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In the last years, extensive investigation on miRNomics have shown to have great
advantages in cancer personalized medicine regarding diagnosis, treatment and even
clinical outcomes. Prostate cancer (PCa) is the second most common male cancer and
about 50% of all PCa patients received radiotherapy (RT), despite some of them develop
radioresistance. Here, we aim to provide an overview on the mechanisms of miRNA
biogenesis and to discuss the functional impact of miRNAs on PCa under radiation
response. As main findings, 23 miRNAs were already identified as being involved in
genetic regulation of PCa cell response to RT. The mechanisms of radioresistance are still
poorly understood, despite it has been suggested that miRNAs play an important role in
cell signaling pathways. Identification of miRNAs panel can be thus considered an
upcoming and potentially useful strategy in PCa diagnosis, given that radioresistance
biomarkers, in both prognosis and therapy still remains a challenge.

Keywords: prostate cancer, radiotherapy, RNA therapy, microRNA, oncomiR, oncosupressor miR
INTRODUCTION

Small non-protein-coding RNA molecules, composed of around 22 nucleotides, are commonly
named as miRNAs (1–3). Briefly, miRNAs are expected to account for 1-5% of the human genome
and to interfere with at least 30% of the protein-coding genes (4, 5). The first miRNA was discovered
in 1993 by Lee, Freinbaum and Ambros (6, 7), and since then an increasing load of literature data
have pointed that they can act as both tumor suppressors and oncogenes (1–3). Indeed, it has been
shown that miRNAs play an important role in gene expression, mainly when associated with the
monitoring of several cell and metabolic pathways, being also an essential component of the gene
silencing machinery in most eukaryotic organisms (4, 8).
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In recent years, many studies have confirmed the involvement
of miRNAs in biological processes of several types of cancer (4, 9,
10). The relationship between miRNAs and cancer was
demonstrated for the first time in 2002, with miRNAs being
stated as a potential mechanism that may contribute to improve
some cancer therapeutic approaches through restoring or
blocking the miRNAs function (11). Among the various types
of cancer with increasing prevalence nowadays, prostate cancer
(PCa) is the second most common in male and the fifth leading
cause of death in men. Based on Global Cancer Observatory
(GLOBOCAN) 2020, more than 1.4 million new cases of PCa
and 375,304 associated deaths were recorded (12). One of the
treatments applied in cancer is radiotherapy (RT), a therapeutic
modality that uses ionizing radiation to induce damage in
unwanted cells. The main goal of RT consists in delivering a
precise dose of radiation in a target volume, such as tumor,
promoting the tumor cells eradication with as minimal damage
as possible in surrounding normal tissues (13). Currently, RT is
one of the most often used therapeutic approaches in PCa
patients, featured by several levels of complexity (13, 14), with
around 50% of all PCa patients receiving RT at some stage of
treatment, while 10–45% of PCa cases are resistant to irradiation
(15, 16). Besides the RT dose is standardized among patients,
local recurrences are common and can occur even when modern
techniques are used (17). Patient’s local recurrences appear
mostly as a result of uncontrolled cell reproduction and
unregulated cancer cells growth that invades and interferes
with the normal function of surrounding tissues and organs
(1). Various regulatory factors and genes have shown to be able
to directly modulate cell cycle, differentiation and even death. For
instance, tumor-suppressor genes or oncogenes or both are
regulatory factors able to modulate the environmental
conditions contributing to cancer development (2, 4, 18). In
this way, miRNAs may be viewed as promising biomarkers
capable of predicting radiation response and to develop a
customized treatment for each patient, ultimately opening a
new therapeutic window for personalized intervention in
PCa patients.

Therefore, in the present work, we aimed to explore the
mechanisms of miRNA biogenesis, the role of miRNAs in
cancer, and the functional impact of miRNAs on PCa
radiation response, towards to provide a detailed review of the
miRNA expression signatures in PCa tumor and cell lines with
therapeutic impact in RT.
METHODS

For data selection ‘PICOS Worksheet and Search Strategy’ was
followed. A detailed and careful literature search was done
using PubMED and Web of Science databases. For the Boolean
search combinations, the terms used were “miRNA AND
prostate cancer OR prostate neoplasia OR prostate carcinoma
AND radiotherapy OR radiation therapy”, resulting in 71
papers from PubMED and 46 from “Web of Science”.
Inclusion criteria include articles written in English,
Frontiers in Oncology | www.frontiersin.org 2
published between January 2000 and June 2021, and works
referred to clinical studies and pre-clinical studies with cell lines
and animal models. Exclusion criteria include not repeat
articles on different databases, articles not available and
papers that employ non-conventional RT, that with focus on
radiotoxicity, and papers on radio sensitization-related
biomarkers applied for either diagnostic or prognostic
purposes. Then, these 117 articles were analyzed by
independent researchers, and 54 articles were selected for
further analysis, with 63 articles being eliminated because did
not fulfil with the inclusion criteria. Papers related to other
malignancies in addition to PCa and those in whom was unable
to obtain the whole data were also excluded (Figure 1).
RESULTS AND DISCUSSION

miRNA Biogenesis
miRNA biogenesis is controlled at multiple steps, and
transcriptional regulation has been proposed to be the major
mechanism controlling tissue and cell type-specific expression of
miRNAs (4, 19). Briefly, the miRNAs biogenesis includes their
transcription at cell nucleus, export to the cytoplasm and
subsequent processing and maturation (20), with two processes
being involved in achieving the mature miRNA: canonical or
non-canonical biogenesis of miRNA (Figure 2).

