
GENERICITY OF HISTORIC BEHAVIOR

FOR MAPS AND FLOWS

MARIA CARVALHO AND PAULO VARANDAS

Abstract. We establish a sufficient condition for a continuous map, acting on a compact
metric space, to have a Baire residual set of points exhibiting historic behavior (also known
as irregular points). This criterion applies, for instance, to a minimal and non-uniquely
ergodic map; to maps preserving two distinct probability measures with full support; to non-
trivial homoclinic classes; to some non-uniformly expanding maps; and to partially hyperbolic
diffeomorphisms with two periodic points whose stable manifolds are dense, including Mañé
and Shub examples of robustly transitive non-hyperbolic diffeomorphisms. This way, our
unifying approach recovers a collection of known deep theorems on the genericity of the
irregular set, for both additive and sub-additive potentials, and also provides a number of
new applications.

1. Introduction

Let f : (X,A) → (X,A) be a measurable transformation and µ be an f -invariant ergodic
probability measure on the σ-algebraA. For a measurable function φ : X → R and x ∈ X, the
sequence of Birkhoff averages of φ at x is given by

(
1/n

∑n−1
j=0 φ(f

j(x))
)
n∈N. A point x ∈ X

is said to be φ-regular if the limit of this sequence exists; otherwise x is called a φ-irregular
point (and said to have historic behavior [33, 38]). Birkhoff’s ergodic theorem asserts that
the time averages of φ at µ-almost every point in X converge to the space average

∫
X φdµ.

So the set of φ-regular points carries full µ measure. This result supports Boltzman ergodic
hypothesis but fails to describe the behavior and the complexity of the set of points at which
the sequence of Birkhoff averages has no limit. Nowadays there is a well established theory
to assess how big is the irregular set (also called the set of points with historic behavior):
contrary to the previous measure theoretical description, the set of these non-typical points
may be Baire generic and, moreover, have full topological pressure, full Hausdorff dimension
or full metric mean dimension, as attested in [3, 7, 8, 25, 29, 40] and references therein.

Not surprisingly, the research addressing these phenomena started in the realm of uniform
hyperbolicity. On the one hand, the existence of many periodic points ensures that there exist
continuous observable maps with distinct spaces averages. On the other hand, a hyperbolic
structure, even if non-uniform, comes up with a panoply of means to reconstruct true orbits
from finite pieces of orbits: specification, gluing orbit property and non-uniform versions
of these. Yet, these properties are seldom valid for strong partially hyperbolic transitive
diffeomorphisms (see [12, 36] and references therein). Furthermore, according to [37], no
minimal and positive entropy homeomorphism has the gluing orbit property, which is one of
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the weakest versions on the aforementioned chain of concepts. This may explain the scarcity
of results, as far as we know, regarding the irregular set for minimal dynamics.

One may think of minimal and uniquely ergodic dynamics as the natural opposites to hyper-
bolic dynamics, with much lower level of complexity. This impression is somehow reinforced
by the fact that minimal dynamics admit very simple Rohklin towers (see e.g. [5, Lemma 6]),
and by the uniform convergence of Birkhoff averages in the case of uniquely ergodic trans-
formations. Notwithstanding, examples of volume preserving analytic diffeomorphisms on T2

with zero entropy, which are minimal though not uniquely ergodic (due to Furstenberg [19]),
or minimal homeomorphisms of the torus with positive entropy (constructed by Herman and
Rees [20, 32]) show that the setting is surprisingly rich.

In this paper we present a simple criterion to ensure that the set of points with historic
behavior, for maps or flows, is a Baire generic subset of the ambient space, both for additive
and sub-additive sequences. The main results are presented in Section 2. Their proofs are
a consequence of the existence of an everywhere discontinuous first integral and of a general
statement, we will show on Section 4, regarding the accumulation points of sequences of con-
tinuous observable functions. This reasoning provides a unified approach to several contexts
where this kind of result has already been established, besides bringing forward new applica-
tions. Indeed, our assumptions are satisfied by a vast class of discrete and continuous time
dynamics, including minimal non-uniquely ergodic homeomorphisms, non-trivial homoclinic
classes, continuous maps with the specification property, Viana maps, partially hyperbolic
diffeomorphisms and singular-hyperbolic attractors (cf. Corollaries I – X). In the broader
context of sub-additive sequences of potentials, we show how to describe more accurately the
irregular points for Lyapunov exponents of linear cocycles, as well as those points for which
the convergence in the Brin-Katok formula for the metric entropy of weak Gibbs measures
fails. Therefore, we establish or improve a wide range of results on the genericity of the
irregular set, including [7, 9, 43], as an outcome of an easy criterion.

