
Rui Gonçalves

Multivariate Time Series Analysis
with Deep Learning

Doctoral Program in Computer Science

of the Universities of Minho, Aveiro and Porto

March 2021

Rui Gonçalves

Multivariate Time Series Analysis
with Deep Learning

Thesis submitted to Faculty of Engineering of the University of Porto

for the Doctor Degree in Computer Science within the Joint Doctoral Program in

Computer Science of the Universities of Minho, Aveiro and Porto

Department of Electrical and Computer Engineering

Faculty of Engineering of the University of Porto

March 2021

i

ii

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the

requirements of the University’s Regulations and Code of Practice for Research

Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the

candidate’s own work. Work done in collaboration with, or with the assistance

of, others, is indicated as such. Any views expressed in the dissertation are those

of the author.

SIGNED: ..

DATE: ..

iii

iv

Acknowledgments

I would like to thank my supervisors Fernando Lobo Pereira and Ana Paula Rocha for their

guidance, fruitful discussions related to the topic of this dissertation, and mainly for their

friendship.

This work is deeply related to JBet project activities. Therefore, I would like to thank my

trader colleagues José Antonio Rocha and Alvaro Miguel. Also, to researchers Vitor Ribeiro,

Paulo Sousa Dias, and José Pinto for the many discussions and good conviviality during these

years.

Next, I wish to thank Jeff Heaton, the founder of the Encog neural network software

framework [Heaton, 2015]. His well-maintained forums, excellent tutorial materials, and

prompt responses to questions from curious minds all over the world greatly aided my

research.

Finally, I would like to thank my family for all this excellent support in my participation in

the MAP-i Doctoral Program in Computer Science.

The research activities described in this dissertation were supported by a Fundação para a

Ciência e Tecnologia doctoral grant (Ref. SFRH/BD/70987/2010).

v

vi

Abstract

This dissertation concerns the design of Deep Learning architectures to process time series to

efficiently generate forecasts. A time series is a collection of observations made sequentially,

typically measured at uniform time intervals. The special feature of time series is that the

analysis must consider the time order since data points are usually not independent. Time

series are examined in hopes of discovering a historical pattern that can be exploited in

the computation of a forecast. Examples occur in various fields ranging from economics

to engineering, and analyzing time series constitutes an essential part of Statistics. Deep

Learning is part of a broader family of Machine Learning methods. It relies on Artificial

Neural Networks and is the base framework on which the presented methodologies take

shape.

This dissertation’s main objectives are to propose innovative attention mechanisms super-

imposed on Recurrent Neural Network and bi-dimensional Convolutional Recurrent Neural

Network layers. A new padding method applied directly in convolutional layers is also

disclosed, suitable for multivariate time series processing.

The respective methodologies are thoroughly presented, as well as their execution analysis.

All architectures shown follow standard supervised learning treatment that consists of train-

ing the models and then testing them in new data. Several datasets are used to evaluate

their predictive performance. Databases taken from the University of California Irvine

repository focused on Human Activity Recognition, Air Pollution - PM2.5 Concentration,

and Household Electric Power Consumption, as well as a private dataset concerning betting

exchange markets, are considered as case studies. These datasets require extensive pre-

processing and data analysis. Additionally, for the betting exchange market’s case study,

an end-to-end framework is described to perform automated feature engineering and market

interactions using the developed models in production. The main results demonstrate the

overall positive impact of the proposed methodologies.

vii

viii

Resumo

Uma série temporal é uma coleção de observações feitas sequencialmente, normalmente

medidas em intervalos de tempo uniformes. A caracteŕıstica especial das séries temporais

é de que a análise deve considerar a ordem do tempo, uma vez que os pontos de dados

geralmente não são independentes. As séries temporais são examinadas na esperança de

descobrir um padrão histórico que possa ser explorado na computação de uma previsão.

Existem vários exemplos deste tipo de dados em vários campos que vão desde a Economia

à Engenharia. Deste modo, análise de séries temporais constitui uma parte essencial da

disciplina de Estat́ıstica. Aprendizagem profunda faz parte de uma famı́lia ampla de métodos

de aprendizagem máquina. É baseado em Redes Neuronais Artificiais e é o quadro de

trabalho base no qual as metodologias apresentadas tomam forma.

Os principais objetivos desta dissertação são propor mecanismos inovadores de atenção em

redes neuronais sobrepostos a camadas recorrentes e camadas convolucionais recorrentes tal

como ConvLSTM2D. Além disso, é divulgado um novo método de ’padding’ em camadas

convolucionais bidimensionais, apropriado para processamento de séries temporais multi-

variável.

As respetivas metodologias são apresentadas exaustivamente, bem como a sua análise de

execução. Todas as arquiteturas mostradas seguem o tratamento padrão de aprendizagem

supervisionada que consiste em treinar os modelos e, em seguida, testá-los em novos dados.

Vários conjuntos de dados são usados para avaliar o desempenho preditivo. São considerados

casos de estudo bases de dados retiradas do repositório da Universidade de California Irvine

com foco em Reconhecimento de Atividade Humana, Poluição do Ar - PM2.5 Concentração

e Consumo de Energia Elétrica Doméstica, bem como um conjunto de dados privado sobre

mercados de bolsa de apostas. Todos esses conjuntos de dados requerem extenso pré-

processamento e análise de dados. Além disso, para o estudo de caso do mercado de bolsa

de apostas, um quadro de trabalho completo é descrita para realizar engenharia de dados

completamente automatizada assim como interações de mercado usando os modelos em

produção. Os principais resultados demonstram o impacto geral positivo das metodologias

propostas.

ix

x

Contents

Abstract vii

Resumo ix

List of Tables xvi

List of Figures xx

Listings xxi

1 Introduction 1

1.1 Deep Learning . 4

1.2 Time Series Prediction Problem . 6

1.3 Objectives of the Research . 10

1.4 Approach . 10

1.5 Definitions of Terms . 11

2 Literature Review 19

2.1 Neural Networks . 19

2.1.1 Feed Forward Neural Networks . 19

2.1.2 Recurrent Neural Networks . 27

2.1.3 Long Short-Term Memory . 29

xi

2.1.4 Convolutional Neural Networks . 31

2.1.5 Convolutional LSTM 2D . 34

2.1.6 WaveNet . 35

2.1.7 Temporal Convolutional Network . 36

2.1.8 Autoencoders . 37

2.2 Optimization . 38

2.2.1 Backpropagation . 38

2.2.2 Genetic Algorithms . 41

2.2.3 Particle Swarm Optimization . 44

2.2.4 Error Functions . 45

2.3 Auto-Regressive Integrated Moving Average Model 47

3 Case Studies 51

3.1 Human Activity Recognition . 52

3.2 Air Pollution - PM2.5 Concentration . 54

3.3 Individual Household Electric Power Consumption 57

3.4 Betting Exchange Markets . 61

3.4.1 Trading Framework . 64

3.4.2 Data Collection and Feature Engineering 73

4 Methodologies and Results 83

4.1 Models Architectures . 83

4.1.1 CNN LeNet Based Models . 83

4.1.1.1 Traditional Paddings . 84

4.1.1.2 Roll Padding . 85

4.1.2 LSTM Based Models . 86

4.1.2.1 Standard Attention . 87

xii

4.1.2.2 Multi-Head Convolutional Attention 89

4.1.3 ConvLSTM2D Based Models . 90

4.1.3.1 ConvLSTM2D for Segmented Time Series 90

4.1.3.2 ConvLSTM2D Convolutional Attention with Roll Padding . 91

4.1.4 Multivariate WaveNet . 92

4.1.4.1 WaveNet 1D with Multichannel Input 92

4.1.4.2 WaveNet Extended with 2D Convolutions and Roll Padding 93

4.2 Results . 93

4.2.1 HAR - UCI Dataset . 94

4.2.2 Air Pollution - PM2.5 Concentration 96

4.2.3 Household Electric Power Consumption 98

4.2.4 Betting Exchange - Horse Racing Markets 100

5 Conclusions and Future Work 107

5.1 Conclusions . 107

5.2 Future Work . 109

Glossary 117

References 121

xiii

xiv

List of Tables

3.1 Number of examples per class in the train and test Human Activity Recogni-

tion (HAR) dataset provided by University of California Irvine (UCI). 53

3.2 Most relevant studies using the UCI HAR dataset with 21-9 working setup. . 54

3.3 Snapshot of market depth RDT information. 62

3.4 Rule-based decision tree. 75

3.5 Example of trading mechanism parameters for a particular category. 79

3.6 Example of one trading execution log given the category parameters and the

model prediction. 80

4.1 Padding examples of size 4 for unidimensional input. 85

4.2 Confusion matrix for the best run applying the WaveNet 2D with roll padding

model on the HAR RTD validation dataset as provided by UCI. 96

4.3 Descriptive statistics of accuracies obtained with 5 repetitive runs of the fitting

process for each model applied to the UCI HAR case study. 96

4.4 Descriptive statistics of accuracies obtained with 5 repetitive runs of the fitting

process for each model applied to the air pollution case study. 97

4.5 Confusion matrix for the Bi-dimensional Convolutional LSTM (ConvLSTM2D)

model without add-ons. Best model on the air pollution validation dataset. . 98

4.6 Descriptive statistics of accuracies obtained with 5 repetitive runs of the fitting

process for each model applied to household electric power consumption case

study. 98

xv

4.7 Confusion matrix for the ConvLSTM2D-based model with roll padding, on

the variables component, and multi-head attention with roll padding on the

segments component. Model execution on the household electric power con-

sumption test dataset. 99

4.8 Forecasting error metrics of the two models in the test dataset for the nor-

malized output. 99

4.9 Confusion matrix for the ConvLSTM2D-based model in regression mode with

2D multi-head attention and roll padding. The results of the model in regres-

sion mode are converted back into the respective consumption level interval. . 101