In the canonical pathway, the miRNA gene is typically
transcribed by RNA polymerase II to generate long primary
transcripts (pre-miRNA) in the nucleus. Subsequently, the pre-
miRNA is processed by RNA polymerase III (Drosha protein)
and DiGeorge syndrome critical region gene 8 (DGCR8)
protein, thus producing the pre-miRNA, a double-stranded
miRNA of variable length with approximately 18-25
nucleotides (4, 5, 19, 21, 22). The resulting structure is
exported to the cytoplasm via Exportin-5 and RanGTP (5, 19,
21, 23). In the cytoplasm, pre-miRNA is cleaved by the Dicer
protein to create a duplex miRNA, which contains the mature
miRNA. When the duplex unwinds, both RNA strands are
separated by helicases and the resulting mature miRNA
is incorporated into a functional ribonucleoprotein
complex, called RNA-Induced Silencing Complex (RISC),
while the other strand is degraded (4, 9, 19). RISC is a
ribonucleoprotein complex composed by a set of proteins
linked to a small molecule of RNA and it is responsible to
perform cell surveillance, inhibiting the translation of the gene
into a protein through enzymatic destruction, which effectively
silences the gene (5). Both miRNA and RISC complex (miRISC)
regulate gene expression through two mechanisms: messenger
RNA (mRNA) degradation and mRNA translation repression
(22, 23).

Non-canonical pathway is an alternative biogenesis pathway,
where miRNA is associated with spliceosome-dependent
mechanisms (19). In this pathway, the miRNAs located within
the introns of coding or non-coding genes of proteins
(“mirtrons”) enter in the miRNA processing pathway without
Drosha-mediated cleavage (23).
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miRNAs in Cancer Hallmarks
miRNAs can be used in cancer diagnosis to improve the
treatment planning and therapeutic sensitivity, to prevent the
occurrence of several medications-associated side effects and
toxicity, and even to monitor treatment (Figure 3).
Accumulating evidence underline that miRNAs have an
extensive impact due to their involvement in cancer hallmarks,
and thus has been considered an important therapeutic target in
cancer management (24).

In PCa, there is a dysregulation in miRNAs expression, which
can modulate the expression of oncogenes and tumor suppressor
genes (20, 22, 23, 25). Moreover, treatment resistance is still a
huge problem, so that miRNAs modulation therapy could be a
new therapeutic target in cancer patients and used to monitor the
therapeutic responses, besides could be useful to predict response
to therapies, such chemotherapy and RT (20, 22, 23, 26). The
miRNAs therapeutic board approaches include oligonucleotides,
small artificial molecules and miRNA-mediated virus or non-
virus transfection. In the case of oligonucleotides and small
artificial molecules they could be used to inhibit miRNAs or to
interfere indirectly with other transcription factors or target
genes associated with miRNA-specific modulat ion.
Consequently, several methods have been examined using anti-
Frontiers in Oncology | www.frontiersin.org 3
sense oligonucleotides and it is expected that someday they will
be safely implemented (27, 28). Other promissory strategy
includes the downregulation of miRNAs using a miRNA-
mediated virus or non-virus transfection methods that
increases the targeted miRNA. Several studies are being carried
out on such matter, taking into account the introduction of
artificial double-stranded miRNA – mimic of targeted
downregulated miRNA (18).

At that time, biological samples, such as blood, serum and
urine, allow to classify the cancer risk at same time that provide
prognostic data, allowing to address the cancer aggressiveness,
predisposition to metastization or development of radio/
chemoresistance. Moreover, depending on the cancer risk, an
active surveillance or some specific treatments should be
recommended. In the last case, miRNAs can help to predict
the response to radiation and the likelihood of side effects’
occurrence. So, miRNA expression provides new insights if
treatment is being the most appropriate, and if not, treatment
must be changed or adjusted (Figure 4). Regarding side effects,
changes in miRNAs expression can be used to overcome these
toxicities or to understand their signs before the need to interrupt
the therapy with a possible impairment in therapeutics results
(29–31).
FIGURE 1 | Flow diagram of studies selection.
August 2021 | Volume 11 | Article 704664

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Soares et al. miRNAs on Radiotherapy Treatment in Prostate Cancer
miRNAs as Therapeutic Agents in
Radiation Therapy
Currently, the adoption and promotion of personalized therapy
has been increasingly notorious, and it is even considered
essential in multiple clinical conditions. Specifically, there is
increasing evidence underlining those miRNAs can influence
the way that cells respond to ionizing radiation, making them
more radiosensitive or radioresistant through several specific
pathways. These include modifying DNA repair pathways which
interfere with cell cycle checkpoints activation, tumor
microenvironment and apoptosis. Some miRNAs are involved
in controlling cell cycle progression, tumor microenvironment,
apoptosis, and radio-related signals pathway (32–34).

In the context of tumor microenvironment, miRNAs have
aroused a high interest. MiRNAs play an important role in
regulating tumor radiation response, which involve DNA
repair, epithelial-to-mesenchymal transition (EMT), and
stemness (35–39). However, radio resistance is a complex
phenomenon, and thus more studies are needed to better
understand such processes. The response rates to radiation
differ according to the modality used, namely the way through
which radiation is delivered, the dose of radiation used, tumor
stage/grade, confounding medical co-morbidities, and intrinsic
tumor microenvironment (40, 41).
Frontiers in Oncology | www.frontiersin.org 4
As mentioned above, miRNAs can be employed in
therapeutic approaches to mimic or inhibit gene expression at
translation level - Figure 4 (42, 43). In the first approach, if the
miRNA is under expressed, it can be restored by adding miRNA.
In the second approach, if the miRNA is overexpressed, artificial
anti-miRNAs can be added to block miRNA (29, 33, 42).
Preclinical studies have shown that the use of miRNAs is well-
tolerated without triggering significant adverse effects. However,
it is necessary to improve both the efficiency and targeted
delivery to the tumor before treating patients (15).