2. Main results

Given a compact metric space (X, d) and a continuous map f : X → X, the set of irregular
points is defined by

I =
{
x ∈ X : lim

n→+∞

1

n

n−1∑
j=0

δfj(x) does not exist in the weak∗ topology
}
. (2.1)

For each continuous function φ : X → R, the set of φ-irregular points is given by

Iφ =
{
x ∈ X :

( 1

n

n−1∑
j=0

φ(f j(x))
)
n∈N

does not converge
}
. (2.2)

Notice that, as φ is bounded, the sequence of Birkhoff averages of φ at x does not converge
if and only if it has no limit. Moreover, Iφ ⊂ I. Associated to φ, consider the map

x ∈ X 7→ Lφ(x) = lim sup
n→+∞

1

n

n−1∑
j=0

φ(f j(x)). (2.3)

Observe that Lφ is f -invariant, that is, Lφ ◦ f = f . Thus, Lφ is a so called first integral for
f ; for more information regarding smooth first integrals for endomorphisms, see [21, 26].
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As a particular case of a more general statement we prove on Section 4, we will show that
the existence of a non-trivial and discontinuous first integral Lφ conveys a topologically large
set of irregular points. To the best of our knowledge, this sufficient condition has not appeared
before in the literature, so it primarily provides a new criterion for genericity of irregular sets.

Theorem A. Let (X, d) be a compact metric space, f : X → X be a continuous map and
φ : X → R be a continuous observable. Assume that there exist two dense subsets A and B
of X such that the restrictions of Lφ to A and to B are constant, though the value at A is
different from the one at B. Then Iφ is a Baire residual subset of X.

Let us now list a few applications of Theorem A in a variety of settings. Given a measurable
map f : X → X and an f -invariant probability measure µ, the ergodic basin of attraction of
µ is the set of points x ∈ X such that limn→+∞

1
n

∑n−1
j=0 δfj(x) = µ in the weak∗ topology.

A first consequence of Theorem A is the following result, whose main assumption is fulfilled,
for instance, whenever f preserves two distinct probability measures with full support.

Corollary I. Let (X, d) be a compact metric space and f : X → X be a continuous map
preserving two distinct Borel probability measures with dense ergodic basins. Then I is a
Baire residual subset of X.

Corollary I is suited, for example, to continuous maps with the specification property or
the gluing orbit property (we refer the reader to [13] for the definitions), providing a simpler
and alternative proof of the genericity of the irregular set in that setting. Indeed, if the map
f satisfies the specification property then [15, Propositions 21.12 and 21.14] ensure not only
that generic invariant measures are full supported but also that their basins are dense.

Corollary II. Let X be a compact metric space and f : X → X be a continuous map
satisfying the specification property. There exists a Baire generic subset of points in X with
historic behavior.

Corollary I also applies to endomorphisms with critical or singular behavior (e.g. qua-
dratic maps, Lorenz interval maps or Viana maps) under just a few requirements. Actually,
Theorem 5 in [30, p. 928] indicates that any strongly transitive C1+α-map on a compact
Riemannian manifold with a periodic point which does not lie in the forward orbit of the
critical or singular set admits an uncountable number of ergodic and full supported invariant
measures. Let us illustrate this assertion by considering the robust class of multidimensional
non-uniformly expanding maps with singularities known as Viana maps. These are skew-
products of the type

f : S1 × R → S1 × R
(x, y) 7→

(
dx (mod 1), a(x)− y2

) (2.4)

where d > 2, a(x) = a0 + α sin(2πx) and a0 ∈ (1, 2) is chosen so that 0 is pre-periodic for
the quadratic map h(x) = a0 − x2 (cf. [41] for more details). According to [30, Theorem 10],
Viana maps have an uncountable number of ergodic probability measures whose support is
the whole set f(S1 × R). Thus their basins are dense in the attractor f(S1 × R), and so
there exists a Baire generic subset R of points in the attractor Λ = f(S1 × R) with historic
behavior. Besides, f is a local diffeomorphism except in the critical set C = S1 × {0}, which
is closed and has empty interior in S1 × R. More precisely, identifying S1 with R/Z, one can
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write (S1 × R) \ (S1 × {0}) =
∪
i=±

∪d−1
j=0 Ai,j , where

A+, j =
[ j
d
,
j + 1

d

)
× (0,+∞) and A−, j =

[ j
d
,
j + 1

d

)
× (−∞, 0)

and f |Ai,j : Ai,j → f(Ai,j) is a diffeomorphism for every i = ± and 0 6 j 6 d − 1.

Consequently, the union
∪
i=±

∪d−1
j=0 (f |Ai,j )

−1(R) is a Baire residual subset of S1×R whose
points exhibit historical behavior.

Corollary III. Consider a map f : S1×R → S1×R as in (2.4). There exists a Baire generic
subset of points in S1 × R with historic behavior.

It is known that the irregular set associated to a uniquely ergodic dynamics is empty (cf.
[42, Theorem 6.19]). Besides, some of the most interesting known examples of minimal non-
uniquely ergodic homeomorphisms have zero topological entropy. Thus, in this setting, it is
useful to describe the complexity of the irregular set using Baire category arguments instead
of other measurements of chaos. The next consequence of Corollary I benefits precisely from
this strategy.