4.10 Descriptive statistics of accuracies obtained by 5 repetitive runs of the fitting

process for each model applied to the betting exchange case study. 101

4.11 Confusion matrix for Long Short-Term Memory (LSTM)-based model with

Conv1D multi-head attention on the validation dataset. 102

4.12 Global trading simulation results with the model in production on the final

test dataset. 103

4.13 Confusion matrix for the LSTM-based model with Conv1D multi-head atten-

tion, i.e., best model, on the final test dataset. 104

A1 Pre-live betfair horse racing markets summary statistics. 111

A2 Stretch of the entire output fields of trading mechanisms (TM 2 - Trailing-stop

and 1 - Swing) and parametrization according to the DL models prediction,

during several races. The base stake used is £100.00. 112

xvi

List of Figures

1.1 Some mapping functions f̂ exploring the search space. 3

1.2 Constraints or selection of mapping functions (f̂); Mapping function (f̂a) in

the exploration process and a representation of mapping functions (f̂b and f̂c)

ensembled to produce a new mapping (f̂d). 3

1.3 Data Science techniques scaling with amount of data, by Ng [2015]. 4

1.4 Locating this dissertation in the fields of Artificial Intelligence (AI), Data

Analysis and Big Data. 5

1.5 Multivariate Time Series (MTS) input example. Xt
n with n = 4 variables

containing t = 128 time steps for each xn. 7

1.6 Time series example of US Wholesale Price Index (WPI), raw and stationary

data. 8

1.7 WPI differencing values (see Figure 1.6) frequency analysis to transform a

regression into classification with egalitarian number of examples per class. . 9

1.8 Notation used for deep Feed Forward Neural Network (FFNN) models. 16

2.1 Multi Perceptron FFNN for Exclusive Or (XOR) operator. 19

2.2 Perceptron Architecture. 20

2.3 Binary step activation function. 22

2.4 Sigmoid activation function. 23

2.5 tanh activation function. 24

2.6 arctan activation function. 24

2.7 LeCun’s tanh activation function. 25

xvii

2.8 Rectified Linear Unit (ReLU) activation function. 25

2.9 Smooth ReLU activation function. 26

2.10 Softmax activation function. 27

2.11 Elman Simple Recurrent NN (SRN). 28

2.12 Unrolling a recurrent neuron . 29

2.13 Illustration of the LSTM unit in the unrolled chain. 31

2.14 Convolutional Neural Network (CNN) 2D architecture for MTS forecast with

classification . 32

2.15 MTS input segmentation hack for ConvLSTM2D. 34

2.16 Causal padding on the left subplot and WaveNet residual block on the right

subplot. 35

2.17 Temporal Convolutional Network (TCN) residual block. 36

2.18 Simple AE of dense layers with one hidden layer 37

2.19 Pre-trained encoder used to feed a regression FFNN with generalized com-

pressed information of the inputs. 38

2.20 Transforming a Neural Network (NN) into a linear chromosome θi for indi-

vidual i. 42

2.21 NN chromosome evolving with mating (crossover) and mutation. 43

2.22 Particles moving in the search space using Particle Swarm Optimization (PSO),

from one iteration to the next. 45

3.1 A sample example of HAR dataset for walking class. 53

3.2 5 years of the MTS used to predict the air pollution - 43800 time steps, one

per hour. 55

3.3 Inputs of a training example for pollution prediction. 72 time steps × 8

variables. The target class for this example is level o pollution 1. 56

3.4 Output conversion to obtain an equalitarian number of examples per category. 57

3.5 Sample format used for the developed models. 59

xviii

3.6 Data treatment possibilities: (A) raw data, (B) standardization, (C) his-

togram re-scaling. 60

3.7 Definition of output classes. Levels of energy consumption. 60

3.8 Average trading volume, average liquidity at the bid and ask price, and

average number of ticks variation in absolute value per minute. 63

3.9 High level architecture for automated betting exchange. 66

3.10 State machine for an order. 68

3.11 Simplified graph scheme for a Back-¿Lay scalp implementation. 70

3.12 Simplified graph scheme for a Back⇒Lay Trailing-Stop implementation. . . . 72

3.13 Add-in information to the raw dataset for global re-training of the models. . . 74

3.14 4 races input examples, indicators evolution. Each input sample has 8 minutes

of data. 75

3.15 Caption for LOF . 77

3.16 Histogram re-scaling with truncated tails at 10% level to find min-max values

for input normalization. 78

3.17 Histogram for the qualitative classification of the output representing the

integral of tick variation. 79

4.1 CNN 2D using same padding in convolutional layers 83

4.2 Roll padding scheme in MTS analysis. 86

4.3 CNN 2D using valid padding in time steps component and roll pading, of size
KH

2 , in the variables component. 86

4.4 Stacked Bidirectional LSTMs . 87

4.5 MTS attention before LSTMs on the left subplot and attention after LSTM

on the right subplot. 88

4.6 Attention using convolutional layers before and after LSTMs. 89

4.7 Base scheme for staked ConvLSTM2D with roll padding on the variables

component. 90

xix

4.8 MTS input processing for ConvLSTM2D. The bottom subplot describes the

application of roll padding in the variables component for each segment. . . . 90

4.9 Multi-head Attention with 2D convolution layers before ConvLSTM2D using

roll padding in the segments component. 91

4.10 On the left subplot, comparison behavior between valid and causal padding.

On the right subplot, combination of causal and roll padding scheme for MTS

analysis with WaveNet 2D. 92

4.11 WaveNet 2D architecture for MTS classification using 2D convolutions with

causal padding in the time steps component and roll padding in the variables

component. 94

4.12 Learning process evolution for HAR case study. 95

4.13 Learning process evolution of the ConvLSTM2D-based models for the air

pollution case study. 97

4.14 Step by step regression outputs vs real values for the ConvLSTM2D with

Conv2D attention mechanism and roll padding. 100

4.15 Evolution of the PL during 30 days of trading using the best model, in the

betting exchange case study. 103

5.1 Projected Auxiliary Classification Generative Adversarial Network (AC-GAN)

architecture for MTS problems. 109

A1 Example of histogram re-scaling for the normalization process on all indicator

in the betting exchange case study. 113

A2 Stacked ConvLSTM2D with roll padding for the variables component on the

main pipeline data and Multi-head attention Conv2D attention block with

roll padding for the segments component. 115

A3 Wavenet architecture using 2D convolutions with roll padding in the variables

component and causal padding in the time steps component 116

xx

Listings

3.1 Market Change Listener Interface . 67

3.2 Main parameters for Scalping mechanism . 70

3.3 Swing constructor example . 71

3.4 Trailing-Stop constructor example . 72

A1 Python Keras layer implmentation of roll pading with causal pading. 114

xxi

xxii

Chapter 1

Introduction

The increasing volume of data and the importance of data analytics in speed and hetero-

geneity constitute a clear trend that the available big data era is here to stay. It includes

a new form of strategic behavior and business dialogue. Data is currently considered one

of the most valuable intangible assets globally. Its further rapid increase is key to the

transformation and growth of companies and the mitigation of digital aliteracy. The Machine

Learning (ML) field enables a disruptive change for business organizations and individual

agents due to the present power of predictive, classification, clustering analytics, and data

generation/approximation. Correctly harnessing data can help to achieve better analytical-

driven decisions. It allows boosting competitive advantages due to the faster reactions to core

needs in addition to improving the performance of stakeholders on the provision of answers

for complex questions. Moreover, the prospect of human error is completely eliminated.

Automating tasks can significantly reduce the overall process cycle cost. Entities driven

towards this journey need to understand how each aspect of their business can be optimized

to satisfy new digital targets and further growth potential.

Applied ML is challenging because the designing of a perfect learning system for a given

problem is intractable. There is no best training data or best algorithm for one problem, only

the best that can be discovered. ML’s application is best thought of as a search problem for

the fittest mapping of inputs given the knowledge and resources available for a given project.

ML, in its basis, is an approximation of unknown underlying mapping function from inputs

to outputs. Hence, ML’s conceptualization as a search helps to rationalize the spot checking

of algorithms and understand what is happening when algorithms learn.

The goal of ML systems is to learn a generalized mapping between input and output data

to make skillful predictions from new instances drawn from the domain where the output

variable(s) is unknown. In a statistical perspective on ML, the problem is framed as the

1

2 CHAPTER 1. INTRODUCTION

learning of a perfect but unknown mapping function f given input data X and associated

output data Y :

Y = f(X) (1.1)

We have a sample set of X and Y and do the best to come up with a function f̂ that

approximates f , such that we can make predictions Ŷ given new examples X in the future:

Ŷ = f̂(X) where f̂ ≈ f (1.2)

The learned mapping f̂ will be imperfect. The form of the function f is unknown because,

otherwise, we would not need a learning system and the solution would be specified directly.

One needs to search f̂ of the true underlying f that is good enough for the purpose. There

are many sources of noise that introduce error into the learning process that can make it

more challenging and, in turn, result in a less useful mapping. Also, there are many choices

that a data scientist must make in order to optimize the process, such as:

• Framing of the learning problem;

• Observations used to train the system;

• How the training data is prepared;

• Form for the predictive model;

• Learning algorithm to fit the model on the training data;

• Performance measure by which to evaluate the predictive skill; etc.