To the best of authors’ knowledge, only few clinical trials have
investigated the miRNA expression profile induced by RT in PCa
patients (Figure 5). For example, Zedan et al. measured miRNA-21,
miRNA-93, miRNA‐125b, and miRNA‐221 levels in plasma from
PCa patients. Among other aspects the authors verified that
miRNA-221 and miRNA-93 transcription decreased in patients’
plasma following RT, being thus radiosensitive (44, 45). Also,
Linuma et al., in a study where low-dose rate prostate
brachytherapy (BT) was applied to PCa patients, they stated that
miRNA-93 was significantly downregulated in extracellular vesicles
from patients’ serum after BT (34). In addition, miRNA-145
expression was analyzed in tumor tissue of 30 PCa patients and it
was suggested that miRNA-145 can improve response to RT
reducing the efficiency of the repair of radiation-induced DNA
FIGURE 2 | Simplified overview of the canonical and non-canonical miRNA biogenesis pathways. MiRNA generated by canonical pathway is transcribed by RNA
polymerase II to a primary transcript called pre-miRNA. Subsequently, this structure is processed into the nucleus by DGCR8/Drosha complex; producing the pre-
miRNA, which is exported to the cytoplasm by exportin-5. In the cytoplasm, pre-miRNA is cleaved by RNase III endonuclease (Dicer protein), resulting in a double
stranded miRNA, which contains the mature miRNA. After, double strand is separated by helicases and create the mature miRNA; on the contrary, in non-canonical
pathways, miRNA located within of mirtrons and are associated with spliceosome-dependent mechanisms. After, the mature miRNA produced by different pathways
enters into the RISC complex and regulated genes through messenger RNA (mRNA) degradation and mRNA translation repression.
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A B

FIGURE 4 | Scheme illustrates different microRNA therapy approaches – anti-microRNA therapy (A) and mimicking microRNA therapy (B) to change miRNA-
regulated gene expression. In therapy (A) the microRNA inhibitors are transfected to cells and suppressing onco-microRNA functions and consequently increased
protein production. In contrast, in therapy (B) are introduced microRNA mimetics to target cells where interact with tumor suppressor microRNA target, suppressing
of protein production.
FIGURE 3 | Scheme of the potential of miRNAs in personalized prostate cancer. MiRNAs are present in biological samples, which could be a useful tool for
diagnosis and staging in the first consult, allowing an accurate risk stratification. Based on information collected, the treatment can be planned. Treatments can be
personalized according to radioresistance or radiosensitive of cancer. If cancer is radioresistance, radical prostatectomy is the therapeutic approach more indicated.
Otherwise, RT is ideal treatment to apply to radiosensitive tumors. Also, miRNA signature can give information about the risk of develop side effects or if the patient is
responding or not to treatment, leading to a better tumor control with reduced side effects, which contribute to a better patient quality life.
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double-strand breaks (DSB). Thus, when miRNA-145 is
overexpressed, PCa cells are sensitized to ionizing radiation (46).

Other study verified an upregulation of miRNA-95 in 9 tissue
specimens of PCa patients, related to radiation resistance by
targeting sphingosine-1-phosphatase 1 (SGPP1) (47). Ambs and
colleagues analyzed the miRNA-106b-25 cluster expression in 60
primary PCa and 16 non-tumor PCa tissues and concluded that
this miRNA has high levels of expression in primary PCa tissues
compared to non-tumor prostate tissues (48). In contrast,
miRNA-1272 was found downregulated in PCa tissues (49).

Two other studies investigated miRNAs in extracellular
vesicles as markers of therapeutic efficacy. Li et al. found a
panel of 9 serum-derived extracellular vesicles-miRNAs
(miRNA-200c-3p, miRNA-323-3p, miRNA-379-5p, miRNA-
409-3p, miRNA-411-5p, miRNA-493-5p, miRNA-494-3p,
miRNA-543, and miRNA-654-3p) with potential to predict the
therapeutic benefit of carbon ion RT. Additionally, miRNA-654-
3p in serum exosomes was considered a potential non-invasive
biomarker to predict the efficacy of carbon ion RT in PCa (50).
Likewise, Malla et al. collected 25 serum-derived extracellular
vesicles-miRNAs from patients treated with RT. Five miRNAs
were identified (let-7a-5p, miRNA-141-3p, miRNA-145-5p,
miRNA-21-5p, and miRNA-99b-5p), but only let-7a-5p and
miRNA-21-5p were overexpressed in high-risk PCa patients
after RT.

More recently, miRNA-541-3p was studied in 33 PCa tissues
and normal adjacent tissues before and after RT treatments.
Interestingly, He et al. found that miRNA-541-3p enhances the
radiosensitivity of PCa by inhibiting HSP27 expression and
downregulating b-catenin (51).
Frontiers in Oncology | www.frontiersin.org 6
However, further studies need to be carried out to confirm the
miRNAs potential as new outcome biomarkers for PCa patients,
as well as to validate the results already obtained, namely through
larger patients’cohorts, due to the small sample size of studies-
derived data available to date.

Effect of miRNA Expression on Radiation
Response in PCa
The Radiation Therapy Oncology Group (RTOG) has performed
several potential trials in the field of RT, exploring tissue-based
molecular biomarkers with predictive or prognostic value.