Corollary IV. Let (X, d) be a compact metric space and f : X → X be a continuous minimal
map. Then either there exists an f-invariant ergodic Borel probability measure µ such that,
in the weak∗ topology,

lim
n→+∞

1

n

n−1∑
j=0

δfj(x) = µ ∀x ∈ X

or the set I is Baire residual in X.

Corollary IV applies, for instance, to the minimal and non-uniquely ergodic homeomor-
phisms constructed in [19] and to the minimal and non-uniquely ergodic interval exchange
transformation provided by [23]. Its statement appears, though with a distinct formulation,
in [20, Proposition 6.3] and [18, Lemma 3].

A fifth consequence of Theorem A concerns the irregular set for partially hyperbolic diffeo-
morphisms. Given a smooth compact manifold X with dimension dim(X) > 2, one says that
a diffeomorphism f ∈ Diff 1(X) is partially hyperbolic if there exists a Df -invariant splitting
TX = Es ⊕ F and constants C > 0 and λ ∈ (0, 1) such that, for every x ∈ X and every
n ∈ N, one has:

(a) ∥Dfn(x)(v)∥ 6 Cλn∥v∥ for every v ∈ Esx;

(b) for every pair of unitary vectors v ∈ Esx and w ∈ Fx,

∥Dfn(x)v∥
∥Dfn(x)w∥

6 Cλn.

Property (a) means that the sub-bundle Es is uniformly contracting, while a splitting sat-
isfying property (b) is called dominated. It is well known that, under these assumptions,
for every point x ∈ X there exists a C1-submanifold called stable manifold W s(x) passing
at x and tangent to Esx, and the collection of stable manifolds defines a stable foliation on
X. In several relevant examples of partially hyperbolic diffeomorphisms it is known that the
stable foliation is minimal, meaning that all the stable manifolds are dense in X. We will
establish the following variant of Theorem A within the setting of those partially hyperbolic
diffeomorphisms.
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Corollary V. Let X be a compact Riemannian manifold and f : X → X be a partially
hyperbolic diffeomorphism with two distinct periodic points whose stable manifolds are dense
in X. Then I is Baire residual in X.

This corollary applies, for instance, to the open set of robustly transitive diffeomorphisms
on T4 with minimal stable foliations constructed by Shub in [35] and to Mañé’s examples [27].
A dual statement for partially hyperbolic diffeomorphisms having a dominated splitting into
center and unstable sub-bundles with a minimal unstable foliation can be proved similarly.

It is worth noticing that our results also allow us to deal with important classes of proper
subsets that are invariant by the dynamics, as is the case of non-trivial homoclinic classes. If
X is a compact Riemannian manifold, the homoclinic class H(p, f) associated to a hyperbolic
saddle periodic point p of a diffeomorphism f ∈ Diff 1(X) is defined as the closure of transverse
intersections of the unstable and the stable manifolds of the orbit of p. It is known that there
exists a Baire residual subset of irregular points on each non-hyperbolic homoclinic class of
C1-generic diffeomorphisms of X (see [9]). The next modification of Corollary V improves [9]
since it actually applies to arbitrary non-trivial homoclinic classes of any C1-diffeomorphism.

Corollary VI. Let X be a compact Riemannian manifold. Given f ∈ Diff 1(X) and a
hyperbolic saddle periodic point p by f , then either H(p, f) = {p} or the set I ∩H(p, f) is a
Baire residual subset of H(p, f).

The previous result complements [1, Proposition 9.1], which asserts that the set of points

with historic behavior is Baire generic in the closure W s(O(p)) of the basin of attraction of
any non-trivial homoclinic class H(p). This proposition does not impart the same information
of the previous corollary since it is not directly applicable to the homoclinic class itself and
H(p) is a meager subset of W s(O(p)) even in the hyperbolic context. However, the proof of
[1, Proposition 9.1] might be adjusted to convey the statement of Corollary VI.

At this moment, it is natural to ask whether Theorem A and its corollaries can be adapted
to deal with the broader context of non-additive sequences, which are relevant to the compu-
tation of several dynamical quantities, such as entropy and Lyapunov exponents. The case of
almost additive or asymptotically additive sequences of continuous functions carries no extra
difficulties (cf. Remark 7.1); on the contrary, the case of continuous sub-additive sequences
requires further explanation.

A sequence Φ = (φn)n∈N of continuous maps φn : X → R is sub-additive if

φm+n 6 φm ◦ fn + φn ∀m,n ∈ N.
Accordingly, the set of Φ-irregular points is defined by

IΦ =
{
x ∈ X :

( 1

n
φn(x)

)
n∈N

does not converge
}
. (2.5)

Kingman’s sub-additive ergodic theorem guarantees that IΦ has zero measure with respect
to every f -invariant Borel probability measure on X. In this context, the map MΦ defined
by

x ∈ X 7→ MΦ(x) = inf
n∈N

1

n
φn(x) (2.6)

is a Lyapunov function associated to the discrete dynamical system f . More precisely, the
inequality

1

n+ 1
φn+1(x) 6 1

n+ 1

[
φn(f(x)) + sup

z ∈X
φ1(z)

]
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ensures that MΦ(x) 6MΦ(f(x)) at every x ∈ X.

