analyzed

the unsupervised problem. Models DoubleLSTM and CommonLSTM showed the best

performance. Temporal models proved better than non-temporal ones, although in this

case, model SingleLSTM had the worst average MAE count. DA models proved, in gen-

eral, to be better than non-DA models.

For WebCamT, again we were not able to notice a significant difference between the

performance of the temporal methods and the non-temporal ones. As we have also veri-

fied before, the DA models do not show a marked improvement over the non-DA models

for the WebCamT dataset. In fact, in this case, it was a non-temporal, non-DA model, the

FCN-HA, that showed the best average MAE count.

Please refer to de Andrade [63] for an extended discussion and further experimental

results.

4.3.9 Conclusion

We have proposed several sensible model architectures to solve the problem of domain

adaptation for the task of counting objects in videos. All of those result from the combi-

nation of two state-of-the-art models, one for the object counting task (FCN-rLSTM) and

the other one for multi-source DA (MDAN).

Among the proposed models, it stands out that DoubleLSTM and CommonLSTM

showed a significant improvement over the non-DA model FCN-rLSTM in most cases.

Models Non-Temporal and SingleLSTM, on the other hand, had a very unsatisfactory

performance, by not showing better results than methods FCN-rLSTM and FCN-HA.

We have thus verified that integrating domain adaptation with a method does not auto-

matically guarantee better results. Careful considerations on how to divide the previous

4. MULTI-SOURCE DOMAIN ADAPTATION 87

method between feature extractor and task executor should be made, just like careful de-

liberations on the source domains selection, domain discriminator design, and choice of

the hyperparameter µd. Unfortunately, informed decisions about these become especially

difficult in the unsupervised setting, where it is impossible to obtain a direct evaluation

of how a given choice will perform on the target domain.

It should also be noted that the results showed inconsistency in the performance of

models across domains. That is, whereas a model performed better in one domain, an-

other model performed better in another. Hence, when applying a model for counting

objects in a real-world scenario, one should ponder what model to use depending on the

characteristics of the particular target domain.

All the previous considerations prove the difficulty of the DA problem, especially

when the domain shift is large as was the case for the two datasets we have used in these

experiments. This discussion provides a good starting point for the next section, where a

novel algorithm for unsupervised multi-source DA is presented.

4.4 Tackling unsupervised multi-source domain adaptation with

optimism and consistency

4.4.1 Introduction

The ability of deep neural networks to learn rich feature representations and the recent

surge of adversarial learning techniques have led to numerous approaches that resort to

an adversarial objective to learn those representations. The adversary is usually imple-

mented with a domain discriminator network (Ganin and Lempitsky [71]), which aims

to discriminate samples between source and target domains, and is jointly trained with

the feature extractor and task classifier through a minimax game. Other models resort

to the minimization of distribution dissimilarity metrics between the target and source

feature distributions (Guo et al. [91], Ferreira et al. [121]). It is known, however, that if

the learned features violate the covariate shift assumption (see Section 4.2.2.4), domain-

invariant features shall deteriorate the generalization performance of the model on the

target domain (Zhao et al. [81]) – a problem that we refer to as the curse of domain-invariant

representations. Addressing this issue in the unsupervised setting is challenging, although

some strategies have been proposed. Pei et al. [109] use a domain discriminator per class

and the probability output of the task classifier as attention weights for the discriminator.

88 LEARNING FROM MULTI-ENTITY DATA

Schoenauer-Sebag et al. [93] introduce a loss term that repulses unlabeled examples from

the labeled ones whenever the classifier has low confidence in classifying the unlabeled

examples. Thus, both methods depend on the classifier to make correct predictions on the

target samples early in training. Here, we avoid this issue by employing a consistency

loss, together with a minimum confidence threshold, that enforces agreement on the class

predictions for original and augmented target samples.

Our contributions in this section are summarized as follows: i) we present a corol-

lary of the theoretical results from Ben-David et al. [75] that motivates our methodol-

ogy (Section 4.4.2); ii) we present our multi-source adversarial model which learns the

distribution weights for each source domain jointly with all remaining parameters and

following a theoretically-grounded mildly optimistic approach (Section 4.4.3.1); iii) we

discuss how a simple consistency regularization technique may help avoid the curse of

domain-invariant representations (Section 4.4.3.2); iv) we conduct extensive experiments

on benchmark datasets that confirm the effectiveness of the proposed methodologies (Sec-

tion 4.4.4).

4.4.2 Motivation

4.4.2.1 An upper bound on the target risk

Intuitively, if the source and target domains are similar and the amount of labeled source

data is sufficiently large, a classifier trained to reach low empirical error on the source

domain will likely achieve a low error on the target domain too. When multiple source

domains are available, a combination of their respective data yields the optimal strat-

egy. The following bound, which is a corollary of the results from Ben-David et al.

[75], formalizes these ideas and enlightens some properties that will be exploited by

our approach. For completeness, the proof is provided in Appendix B.1. In the follow-

ing, ∆ denotes the k-simplex and Sα is the α-weighted mixture of source domains (i.e.

∆ , {α ∈ [0, 1]k : ∑k
j=1 αj = 1} and pSα

(x) , ∑k
j=1 αj pSj(x)).

Theorem 4.4. Let H be a hypothesis class with VC dimension d. Consider an unlabeled set of

n samples drawn from the target domain T and, for each j ∈ {1, 2, ..., k}, a labeled set of n/k

samples drawn from the source domain Sj. Then, for any h ∈ H and any α ∈ ∆, with probability

4. MULTI-SOURCE DOMAIN ADAPTATION 89

at least 1− δ over the choice of samples,

εT (h) ≤
k

∑
j=1

αjε̂Sj(h) +
1
2

d̂H∆H(Sα, T) + λα + Bα(δ) + V(δ), (4.21)

where

Bα(δ) , 2

√√√√ k
n

(
2d log(2(n + 1)) + log

8
δ

) k

∑
j=1

α2
j , (4.22)

λα , min
h∈H

k

∑
j=1

αjεSj(h) + εT (h), (4.23)

V(δ) , 2

√
1
n

(
2d log(2n) + log

4
δ

)
. (4.24)

This bound is structurally very similar to the one presented in Theorem 4.3 (Zhao

et al. [74]), with two slight differences: i) we work with the (empirical) H∆H-divergence

between the target and the mixture of source domains directly, instead of upper-bounding

it with the convex combination of (empirical) H∆H-divergences between the target and

each source domain; and ii) we show the dependency of the bound on the quantity Bα(δ),

whose interpretation is given in the following discussion.

4.4.2.2 The curse of domain-invariant representations

If the optimal α was known, a learning algorithm for DA could, in principle, be trained

to minimize the first two terms in the bound. For this purpose, it should find a function

g : X 7→ Z in a set of feature transformations F and a classifier h : Z 7→ Y in H. The

first term in the bound is minimized by training the classifier h on the desired task, using

the labeled data from all source domains. The second term is minimized by finding a

feature transformation g such that the induced distributions T g and S g
α are similar. This

is the main idea exploited by adversarial-based DA algorithms, which use an adversarial

objective to match source and target distributions in a latent feature space. The problem

with this approach is that it completely overlooks the role of the third term, λα, which

corresponds to the minimum possible combined risk of a classifier in H on the source

and target domains. Zhao et al. [81] show constructively that a low error on the source

domain and domain-invariant features are insufficient to ensure low target risk and may

actually have the opposite effect, by increasing λα. Sufficiency is established only under

the covariate shift assumption, where the conditional distributions of labels y ∈ Y given

90 LEARNING FROM MULTI-ENTITY DATA

features z ∈ Z are the same across source and target domains and only the marginal dis-

tributions of features differ. Since, in the unsupervised DA setting, target labels are not

available, imposing or verifying covariate shift is not possible. Moreover, whenever the

marginal distributions of labels differ (i.e. in the presence of target shift), a strong enforce-

ment of domain-invariant feature representations necessarily hurts the covariate shift as-

sumption, by imposing the marginals on features to coincide. For this reason, training

adversarial-based DA algorithms for many iterations generally yields worse performance

(Zhao et al. [81]). In this work, we show empirically that learning a more robust feature

transformation will generally help mitigate this issue.

4.4.2.3 Choosing the combination of source domains

Looking at the first two terms of the learning bound in Theorem 4.4 suggests that α could

be chosen in an optimistic way, by selecting the source domain in which the sum of the

risk of the classifier and theH∆H-divergence with respect to the target reaches the lowest

value. However, the term Bα(δ) is proportional to the L2-norm of α, which is maximum

when α is one-hot and minimum when αj = 1/k, ∀ j. This has an intuitive explanation:

choosing a sparse α implies discarding data from the source domains whose component

is zero, so the classifier is trained with intrinsically less data and its error tends to increase.

This discussion naturally leads to the following formal objective:

min
α∈∆, h∈H, g∈F

k

∑
j=1

αjε̂Sj(h ◦ g) +
1
2

d̂H∆H(S
g
α , T g) + µs||α||, (4.25)

where µs = µs(δ) > 0. This objective contrasts with the idea from Zhao et al. [74], where

the authors essentially choose to minimize the loss for the hardest source domain at each

iteration of the learning algorithm, which is a much more pessimistic approach than ours.

In either case, though, the minimum combined risk λα is uncontrolled and, as discussed

in Section 4.4.2.2, this is an issue that must be addressed.

4.4.3 Methodology

Given the discussion in the previous section, we now present our method in detail. It

basically consists of two major approaches, explained throughout this section.

4. MULTI-SOURCE DOMAIN ADAPTATION 91

4.4.3.1 Domain adaptation from a dynamic mixture of sources

We first address the problem of casting the objective (4.25) into a computationally treatable

surrogate. As in many recent works in DA, we resort to neural networks to implement g

and h and the empirical H∆H-divergence is implemented with a domain discriminator

network, which aims to distinguish between samples of S g
α and T g.* Taking the previ-

ous considerations and replacing the intractable empirical risks by the usual classification

losses, the objective (4.25) is cast as:

min
α∈∆,θg,θh

max
θd

{
L(α, θg, θh, θd) = Lclass(α, θg, θh)− µdLdisc(α, θg, θd) + µs||α||2

}
, (4.26)

where

Lclass(α, θg, θh) , −
M

∑
j=1

αjEz∼S g
j

[
log p(y = fS g

j
(z) | z; θh)

]
, (4.27)

Ldisc(α, θg, θd) , −Ez∼S g
α

[
log p(d = 0 | z; θd)

]
−Ez∼T g

[
log p(d = 1 | z; θd)

]
. (4.28)

Here, θh and θd are the parameters of the classifier and domain discriminator networks,

respectively, µd, µs > 0 are hyperparameters, y ∈ Y is the categorical random variable

associated with the class label, fS g
j

: Z 7→ Y is the true (multiclass) labeling function for

the j-th source domain, d is a Bernoulli random variable that discriminates source and

target domains and the function g = g(·, θg) : X 7→ Z is a neural network, parameterized

by θg, mapping input samples to features. By linearity of expectations and using the fact

that z = g(x, θg), for input samples x ∈ X , we have:

Lclass(α, θg, θh) = −
k

∑
j=1

αjEx∼Sj

[
log p(y = fSj(x) | x; θg, θh)

]
, (4.29)

Ldisc(α, θg, θd) = −
k

∑
j=1

αjEx∼Sj

[
log p(d = 0 | x; θg, θd)

]
−Ex∼T

[
log p(d = 1 | x; θg, θd)

]
.

(4.30)

In order to satisfy the constraint α ∈ ∆, we reparameterize the model using α = softmax(β),

for an unconstrained parameter β ∈ Rk. Finally, since we assume to have access to labeled

*Theoretically, some care should be taken while designing the architecture of the discriminator to make
sure that it parameterizes hypotheses in H∆H, but in practice this constraint is dropped. There are similar
bounds using theH-divergence instead [93].

92 LEARNING FROM MULTI-ENTITY DATA

datasets Ŝ1, Ŝ2, . . . , Ŝk from each source domain and to a unlabeled dataset T̂ from the tar-

get, we may compute empirical estimates of losses (4.29) and (4.30):

Lclass(β, θg, θh) ≈ −
1
m

k

∑
j=1

exp(β j)

∑j′ exp(β j′)
∑

(x,y)∈Ŝ (m)
j

log p(y | x; θg, θh), (4.31)

Ldisc(β, θg, θd) ≈−
1
m

k

∑
j=1

exp(β j)

∑j′ exp(β j′)
∑

(x,y)∈Ŝ (m)
j

log p(d = 0 | x; θg, θd) (4.32)

− 1
m ∑

x∈T̂ (m)

log p(d = 1 | x; θg, θd),

where Ŝ (m)
j and T̂ (m) are mini-batches of m examples each from Ŝj and T̂ , respectively.

It is instructive to compare our approach with MDAN (Zhao et al. [74]), as that model

is the most similar to ours. The bound in equation (4.21) uses one singleH∆H-divergence

and, therefore, our model comprises one single domain discriminator, which aims to dis-

tinguish between the target and the α-weighted mixture of source domains. Zhao et al.

[74] use k discriminator networks, i.e. one per source domain. More importantly, regard-

ing the choice of α, we treat it as one further parameter that can be optimized to minimize

the loss. To avoid the objective to collapse into the easiest source domain, as explained in

Section 4.4.2.3, we include an extra term that penalizes a sparse α. Unlike us, they do not

include the sparsity penalization term and choose α to minimize the worst-case scenario,

by assigning a larger weight to the maximum loss among the k source domains on each

training iteration.

4.4.3.2 Consistency regularization on the target domain

Consistency regularization is a key component of many modern algorithms in semi-supervised

learning. The basic idea is simple: an unlabeled sample and a slightly perturbed version

of it should share the same label. Here, we exploit this approach as a sensible heuristic

to avoid domain-invariant features affecting the generalization performance of the model

on the target domain, as discussed in Section 4.4.2.2.

Specifically, consider a target sample x ∈ T̂ and a parametric transformation ω :

X × Ξ 7→ X , where Ξ is the space of parameters for the transformation. Further assume

that ω is label-preserving, i.e. fT (ω(x, ξ)) = fT (x), ∀ x ∈ X , ξ ∈ Ξ. If ω is rich and

strong enough, it should spread the transformed target samples over multiple regions of

low density under the target distribution, producing new domains. Then, by enforcing

4. MULTI-SOURCE DOMAIN ADAPTATION 93

agreement on the predictions of original and transformed target samples, we encourage

the model to learn to extract features that generalize well across domains. Moreover, some

of the augmented samples may fall within regions of higher density under the distribution

of the source domains. If this hypothesis holds, by enforcing agreement on the predictions

of original and transformed target samples and a low classification error in the source

domains, we indirectly promote low error in the target domain too. Figure 4.19 illustrates

this idea.

FIGURE 4.19: Toy illustration of the desired effect of the consistency regularization,
where images are represented as lying on a 2-D space. Green and orange circles rep-
resent (labeled) samples from two distinct source domains; blue and purple x-markers
represent original and augmented (unlabeled) target samples, respectively. Colored el-
lipses enclose pairs of augmented and source samples that are close to each other and

therefore are likely to share the same label.

The particular type of consistency regularization we adopt here is FixMatch (Sohn

et al. [122]), due to its simplicity and good performance. This approach involves using

the predicted class of original (or weakly-transformed) samples as pseudo-labels for the

(strongly-)transformed samples and, in our setting, is translated into the following loss

function:

Lcons(θg, θh) , −
1
m ∑

x∈T̂ (m)

1(maxy∈Y p(y|x;θg,θh)>τ) log p(ỹ | ω(x, ξ); θg, θh), (4.33)

where ỹ , arg maxy∈Y p(y | x; θg, θh) is the pseudo-label, ξ is chosen randomly for each

x, and τ ≥ 0 is a hyperparameter defining the minimum confidence threshold for the

loss to be active. This threshold prevents the loss to be applied too early in the training

process and, in our setting, may discard augmented samples that fall too far from the

source distributions. The overall objective is then written as follows:

min
α∈∆,θg,θh

max
θd

{
L , Lclass(α, θg, θh) + µcLcons(θg, θh)− µdLdisc(α, θg, θd) + µs||α||22

}
,

(4.34)

where µc > 0 controls the relative weight of the consistency loss. A full schematic of our

model is provided in Appendix B.2.

94 LEARNING FROM MULTI-ENTITY DATA

It remains to discuss how to build the transformation ω in such a way that it is strong

and diverse enough while satisfying the constraint of being label-preserving. This is es-

sentially an application-dependent problem, though. For vision applications, there are

multiple simple label-preserving transformations (e.g. translation, rotation, sharpness en-

hancement, etc.) that can be applied in a pipeline and, as consequence, the transformed

image ends up being a strongly distorted version of the original one. This is the idea

followed, for instance, in RandAugment (Cubuk et al. [123]), which we use here. Ran-

dAugment receives as input parameters the magnitude and the number of transforma-

tions to be applied and randomly chooses the transformations to apply to each sample in

the mini-batch. Here, as Sohn et al. [122] did, we choose the number and magnitude of

the transformations uniformly at random for each mini-batch.

For generic, non-vision problems, adding random noise sampled from some known

distribution (e.g. Gaussian) is a trivial realization of ω. Another possibility is to apply

a strong dropout (Srivastava et al. [124]) transformation at the input and inner layers of

the neural network. Although such transformation is not necessarily label-preserving,

dropout is known to be a successful regularization technique when applied at fully con-

nected layers. We employ this idea in one of the experiments conducted here.

4.4.4 Experiments

4.4.4.1 Experimental protocol

We now conduct several experiments using standard benchmark datasets for multi-source

DA. We follow established evaluation protocols for every dataset and, as far as possible,

we use the same network architecture for our model and baselines. Notably, comparing

with MDAN (Zhao et al. [74]), our single domain discriminator has the same architecture

as each of the k domain discriminators in their model. Consequently, our model has less

trainable parameters than theirs. Our parameter β is initialized uniformly at random in

[0, 1]k, so the resulting α initially weights all source domains roughly equally, but it may

become sparse as training evolves. We illustrate this behavior in Appendix B.3.4. Hy-

perparameter tuning was performed through cross-validation over source domains and a

hyperparameter sensitivity analysis is conducted in Appendix B.3.3. Further details about

the experiments, including the label distributions on each domain (Appendix B.3.1), net-

work architectures (Appendix B.3.5), search ranges for each hyperparameter (Appendix

B.3.6), and image transformations (Appendix B.3.7), are also provided as appendices. The

4. MULTI-SOURCE DOMAIN ADAPTATION 95

PyTorch-based implementation of our model is publicly available.* To facilitate the pre-

sentation, from now on we refer to our model as MODA-FM (Multi-source mildly Opti-

mistic Domain Adaptation with FixMatch regularization).

Baselines DANN-SS (Ganin and Lempitsky [71]): a single-source DA model, where the

best results among all source domains are reported. DANN-MS: the same model as be-

fore trained on the combined data from all source domains. MADA (Pei et al. [109]): a

state-of-the-art model for single-source DA which tries to align conditional distributions

by using one domain discriminator per class (results extracted from Pei et al. [109], we

report the best accuracy among all source domains). MDAN (Zhao et al. [74]): a model

for multi-source DA, widely described before. MoE (Guo et al. [91]): a state-of-the-art

model for multi-source DA that uses one classifier per source domain whose predictions

are weighted in an example-dependent way. M3SDA-β (Peng et al. [125]): a moment-

matching model for multi-source DA in which two classifiers per source domain are

trained to have maximum label discrepancy on the target domain (results extracted from

Peng et al. [125]). Fully supervised: a model trained in a fully supervised fashion using

a fraction of the target data, to provide an empirical upper bound on the performance of

the DA task. MODA: our model without consistency regularization (i.e. µc = 0). FM:

our model without domain discriminator, trained on the naively combined data from

all source domains and using FixMatch consistency regularization as described in Sec-

tion 4.4.3.2.

Digits classification In this experiment, the task is digit classification using four datasets:

MNIST (LeCun et al. [126]), MNIST-M (Ganin and Lempitsky [71]), SVHN (Netzer et al.

[127]), and SynthDigits (Ganin and Lempitsky [71]). We take each of the first three datasets

as the target in turn, and use the remaining as source domains. The number of training

images chosen randomly from each domain, including the target, is 20k. The evaluation

is performed in the non-transductive setting, i.e. no target data used during training are

used for evaluation. The results are in Table 4.6.

Object classification on Office-31 dataset Office-31 (Saenko et al. [128]) is a standard

benchmark dataset for domain adaptation. It comprises 31 object categories extracted

from 3 domains: Amazon, which contains 2817 images downloaded from amazon.com,

*https://github.com/dpernes/modafm

amazon.com
https://github.com/dpernes/modafm

96 LEARNING FROM MULTI-ENTITY DATA

Digits Office-31
MNIST MNIST-M SVHN Avg. Amazon DSLR Webcam Avg.

DANN-SS [71] 97.9 ±0.4 73.2±1.6 72.8 ±3.3 81.3 60.5 ±1.4 100.0 ±0.0 98.0 ±0.3 86.2
DANN-MS [71] 97.9 ±1.6 67.5 ±1.4 71.5 ±1.6 79.0 61.2 ±1.3 99.9 ±0.2 98.8 ±0.3 86.6
MADA [109] – – – – 70.3 ±0.3 99.6 ±0.1 97.4 ±0.1 89.1
MDAN [74] 98.3 ±0.2 69.1 ±1.2 69.5 ±2.8 79.0 65.2 ±0.4 99.3 ±0.2 97.8 ±0.5 87.4
MoE [91] 98.6 ±0.2 69.9 ±1.1 81.8 ±0.8 83.4 – – – –
MODA 98.4 ±0.2 77.4 ±1.6 71.7 ±1.5 82.5 65.5 ±0.5 99.9 ±0.2 99.0 ±0.3 88.1
FM 99.2 ±0.1 91.1 ±0.4 90.0 ±0.8 93.4 70.3 ±0.6 99.7 ±0.2 99.2 ±0.4 89.7
MODA-FM 98.8 ±0.1 95.4 ±0.4 89.4 ±1.4 94.5 70.7 ±0.9 100.0 ±0.0 99.1 ±0.1 89.9
Fully supervised 98.9 ±0.1 96.2 ±0.1 90.3 ±0.5 95.1 88.1 ±1.6 99.3 ±1.1 99.5 ±0.7 95.6

TABLE 4.6: Average accuracy± standard deviation (%) over 5 independent runs on digits
and objects classification (Office-31). The domain on each column corresponds to the

target.

DSLR and Webcam, which contain 498 and 795 images captured with DSLR cameras and

webcams, respectively, under different environments. In this experiment, we adopt the

fully-transductive setting, following Pei et al. [109], where all unlabeled data from the

target domain are used for training (except for the fully supervised model, where we use

80% of the data for training and the remaining for testing). All models are implemented

using a pre-trained (on ImageNet) ResNet-50 (He et al. [129]) as the base architecture. We

take each domain as the target in turn and all remaining are used as sources. The results

are presented in Table 4.6.

Sentiment analysis on Amazon Reviews dataset The Amazon Reviews dataset (Blitzer

et al. [130]) is another multi-domain dataset widely used as a benchmark for domain

adaptation. It contains binary (i.e. positive and negative) reviews on four types of prod-

ucts: books, DVDs, electronics, and kitchen appliances. Here, we follow the experimental

setting from Chen et al. [131], where samples were preprocessed to 5k-dimensional TF-

IDF feature vectors. Thus, word order information was not preserved. We choose 2k

training samples from each domain randomly and the remaining target samples are used

for testing, following the non-transductive setting. Since the data are not images, we use

dropout as our (pseudo-)label-preserving transformation. Specifically, on each training

iteration, we randomly choose a dropout rate (in a pre-specified range) to be applied at

the input and hidden layers of the multi-layer perceptron (MLP), and the corresponding

output prediction is used as the pseudo-label ỹ. No dropout is applied for source and non-

augmented target samples. All domains are taken as the target in turn and all remaining

are used as sources. The results are in Table 4.7.

4. MULTI-SOURCE DOMAIN ADAPTATION 97

Books DVD Electronics Kitchen Avg.
DANN-SS [71] 77.5 ±1.0 78.9 ±0.9 84.2 ±0.2 85.8 ±0.4 81.6
DANN-MS [71] 78.9 ±0.2 80.8 ±1.0 84.7 ±0.6 87.0 ±0.4 82.9
MDAN [74] 79.1 ±0.3 81.3 ±0.8 84.6 ±0.3 85.6 ±1.6 82.7
MoE [91] 80.3 ±0.3 81.9 ±0.6 85.2 ±0.6 87.4 ±0.5 83.7
MODA 79.0 ±0.2 80.7 ±1.2 84.7 ±0.3 86.8 ±0.6 82.8
FM 78.8 ±2.0 81.0 ±1.5 85.6 ±0.9 87.6 ±0.7 83.3
MODA-FM 80.9 ±1.1 82.0 ±1.0 85.3 ±0.4 88.4 ±0.3 84.2
Fully supervised 83.6 ±0.4 83.6 ±0.6 85.4 ±0.4 87.8 ±0.2 85.1

TABLE 4.7: Average accuracy± standard deviation (%) over 5 independent runs on senti-
ment analysis (Amazon Reviews). The domain on each column corresponds to the target.

Large scale object classification on DomainNet dataset To the best of our knowledge,

the DomainNet dataset (Peng et al. [125]) is the largest domain adaptation image dataset

to date. It consists of 6 domains, each containing 345 categories of common objects. The

domains are: clipart images (clp), infographic images (inf), artist paintings (pnt), drawings

made by worldwide players of the game “Quick, Draw!” (qdr), real world images (rel),

and sketches of objects (skt). The dataset consists of around 423.5k images split in pre-

specified train/test partitions. We use all the data from the training partition to train the

models, excluding the labels for the target domain. For testing, we use the target domain

data from the test partition. All models were implemented on top of a pre-trained (on

ImageNet) ResNet-152. All domains are taken as the target in turn and all remaining are

used as sources. The results are in Table 4.8.

clp inf pnt qdr rel skt Avg.
DANN-MS [71] 62.6 21.7 50.3 14.3 63.5 48.3 43.5
MDAN [74] 52.2 19.1 46.0 12.6 48.2 40.4 36.4
M3SDA-β [125] 58.6 26.0 52.3 6.3 62.7 49.5 42.6
MODA-FM 61.2 24.5 51.2 17.2 62.3 52.4 44.8
Fully supervised 68.5 28.7 61.5 64.5 78.5 59.3 60.2

TABLE 4.8: Accuracy on object classification (DomainNet). The domain on each column
corresponds to the target.