More recently, Croce et al. revealed data on the miRNAs
potential in cancer, and then other studies demonstrated that the
ectopic modulation of specific miRNAs can influence the cancer
hallmarks by deregulating its mechanisms (52, 53). In
comparison with invasive methods, miRNAs, whose origin
seems to be specific from tissue, are very stable and directly
detectable in circulating biofluids (54). Also, miRNAs can be
isolated and purified from serum, plasma, urine, saliva,
peripheral blood cells, among other biological samples (55).
Also, miRNAs can circulate in the interstitial fluids and
bloodstream through membrane-bound vesicles, such as
exosomes (50–90 nm) and microvesicles (1 mm), and even in
non-vesicles, such as the ribonucleoprotein complex, which
corresponds to the main mechanism. Indeed, accumulating
evidence identified circulating miRNAs in apoptotic bodies,
exosomes, high-density lipoprotein, and RNA binding proteins
as a form of a cell-to-cell communication channel (56).

Circulating miRNA are evolutionarily conserved across
species and can be measured easily and efficiently using real
FIGURE 5 | Scheme illustration on the use of miRNAs as a therapeutic strategy in prostate cancer (PCa) cell lines. MiRNAs can be divided into mimic or antagomiR
and some have also revealed to be useful in clinics.
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time quantitative protein chain reaction (RT-qPCR), microarray
platforms, nanostring techniques, next-generation sequencing
(NGS) and biosensors (56). Furthermore, evidence reveals that
tumor-associated signature of miRNAs allows to discriminate
different cancer subtypes and pathologies by using high-quality
measurement techniques. Such finding can significantly
contribute to the selection of a more efficient therapeutic
approach (57, 58). Indeed, since miRNAs are involved in
different cancer mechanisms, they can also be used in targeted
therapy, however it continuous to be a challenge regarding
stability of miRNAs and its tissue specificity and permeability
(55). With the technological advance, such as in the field of
nanotechnology, and with the raise in miRNA research, it is
expected that, in the future, one of the therapeutic approaches for
cancer may be the administration of synthetic anti-sense or
mimics oligonucleotides (59, 60).

Several studies have shown the clinical usefulness of some
miRNAs and their potential in therapeutic efficacy of RT (54, 61–
63). Some miRNAs exhibit predictive value regarding the
treatment response through sample analysis extracted from
non-invasive liquid biopsies. Thus, miRNAs can give relevant
data to achieve a proper patient therapeutic monitoring, as they
promote an early detection of PCa relapse/progression,
ultimately providing a better control of cancer (44). To
underlined that this ability to predict whether a patient is
responsive or nonresponsive to a particular treatment modality
will allow the expansion of personalized medicine, with
individual and personalized treatments being selected for a
particular patient, avoiding the risks of toxicity, side effects and
relapses. Moreover, “real-time” monitoring of miRNAs may
provide an early identification of patients who are failing to
radiation therapy response, offering the opportunity to try a
more efficient alternative treatment (64). In 2008, it was
published the first evidence of a miRNA signature that
changed the response to RT (65). Subsequently, increasing
evidence has been generated with the intent of discovering an
“universal” miRNA molecular profile.

Function and Targets of miRNAs Involved in
Radiation Response in PCa
The interaction of ionizing radiation with cells induces some
biological responses, including direct DNA damage from
ionization or indirectly by ROS generation. Then, different
pathways are activated in an intent to repair the damaged
DNA, induce cell cycle arrest or even cell death (66). As stated
above, RT induce damages, including single-strand breaks (SSB)
and DSB. These breaks can be restored by DNA repair pathways,
such as base excision repair (BER), nucleotide excision repair
(NER), mismatch Repair (MMR), nonhomologous end-joining
(NHEJ) or homologous recombination (HR) (67). But radiation
can also change the miRNA expression and consequently alters
the levels of associated proteins. Most of these studies have been
done in vitro using PCa cell lines, such as, PC3, DU145, LNCaP
and 22Rv1.

MiRNA are involved in the management of such different cell
processes (Figure 6). For example, MiRNA-99a, a member of
Frontiers in Oncology | www.frontiersin.org 7
miRNA-99 family, and miRNA-100 have a role in DNA repair.
The inhibition of this miRNAs will prevent p53 dependent
apoptosis, increasing the recruitment of DNA repair proteins
(BRCA1, RAD51), consequently influencing SWI/SNF-related
matrix-associated actin-dependent regulator of chromatin
subfamily A member 5 (SMARCA5) and spinal muscular
atrophy with respiratory distress type 1 (SMARD1) in LNCaP,
PC3 and DU145 cells after irradiation exposure (68, 69).

Josson et al. reported that miRNA-521 modulates the radio
sensitivity of LNCaP cells by specifically restoring DNA repair
protein, Cockayne syndrome protein A (CSA) and manganese
superoxide dismutase (MnSOD), an anti-apoptotic enzyme. If
miRNA-521 is overexpressed it will further sensitize cells to RT
contributing to a raise in RT efficacy (65).

Furthermore, miRNA-890 is downregulated in LNCaP, PC3
and DU145 cells and targets mitotic pathways composed of
several regulators, including mitotic arrested deficient 2 like 2
(MAD2L2), WEE1 kinase, xeroderma pigmentosum
complementation group C (XPC), and KU80 proteins. Also,
Hatano et al. revealed that miRNA-744-3p can directly influence
RAD23 Homolog B, Nucleotide Excision Repair Protein
(RAD23B) in LNCaP, PC3 and DU145 cells. Both miRNAs are
involved in DDR systems induced by irradiation, such as DNA
DSB repair and NER pathways (70, 71). El Bezawy et al.
mentioned that miRNA-875-3p inhibits HR pathway in PC3
and DU145 cells by controlling checkpoint kinase 1 (CHK1)
expression and zinc finger E-box-binding homeobox (ZEB),
which have impact on EMT (72).