Although the function MΦ is measurable, because it is the infimum of a sequence of con-
tinuous functions, in general one can not rely on higher regularity. This is an evidence that
the previous concept of Lyapunov function scarcely describes the irregular set IΦ, though it
suggests the following version of Theorem A for sub-additive sequences.

Theorem B. Let (X, d) be a compact metric space, f : X → X be a continuous map and
Φ = (φn)n∈N be a sub-additive sequence of continuous maps on X. Assume that there exist
two dense subsets A and B of X such that the restrictions of MΦ to A and to B are constant,
though the value at A is different from the one at B. Then IΦ is Baire residual in X.

In the aftermath of the previous result, we secure a more precise description of the Lyapunov
irregular points, that is, points that are non-typical for Oseledets’ theorem. Given a compact
metric space (X, d), a continuous f : X → X and a continuous linear cocycle A : X →
GL(k,R), k > 2, we assign to the cocycle the skew-product given by

FA : X × Rk → M × Rk
(x, v) 7→ ( f(x), A(x)v ).

Set An(x) := A(fn−1(x)) . . . A(f(x))A(x) for each x ∈ X and n ∈ N. By Oseledets’ theorem
the largest Lyapunov exponent (respectively the smallest Lyapunov exponent) associated to
an f -invariant ergodic Borel probability measure µ is given by

λ+(A,µ) = inf
n∈N

1

n
log ∥An(x)∥ for µ-a.e. x

(respectively λ−(A,µ) = supn∈N
1
n log ∥An(x)−1∥−1 for µ-a.e. x). Using Theorem B, when-

ever the dynamics f is minimal we get additional information on the set of points whose
Lyapunov exponent fails to be well defined.

Corollary VII. Let (X, d) be a compact metric space and f : X → X be a continuous
minimal map. Given k > 2 and a continuous linear cocycle A ∈ C0(X,GL(k,R)), either

inf
x∈X

inf
n∈N

1

n
log ∥An(x)∥ = sup

x∈X
inf
n∈N

1

n
log ∥An(x)∥

and the previous value is the unique possible largest Lyapunov exponent associated to any
f -invariant ergodic probability measure, or there exists a Baire residual subset R ⊂ X such
that

∀x ∈ R lim inf
n→+∞

1

n
log ∥An(x)∥ < lim sup

n→+∞

1

n
log ∥An(x)∥.

A dual statement, concerning the smallest Lyapunov exponent, holds as well. We note that
Corollary VII improves [18, Theorem 4], where the author considers GL(2,R)-valued cocycles
over minimal and uniquely ergodic maps, and whose argument is exclusive to 2-dimensional
linear cocycles. We also observe that, in a complementary direction, the non-existence of
Lyapunov exponents for Hölder continuous matrix cocycles over maps satisfying exponential
specification has been considered in [39]. As far as we know, no other references address this
problem of identification of topologically big sets of irregular points for sub-additive sequences
of potentials.

As another illustration of the scope of Theorem B’s applications, let us consider a con-
tinuous map f : X → X on a compact metric space, a sub-additive sequence of continuous
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functions Φ = (φn)n∈N ∈ C(X)N and a probability measure µ which is weak Gibbs with
respect to Φ. For such a measure µ and each x ∈ X we may find a sequence of positive
constants (Kn(x))n∈N satisfying limn→+∞

1
n logKn(x) = 0 and

K−1
n (x) 6 µ(Bn(x, ε))

e−nP (Φ)+φn(x)
6 Kn(x) ∀x ∈ X ∀n ∈ N (2.7)

where Bn(x, ε) :=
{
y ∈ X : dn(x, y) < ε

}
stands for the dynamical ball centered at x with

radius ε and length n. These measures appear naturally in the context of equilibrium states
for matrix cocycles A : {1, . . . , d}N → GL(d,C) over the shift map σ (cf. [17]), with the
weak-Gibbs condition then rewritten as

K−1e−nP (q)∥A(n)(x)∥q 6 µ(Bn(x, ε)) 6 Ke−nP (q)∥A(n)(x)∥q (2.8)

where A(n)(x) = A(σn−1(x)) . . . A(σ(x))A(x), P (q) is the pressure function of the family
Φq = (q log ∥An(·)∥)n∈N and K > 0 is a constant such that Kn(x) = K for every n ∈ N and
any x ∈ X.