There are many decision points in the development of a learning system, and none of the

answers are known beforehand. All possible learning systems for a problem can be think of

as a huge search in space, where each decision point narrows the search (see Figures 1.1 –

1.2). Also, there may be a natural hierarchy of this decisions, each of which further limits the

search-space. This narrowing introduces a useful bias that intentionally selects one subset of

possible learning systems over another with the goal of getting closer to a useful mapping.

This biasing applies at the top level in the framing of the problem and at deeper levels

configurations, such as the choice of learning algorithm and its parameterization.

On the top level, the chosen framing of the learning data used to train the system is a big

point of leverage in the development of the learning system. In supervised learning, in which

this dissertation is framed, there is normally some historical input-output pairs (X and Y)

of data, which are used to train a predictive model. The chosen data to model the learning

system must sufficiently capture the relationship between the X and Y for the training phase

and production.

3

Universe of all mappings of inputs to outputs

Figure 1.1: Some mapping functions f̂ exploring the search space.

In the modeling phase, the representation of the model and the algorithm used to fit the

model with the training data must be chosen. Again, this is another big point of leverage on

the development of learning systems. Often, this decision is simplified to the selection of an

algorithm, although it is common for stakeholders to impose conditions on the project (e.g,

speed of execution), which create constraints on the form of the final model representation

and on the scope of mappings in search. The algorithm used to learn the mapping will

impose further constraints and, along with the chosen algorithm configuration, will control

how the space of possible candidate mappings will navigate as the model learns (i.e., for ML

algorithms that learn iteratively). Figure 1.2, shows that the act of learning from training

Universe of all mappings of inputs to outputs

Scope of mappings

Starting point Learned mapping

Ensemble mapping

f̂ a

f̂ b

f̂ c

f̂ d

Figure 1.2: Constraints or selection of mapping functions (f̂); Mapping function (f̂a) in

the exploration process and a representation of mapping functions (f̂b and f̂c) ensembled to

produce a new mapping (f̂d).

4 CHAPTER 1. INTRODUCTION

data by a ML algorithm is, in fact, navigating the space of possible mappings for the learning

system, hopefully moving from a poor mapping to a better mapping (e.g., hill climbing). This

provides a conceptual rationale for the role of optimization algorithms at the heart of ML

to get the best possible model representation for the specific training data.

We can also see that different models will occupy quite different locations in the space of

all possible mapping functions. In turn, these have a quite different behavior when making

predictions (i.e., uncorrelated prediction errors). This provides a conceptual rationale for

the role of ensemble methods that combine predictions and/or architectures from different

f̂b and f̂c to achieve a more skillful predictive model f̂d (see Figure 1.2).

1.1 Deep Learning

There are many architectures to implement learning mapping functions. In this dissertation,

we will focus on Deep Learning (DL) methodologies. Nevertheless, some other types of

architectures will also be mentioned. DL is a sub-field of ML concerned with algorithms

inspired by the structure and function of the brain called Artificial Neural Networks (ANNs).

Fast enough computers and enough data to actually train large Neural Networks (NNs) is at

the core of DL. The main point of importance is scalability. As larger NNs are constructed

and trained with additional data, their performance continues to increase. In general different

from other ML techniques that reach a plateau in performance (Figure 1.3).

P
er

fo
rm

an
ce

Amount of Data

Deep Learning

Older Learning Algorithms

Figure 1.3: Data Science techniques scaling with amount of data, by Ng [2015].

In addition to scalability, another often cited benefit of DL models is their ability to perform

automatic feature extraction from raw data, also called feature learning. Yoshua Bengio, one

of the main experts in DL, began with a strong interest in the automatic feature learning that

large NNs are capable of achieving. He describes DL in terms of the algorithmic ability to

1.1. DEEP LEARNING 5

discover and learn good representations using feature learning. Indeed Bengio [2012] claims:

”DL algorithms seek to exploit the unknown structure in the input distribution in order

to discover good representations, often at multiple levels, with higher-level learned features

defined in terms of lower-level features”. Automatically learning features at multiple levels

of abstraction allows a system to learn complex functions mapping the input to the output

directly from data. Also, citing Goodfellow et al. [2016]: ”The hierarchy of concepts allows

the computer to learn complicated concepts by building them out of simpler ones. If we draw

a graph showing how these concepts are built on top of each other, the graph is deep, with

many layers. For this reason, we call this approach to Artificial Intelligence (AI): DL”.

Another important characteristic in a DL framework is the possibility of defining a NN in a

pipeline of different modules, which are trainable or have been pre-trained.

Artificial Intelligence

Machine Learning

Deep Learning

Big Data

Thesis

Data Analysis

Data Mining

Figure 1.4: Locating this dissertation in the fields of AI, Data Analysis and Big Data.

In this dissertation, the main building blocks (i.e., type of layers) considered in the DL NN

framework are:

• Fully connected perceptron layers, i.e., dense layers;

• Convolutional layers; and

• Recurrent layers, e.g., Long Short-Term Memory (LSTM) layers.

Because it has multiple stages in the process of recognizing a pattern, all of these stages

are part of a deep modular training framework. DL methods represent multiple levels of

information treatment, obtained by composing simple but non-linear modules that transform

the representation of input information at one level. DL excels in problem domains where

inputs (and even output) are analog representations which means that, besides few quantities

of data in a tabular format, it can handle well pixel data images, text data documents or

6 CHAPTER 1. INTRODUCTION

audio data files. Figure 1.4 frames this dissertation within DL / Data Mining / Big Data

fields for Multivariate Time Series (MTS) analysis.

1.2 Time Series Prediction Problem

Time series modeling is a dynamic area, which has attracted the attention of research

community over the last few decades. The main aim of time series modeling is to carefully

collect and rigorously study the past observations to develop an appropriate model to describe

the inherent structure of data. This model is then used to generate future values of the

time series. Time series forecasting can be termed as the act of predicting the future by

understanding the past. Due to the indispensable importance of time series forecasting

in numerous practical fields such as business, economics, finance, science, and engineering

[Zhang, 2007, 2003, Tong, 1983], proper care should be taken to fit an adequate model to

the underlying time series. Many efforts have been done by researchers for the development

of efficient models to improve their performance. As a result, various important time series

forecasting models have been improved.

A time series is a sequential set of data points, typically measured over successive fixed

time intervals. It is mathematically defined as a vector xt with t ∈ [0, 1, 2, ..., T], where t

represents the time elapsed and T is the length of the history data period for the time interval

under analysis. Variable xt is treated as a random variable, and, thus, the prediction t + 1

is stochastic. The measurements taken during an event in a time series are arranged in a

proper chronological order. The goal is to forecast the variable of interest yt at t = T + m

where m represents time steps ahead in the future. For this purpose, we need to define a

model f̂ with parameters θ for the variable of interest ŷT+m where :

ŷT+m = f̂(x, θ) (1.3)

A time series containing records of a single variable is termed as univariate. But if records

have more than one variable (i.e., n > 1), it is termed as multivariate, where inputs of the

model are given in the form of:

Xt
n =


x1

1 . . . xt1
...

x1
n . . . xtn

 (1.4)

and the output prediction of a given variable is: ŷT+m
n = f̂(X, θ). Figure 1.5 clarifies a

matrix of inputs Xt
n.

A time series can be either continuous or discrete. In continuous time series observations

are measured at every instance of time, whereas a discrete time series contains observations

1.2. TIME SERIES PREDICTION PROBLEM 7

Figure 1.5: MTS input example. Xt
n with n = 4 variables containing t = 128 time steps for

each xn.

measured at discrete points of time. For example, temperature readings, flow of a river, and

concentration of a chemical process can be recorded as continuous time series. On the other

hand, population of a particular city, production of a company, exchange rates between two

different currencies may represent discrete time series. As mentioned in Hipel and McLeod

[1994], the variable being observed in discrete time series is assumed to be measured as a

continuous variable using a scale of real numbers. Furthermore, a continuous time series can

be transformed into a discrete one by merging data together over a specified time interval.

A time series is supposed to be affected by three main components, which can be separated

from the observed data: trend, cyclical or seasonal, and irregular components. The general

tendency of a time series to increase, decrease or stagnate over time is termed as secular

trend or, simply, trend. Therefore, trend is a global long movement in a time series. In

this dissertation, we will treat case studies where this component is minimal. The cyclical

variation in a time series describes medium-term changes caused by circumstances, which

repeat in cycles or seasons. Irregular or random variations in a time series are caused by

unpredictable influences, which are not regular and also do not repeat in a particular pattern.

These variations are caused by unpredictable incidences, external to the modeling problem.

The excellent feature of ANNs, when applied to time series forecasting problems, is their

inherent capability of non-linear modeling without any presumption about the statistical

distribution characterizing the observations. The appropriate model is adaptively formed

based on the given data. Due to this reason, ANNs are data-driven and self-adaptive by

nature. During the past few years a substantial amount of research has been carried out

towards the application of NNs for time series modeling and forecasting. In this dissertation,

we aim to refine some techniques and propose novel DL based architectures.