4.4.4.2 Discussion

Tables 4.6, 4.7, and 4.8 show that our model outperforms the baselines in most settings

and performs comparably to the fully-supervised model in many. When no consistency

regularization is used (MODA), our approach exhibits a higher accuracy than DANN-SS,

DANN-MS and MDAN in most cases. This observation shows that our mildly optimistic

combination of source domains works better than using only the data from the best source

98 LEARNING FROM MULTI-ENTITY DATA

domain (DANN-SS) or naively combining the data from all source domains (DANN-MS).

It also suggests that MDAN wastes too much computational effort on optimizing itself

for the hardest source domain. MADA and MoE perform better than our non-regularized

model in some cases, which is not surprising since both methods try to mitigate some-

how the curse of domain-invariant representations. Their advantage is, therefore, mostly

noticeable when the target shift is large (e.g. SVHN and all domains in Office-31 – see

Appendix B.3.1), but the performance is still below MODA-FM.

Very significant performance gains are observed when we apply the consistency reg-

ularization, particularly in the visual datasets (digits and Office-31). These gains are more

expressive in the most challenging settings, i.e. when the target data are perceptually

very different from the source data (e.g. MNIST-M – see Appendix B.3.8) or when the

target shift is large. The latter observation suggests that this regularization succeeds in

mitigating the curse of domain-invariant representations, as hypothesized before. This is

strongly corroborated by an experiment we present in Appendix B.3.2, where we show

that the model accuracy on the target domain keeps stably high when the model is trained

for a large number of epochs. Interestingly, though, we observe that, in some settings,

FM outperforms MODA-FM, although the differences are small. In these cases domain-

invariant representations are slightly hurting the performance and/or the source weights

α are sub-optimal. Besides being the largest dataset, DomainNet is also the most chal-

lenging for the DA task. For almost all domains, there is a large gap between the per-

formance of all DA models (including ours) and the fully supervised one. Interestingly,

none of the multi-source DA algorithms does much better than the naive DANN-MS for

this particular dataset. This might be explained by the large dissimilarity across domains

in DomainNet: since no source domain is particularly close to the target domain, weight-

ing all source domains equally works ends up working fairly well. Nonetheless, our

model achieves the best average performance across all source domains. Finally, it is

worth highlighting the positive effect provided by using dropout as the label-preserving

transformation ω in the experiment with Amazon Reviews. This observation suggests

that this methodology can be applied successfully to non-visual data too.

4.4.5 Conclusion

We have presented a novel algorithm that achieves state-of-the-art results in unsupervised

multi-source domain adaptation. In our approach, the problem is formulated as DA from

4. MULTI-SOURCE DOMAIN ADAPTATION 99

a single source domain whose distribution corresponds to a mixture of the original source

domains. The mixture weights are adjusted dynamically throughout the training process,

according to a mildly optimistic objective. Additionally, we employ FixMatch on the tar-

get samples, a form of consistency regularization that proves to have a strong impact on

the model performance and to be capable of mitigating the curse of domain-invariant

representations. This regularization relies on a label-preserving transformation, which is

hard to construct for non-visual data. Moreover, better results could be achieved if both

the label-preserving transformation and the source weights were learned to approximate

the augmented target samples to the source samples. Both problems are interesting lines

for future research.

4.5 Summary

In this chapter, we addressed the problem of domain adaptation, a particular type of

transfer learning where the label space Y is constant across domains (i.e. the learning task

is the same on source and target domains). Unlike in Chapter 3, where the goal was to

exploit correlations in data from multiple entities to build a model with good performance

across all training domains, in DA the focus is on a particular entity/domain for which

no labeled data is available.

Section 4.3 explored several strategies to combine a multi-source DA algorithm with

a convolutional neural network (CNN) for object counting in videos. The purpose was to

create a robust model that generalizes well to cameras with different viewpoints without

the need to collect further annotated data. Moreover, this was one of the first few attempts

to extend the success of adversarial DA techniques to temporal data and, in particular, to

video sequences, a topic that has rarely been explored in the literature.

In Section 4.4, we presented our novel algorithm for unsupervised multi-source DA,

the main contribution of this chapter. This algorithm builds on existing methods by i)

learning to weight source domains jointly with the minimization of the source error and

the alignment of marginal distributions and ii) employing a regularization technique that

has proven successful in mitigating the curse of domain-invariant representations, partic-

ularly for image data. The latter had a highly beneficial effect on performance and was

therefore crucial for the state-of-the-art results achieved by this model.

Chapter 5

Domain generalization

Some parts of this chapter were originally published in or adapted from:

[121] P. M. Ferreira, D. Pernes, A. Rebelo, and J. S. Cardoso, “DeSIRe: Deep signer-

invariant representations for sign language recognition,” IEEE Transactions on Sys-

tems, Man, and Cybernetics: Systems, 2019 (presented in Section 5.5)

[132] P. M. Ferreira, D. Pernes, A. Rebelo, and J. S. Cardoso, “Learning signer-

invariant representations with adversarial training,” in Twelfth International Confer-

ence on Machine Vision (ICMV 2019), vol. 11433. International Society for Optics and

Photonics, 2020, p. 114333D (presented in Section 5.3)

[133] ——, “Signer-independent sign language recognition with adversarial neural

networks,” International Journal of Machine Learning and Computing, vol. 11, no. 2, 2021

(idem)

[134] P. M. Ferreira, A. F. Sequeira, D. Pernes, A. Rebelo, and J. S. Cardoso, “Adver-

sarial learning for a robust iris presentation attack detection method against unseen

attack presentations,” in 2019 International Conference of the Biometrics Special Interest

Group (BIOSIG), 2019, pp. 1–7 (Section 5.4)

The first two authors contributed equally in [121] and [132]. Both conceived the models

and designed and conducted the experiments, with the supervision of Rebelo and Car-

doso. Diogo Pernes was slightly more focused on the problem and model formalization,

while Ferreira was more involved on datasets and baselines selection. The work in [133]

extends [132] by including a more exhaustive experimental evaluation. In [134], Diogo

Pernes contributed on the development of the proposed methodology, together with the

first two authors, who motivated the application, formalized the problem and conducted

all experiments. Rebelo and Cardoso supervised the work.

101

102 LEARNING FROM MULTI-ENTITY DATA

5.1 Introduction

In Chapters 3 and 4, the target entities/domains were known at training time. In Chap-

ter 3, we exploited the correlations between different but related entities to augment the

amount of data available for each of those and hence improve the in-distribution gener-

alization. Chapter 4 was dedicated to the problem of domain adaptation, whose purpose

is to improve the out-of-distribution (OOD) generalization in a specific target domain for

which no labeled data is available.

In this chapter, we shall continue focusing on OOD generalization. However, now,

the target domain is unknown and, therefore, no data from this domain is available at

training time, neither labeled nor unlabeled. The purpose, then, is to use labeled data

from multiple source domains to build a discriminative model that generalizes well to

unknown OOD target domains – a problem known as domain generalization (Blanchard

et al. [135], Muandet et al. [136]). Our main assumption to accomplish this goal is that

the set of features that are relevant for the learning task are domain-invariant. Formally,

we assume that, for each domain D, there exists a bijection bD : X 7→ Z ×W , where

Z is the domain-invariant space of features used for classification and W are domain-

specific auxiliary features carrying no relevant signal for the desired learning task. Thus,

for (z, w) , bD(x), we assume that pD(y | x) = p(y | z), i.e. the optimal classifier for

any domain D can be reconstructed from features in Z and a domain-invariant classifier

p(y | z). This formulation is closely related to the covariate shift assumption for domain

adaptation, described in Section 4.2.2.4.

A computer vision application where this problem is particularly relevant is sign lan-

guage recognition (SLR). Large inter-signer variability in the manual signing process of

sign languages is one of the challenges associated with this task. Due to this issue, mod-

els trained on data from a given set of signers often fail to generalize well when tested on

previously unseen signers. Since, ideally, an SLR system should be able to recognize the

gestures of any signer, this problem should be tackled with domain generalization (DG)

techniques. For this reason, SLR will be the main application considered in this chapter.

Nonetheless, we will also show that the same principles can be applied successfully to de-

velop a fingerprint presentation attack detection method that exhibits robust performance

in detecting unseen attacks.

The remainder of this chapter is organized as follows: i) we start by reviewing the state

of the art for DG (Section 5.2); ii) we present a novel adversarial-based approach for DG

5. DOMAIN GENERALIZATION 103

in the context of SLR (Section 5.3); iii) we show how this methodology can be successfully

adapted to address the problem of iris presentation attack detection (Section 5.4); iv) we

present a novel reconstruction-based algorithm for DG (Section 5.5).

5.2 State of the art

Zhou et al. [137] divide the algorithms for domain generalization as heterogeneous and

homogeneous, depending on whether the label space varies (heterogeneous DG) or not

(homogeneous DG). The former case is also known as zero-shot domain generalization

and its goal is, in general, to learn a feature representation that can be used in the target

domain to recognize new classes. The latter, which will be the focus of this chapter, is

closely related to domain adaptation, so there is a significant intersection between the

two. Albuquerque et al. [138] presented an upper bound for the generalization error that

is essentially an upper bound for multi-source domain adaptation, similar to the bound

by Zhao et al. [74] (Theorem 4.3) and to our own (Theorem 4.4).

The theoretical proximity between the two problems motivates the existence of similar

algorithms to tackle them. Many algorithms for DG actually follow the paradigm of do-

main alignment, which we have discussed extensively in the context of DA. Li et al. [139]

use an adversarial autoencoder and maximum mean discrepancy over its latent space to

learn domain-invariant features. Ghifary et al. [140] address the same problem through a

multi-output autoencoder, which is trained to transform samples from one domain into

samples from the remaining domains with the same label. Motiian et al. [141] proposed

a unified framework to address the problems of domain adaptation and generalization.

They use a contrastive L2-loss in the latent space that pushes together samples from dif-

ferent domains and the same class while pulling apart samples from different classes.

Several other approaches extend the idea of domain adversarial networks (Ganin and

Lempitsky [71]) to the problem of domain generalization, by using domain classifiers

and minimax training to learn domain-invariant features. Some of those use a single

multi-class classifier to classify samples into one of k source domains (e.g. Aslani et al.

[142], Matsuura and Harada [143]) and others employ k binary domain discriminators

trained in a one-vs-all manner (e.g. Shao et al. [144], Li et al. [145]).

Ensemble learning has also been widely applied to the problem of domain generaliza-

tion. Xu et al. [146] train support vector machines (SVMs) with a single positive example

104 LEARNING FROM MULTI-ENTITY DATA

and a few negative examples (known as exemplar-SVMs) and use the most confident clas-

sifiers in an ensemble to make the final prediction. More recent approaches replace the

SVM with deep neural networks and build ensembles of domain-specific networks, ei-

ther by weighting all the predictions equally (e.g. D’Innocente and Caputo [147], Zhou

et al. [148]) or by using the output of a domain classifier as sample-dependent ensemble

weights (Wang et al. [149]).

Self-supervised learning (SSL) techniques are becoming increasingly popular in ma-

chine learning and have also been applied to the problem of DG. SSL refers to the task

of learning from free labels, i.e. it consists of standard supervised pre-training on tasks

where the labels can be extracted automatically from the data, without the need for man-

ual annotation. Examples of SSL tasks include predicting the next word in a sentence,

image colorization (Zhang et al. [150]), predicting the relative position of image patches

(Doersch et al. [151]), predicting whether a video is being played forward or backward

(Wei et al. [152]), etc. The idea motivating SSL is that the features learned by pre-training

the model on self-supervised tasks provide good initializations for the model, which can

then be finetuned for the desired task using a smaller amount of annotated data. In the

scope of DG, SSL provides useful features independent of the target task, and reduces the

overfitting to domain-specific biases (Zhou et al. [137]). This idea was followed by Car-

lucci et al. [153] and Wang et al. [154], who trained a network to solve the Jigsaw puzzle

(i.e. to place nine shuffled image patches back into their correct positions) as an auxiliary

task to enhance domain generalization.

For a more complete review of DG theory and algorithms, please see Wang et al. [155]

and Zhou et al. [137].

5.3 Adversarial domain generalization for signer-independent sign

language recognition

5.3.1 Introduction

Sign language is an integral form of communication and, currently, considered the stan-

dard education method of deaf people worldwide. It is a visual means of communication,

with its own lexicon and grammar, that combines articulated hand gestures along with

facial expressions to convey meaning. Deaf people have difficulty in speaking and learn-

ing spoken languages like hearing people. However, with sign language, they are able to

5. DOMAIN GENERALIZATION 105

communicate as efficiently and seamlessly. The population of sign language speakers is

extended to family and friends of the deaf, interpreters, and those who learn the language

by their own initiative. As most hearing people are unfamiliar with sign language, deaf

people find it difficult to interact with the hearing majority. The result is the isolation of

deaf communities from the overall society.

In this regard, automatically analyzing and recognizing sign language has become a

key problem in the human-computer interaction field. SLR systems are meant to automat-

ically translate signs into the corresponding text or speech. This is important not only to

bridge the communication gap between deaf and hearing people but also to increase the

amount of content the deaf can access, such as the creation of educational tools or games

for deaf people and visual dictionaries of sign language.

The SLR problem has been addressed in the literature by means of wearable devices

(e.g. data gloves or similar equipment) or vision-based systems (Ebrahim Al-Ahdal and

Nooritawati [156]). Vision-based systems, either those using color or depth information,

face the problem of the inherently noisy and ambiguous nature of the input data. Data

gloves yield more reliable and descriptive features. Nevertheless, vision-based SLR sys-

tems are arguably the most natural choice for real-world applications. Vision-based SLR

is less invasive since there is no need to wear cumbersome devices that may affect the

natural signing movement.

Several vision-based SLR methodologies have been proposed over the last twenty

years, with increasing progress in the recognition performance. An important part of

this recent progress was achieved thanks to the emergence of deep learning approaches

and more specifically with CNNs (Pigou et al. [157], Koller et al. [158], Wu et al. [159],

Neverova et al. [160], Kumar et al. [161]).

A practical SLR system must operate in a signer-independent scenario. That is, the

signer of the probe must not be seen during the training process of the models. Although

current SLR systems demonstrate excellent performance for signer-dependent settings,

their recognition rates typically decrease significantly when the signer is new to the sys-

tem. This performance drop is the result of the large inter-signer variability in the manual

signing process of sign languages.

Although the appearance of manual signs is well-defined in sign language dictionar-

ies, in practice, variations may arise due to regional and social factors, and also from age,

106 LEARNING FROM MULTI-ENTITY DATA

FIGURE 5.1: Inter-signer variability: it is possible to observe not only phonological vari-
ations (e.g. different handshapes, palm orientations, and sign locations) but also a large
physical variability (e.g. different hand sizes) when six signers are performing the same

sign.

gender, education and family background. This can lead to significant variations in man-

ual signs performed by different signers, and pose challenging problems for developing

robust signer-independent SLR systems. Figure 5.1 illustrates inter-signer variability by

showing six different signers performing the same gestures.

Borrowing from recent works on adversarial neural networks (Goodfellow et al. [162],

Feutry et al. [163]) and domain transfer (Ganin and Lempitsky [71]), we introduce a deep

neural network along with a novel adversarial training objective to specifically tackle the

signer-independent SLR problem. The underlying idea is to preserve as much informa-

tion as possible about the signs, while discarding the signer-specific information implic-

itly present in the manual signing process. For this purpose, the proposed deep model is

composed of an encoder network, which maps from the input images to latent representa-

tions, as well as two discriminative classifiers operating on top of these representations,

namely the sign-classifier network and the signer-classifier network. While the former is

trained to predict the sign labels, the latter is trained to identify the signer. In addition,

the parameters of the encoder network are optimized to minimize the loss of the sign-

classifier while trying to fool the signer-classifier network. This adversarial and compet-

itive training scheme encourages the learned representations to be signer-invariant and

highly discriminative for the sign classification task. To further constrain the latent repre-

sentations to be signer-invariant, we introduce an additional training objective that oper-

ates on the hidden representations of the encoder network in order to enforce the latent

distributions of different signers to be as similar as possible.

Although this adversarial training framework is similar to those initially introduced

by Ganin and Lempitsky [71], in the context of domain adaptation, and then by Feutry

5. DOMAIN GENERALIZATION 107

et al. [163] to learn anonymized representations, our main contributions on top of these

works are two-fold: i) the application of the adversarial training concept to the signer-

independent SLR problem and ii) a novel adversarial training objective that differs from

the ones of Ganin and Lempitsky [71] and Feutry et al. [163] in two ways. First, our train-

ing objective is minimal if the adversarial classifier (i.e. the signer-classifier) produces a

uniform distribution over the domains (i.e. signer identities). Second, we introduce an

additional term to the adversarial training objective that further discourages the learned

representations of retaining any signer-specific information, by explicitly imposing simi-

larity in the latent distributions of different signers.

The remainder of this section is organized as follows. Section 5.3.2 introduces the

related work on SLR. The proposed model, along with its adversarial training scheme, is

fully described in Section 5.3.3. The experimental results and conclusions are reported in

Sections 5.3.4 and 5.3.5, respectively.

5.3.2 Related Work

We have discussed some of the most relevant approaches for DG in Section 5.2, so now we

shall focus our attention on the specific problem of SLR. This has become an appealing

topic in modern society because such systems can ideally be used to reduce the com-

munication barriers that exist between deaf and hearing people. SLR approaches can

be broadly divided into: (i) isolated, which address the recognition of single signs ei-

ther using static images or video (Marin et al. [164, 165]), and (ii) continuous, which cor-

respond to the recognition of sentences represented as a sequence of signs (Guo et al.

[166, 167], Wang et al. [168]). Although most recent works focus on the continuous SLR

and its associated problems (e.g. large vocabulary size), static SLR is still challenging, es-

pecially under unconstrained scenarios. One of the biggest challenges is related to the

large inter-signer variability, which is in fact the focus of this work.

According to the amount of data required from the test signers, previously signer-

independent SLR works can be broadly divided into two main groups: (i) signer adapta-

tion approaches, where a previously trained model is adapted to a new signer by using a

small amount of signer specific data, and (ii) truly signer independent methodologies, in

which a generic model robust for new test signers is built without using data of those test

signers.

108 LEARNING FROM MULTI-ENTITY DATA

The former signer adaptation approaches were greatly inspired by speaker adaptation

methods from the speech recognition research. von Agris et al. [169] used maximum like-

lihood linear regression (MLLR) and maximum a posteriori (MAP) estimation for signer

adaptation. In a subsequent work (von Agris et al. [170]), they extended their work by

combining the eigenvoice approach by Kuhn et al. [171] with MLLR and MAP to adapt

trained hidden Markov models to new signers. MLLR and MAP were the basic adapta-

tion strategies, and the eigenvoice approach provided constraints to reduce the number

of free parameters to be adapted. More recently, Kim et al. [172] investigated the potential

of several signer normalization techniques (e.g. speed normalization) and different deep

neural network adaptation strategies for the signer-independence problem. They found

that while signer normalization is ineffective, a simple neural network adaptation strat-

egy, such as fine-tuning the signer-specific neural networks on the adaptation data, is very

effective.

The aforementioned methods are all supervised adaptation approaches, in the sense

that the adaptation data from the new signer must be labeled. However, in practice, col-

lecting labeled data may be a cumbersome and time-consuming task. To overcome this

issue, a few works have resorted to unsupervised adaptation strategies. Yin et al. [173]

proposed a two-step weakly supervised metric learning framework to perform signer

adaptation with some unlabeled sign data of the new signer. In the first step, a generic

metric is learnt from the available labeled data of several different signers. In the sec-

ond step, the generic metric is adapted to the new signer by considering clustering and

manifold constraints along with the collected unlabeled data.

Although signer adaptation is a reasonable approach, there is still the need to collect

either labeled or unlabeled data to retrain and adapt the model to a new signer. There-

fore, a truly signer-independent approach, which does not require any data from the new

signers, would be the ideal solution for a practical SLR system. Examples of such works

include those by Zieren and Kraiss [174], Shanableh and Assaleh [175], von Agris et al.

[176], Kong and Ranganath [177], Kelly et al. [178], Dahmani and Larabi [179], Yin et al.

[180]. Most of them involved a huge feature engineering effort in order to build normal-

ized feature descriptors robust to the physical variations of the signers (e.g. height, hand

size and length of the arm) and different acquisition conditions (e.g. distance to the cam-

era). Afterwards, most of these works use HMMs or their variants for sign recognition.

It is the example of the work proposed by von Agris et al. [176], in which a set of 11

5. DOMAIN GENERALIZATION 109

regional features are extracted (e.g. 2-D coordinates, hand blobs area, orientation of the

main axis, inertia ratio, eccentricity and compactness) and then normalized according to

the head position and shoulders distance of the signer. Kelly et al. [178] introduced a novel

signer-independent hand posture feature descriptor, along with an eigenspace size func-

tion representing both qualitative and quantitative properties of a visual shape. Kong and

Ranganath [177] gave particular importance to the movement of epenthesis (ME), which

appears as the transition movement that connects successive signs. Specifically, they re-

moved the ME by using a segment and merge approach to decrease the inter-signer vari-

ations in ME and used a conditional random field classifier for sign recognition. More

recently, Yin et al. [180] proposed an interesting and alternative approach that relies on

distance metric learning. In particular, the metric is learnt by constraining the distances

between the training samples and generic references of the sign classes. The references are

constructed by signer invariant representations of each sign class (i.e. the average of all

samples within the specific class). Afterwards, a two-step iterative optimization strategy

is employed to obtain more appropriate references and update the corresponding distance

metric alternately.

Although the aforementioned methods have promoted a significant evolution in the

signer-independent research, there is still much room for improvement. A major weak-

ness of all methods is the fact that representation and metric learning are not performed

jointly. It is well known that the recent success of deep learning approaches, particularly

those using CNNs, in tasks like object detection and recognition, has been extended to

the SLR problem. The underlying motivation is to automatically learn multiple levels

of representations directly from the data (Pigou et al. [157], Koller et al. [158], Wu et al.

[159], Neverova et al. [160], Kumar et al. [161]). However, none of these methods explicitly

enforces that the learned representations are signer-invariant.

5.3.3 Methodology

The ultimate goal of our model is to learn signer-invariant latent representations that

preserve the relevant part of the information about the signs while discarding the signer-

specific traits that may hamper the sign classification task. To accomplish this purpose,

we introduce a deep neural network along with an adversarial training scheme capable

of learning feature representations that combine both sign discriminativeness and signer-

invariance.

110 LEARNING FROM MULTI-ENTITY DATA

Specifically, let {(Xi, yi, si)}n
i=1 be a labeled dataset of n samples, where Xi represents

the i-th colour image, and yi ∈ Y and si ∈ {1, 2, . . . , k} denote the corresponding class

(sign) label and signer identity, respectively. To induce the model to learn signer-invariant

representations, the proposed model comprises three distinct sub-networks:

• an encoder network, which aims at learning an encoding function g(·; θg) : X 7→ Z ,

parameterized by θg, that maps from an input image X ∈ X to a latent representa-

tion z ∈ Z ;

• a sign-classifier network, which operates on top of this underlying latent represen-

tation z to learn our task-specific function h(·; θh) : Z 7→ Y , parameterized by θh,

that maps latent vectors into the predicted probabilities of each sign class;

• a signer-classifier network, with the purpose of learning a signer-specific function

d(·; θd) : Z 7→ {1, 2, . . . , k}, parameterized by θd, that maps the same hidden repre-

sentation z into the corresponding signer identity.

During the learning stage, the parameters of both classifiers are optimized in order

to minimize their errors on their specific tasks on the training set. In addition, the pa-

rameters of the encoder network are optimized in order to minimize the loss of the sign-

classifier network while forcing the signer-classifier to be a random guessing predictor.

In the course of this adversarial training procedure, the learned latent representations z

are encouraged to be signer-invariant and highly discriminative for sign classification. To

further discourage the latent representations of retaining any signer-specific traits, we in-

troduce an additional training objective that enforces the latent distributions of different

signers to be as similar as possible.

5.3.3.1 Architecture

As illustrated in Figure 5.2, the architecture of the proposed model is composed of three

main subnetworks: an encoder, a sign-classifier, and a signer-classifier.

The encoder network attempts to learn a mapping from an input image X to a latent

representation z. It consists of a sequence of three pairs of consecutive 3× 3 convolutional

layers with rectified linear units (ReLUs) as non-linearities. For downsampling, the last

convolutional layer of each pair has a stride of 2. The number of filters starts at 32 and is

doubled after each convolutional pair. The dense layer on top of the encoder network has

5. DOMAIN GENERALIZATION 111

Xi

.

.

.

Encoder network: g(X;θg)

Sign-classifier: h(z;θh)

Signer-classifier: d(z;θd)

Lsigner

p(y | zi; θh)

zi

Ltransfer

Lsign

yi

si

Xj

Encoder network: g(X;θg)

Ladv

U (s)

Block of convolutional layers

Fully-connected layer
sj 6= si

p(s | zi; θg)

FIGURE 5.2: The architecture of the proposed signer-invariant neural network. It com-
prises three main sub-networks or blocks, i.e. an encoder, a sign-classifier and a signer-

classifier.

128 neurons. On top of that, there is a fully-connected layer, also with a ReLU, outputting

the desired signer-invariant latent representations z.

Taking the latent representations z as input, the sign-classifier block is composed of

a sequence of three fully-connected layers, with ReLUs as the non-linear functions, for

predicting the sign class ŷ , h(z; θh). The number of nodes of each hidden layer was set

to 128. The last fully-connected layer has a softmax activation function that outputs the

probabilities for each sign class.