Now, when a probability measure µ is f -invariant, the entropy hµ(f) can be estimated
using dynamical balls and the Brin-Katok formula [6] by

hµ(f) = lim
ε→ 0+

lim sup
n→+∞

− 1

n
log µ(Bn(x, ε)) at µ a.e. x. (2.9)

If, in addition, f is expansive, the previous lim sup does not depend on the value of ε if this
is kept small enough. When µ is also weak Gibbs with respect to a sub-additive sequence
Φ = (φn)n∈N ∈ C(X)N, then there is ε0 > 0 such that for every 0 < ε 6 ε0 one has

lim sup
n→+∞

− 1

n
log µ(Bn(x, ε)) = P (Φ) + lim sup

n→+∞

1

n
φn(x) ∀x ∈ X

and

lim inf
n→+∞

− 1

n
log µ(Bn(x, ε)) = P (Φ) + lim inf

n→+∞

1

n
φn(x) ∀x ∈ X.

For instance, f may be the one-sided full shift on a finite alphabet (whose pre-orbit of every
point is dense) and µ be the measure of maximal entropy of f (which is weak Gibbs with
respect to (φn ≡ 0)n∈N). In this setting, Theorem B implies that either

htop(f) = lim
n→+∞

− 1

n
log µ(Bn(x, ε))

for every x ∈ X and any 0 < ε 6 ε0, or the set of points for which the limit in Brin-Katok’s
formula does not exist is a Baire residual subset of X. More generally:

Corollary VIII. Let (X, d) be a compact metric space and f : X → X be a continuous
expansive map. Given a Borel f -invariant probability measure µ which is weak Gibbs with
respect to a sub-additive sequence Φ = (φn)n∈N ∈ C(X)N, there is ε0 > 0 such that for every
0 < ε 6 ε0 one has either

hµ(f) = lim
n→+∞

− 1

n
log µ(Bn(x, ε)) = P (Φ) + lim

n→+∞

1

n
φn(x) ∀x ∈ X

or the set of points for which

lim inf
n→+∞

− 1

n
log µ(Bn(x, ε)) < lim sup

n→+∞
− 1

n
log µ(Bn(x, ε))

is a Baire residual subset of X.
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3. The case of flows

The proofs of Theorems A and B apply verbatim to continuous R-actions if one replaces
Birkhoff averages by the suitable means obtained by integration along the orbits of the flow.
Nevertheless, in some particular cases one can reduce the analysis of the continuous-time to
the discrete-time setting. In order to illustrate such an application, given a continuous flow
(Yt)t∈R on a compact metric space X define the irregular set by

I =
{
x ∈ X : lim

t→+∞

1

t

∫ t

0
δYs(x) ds does not exist in the weak∗ topology

}
. (3.1)

If there exists a pair of distinct Borel probability measures with dense ergodic basins, the
situation can be reduced to the discrete-time setting in the sense that the following result is
a consequence of Corollary I.

Corollary IX. Let (X, d) be a compact metric space and (Yt)t∈R be a continuous flow on
X preserving two distinct Borel probability measures with dense ergodic basins. Then I is a
Baire residual subset of X.

Proof. Let µ1 and µ2 be two distinct (Yt)t∈R-invariant Borel probability measures whose
ergodic basins B(µ1) and B(µ2) are dense in X. Pick φ ∈ C0(X,R) such that

∫
φdµ1 ̸=∫

φdµ2. As a consequence of [31], for each i = 1, 2 there exists a Baire residual subset
Ri ⊂ R of times such that µi is ergodic for the time-t map Yt associated to t ∈ Ri. Now,
fix an arbitrary T ∈ R1 ∩ R2, and consider the homeomorphism f = YT and the potential

φT := 1
T

∫ T
0 φ(Ys(x)) ds.

The sets A = B(µ1) and B = B(µ2) are f -invariant and, by assumption, dense in X.
Besides, by the ergodicity of µ1 and µ2 with respect to f , the map LφT is constant in A and
B, and equal to

∫
φdµ1 and

∫
φdµ2, respectively. Thus, Corollary I implies that I is Baire

residual in X. �

Corollary IX implies, along the same lines used in the proof of Corollary VI, that every
non-trivial homoclinic class of a vector field has a Baire generic subset of points with historic
behavior. Since every singular-hyperbolic attractor in dimension three is a homoclinic class
(cf. [4] for the definition and proofs), we conclude the following:

Corollary X. Let M be a three-dimensional compact Riemannian manifold, (Xt)t be a C1

flow and Λ be a singular-hyperbolic attractor. The set of points with historic behavior is Baire
residual in Λ.

We note that, as a singular-hyperbolic attractor of a C2 vector field supports a non-atomic
ergodic hyperbolic measure (cf. [2, 24]), the conclusion of Corollary X improves item (7) of
[4, Theorem A] since the corollary’s statement comprises C1 vector fields as well.

Observe that Corollary X also holds for multidimensional singular-hyperbolic attractors
of typical C1 vector fields, extending the recent result of D. Yang in [43]. Indeed, by [14,
Theorem B], for a C1 open and dense set of vector fields their singular-hyperbolic Lyapunov
stable chain-recurrence class is a homoclinic class.