A derivative concept from the described components of time series is the stationarity. It

is a mathematical idea constructed to simplify the theoretical and practical development

of stochastic processes [Box and Jenkins, 1990]. To design proper models, including DL-

8 CHAPTER 1. INTRODUCTION

based models, the underlying time series is expected to be stationary, which is not always

the case. As stated by Hipel and McLeod [1994], the greater the time span of historical

observations, the greater is the chance that the time series will exhibit non-stationary

characteristics. However, for relatively short time span, one can reasonably model the series

using a stationary stochastic process. Usually, time series showing trend or seasonal strong

patterns are non-stationary in nature. In such cases, differencing and power transformations

are often used to remove the trend and to make the series stationary (see Figure 1.6).

1960 1964 1968 1972 1976 1980 1984 1988 1992

40

60

80

100

120
US Wholesale Price Index

1960 1964 1968 1972 1976 1980 1984 1988 1992

0.02

0.00

0.02

0.04

0.06

US Wholesale Price Index - difference of steps

Figure 1.6: Time series example of US Wholesale Price Index (WPI). On the left subplot,

non stationary trending raw data time series; On the right subplot, differencing it between

time-steps making the time series stationary and more suitable to feed a model.

Regression and Classification in Time Series

Classification and regression are the two most common applications of NNs. Regression

models predict a number, whereas classification tasks assign a non-numeric class to a given

input. In a ML problem, first one needs to define whether we are dealing with a classification

or regression type of problem, and get to know the analyzing target/output variable Y .

Regardless whether the input X takes a continuous or discrete format, it is irrelevant to

define the type of problem.

In a classification problem, one tries to predict a discrete number of values or labels. These

generally come in categorical form and represent a finite number of classes. There are

mainly two types of classifications that have influence on the type of model and configuration

decisions:

1. Binary classification: when there are only two classes to predict, usually 1 or 0 values,

e.g., fraud detection, anomaly detection; and

2. Multiclass classification: when there are more than two classes to predict, e.g., image

classification problems where there can be than hundreds of classes.

1.2. TIME SERIES PREDICTION PROBLEM 9

An algorithm appropriate for binary classification in its basis, e.g., Support Vector Machines

(SVMs), can be extended to multiclass classification using techniques like One-vs-All (OVA)

and One-vs-One (OVO). OVA will train one classifier per class ending up with N classifiers.

For class i, each classifier will assume i-labels as positive and the rest as negative. This often

leads to imbalanced datasets meaning generic models might not work, but still there are

some workarounds [Sridhar and Kalaivani, 2020]. In OVO technique, one trains a separate

classifier for each different pair of labels. This leads to N(N−1)
2 classifiers. This is much less

sensitive to the problem of imbalanced datasets, but it is more computationally expensive.

In the context of DL, NNs are suitable to both types of problems, binary and multiclass.

However, the type of activation function for the output layer and error function in global,

should be adequately selected (see Sections 2.1.1 and 2.2.4). Although in time series models,

-0.02 0.00 0.02 0.04 0.06
0

2

4

6

8

10

12

14

16

Down
33%

neutral
33%

up
33%

Figure 1.7: WPI differencing values (see Figure 1.6) frequency analysis to transform a

regression into classification with egalitarian number of examples per class.

it is customary to predict the next number in line, i.e., work as a regression problem, in this

dissertation we will be concern mainly with time series classification. For the case studies

with an original regression format, this conversion is done by changing the target values

using a frequency analysis technique. In doing so, we divide these values into classes such

that a perfectly balanced number of examples per class is achieved for supervised learning.

Figure 1.7 represents a histogram to establish the interval values, towards zero, for three

classes in predicting WPI - going down, maintain, or going up - with 33% of samples in

the dataset for each class. This way, we avoid an overfitting point of failure and set up the

framework to extract results with more statistical significance and a more straightforward

interpretation. For example, a problem with a high beam on the output histogram and a

regression model that only predicts one exact value of that beam will have a low error in

10 CHAPTER 1. INTRODUCTION

theory. Still, in practice, it is biased and with low sensitivity. Moreover, hard to interpret.

To see, in classification mode, how the model’s response is spread over a spectrum of intervals

can add interpretation value , e.g., confusion matrix analysis.

1.3 Objectives of the Research

This dissertation consists of three main objectives:

• Design and investigate innovative convolutional attention mechanisms superimposed on

simple recurrent and bi-dimensional convolutional recurrent based models.

• Design and investigate a new padding method designated by roll padding, which is

applied to convolutional layers specifically projected for MTS processing.

• Combine the above new roll padding method with the bi-dimensional convolutional

attention mechanism developed for bi-dimensional convolutional recurrent based models.

Four families of models are adopted to enable the pursuit of the proposed research goals:

Convolutional Neural Network (CNN), LSTM, Bi-dimensional Convolutional LSTM (ConvL-

STM2D), and WaveNet based models. CNN-based models serve as a sandbox to demonstrate

the potential of roll padding. LSTM-based models are used to compare the proposed

attention mechanism with cases of no attention and standard attention. ConvLSTM2D-

based models are used to verify whether the performance improves with the bi-dimensional

attention mechanism proposed. We also compare the standard WaveNet with the developed

WaveNet2D that uses bi-dimensional convolutions with roll padding. All methodologies

are thoroughly presented, as well as their execution analysis. Several datasets are used to

evaluate predictive performance of the models.

1.4 Approach

All architectures follow standard supervised learning scheme that consists of training the

models with established input and output data, and, then use a segment of new data to

compare the model’s response with the real data. Databases taken from the University

of California Irvine (UCI) repository focused on Human Activity Recognition (HAR), Air

Pollution - Particulate Matter 2.5 (PM2.5) concentration, and Household Electric Power Con-

sumption, as well as a private dataset concerning betting exchange markets, are considered

as case studies.

In terms of methodology, the following steps are taken. We start by data collection followed

by Feature Engineering (FE) applied to inputs and outputs. All datasets require extensive

1.5. DEFINITIONS OF TERMS 11

pre-processing and data analysis. Additionally, for the betting exchange market’s case

study, an end-to-end framework is fully described to perform Automated Feature Engineering

(AFE) and market interactions using the models in production.

The modeling stage is the central point of this dissertation. Once the data pre-processing

is done, the modeling stage begins where base architectures and respective add-ons are

described. Afterwards, models are trained and tested in the learning phase. Once ready,

models within each family are compared. This way, one can assess to which extent the

proposed contributions improve the alternative conventional models in terms of predictive

performance.

The remainder of this dissertation is organized as follows. Chapter 2 provides a literature

review. Chapter 3 presents all case studies in detail and the applied FE. Chapter 4 presents

methodologies and results. Conclusions and future work are compiled in Chapter 5.

1.5 Definitions of Terms

Automated Feature Engineering (AFE): The process where an algorithm automati-

cally performs transformations to the input data to extract relevant information.

Adaptive Moment Estimation (Adam): A training update rule that automatically scales

individual learning rates for each weight, taking into consideration past updates i.e.

momentum. Deals well with sparse gradients, and can handle a stochastic objective

function.

Autoencoder (AE): A NN that can learn efficient encodings for data to perform dimen-

sionality reduction. Autoencoders typically have the same number of input and output

neurons.

Bias term: The bias term performs a similar function as the y-intercept in linear regression.

Classifier: A NN, or another type of model, that is trained to classify its input into a

predefined number of classes. A multiclass NN will typically use a softmax function on

its output and have the same number of output neurons as the total number of classes.

Convolutional Neural Networks (CNN): Class of deep NNs that has successfully been

applied to analyzing visual imagery. It is inspired by biological processes in that the

connectivity pattern between neurons resembles the animal visual cortex’s organiza-

tion. It learns and uses several convolution kernels to process information.

Convolutional neuron: Matrix of weights to be learned. Also called in the literature by

convolutional kernel, convolutional filter or feature detector. The notation used in this

12 CHAPTER 1. INTRODUCTION

dissertation for convolutional kernel is K.

Cross entropy loss function: A NN loss function, also simply called Log Loss (used in

binary classification), that often provides superior training results for classification

when compared to the quadratic loss function. For regression problems, Root Mean

Square Error (RMSE) or Mean Square Error (MSE) should be considered.

Crossover: An evolutionary operator, inspired by the biological concept of sexual repro-

duction in which two genomes combine traits to produce offspring. Crossover performs

the exploitation function of an evolutionary algorithm by creating new genomes based

on fit parents.

Dataset: For supervised training, a dataset is a collection of input values (X) and the ex-

pected output values (Y). The presented research only deals with supervised training.

The overall dataset is usually divided into training, validation, and test datasets.

Deep Learning (DL): A collection of training techniques and NN architecture innovations

that make it possible to effectively train NNs with three or more layers.

Deep Neural Network (DNN): A NN with three or more layers.

Dot product based model : A model that uses dot products, or weighted sums, as a

primary component of their calculation. NNs, linear regressions, and support vector

machines for regression are all examples of dot product based models.

Engineered feature: A feature added to the feature vector of a model which is generated

by applying a mathematical transformation to one or more features from the original

feature vector.

Epoch: A unit in an iterative training algorithm where the entire training set has been

processed.

Error function: Error, objective, cost, or loss function have the same meaning and are used

to test the model performance. These terms can be used interchangeably, though some

ML publications assign special meaning to them. In this dissertation, error function is

the term mostly used.

Evolutionary algorithm: An optimization algorithm that evolves better-suited individu-

als from a population by applying mutation and crossover. The algorithm must balance

between exploring new solutions and exploiting existing solutions to make them better.

Exploration: The process in a search algorithm where the search is broadened to new

regions farther away from the best solution discovered so far.