The signer-classifier network has exactly the same topology as the sign-classifier. How-

ever, it maps the latent representations z to the predicted signer identity ŝ , d(z; θd).

Therefore, the number of nodes of the output layer equals the number of signers in the

training set.

5.3.3.2 Adversarial training

By definition, signer-invariant representations discard all signer-specific information and,

as such, no function (i.e. classifier) exists that maps such representations into the correct

signer identity. This naturally leads to an adversarial problem, in which: i) a signer-

classifier network d(·; θd) receives latent representations z , g(X; θg) from an encoder

network g(·; θg) and tries to predict the signer identity s corresponding to image X and ii)

the encoder network tries to fool the signer-classifier network while still providing good

112 LEARNING FROM MULTI-ENTITY DATA

representations for the sign-classifier network h(·; θh), which in turn receives the same

representations z and aims to predict the sign label y corresponding to image X.

Therefore, the signer-classifier network shall be trained to maximize the log-likelihood

of correct signer predictions:

min
θd

{
Lsigner(θg, θd) , −

1
n

n

∑
i=1

log p(si | g(Xi; θg); θd)

}
. (5.1)

From the encoder’s point of view, the predictions of the sign-classifier should be as

accurate as possible and the predictions of the signer-classifier should be kept close to

uniform, which means that this latter model is not able to perform better than randomly

guessing the identity of the signer. Formally, this may be translated into the following

constrained objective:

min
θg,θh

{
Lsign(θg, θh) , −

1
n

n

∑
i=1

log p(yi | g(Xi; θg); θh)

}
, (5.2)

subject to
1
n

n

∑
i=1

DKL(U (s)||p(s | g(Xi; θh); θg) ≤ ε, (5.3)

where U (s) denotes the discrete uniform distribution on the random variable s, defined

over the set of signer identities {1, 2, . . . , k} in the training set. Here, ε ≥ 0 determines

how far the signer-classifier predictions are allowed to diverge from the uniform distribu-

tion (as measured by the KL divergence). The choice of the uniform distribution implies

the underlying assumption that the training set is balanced relative to the number of ex-

amples per signer (which should be true for most practical datasets). When this is not the

case, the empirical distribution of signer identities in the training set can be used instead.

The inequality constraint (5.3) may be rewritten as:

Ladv(θg, θd) ,
1

nk

n

∑
i=1

∑
s

log p(s | g(Xi; θg); θd) ≤ ε + log k, (5.4)

and the constrained optimization problem may be equivalently formulated as:

min
θg,θh

{
L(θg, θh, θd) , Lsign(θg, θh) + µdLadv(θg, θd)

}
, (5.5)

where µd ≥ 0 depends on ε and Ladv plays the role of an adversarial loss with respect to

the signer classification loss Lsigner.

This objective and the structure of our model are similar to those used by Ganin and

Lempitsky [71], in the context of domain adaptation, and by Feutry et al. [163], to learn

5. DOMAIN GENERALIZATION 113

anonymized representations for privacy purposes. However, the former uses the neg-

ative signer classification loss as the adversarial term (i.e. Ladv ← −Lsigner), which is

not lower bounded, leading to high gradients and more difficult optimization. The lat-

ter addresses this problem by replacing this term with the absolute difference between

the adversarial loss as defined in equation (5.4) and the signer classification loss (i.e.

Ladv ← |Ladv − Lsigner|). This option has a nice information-theoretic interpretation as

being an empirical upper-bound for the mutual information between the distribution of

signer identities and the distribution of latent representations. Nonetheless, there are in-

finitely many (non-uniform) distributions for which this loss vanishes. Not only is our

choice clearly bounded below by the entropy of the uniform distribution, log k, but it is

also is minimal only when p(s | g(Xi; θg); θd) ≡ U (s), ∀i, which implies that the signer-

classifier block is completely agnostic relative to the signer identities of the training sam-

ples.

5.3.3.3 Signer-transfer training objective

To further encourage the latent representations z to be signer-invariant, we introduce an

additional term in objective (5.5), the so-called signer-transfer loss Ltransfer. The core idea

of Ltransfer is to match first-order statistics of different signers earlier in the network. For

this purpose, let g(l)(·; θg) be the l-th layer of the encoder network, l ∈ {1, ..., m}, and

consider the distance D(l)(s, s′; θg) between two distinct signers s and s′, defined as:

D(l)(s, s′; θg) ,

∣∣∣∣∣∣∣∣ 1
ns

n

∑
i=1

g(l)(Xi; θg)1si=s −
1

ns′

n

∑
j=1

g(l)(Xj; θg)1sj=s′

∣∣∣∣∣∣∣∣2, (5.6)

ns and ns′ denote the number of training examples for signers s and s′, respectively. Ac-

cordingly, the signer-transfer loss at the l-th layer is the sum of the pairwise distances

between all signers, i.e.:

L(l)
transfer(θg) ,

k

∑
s,s′=1
s′ 6=s

D(l)(s, s′; θg). (5.7)

The overall signer-transfer loss Ltransfer is then a weighted sum of the losses computed at

each layer of the encoder network:

Ltransfer(θg) ,
m

∑
l=1

β(l)L(l)
transfer(θg), (5.8)

114 LEARNING FROM MULTI-ENTITY DATA

where β(l) ≥ 0 is a hyperparameter that controls the relative importance of the loss ob-

tained at the l-th layer. By combining (5.5) and (5.8), the encoder and sign-classifier net-

works are trained to minimize the following loss function:

min
θg,θh

{
L(θg, θh, θd) , Lsign(θg, θh) + µdLadv(θg, θd) + µtLtransfer(θg)

}
, (5.9)

where µt ≥ 0 is the weight that controls the relative importance of the signer-transfer

term.

Summing up, the adversarial training procedure is organized by alternating between

the minimization of objective (5.9) and the minimization of objective (5.1).

5.3.4 Experiments

5.3.4.1 Datasets

The experimental evaluation of the proposed model was performed using two publicly

available SLR databases: the Jochen-Triesch database (Triesch and von der Malsburg

[181]) and the Microsoft Kinect and Leap Motion American sign language (MKLM) database

(Marin et al. [164, 165]).

Jochen-Triesch is a static hand posture database consisting of 10 hand posture signs

performed by 24 subjects against three types of backgrounds: uniform light, uniform dark

and complex (see Figure 5.3a). There exist three images for each subject and sign, one for

each background type. The images of the Jochen-Triesch database are in grayscale with a

resolution of 128× 128 pixels. Experiments on the Jochen-Triesch dataset were conducted

using an available standard evaluation protocol for this dataset (Just et al. [182]), in which

6 subjects are used for training, 2 subjects are used for validation and hyperparameter

tuning, and the remaining 16 are used for testing.

MKLM is a balanced dataset with 10 classes, representing 10 static gestures from the

American sign language (see Figure 5.3b). Each sign was performed by 14 different people

and repeated 10 times, which results in a total of 1400 images. Contrary to the Jochen-

Triesch database, there is no standard evaluation protocol for the MKLM database. To

maximize the usage of the data in the evaluation process, the performance of the models

was assessed using a five-fold cross-validation scheme with disjoint sets of signers. This

evaluation scheme yields at each split a training set composed by 10 signers, a validation

set of 2 signers and a test set with the remaining 2 signers.

5. DOMAIN GENERALIZATION 115

(A) Jochen-Triesch (B) MKLM

FIGURE 5.3: Illustrative samples of the two datasets used in the experiments.

In order to extract the manual signs from the noisy background of the images, the

automatic hand detection algorithm (Ferreira et al. [183]) is used as a preprocessing step.

The images are then cropped, resized to the average sign size of the training set, and

normalized to be in the range [−1, 1].

5.3.4.2 Baselines

In this section, we compare the proposed model with state-of-the-art methods for each

dataset. Nevertheless, to further confirm the robustness of the proposed model, two dif-

ferent baselines are also implemented:

• (Baseline 1) A CNN trained from scratch with weight decay regularization. For a fair

comparison, the architecture of the baseline CNN corresponds to the architecture of

the encoder network followed by the sign-classifier network of the proposed model.

• (Baseline 2) A CNN with the baseline 1 topology, but trained with the triplet loss

(Schroff et al. [184]).

Here, the concept of triplet loss is explored in order to enforce signer-independence in

the representation space and, hence, build up a more robust baseline. The underlying

idea is to minimize the distance between an anchor and a positive latent representation,

zyi ,si and zyp,sp , respectively; while maximizing the distance between the anchor zyi ,si and

a negative representation zyn,sn . It is important to note that while the anchor and positive

latent representations must be from the same sign class, their signer identity may or not

change. On the other hand, anchor and negative representations are from different sign

classes, whereas their signer identity may also change. In order to train baseline 2 in an

116 LEARNING FROM MULTI-ENTITY DATA

Hyperparameters Symbol Set
Leaning rate – {1e−04,1e−03}

L2-norm coefficient – {1e−05,1e−04}
Ltriplet weight ρ {0.1,0.5,1,5,10}
Ladv weight µd {0.1,0.5,0.8,1,3}

Ltransfer weight µt {1.5e−04,2e−04,4e−04,1e−03}

TABLE 5.1: Hyperparameter sets for the proposed adversarial model and baselines.

end-to-end fashion for sign classification, the overall loss function to be minimized is a

trade-off between the triplet loss Ltriplet, defined below, and the classification loss Lsign:

Ltriplet ,
1
n

n

∑
i=1

[
||zyi ,si − zyp,sp ||2 − ||zyi ,si − zyn,sn ||2 + α

]
, (5.10)

where yp = yi and yn 6= yi and the margin α enforced between positive and negative

pairs was fixed at α = 1. In addition, following Schroff et al. [184], we adopted an online

triplet generation strategy, by selecting the hardest positive/negative samples within ev-

ery mini-batch. The overall loss for this model is therefore Lsign + ρLtriplet, where ρ ≥ 0 is

a hyperparameter.

All deep models were implemented in PyTorch and trained with the Adam optimiza-

tion algorithm using a batch size of 32 samples. For reproducibility purposes, the source

code as well as the weights of the trained models are publicly available online*. The hy-

perparameters that are common to all the implemented models (i.e. learning rate and L2

regularization weight) as well as some hyperparameters that are specific to the proposed

model (i.e. µd and µt) and to the implemented baseline 2 (i.e. ρ) were optimized by means

of a grid search approach and cross-validation on the training set (see Table 5.1 for more

details). The signer-transfer penalty Ltransfer is applied to the last two layers of the encoder

network with a relative weight of 1.

5.3.4.3 Results and discussion

Experiments on the Jochen-Triesch and MKLM databases are summarized in Table 5.2. We

compare our method with other state-of-the-art approaches that have published results

on these datasets (Marin et al. [164], Kelly et al. [178], Dahmani and Larabi [179], Just

et al. [182], Ferreira et al. [183]). The results on the Jochen-Triesch database are presented

in terms of average classification accuracy in the overall test set as well as against each

specific background type (i.e. uniform and complex). For the MKLM database, the table

*https://github.com/pmmf/SI-SLR

https://github.com/pmmf/SI-SLR

5. DOMAIN GENERALIZATION 117

Jochen Triesch MKLM
Uniform Bg. Complex Bg. Both Avg. ± std. min max

Just et al. [182] 92.8 81.3 87.9 – – –
Kelly et al. [178] 91.8 – – – – –

Dahmani and Larabi [179] 93.1 – – – – –
Marin et al. [164] – – – 89.7 – –

Ferreira et al. [183] – – – 93.2 – –
CNN (baseline 1) 97.50 74.4 89.8 89.9 ±8.8 73.0 98.0

CNN with triplet loss (baseline 2) 98.13 75.6 90.6 91.4 ±3.9 86.5 96.5
Proposed method 98.8 91.3 96.3 94.8 ±3.5 89.5 100.0

TABLE 5.2: Classification accuracy (%) of the proposed adversarial method and baselines
on Jochen-Triesch and MKLM datasets.

shows the average classification accuracy computed across all test splits, as well as the

minimum and maximum accuracy value achieved by each method.

The most relevant observation is the superior performance of the proposed model.

Specifically, this model exhibits the best overall classification accuracy on both SLR databases,

clearly outperforming both implemented baselines and all the previous state-of-the-art

models. In Jochen-Triesch, the most challenging data are the images with complex back-

ground, where the proposed model surpasses all others by a large margin. In addition,

by analyzing the standard deviation as well as the minimum and maximum accuracy

values, it is possible to observe that the proposed model is the method with the lowest

variability, yielding consistently high accuracy rates across all test splits of the MKLM

dataset. These results confirm the robustness of the model and its ability to better handle

the large inter-signer variability in the manual signing process of sign languages. Inter-

estingly, the obtained results also reveal that the implemented baselines are, in fact, fairly

strong models, both of them outperforming most of the state-of-the-art methods on both

datasets.

Table 5.3 illustrates the effect of each proposed training scheme by itself. For this

purpose, the proposed model was trained either (i) with just the adversarial procedure,

without the signer-transfer Ltransfer loss, or (ii) with just the Ltransfer penalty on the encoder

network without adversarial training. The results clearly demonstrate the complementary

effect between the two training procedures, as their combination provides the best overall

classification accuracy. Interestingly, each training scheme outperforms on its own both

baselines and state-of-the-art methods.

118 LEARNING FROM MULTI-ENTITY DATA

Adversarial (Ladv) only Signer-transfer (Ltransfer) only Both
Jochen-Triesch 95.2 94.4 96.3

MKLM 94.0 94.1 94.8

TABLE 5.3: The effect of each training procedure in the proposed model. The results in
the last column are replicated from Table 5.2 as they include both training procedures.

5.3.4.4 Latent space visualization

To further demonstrate the effectiveness of the proposed model in promoting signer-

invariant latent representation spaces, we show in Figure 5.4 a visual inspection of the

latent representations through the t-distributed stochastic neighbor embedding (t-SNE,

van der Maaten and Hinton [185]). These plots clearly demonstrate the better capabil-

ity of the proposed model of imposing signer-independence in the latent representations.

The proposed model yields a latent representation space in which representations of dif-

ferent signers and same class are close to each other and well mixed, while it keeps latent

representations of different classes far apart. By analyzing the t-SNE plot of baseline 1, it

is possible to observe that the latent representations of different signers and the same class

tend to be far apart in the latent space. In addition, there is some overlapping between

clusters of different classes. Although baseline 2 (CNN with the triplet loss) promoted

slight improvements over the standard baseline CNN, the proposed model achieved by

far the best signer-invariance and class separability.

(A) CNN – baseline 1 (B) CNN with triplet loss – base-
line 2

(C) Proposed model

FIGURE 5.4: Two-dimensional projection of the latent representation space using the
t-distributed stochastic neighbor embedding (t-SNE). Markers • and + represent 2

different test signers, while the different colors denote the 10 sign classes.

5.3.5 Conclusion

This section presents a novel adversarial training objective based on representation learn-

ing and deep neural networks, specifically designed for solving the signer-independent

SLR problem. The underlying idea is to learn signer-invariant latent representations that

5. DOMAIN GENERALIZATION 119

preserve as much information as possible about the signs, while discarding the signer-

specific traits that are irrelevant for sign recognition. To this end, we introduce an ad-

versarial training procedure to simultaneously train an encoder and a sign-classifier over

the target sign variables, while preventing the latent representations of the encoder from

being predictive of the signer identities. To further discourage the underlying represen-

tations of retaining any signer-specific information, we propose an additional training

objective that approximates the mean values of the latent distributions of different sign-

ers. Experimental results demonstrate the effectiveness of the proposed model in several

SLR databases.

5.4 Adversarial domain generalization for iris presentation at-

tack detection

In this section, we show how our adversarial domain generalization model for signer-

invariant SLR (presented in Section 5.3) can be adapted to a specific biometrics-related

application.

5.4.1 Introduction

Biometric recognition systems are considered reliable enough to be deployed in govern-

ment and civilian applications. The shift from controlled samples acquisition to a more

autonomous one increased the vulnerabilities of these systems. Unfortunately, presen-

tation attack detection (PAD) measures have not grown robustly along with this quick

evolution and several weak points can be exploited when performing unsupervised bio-

metric identification as such in mobile biometrics, for example. Successful spoofing at-

tempts have been made public in a matter of days, or even hours, after the release of

high-tech devices equipped with biometric recognition. The iris recognition sensor of

Samsung S8 was reportedly spoofed by German researchers by simply printing a photo

of the authorised user and placing a contact lens in it [186]. More recently, the quick hack

of Samsung Galaxy S10 ultrasonic fingerprint sensor suggests no presentation attack de-

tection measures of any kind. It is fair to conclude that industry does not share the same

enthusiasm as the academic community on anti-spoofing measures denoted by the good

amount of research continuously produced (Raghavendra and Busch [187], Czajka and

Bowyer [188], Galbally et al. [189], Scherhag et al. [190]).

120 LEARNING FROM MULTI-ENTITY DATA

Fortunately, exceptions are starting to show in commercial products, like the recent

case of the Apple iPhone “Face ID” case* or the FaceTec ZoOm® technology [191]. Un-

doubtedly this change is motivated and supported by initiatives that encourage the devel-

opment and “open testing” of spoofing coutermeasures such as “The National Voluntary

Laboratory Accreditation Program” (NVLAP) from NIST.†

Nevertheless, research-wise there are still open problems to address. Here, we focus

on the fact that most PAD techniques are based on falsely optimistic evaluation method-

ologies (Sequeira et al. [192]): traditionally, the classification models are designed and

then evaluated using datasets comprising bona fide presentations and a specific species of

presentation attack instruments (PAI). The case when a PAI in the test set is significantly

different from the ones used for training is overlooked. What if such a sample has a higher

probability of circumventing the system than the ones drawn from the original training

dataset? To solve this research question, it is necessary to develop robust methods to cope

with sophisticated and unseen attacks as our eventual intruders become more capable

and successfully develop new spoofing techniques.

The aforementioned problem has been addressed before regarding iris, fingerprint

and face (often targeted under the open-set or anomaly detection contexts). However,

it still remains a challenging topic. Despite the importance of iris as a biometric trait for

recognition purposes, in our view, the study of iris PAD generalization problem to unseen

PAI species (PAIS) has not been yet fully studied in the literature.

The remainder of this section is organized as follows: i) we start by summarizing the

related work on the topic (Section 5.4.2); ii) we formalize the problem and emphasize the

necessary modifications that had to be done to the model presented in Section 5.3 to adapt

it to this new application (Section 5.4.3); iii) we present experimental results that confirm

the effectiveness of the model (Section 5.4.4); iv) we conclude this section with some final

remarks (Section 5.4.5).

5.4.2 Related work

Recent PAD methods in general, and iris-focused ones in particular, have demonstrated

remarkable performances. However, a methodological limitation can be pointed as it is

*www.biometricupdate.com/201812/android-devices-facial-recognition-fooled-by-3d-printed-head-
but-not-face-id

†The NVLAP provides third-party accreditation to testing and calibration laboratories in response to
legislative actions or requests from government agencies or private-sector organizations. NVLAP-accredited
laboratories are assessed against the management and technical requirements from ISO/IEC 17025:2017.

5. DOMAIN GENERALIZATION 121

recurrently found that these results are obtained when training and test data comprise

the same type of attacks, i.e. the same PAIS. This problem has been addressed and proved

that the performance rates of these PAD methods typically decrease significantly when

the PAIS is new to the system (Sequeira et al. [192], Marasco and Sansone [193], Bowyer

and Doyle [194]). This performance drop can result from the large inter-PAIS variability.

A practical PAD system must operate in a PAIS-independent scenario, which means that

the type of PAIS of the test set must not be seen during the training routine of the models.

This problem is one of the crucial problems for the development of real-world PAD sys-

tems and it has frequently been tackled in literature as an open-set or anomaly detection

problem.

The pioneer work that raised the evaluation of PAD methods across different types

and unseen PAIS appeared in the fingerprint domain with the work of Marasco and San-

sone [193]. Rattani et al. [195] and Sequeira and Cardoso [196], despite using different

approaches, both relied on the idea of enforcing the knowledge of the bona fide presen-

tations over the attacks to better deal with unseen PAIS. Bowyer and Doyle [194] studied

the evaluation of a binary classification on contact lenses iris spoofing attacks. By using an

unseen type on the test set the authors showed that using the same lens types in both the

training and testing data can give a very misleading idea of the accuracy of the method.

A step forward was made by combining methodologies designed for print and contact

lenses attack (Sequeira et al. [197]). Eventually, the construction of a new database com-

prising several types of iris PAIS (Raghavendra and Busch [187]) allowed new evaluation

scenarios. Sequeira et al. [192] showed that whenever a new PAIS is presented in the test

step, the performance of the classifier drops significantly and that an improvement can be

obtained when a one-class classifier is trained only with bona fide presentations.

One-class classification was also used for face by Arashloo et al. [198]. With the rise

of deep learning techniques, PAD methods have been proposed applying deep represen-

tations for iris, face and fingerprint (Menotti et al. [199], Pinto et al. [200]), following the

same binary approach. Recent works investigate the robustness of deep learning finger-

print PAD methods to deal with unseen PAI species (Tolosana et al. [201]).

Until recently, most of the proposed approaches either make overly optimistic as-

sumptions about the attacker (binary classification approaches) or use only part of the

data (and therefore, of the knowledge) available at training time to design the models

(one-class approaches). Therefore, the goal of this work is to present an iris PAD method

122 LEARNING FROM MULTI-ENTITY DATA

that uses the information of both bona fide and available attack presentations and is ro-

bust to unseen PAI species. This goal will be achieved by enforcing the learning of the

task of distinguishing the bona fide from the attack presentations while at the same time

ensuring the invariance between the different type of PAI species.

5.4.3 Methodology

The approach adopted here coincides in most aspects with the one described in Sec-

tion 5.3, so we shall focus on describing the slight differences that exist. Now, the data

consists of {X(bf)
i }nbf

i=1 ∪ {(X(a)
i , si)}na

i=1, i.e. there is one set containing nbf bona fide exam-

ples and another one containing na attack examples. Each attack example X(a)
i is anno-

tated with the corresponding PAI species label si ∈ {1, 2, . . . , k}.

In this problem, we are solely interested in classifying samples as bona fide or attack,

thus h(·; θh) (formerly designated as sign-classifier) is now a binary classifier. More im-

portantly, we want to obtain latent representations that are invariant to the PAI species,

but the latent representations of bona fide examples should be easily separable from these.

Thus, now, only the attack samples are fed through adversarial classifier d(·; θd) (formerly

designated as signer-classifier) and used for the adversarial training routine. For the same

reason, the transfer loss Ltransfer approximating first-order statistics only applies to these

samples too. Figure 5.5 presents the model architecture and hopefully makes the differ-

ences between this and our previous model even clearer.

X(bf)
i

.

.

.

h(z;θh)

d(z;θd)

Lspecies

p(y | zi; θh)zi

Ltransfer

Ltask

yi

sj

Ladv

U (s)

Fully-connected layer

sk 6= sj

p(s | zj; θd)

g(X;θg)

X(a)
j

zj

g(X;θg)

X(a)
k

g(X;θg)
Shared weights

FIGURE 5.5: Block diagram of the proposed species-invariant neural network.

5. DOMAIN GENERALIZATION 123

Attack i) Attack ii) Attack iii) Attack iv) Attack v) Avg.
wLBP+SVM [192] 78.9 90.4 98.1 95.7 97.1 92.0

Baseline wLBP+MLP 78.0 93.0 94.5 90.0 95.5 90.2
Proposed wLBP+MLPadv 82.0 93.0 98.0 94.5 97.5 93.0

TABLE 5.4: Presentation attack detection accuracy (%) in the VSIA dataset.

5.4.4 Experiments

We use the Visible Spectrum Iris Artefact (VSIA) database (Raghavendra and Busch [187])

in our experiments. This dataset comprises five different presentations combining print

and electronic screen attacks: i) Print Attack (PA); ii) iPad Electronic Screen Attack (ESA);

iii) Samsung Galaxy Tab ESA; iv) combined PA & ESA using iPad; and v) combined PA

& ESA using Samsung Pad. The methods are evaluated by leaving out one PAI species

for testing. The development set is therefore divided into one species for validation and

the remaining for training. Also the same set of samples is used for testing across the

different experiments to allow precise comparison of the results. Following Sequeira et al.

[192], weighted local binary pattern features (wLBP, Zhang et al. [202]) were extracted in a

preprocessing step and fed as input to the network, which in this case consists of an MLP.

Our model was compared to a baseline consisting of the same classifier without the

PAI species classifier and adversarial training and to an SVM operating on the same wLBP

features (Sequeira et al. [192]). The results are presented in Table 5.4. Comparing the

accuracy for each attack, we can observe that replacing the SVM with an MLP alone does

not lead to an improvement. This can be explained by the fact that the dataset has a very

limited size and, therefore, the MLP method tends to overfit due to the lack of training

samples. However, the proposed adversarial approach outperformed the SVM on most

attacks and on average as well.

For further results and details about the experiments, please see Ferreira et al. [134].

5.4.5 Conclusion

This work proposed a method to improve the robustness and generalization capacity of

an iris PAD method to new attacks. The goal of the proposed model is to learn latent

representations invariant to the PAI species that preserve relevant information about the

PAD properties while discarding the ‘PAI-species’-specific aspects that may hamper the

PAD classification task. The proposed regularization strategies made the PAD method

‘PAI-species’-independent and robust to new test PAIS. The experiments were based on

124 LEARNING FROM MULTI-ENTITY DATA

comparing a baseline MLP and an MLP trained with adversarial strategies using as in-

put highly discriminative features (wLBP) extracted from the images. When comparing

the baseline MLP to an SVM classifier the results are quite similar or even worse. This

can be explained simply by the fact that the dataset has a very limited size and the MLP

method will overfit. However, applying the adversarial regularization strategy signifi-

cantly improved the PAD robustness of the method. The obtained results clearly suggest

that the application of deep learning techniques with additional strategies will provide

breakthroughs in this challenge.

Please see Pereira et al. [203] for the results of the same model on fingerprint presen-

tation attack detection.