Similarly, there are some miRNAs involved in cell cycle arrest.
MicroRNA–16–5p is located at chromosome 13q14 and it is
downregulated in LNCaP cells. Wang et al. showed that this
miRNA is a tumor suppressor and is involved in PCa onset. The
overexpression of miRNA-16-5p is linked to cell proliferation
suppression and modulates the Cyclin D1/E1-pRb-E2F1
pathway, inducing G0/G1 phase arrest after irradiation, which
consequently increase the radio sensitivity in LNCaP cells (34).

In G2/M phase, elevated levels of miRNA-95 promote radio
resistance in PC3 cells. The target of this miRNA is associated
with SGPP1, an antagonist of sphingosine-1-phosphate signaling
(S1P) that is responsible to protect against ionizing radiation-
induced cell death. Briefly, SGPP1 suppresses the G2/M
checkpoint, while increases proliferation, invasiveness, and the
migratory capabilities of cancer cells (47, 73).

Also, miRNA-106 has been implicated in several pathways
involved in raising the PCa cells radioresistance. Hoey et al.
analyzed miRNA-106a and concluded that it is overexpressed in
PC3 and DU145 cells and is significantly increased in high-grade
than low-to-intermediate-grade cancer. The miRNA-106a
targets lipopolysaccharide-induced TNF-a factor (LITAF),
which is responsible to confer a radioresistant phenotype that
increases cell survival and proliferation after irradiation (74). Li
et al. showed that miRNA-106b have a novel role in RT due to its
involvement in p21-activated cell cycle arrest regulation.
Therefore, an inhibitory approach with addition of anti-
miRNA-106b may reduce the miRNA-106b levels and will
then change the p21 levels. After irradiation, a marked
August 2021 | Volume 11 | Article 704664

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Soares et al. miRNAs on Radiotherapy Treatment in Prostate Cancer
decreased in miRNA-106b expression was also stated in LNCaP
cells (48, 73, 75), along with a correlation between miRNA-106b
and Caspase-7 (76, 77).

Mao et al. showed that miRNA-449a targets c-Myc in
LNCaP, PC3 and DU145 cells, which controls cdc2/Cyclin
B1 cell cycle signal. This miRNA also enhances radiation-
induced growth inhibition, radiation-induced G2/M arrest,
and apoptosis by modulating the Cdc25A/Rb/E2F1 pathway.
Likewise, c-Myc, which controls Cdc25A expression, is a
miRNA449a target and is involved in PCa progression and
its expression decreases after cells are submitted to radiation.
So, when miRNA-449a is overexpressed, it promotes radio
sensitivity in vitro by triggering destabilization and decreasing
the expression of c-Myc and increasing both G2/M arrest and
apoptosis (78, 79).
Frontiers in Oncology | www.frontiersin.org 8
Moreover, miRNA-191 was correlated with radiation
response in vitro and in vivo. Normally, this miRNA is
overexpressed in PCa and it was related with radiation
resistance through interaction with a novel target, retinoid X
receptor alpha (RXRA) in PCa cell lines (PC3 and DU45). Low
levels of RXRA expression was linked with a higher risk of distant
relapse following RT. Mechanistically, miR-191 also effects cell
cycle distribution and proliferation, reducing G2-M phase arrest
post-radiation (80).

More recently, miRNA-107 has been related with radiation
response of PCa. Lo et al. found that miRNA-107 regulated
granulin and is downregulated in response to ionizing radiation
in PC3 cells. MiRNA-107 was downregulated in PCa cells
and tissues in comparison with normal prostate cells, but
when is overexpressed, blocked granulin and promoted the
FIGURE 6 | Overview of miRNAs involved on DNA damage repair, cell cycle arrest, and cell death induced by ionizing radiation. Thus, photon beams cause DNA
damage directly or indirectly by reactive oxygen species (ROS). In order to repair DNA damage, the cell activate DNA damage response pathways including
nucleotide excision repair (NER), non-homologous end joining (NHEJ) and homologous recombination (HR). Additionally, miRNAs regulated cell cycle progression to
allow DNA damage repair and depends on cyclin dependent kinases (CDKs), cyclins and transcription factors family EF2. Also, miRNAs are influenced by several
factors in the tumor microenvironment such as hypoxia and epithelial mesenchymal transition (EMT) and play an important role in biological processes as apoptosis
and autophagy. Consequently, hypoxia promotes DNA repair by transcription of the androgen receptor expression. AKT, Protein kinase B; CDC25A, Cell division
cycle 25 A; G1 and G2, transition phases of the cell cycle; HSP27, Heat shock protein 27; M, Mitosis; PTEN, Phosphatase and TENsin homolog; Rb, Retinoblastoma
protein; RXRA, Retinoid X receptor alpha; S, phase S; SGGP1, Sphingosine-1-phosphate phosphatase 1. Black inhibition line displays direct targeting; black dashed-
inhibition line displays indirect targeting; arrow display an induction of tumor microenvironment.
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radiosensitivity in PC3 cells. Mechanistically, miR-107 induced
G1/S phase arrest and G2/M phase transit. Besides, also
enhancing delayed apoptosis through suppression of p21 and
CHK2-phosphorylation (81).