1.5. DEFINITIONS OF TERMS 13

Feature: Variables or attributes on the dataset, but sometimes also refferred to the output

values of an intermediate layer, e.g., output of an encoder.

Feature Engeneering (FE): The process of creating new features by applying mathemat-

ical transformations to one or more of the original features.

Feature vector: The complete set of inputs to a NN layer. The feature vector must be the

same size as the input of a layer.

Feed Forward Neural Network (FFNN): A NN that contains only forward connections

between the layers.

Fully connected layer: Or dense layer, connect every neuron in one layer to every neuron

in another layer. It is in principle the same as the traditional multi-layer perceptron

NN.

Genome: An individual in an evolutionary program, candidate model solution. Complete

set of one model parameters.

Gradient: A partial derivative of the loss function of a NN with respect to a single weight.

The gradient is a key component in many NN training algorithms.

Hidden layer: A NN layer that occurs between the input and output layers. A NN can

contain zero or more hidden layers.

Input layer: The first layer of neurons that receives the input to the NN.

Iteration: One unit of work in an iterative algorithm. If an iteration only processes a batch

that is not the entire training set, then the iteration is called a step. A series of steps

that process an entire dataset are called an epoch.

Layer: A collection of related neurons in a NN.

Learning rate: A numeric value that controls how quickly a model, such as a NN, learns.

For backpropagation, the learning rate is multiplied by the gradient to determine the

value to change the weight.

Linear regression: A simple model that computes its output as the weighted sum of the

input plus an intercept value.

Local optima: A potential solution to an optimization problem that has no better solutions

nearby in the search space. This local solution can prevent an optimization algorithm

from finding other better solutions. These solutions are sometimes called local minima

or local maxima, depending on if the optimization algorithm is seeking minimization

or maximization.

14 CHAPTER 1. INTRODUCTION

Long Short-Term Memory (LSTM): A type of recurrent NN that uses a series of gates

to learn patterns spanning much larger sequences than those that regular simple

Recurrent Neural Networks (RNNs) are capable of learning.

Moment: Measure of the points in a probability density function. The zeroth moment

is the total probability (i.e., one); the first moment is the mean; the second central

moment is the variance; the third moment is the skewness; the fourth moment (with

normalization and shift) is the kurtosis. The Adam training algorithm, used in this

dissertation, estimates the first and second moments of the gradients.

Momentum: A numeric value that attempts to prevent a NN from falling into a local

minimum. In its most basic form, this value is multiplied by the previous iteration’s

weight change to determine a value to add to the current iteration’s weight change.

Mutation: An evolutionary operator, inspired by the biological concept of asexual repro-

duction, in which a single genome produces offspring with a slightly altered set of traits

than the single parent. Because mutation introduces new stochastic information, it

fulfills the exploration component of an evolutionary algorithm.

Nesterov momentum: A more advanced form of classic momentum that attempts to

mitigate the effects of over correcting to a bad training batch.

Neural Network (NN): A mathematical model inspired by the human brain that is com-

posed of an input layer, zero or more hidden layers, and an output layer.

One-Versus-All: A technique allows multiple binary classification models to perform multi-

classification by training and combining several binary classification models. Each one

classifies one class against the rest of the classes.

Output layer: The final layer of a NN. This layer produces the output. A regression NN

will typically have a single output neuron. A binary classification NN will also have a

single output neuron. A multiclass NN with three or more classes will have an output

neuron for each class.

Principal Component Analysis (PCA): A form of dimension reduction that can shrink

the size of an input vector to a smaller encoding with minimal loss of significance.

Recurrent Neural Network (RNN): A NN that contains backwards connections from

layers to previous or same layers.

Regression: A NN or another model that is trained to produce a continuous value as its

output. A regression NN will use a linear activation function on its output and have a

single output neuron.

1.5. DEFINITIONS OF TERMS 15

Regularization: Set of techniques that can prevent overfitting in NNs and thus improve the

accuracy of a DL model when facing completely new data from the problem domain.

They usually consist of reducing the NN complexity.

Root node: The node in a tree that is an ancestor of all other nodes. The root node for a

single-node tree is also a terminal node.

Sample: also called example, and it is a record from a dataset.

Simple Recurrent NN (SRN): A NN with only a single recurrent connection, such as

an Elman or Jordan network.

Softmax: An activation or transfer function that ensures that all outputs sum to 1.0,

thereby allowing the outputs to be considered concurrent probabilities.

Stochastic Gradient Descent (SGD): An optimizer algorithm variant that uses a mini-

batch that is randomly sampled each training iteration.

Test dataset: The portion of the data, outside of the training dataset, that test the model

after the training phase. This dataset is sometimes referred to as out-of-sample data.

Time serie: Variable that evolves over time.

Training sataset: The data on which the model is trained. Usually, validation data are

also kept so that the model can be evaluated on different data than it is trained with.

Transfer function: Also referred to as activation functions. They are applied to the neuron

computation and defined by layers of a NN. All layers of a NN have transfer functions

except the input layer.

Universal approximation theorem: A theorem that states that a FFNN with a single

hidden layer containing a finite number of neurons can approximate continuous func-

tions.

Update rule: The method by which a training algorithm updates the weights of a NN.

Common update rules include: Nesterov accelerated gradient, Root Mean Square

Propagation (RMSprop), and Adam.

Validation dataset: The portion of the data used to test and monitor the model during

the training phase (between epochs). This data is outside of the training dataset.

16 CHAPTER 1. INTRODUCTION

Neural Network Basic Notation

x1

x2

x3

Layer 1 Layer 2

Layer 3

Layer 4

ŷ1

ŷ2

a1
1

a2
1

a3
1 a3

2

a2
2

a1
2

a1
3

a2
3

a3
3

a4
3

a2
4

a1
4

X

Ŷ

Ŷ= f̂ (X ,θ , B)

b1
2

b2
2

b3
2

b4
3

b3
3

b2
3

b1
3

b1
4

b2
4

ϕ2

ϕ2

ϕ2

ϕ3

ϕ3

ϕ3

ϕ3

ϕ4

ϕ4

w1,1
2

w1,2
2

w1,3
2

w2,1
2

w2,2
2

w2,3
2

w3,1
2

w3,2
2

w3,3
2

w1,1
3

w1,2
3

w1,3
3

w2,1
3

w2,2
3

w2,3
3

w3,1
3

w3,2
3

w3,3
3

w4,1
3

w4,2
3

w4,3
3

w1,1
4

w1,2
4

w1,3
4

w1,4
4

w2,1
4

w2,2
4

w2,3
4

w2,4
4

Figure 1.8: Notation used for deep FFNN models.

f̂() Mapping function representing a model.

X Set of all inputs xj . If the input relative to some layer l is multidimensional

the notation xlijk... may be used, with i, j, k representing the coordinates.

Ŷ Set of outputs ŷn or prediction of the model.

Y Real target value(s) for a given example X.

θ Set of all weights wl
jk.

φl Activation function used in layer l.

wl
jk Weight connection from the kth neuron in the (l − 1)th layer to the jth

neuron in the lth layer.

alj Computation of the jth neuron in the lth layer : alj = φl(
∑
k

(wl
jk ·a

l−1
k)+blj)

, where a1
j is the jth element xj in the input vector X.

zlj alj without using activation function : zlj =
∑
k

(wl
jk · a

l−1
k) + blj .

al Compact version of alj : al = φl(wl× al−1 + bl) for one layer computation.

aL Computation of all layers. Same as f̂ computation.

blj Bias of the jth neuron in the lth layer.

B Set of all blj .

J() Error/cost function, computes a difference or distance between Ŷ and Y .

∇J() Gradient of J , gradient is given by a vector whose components are the

partial derivatives of J with respect to a particular weight: δljk ≡
∂J

∂wl
jk

.

1.5. DEFINITIONS OF TERMS 17

Summary

This chapter introduces the main relevant aspects for time series forecast. In particular, we

provide the rationale for search space and mapping functions. DL framework is tackled since

it is the basis of this dissertation. We define the scope of research and formalize the problem.

Objectives and approach are also specified.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

The research conducted for this dissertation is focused on time series analysis. There is a

considerable research community interest in this area. This Chapter reviews a representative

sample of the current literature as it pertains to the dissertation research. The contents

covered are: the deep learning framework, its building blocks and their evolution; the most

prominent high-level architectures in the state-of-the-art with application in time series; NNs

optimization methods; and finally, analysis of the classic auto-regressive method due to its

relevance in MTS problems and also because it serves as a baseline comparison for some

results of this dissertation.

2.1 Neural Networks

2.1.1 Feed Forward Neural Networks

This Section tackles the historical evolution of the FFNN base architecture. In this type

of ANN, the information moves in one direction only, from input neurons to the output

neurons, through hidden neurons if intermediate layers are present (see Figure 2.1). ANNs

OutputФ=2

x1

x2

f

ω1=1

ω2,3=1

ω4=1

f

f

Ф=1

Ф=1

f Ф=1
ω6=−2

ω5=1

ω7=1

Figure 2.1: Multi Perceptron FFNN for Exclusive Or (XOR) operator.

19

20 CHAPTER 2. LITERATURE REVIEW

are a processing paradigm inspired in the way the brain processes information. A class

of algorithms composed by MP-Units (i.e., neurons emulation) was firstly introduced by

Mcculloch and Pitts [1943]. Although NNs contain connections and neurons, they do not

emulate every aspect of biological neurons. Modern NN are more of a mathematical model

than a biological simulator. The seminal NN algorithm of McCulloch and Pitts specifies

the calculation of a single neuron as the weighted sum of its inputs. The binary output

f(x) = [0, 1] is computed from the input as follows:

f(x) =

1 if w · x ≥ Φ

0 else
(2.1)

Where x is the input, w is the weight of the input and Φ the unit threshold.