5.5 DeSIRe: deep signer-invariant representations for sign lan-

guage recognition

5.5.1 Introduction

In Section 5.3, we introduced a method for domain generalization that uses adversar-

ial neural networks to align the marginal distributions of multiple source domains. The

method showed promising results for both visual (Section 5.3) and non-visual data (Sec-

tion 5.4). Here, we again focus our attention on vision problems and, specifically, on

solving the problem of signer-independent SLR.

To specifically tackle the signer-independent SLR problem, we now present DeSIRe, a

novel deep neural network that aims to learn Deep Signer-Invariant Representations. The

underlying idea is to explicitly enforce the model to automatically learn highly discrimi-

native signer-invariant feature representations from the data by aligning and regularizing

conditional distributions in a latent space. To accomplish this goal, the DeSIRe model con-

sists of two main modules or components, namely a conditional variational autoencoder

(CVAE) and a classifier. Specifically, the main task of the CVAE is to explicitly impose

signer independence on the learned latent representations. This is achieved by encour-

aging the CVAE to learn latent representations whose conditional posterior distribution

(given the image and the corresponding sign class label) is independent of the signer iden-

tity. Accordingly, the learned latent representations will preserve as much information as

possible about the class (sign) and discard the irrelevant parts that are signer-specific. In

addition, the CVAE acts as a teacher model for the classifier since the distribution over

5. DOMAIN GENERALIZATION 125

latent representations is used to regularize the hidden representations of the classifier.

These hidden representations are then fed into an MLP for sign classification. The result

is a signer-independent model robust to new test signers.

The remainder of this section is organized as follows: i) the proposed signer-independent

deep neural network along with the proposed loss function and regularization schemes

are fully described in Section 5.5.2; ii) Section 5.5.3 reports the experimental evaluation

of the proposed methodology, in which a comparison with state-of-the-art and baseline

methods is performed; iii) finally, conclusions and some topics for future work are pre-

sented in Section 5.5.4.

5.5.2 The DeSIRe model

The proposed DeSIRe model is composed of a CVAE and a classifier. The underlying idea

of the CVAE is to learn an invertible mapping to a space where the signer-specific infor-

mation is disentangled from the discriminative properties of the sign class. The CVAE can

be viewed as a teacher model for the classifier, as the distribution over latent representa-

tions z is used to regularize the hidden representations z̃ of the classifier. These hidden

representations z̃ are then fed into an MLP for a robust signer-independent SLR.

Specifically, the CVAE consists of an encoder and a decoder network, which are pa-

rameterized by θe and θd, respectively. The purpose of the encoder network is to learn

a distribution q(z | X, y, s; θe) that approximates the true posterior distribution of the

latent code z given the image X, the class label y and the signer identity s. By condi-

tioning the posterior distribution on s and y, we strengthen the encoder by learning a

domain and class-dependent transformation. The key idea here is to learn latent codes

whose conditional posterior distribution is independent of the signer identity, that is

q(z | X, y, s; θe) ≡ q(z | X, y; θe). Equivalently, latent codes are conditionally indepen-

dent of the signer identity given the image and its class if and only if:

q(z | X, y, s = s; θe) ≡ q(z | X, y, s = s′; θe), (5.11)

for any two distinct signers s and s′. To promote this signer-independence property, the

loss function includes a term that penalizes deviations from this equality. However, un-

less additional measures are taken, this condition would compete with the reconstruction

objective since reconstructing an image implies preserving as much information about the

image as possible, including signer-specific information. Therefore, the signer identity is

126 LEARNING FROM MULTI-ENTITY DATA

sampled uniformly at random and fed as additional input to the decoder network. In

this way, the decoder can build a disentangled representation of the signer identity that,

combined with the signer-invariant latent code z, will be used to reconstruct the original

sample.

Intuitively, as the latent vector z is sampled from q(z | X, y, s; θe), the latent represen-

tations will preserve as much information as possible about the sign class and discard

the irrelevant parts that are characteristic of each signer. The loss function is defined to

promote similarity between the latent codes z and the hidden representations z̃ of the

classifier module. The classifier is then trained on these signer-invariant representations

for a robust signer-independent SLR. Formally, the classifier correspond to the function

composition h ◦ g, where h(·; θh) : Z 7→ Y represents our task-specific function, parame-

terized by θh, that maps from the hidden representation to the predicted sign class ŷ, and

g(·; θg) : X 7→ Z denotes an encoding function, parameterized by θg, that maps input

images to the corresponding hidden representations.

5.5.2.1 Loss function

The DeSIRe model is trained to minimize the following loss function with respect to pa-

rameters Θ = {θe, θd, θg, θh}:

L(Θ) , LCVAE(θd, θe) + λ1Lemb(θe, θ f) + λ2Lclass(θ f , θg), (5.12)

where λ1, λ2 ≥ 0 are the weights that control the interaction between the loss terms.

The ultimate goal of the CVAE loss, LCVAE, is to explicitly impose signer independence

by learning latent representations which are conditionally independent of the signer iden-

tity. In this regard, LCVAE is defined as:

LCVAE(θd, θe) , Lrec(θd) + α1Lprior(θe) + α2Lsigner inv(θe), (5.13)

where α1, α2 ≥ 0 are hyperparameters that control the relative importance of each loss

term. The first two terms, Lrec and Lprior, correspond to the loss function of a standard

CVAE, containing some special modifications for promoting signer-independence in the

latent space. The reconstruction loss Lrec encourages the decoder to learn how to recon-

struct the input data X. For the decoder, we assume that the conditional likelihood of

the data X given the latent code z and the signer identity s follows a Gaussian distri-

bution. Accordingly, as explained in Section 2.5.2, the reconstruction loss corresponds

5. DOMAIN GENERALIZATION 127

to the mean-squared error between a training image and a generated image. However,

instead of working with pairs of ground-truth images and their respective reconstruc-

tions, we make a slight modification that further encourages signer-invariant encodings.

Let X(r)
y,s denote the r-th image of signer s and sign class y. Specifically, we compute the

mean-squared error between the j-th d-dimensional training image X
(rj)
yj,sj and the gener-

ated d-dimensional image µd(zi, sj; θd) that is produced by the decoder when fed with

the encoding zi of the i-th training image X(ri)
yi ,si and with the signer identity sj of the j-th

training image:

Lrec(θd) ,
1

nd

n

∑
i=1
||X(rj)

yj,sj − µd(zi, sj; θd)||2. (5.14)

Here, zi is sampled from q(zi | X(ri)
yi ,si , yi, si; θe) using the reparameterization trick (see Sec-

tion 2.5.3). Furthermore, j is such that: i) yj = yi, ii) sj is sampled from a distribution

w(s | si), defined below, and iii) rj is sampled uniformly from the set of available repeti-

tions:

w(s | si) ,

1− ρ, s = si,

ρ
k−1 , s ∈ {1, 2, . . . , k} \ {si}.

(5.15)

Here, as before, {1, 2, . . . , k} is the set of signer identities in the training data and ρ ∈ [0, 1]

is a hyperparameter. By sampling the identity sj of the ground-truth image from w(s | si),

the decoder is trained to reconstruct an image of a different subject (but of the same sign

class, due to the constraint yj = yi) than the one used to generate the encoding. This

happens in a proportion ρ of the cases. This procedure further disentangles signer-specific

information from the sign class and therefore aims to reduce inter-signer variability. On

the other hand, by sampling the sign repetition rj, the decoder will also be trained to

reconstruct a distinct image of the same person and sign class as the image that produced

the encoding. Here, the purpose is to gain robustness to intra-signer variability. Although

less problematic than the former, this type of variability is also relevant since the same

signer does not always repeat the same sign in exactly the same way. Moreover, different

image acquisition conditions (e.g. background, illumination, distance to the camera, etc.)

from one repetition to another also result in intra-signer variability.

128 LEARNING FROM MULTI-ENTITY DATA

The Lprior term corresponds to the KL divergence between the posterior and the prior

as commonly used in a standard CVAE:

Lprior(θe) ,
1
nl

n

∑
i=1

DKL(q(zi | X(ri)
yi ,si , yi, si; θe)||N (zi; 0, I))

=
1

2nl

n

∑
i=1

l

∑
j=1

(
µ
(i)
j

2
+ σ

(i)
j

2
− 1− 2 log σ

(i)
j

)
, (5.16)

where l is the dimension of the latent space and µ
(i)
j and σ

(i)
j denote the j-th elements of

the vectors µe(Xi, yi, si; θe) and σe(Xi, yi, si; θe), respectively.

An explicit constraint for signer-independence is also introduced in the CVAE loss

function. Lsigner inv encourages the conditional posterior distribution of latent codes z,

given the image X and its class y, to be independent of the signer identity s. This loss

is defined as the KL divergence between conditional posterior distributions of z, condi-

tioned on the same class but also on different signer identities:

Lsigner inv(θe) ,
1
nl

n

∑
i=1

DKL

(
q(zi | X(ri)

yi ,si , yi, si; θe)
∣∣∣∣∣∣q(zk | X(rk)

yk ,sk , yk, sk; θe)

)

=
1

2nl

n

∑
i=1

l

∑
j=1

 (µ
(i)
j − µ

(u)
j)2

σ2
e,k,j

+
σ
(i)
j

2

σ
(u)
j

2 − 1 + 2 log σ
(u)
j − 2 log σ

(i)
j

, (5.17)

where u is such that yu = yi and su takes values in {1, 2, . . . , k} \ {si}with equal probabil-

ity. The second equality follows from the fact that both distributions are Gaussian and so

their KL divergence may be computed analytically, as in equation (5.16).

The signer-invariant latent representations z learned by the CVAE are then used to

regularize the hidden representations z̃ of the classifier. Such regularization is promoted

by the Lemb loss term, which encourages the latent representations of the CVAE and the

classifier to be as similar as possible. Following this idea, the embedding loss Lemb is

defined as the expected mean-squared error between z and z̃, that is:

Lemb(θe, θg) ,
1
nl

n

∑
i=1

E
zi∼q(z|X(ri)

yi ,si ,yi ,si ;θe)

[
||zi − z̃i||2

]
. (5.18)

In practice, we replace equation (5.18) with its empirical approximation with one sample,

which yields:

Lemb(θe, θg) ≈
1
nl

n

∑
i=1
||zi − z̃i||2, (5.19)

where zi is sampled from q(zi | X(ri)
yi ,si , yi, si; θe), again using the reparameterization trick.

5. DOMAIN GENERALIZATION 129

This approximation has an extra regularizing effect on the classifier network, by introduc-

ing some stochastic noise in its training routine.

Finally, the classification loss, Lclass, trains the model to predict the output sign labels

and corresponds to the categorical cross-entropy, defined by:

Lclass(θg, θh) , −
1
n

n

∑
i=1

log p(yi | X(ri)
yi ,si ; θg, θh), (5.20)

where p(y | X; θg, θh) is the predicted probability that a given image X belongs to its

ground-truth class y, according to the current classifier parameters θg and θh.

A full schematic of the DeSIRe model including all loss terms is presented in Ap-

pendix C.1. A few training heuristics employed to improve the training of the model are

described in Appendix C.2.

5.5.2.2 Inference

During the training stage, the CVAE module plays the role of a teacher model for the

classifier. Hence, the CVAE can be discarded at inference time. Therefore, inference in

DeSIRe simply consists of a forward pass through the classifier network: z̃ = g(X; θg)

and ŷ = h(z̃; θh) .

5.5.3 Experiments

For reproducibility purposes, the source code and the weights of the trained models are

publicly available online*. Further implementation details are described in Appendix C.3.

5.5.3.1 Datasets

We use the same datasets and follow the same experimental protocol as in our previous

model, described in Section 5.3.4. Additionally, we also evaluate our model in a subset of

the CorSiL database (Ferreira et al. [204]).

CorSiL is a dataset for Portuguese sign language and expressiveness recognition. Its

SLR subset comprises 182 isolated signs and 40 continuous sequences, which we have

further refined by selecting 31 isolated signs from 11 distinct signers, with each sign being

repeated 3 times for each signer. All signs were performed in a free and natural signing

environment. This variability, together with the large number of sign classes, makes this

*https://github.com/pmmf/DeSIRe

https://github.com/pmmf/DeSIRe

130 LEARNING FROM MULTI-ENTITY DATA

FIGURE 5.6: Illustration of the inter-signer variability using some samples of the CorSiL
database. The six signers are performing the sign “eight” of the Portuguese sign lan-

guage.

dataset a challenging one. A few samples are shown in Figure 5.6. We use six signers for

training, one signer for validation and the remaining four signers are used for testing.

5.5.3.2 Baselines

In addition to the baselines used in Section 5.3.4 and to our previous model, we imple-

mented two further models for comparison here:

• DANN, by Ganin and Lempitsky [71], which we have already discussed extensively.

The application of this method to our problem implied two main changes in the

original method: i) the binary domain classifier (source vs. target domain) was ex-

tended to k classes (number of signers in the training data); ii) since our data is fully

annotated (sign classes and signer identities are always available), training was per-

formed in a fully supervised fashion.

• DTML, by Hu et al. [205], a reconstruction-based domain adaption algorithm. The

implementation of this methodology for our particular task also implied the gener-

alization of the original model from one single domain to k source domains. For this

purpose, the maximum mean discrepancy in the latent space is computed for each

pair of domains.

5.5.3.3 Results and discussion

Table 5.5 shows the classification accuracy of the proposed DeSIRe model and the two

aforementioned baselines on Jochen-Triesch and MKLM datasets. For easy comparison,

5. DOMAIN GENERALIZATION 131

Jochen Triesch MKLM
Uniform Bg. Complex Bg. Both Avg. ± std. min max

DANN [71] 98.1 83.8 93.3 94.3 ±2.5 91.5 96.5
DTML [205] 98.8 85.6 94.4 94.1 ±3.8 87.0 97.5

Proposed adv. model (Section 5.3) 98.8 91.3 96.3 94.8 ±3.5 89.5 100.0
DeSIRe 99.7 92.5 97.3 96.8 ±2.4 93.0 99.0

TABLE 5.5: Classification accuracy (%) of DeSIRe and baselines on Jochen-Triesch and
MKLM datasets.

we replicate the results from Table 5.2 for our adversarial model (Section 5.3). The results

for the remaining baselines are omitted since they are the same as before and inferior to

those of our adversarial model.

A first observation is the superior performance of DeSIRe. It is also worth mentioning

that our previous model for domain generalization outperformed DANN and DTML in

most settings. Nevertheless, DeSIRe achieved the best overall classification accuracy in all

settings. Another interesting observation is the performance of DeSIRe against complex

backgrounds, which even exceeds that of our previous model. These results demonstrate

the robustness of the proposed model to inter-signer variability and its ability to deal with

the large intra-signer variability of this dataset. As previously explained in Section 5.5.2.1,

the robustness to intra-signer variability is mostly due to the proposed sampling scheme

of the sign repetition introduced to the decoder network, which enforces the learned la-

tent representations to discard this type of variability. Another important reason that may

explain the superiority of DeSIRe is that this model aligns class-conditional distributions,

rather than marginal ones. Since all signers have labeled data and, in the datasets we

use here, the marginal class distributions are balanced across signers, aligning marginal

feature distributions is less problematic here than it was for domain adaptation (recall the

discussion in Section 4.4.2.2). Anyway, the explicit alignment of conditional distributions

is preferable since it promotes class clustering in the latent space. Additionally, as the en-

coder is conditioned on the signer identity, the feature transformation learned by DeSIRe

is domain-dependent, which is not the case for the remaining models.

The classification accuracy for sign classification in the CorSiL database is presented

in Table 5.6. As the CorSiL database contains a large number of sign classes (31), the

results are presented in terms of top-1, top-3 and top-5 classification accuracy. As shown

in the table, DeSIRe outperformed both the implemented baselines and the state-of-the-

art domain adaption methods in all the three classification metrics. However, it should

be noted that, regardless of the employed methodology, the overall performance in this

132 LEARNING FROM MULTI-ENTITY DATA

Top-1 Top-3 Top-5
DANN [71] 48.7 75.5 83.3
DTML [205] 39.3 68.0 79.8

CNN (baseline 1) 46.0 74.7 86.8
CNN with triplet loss (baseline 2) 42.7 72.3 82.0
Proposed adv. model (Section 5.3) 49.1 76.0 85.2

DeSIRe 51.9 76.6 87.9

TABLE 5.6: Classification accuracy (%) of DeSIRe and baselines on the CorSiL dataset.

database is significantly lower than the performance achieved in the other two databases.

These results attest to the difficulty of the classification task on the presented database

and should encourage further research on signer-independent SLR.

Since DeSIRe is a rather complex model, with multiple loss terms and techniques to

enhance its performance, we believe it is highly instructive to provide a more thorough

analysis of its training behavior and further experimental results. Both are presented in

Appendix C. Specifically, we present a qualitative and quantitative analysis of the learned

latent representations in Appendices C.4 and C.5, respectively. We illustrate the interac-

tion of the multiple loss terms in Appendix C.6. A hyperparameter sensitivity analysis is

conducted in Appendix C.7.

5.5.4 Conclusion

The work we have just presented addresses the topic of signer-independent sign language

recognition. To tackle this problem, we proposed a novel end-to-end deep neural net-

work along with a well-designed loss function that explicitly models signer-invariant la-

tent representations from the data. Specifically, the proposed model consists of two main

modules: a CVAE and a classifier. The purpose of the CVAE module is to learn latent

representations of the input data whose conditional posterior distribution, given the im-

age and its sign label, is independent of the signer identity. During the training stage,

the CVAE plays the role of a teacher model for the classifier, as the conditional posterior

distribution over latent representations is used to regularize the hidden representations

of the classifier. These signer-invariant hidden representations are then used for a robust

signer-independent SLR recognition. Experimental results demonstrate the robustness of

the proposed model to new test signers. This model achieves promising results, outper-

forming the implemented baseline methods and current state-of-the-art SLR and domain

5. DOMAIN GENERALIZATION 133

adaptation methods in different SLR databases. Extending the DeSIRe model to dynamic

signs (i.e. video) is an interesting direction for future work.

5.6 Summary

In this chapter, we have treated the problem of domain generalization. As we have seen,

DG is closely related to domain adaptation, which was our focus in Chapter 4. The main

difference is that in DG the target domain is not known beforehand, i.e. at training time,

so no data from such domain is available, either labeled or unlabeled. The goal is then to

build a model that can generalize well to new target domains, which are assumed to be

fairly similar to the source ones. In practice, we have seen that most algorithms for DA

can be adapted to the problem of DG with minor modifications.

Sign language recognition was the motivating application for both methods presented

in this chapter. This is a problem for which the DG setting is a perfect fit, as an SLR

automatic system should ideally perform consistently well regardless of the signer iden-

tity. For this purpose, we first presented a model in Section 5.3 that builds on existing

adversarial-based methods for DA and DG. The main difference is a novel definition for

the adversarial objective. Instead of maximizing the discriminator loss, our adversarial

routine aims to force this module to output a uniform distribution over the signer iden-

tities. This results in a smoother objective with bounded gradients, besides providing a

more interpretable way to assess the signer-independence of the learned representations.

In Section 5.4, we showed that a very similar idea can be applied to increase the robust-

ness of iris presentation attack detection methods to unseen attacks. Since the input data

used there were not images, this experiment validated the effectiveness of the proposed

adversarial model for non-visual data as well.

In Section 5.5, we introduced another solution for the DG problem in the context of

SLR, which outperforms the former and all baselines we compared it to. Our DeSIRe

model uses a variational autoencoder to learn signer-invariant representations used to

train a non-probabilistic feature extractor. Apart from the multiple training strategies

that enhance the robustness of the learned representations, the superior performance of

DeSIRe is likely explained by the fact that it aligns class-conditional distributions, instead

of marginals, and also by the domain-dependent feature transformation learned by the

encoder network.

Chapter 6

Conclusion

6.1 Summary of contributions

This thesis addressed the problem of multi-entity and multi-domain learning under vari-

ous settings, motivated by a wide variety of applications and using multiple data modal-

ities, from Wi-Fi data streams to video. Its outcomes have been published in international

conferences and journals and, in many cases, benefited from joint efforts with other mem-

bers of our research group at INESC TEC. These collaborations enhanced the focus of

this work on more application-oriented topics which further demonstrate the practical

relevance of multi-entity learning. Our contributions throughout this document are sum-

marized as follows:

• We showed how the self-organizing hidden Markov model map (Section 3.2) and

its learning algorithm could be generalized to other types of data. In particular, we

demonstrated the effectiveness of this approach on the problem of anomaly detec-

tion on Wi-Fi networks with multiple access points.

• We presented the sparse mixture of hidden Markov models (Section 3.3) as a more

flexible, general, and expressive model to learn the generative distribution of multi-

entity data streams. Unlike SOHMMM, SpaMHMM learns a many-to-many rela-

tionship between network entities and atoms in the dictionary. We have also shown

how to incorporate prior knowledge about inter-entity similarity into the learning

algorithm. The model was experimentally validated in different applications, con-

firming its effectiveness and versatility.

135

136 LEARNING FROM MULTI-ENTITY DATA

• We discussed how the SpaMHMM framework could be generalized (Section 3.4.2),

showing that this model is a particular realization of a broad family that can be used

to learn the generative distribution of multi-entity streams. Just like SpaMHMM,

this meta-model comprises an entity-dependent latent distribution and a shared

conditional distribution of observations given latent codes.

• We then started addressing out-of-distribution generalization in the context of multi-

source domain adaptation. A deep neural network for multi-source domain adap-

tation and another one for object counting in videos were combined in different and

meaningful ways (Section 4.3). Their performance was compared in two different

tasks related to counting objects in videos captured by multiple cameras.

• Next, we proposed a novel model for unsupervised multi-source domain adapta-

tion (Section 4.4). This model overcomes some of the major limitations of previous

state-of-the-art approaches, namely the overly pessimistic weighting of source do-

mains and the curse of domain-invariant representations. The proposed approach

outperforms the state of the art in most benchmark datasets for multi-source domain

adaptation.

• Domain generalization, which is yet another OOD generalization problem, was ad-

dressed in the next chapter. We proposed an adversarial-network-based DG algo-

rithm that differs from other existing methods in the formulation of the adversarial

objective. Our version not only has an intuitive explanation, but also provides a

global minimum and bounded gradients, which is not the case with the standard

minimax approach. The algorithm was initially presented in the context of signer-

independent sign language recognition (Section 5.3) and later adapted to the prob-

lem of iris presentation attack detection (Section 5.4).

• Our final contribution is DeSIRe, a DG model specially tailored to the problem of

signer-independent SLR (Section 5.5). This model employs a variational autoen-

coder and explicit signer-independence constraints in its latent space to learn latent

codes that are truly signer-invariant and yet highly discriminative for the sign clas-

sification task. Its performance outperforms that of our previous model for SLR and

all baselines we have compared it to.

6. CONCLUSION 137

6.2 Final remarks and directions for future work

This thesis addressed three major subtopics in the context of multi-entity and multi-

domain learning, each one motivating its own chapter in this thesis. Although the contri-

butions presented here are hopefully relevant, there are several problems left unanswered

or explored only superficially.

In the context of networked data streams, we have summarized how our proposed

models could be generalized to more challenging learning scenarios like the online and

distributed setting and how the HMM could be replaced by more expressive models,

like deep recurrent neural networks. However, those ideas were not validated or imple-

mented in practice. In particular, it would be interesting to observe if the approach is

capable of scaling to higher-dimensional data streams.

We have also only scratched the surface of domain adaptation for data streams and

video. Video data is still a challenging modality to learn from, in part due to the large

computational overhead it requires. In the context of domain adaptation, it is still un-

clear how to exploit different temporal dynamics from different sources to improve the

algorithm performance. Nonetheless, domain adaptation for non-sequential data is also

not a solved problem. The model we have proposed is effective in mitigating the curse

of domain-invariant representations for image data, where several and diverse label-

preserving transformations are available as part of any computer vision toolbox. How-

ever, the procedure does not generalize straightforwardly to non-visual data. Another

somewhat unaddressed problem is domain selection when the number of available source

domains is very large. Although our model adjusts the source domain weights automat-

ically and dynamically, it was not validated with more than five source domains. It is

a known fact that adding more source domains can hurt the model performance on the

target when the domain shift is large. Moreover, one can think of many practical applica-

tions where the number of source domains is in the order of dozens, hundreds, or even

more, and therefore a wise selection of the source data to be used for a particular target

domain is necessary.

Finally, in the context of domain generalization and, in particular, of automatic sign

language recognition, the continuous setting has not been addressed. It is clear that an

a automatic SLR system in the real world has to deal with video sequences, rather than

with individual frames. Nevertheless, the approaches we have proposed to learn signer-

invariant representations could be applied on a per-frame basis and then integrated into

138 LEARNING FROM MULTI-ENTITY DATA

the automatic SLR pipeline, whose development is a problem beyond the scope of this

thesis.