According to Duan et al., miR-498 is linked to PCa cells
proliferation, radio sensitivity, invasion, and migration. After
exposure to ionizing radiation, this miRNA is under expressed
and induces radiation resistance in LNCaP and DU145 cells by
reducing radiation-induced apoptosis through BAX and Bcl-2
expression regulation (82). Additionally, miR-498 is related to an
important cell cycle regulator, phosphatase and TENsin homolog
(PTEN), that suppresses the protein kinase B (AKT) signaling
pathway, inhibits cell cycle progression, and affects ionizing
radiation-induced apoptosis triggered by caspase 3/7 activity.
In addition, with PTEN and AKT inhibition, EMT changes
through influence of a raised expression of vimentin and a
decreased of E-cadherin (82). Also, delays in response to DNA
damage trigger cell death through several mechanisms, such as
apoptosis, senescence and autophagy (83). Hsu et al. suggested
that miR-18a acts as an oncomiRNA in cancer progression and it
is upregulated in 22Rv1, PC3, LNCaP and DU145 cells. MiR-18a
is related to STK4, a pro-apoptotic kinase that mediated AKT
apoptosis cascade by phosphorylate Caspase 9 and Bad (84). In
addition, Yang et al. showed that miR-18a were modulated by
growth arrest-specific 5 (GAS5), which protects from radiation
and promotes apoptosis when low expressed (85).

Recently, miR-541-3p has been investigated in radiation
response in PCa tissue samples and cell lines. MiR-541-3p has
low expression in PCa tissues, however, when submitted to RT is
overexpressed in PCa cells (LNCaP, DU-145, PC3, and PrEC).
Thus, using the mimic approach, miRNA-541-3p interacted
directly with HSP27 and increased the radiosensitivity by
enhanced apoptosis (51).

In a loss-of-function setting, miR-541-3p knockdown
increased the proliferative potential and decreased the
apoptotic rate of irradiated cells, ultimately reducing cell
radiosensitivity. Conversely, miR-541-3p overexpression by
miRNA mimic increased cell sensitivity as a result of a
reduction in cell viability and colony formation, paralleled by
increased apoptosis. Mechanistically, HSP27, validated as a
direct target of the miRNA, was proposed as the potential
mediator of miR-541-3p-induced radiosensitization, as
suggested by rescue experiments showing a partial reversion of
miRNA biological effects upon HSP27 ectopic overexpression.

Also, miR-29b expression or deletion was observed in tumor
tissues and cell lines. Mao et al. demonstrated that miR-29b-3p
improves radiation-induced cell apoptosis and sensitizes LNCaP
cells to radiation by targeting Wnt1-inducible-signaling protein
1 (WISP1). Also, this miRNA was found to be a regulator of
EMT and inhibits the PCa cells proliferation and invasion by
controlling different targets, among them MCL-1, MMP-2,
DNMT3B, and AKT3 (86).

MiRNA-19a was also analyzed in LNCaP, PC3 and DU145
cell lines and it was found downregulated in p53 positive
radiosensitive LNCaP cells. Thus, it was suggested that
miRNA-19a inhibition can provide a new therapeutic strategy
Frontiers in Oncology | www.frontiersin.org 9
for radioresistant PCa with mutated p53. This miRNA is related
with prostate transmembrane protein, androgen-induced l
(PMEPA1), and tumor protein p53 inducible nuclear protein 1
(TP53INP1) (87). Another miRNA, miRNA-17-3p was found at
reduced amounts in PC3 cells and there have been some
suggestions that this miRNA promotes carcinogenesis, by
inhibition of mitochondrial antioxidant enzymes, such as
manganese superoxide dismutase (MnSOD), glutathione,
peroxidase 2 (Gpx2), and thioredoxin reductase 2 (Trx2) (88).
In this context, Xu et al. provided a proof-of-concept evidence
that miR-17-3p upregulation influences the radiotherapeutic
efficiency through suppressing ionizing irradiation-mediated
antioxidant responses, and in turn contributing to a raise in
ROS level (89).

MiRNA-32 regulates DAB2 interacting protein (DAB2IP)
and may contribute to the radioresistant PCa cells due to
reduced ionizing radiation-induced cell apoptosis. Moreover,
when this miRNA is overexpressed in LNCaP, PC3 and
DU145 cells, it inhibits the expression of Bim protein, a pro-
apoptotic member of the BCL-2 family and induces autophagy
by targeting DAB2IP (48, 90). MiRNA-32 is also regulated by
androgen and it has been implicated to another target gene, B-
cell translocation gene 2 (BTG2), which is associated with PCa
aggressiveness (91). Another functional study in DU145 and PC3
cell lines showed that miRNA‐124 or miRNA‐144 overexpression
inhibit hypoxia‐induced autophagy and enhance radiosensitivity
by regulating PIM1 (92).

A recent study on miR-1272 has revealed a relation with radio
sensitivity of DU145 cells due to a consistent reduction of
clonogenic cell survival mediated by miR-1272 upon
irradiation. Authors transformed cells in a manner of gain-of-
function using miR-1272 mimics. They found that besides
reduced tumor growth and enhanced response to RT, miR-
1272 affected the GFR/AKT/ERK1 pathways, ultimately
affecting migration, invasiveness, and preventing EMT, all
essential steps of the metastatic cascade (49).

Several studies have also shown that miRNA-145 overexpression
sensitizes LNCaP and PC3 cells to ionizing radiation. This miRNA
suppresses DNA (cytosine-5-)-methyltransferase 3 beta
(DNMT3b), which have a crucial role in carcinogenesis,
influencing PCa cells cycle, apoptosis, growth, and migration.
Some data suggest that the overexpression of miRNA-145 can
improve radio sensitivity through DNA DSB downregulation and
directly targeting oncogenes (46, 65, 93). More recently, El Bezawy
et al. described that miRNA-145 mimics can silence and deregulate
the Speckle-type pox virus and zinc finger protein (POZ) protein
(SPOP), causing an increase in PCa cells radio sensitivity by
decreasing RAD51 and CHK1 expression and targeting ZEB1,
that increases E-cadherin expression (94).