It is known that geometric Lorenz attractors on three or higher dimensional compact Rie-
mannian manifold are homoclinic classes [10, 11]. Thus, Corollary X improves [22], where the
authors show that the set of points with historic behavior for the geometric Lorenz attractor
is residual in a trapping region of the attractor.
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We refer the reader to [28], where the authors introduce the concept of length averages for
singular foliations and study their existence for codimension one C1 foliations on compact
surfaces.

4. Preliminary result

Let (X, d) be a compact metric space and consider a sequence ψ = (ψn)n∈N of continuous
functions ψn : X → R. Define the map

x ∈ X 7→ Uψ(x) = lim sup
n∈N

ψn(x)

and consider the set

Cψ =
{
x ∈ X :

(
ψn(x)

)
n∈N

does not converge
}
.

Theorem 4.1. Assume that there exist two dense subsets A and B of X such that the re-
strictions of the map Uψ to A and to B are constant, though the value at A is different from
the one at B. Then Cψ is a Baire residual subset of X.

Proof. Suppose that the constant value of Uψ at the dense sets A and B are α and β, respec-

tively, with α ̸= β. Fix 0 < ε < 1
6

∣∣α − β
∣∣. Since the map ψn is continuous for every n ∈ N,

given a positive integer N the set

ΛN =
{
x ∈ X :

∣∣ψn(x)− ψm(x)
∣∣ 6 ε ∀m,n > N

}
(4.1)

is closed in X.

Proposition 4.2. ΛN has empty interior for every N ∈ N.

Proof. Assume that there exists N ∈ N such that the interior of ΛN , we denote by int(ΛN ),
is non-empty, and take λ ∈ int(ΛN ). As A and B are dense in X, there exist sequences
(pn)n∈N ∈ A and (qn)n∈N ∈ B such that

∀n ∈ N pn, qn ∈ int(ΛN ) and lim
n→+∞

pn = λ = lim
n→+∞

qn. (4.2)

Lemma 4.3. For every N ∈ N, if a sequence (xk)k∈N of elements of ΛN converges, then∣∣∣∣ lim sup
k→+∞

Uψ(xk)− Uψ

(
lim

k→+∞
xk

)∣∣∣∣ 6 3 ε.

Proof. Given N ∈ N, take a convergent sequence (xk)k∈N contained in ΛN and consider
ℓ = limk→∞ xk, which is in ΛN . By the definition of ΛN , one has∣∣∣∣ψn(xk)− ψm(xk)

∣∣∣∣ 6 ε ∀m,n > N ∀ k ∈ N∣∣∣∣ψn(ℓ)− ψm(ℓ)

∣∣∣∣ 6 ε ∀m,n > N.
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Fixing m = N and taking the limit as n goes to +∞ in the first inequality along subsequences
that attain the lim sup, we conclude that

∀ k ∈ N
∣∣∣∣Uψ(xk)− ψN (xk))

∣∣∣∣ 6 ε and

∣∣∣∣Uψ(ℓ)− ψN (ℓ)

∣∣∣∣ 6 ε.

By the compactness of (X, d) and the uniform continuity of ψN , we may choose δN > 0 such
that

d(z, w) < δN ⇒
∣∣∣ψN (z)− ψN (w)

∣∣∣ < ε.

Altogether, this proves that, for k ∈ N large enough so that d(xk, ℓ) < δN , one has∣∣∣Uψ(xk)− Uψ(ℓ)
∣∣∣ 6 3 ε.

In particular, ∣∣∣∣ lim sup
k→+∞

Uψ(xk)− Uψ(ℓ)

∣∣∣∣ 6 3 ε

as claimed. �

Let us resume the proof of the Proposition 4.2. As Uψ(pn) = α and Uψ(qn) = β for every
n ∈ N, the conditions (4.2) and Lemma 4.3 imply that

|α− Uψ(λ)| 6 3 ε and |β − Uψ(λ)| 6 3 ε.

So |α − β| 6 6 ε, contradicting the choice of ε. Thus, ΛN must have empty interior. This
completes the proof of the proposition. �

Finally, observe that the set of points x ∈ X whose sequence
(
ψn(x)

)
n∈N converges is

contained in the countable union
∪+∞
N=1 ΛN of closed sets with empty interior. This ends the

proof of Theorem 4.1. �

5. Proof of Theorem A

Let (X, d) be a compact metric space and f : X → X be a continuous map and φ : X → R
be a continuous observable such that there exist two dense subsets A and B of X such that
the restrictions of the map Lφ to A and to B are constant, equal to α and β, respectively,
and α ̸= β. To prove Theorem A we just run the argument used to show Theorem 4.1 with
the following adaptations:

(1) The sequence (ψn)n∈N is made of the Birkhoff averages of f with respect to φ, that
is, for every x ∈ X and every n ∈ N,

ψn(x) =
1

n

n−1∑
j=0

φ(f j(x)).