Appendix A

SpaMHMM – supplementary

material

A.1 Derivation of the EM learning algorithms for MHMM and

SpaMHMM

A.1.1 EM for MHMM (Algorithm 3.3)

Algorithm 3.3 follows straightforwardly from applying EM to the model defined by equa-

tions (3.18) and (3.19) with the objective (3.20). As mentioned in Section 2.4.2, for table

CPDs, the E-step consists in finding expected sufficient statistics M(w, v) and M(v), as

defined in equations (2.17) and (2.18), for each (w, v) ∈ Val(w, PaG(w)) and for each w

in G. In this case, G is the Bayesian network in Figure 3.5. Thus, in our setting, those

equations yield:

M(z, y) =
n

∑
i=1

p(y, z | xi, yi) =
n

∑
i=1

p(z | xi, yi)1yi=y, (A.1)

M(y) =
n

∑
i=1

p(y | xi, yi) =
n

∑
i=1

1yi=y, (A.2)

M(h(1) = h, z) =
n

∑
i=1

p(h(1) = h, z | xi, yi) =
n

∑
i=1

p(h(1) = h | xi, yi, z)p(z | xi, yi)

=
n

∑
i=1

p(h(1) = h | xi, yi)p(z | xi, yi), (A.3)

M(z) =
n

∑
i=1

p(z | xi, yi), (A.4)

M(h(t) = h′, h(t−1) = h, z) =
n

∑
i=1

p(h(t) = h′, h(t−1) = h, z | xi, yi)

139

140 LEARNING FROM MULTI-ENTITY DATA

=
n

∑
i=1

p(h(t) = h′ | h(t−1) = h, xi, z)p(h(t−1) = h | xi, z)p(z | xi, yi), (A.5)

M(h(t−1) = h, z) =
n

∑
i=1

p(h(t−1) = h, z | xi, yi)

=
n

∑
i=1

p(h(t−1) = h | xi, z)p(z | xi, yi). (A.6)

These equations allow us to compute the following updates in the M-step:

α
(y)
z =

M(y, z)
M(y)

and π
(z)
h =

M(h(1) = h, z)
M(z)

. (A.7)

For the state transition matrices update, the same idea applies after summing over the

sequence length:

A(z)
h,h′ =

∑T
t=2 M(h(t) = h′, h(t−1) = h, z)

∑T
t=2 M(h(t−1) = h, z)

. (A.8)

Now, defining ny, η
(z)
i , γ

(z)
i,h (t), and ξ

(z)
i,h,h′(t) as in Algorithm 3.3, the update formulas for

α
(y)
z , π

(z)
h , and A(z)

h,h′ become as defined in that algorithm.

Deriving the update equations for the means and covariances of the Gaussian emis-

sion distributions is not so simple, since these are not table CPDs and therefore the pro-

cedure we have just used is no longer valid. Nonetheless, the desired equations can be

obtained by explicitly maximizing the ELBO with respect to these parameters. As we

have seen in Section 2.4.1.2,

ELBO =
n

∑
i=1

E(hi ,zi)∼q log p(Xi, hi, zi | yi; Θ) + const (A.9)

where q(hi, zi) = p(hi, zi | xi, yi; Θ(−)), being Θ(−) the set of current values for all param-

eters. We are solely interested in maximizing the ELBO with respect to the parameters

µ
(z)
h and σ

(z)
h , so we can plug in the expression for the joint p(xi, hi, zi | yi; Θ) and ignore

all terms that do not depend on these parameters:

ELBO =
n

∑
i=1

∑
hi ,zi

q(hi, zi) log

[
p(zi | yi)∏

t
p(h(t)

i | h(t−1)
i , zi)p(x(t)i | h(t)

i , zi)

]

=
n

∑
i=1

∑
h(t)

i ,zi

Ti

∑
t=1

q(h(t)
i , zi) log p(x(t)i | h(t)

i , zi) + const. (A.10)

A. SPAMHMM – SUPPLEMENTARY MATERIAL 141

Now, all that remains is computing the gradient of the ELBO with respect to the parame-

ters and solving for the critical points:

∇
µ
(z)
h

ELBO =
n

∑
i=1

Ti

∑
t=1

q(h(t)
i = h, z)

p(x(t)i | h(t)
i = h, z)

∇
µ
(z)
h

p(x(t)i | h(t)
i = h, z)

=
n

∑
i=1

Ti

∑
t=1

q(h(t)
i = h, z)

x(t)i − µ
(z)
h

σ
(z)
h

2 , (A.11)

∇
σ
(z)
h

ELBO =
n

∑
i=1

Ti

∑
t=1

q(h(t)
i = h, z)

p(x(t)i | h(t)
i = h, z)

∇
σ
(z)
h

p(x(t)i | h(t)
i = h, z)

=
n

∑
i=1

Ti

∑
t=1

q(h(t)
i = h, z)

 (x(t)i − µ
(z)
h)2

σ
(z)
h

3 − 1

σ
(z)
h

 , (A.12)

where vector division and exponentiation should be interpreted as element-wise opera-

tions. Finally, solving for the critical points yields:

µ
(z)
h =

∑n
i=1 ∑Ti

t=1 q(h(t)
i = h, z)x(t)i

∑n
i=1 ∑Ti

t=1 q(h(t)
i = h, z)

=
∑n

i=1 p(z | Xi, yi; Θ(−))∑Ti
t=1 p(h(t) = h | Xi, z; Θ(−))x(t)i

∑n
i=1 p(z | Xi, yi; Θ(−))∑Ti

t=1 p(h(t) = h | Xi, z; Θ(−))
, (A.13)

σ
(z)
h

2
=

∑n
i=1 ∑Ti

t=1 q(h(t)
i = h, z)(x(t)i − µ

(z)
h)2

∑n
i=1 ∑Ti

t=1 q(h(t)
i = h, z)

=
∑n

i=1 p(z | Xi, yi; Θ(−))∑Ti
t=1 p(h(t) = h | Xi, z; Θ(−))(x(t)i − µ

(z)
h)2

∑n
i=1 p(z | Xi, yi; Θ(−))∑Ti

t=1 p(h(t) = h | Xi, z; Θ(−))
. (A.14)

Again, the formulas in Algorithm 3.3 follow by plugging η
(z)
i and γ

(z)
i,h (t) into the expres-

sions above. �

A.1.2 EM for SpaMHMM (Algorithm 3.4)

We start by showing that the E-step is unaffected by the regularization term in equa-

tion (3.21) and then we will derive the update equations for the M-step.

As is a common practice in EM and variational methods, let q(z, h) be an arbitrary

distribution over the hidden variables of our model whose support contains the support

142 LEARNING FROM MULTI-ENTITY DATA

of p. Then,

Jr(Θ) =
1
n

n

∑
i=1

log E(zi ,hi)∼q

[
p(Xi | yi; Θ)

q(zi, hi)

]
+ λR(G; Θ)

≥ 1
n

n

∑
i=1

E(zi ,hi)∼q log

[
p(Xi | yi; Θ)

q(zi, hi)

]
+ λR(G; Θ). (A.15)

where the inequality is a direct result of Jensen’s inequality and R(G; Θ) is our regular-

ization term, as defined in equation (3.21). We are therefore interested in maximizing this

lower bound with respect to both Θ and q. Since R(G; Θ) does not depend on q, maxi-

mization with respect to this distribution while fixing Θ = Θ(−) yields q(zi, hi) = p(zi, hi |

Xi, yi; Θ(−)), as for the case of standard (i.e. unregularized) EM. Thus,

Jr(Θ) ≥ 1
n

ELBO(Θ) + λR(G; Θ) + const, (A.16)

where the ELBO takes the exact same form as in equation (A.9).

Now all that remains is the maximization of this lower bound with respect to Θ. After

noting that some parameters are constrained to sum up to 1, we could build the following

Lagrangian and solve for the critical points:

L(Θ, Λ) =
1
n

ELBO(Θ) + λR(G; Θ) +
k

∑
y=1

µy

(
1− ||α(y)||1

)
+

m

∑
z=1

s

∑
h=1

ν
(z)
h

(
1−

s

∑
h′=1

A(z)
h,h′

)
+

m

∑
z=1

$z
(
1− ||πz||1

)
, (A.17)

where Λ ,
⋃

h,y,z{µy, ν
(z)
h , $z} is the set of all Lagrange multipliers. Since R(G; Θ) only

depends on the mixture coefficients α(y), the update equations for all parameters except

those are exactly the same as in Algorithm 3.3.

Unfortunately, setting ∇L = 0 yields a system of equations that is non-linear in α(y)

and no analytical solution can be found. However, we can resort to the reparameteriza-

tion defined in equation (3.24) and update the new parameters β(y) by performing gradi-

ent ascent over the unconstrained lower bound. Thus, computing the required gradient

concludes the derivation of the algorithm.

A. SPAMHMM – SUPPLEMENTARY MATERIAL 143

Now we only care about the dependency of the ELBO on the mixture coefficients, so,

following the same idea as in equation (A.10), we can write:

ELBO =
1
n

n

∑
i=1

∑
zi

q(zi) log p(zi | yi) + const

=
1
n

n

∑
i=1

m

∑
z=1

q(z) log α
(yi)
z + const, (A.18)

and therefore,

∂ELBO

∂α
(y)
z

=
1
n

n

∑
i=1

q(z)

α
(y)
z

1yi=y,
∂R

∂α
(y)
z

=
1
2

k

∑
y′=1,
y′ 6=y

Gy,y′α
(y′)
z . (A.19)

Finally, by the chain rule,

∂ELBO

∂β
(y)
z

=
m

∑
z′=1

∂ELBO

∂α
(y)
z′

∂α
(y)
z′

∂β
(y)
z

=
1
n

n

∑
i=1

(
q(z)− α

(y)
z

)
1

yi=y∧β
(y)
z >0

=
1
n

n

∑
i=1

(
p(z | Xi, yi; Θ(−))− α

(y)
z

)
1

yi=y∧β
(y)
z >0

, (A.20)

∂R

∂β
(y)
z

=
m

∑
z′=1

∂R

∂α
(y)
z′

∂α
(y)
z′

∂β
(y)
z

= α
(y)
z

k

∑
y′=1,
y′ 6=y

Gy,y′

(
α
(y′)
z − α(y′)>α(y)

)
1

β
(y)
z >0

, (A.21)

and, considering ψ
(y)
z , ω

(y)
z , and δ

(y)
z as defined in Algorithm 3.4 and the gradient ascent

update rule, the formulas follow. �

A.2 Posterior distribution of observations

In this section, we show how to obtain the posterior distribution p(X | Xpref, y) of se-

quences X ,
(

x(1), ..., x(t)
)

given an observed prefix sequence Xpref ,
(

x(−tpref+1), ..., x(0)
)

,

144 LEARNING FROM MULTI-ENTITY DATA

both coming from the graph node y. We start by writing this posterior as a marginaliza-

tion with respect to the latent variable z:

p(X | Xpref, y) = ∑
z

p(X, z | Xpref, y)

= ∑
z

p(X | Xpref, y, z)p(z | Xpref, y)

= ∑
z

p(X | Xpref, z)p(z | Xpref, y), (A.22)

where the last equality follows from the fact that the observations X are conditionally

independent of the graph node y given the latent variable z. The posterior p(z | Xpref, y)

may be obtained as done in Algorithm 3.3:

p(z | Xpref, y) ∝ p(Xpref | z)p(z | y). (A.23)

We now focus on the computation of p(X | Xpref, z). Let hpref ,
(

h(−tpref+1), ..., h(0)
)

and

h ,
(

h(1), ..., h(t)
)

, then:

p(X | Xpref, z) = ∑
hpref,h

p(X, hpref, h | Xpref, z)

= ∑
hpref,h

p(X | hpref, h, Xpref, z)p(hpref, h | Xpref, z)

= ∑
hpref,h

p(X | h, z)p(hpref | h, Xpref, z)p(h | Xpref, z)

= ∑
h

p(X | h, z)p(h | Xpref, z)

= ∑
h

p(h(1) | Xpref, z)p(x(1) | h(1), z)
t

∏
τ=2

p(h(τ) | h(τ−1), z)p(x(τ) | h(τ), z),

(A.24)

where we have used the independence assumptions that characterize the HMM. Here,

the initial state posteriors p(h(1) | Xpref, z) are actually the final state posteriors for the

sequence Xpref for each HMM in the mixture, so they can be computed as in Algorithm 2.1.

Thus, we conclude that inference in the posterior model p(X | Xpref, y) corresponds to

inference in a (Spa)MHMM where the original mixture coefficients and initial state prob-

abilites are replaced with their respective posteriors, p(z | Xpref, y) and p(h(1) | Xpref, z).

All remaining parameters are unchanged.

Appendix B

Tackling unsupervised multi-source

domain adaptation with optimism

and consistency – supplementary

material

B.1 Proof of Theorem 4.4

The presented bound is an immediate consequence of two theorems by Ben-David et al.

[75] and Blitzer et al. [77], which we present here as lemmas:

Lemma B.1. (Lemma 4 from Blitzer et al. [77]) Let H be a hypothesis class with VC dimension

d. For each j ∈ {1, 2, ..., k}, consider a labeled set of n/k samples drawn from the source domain

Sj. For any h ∈ H and any α ∈ ∆, with probability at least 1− δ over the choice of samples,

|ε̂α(h)− εα(h)| ≤ 2

√√√√ k
n

(
2d log(2(n + 1)) + log

4
δ

) k

∑
j=1

α2
j . (B.1)

Lemma B.2. (Theorem 2 from Ben-David et al. [75]) Let H be a hypothesis class with VC di-

mension d. Consider n unlabeled samples drawn from each of the two domains S (source) and T

(target). Then, for every h ∈ H, with probability at least 1− δ over the choice of samples,

εT (h) ≤ εS (h) +
1
2

d̂H∆H(S , T) + 2

√
1
n

(
2d log(2n) + log

2
δ

)
+ λ, (B.2)

where λ = minh∈H εS (h) + εT (h).

145

146 LEARNING FROM MULTI-ENTITY DATA

Proving our result is now straightforward. We can apply Lemma B.2 taking Sα as

the source domain. Note that εSα
(h) = ∑k

j=1 αjεSj(h) for any h ∈ H, and therefore λα =

minh∈H ∑k
j=1 αjεSj(h) + εT (h). Combining the obtained bound with Lemma B.1 through

the union bound yields the desired result. �

B.2 Model overview

xs ∼ Sj
(j ∈ {1, 2, ..., k})

feat. extractor

g(·, θg)

classifier

xt ∼ T

ξ ∈ Ξ

ω

ω(xt, ξ)

h(·, θh)

domain disc.

d(·, θd)

grad. rev.

p(ys | xs)

p(ỹ | xt)

ỹ

p(d = 0 | xs)

p(d = 1 | xt)

grad. rev.

Lcons

Lclass

ys

softmax
α

β Ldiscαgrad. rev.

||α||2

FIGURE B.1: Block diagram representing the proposed model (MODA-FM).

To enhance clarity, a detailed schematic of our model and loss terms is shown in Fig-

ure B.1. The three main blocks are the feature extractor g(·, θg), the classifier h(·, θh), and

the domain discriminator d(·, θd). It is worth noting the usage of gradient reversal layers

at the input of the domain discriminator and before the α that is used in the discrimina-

tor loss Ldisc. As explained in Section 4.3.2.1, the usage of this layer allows the model to

be trained using standard backpropagation and stochastic gradient descent (or any of its

variants) over all model parameters.

B.3 Experiments – further results and details

B.3.1 Label distributions

As remarked throughout this work and formally discussed and proven by Zhao et al.

[81], having different marginal label distributions across source and target domains poses

difficulties to the DA task and, under this scenario, domain-invariant representations can

B. TACKLING UMSDA WITH OPTIMISM AND CONSISTENCY – SUPP. MATERIAL 147

increase the error on the target domain. Since we claim that the adopted consistency reg-

ularization can help mitigate this issue, it is relevant to observe the distributions of labels

across domains in the datasets used in this work, which are shown in Figures B.2, B.3, and

B.4.* We also provide the pairwise Jensen-Shannon distances for the label distributions of

all domains in Tables B.1, B.2, B.3, and B.4. The Jensen-Shannon distance is convenient

since it is a metric (so it is symmetric, non-negative and zero if and only if the two dis-

tributions coincide) and upper bounded by
√

log 2 (≈ 0.8326). Therefore, it provides a

comprehensive measure to evaluate the dissimilarity between two distributions.

In the digits datasets (Figure B.2, Table B.1), MNIST and MNIST-M have very simi-

lar label distributions and SynthDigits has an almost uniform label distribution. SVHN

has the most skewed distribution, which is radically different from the remaining. Thus,

this is the most challenging domain from this perspective. In Office-31 (Figure B.3, Ta-

ble B.2), label distributions across domains differ significantly. In the Amazon Reviews

dataset (Figure B.4, Table B.3), the label distribution is almost uniform for all domains.

Finally, in DomainNet (Table B.4), the label distributions are highly dissimilar across all

domains. Interestingly, domains inf and pnt are the most distant from all remaining do-

mains and qdr is the closest one.

(A) MNIST (B) MNIST-M (C) SVHN (D) SynthDigits

FIGURE B.2: Label distributions in the digits datasets.

MNIST MNIST-M SVHN SynthDigits
MNIST 0 2.73 · 10−4 1.17 · 10−1 1.83 · 10−2

MNIST-M 2.73 · 10−4 0 1.17 · 10−1 1.84 · 10−2

SVHN 1.17 · 10−1 1.17 · 10−1 0 1.26 · 10−1

SynthDigits 1.83 · 10−2 1.84 · 10−2 1.26 · 10−1 0
Average 4.51 · 10−2 4.52 · 10−2 1.20 · 10−1 5.42 · 10−2

TABLE B.1: Jensen-Shannon distances between the label distributions of each pair of dig-
its domains. On each column, the largest distance is in bold and the smallest is under-

lined.

*The histogram for the DomainNet dataset is not provided since the number of classes (345) is too large,
making the plot barely interpretable.

148 LEARNING FROM MULTI-ENTITY DATA

(A) Amazon (B) DSLR

(C) Webcam

FIGURE B.3: Label distributions in Office-31.

Amazon DSLR Webcam
Amazon 0 1.33 · 10−1 9.76 · 10−2

DSLR 1.33 · 10−1 0 1.45 · 10−1

Webcam 9.76 · 10−2 1.45 · 10−1 0
Average 1.15 · 10−1 1.39 · 10−1 1.21 · 10−1

TABLE B.2: Jensen-Shannon distances between the label distributions of each pair of do-
mains in Office-31. On each column, the largest distance is in bold.

(A) Books (B) DVD (C) Electronics (D) Kitchen

FIGURE B.4: Label distributions in Amazon Reviews.

Books DVD Electronics Kitchen
Books 0 1.67 · 10−3 1.93 · 10−3 5.09 · 10−3

DVD 1.67 · 10−3 0 2.53 · 10−4 3.42 · 10−3

Electronics 1.93 · 10−3 2.53 · 10−4 0 3.17 · 10−3

Kitchen 5.09 · 10−3 3.42 · 10−3 3.17 · 10−3 0
Average 2.90 · 10−3 1.78 · 10−3 1.78 · 10−3 3.89 · 10−3

TABLE B.3: Jensen-Shannon distances between the label distributions of each pair of do-
mains in Amazon Reviews. On each column, the largest distance is in bold and the

smallest is underlined.

B. TACKLING UMSDA WITH OPTIMISM AND CONSISTENCY – SUPP. MATERIAL 149

clp inf pnt qdr rel skt
clp 0 3.14 · 10−1 3.34 · 10−1 1.98 · 10−1 2.31 · 10−1 2.60 · 10−1

inf 3.14 · 10−1 0 3.79 · 10−1 2.83 · 10−1 3.03 · 10−1 3.26 · 10−1

pnt 3.34 · 10−1 3.79 · 10−1 0 2.77 · 10−1 2.99 · 10−1 3.10 · 10−1

qdr 1.98 · 10−1 2.83 · 10−1 2.77 · 10−1 0 1.35 · 10−1 2.27 · 10−1

rel 2.31 · 10−1 3.03 · 10−1 2.99 · 10−1 1.35 · 10−1 0 2.67 · 10−1

skt 2.60 · 10−1 3.26 · 10−1 3.10 · 10−1 2.27 · 10−1 2.67 · 10−1 0
Average 2.67 · 10−1 3.21 · 10−1 3.20 · 10−1 2.24 · 10−1 2.47 · 10−1 2.78 · 10−1

TABLE B.4: Jensen-Shannon distances between the label distributions of each pair of do-
mains in the DomainNet dataset. On each column, the largest distance is in bold and the

smallest is underlined.

B.3.2 Effect of over-training

When the label distributions differ across domains, training the feature extractor and do-

main discriminator for a large number of iterations tends to lead to an increased target

error. This is a direct effect of the curse of domain-invariant representations and it has

been verified experimentally by Zhao et al. [81].

In this experiment, we want to evaluate if the increased robustness of the feature ex-

tractor provided by the adopted consistency regularization helps to mitigate this issue.

For this purpose, we use Office-31 since it is fairly small and therefore easy to overtrain

and the label distributions across domains are significantly skewed (see B.3.1). We train

our model and two baselines (MDAN and MODA) for 60 epochs and we observe the evo-

lution of the model accuracy on the target data. The plots are shown in Figure B.5. As we

see there, in MODA-FM the accuracy keeps stable after reaching the maximum in all do-

mains. Contrarily, in MODA and especially in MDAN, the accuracy tends to decay after

reaching the maximum. These observations strongly suggest that MODA-FM succeeds

on mitigating the curse of domain-invariant representations. In MODA the problem is

less pronounced than in MDAN probably because the latter will continue optimizing it-

self until it can produce domain-invariant representations for all source domains, whereas

the former will simply ignore the hardest source domains by assigning them a low weight

(possibly even zero).

B.3.3 Hyperparameter sensitivity analysis

Our model comprises three main hyperparameters: µd, µs and µc. The hyperparameter µd

controls the relative weight of the domain discriminator loss and is present in every work

on adversarial DA, thus its effect has already been studied extensively. For this reason,

we focus on the effect of µs and µc. We use the digits datasets and evaluate the accuracy

150 LEARNING FROM MULTI-ENTITY DATA

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

epoch

ac
cu

ra
cy

MDAN (−1.01 · 10−4)
MODA (−4.69 · 10−4)

MODA-FM (1.15 · 10−3)

(A) Amazon

0 10 20 30 40 50 60
0.8

0.85

0.9

0.95

1

epoch

ac
cu

ra
cy

MDAN (−9.12 · 10−4)
MODA (1.28 · 10−4)

MODA-FM (1.94 · 10−4)

(B) DSLR

0 10 20 30 40 50 60
0.8

0.85

0.9

0.95

1

epoch

ac
cu

ra
cy

MDAN (−8.65 · 10−4)
MODA (1.93 · 10−4)

MODA-FM (1.21 · 10−4)

(C) Webcam

FIGURE B.5: Test accuracy over 60 training epochs for our model and two baselines in
Office-31. The tendency line for each curve is also shown (dashed lines) and the respec-
tive slope is indicated in brackets in each plot legend. The domain indicated below each

plot is the target.

on each target domain while varying either µs or µc and keeping the other one constant at

the optimal value.

A sufficiently large value of µs forces α to converge to a vector with all components

equal to 1/k, weighting all source domains equally. Setting µs close to zero corresponds

to the most optimistic scenario: the sparsity penalization is dropped and so, after suf-

ficiently many training iterations, α would converge to a one-hot vector, choosing the

source domain with the minimum difference of classification and discrimination losses

(Lclass − µdLdisc). Figure B.6a shows that, for MNIST, similar results are obtained with

any of those strategies. The fact that digits classification in MNIST is significantly easier

than in any of the remaining datasets likely explains this behavior. Domain adaptation

for MNIST-M is slightly favored by smaller values of µs, meaning that a more optimistic

approach works better here. For SVHN, the opposite holds and the results are very poor

when low sparsity regularization is employed. There is even a strong discontinuity in

the accuracy plot for this domain around µs ≈ 0.2. This discontinuity divides situations

where α collapses into the easiest source domain (µs < 0.2) and those where it does not

collapse (µs > 0.2). We elaborate more on this in Section B.3.4. In all cases, we observe

that a µs ∈ [0.2, 0.6] provides near-optimal results.

The effect of varying µc is plotted in Figure B.6b. Values of µc close to zero drop

the consistency regularization and, therefore, we obtain results close to those of MODA.

Significant performance gains are obtained for µc > 0.01 and the optimal is reached for

µc ∈ [0.4, 1.0] for all domains.

B. TACKLING UMSDA WITH OPTIMISM AND CONSISTENCY – SUPP. MATERIAL 151

10−4 10−3 10−2 10−1 100 101
0

0.2

0.4

0.6

0.8

1
ac

cu
ra

cy

MNIST
MNIST-M

SVHN

(A) µs

10−4 10−3 10−2 10−1 100 101
0

0.2

0.4

0.6

0.8

1

ac
cu

ra
cy

MNIST
MNIST-M

SVHN

(B) µc

FIGURE B.6: Test accuracy as a function of hyperparameters µs (a) and µc (b) using the
digits datasets. The domain corresponding to each line is the target.

B.3.4 Evolution of the source weights

Here, we study the evolution of the source weights α over training. The behavior is de-

termined by the evolution of the classification and discrimination losses of each source

domain and also by the choice of the hyperparameter µs. The effect of varying µs on the

model performance was analyzed in Section B.3.3. Now, we are interested in observing

the dynamics of α over the training epochs, for different source domains, using the cor-

responding optimal µs. We use the digits datasets for this purpose and we present the

results in Figure B.7.

For MNIST, where the lowest µs is used, we observe that the mixture coefficients

rapidly collapse into the easiest source domain (SynthDigits). Nonetheless, in Section B.3.3

we have observed that the target accuracy for MNIST was almost insensitive to the choice

of µs, meaning that using only the data from the easiest source domain or weighting

all source domains equally would produce identical results. When we take MNIST-M

and SVHN as target domains, with a slightly increased µs, a different behavior occurs.

Early in the training process, the weight for the easiest source domain (MNIST) increases

rapidly, following the fast decrease in the corresponding loss. Later, as the loss for the

easiest source domain plateaus and the remaining keep decreasing, the weights for the

remaining active source domains start to increase. This behavior explains the disconti-

nuity we have observed in the plot of target accuracy vs. µs for SVHN (Figure B.6a): if

µs is sufficiently small to allow α to rapidly collapse into MNIST, the data of the remain-

ing source domains is simply discarded for the remaining of the training process and the

corresponding weights will never increase.

152 LEARNING FROM MULTI-ENTITY DATA

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

epoch

α

µs = 0.1

MNIST-M
SVHN

SynthDigits

(A) MNIST

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

epoch

α

µs = 0.2

MNIST
SVHN

SynthDigits

(B) MNIST-M

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

epoch

α

µs = 0.9

MNIST
MNIST-M

SynthDigits

(C) SVHN

FIGURE B.7: Source weights α for each domain over 60 training epochs in the digits
datasets. The target domain and the value of µs that was used are indicated below and

above each plot, respectively.