Another important feature linked to cancer cells is hypoxia,
responsible for promoting tumor progression and the aggressive
phenotype (95). In this sense, miRNA-301a and 301b, members
of miRNA-301 family, also present clinical interest. It is known
that miRNA-301a is an oncomir and it has been proposed that
miRNA-301b can act as a tumor suppressor in LNCaP, PC3 and
DU145 cells. However, in study of Wang et al. both these
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miRNAs were related to hypoxia and led to a decrease in
autophagy in LNCaP, PC3 and DU145 cells by targeting N-
myc downstream-regulated gene 2 (NDRG2). If these miRNAs
are overexpressed, they may induce radio resistance in PCa cells
by decreasing NDRG2 that suppresses EMT (96–98). Also,
cancer change EMT. Several pathways have been clarified as
involved in EMT deregulation, namely those linked to a control
in transcription factors and epithelial specific markers, such as a
decrease in cytokeratins and E-cadherin, and an increase in
mesenchymal markers, such as fibronectin, N-cadherin, and
vimentin (99). Indeed, El Bezawy et al. demonstrated that
miRNA-875-5p is under expressed in PC3 and DU145 cells.
MiRNA-875-5p is directly related to E-cadherin, with
neutralization of EMT and improvement of radiation response
through targeting epidermal growth factor receptor (EGFR),
being these some of the major roles of E-cadherin. Also, it is
involved in HR to repair DNA by regulating checkpoint kinase 1
(CHK1) expression and ZEB 1 (72, 100).
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Also, MiR-34a and let-7 family (let-7a, let-7b, let-7c, let-7d,
let-7e, let-7f, let-7g and let-7i) appeared upregulated following
fractionated irradiation in LNCaP and PC3 cells, but not in
DU145 cells. All these miRNAs are related to p53 gene, but only
miRNA-34a has been proposed to be used as a radio sensitivity
predictor, as it targets cyclin E2, besides to also interact with
EMT (87, 101). Other studies suggest that miRNA-34 can be
used to potentiate the therapeutic effect, as it is overexpressed in
LNCaP and underexpressed in PC3 cell line (65, 102, 103). Also,
other study should that let-7 family expression was
downregulated in LNCaP, PC3 and DU145 cells and revealed
to be able to regulate the expression of RAS oncogene, such
KRAS and c-Myc (104). Furthermore, Dong et al. demonstrated
that let-7a induced cell cycle arrest at the G1/S phase modulating
the expression of E2F Transcription Factor 2 (E2F2) and G1/S-
specific cyclin-D2 (CCND2) (105).

MiRNA-205 is under expressed and mediates autophagy,
which is an important mechanism that can influence the
TABLE 1 | MiRNA expression in radiation response in prostate cancer cell lines.

miRNA Cell line used Function miRNA expression
before irradiation

Functional role Therapeutic
strategy

D P References

hsa-miRNA-16-5p LNCaP TS ↓ RR Mimicking ✓ ✓ (34)
hsa-miRNA-17-3p PC3 – ↓ RR Mimicking ✓ – (89)
hsa-miRNA-18a 22Rv1, PC3, LNCaP, DU145 OM ↑ RR Antagomirs – ✓ (84, 85)
hsa-miRNA-19a LNCaP, PC3, DU145 OM ↑ RR Antagomirs ✓ ✓ (87)
has-miRNA-29b-
3p

LNCaP TS ↓ RR Mimicking ✓ ✓ (86)

Has-miRNA-30a LNCaP, DU145 TS ↓ RR Mimicking ✓ ✓ (107)
hsa-miRNA-32 LNCaP, PC3, DU145 OM ↑ RR Antagomirs ✓ – (48, 90)
hsa-miRNA-34a LNCaP, PC3, DU145 TS ↓ RR Mimicking ✓ ✓ (87)
hsa-miRNA-95 PC3 – ↑ RR Antagomirs ✓ ✓ (47, 73)
hsa-miRNA-99a LNCaP, PC3, DU145 TS ↓ RR Mimicking ✓ ✓ (68)
hsa-miRNA-100 LNCaP, PC3, DU145 TS ↓ RR Mimicking ✓ ✓ (68)
hsa-miRNA-106a PC3, DU145 OM ↑ RR Antagomirs ✓ ✓ (74, 110)
hsa-miRNA-106b LNCaP OM ↑ RR Antagomirs ✓ – (48, 75)
hsa-miRNA-107 PC3 – ↓ RR Mimicking ✓ ✓ (81)
has-miRNA-124 PC3, DU145 TS ↓ RR Mimicking ✓ ✓ (92)
Has-miRNA-144 PC3, DU145 TS ↓ RR Mimicking ✓ ✓ (92)
hsa-miRNA-145 LNCaP, PC3 TS ↓ RR Mimicking ✓ ✓ (46, 65, 70, 93,

94)
Has-miRNA-191 PC3, DU145 OM ↑ RR Antagomirs – ✓ (80)
hsa-miRNA-195 PC3, DU145 TS ↓ RS Mimicking ✓ ✓ (108)
hsa-miRNA-205 LNCaP, PC3, DU145 TS ↓ RR Mimicking ✓ ✓ (40, 106, 107,