(2) The map Uψ is precisely Lφ (cf. definition (2.3)).

(3) For every N ∈ N, the set ΛN is now defined by

ΛN =
{
x ∈ X :

∣∣∣∣ 1n
n−1∑
j=0

φ(f j(x))− 1

m

m−1∑
j=0

φ(f j(x))

∣∣∣∣ 6 ε ∀m,n > N
}
.

(4) The set Cψ becomes Iφ (cf. definition (2.2)).
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6. Proof of Corollary I

Let (X, d) be a compact metric space, f : X → X be a continuous map and µ1 and µ2
two distinct f -invariant Borel probability measures whose ergodic basins B(µ1) and B(µ2) are
dense in X. Choose φ ∈ C0(X,R) such that

∫
φdµ1 ̸=

∫
φdµ2, and consider A = B(µ1) and

B = B(µ2). In A and B the map Lφ is constant, and equal to
∫
φdµ1 and

∫
φdµ2, respectively.

Moreover, by assumption, these sets are dense in X. Thus, Theorem A guarantees that Iφ is
Baire residual in X, and so I is generic as well.

Remark 6.1. Another proof of this corollary could be obtained as follows. For each f -
invariant Borel probability measure µ take EN (µ) as the set of points x ∈ X for which there

exists n > N such that
∣∣ 1
n

∑n−1
j=0 φ(f

j(x)) −
∫
φdµ

∣∣ < 1
N . If there are µ1 ̸= µ2 with dense

basins, then the set EN (µ1) ∩ EN (µ2) is open and dense in X for every N > 1. Moreover,
the set of φ-irregular points contains the Baire residual subset

∩
N > 1 EN (µ1)∩ EN (µ2). This

argument is similar to the one in [34, Lemma 3.3].

7. Proof of Corollary IV

Let (X, d) be a compact metric space and f : X → X be a continuous minimal map.
If f is uniquely ergodic and µ denotes the unique f -invariant probability measure, then the
sequences of Birkhoff averages of every continuous observable map φ ∈ C0(X,R) are uniformly
convergent in X to the constant

∫
X φdµ. Thus, in the weak∗ topology, one has

lim
n→+∞

1

n

n−1∑
j=0

δfj(x) = µ ∀x ∈ X.

Assume now that there exist two distinct f -invariant Borel ergodic probability measures
µ1 and µ2. Choose φ ∈ C0(X,R) such that

∫
φdµ1 ̸=

∫
φdµ2 and take two points p1 ∈ B(µ1)

and p2 ∈ B(µ2), where B(µi) denotes the ergodic basin of attraction of µi. These are dense
subsets of X, since each contains a dense orbit, within which Lφ is constant, equal to

∫
φdµ1

in B(µ1) and to
∫
φdµ2 in B(µ2). Therefore, we may apply Corollary I, concluding that the

set I is Baire residual in X, as claimed.

Remark 7.1. One may ask whether results analogous to Corollary IV hold for non-additive
sequences (e.g. almost additive, asymptotically additive or sub-additive). In view of the
very recent work [16], the limits of almost additive or asymptotically additive sequence of
continuous maps coincide with Birkhoff averages of a suitable continuous observable. In
particular, the conclusion of Corollary IV is valid for this more general class of limits and
sequences. However, if the sequences are just sub-additive, then this is no longer true. Indeed,
for any uniquely ergodic system there exists sub-additive sequences of continuous maps such
that the set of non-typical points is Baire generic (cf. [18]).

8. Proof of Corollary V

Let (X, d) be a compact Riemannian manifold and f : X → X be a partially hyperbolic
diffeomorphism. Suppose that f has two distinct periodic points p1 and p2 whose stable
manifolds, we denote by W s

f (p1) and W
s
f (p2), respectively, are dense in X. We may assume

that p1 and p2 are fixed by f , taking an appropriate power of f otherwise. Choose φ ∈
C0(X,R) such that φ(p1) ̸= φ(p2) and define A = W s

f (p1) and B = W s
f (p2). These are f -

invariant, dense subsets of X, and the map Lφ is constant in each of them, equal to φ(p1) and
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φ(p2), respectively. Indeed, as p1 and p2 are fixed points by f and φ is continuous, then one
has Lφ(x) = Lφ(p1) = φ(p1) for every x ∈W s

f (p1) (and, analogously, Lφ(y) = Lφ(p2) = φ(p2)

for every y ∈W s
f (p2)) due to the following immediate chain of deductions:

x ∈W s
f (p1) ⇔ lim

n→+∞
fn(x) = p1 ⇒ lim

n→+∞
φ(fn(x)) = φ(p1)

⇒ lim
n→+∞

1

n

n−1∑
j=0

φ(f j(x)) = φ(p1).

Consequently, Theorem A ensures that I is a Baire residual subset of X.