Nearly all NNs created since their introduction are based upon feeding dot product cal-

culations to activation functions over layers of neurons. DNNs simply have more layers

of neurons. The research community has shown great interest in automating NN weights

selection to achieve a particular objective. Hebb [1949] defined a process to describe how

the connection strengths between biological neurons change as learning occurs. When the

organism performs actions, connections increase between the neurons necessary for that

action. This process became Hebb’s rule, and it is often informally stated as ”neurons that

fire together wire together”. Rosenblatt [1962] introduced the perceptron (see Figure 2.2)

OutputФ

x1

x2

x3

f
ω3

ω1

ω2

Figure 2.2: Perceptron Architecture.

that became the seminal work on NNs containing input and output layers. The perceptron

is a two-layer NN with an input layer that contains weighted forward-only connections to an

output layer. The transfer function defined for the classic perceptron keep a simple function

that performs a threshold. Having N input values xn, equation 2.2 shows the computation

for each weigh wn:

f(x) =

1 if
∑N

n=1wn · xn ≥ Φ

0 if
∑N

n=1wn · xn < Φ
(2.2)

Rosenblatt [1962] demonstrated that a perceptron is incapable of learning the XOR operator,

a non-linearly separable problem. Minsky and Papert [1969] also described severe limitations

2.1. NEURAL NETWORKS 21

in the use of a single perceptron in their seminal paper and monograph. There was a need

to combine several perceptrons (see Figure 2.1) increasing the complexity in the optimal

weights finding, i.e., training process. Nevertheless, disregarding computational restrictions,

Cybenko [1989] formulated the universal approximation theorem and proved that a single

hidden-layer NN (3 layers in total: input, hidden and output) with an arbitrary number

os neurons, could approximate any function. The universal approximation theorem implies

that additional hidden layers are unnecessary. However, while it is theoretically possible for

a single-hidden layer NN, this outcome will not necessarily occur in practice. Hornik [1991]

continued this research by also showing with a more pragmatic approach that a multilayer

FFNN architecture gives NNs the potential to be universal approximators. Although FFNNs

are universal approximators, they are not Turing [1936] complete without extensions that

provide some type of memory state [Graves et al., 2014]. In other words, FFNNs can emulate

any function, but do not e have the capacity to simulate computational arbitrary procedures.

The perceptron formulation was established, the output value of each neuron was given by

equation 2.3 and it remains unchanged until the present date:

f(X, θ, b) = φ(

N∑
n=1

(wn · xn) + b) (2.3)

The parameter θ is used to represent the set of weights {w1, ..., wn}. X represents the list of

inputs in the neuron containing {x1, ..., xn}. The function φ represents the transfer function

or activation function, wn is the weight on connection n, and xn represents the input value n

in the neuron. The variable b corresponds to the bias weight. Bias neurons enhance the NN’s

learning ability adding another degree of freedom [Cheng and Titterington, 1994]. Before

the neurons at one NN layer can be processed, values of the neurons on the previous layers

must be calculated. To generalize equation 2.3, for the computation alj , i.e., any neuron in

position j at layer l, we use the following notation:

alj = φ(
∑
k

(wl
jk · al−1

k) + blj) (2.4)

where wl
jk is the weight from the kth neuron in the (l − 1)th layer to the jth neuron in the

lth layer, blj is the bias on the jth neuron in the lth layer, and al−1
k is the previous layer

computation on the connection coming from neuron k.

Activation Functions

An activation function is used to introduce non-linearity into a NN. This allows us to

model a system that varies non-linearly with independent variables. Non-linear means the

output cannot be replicated from a linear combination of inputs. This allows the model to

22 CHAPTER 2. LITERATURE REVIEW

generate complex mappings from the available data. Hence, the NN becomes a universal

approximator, whereas a model that uses a linear function (i.e., no activation function) is

unable to make sense of complex data.

Another important aspect of the activation function is that it should be differentiable. This is

required when we backpropagate through the network and compute gradients, and thus tune

weights accordingly. These non-linear functions are continuous and transform the input into

the range [0, 1],[−1, 1], etc. In a NN, it is possible for some neurons to have linear activation

functions, but they must be accompanied by neurons with non-linear activation functions in

some other part of the network. Although any non-linear function can be used as activation

function, only a small fraction of these are used in practice. Listed below are some commonly

used activation functions φ:

• Binary Step

φ = f(x) =

0 if x < 0

1 if x > 0
(2.5)

A binary step function is generally used in the perceptron linear classifier (see Section 2.1.1).

Figure 2.3: Binary step activation function.

It thresholds input values to 1 and 0, if they are greater or less than zero, respectively. This

activation function is useful when the input pattern can only belong to one of two groups,

i.e., binary classification (see Figure 2.3).

• Sigmoid

φ = f(x) =
1

1 + exp(−x)
(2.6)

2.1. NEURAL NETWORKS 23

The sigmoid or logistic activation function maps input values in the range [0, 1], which

is essentially the probability of belonging to a class. So, it is mostly used for binary

classification. However, it suffers from the vanishing gradient problem, as further explained

bellow when the Rectified Linear Unit (ReLU) activation function is described. Also, the

output produced is not zero-centered, which causes difficulties during optimization. It also

causes a low convergence rate.

Figure 2.4: Sigmoid activation function.

• Tanh

φ = f(x) = tanh(x) (2.7)

The tanh activaction function compresses the input into the range [−1, 1] and it provides a

zero-centered output. Therefore, large negative values are mapped to negative outputs and

zero-valued inputs are mapped to near zero outputs. Also, gradients for tanh are steeper

than sigmoid, but it also suffers from the vanishing gradient problem. tanh is commonly

referred to as the scaled version of sigmoid. As exemplified in Figure 2.5, an alternative

equation for the tanh activation function is given by:

φ = f(x) =
2

1 + exp(−2x)
− 1 (2.8)

24 CHAPTER 2. LITERATURE REVIEW

Figure 2.5: tanh activation function.

• ArcTan

φ = f(x) = tanh−1(x) (2.9)

The arctan activation function maps input values into the range [−π/2, π/2]. Its derivative

converges quadratically against zero for large input values. In the sigmoid activation func-

tion, the derivative converges exponentially against zero, which can cause problems during

backpropagation. Its graph is slightly flatter than tanh, so it has a better tendency to

differentiate between similar input values.

Figure 2.6: arctan activation function.

• LeCun’s Tanh

φ = f(x) = 1.7159 tanh

(
2

3
x

)
(2.10)

2.1. NEURAL NETWORKS 25

This activation function was first introduced by LeCun et al. [1998b]. Constants in the above

equation have been chosen to keep the variance of the output close to 1. LeCun et al. [1998b]

states this activation function increases performance over sigmoid and unscaled tanh.

Figure 2.7: LeCun’s tanh activation function.

• Rectified Linear Unit

φ = f(x) = max(0, x) (2.11)

ReLU has the output 0 if its input is less than or equal to 0. Otherwise, its output is equal

to the input (see Figure 2.8). It has been widely used in CNNs and it is also superior to

the sigmoid and tanh activation functions, as it does not suffer from the vanishing gradient

problem. Therefore, it allows for faster and effective training of DNN architectures.

Figure 2.8: ReLU activation function.

Deepness in the NN causes the self-proclaimed vanishing gradient problem whenever using

backpropagation in the training process. At each learning iteration, each NN weight receives

26 CHAPTER 2. LITERATURE REVIEW

an update proportional to the gradient of the error function as described in Section 2.2.1.

The vanishing gradient problem occurs when the error signal passes backwards and starts

approaching zero. If the network is deep enough, the error signal from the output layer can be

completely attenuated on the way back towards the input layer. Formally, attenuation exists

because the derivative of the activation function φ′ will always be near zero, especially for

saturating neurons. Using the chain rule, which is backpropagation in NN terms, this almost

zero derivative will multiply with the error signal before throwing it backwards at every level,

i.e., layer. By iteratively throwing the error signal backwards, it becomes weaker and, hence,

vanishing. Contrary to classical activation functions (e.g., arctan and sigmoid), the relatively

new ReLU solves this concern [Arora et al., 2016]. ReLU is favorable not only due to the

mitigation of the vanishing gradient problem but also because it forms highly sparse NNs,

thereby inducing a more efficient and reliable performance given that the derivative takes

constant values.

• Smooth ReLU

φlj = f(xlj) = log
(
1 + exp(xlj)

)
(2.12)

Smooth ReLU, also known as the softplus unit, causes less saturation overall and overcomes

the ”Dying ReLU” problem by making itself differentiable everywhere. ReLU neurons output

zero and have zero derivatives for all negative inputs (see Figure2.9). If the weights in the NN

always lead to negative inputs into a ReLU neuron, that neuron is effectively not contributing

to the NN training.

Figure 2.9: Smooth ReLU activation function.

2.1. NEURAL NETWORKS 27

• Softmax

φlj = f(xlj) =
exp(xlj)∑
p

exp(xlp)
(2.13)

The softmax function output tells the probability that classes where observations fall are

true ones, thus it produces values within the range [0, 1]. It highlights the largest values and

tries to suppress values which are below the maximum value (see Figure 2.10). Resulting

values always sum up to 1. This function is widely used in classification logistic models and

it is normally applied to the output layer only. Note that p is the number of classes (i.e.,

possible outcomes) to predict and distribute the resulting probabilities.