B.3.5 Network architectures

The following notation is used to designate network layers: Conv(n, k) – 2-D convolu-

tional layer with n output channels, square kernels with size k, and unit stride, followed

by a rectified linear activation; MaxPool(k) – 2-D max-pooling over non-overlapping re-

gions of k× k pixels; AdaptAvgPool(k) – 2-D adaptive average pooling where the output

size is k× k pixels. FC(n) – fully-connected layer with n output neurons, followed by a

rectified linear activation except for output layers; Dropout(p) – dropout layer where p

is the probability of zeroing an element. A gradient reversal layer is present at the input

of the domain discriminator in all models. All classifiers and domain discriminators are

followed by a softmax layer that maps the output to the corresponding class probabilities.

Digits classification Input images have shape 3× 32× 32. Feature extractor: Conv(64,

3) → MaxPool(2) → Conv(128, 3) → MaxPool(2) → Conv(256, 3). Task classifier:

MaxPool(2) → Conv(256, 3) → FC(2048) → FC(1024) → FC(10). Domain discrimi-

nator: MaxPool(2)→ FC(2048)→ FC(2048)→ FC(1024)→ FC(2).

Object classification (Office-31 dataset) Input images have shape 3× 256× 256. Feature

extractor: ResNet-50 up to stage 3. Task classifier / domain discriminator: ResNet-50

stage 4→ AdaptAvgPool(1)→ FC(#classes), where #classes = 31 for the task classifier

and #classes = 2 for the domain discriminator.

Sentiment analysis (Amazon Reviews dataset) Input features have dimension 5000.

Feature extractor: Dropout(p)→ FC(1000)→ Dropout(p)→ FC(500)→ Dropout(p)→

B. TACKLING UMSDA WITH OPTIMISM AND CONSISTENCY – SUPP. MATERIAL 153

FC(100)→ Dropout(p), where p = 0 except for producing the augmented samples used

in the consistency regularization. Task classifier / domain discriminator: FC(2).

Large scale object classification (DomainNet dataset) Input images have shape 3 ×

192× 192. Feature extractor: ResNet-152 up to stage 3. Task classifier / domain discrimi-

nator: ResNet-152 stage 4→ AdaptAvgPool(1)→ FC(#classes), where #classes = 345

for the task classifier and #classes = 2 for the domain discriminator.

B.3.6 Choice of hyperparameters

Table B.5 presents the values assigned to each hyperparameter. For some hyperparam-

eters in a given dataset, a set or range of values is presented instead of a single value,

meaning that the value for that hyperparameter was selected via cross-validation on the

given set/range. This cross-validation consisted on 20 iterations of random search for

each experiment, where no data from the target domain was used and each source do-

main was taken as target in turn. The hyperparameter combination that yielded the best

average result across source domains was chosen.

Hyperparameter Digits Office-31 Amazon Reviews DomainNet
µd (4.26) [10−4, 100] [10−4, 100] [10−4, 100] 10−2

µs (4.26) [10−5, 100] 10−2 [10−6, 10−1] 10−1

µc (4.34) [10−2, 100] [10−2, 100] [10−2, 100] 10−1

τ (4.33) 0.9 0.9 0.9 0.9
optimizer AdaDelta AdaDelta AdaDelta AdaDelta

no. epochs {10, 20, . . . , 60} {10, 15, . . . , 60} {5, 10, . . . , 40} 100
learning rate 0.1 0.1 1.0 0.01

batch size 8 8 20 8
RandAugment: n 2 2 n.a. 2

RandAugment: mmin 3 3 n.a. 3
RandAugment: mmax 10 10 n.a. 10

dropout: pmin n.a. n.a. 0.2 n.a.
dropout: pmax n.a. n.a. 0.8 n.a.

TABLE B.5: Values and search ranges for all hyperparameters in all experiments.

B.3.7 Image transformations

The list of image transformations used in RandAugment is provided in Table B.6. The

cutout transformation is the first transformation to be applied to every image. This trans-

formation occludes a randomly located square region with a length equal to 30% of the

image length. The remaining n transformations are chosen at random from the provided

154 LEARNING FROM MULTI-ENTITY DATA

list. All transformations were normalized such that a transformation of magnitude m = 0

corresponds to the identity (i.e. unchanged image) and a magnitude m = 30 (maximum

admissible value) corresponds to the maximum distortion. We implemented the image

transformations using the Python Imaging Library (PIL).

Transformation Range Transformation Range
AutoContrast {0, 1} Rotate [−30◦, 30◦]

Brightness [0.1, 1.9] Sharpness [0.1, 1.9]
Color [0.1, 1.9] ShearX [0, 0.3]

Contrast [0.1, 1.9] ShearY [0, 0.3]
Equalize {0, 1} Solarize [0, 255]

FlipX* {0, 1} TranslateX [−0.45, 0.45]
Invert {0, 1} TranslateY [−0.45, 0.45]

Posterize [4, 8]

TABLE B.6: RandAugment image transformations and respective ranges.

B.3.8 Sample images

We present sample images from all image datasets used in our experiments in Figures B.8,

B.9, and B.10. The result of the RandAugment transformation is also shown for various

values of the parameter m.

FIGURE B.8: Sample original and transformed images from the digits datasets. The
ground-truth label is in brackets.

*Excluded in the digits experiment since it is not label-preserving.

B. TACKLING UMSDA WITH OPTIMISM AND CONSISTENCY – SUPP. MATERIAL 155

FIGURE B.9: Sample original and transformed images from each domain in the Office-31
dataset. The ground-truth label is in brackets.

FIGURE B.10: Sample original and transformed images from each domain in the Do-
mainNet dataset. The ground-truth label is in brackets.

Appendix C

DeSIRe: Deep Signer-Invariant

Representations for Sign Language

Recognition – supplementary

material

C.1 Architecture

As shown in Figure C.1, the architecture of DeSIRe comprises a CVAE and a classifier.

C.1.1 CVAE

The CVAE consists of an encoder and a decoder. The encoder network attempts to learn

a stochastic mapping from an input image X, its class label y, and signer identity s to

a latent representation z. We condition the encoder on y and s by simply concatenating

the class and signer identity as extra channels in the input image. In this case, both y

and s are represented categorically using one-hot encoding. The encoder network then

consists of a sequence of several 3× 3 convolutional layers with batch normalization and

leaky rectified linear units (LeakyReLUs) as non-linearities. For downsampling, the stride

length of every convolution is set to 2. On top of that, there are two output fully connected

(a.k.a. dense) layers, with linear activation functions, describing the mean µe(X, y, s; θe)

and the log-variance log σ2
e (X, y, s; θe) of the latent space distribution q(z | X, y, s; θe).

157

158 LEARNING FROM MULTI-ENTITY DATA

Encoder:

Xri
yi , si

yi si

q(z | X, y, s;θe)

⊕

2 log σ(i)

zi

Decoder:

sj ∼ w(s | si)

εi ∼ N (0, I)

z̃iLemb

Encoder:

µ(u) 2 log σ(u)

CNN feature extractor:

g(X;θg)

Lclass

ŷi

Lrec

µd(zi, sj; θd)

MLP:
g(z̃; θg)

yu = yi, su 6= si

Classifier
CVAE

Xru
yu, su

yu su

Xri
yi , siq(z | X, y, s;θe)

p(X | z, s;θd)

Lsigner inv

Lprior

µ(i)

yi
X

rj
yj, sj yj = yi

�

FIGURE C.1: The architecture of the proposed DeSIRe deep neural network for signer-
independent SLR. It comprises two main modules or components: a conditional varia-

tional atoencoder (CVAE) and a classifier.

The decoder module will then generate a latent code z sampled from q(z | X, y, s; θe)

and proceed to the reconstruction of the original input X. In practice, the latent code z is

concatenated with a one-hot representation of the signer identity s to be fed to the decoder

network. The decoder network comprises several 2-D transposed convolutions for up-

sampling and densifying the incoming activations. Every transposed convolutional layer

is followed by batch normalization and a LeakyReLU. The output layer also consists of a

transposed convolutional layer but with a hyperbolic tangent activation function in order

to output the reconstruction µd(z, s; θd) of the normalized input X.

C.1.2 Classifier

The implemented classifier module follows a typical CNN architecture for classification

tasks. It starts with a block of convolutional layers for feature extraction purposes, pro-

ducing representations z̃ , g(X; θg). This is followed by a block of fully connected layers

for sign classification, which predicts the sign class ŷ , h(z̃; θh). In particular, the con-

volutional block comprises a sequence of several pairs of consecutive 3× 3 convolutional

layers with ReLUs as non-linearities. For downsampling, the last convolutional layer of

each pair has a stride of 2.

C. DESIRE – SUPPLEMENTARY MATERIAL 159

The fully connected block consists of a sequence of fully connected layers with Re-

LUs as the non-linear functions. The last fully connected layer has a softmax activation

function which outputs the probabilities for each sign class.

C.2 Training strategies

We have observed experimentally that the classification task is much easier than the re-

construction task of the CVAE. That is, the classifier tends to overfit the data within

fewer training epochs than the CVAE, learning embeddings that are essentially not signer-

invariant. In order to avoid this behavior, we have adopted an annealing strategy to define

the classification weight λ2. Specifically, at the start of training, this weight is set to zero,

so that the CVAE learns to produce signer-invariant latent representations. At this stage,

the CVAE behaves as a pure teacher model for the classifier network and, therefore, the

Lemb error is backpropagated only through the classifier. After a few epochs, the weight

λ2 starts increasing according to a sigmoid annealing schedule and the Lemb loss starts to

be backpropagated through the CVAE encoder as well. This procedure will endow the

CVAE with a better sense of the classification task and hence promote class separability

in the latent space. As a result, the model will be able to learn signer-invariant represen-

tations that are in fact highly discriminative for the sign recognition task.

Following Bowman et al. [206] and in order to stabilize the training of the CVAE, we

have employed a similar annealing strategy to define the KL divergence weights of the

prior and signer-invariant loss terms, α1 and α2, respectively.

C.3 Implementation details

All deep models were implemented in PyTorch and trained with the Adam optimization

algorithm using a batch size of 32 samples. For reproducibility purposes, the source code

as well as the weights of the trained models are publicly available online*.

The hyperparameters that are common to all the implemented models (i.e. the learn-

ing rate and the L2 regularization coefficient) as well as some hyperparameters that are

specific to the DeSIRe model (i.e. λ1, λ2, α1 and α2) and to the implemented baseline 2 (i.e.

γ) were optimized by means of a grid search approach and cross-validation on the train-

ing set. The hyperparameter ρ in w(s | si), defined for the proposed sampling scheme

*https://github.com/pmmf/desire

160 LEARNING FROM MULTI-ENTITY DATA

Hyperparameters Symbol Set
Leaning rate – {10−4, 10−3}

L2-norm coefficient – {10−5, 10−4}
Ltriplet weight γ {0.1, 0.5, 1, 5, 10}
Lemb weight λ1 {0.1, 0.5}
Lclass weight λ2 {1, 1, 5, 10}
Lprior weight α1 {5× 10−3, 8× 10−2}

Lsigner inv weight α2 {8× 10−2, 4× 10−1, 8× 10−1}}

TABLE C.1: Hyperparameter sets for the DeSIRe model and baselines.

of the signer identity, was set to ρ = 0.5. The dropout rate was empirically set to 0.5

for all the experiments. The set of values of the adopted hyperparameters grid search is

presented in Table C.1.

During the training stage of all the implemented models, besides L2 regularization

and dropout, a randomized data augmentation scheme was also employed. Following

Ferreira et al. [183], the adopted data augmentation procedure is based on both geometric

and color transformations. The underlying idea is to further increase the robustness of

the models to the wide range of hand gestures positions, poses, viewing angles as well as

to different illumination conditions and contrasts.

A detailed description of the architecture of the proposed model is presented in Ta-

ble C.2. For illustrative purposes, the presented DeSIRe architecture considers input

colour images with a resolution of 100 × 100 pixels, 10 signer identities in the training

set and a total of 10 sign classes. It is important to stress out that, for a fair comparison,

the topology of both implemented baselines follows the same architecture of the classifier

component of the proposed DeSIRe model.

C. DESIRE – SUPPLEMENTARY MATERIAL 161

Layer
#

DeSIRe
module

Layer type
Non-

linearity
Output shape Connected to

-

In
pu

ts

input x - (3,100,100) -
- input y 2d - (10,100,100) -
- input s 2d - (10,100,100) -
- input s 1d - (10,) -

1
q(

z
|X

,y
,s

;θ
e)

Concat2d-1 - (23,100,100)
[input x;

input y 2d;
input s 2d]

2 Conv2d-1 LeakyReLU (64,50,50) Concat2d-1
3 Conv2d-2 LeakyReLU (64,25,25) Conv2d-1
4 Conv2d-3 LeakyReLU (128,13,13) Conv2d-2
5 Conv2d-4 LeakyReLU (256,7,7) Conv2d-3
6 Conv2d-5 LeakyReLU (512,4,4) Conv2d-4
7 Dense-1 Linear (128,) Conv2d-5
8 Dense-2 Linear (128,) Conv2d-5

9 Dense-3 LeakyReLU (128,)
[Dense-1;
Dense-2]

10

p(
X
|z

,s
;θ

d)

Concat1d-1 - (138,)
[Dense-3;

input s 1d]
11 Reshape-1 - (512,4,4) Concat1d-1
12 ConvTr2d-1 LeakyReLU (512,7,7) Reshape-1
13 ConvTr2d-2 LeakyReLU (256,13,13) ConvTr2d-1
14 ConvTr2d-3 LeakyReLU (128,25,25) ConvTr2d-2
15 ConvTr2d-4 LeakyReLU (64,50,50) ConvTr2d-3
16 ConvTr2d-5 Tanh (3,100,100) ConvTr2d-4
17

g(
X

;θ
g)

Conv2d-6 ReLU (32,100,100) input x
18 Conv2d-7 ReLU (32,50,50) Conv2d-6
19 Conv2d-8 ReLU (64,50,50) Conv2d-7
20 Conv2d-9 ReLU (64,25,25) Conv2d-8
21 Conv2d-19 ReLU (128,13,13) Conv2d-9
22 Conv2d-11 ReLU (128,13,13) Conv2d-10
23

h(
z̃;

θ
h)

Dense-4 ReLU (128,) Conv2d-11
24 Dropout-1 - (128,) Dense-4
25 Dense-5 ReLU (128,) Dropout-1
26 Dropout-2 - (128,) Dense-5
27 Dense-6 Softmax (10,) Dropout-2

TABLE C.2: A detailed description of the architecture of the proposed DeSIRe model. The
output shape is described as (#filters, rows, columns).

C.4 Visualization of the latent space

In this section, we present a 2-D visualization of the learned embedding via t-SNE, simi-

larly to what we have done for our previous adversarial model (Section 5.3.4.4).

Figure C.2 depicts the t-SNE provided by the DeSIRe model and both implemented

baselines in two test splits, of the MKLM dataset, with different degrees of inter-signer

162 LEARNING FROM MULTI-ENTITY DATA

variability. Figure C.3 illustrates the t-SNE plots obtained by the domain adaptation meth-

ods (DANN and DTML) for the same exact test splits. For easier comparison, we show

the results for DeSIRe in both figures.

Te
st

sp
lit

1

CNN (baseline 1)

accuracy: 95.50 %

CNN with triplet loss (baseline 2)

accuracy: 96.50 %

DeSIRe

accuracy: 98.50 %

Te
st

sp
lit

2

accuracy: 73.00 % accuracy: 86.50 % accuracy: 98.50 %

FIGURE C.2: Two-dimensional projection of the latent representation space provided by
DeSIRe and both baselines, using t-SNE [185]. Markers • and + represent two different
test signers from the MKLM dataset and the different colors correspond to the 10 sign

classes. The accuracy of each model on each split is shown below each picture.

As it is possible to observe in Figures C.2 and C.3, all the implemented models achieved

high classification accuracies on the test split 1. Nevertheless, the t-SNE plots clearly

demonstrate the better capability of DeSIRe to impose signer-independence in the latent

representations. The DeSIRe model yields a latent representation space in which latent

representations of the same signer and different classes are close to each other and well

mixed, while it keeps latent representations of different classes far apart.

The test split 2, depicted in the bottom row of Figures C.2 and C.3, is characterized by

a larger inter-signer variability. Consequently, for this particular test split, the accuracy

gains of DeSIRe are much more noticeable. The t-SNE plots support these classification

results (see the bottom row of Figures C.2 and C.3). There, it is possible to observe that

baseline 1 completely fails in the arrangement of the latent space. Specifically, the latent

representations of different signers and the same class are too far apart. In addition, there

is a clear overlap between clusters of different classes. Although the CNN with the triplet

C. DESIRE – SUPPLEMENTARY MATERIAL 163

loss (i.e. baseline 2) and both domain adaptation methods promoted slight improvements

over the standard baseline CNN, the proposed DeSIRe model achieved by far the best

inter-class separability.

Te
st

sp
lit

1

DANN [71]

accuracy: 95.50 %

DTML [205]

accuracy: 97.50 %

DeSIRe

accuracy: 98.50 %

Te
st

sp
lit

2

accuracy: 91.50 % accuracy: 87.00 % accuracy: 98.50 %

FIGURE C.3: Two-dimensional projection of the latent representation space provided by
DeSIRe, DANN, and DTML, using t-SNE [185]. Markers • and + represent two different
test signers from the MKLM dataset and the different colors correspond to the 10 sign

classes. The accuracy of each model on each split is shown below each picture.

C.5 Cluster analysis in the latent space

In order to obtain an objective quality assessment of the produced latent representations,

we have evaluated how well the model is able to cluster the different sign classes (and

thus ignore the signer identity) in the latent space. For this purpose, we use two cluster

validation metrics: the average Silhouette coefficient (Rousseeuw [207]) per cluster and

the Dunn’s index (Dunn [208]) per cluster.

The Silhouette coefficient for an observation i is computed as follows. Let Ci be the

cluster (sign class) associated with the observation i. The average intra-cluster distance ai

and the minimum average inter-cluster distance bi for the observation i are obtained as

164 LEARNING FROM MULTI-ENTITY DATA

follows:

ai ,
1

|Ci| − 1 ∑
j∈Ci

d(i, j), (C.1)

bi , min
C′ 6=Ci

1
|C′| ∑

j∈C′
d(i, j), (C.2)

where |Ci| denotes the number of observations in the cluster Ci and d(i, j) is the Euclidean

distance between the observations i and j. Then, the Silhouette index Si for the observa-

tion i is computed as:

Si ,
bi − ai

max(ai, bi)
. (C.3)

Clearly, −1 ≤ Si ≤ 1. Intuitively, clusters are desirably compact (small ai) and well

separated (large bi), so a larger value of Si indicates a better clustering. However, this

metric is defined per observation. Hence, in order to have a global measure of clustering

quality, we compute the average Silhouette coefficient for each cluster.

Dunn’s index follows a similar idea of measuring cluster compactness versus sep-

aration, but uses minimum and maximum distances instead of average distances, and

is more sensitive to extreme and occasional errors. Specifically, Dunn’s index DC for a

cluster C is defined as the ratio between the minimum inter-cluster distance ∆C from C

to all other clusters (which measures cluster separation) and the maximum intra-cluster

distance δC within the cluster C (which measures cluster compactness):

∆C , min
i∈C,j 6∈C

d(i, j), δC , max
i,j∈C

d(i, j), DC ,
∆C

δC
. (C.4)

Again, according to this metric, larger values correspond to a better clustering. Results are

shown in Table C.3. As anticipated by the analysis of the two-dimensional t-SNE projec-

tion in Figures C.2 and C.3, the results confirm that the DeSIRe model produces the most

compact and separated sign clusters, when compared with the remaining models. This

observation supports the signer-invariance property of the representations produced by

the DeSIRe model: when exposed to images obtained from new signers, our model does

a better job of grouping them according to the respective sign class only, ignoring the

signer identity. Baseline 2 and DTML are also capable of producing fairly good sign clus-

ters. This is not a surprising fact since both approaches include explicit penalties in the

respective training objectives that favor compactness in the latent space among samples

of the same sign class. The absence of such a compactness constraint in DANN allows its

C. DESIRE – SUPPLEMENTARY MATERIAL 165

Jochen-Triesch MKLM CorSiL
Dunn’s Silhouette Dunn’s Silhouette Dunn’s Silhouette

Avg. min Avg. min Avg. min Avg. min Avg. min Avg. min
DANN [71] 0.165 0.105 0.457 0.342 0.380 0.102 0.531 0.253 0.310 0.205 0.281 0.109
DTML [205] 0.218 0.170 0.557 0.493 0.693 0.236 0.653 0.342 0.298 0.200 0.312 0.107

CNN (baseline 1) 0.171 0.132 0.405 0.326 0.378 0.159 0.537 0.295 0.346 0.184 0.316 0.112
CNN with triplet loss (baseline 2) 0.249 0.179 0.509 0.453 0.559 0.208 0.623 0.171 0.359 0.210 0.313 0.186

DeSIRe 0.316 0.184 0.582 0.541 0.695 0.240 0.646 0.377 0.374 0.186 0.320 0.197

TABLE C.3: Dunn’s index and Silhouette coefficient for the sign class clusters in the latent
space for the test data. These metrics were computed per cluster and the average and

minimum results are reported for each model and dataset.

latent representations to be more widely spread over the latent space. As such, accord-

ing to the adopted metrics, the obtained sign clusters are comparable to those obtained

using a simple CNN (baseline 1), although the resulting sign classification accuracy is

undoubtedly superior.

C.6 Unveiling the training behavior of DeSIRe

In this subsection, we further analyze the training process of the proposed DeSIRe model.

Figure C.4 shows the behavior of different loss terms, over 150 epochs of training on

the MKLM dataset, with the sigmoid annealing schedules in place. Specifically, we have

plotted the curves of the key loss terms, Lsigner inv and Lemb, responsible for promoting

signer-invariant latent representations (see Figures C.4a and C.4b, respectively). In addi-

tion, we have also plotted the curve of the classification loss term Lclass, which trains the

model to predict the output sign labels.

(A) (B) (C)

FIGURE C.4: Training behavior of the proposed DeSIRe model: (A) evolution of the
Lsigner inv loss term alongside the corresponding weight α2 according to a sigmoid an-
nealing schedule; (B) evolution of the Lemb term value; and (C) evolution of training and
validation Lclass curves alongside the corresponding weight λ2 according to a sigmoid

annealing schedule.

Figure C.4c depicts the observed behavior for the classification loss term Lclass. As pre-

viously explained in Section C.2, at the start of training, the classification weight λ2 is set

166 LEARNING FROM MULTI-ENTITY DATA

to zero and the Lemb error is backpropagated only through the convolutional block of the

classifier module. Therefore, in the first training epochs, Lclass remains at a high value, as

the classifier predicts random guesses (see Figure C.4c). Then, Lclass drops quickly once

the classification weight λ2 starts increasing. This shows that the feature representations

learned in the previous phase are highly discriminative for the classification task. On the

other hand, the CVAE module starts to be trained on the reconstruction task as soon as

the training process begins. At this stage, the sampling scheme associated with the re-

construction loss Lrec is the only mechanism promoting signer-invariance. After a few

epochs, the KL weights α1 and α2 start increasing and the CVAE is further enforced to

produce signer-invariant latent representations. In particular, Figure C.4a shows the evo-

lution of the signer-invariance loss Lsigner inv together with the respective weight α2 and

attests that, at the end of training, the encoder produces signer-independent embeddings

in the training data. Finally, Figure C.4b depicts a consistent decrease of the embedding

loss Lemb throughout the entire training routine.

C.7 Hyperparameter sensitivity analysis

This subsection presents a sensitivity analysis of three key hyperparameters of the pro-

posed DeSIRe model, namely the Lemb weight λ1, the signer-invariance weight α2 and the

probability of changing the signer identity fed to the decoder network ρ. For this purpose,

we plotted the curves of the average test accuracy of the proposed model with varying

values of λ1 ∈ [0, 10], α2 ∈ [0, 10], and ρ ∈ [0, 1] (Figure C.5). Some interesting conclu-

sions can be drawn from these plots. Particularly, when α1 = 0, Lclass is the only loss

term still active. Accordingly, the proposed DeSIRe model has exactly the same behavior

as baseline 1, which results in a significant drop in the test accuracy. When λ1 6= 0 and

α2 = 0, the loss terms Lemb, Lrec and Lprior become active and only Lsigner inv is inactive.

Under this setting, the test accuracy increases to nearly 94% (see Figure C.5b). Here, the

classifier is trained to follow the latent representations produced by the CVAE. Although

the term Lsigner inv is not present, signer-invariance is still promoted by (i) the Lprior loss

term; and (ii) by conditioning the decoder on the signer identity, which is drawn from

a random distribution. Finally, when λ1 and α2 are both set to their optimal values, all

loss terms are active and a maximum test accuracy is achieved. The observed accuracy

gain clearly supports the beneficial regularizing effect of the Lsigner inv loss term, which

explicitly promotes signer-invariant representations.

C. DESIRE – SUPPLEMENTARY MATERIAL 167

(A) (B) (C)

FIGURE C.5: Hyperparameter sensitivity analysis: (A) DeSIRe accuracy on the Jochen-
Triesch dataset with varying values of λ1 ∈ [0, 10] while α2 = 0.4 and ρ = 0.5; (B) DeSIRe
accuracy on the Jochen-Triesch dataset with varying values of α2 ∈ [0, 10] while λ1 = 0.5
and ρ = 0.5; and (C) DeSIRe accuracy on the Jochen-Triesch dataset with varying values

of ρ ∈ [0, 1] while λ1 = 0.5 and α2 = 0.4.

In addition, it is worth mentioning that the proposed DeSIRe model is quite robust

to these hyperparameters as the accuracy curves remain fairly stable over a large range

of values (i.e. λ1, α2 ∈ [0.01, 1]). The impact of ρ, which controls the proposed sampling

scheme of the signer identity in the learning process, is depicted in Figure C.5c. From

this figure, it is possible to observe that ρ should be set around 0.5. The test accuracy

progressively decreases when ρ falls into the interval [0.75, 1]. In these cases, the decoder

will be trained most of the time to reconstruct an image of a different signer than the

one that was used to produce the encoding. This naturally makes the reconstruction task

and the overall CVAE training process more difficult, explaining the noticeable significant

performance drop.

Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org. [Cited on page xxi.]

[2] “How much data is collected every minute of the day,” https://www.forbes.com/

sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-

the-day, accessed: 2021-05-25. [Cited on page 1.]

[3] “Data never sleeps 7.0,” https://www.domo.com/learn/data-never-sleeps-7, ac-

cessed: 2021-05-25. [Cited on page 1.]

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale

hierarchical image database,” in 2009 IEEE conference on computer vision and pattern

recognition. IEEE, 2009, pp. 248–255. [Cited on page 1.]

[5] D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques.

MIT press, 2009. [Cited on pages 10, 12, and 14.]

[6] W. Turin, Continuous State HMM. Boston, MA: Springer US, 2004, pp. 295–340.

[Cited on page 10.]

[7] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statis-

tics). Springer, August 2006. [Cited on page 11.]

[8] L. R. Rabiner and B.-H. Juang, “An introduction to hidden Markov models,” ieee

assp magazine, vol. 3, no. 1, pp. 4–16, 1986. [Cited on page 11.]

[9] L. Baum, “An inequality and associated maximization technique in statistical esti-

mation of probabilistic functions of a Markov process,” Inequalities, vol. 3, pp. 1–8,

1972. [Cited on pages 15 and 25.]

169

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day
https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day
https://www.forbes.com/sites/nicolemartin1/2019/08/07/how-much-data-is-collected-every-minute-of-the-day
https://www.domo.com/learn/data-never-sleeps-7

170 LEARNING FROM MULTI-ENTITY DATA

[10] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, 2nd ed. Cambridge

University Press, 2017. [Cited on page 16.]

[11] J. Rustagi, Variational Methods in Statistics, ser. Mathematics in science and engineer-

ing: a series of monographs and textbooks. Academic Press, 1976, no. vol. 121.

[Cited on page 16.]

[12] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013, cite

arxiv:1312.6114. [Cited on pages 16 and 57.]

[13] A. Allahdadi, D. Pernes, J. S. Cardoso, and R. Morla, “Hidden Markov models on

a self-organizing map for anomaly detection in 802.11 wireless networks,” Neural

Computing and Applications, pp. 1–18, 2021. [Cited on pages 21 and 38.]

[14] D. Pernes and J. S. Cardoso, “SpaMHMM: Sparse mixture of hidden Markov mod-

els for graph connected entities,” in 2019 International Joint Conference on Neural Net-

works (IJCNN). IEEE, 2019, pp. 1–10. [Cited on page 21.]

[15] F. De Vico Fallani, J. Richiardi, M. Chavez, and S. Achard, “Graph analysis of func-

tional brain networks: practical issues in translational neuroscience,” Philosophical

Transactions of the Royal Society of London B: Biological Sciences, vol. 369, no. 1653,

2014. [Cited on page 21.]

[16] M. R. Tora, J. Chen, and J. J. Little, “Classification of puck possession events in ice

hockey,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition Work-

shops (CVPRW), July 2017, pp. 147–154. [Cited on page 22.]

[17] R. Theagarajan, F. Pala, X. Zhang, and B. Bhanu, “Soccer: Who has the ball? gen-

erating visual analytics and player statistics,” in The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops, June 2018. [Cited on page 22.]

[18] N. Cheng, F. Lyu, J. Chen, W. Xu, H. Zhou, S. Zhang, and X. S. Shen, “Big data

driven vehicular networks,” IEEE Network, vol. 32, no. 6, pp. 160–167, November

2018. [Cited on page 22.]

[19] J. Gama and M. M. Gaber, Learning from data streams: processing techniques in sensor

networks. Springer, 2007. [Cited on page 22.]

BIBLIOGRAPHY 171

[20] S. Laxman, V. Tankasali, and R. W. White, “Stream prediction using a generative

model based on frequent episodes in event sequences,” in Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 08 2008,

pp. 453–461. [Cited on page 22.]

[21] M. Z. Hayat and M. R. Hashemi, “A dct based approach for detecting novelty and

concept drift in data streams,” in 2010 International Conference of Soft Computing and

Pattern Recognition, Dec 2010, pp. 373–378. [Cited on page 22.]

[22] A. Hofmann and B. Sick, “Online intrusion alert aggregation with generative data

stream modeling,” IEEE Transactions on Dependable and Secure Computing, vol. 8,

no. 2, pp. 282–294, 2011. [Cited on page 22.]

[23] D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham, and R. G. Baraniuk, “Distributed

compressive sensing,” CoRR, vol. abs/0901.3403, 2009. [Cited on page 23.]

[24] A. Allahdadi, R. Morla, and J. S. Cardoso, “802.11 wireless simulation and anomaly

detection using HMM and UBM,” SIMULATION, vol. 96, no. 12, pp. 939–956, 2020.

[Cited on pages 24, 27, 36, 37, and 47.]

[25] P. Somervuo, “Competing hidden Markov models on the self-organizing map,” in

Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International

Joint Conference on, vol. 3. IEEE, 2000, pp. 169–174. [Cited on page 24.]

[26] M. Kurimo and P. Somervuo, “Using the self-organizing map to speed up the prob-

ability density estimation for speech recognition with mixture density HMMs,”

in Spoken Language, 1996. ICSLP 96. Proceedings, Fourth International Conference on,

vol. 1. IEEE, 1996, pp. 358–361. [Cited on page 24.]

[27] H. Morimoto, “Hidden Markov models and self-organizing maps applied to stroke

incidence,” Open Journal of Applied Sciences, vol. 6, no. 3, pp. 158–168, 2016. [Cited

on pages 24 and 26.]

[28] C. Ferles and A. Stafylopatis, “Self-organizing hidden Markov model map

(SOHMMM),” Neural Networks, vol. 48, pp. 133 – 147, 2013. [Cited on pages 25

and 26.]

172 LEARNING FROM MULTI-ENTITY DATA

[29] C. Ferles, G. Siolas, and A. Stafylopatis, “Scaled self-organizing map–hidden

Markov model architecture for biological sequence clustering,” Applied Artificial In-

telligence, vol. 27, no. 6, pp. 461–495, 2013. [Cited on page 25.]

[30] M. Lebbah, R. Jaziri, Y. Bennani, and J.-H. Chenot, “Probabilistic self-organizing

map for clustering and visualizing non-IID data,” International Journal of Compu-

tational Intelligence and Applications, vol. 14, no. 02, p. 1550007, 2015. [Cited on

page 25.]

[31] P. Baldi and Y. Chauvin, “Smooth on-line learning algorithms for hidden Markov

models,” Neural Computation, vol. 6, no. 2, pp. 307–318, 1994. [Cited on pages 25

and 58.]

[32] G. Niina and H. Dozono, “The spherical hidden Markov self organizing map for

learning time series data,” in International Conference on Artificial Neural Networks.

Springer, 2012, pp. 563–570. [Cited on page 25.]

[33] N. Yamaguchi, “Self-organizing hidden Markov models,” in International Conference

on Neural Information Processing. Springer, 2010, pp. 454–461. [Cited on page 25.]

[34] G. Caridakis, K. Karpouzis, A. Drosopoulos, and S. Kollias, “SOMM: Self organiz-

ing Markov map for gesture recognition,” Pattern Recognition Letters, vol. 31, no. 1,

pp. 52–59, 2010. [Cited on page 25.]

[35] R. Jaziri, M. Lebbah, Y. Bennani, and J.-H. Chenot, “SOS-HMM: self-organizing

structure of hidden Markov model,” in International Conference on Artificial Neural

Networks. Springer, 2011, pp. 87–94. [Cited on page 25.]

[36] C. Ferles and A. Stafylopatis, “Sequence clustering with the self-organizing hidden

Markov model map,” in 2008 8th IEEE International Conference on BioInformatics and

BioEngineering. IEEE, 2008, pp. 1–7. [Cited on pages 26, 27, 28, and 29.]

[37] C. Ferles, W.-S. Beaufort, and V. Ferle, “Self-organizing hidden Markov model map

(SOHMMM): Biological sequence clustering and cluster visualization,” in Hidden

Markov Models. Springer, 2017, pp. 83–101. [Cited on page 26.]

[38] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “A survey of techniques for incre-

mental learning of HMM parameters,” Information Sciences, vol. 197, pp. 105–130,

2012. [Cited on pages 26 and 58.]

BIBLIOGRAPHY 173

[39] S.-B. Cho, “Incorporating soft computing techniques into a probabilistic intrusion

detection system,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-

cations and Reviews), vol. 32, no. 2, pp. 154–160, 2002. [Cited on pages 26 and 27.]

[40] W. Wang, X. Guan, X. Zhang, and L. Yang, “Profiling program behavior for anomaly

intrusion detection based on the transition and frequency property of computer au-

dit data,” Computers & Security, vol. 25, no. 7, pp. 539–550, 2006. [Cited on pages 26

and 27.]

[41] A. Allahdadi, R. Morla, and J. S. Cardoso, “Outlier detection in 802.11 wireless ac-

cess points using hidden Markov models,” in Wireless and Mobile Networking Confer-

ence (WMNC), 2014 7th IFIP. IEEE, 2014, pp. 1–8. [Cited on page 27.]

[42] A. Allahdadi and R. Morla, “Anomaly detection and modeling in 802.11 wireless

networks,” Journal of Network and Systems Management, vol. 27, no. 1, pp. 3–38, Jan

2019. [Cited on pages 27 and 36.]

[43] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in

speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989. [Cited

on page 32.]

[44] B.-H. Juang and L. R. Rabiner, “A probabilistic distance measure for hidden Markov

models,” AT&T Technical Journal, vol. 64, no. 2, pp. 391–408, 1985. [Cited on page 33.]

[45] OMNeT++, discrete event simulator. https://www.omnetpp.org. [Cited on

pages 35 and 47.]

[46] Inet framework. https://inet.omnetpp.org. [Cited on pages 35 and 47.]

[47] Z. Yang, J. Zhao, B. Dhingra, K. He, W. W. Cohen, R. Salakhutdinov, and Y. Le-

Cun, “Glomo: Unsupervisedly learned relational graphs as transferable represen-

tations,” 2018. [Cited on page 44.]

[48] S. Lebedev. hmmlearn, hidden Markov models in python, with scikit-learn like API.

https://github.com/hmmlearn/hmmlearn. [Cited on page 44.]

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014. [Cited on pages 46 and 80.]

https://www.omnetpp.org
https://inet.omnetpp.org
https://github.com/hmmlearn/hmmlearn

174 LEARNING FROM MULTI-ENTITY DATA

[50] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik, “Recurrent network models for

human dynamics,” in Proceedings of the IEEE International Conference on Computer

Vision, 2015, pp. 4346–4354. [Cited on pages 50, 51, and 52.]

[51] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction using re-

current neural networks,” in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). IEEE, 2017, pp. 4674–4683. [Cited on pages 50 and 52.]

[52] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn: Deep learning on

spatio-temporal graphs,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 5308–5317. [Cited on pages 50 and 52.]

[53] D. Pavllo, D. Grangier, and M. Auli, “Quaternet: A quaternion-based recurrent

model for human motion,” arXiv preprint arXiv:1805.06485, 2018. [Cited on pages 50

and 52.]

[54] C. Ionescu, F. Li, and C. Sminchisescu, “Latent structured models for human pose

estimation,” in International Conference on Computer Vision, 2011. [Cited on page 50.]

[55] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m: Large scale

datasets and predictive methods for 3d human sensing in natural environments,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014. [Cited on

page 50.]

[56] C. M. Bishop, “Mixture density networks,” Citeseer, Tech. Rep., 1994. [Cited on

page 56.]

[57] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint

arXiv:1308.0850, 2013.

[58] L. Bazzani, H. Larochelle, and L. Torresani, “Recurrent mixture density network for

spatiotemporal visual attention,” arXiv preprint arXiv:1603.08199, 2016. [Cited on

page 56.]

[59] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of Machine

Learning Research, vol. 3, no. Jan, pp. 993–1022, 2003. [Cited on page 57.]

[60] V. V. Digalakis, “Online adaptation of hidden Markov models using incremental es-

timation algorithms,” IEEE Transactions on Speech and Audio Processing, vol. 7, no. 3,

pp. 253–261, 1999. [Cited on page 58.]

BIBLIOGRAPHY 175

[61] G. Mongillo and S. Deneve, “Online learning with hidden Markov models,” Neural

computation, vol. 20, pp. 1706–16, 08 2008. [Cited on page 58.]

[62] T. Rydén, “On recursive estimation for hidden Markov models,” Stochastic Processes

and their Applications, vol. 66, no. 1, pp. 79–96, 1997. [Cited on page 58.]

[63] F. T. de Andrade, “Adversarial domain adaptation for sensor networks,” Mas-

ter’s thesis, Faculdade de Engenharia da Universidade do Porto, 2020. [Cited on

pages xvii, xviii, 61, 76, 77, 78, and 86.]

[64] D. Pernes and J. S. Cardoso, “Tackling unsupervised multi-source domain adapta-

tion with optimism and consistency,” CoRR, vol. abs/2009.13939, 2020. [Cited on

page 61.]

[65] H. Daumé III, A. Kumar, and A. Saha, “Frustratingly easy semi-supervised domain

adaptation,” in Proceedings of the 2010 Workshop on Domain Adaptation for Natural

Language Processing. Association for Computational Linguistics, 2010, pp. 53–59.

[Cited on page 62.]

[66] J. Donahue, J. Hoffman, E. Rodner, K. Saenko, and T. Darrell, “Semi-supervised

domain adaptation with instance constraints,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2013, pp. 668–675. [Cited on page 62.]

[67] A. Kumar, A. Saha, and H. Daume, “Co-regularization based semi-supervised do-

main adaptation,” in Advances in Neural Information Processing Systems, 2010, pp.

478–486. [Cited on page 62.]

[68] K. Saito, D. Kim, S. Sclaroff, T. Darrell, and K. Saenko, “Semi-supervised domain

adaptation via minimax entropy,” in Proceedings of the IEEE International Conference

on Computer Vision, 2019, pp. 8050–8058. [Cited on page 62.]

[69] T. Yao, Y. Pan, C.-W. Ngo, H. Li, and T. Mei, “Semi-supervised domain adaptation

with subspace learning for visual recognition,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2015, pp. 2142–2150. [Cited on page 62.]

[70] M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann, “Unsupervised

domain adaptation by domain invariant projection,” in Proceedings of the IEEE Inter-

national Conference on Computer Vision, 2013, pp. 769–776. [Cited on page 62.]

176 LEARNING FROM MULTI-ENTITY DATA

[71] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropaga-

tion,” in International Conference on Machine Learning, 2015, pp. 1180–1189. [Cited on

pages 62, 70, 73, 74, 83, 87, 95, 96, 97, 103, 106, 107, 112, 130, 131, 132, 163, and 165.]

[72] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann, “Contrastive adaptation network

for unsupervised domain adaptation,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019, pp. 4893–4902. [Cited on page 62.]

[73] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Unsupervised domain adaptation with

residual transfer networks,” in Advances in Neural Information Processing Systems,

2016, pp. 136–144. [Cited on page 62.]

[74] H. Zhao, S. Zhang, G. Wu, J. M. Moura, J. P. Costeira, and G. J. Gordon, “Adversarial

multiple source domain adaptation,” in Advances in Neural Information Processing

Systems, 2018, pp. 8559–8570. [Cited on pages 62, 63, 65, 70, 72, 89, 90, 92, 94, 95, 96,

97, and 103.]

[75] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A

theory of learning from different domains,” Machine learning, vol. 79, no. 1-2, pp.

151–175, 2010. [Cited on pages 62, 63, 64, 65, 88, and 145.]

[76] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of representations for

domain adaptation,” in Advances in Neural Information Processing Systems, 2007, pp.

137–144. [Cited on page 62.]

[77] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman, “Learning bounds for

domain adaptation,” in Advances in Neural Information Processing Systems, 2008, pp.

129–136. [Cited on pages 62 and 145.]

[78] C. Cortes and M. Mohri, “Domain adaptation and sample bias correction theory

and algorithm for regression,” Theoretical Computer Science, vol. 519, pp. 103–126,

2014. [Cited on page 62.]

[79] R. Gopalan, R. Li, and R. Chellappa, “Unsupervised adaptation across domain

shifts by generating intermediate data representations,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 36, no. 11, pp. 2288–2302, 2013. [Cited on

page 62.]

BIBLIOGRAPHY 177

[80] J. Hoffman, M. Mohri, and N. Zhang, “Algorithms and theory for multiple-source

adaptation,” in Advances in Neural Information Processing Systems, 2018, pp. 8246–

8256. [Cited on page 62.]

[81] H. Zhao, R. T. Des Combes, K. Zhang, and G. Gordon, “On learning invariant rep-

resentations for domain adaptation,” in International Conference on Machine Learning,

2019, pp. 7523–7532. [Cited on pages 62, 87, 89, 90, 146, and 149.]

[82] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand, “Domain-

adversarial neural networks,” arXiv preprint arXiv:1412.4446, 2014. [Cited on

page 62.]

[83] C. J. Becker, C. M. Christoudias, and P. Fua, “Non-linear domain adaptation with

boosting,” in Advances in Neural Information Processing Systems, 2013, pp. 485–493.

[Cited on page 62.]

[84] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised visual do-

main adaptation using subspace alignment,” in Proceedings of the IEEE International

Conference on Computer Vision, 2013, pp. 2960–2967. [Cited on page 62.]

[85] I.-H. Jhuo, D. Liu, D. Lee, and S.-F. Chang, “Robust visual domain adaptation with

low-rank reconstruction,” in 2012 IEEE Conference on Computer Vision and Pattern

Recognition. IEEE, 2012, pp. 2168–2175. [Cited on page 62.]

[86] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable features

with deep adaptation networks,” arXiv preprint arXiv:1502.02791, 2015. [Cited on

pages 62 and 70.]

[87] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel, “The variational fair au-

toencoder,” in International Conference on Learning Representations, 2016. [Cited on

page 62.]

[88] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adaptation,”

in Thirtieth AAAI Conference on Artificial Intelligence, 2016. [Cited on page 62.]

[89] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative do-

main adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2017, pp. 7167–7176. [Cited on page 62.]

178 LEARNING FROM MULTI-ENTITY DATA

[90] Y.-B. Kim, K. Stratos, and D. Kim, “Domain attention with an ensemble of experts,”

in Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-

tics (Volume 1: Long Papers), 2017, pp. 643–653. [Cited on page 62.]

[91] J. Guo, D. Shah, and R. Barzilay, “Multi-source domain adaptation with mixture of

experts,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-

guage Processing, 2018, pp. 4694–4703. [Cited on pages 62, 70, 87, 95, 96, and 97.]

[92] Y. Mansour, M. Mohri, and A. Rostamizadeh, “Domain adaptation: Learning

bounds and algorithms,” in 22nd Conference on Learning Theory, COLT 2009, 2009.

[Cited on page 62.]

[93] A. Schoenauer-Sebag, L. Heinrich, M. Schoenauer, M. Sebag, L. Wu, and

S. Altschuler, “Multi-domain adversarial learning,” in International Conference on

Learning Representations, 2019. [Cited on pages 62, 70, 88, and 91.]

[94] K. Zhang, M. Gong, and B. Schölkopf, “Multi-source domain adaptation: A causal

view,” in Twenty-ninth AAAI conference on artificial intelligence, 2015. [Cited on

page 62.]

[95] C. Cortes and M. Mohri, “Domain adaptation in regression,” in Algorithmic Learning

Theory, J. Kivinen, C. Szepesvári, E. Ukkonen, and T. Zeugmann, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 308–323. [Cited on page 63.]

[96] Z. Lipton, Y.-X. Wang, and A. Smola, “Detecting and correcting for label shift with

black box predictors,” in Proceedings of the 35th International Conference on Machine

Learning, ser. Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds.,

vol. 80. Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 3122–

3130. [Cited on page 67.]

[97] A. Iyer, S. Nath, and S. Sarawagi, “Maximum mean discrepancy for class ratio es-

timation: Convergence bounds and kernel selection,” in International Conference on

Machine Learning, 2014, pp. 530–538. [Cited on page 67.]

[98] K. Zhang, B. Schölkopf, K. Muandet, and Z. Wang, “Domain adaptation under tar-

get and conditional shift,” in International Conference on Machine Learning, 2013, pp.

819–827. [Cited on pages 67 and 68.]

BIBLIOGRAPHY 179

[99] Y. S. Chan and H. T. Ng, “Word sense disambiguation with distribution estimation,”

in Proceedings of the 19th International Joint Conference on Artificial Intelligence, ser.

IJCAI’05. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005, p.

1010–1015. [Cited on page 67.]

[100] A. Storkey, “When training and test sets are different: characterizing learning trans-

fer,” Dataset shift in machine learning, pp. 3–28, 2009. [Cited on page 67.]

[101] G. I. Webb, L. K. Lee, B. Goethals, and F. Petitjean, “Analyzing concept drift and

shift from sample data,” Data Mining and Knowledge Discovery, vol. 32, no. 5, pp.

1179–1199, 2018. [Cited on page 68.]

[102] J. Gama, I. Žliobaitundefined, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A sur-

vey on concept drift adaptation,” ACM Comput. Surv., vol. 46, no. 4, Mar. 2014.

[Cited on page 68.]

[103] M. Sugiyama, M. Krauledat, and K.-R. Müller, “Covariate shift adaptation by im-

portance weighted cross validation.” Journal of Machine Learning Research, vol. 8, pp.

985–1005, 05 2007. [Cited on page 69.]

[104] H. Shimodaira, “Improving predictive inference under covariate shift by weighting

the log-likelihood function,” Journal of Statistical Planning and Inference, vol. 90, no. 2,

pp. 227–244, 2000. [Cited on page 69.]

[105] C. Cortes, Y. Mansour, and M. Mohri, “Learning bounds for importance weighting,”

in Advances in Neural Information Processing Systems, 2010, pp. 442–450. [Cited on

page 69.]

[106] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal transport for

domain adaptation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 39, no. 9, pp. 1853–1865, 2017. [Cited on page 69.]

[107] N. Courty, R. Flamary, A. Habrard, and A. Rakotomamonjy, “Joint distribution op-

timal transportation for domain adaptation,” in Advances in Neural Information Pro-

cessing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Cited on

page 69.]

180 LEARNING FROM MULTI-ENTITY DATA

[108] R. Turrisi, R. Flamary, A. Rakotomamonjy, and M. Pontil, “Multi-source do-

main adaptation via weighted joint distributions optimal transport,” arXiv preprint

arXiv:2006.12938, 2020. [Cited on page 69.]

[109] Z. Pei, Z. Cao, M. Long, and J. Wang, “Multi-adversarial domain adaptation,” in

Thirty-Second AAAI Conference on Artificial Intelligence, 2018. [Cited on pages 70, 87,

95, and 96.]

[110] E. Bareinboim and J. Pearl, “Causal inference and the data-fusion problem,” Proceed-

ings of the National Academy of Sciences, vol. 113, no. 27, pp. 7345–7352, 2016. [Cited

on page 71.]

[111] M. Rojas-Carulla, B. Schölkopf, R. Turner, and J. Peters, “Invariant models for causal

transfer learning,” The Journal of Machine Learning Research, vol. 19, no. 1, pp. 1309–

1342, 2018. [Cited on page 71.]

[112] S. Magliacane, T. van Ommen, T. Claassen, S. Bongers, P. Versteeg, and J. M. Mooij,

“Domain adaptation by using causal inference to predict invariant conditional dis-

tributions,” in Advances in Neural Information Processing Systems, 2018. [Cited on

page 71.]

[113] J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf, “Causal discovery with con-

tinuous additive noise models,” Journal of Machine Learning Research, vol. 15, pp.

2009–2053, 2014. [Cited on page 71.]

[114] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Ben-

gio, “Toward causal representation learning,” Proceedings of the IEEE, 2021. [Cited

on page 71.]

[115] M.-H. Chen, Z. Kira, and G. AlRegib, “Temporal attentive alignment for video do-

main adaptation,” in International Conference on Computer Vision (ICCV), 2019. [Cited

on page 72.]

[116] Y. Liu and X. Li, “Domain adaptation for land use classification: A spatio-temporal

knowledge reusing method,” ISPRS Journal of Photogrammetry and Remote Sensing,

vol. 98, pp. 133 – 144, 2014. [Cited on page 72.]

[117] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997. [Cited on page 72.]

BIBLIOGRAPHY 181

[118] S. Zhang, G. Wu, J. P. Costeira, and J. M. F. Moura, “FCN-rLSTM: Deep spatio-

temporal neural networks for vehicle counting in city cameras,” 2017 IEEE In-

ternational Conference on Computer Vision (ICCV), pp. 3687–3696, 2017. [Cited on

pages xvii, 72, 74, and 75.]

[119] A. B. Chan and N. Vasconcelos, “Modeling, clustering, and segmenting video with

mixtures of dynamic textures,” IEEE transactions on pattern analysis and machine in-

telligence, vol. 30, no. 5, pp. 909–926, 2008. [Cited on page 80.]

[120] S. Zhang, G. Wu, J. P. Costeira, and J. M. Moura, “Understanding traffic density

from large-scale web camera data,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 5898–5907. [Cited on page 81.]

[121] P. M. Ferreira, D. Pernes, A. Rebelo, and J. S. Cardoso, “DeSIRe: Deep signer-

invariant representations for sign language recognition,” IEEE Transactions on Sys-

tems, Man, and Cybernetics: Systems, 2019. [Cited on pages 87 and 101.]

[122] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Kurakin,

H. Zhang, and C. Raffel, “Fixmatch: Simplifying semi-supervised learning with

consistency and confidence,” arXiv preprint arXiv:2001.07685, 2020. [Cited on

pages 93 and 94.]

[123] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical data aug-

mentation with no separate search,” arXiv preprint arXiv:1909.13719, 2019. [Cited on

page 94.]

[124] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The journal

of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014. [Cited on page 94.]