110)
hsa-miRNA-301a LNCaP, PC3, DU145 – ↑ RR Antagomirs – ✓ (97, 110)
hsa-miRNA-301b LNCaP, PC3, DU145 – ↑ RR Antagomirs – – (97)
hsa-miRNA-449a LNCaP, PC3, DU145 TS ↓ RR Mimicking ✓ – (78)
hsa-miRNA-498 LNCaP, DU145 – ↑ RR Antagomirs – ✓ (82)
hsa-miRNA-521 LNCaP – ↓ RR Mimicking – – (65)
hsa-miRNA-541-
3p

LNCaP, DU-145, PC3, and
PrEC

TS ↓ RR Mimicking ✓ ✓ (51)

hsa-miRNA-744-
3p

LNCaP, PC3, DU145 OM ↑ RR Antagomirs – – (70, 71)

hsa-miRNA-875-
5p

PC3, DU145 TS ↓ RR Mimicking – – (72)

hsa-miRNA-890 LNCaP, PC3, DU145 – ↓ RR Mimicking – – (70)
hsa-miRNA-1272 DU145 TS ↓ RR Mimicking – ✓ (49)
hsa-miRNA-4284 22Rv1 – ↓ RR Mimicking – – (109)
Let-7 family LNCaP, PC3, DU145 TS ↓ RR Mimicking – ✓ (87, 104)
August 2021 |
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D, Diagnostics; P, Prognostics; TS, Tumour suppressor miRNA; OM, Oncogenic miRNAs; RR, Radioresistant; RS, Radiosensitive; ✓, present; –, absent of information; ↑, increased
expression; ↓, decreased expression.
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LNCaP, PC3, DU145 cells radio sensitivity (106). Autophagy acts
like a protective mechanism of PCa cells to stressful conditions,
including radiation-induced cell apoptosis (107). Also, a
potential direct functional target of miRNA-205 is tumor
protein p53-inducible nuclear protein 1 (TP53INP1), which
can interact with other protein families, such as Light chain 3
(LC3) and autophagy-related protein 8 (ATG8), thereby
promoting autophagy and apoptosis targeting several cells
signaling components, namely mitogen-activated protein
kinase (MAPK) and androgen receptor (106, 107).
Furthermore, miRNA-205 is also important to support the
basal membrane in prostate epithelium, protein kinase C
epsilon (PKCϵ) and ZEB1 expression, proteins involved in
EMT (40). In the same context, miRNA-30a has been able to
suppress autophagy and enhance radiosensitivity of PCa cells by
targeting TP53INP1 (107).

Still related to autophagy, miRNA-195 is linked to PC3 and
DU145 progression by targeting ribosomal protein S6 kinase B1
(RPS6KB1), with its overexpression being responsible to enhance
the RT efficacy through T cell by blocking the PD-L1 immune
checkpoint, which is related to regulation of cytokines secretions
in the tumor (108).

McDermott et al. showed that miR-4284 negatively regulates
ring finger protein, LIM domain interacting (RLIM) and RasGEF
domain family member 1A (RASGEF1A) genes. These genes are
associated with RT resistance and oncogenesis. Authors also
underlined that miR-4284 is down-regulated in RR-22Rv1 and
AMC-22Rv1 cells, and stated a non-significant trend towards the
acquisition of age-related radio resistance. Besides, another five
miRNAs (miR-210, miR-23a, miR23b, miR-24, and miR-29)
were identified in both hypoxic and isogenic radioresistant
22Rv1 models, when compared to the more radiosensitive
WT-22Rv1 cell line (109).

Thus, a set of evidence in PCa treatment show that RT can
significantly change the miRNA expression levels, but only a few
studies investigate the impact of miRNA expression on radiation
response in PCa (Table 1).

Anyway, and despite the accumulating evidence on this
subject, it is important to mention that miRNA expression
levels can be modified following PCa irradiation (29, 87, 111,
112). But, despite such alterations in miRNA expression
patterns are inconsistent, even within the same cell line,
because it largely depends on radiation dose and recovery
time post-irradiation of cells (15), it is also a matter of high
focus nowadays.
Frontiers in Oncology | www.frontiersin.org 11
CONCLUSION AND FUTURE
PERSPECTIVES

Despite the relative few numbers of studies exploiting the
miRNAs relation with radiation response of PCa cells, this
subject has been progressively explored and it continuous to be
a challenge regarding the role of miRNAs as predictive markers
for therapeutic targets.

One limitation of the miRNAs signature is linked to the
inconsistency found among studies, mostly attributed to the
methodologies applied: clinical trials/experimental studies,
therapeutic conditions, pathology type, cell type, among others.
Thus, to overcome this drawback, further studies must be
designed to get high-quality, reproducible, and valid
representative miRNAs to achieve results capable of promoting
a patient-tailored treatment. Also worth of note is that most
studies analyzed the potential role of miRNAs in vitro, so that
new experiments should be done in vivo or in human tissue
samples to support such findings. Thus, the selection of the most
appropriate miRNAs remains a challenge.

In short, it has been shown that several miRNAs that
modulated the cell response to ionizing radiation. Thus,
miRNAs can be applied in therapy to reduce the radio
resistance of cells through modulation of cell pathways and
biological processes. However, larger and prospective studies
are essential to define the value of miRNAs as therapeutic
adjuvant to RT. Also, in this context, and since the number of
studies is increasing, it is important to ensure a proper
organization of data by creating databases of miRNA
expressions for cancer research. In the future, we hope to find
miRNA target relevant in daily clinical practice, with those
capable of predicting the RT efficacy response being highly
valuable in RT treatment management.
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