Figure 2.10: Softmax activation function.

2.1.2 Recurrent Neural Networks

By definition, a FFNN contains only forward connections. RNNs allow connections to

previous or same layers. RNNs are characterized by connections that have loops, adding

feedback and memory to the networks over time. Memory allows this type of NNs to learn

and generalize across sequences of inputs rather than individual patterns. Elman [1990] and

Jordan [1990] began the research on RNNs and introduced their SRNs as the Elman and

Jordan NN. This SRN contains a context layer C, which memorizes the previous output

computation of the recurrent neurons. Subsequent computations of the SRN will cause C

to always loop-back the output produced by the recurrent layer in the next iteration. The

information produced is stored and then used it the next iteration. The context layer in

a SRN combines the new input with the information stored in the previous iteration (see

Figure 2.11). For each time step shown to a SRN, an output is produced.

Knowing the size of the sequence that passes through the recurrent neuron, the chain of

the context state updates can be flattened. This process is called unfold or unroll the

28 CHAPTER 2. LITERATURE REVIEW

Output

x1

x2 H 2

H 1

C1

O1

C2

Figure 2.11: Elman SRN.

passage of information. The idea of RNN unrolling plays a relevant part in the way they are

implemented for the backpropagation application. A technique known as backpropagation

through time (BPTT) is normally used to train RNNs [Mozer, 1995, Robinson and Fallside,

1987, Werbos, 1988]. BPTT is the application of the Backpropagation training algorithm

(see Section 2.2.1) to RNNs given sequences of data. Conceptually, BPTT works by unrolling

all recurrent neurons a fixed number of times. Each input time step is processed and passed

to the next state of the flatten recurrent neuron representation. The recurrent neuron output

is produced at the final step of the sequence. Errors are then calculated and accumulated

for each time step. The network is rolled back up, and the weights are updated. This way,

BPTT can define a recurrent relation over time steps, being the context C state typically

calculated using the following formula:

Ct+1 = f(Ct ∗ wrec + xt ∗ wn) (2.14)

Where Ct+1 is the recurrent neuron state at time step t + 1, xt an input of the sequence

x = {x1...xt} at time t. Parameter wn is the weight in FFNN area and wrec the weight

in the recursive area of the RNN. Spatially, each time step of the unrolled RNN may be

seen as an additional internal layer. Given the order dependence of the problem, the hidden

state from the previous unrolled virtual layer is the input for the subsequent virtual layer,

as illustrated in Figure 2.12. Moreover, ht is the hidden output value produced at time step

t. Note that h, as a vector, can also be outputted to the next layer of the global NN (e.g.,

using a return sequences flag). This is normally used when staking recurrent layers.

The unroll technique is used to make the recurrent layer appear as one large FFNN. BPTT

has a configuration parameter that specifies the number of time slices the program can

unfold the RNN. Several virtual layers, equal to that configuration parameter, create the

virtual network. The standard backpropagation algorithm used for FFNN trains the virtual

network. FFNN without recurrent memory will always produce the same output for a given

feature vector. However, RNN will maintain state from previous computations. This state

will affect the RNN output. Therefore, the order that feature vectors are presented to the

2.1. NEURAL NETWORKS 29

Unrolled

Ŷ

C

ωn

ωrec C1

x1

ωn

ωrec
C0

ht+1=Ŷ

C t+1C2

ωn

ωrec
Ct

ωn

ωrec ωrec

h1 h2 ht

X x2 xt

Figure 2.12: Unrolling a recurrent neuron

RNN will affect the output. Note that the RNN can be viewed as a state model with a

feedback loop. The state evolves over time and feedback with a delay of one time step. This

delayed loop gives the model memory since it can remember information between time steps.

This capability makes RNNs suitable to time series prediction.

2.1.3 Long Short-Term Memory

One issue with standard RNNs, such as Elman and Jordan NN, is that the longer a time series

becomes, the less relevant the context layer is. To overcome this problem, Hochreiter [1991]

introduced the LSTM layer in his diploma thesis (see also [Hochreiter and Schmidhuber,

1997]). Hence, LSTM is a type of RNN capable of learning order dependence in sequence

prediction problems and solving seamlessly problem settings composed by multiple input

variables. This is a great benefit in time series forecasting since classical linear methods

have difficulties to adapt the degree of time memory in MTS forecasting problems. Some

authors are particularly clear and precise on articulating both the promise of LSTMs and

how they work. LSTM are different from traditional FFNN. Bengio et al. [1994] claim that

”LSTMs... have an internal state that can represent context information. ... [they] keep

information about past inputs for an amount of time that is not fixed a priori, but rather

depends on its weights and on the input data... A RNN whose inputs are not fixed but rather

constitute an input sequence can be used to transform an input sequence into an output

sequence while taking into account contextual information in a flexible way.” The authors

consider three basic requirements for LSTMs:

• The system should store information for an arbitrary duration;

• The system should be resistant to noise, i.e., fluctuations of the inputs that are random

or irrelevant to predicting a correct output; and

• The system parameters should be trainable in reasonable time.

30 CHAPTER 2. LITERATURE REVIEW

LSTMs also contain cycles that recursively feed the network activations from a previous

time step as inputs to the network in order to influence predictions at the current time step.

Furthermore, they use an extra memory cell when making predictions, but to this extent,

this context memory cell required must also be learned. These activations are stored in the

internal states of the network, which hold long-term temporal contextual information. This

mechanism allows to exploit a dynamically changing environmental window over the input

sequence history (e.g., Sak et al. [2014]).

The added cell state c to the basic RNN runs straight down the entire recursive chain, with

only some minor linear interactions in order to control the information that needs to be

remembered. LSTMs have the ability to remove or add information to the cell state by

means of structures called gates. There are several variant architectures of LSTM units or

hidden states. The common architecture for these units composes a memory cell, an input

gate, an output gate and a forget gate:

• Memory cell stores a value (or state), for either long or short time periods. This is

achieved by using an activation function for the memory cell;

• Input gate controls the extent to which a new value flows into the cell;

• Forget gate controls the extent to which a value remains in the cell; and

• Output gate controls the extent to which the value in the cell is used to compute the

output activation of the LSTM unit.

Gates have in and out connections. The respective weights of the connections, which need

to be learned during training, are used to orient the operation of the gates (see Figure 2.13).

It is important to note that Figure 2.13 shows only a single step of the unrolled recurrent

neuron/unit of a LSTM (i.e., the C recurrent cell in Figure 2.12, which is different from the c

LSTM internal memory state). These LSTM neurons can be placed inside of regular FFNN.

Usually, LSTM neurons are placed as an entire layer of such neurons. The c variable, in

Figure 2.13, represents the context memory cell that is updated with c̃ value, depending on

the i and f gates activation. The third gate o controls when the internal state is fed to the

next recurrent step. The activate function used in the gates is σ sigmoid, while c̃ is obtained

2.1. NEURAL NETWORKS 31

xt-1

ct-1,ht-1

ht-1

xt

ht

ct+1,ht+1

xt+1

ht+1

σ σ tanh σ

tanh

ct-1

ht-1

xt

ht

ct

Ft It
Ot

ht

.c

Figure 2.13: Illustration of the LSTM unit in the unrolled chain. i,f and o corresponds to

the input, forget and output gates, respectively. c̃ and ct denotes memory cell and memory

cell update values, respectively.

using tanh activation function. All values are computed as follows:

ft = σ(wf [̇ht−1, xt] + bf) (2.15)

it = σ(wi [̇ht−1, xt] + bi) (2.16)

c̃ = tanh(wc̃ [̇ht−1, xt] + bc̃) (2.17)

ct = ft × ct−1 + it × c̃ (2.18)

ot = wo [̇ht−1,xt] + bo (2.19)

ht = ot × tanh(ct) (2.20)

wi wf wo and wc̃ correspond to the weights on the input, forget, output gates and update

candidate c̃ memory cell respectively. The same applies to bias term b. These gates are

activated when the input reaches a threshold specified by the trained internal weights.

The BPTT algorithm trains these gates threshold weights along with every other weight

in the NN. Because the output hidden state in each recurrent computation is controlled

by the input, forget, output gates and an extra memory, the LSTM is considerably more

effective at recalling important parts of the time series sequence than a simple RNN. Unlike

simple FFNNs without recurrence, LSTMs are specialized RNNs that can function as Turing-

machines, i.e., they are Turing-complete [Pollack, 1990, Graves et al., 2014].

2.1.4 Convolutional Neural Networks

The study conducted by LeCun and Bengio [1994] is a seminal contribution to CNNs

architectures. Traditionally, CNNs are applied to image classification [LeCun et al., 2004,

Zeiler and Fergus, 2014]. These use an ad hoc architecture inspired by biological data

32 CHAPTER 2. LITERATURE REVIEW

taken from physiological experiments done on the visual cortex. Lately, convolutional based

methodologies have been also applied in temporal data [Halim and Kawamoto, 2020, de

Oliveira e Lucas et al., 2020, Morid et al., 2020, Jiang et al., 2020, Fauvel et al., 2020, Hsu

et al., 2020]. In this dissertation, we consider and adapt CNNs for MTS forecast problems

given that the input can be seen as a bi-dimensional input likewise an image processing

problem. In image recognition, CNNs expect and preserve the spatial relationship between

pixels by learning internal feature representations. Instead of using correlations between

pixels, we apply CNNs to learn patterns considering correlations between variables and their

evolution in time. Note that convolutional layers can be applied to any dimensional type of

input data [LeCun et al., 1995].