[125] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment matching for

multi-source domain adaptation,” in Proceedings of the IEEE International Conference

on Computer Vision, 2019, pp. 1406–1415. [Cited on pages 95 and 97.]

[126] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[Cited on page 95.]

182 LEARNING FROM MULTI-ENTITY DATA

[127] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in

natural images with unsupervised feature learning,” in Advances in Neural Informa-

tion Processing Systems, 2011. [Cited on page 95.]

[128] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to

new domains,” in European Conference on Computer Vision. Springer, 2010, pp. 213–

226. [Cited on page 95.]

[129] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,

pp. 770–778. [Cited on page 96.]

[130] J. Blitzer, M. Dredze, and F. Pereira, “Biographies, bollywood, boom-boxes and

blenders: Domain adaptation for sentiment classification,” in Proceedings of the 45th

annual meeting of the association of computational linguistics, 2007, pp. 440–447. [Cited

on page 96.]

[131] M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized denoising autoencoders

for domain adaptation,” arXiv preprint arXiv:1206.4683, 2012. [Cited on page 96.]

[132] P. M. Ferreira, D. Pernes, A. Rebelo, and J. S. Cardoso, “Learning signer-invariant

representations with adversarial training,” in Twelfth International Conference on Ma-

chine Vision (ICMV 2019), vol. 11433. International Society for Optics and Photonics,

2020, p. 114333D. [Cited on page 101.]

[133] ——, “Signer-independent sign language recognition with adversarial neural net-

works,” International Journal of Machine Learning and Computing, vol. 11, no. 2, 2021.

[Cited on page 101.]

[134] P. M. Ferreira, A. F. Sequeira, D. Pernes, A. Rebelo, and J. S. Cardoso, “Adversarial

learning for a robust iris presentation attack detection method against unseen attack

presentations,” in 2019 International Conference of the Biometrics Special Interest Group

(BIOSIG), 2019, pp. 1–7. [Cited on pages 101 and 123.]

[135] G. Blanchard, G. Lee, and C. Scott, “Generalizing from several related classification

tasks to a new unlabeled sample,” in Advances in Neural Information Processing Sys-

tems, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, Eds.,

vol. 24. Curran Associates, Inc., 2011. [Cited on page 102.]

BIBLIOGRAPHY 183

[136] K. Muandet, D. Balduzzi, and B. Schölkopf, “Domain generalization via invariant

feature representation,” in International Conference on Machine Learning. PMLR,

2013, pp. 10–18. [Cited on page 102.]

[137] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain generalization: A sur-

vey,” arXiv preprint arXiv:2103.02503, 2021. [Cited on pages 103 and 104.]

[138] I. Albuquerque, J. Monteiro, M. Darvishi, T. H. Falk, and I. Mitliagkas, “Generaliz-

ing to unseen domains via distribution matching,” arXiv preprint arXiv:1911.00804,

2019. [Cited on page 103.]

[139] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with adversarial

feature learning,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 5400–5409. [Cited on page 103.]

[140] M. Ghifary, W. B. Kleijn, M. Zhang, and D. Balduzzi, “Domain generalization for

object recognition with multi-task autoencoders,” in Proceedings of the IEEE interna-

tional conference on computer vision, 2015, pp. 2551–2559. [Cited on page 103.]

[141] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto, “Unified deep supervised

domain adaptation and generalization,” in Proceedings of the IEEE international con-

ference on computer vision, 2017, pp. 5715–5725. [Cited on page 103.]

[142] S. Aslani, V. Murino, M. Dayan, R. Tam, D. Sona, and G. Hamarneh, “Scanner in-

variant multiple sclerosis lesion segmentation from mri,” in 2020 IEEE 17th Interna-

tional Symposium on Biomedical Imaging (ISBI). IEEE, 2020, pp. 781–785. [Cited on

page 103.]

[143] T. Matsuura and T. Harada, “Domain generalization using a mixture of multiple

latent domains,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,

no. 07, 2020, pp. 11 749–11 756. [Cited on page 103.]

[144] R. Shao, X. Lan, J. Li, and P. C. Yuen, “Multi-adversarial discriminative deep domain

generalization for face presentation attack detection,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp. 10 023–10 031. [Cited

on page 103.]

184 LEARNING FROM MULTI-ENTITY DATA

[145] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep domain gener-

alization via conditional invariant adversarial networks,” in Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), 2018, pp. 624–639. [Cited on page 103.]

[146] Z. Xu, W. Li, L. Niu, and D. Xu, “Exploiting low-rank structure from latent domains

for domain generalization,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla,

B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014,

pp. 628–643. [Cited on page 103.]

[147] A. D’Innocente and B. Caputo, “Domain generalization with domain-specific ag-

gregation modules,” in German Conference on Pattern Recognition. Springer, 2018,

pp. 187–198. [Cited on page 104.]

[148] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang, “Domain adaptive ensemble learning,”

arXiv preprint arXiv:2003.07325, 2020. [Cited on page 104.]

[149] S. Wang, L. Yu, K. Li, X. Yang, C.-W. Fu, and P.-A. Heng, “Dofe: Domain-

oriented feature embedding for generalizable fundus image segmentation on un-

seen datasets,” IEEE Transactions on Medical Imaging, vol. 39, no. 12, pp. 4237–4248,

2020. [Cited on page 104.]

[150] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in European con-

ference on computer vision. Springer, 2016, pp. 649–666. [Cited on page 104.]

[151] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learn-

ing by context prediction,” in Proceedings of the IEEE international conference on com-

puter vision, 2015, pp. 1422–1430. [Cited on page 104.]

[152] D. Wei, J. J. Lim, A. Zisserman, and W. T. Freeman, “Learning and using the ar-

row of time,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 8052–8060. [Cited on page 104.]

[153] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi, “Domain gen-

eralization by solving jigsaw puzzles,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 2229–2238. [Cited on page 104.]

[154] S. Wang, L. Yu, C. Li, C.-W. Fu, and P.-A. Heng, “Learning from extrinsic and in-

trinsic supervisions for domain generalization,” in European Conference on Computer

Vision. Springer, 2020, pp. 159–176. [Cited on page 104.]

BIBLIOGRAPHY 185

[155] J. Wang, C. Lan, C. Liu, Y. Ouyang, and T. Qin, “Generalizing to unseen domains:

A survey on domain generalization,” arXiv preprint arXiv:2103.03097, 2021. [Cited

on page 104.]

[156] M. Ebrahim Al-Ahdal and M. T. Nooritawati, “Review in sign language recognition

systems,” in 2012 IEEE Symposium on Computers Informatics (ISCI), March 2012, pp.

52–57. [Cited on page 105.]

[157] L. Pigou, S. Dieleman, P.-J. Kindermans, and B. Schrauwen, “Sign language recog-

nition using convolutional neural networks,” in Computer Vision - ECCV 2014 Work-

shops, L. Agapito, M. M. Bronstein, and C. Rother, Eds. Cham: Springer Interna-

tional Publishing, 2015, pp. 572–578. [Cited on pages 105 and 109.]

[158] O. Koller, H. Ney, and R. Bowden, “Deep hand: How to train a cnn on 1 million

hand images when your data is continuous and weakly labelled,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 3793–

3802. [Cited on pages 105 and 109.]

[159] D. Wu, L. Pigou, P. Kindermans, N. D. Le, L. Shao, J. Dambre, and J. Odobez, “Deep

dynamic neural networks for multimodal gesture segmentation and recognition,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 8, pp. 1583–

1597, Aug 2016. [Cited on pages 105 and 109.]

[160] N. Neverova, C. Wolf, G. Taylor, and F. Nebout, “Moddrop: Adaptive multi-modal

gesture recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 38, no. 8, pp. 1692–1706, Aug 2016. [Cited on pages 105 and 109.]

[161] P. Kumar, H. Gauba, P. P. Roy, and D. P. Dogra, “A multimodal framework for sensor

based sign language recognition,” Neurocomputing, vol. 259, pp. 21 – 38, 2017, mul-

timodal Media Data Understanding and Analytics. [Cited on pages 105 and 109.]

[162] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural

Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,

and K. Q. Weinberger, Eds., vol. 27. Curran Associates, Inc., 2014. [Cited on

page 106.]

186 LEARNING FROM MULTI-ENTITY DATA

[163] C. Feutry, P. Piantanida, Y. Bengio, and P. Duhamel, “Learning anonymized repre-

sentations with adversarial neural networks,” arXiv preprint arXiv:1802.09386, 2018.

[Cited on pages 106, 107, and 112.]

[164] G. Marin, F. Dominio, and P. Zanuttigh, “Hand gesture recognition with leap mo-

tion and kinect devices,” in 2014 IEEE International conference on image processing

(ICIP). IEEE, 2014, pp. 1565–1569. [Cited on pages 107, 114, 116, and 117.]

[165] ——, “Hand gesture recognition with jointly calibrated leap motion and depth sen-

sor,” Multimedia Tools and Applications, vol. 75, no. 22, pp. 14 991–15 015, 2016. [Cited

on pages 107 and 114.]

[166] D. Guo, W. Zhou, H. Li, and M. Wang, “Online early-late fusion based on adap-

tive hmm for sign language recognition,” ACM Trans. Multimedia Comput. Commun.

Appl., vol. 14, no. 1, pp. 8:1–8:18, Dec. 2017. [Cited on page 107.]

[167] ——, “Hierarchical lstm for sign language translation,” in AAAI, 2018. [Cited on

page 107.]

[168] S. Wang, D. Guo, W.-g. Zhou, Z.-J. Zha, and M. Wang, “Connectionist temporal

fusion for sign language translation,” in Proceedings of the 26th ACM International

Conference on Multimedia, ser. MM ’18. New York, NY, USA: ACM, 2018, pp. 1483–

1491. [Cited on page 107.]

[169] U. von Agris, D. Schneider, J. Zieren, and K. Kraiss, “Rapid signer adaptation for

isolated sign language recognition,” in 2006 Conference on Computer Vision and Pat-

tern Recognition Workshop (CVPRW’06), June 2006, pp. 159–159. [Cited on page 108.]

[170] U. von Agris, C. Blomer, and K. Kraiss, “Rapid signer adaptation for continuous

sign language recognition using a combined approach of eigenvoices, mllr, and

map,” in 2008 19th International Conference on Pattern Recognition, Dec 2008, pp. 1–4.

[Cited on page 108.]

[171] R. Kuhn, J. . Junqua, P. Nguyen, and N. Niedzielski, “Rapid speaker adaptation in

eigenvoice space,” IEEE Transactions on Speech and Audio Processing, vol. 8, no. 6, pp.

695–707, Nov 2000. [Cited on page 108.]

BIBLIOGRAPHY 187

[172] T. Kim, W. Wang, H. Tang, and K. Livescu, “Signer-independent fingerspelling

recognition with deep neural network adaptation,” CoRR, vol. abs/1602.04278,

2016. [Cited on page 108.]

[173] F. Yin, X. Chai, Y. Zhou, and X. Chen, “Weakly supervised metric learning towards

signer adaptation for sign language recognition,” in Proceedings of the British Machine

Vision Conference (BMVC). BMVA Press, September 2015, pp. 35.1–35.12. [Cited on

page 108.]

[174] J. Zieren and K.-F. Kraiss, “Robust person-independent visual sign language recog-

nition,” in Pattern Recognition and Image Analysis, J. S. Marques, N. Pérez de la

Blanca, and P. Pina, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,

pp. 520–528. [Cited on page 108.]

[175] T. Shanableh and K. Assaleh, “User-independent recognition of arabic sign lan-

guage for facilitating communication with the deaf community,” Digital Signal Pro-

cessing, vol. 21, no. 4, pp. 535 – 542, 2011. [Cited on page 108.]

[176] U. von Agris, J. Zieren, U. Canzler, B. Bauer, and K.-F. Kraiss, “Recent develop-

ments in visual sign language recognition,” Universal Access in the Information Soci-

ety, vol. 6, no. 4, pp. 323–362, Feb 2008. [Cited on page 108.]

[177] W. Kong and S. Ranganath, “Towards subject independent continuous sign lan-

guage recognition: A segment and merge approach,” Pattern Recognition, vol. 47,

no. 3, pp. 1294 – 1308, 2014, handwriting Recognition and other PR Applications.

[Cited on pages 108 and 109.]

[178] D. Kelly, J. McDonald, and C. Markham, “A person independent system for recog-

nition of hand postures used in sign language,” Pattern Recognition Letters, vol. 31,

no. 11, pp. 1359 – 1368, 2010. [Cited on pages 108, 109, 116, and 117.]

[179] D. Dahmani and S. Larabi, “User-independent system for sign language finger

spelling recognition,” Journal of Visual Communication and Image Representation,

vol. 25, no. 5, pp. 1240 – 1250, 2014. [Cited on pages 108, 116, and 117.]

[180] F. Yin, X. Chai, and X. Chen, “Iterative reference driven metric learning for signer

independent isolated sign language recognition,” in Computer Vision – ECCV 2016,

B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer International

Publishing, 2016, pp. 434–450. [Cited on pages 108 and 109.]

188 LEARNING FROM MULTI-ENTITY DATA

[181] J. Triesch and C. von der Malsburg, “A system for person-independent hand pos-

ture recognition against complex backgrounds,” IEEE Trans. Pattern Anal. Mach. In-

tell., vol. 23, no. 12, pp. 1449–1453, Dec. 2001. [Cited on page 114.]

[182] A. Just, Y. Rodriguez, and S. Marcel, “Hand posture classification and recognition

using the modified census transform,” in 7th International Conference on Automatic

Face and Gesture Recognition (FGR06), April 2006, pp. 351–356. [Cited on pages 114,

116, and 117.]

[183] P. M. Ferreira, J. S. Cardoso, and A. Rebelo, “On the role of multimodal learning in

the recognition of sign language,” Multimedia Tools and Applications, Sep 2018. [Cited

on pages 115, 116, 117, and 160.]

[184] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face

recognition and clustering,” CoRR, vol. abs/1503.03832, 2015. [Cited on pages 115

and 116.]

[185] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine

Learning Research, vol. 9, pp. 2579–2605, 2008. [Cited on pages xix, 118, 162, and 163.]

[186] “Chaos Computer Clubs breaks iris recognition system of the Samsung Galaxy S8,”

www.ccc.de/en/updates/2017/iriden, accessed on 29th of May of 2017. [Cited on

page 119.]

[187] R. Raghavendra and C. Busch, “Robust scheme for iris pres. attack det. using mul-

tiscale binarized statistical image features,” IEEE TIFS, vol. 10, no. 4, pp. 703–715,

2015. [Cited on pages 119, 121, and 123.]

[188] A. Czajka and K. W. Bowyer, “Pad for iris recognition: An assessment of the state-

of-the-art,” ACM Comput. Surv., vol. 51, no. 4, pp. 86:1–86:35, Jul. 2018. [Cited on

page 119.]

[189] J. Galbally, J. Fierrez, and R. Cappelli, An Introduction to Fingerprint Presentation At-

tack Detection. Cham: Springer International Publishing, 2019, pp. 3–31. [Cited on

page 119.]

[190] U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, and C. Busch, “Face recognition

systems under morphing attacks: A survey,” IEEE Access, vol. 7, pp. 23 012–23 026,

2019. [Cited on page 119.]

 www.ccc.de/en/updates/2017/iriden

BIBLIOGRAPHY 189

[191] “Facetec liveness detection technology is ibeta/NIST certified anti-spoofing – level

1&2,” www.zoomlogin.com/, accessed on 10th of June of 2019. [Cited on page 120.]

[192] A. F. Sequeira, S. Thavalengal, J. Ferryman, P. Corcoran, and J. S. Cardoso, “A re-

alistic evaluation of iris presentation attack detection,” in 39th TSP, June 2016, pp.

660–664. [Cited on pages 120, 121, and 123.]

[193] E. Marasco and C. Sansone, “On the robustness of fingerprint liveness detect.

alg. against new materials used for spoofing.” in BIOSIGNALS, 2011, pp. 553–558.

[Cited on page 121.]

[194] K. Bowyer and J. Doyle, “Cosmetic contact lenses and iris recognition spoofing,”

Computer, vol. 47, no. 5, pp. 96–98, May 2014. [Cited on page 121.]

[195] A. Rattani, W. Scheirer, and A. Ross, “Open set fingerprint spoof detection across

novel fabrication materials,” IEEE TIFS, vol. 10, no. 11, pp. 2447–2460, Nov 2015.

[Cited on page 121.]

[196] A. F. Sequeira and J. S. Cardoso, “Fingerprint liveness detection in the presence of

capable intruders,” Sensors, vol. 15, pp. 14 615–14 638, 2015. [Cited on page 121.]

[197] A. F. Sequeira, J. Murari, and J. S. Cardoso, “Iris liveness detection methods in mo-

bile applications,” in Proc. Int. Con. on CV Theory and Applic., 2014, pp. 22 – 33. [Cited

on page 121.]

[198] S. R. Arashloo, J. Kittler, and W. Christmas, “An anomaly detection approach to

face spoofing detection: A new formulation and evaluation protocol,” IEEE Access,

vol. 5, pp. 13 868–13 882, 2017. [Cited on page 121.]

[199] D. Menotti, G. Chiachia, A. Pinto, W. Robson Schwartz, H. Pedrini, A. Xavier Falcao,

and A. Rocha, “Deeprep.iris,face,and fingerp.spoof.det.” TIFS, vol. 10, no. 4, pp.

864–879, 2015. [Cited on page 121.]

[200] A. Pinto, H. Pedrini, M. Krumdick, B. Becker, A. Czajka, K. W. Bowyer, and

A. Rocha, “Counteracting presentation attacks in face, fingerprint, and iris recog-

nition,” Deep Learning in Biometrics, vol. 245, 2018. [Cited on page 121.]

[201] R. Tolosana, M. Gomez-Barrero, J. Kolberg, A. Morales, C. Busch, and J. Ortega-

Garcia, “Towards fingerprint presentation attack detection based on convolutional

www.zoomlogin.com/

190 LEARNING FROM MULTI-ENTITY DATA

neural networks and short wave infrared imaging,” in 2018 International Conference

of the Biometrics Special Interest Group (BIOSIG). IEEE, 2018, pp. 1–5. [Cited on

page 121.]

[202] H. Zhang, Z. Sun, and T. Tan, “Contact lens detection based on weighted LBP,” in

20th ICPR, 23 - 26 August 2010, pp. 4279–4282. [Cited on page 123.]

[203] J. A. Pereira, A. F. Sequeira, D. Pernes, and J. S. Cardoso, “A robust fingerprint pre-

sentation attack detection method against unseen attacks through adversarial learn-

ing,” in 2020 International Conference of the Biometrics Special Interest Group (BIOSIG),

2020, pp. 1–5. [Cited on page 124.]

[204] P. Ferreira, I. Rodrigues, A. Rio, R. Sousa, E. Marques, and A. M. S. Rebelo, “CorSiL:

A novel dataset for portuguese sign language and expressiveness recognition,” in

Portuguese Conference on Pattern Recognition (RecPad), 2014. [Cited on page 129.]

[205] J. Hu, J. Lu, Y. Tan, and J. Zhou, “Deep transfer metric learning,” IEEE Transactions

on Image Processing, vol. 25, no. 12, pp. 5576–5588, Dec 2016. [Cited on pages 130,

131, 132, 163, and 165.]

[206] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz, and S. Bengio, “Gener-

ating sentences from a continuous space,” CoRR, vol. abs/1511.06349, 2015. [Cited

on page 159.]

[207] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp. 53–65,

1987. [Cited on page 163.]

[208] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting compact

well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32–57, 1973. [Cited

on page 163.]

	Agradecimentos
	Resumo
	Abstract
	Contents
	List of Figures
	Notation and Conventions
	Glossary
	1 Introduction
	1.1 Motivation, objectives, and contributions
	1.2 List of publications
	1.2.1 International journal papers
	1.2.2 International conference papers

	2 Background
	2.1 Introduction
	2.2 Useful definitions and conventions
	2.3 Bayesian networks
	2.3.1 Definition and structural properties
	2.3.2 Chains and forks
	2.3.3 Immoralities
	2.3.4 D-separation
	2.3.5 The hidden Markov model

	2.4 The expectation-maximization algorithm
	2.4.1 General formulation
	2.4.1.1 E-step
	2.4.1.2 M-step

	2.4.2 EM for table CPDs
	2.4.3 EM for the discrete-emission HMM

	2.5 Variational autoencoder
	2.5.1 Formulation
	2.5.2 Gradient of the decoder
	2.5.3 Gradient of the encoder
	2.5.4 Loss function

	2.6 Conclusion

	3 Networked data streams
	3.1 Introduction
	3.2 Hidden Markov models on a self-organizing map for anomaly detection in 802.11 wireless networks
	3.2.1 Introduction
	3.2.2 Related work
	3.2.3 The self-organizing hidden Markov model map for discrete observations
	3.2.4 Extending SOHMMM to Gaussian observations
	3.2.5 Experiments
	3.2.5.1 Synthetic data
	3.2.5.2 Wireless simulation data

	3.2.6 Conclusion

	3.3 SpaMHMM: sparse mixture of hidden Markov Models for graph-connected entities
	3.3.1 Overview
	3.3.2 Model formulation
	3.3.2.1 Definition
	3.3.2.2 Inference
	3.3.2.3 Learning

	3.3.3 Experiments
	3.3.4 Anomaly detection in Wi-Fi networks
	3.3.5 Human motion forecasting
	3.3.5.1 Forecasting
	3.3.5.2 Joint cluster analysis

	3.3.6 Conclusion

	3.4 Summary and directions for future work
	3.4.1 SOHMMM vs. SpaMHMM
	3.4.2 Generalizing SpaMHMM
	3.4.3 Offline, centralized learning
	3.4.4 Online, centralized learning
	3.4.5 Online, distributed learning

	4 Multi-source domain adaptation
	4.1 Introduction
	4.2 Background
	4.2.1 Theoretical foundation
	4.2.1.1 Single source setting
	4.2.1.2 Multi-source setting

	4.2.2 State of the art
	4.2.2.1 Target shift
	4.2.2.2 Conditional shift
	4.2.2.3 Concept shift
	4.2.2.4 Covariate shift
	4.2.2.5 Invariance of causal mechanisms

	4.3 Adversarial domain adaptation for object counting in videos
	4.3.1 Motivation
	4.3.2 MDAN: Multi-source domain adversarial networks
	4.3.2.1 The gradient reversal layer

	4.3.3 FCN-rLSTM: Spatio-temporal deep neural network for object counting
	4.3.4 Combining MDAN and FCN-rLSTM
	4.3.4.1 Non-Temporal model
	4.3.4.2 SingleLSTM model
	4.3.4.3 DoubleLSTM model
	4.3.4.4 CommonLSTM model
	4.3.4.5 Overview

	4.3.5 Experiments
	4.3.5.1 Experimental protocol
	4.3.5.2 UCSDPeds dataset
	4.3.5.3 WebCamT dataset

	4.3.6 Choice of the optimization problem
	4.3.7 Unsupervised setting
	4.3.8 Semi-supervised setting
	4.3.9 Conclusion

	4.4 Tackling unsupervised multi-source domain adaptation with optimism and consistency
	4.4.1 Introduction
	4.4.2 Motivation
	4.4.2.1 An upper bound on the target risk
	4.4.2.2 The curse of domain-invariant representations
	4.4.2.3 Choosing the combination of source domains

	4.4.3 Methodology
	4.4.3.1 Domain adaptation from a dynamic mixture of sources
	4.4.3.2 Consistency regularization on the target domain

	4.4.4 Experiments
	4.4.4.1 Experimental protocol
	4.4.4.2 Discussion

	4.4.5 Conclusion

	4.5 Summary

	5 Domain generalization
	5.1 Introduction
	5.2 State of the art
	5.3 Adversarial domain generalization for signer-independent sign language recognition
	5.3.1 Introduction
	5.3.2 Related Work
	5.3.3 Methodology
	5.3.3.1 Architecture
	5.3.3.2 Adversarial training
	5.3.3.3 Signer-transfer training objective

	5.3.4 Experiments
	5.3.4.1 Datasets
	5.3.4.2 Baselines
	5.3.4.3 Results and discussion
	5.3.4.4 Latent space visualization

	5.3.5 Conclusion

	5.4 Adversarial domain generalization for iris presentation attack detection
	5.4.1 Introduction
	5.4.2 Related work
	5.4.3 Methodology
	5.4.4 Experiments
	5.4.5 Conclusion

	5.5 DeSIRe: deep signer-invariant representations for sign language recognition
	5.5.1 Introduction
	5.5.2 The DeSIRe model
	5.5.2.1 Loss function
	5.5.2.2 Inference

	5.5.3 Experiments
	5.5.3.1 Datasets
	5.5.3.2 Baselines
	5.5.3.3 Results and discussion

	5.5.4 Conclusion

	5.6 Summary

	6 Conclusion
	6.1 Summary of contributions
	6.2 Final remarks and directions for future work

	A SpaMHMM – supplementary material
	A.1 Derivation of the EM learning algorithms for MHMM and SpaMHMM
	A.1.1 EM for MHMM (Algorithm 3.3)
	A.1.2 EM for SpaMHMM (Algorithm 3.4)

	A.2 Posterior distribution of observations

	B Tackling unsupervised multi-source domain adaptation with optimism and consistency – supplementary material
	B.1 Proof of Theorem 4.4
	B.2 Model overview
	B.3 Experiments – further results and details
	B.3.1 Label distributions
	B.3.2 Effect of over-training
	B.3.3 Hyperparameter sensitivity analysis
	B.3.4 Evolution of the source weights
	B.3.5 Network architectures
	B.3.6 Choice of hyperparameters
	B.3.7 Image transformations
	B.3.8 Sample images

	C DeSIRe: Deep Signer-Invariant Representations for Sign Language Recognition – supplementary material
	C.1 Architecture
	C.1.1 CVAE
	C.1.2 Classifier

	C.2 Training strategies
	C.3 Implementation details
	C.4 Visualization of the latent space
	C.5 Cluster analysis in the latent space
	C.6 Unveiling the training behavior of DeSIRe
	C.7 Hyperparameter sensitivity analysis

	Bibliography