9. Proof of Corollary VI

Let X be a compact Riemannian manifold and f ∈ Diff 1(X). Assume that H(p, f) ̸= {p}
is a homoclinic class for f associated to a hyperbolic saddle periodic point p. By Birkhoff’s
theorem, every transversal homoclinic point in H(p, f) is accumulated by hyperbolic periodic
orbits with the same index (that is, the dimension of the stable subbundle) as p. In particular,
there exists a hyperbolic saddle q ∈ H(p, f) which does not belong to the orbit O(p) of
p and is homoclinically related to p. This ensures that W s(O(p)) t W u(O(q)) ̸= ∅ and
W s(O(q)) tW u(O(p)) ̸= ∅. Now, the λ-lemma guarantees thatW s(O(q)) is dense inH(p, f).
This property together with Theorem A imply that Iφ ∩ H(p, f) is a Baire residual subset
of H(p, f) for every continuous observable φ whose averages along the orbits of the periodic
points p and q differ. This proves the corollary.

10. Proof of Theorem B

Let (X, d) be a compact metric space and f : X → X be a continuous map and Φ :=
(φn)n∈N be a sub-additive sequence of continuous functions. Assume that A and B are dense
subsets of X such that the restrictions of MΦ to A and to B are constant, equal to α and β,
respectively, and α ̸= β. Again, to show Theorem B we repeat the proof of Theorem 4.1 after
some adjustments:

(1) The sequence (ψn)n∈N is now ( 1n φn)n∈N.

(2) As the sequence (ψn)n∈N is sub-additive, the map Uψ coincides withMφ (cf. definition
(2.6)) whenever the limit of the sequence exists.

(3) For every N ∈ N, the set ΛN is given by

ΛN =
{
x ∈ X :

∣∣∣∣ 1n φn(x)− 1

m
φm(x)

∣∣∣∣ 6 ε ∀m,n > N
}
.

(4) The set Cψ is precisely what we denoted by IΦ (cf. definition (2.5)).

11. Proof of Corollary VII

Let (X, d) be a compact metric space, f : X → X be a continuous minimal map and
A ∈ C0(X,GL(k,R)), for k > 2. Consider the sequence ΦA = (φn)n∈N, where

φn(x) = log ∥An(x)∥ ∀x ∈ X.
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On the one hand, by the sub-additivity of the sequence
(
log ∥An(x)∥

)
n∈N

we conclude that

the map

MΦA
(·) = inf

n∈N

1

n
log ∥An(·)∥

satisfies MΦA
(x) 6 MΦA

(f(x)) for every x ∈ X. On the other hand, for each x ∈ X, the
reverse inequality MΦA

(x) >MΦA
(f(x)) follows from the estimate

∥An(x)∥ = ∥An−1(f(x))A(x)∥ > min
z ∈X

∥A(z)−1∥−1 · ∥An−1(f(x))∥ ∀n ∈ N.

Therefore, MΦA
is a first integral with respect to f . In particular, by the minimality of f , if

there are x1 ̸= x2 ∈ X such that

inf
n∈N

1

n
log ∥An(x1)∥ < inf

n∈N

1

n
log ∥An(x2)∥

then there exist dense sets A and B (namely, the orbits of x1 and x2 by f) satisfying the
requirements of Theorem B. Thus IΦ is Baire residual in X.
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[20] M. Herman. Construction d’un difféomorphisme minimal d’entropie topologique non nulle. Ergod. Th.
Dynam. Sys. 1 (1981) 65–76. 1, 2

[21] M. Hurley. On the generic nonexistence of first integrals. Proc. Amer. Math. Soc. 1 (1986) 142–144. 2
[22] S. Kiriki, M. Li and T. Soma. Geometric Lorenz flows with historic behavior. Discrete Cont. Dyn. Sys.

36:12 (2016) 7021–7028. 3
[23] H.B. Keynes and D. Newton. A “minimal”, non-uniquely ergodic interval exchange transformation. Math.

Z. 148:2 (1976) 101–105. 2
[24] R. Leplaideur and D. Yang. SRB measure for higher dimensional singular partially hyperbolic attractors.

Ann. Inst. Fourier 67:2 (2017) 2703–2717. 3
[25] H. Lima and P. Varandas. On the rotation sets of generic homeomorphisms on the torus Td. Ergod. Th.

Dynam. Sys. (2020) DOI:10.1017/etds.2020.92 1
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[27] R. Mañé. Contributions to the C1-stability conjecture. Topology 17 (1978) 386–396. 2
[28] Y. Nakano and T. Yokoyama. Existence and non-existence of length averages for foliations. Comm. Math.

Phys. 372:2 (2019) 367–383. 3
[29] C.E. Pfister and W.G. Sullivan. On the topological entropy of saturated sets. Ergod. Th. Dynam. Sys. 27

(2007) 929–956. 1
[30] V. Pinheiro. Expanding measures. Ann. Inst. H. Poincaré – Anal. Non Linéaire 28 (2011) 889–939. 2, 2
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