Strong Up

Weak Up

Neutral

Weak Down

Strong Down

Multi-Var
Time-Serie

Input

Variables

T
im

e
S

te
p

s

Feature Maps
Feature Maps

Convolutional AVG Pool Convolutional AVG Pool

Dense Layers

Convolutional

Softmax

Figure 2.14: CNN 2D architecture for MTS forecast with classification

As clarified in Figure 2.14, there are normally three types of layers (i.e., building blocks) in

a CNN : convolutional layers, pooling layers and fully connected layers (i.e., dense layers).

Convolutional layers are comprised of filters and feature maps. Filters are the weights of the

layer that have to be learned. They are defined in matrices, and can have different dimensions

according to the input dimension (e.g., 2D for gray images or 3D for rgb images). If the

convolutional layer is an input layer, then the input will be one feature map, with the original

values. If deeper in the network architecture, then the convolutional layer takes as input

a set of feature map from the previous layer. One feature map is the output of one filter

applied to the previous layer. In a convolutional layer, the number of ”units or neurons”

defined is the number of filters that generate that number of feature maps. A given filter is

drawn across the entire previous layer, moved δ ”pixels” at a time. The distance δ is also

referred as stride. Each position results in an activation of the neuron and the output is

collected in the new feature map. Lets consider a 4 × 4 input 2D matrix whose values are

2.1. NEURAL NETWORKS 33

only 0 and 1:

xl =


1 1 1 0

0 1 1 1

0 0 1 1

0 0 1 1

 (2.21)

And another 2D matrix representing the values of a single convolutional neuron cell, i.e.,

filter K :

K =

1 0 1

0 1 0

1 0 1

 (2.22)

Then, the Convolution of the 4×4 input with the 3×3 filter and stride δ = [1, 1], to generate

one feature map, can be computed as shown:
1×1 1×0 1×1 0

0×0 1×1 1×0 1

0×1 0×0 1×1 1

0 0 1 1

⇒ [
4 . . .

.

]
,


1 1×1 1×0 0×1

0 1×0 1×1 1×0

0 0×1 1×0 1×1

0 0 1 1

⇒ [
4 3

.

]
(2.23)


1 1 1 0

0×1 1×0 1×1 1

0×0 0×1 1×0 1

0×1 0×0 1×1 1

⇒ [
4 3

2 . . .

]
,


1 1 1 0

0 1×1 1×0 1×1

0 0×0 1×1 1×0

0 0×1 1×0 1×1

⇒ [
4 3

2 4

]
(2.24)

Pooling layers down-sample the previously generated feature maps. They follow a sequence

of one or more convolutional layers and are intended to consolidate the features learned

and expressed in the previous generated feature map. As such, they may be considered a

technique to compress or generalize feature representations and generally reduce overfitting

of the training data by the model. Pooling layers are often simple computations, taking the

average or maximum of the input area in order to create mechanically (i.e., not subject to

learning) its own feature map. Here is an example of a max pooling operation with kernel

size 2× 2 and stride δ = [2, 2] 
1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

⇒ [
6 8

3 4

]
(2.25)

Many researchers disfavor the pooling operation and think that we can get away without it.

For example, in Striving for Simplicity article, Springenberg et al. [2014] propose to discard

the pooling layer in favor of architectures that only consist of repeated convolutional layers.

To reduce the size of the representation, they suggest using larger stride in a convolutional

34 CHAPTER 2. LITERATURE REVIEW

layer once in a while. Discarding pooling layers has also been found to be important in

training good generative models, such as Variational Autoencoders (VAEs) [Hou et al., 2016]

or Generative Adversarial Network (GAN) [Radford et al., 2015]. However, in addition to

simple mechanic operations like max or average pooling, pooling layers can also perform

many other types of functions. Gu et al. [2018] describes a variety of pooling types present

in the literature.

Normally, for regression or classification problems, after passing through a sequence of convo-

lutional and pooling layers, the feature maps are flatten (i.e., multidimensional information

is flatted into one dimension) and fully connected layers are used to finalize the process.

They are then used to create final non-linear combinations of features and for making the

prediction outputs (see Figure 2.14).

2.1.5 Convolutional LSTM 2D

The ConvLSTM2D layer was proposed by Shi et al. [2015] to predict future rainfall intensity

based on sequences of meteorological images. By using this layer in a DL NN model, authors

were able to outperform state-of-the-art algorithms. The ConvLSTM2D is a recurrent layer

similar to the LSTM, but internal matrix multiplications are exchanged with convolution

operations. Since we are dealing with MTS problems, the concept of sequence segment is

introduced to make inputs compatible with ConvLSTM2D layers, which in turn deal with

segments of temporal sequences instead of sequence of images as highlighted in Figure 2.15.

Figure 2.15: MTS input segmentation hack for ConvLSTM2D.

Data flow through the ConvLSTM2D cells by keeping a 3D format composed by Segments

× TimeSteps × Variables rather than just a 2D input format composed by TimeSteps ×
Variables like in the standard LSTM. The ConvLSTM2D model can be useful for predic-

tions in MTS problems that have constant and repetitive cycles that can be grouped and

contained into a 2D map to be processed by 2D convolutions (e.g., Household Electric Power

Consumption in Section 3.3 with cyclic information from day to day and over the week).

2.1. NEURAL NETWORKS 35

2.1.6 WaveNet

The WaveNet model is established in the mainstream since the contribution of van den Oord

et al. [2016]. A key point of this model is the use of causal convolutions (i.e., adding zeros

only on the left of the input map followed by the convolution operation), which ensures that

the order of data modeling is not violated. As a result, the prediction P (xt+1|xt, xt−1, . . .)

generated by the WaveNet model at time step t + 1 cannot depend on any future time

steps. From a technical point of view, the causal convolution is implemented by shifting the

input a few time steps behind. Since models with causal convolutions do not have recurrent

connections, they are typically faster to train than RNNs. Nevertheless, one problem in

causal convolutions is that they either require many layers or large filters to increase the

receptive field.

In the left subplot of Figure 2.16, one can observe the use of causal padding in convolutions

with kernel sizes of 4 and 3. Causal convolutions also allow to preserve the past time steps

information, although transformed, for the next layer. This requires that the number of

zeros to be added before the beginning of the sequence is given by kernel size k − 1.

dilate

conv

conv

σ

tanh 1×1

1×1 +

+ skip flow

feat flow

reference

1 2 3 4 5 6

2 3 4 5 6 7

K=3

K=4

Pad=causal

Figure 2.16: Causal padding on the left subplot and WaveNet residual block on the right

subplot.

Another important characteristic of the WaveNet model is the use of dilated convolutions

to gradually increase the receptive field. A dilated convolution is a convolution where the

kernel K is applied over an area larger than its length k by skipping input values with a

certain step. It is equivalent to a convolution with a larger filter derived from the original

filter by dilating it with zeros. Therefore, when using a dilation rate dr (i.e., for dr > 1),

the causal padding has size given by dr × (k − 1).

The residual block [He et al., 2015] is the heart of the WaveNet. As observed in the right

subplot of Figure 2.16, it is constituted by two convolutional layers, one using sigmoid

activation and another using tanh activation, which are multiplied. Then, inside the block,

the result is pass through another convolution with k = 1 and dr = 1. This allows to

downsample input channels and control the number of feature maps, whilst retaining the

most important ones. Such technique is also heavily used in the InceptionNet architecture

36 CHAPTER 2. LITERATURE REVIEW

proposed by Szegedy et al. [2014], often referred to as projection operation or channel pooling

layer. Both residual and parametrized skip connections are used throughout the network to

speed up convergence and enable training of much deeper models. This block is executed a

given number of times in the depth of the network, with N = {1, ..., depth}. The dilatation

dr increases exponentially according to the formula dr = kN .

2.1.7 Temporal Convolutional Network

According to Bai et al. [2018], the Temporal Convolutional Network (TCN) model is char-

acterized by three main characteristics:

(I) Convolutions in the architecture are causal, which means that there is no information

moving from future to past since causal convolutions imply that an output at time t

is convolved only with elements from time t and earlier (i.e., sequence modeling) from

the previous layer;

(II) The architecture can take an input sequence of any length and map it to an output

sequence of the same length similarly to RNNs. Similar to the WaveNet model, causal

padding of length k − 1 is added to keep subsequent layers with the same length as

previous ones; and

(III) It is possible to build long and effective history sizes using a combination of very deep

networks augmented with residual blocks and dilated convolutions.

1 x 1 (optional)

dilate WeightNorm DropoutReLu dilate WeightNorm DropoutReLu

Skip flow

Figure 2.17: TCN residual block.

Therefore, a TCN model is derived from convolutional architectures for sequential data,

designed to combine simplicity (i.e., no long skip connections across residual blocks like the

WaveNet and gated activations compared to the LSTM) with autoregressive prediction.

As illustrated in Figure 2.17, the residual block of a TCN implies a series of transformations

that effectively allow layers to learn modifications in the identity mapping at different depths

rather than the entire transformation, which has been demonstrated to benefit very deep

NNs [He et al., 2015]. Since the receptive field of a TCN model depends on the network

depth N , kernel size k and dilation rate dr, the stabilization of a deeper and larger TCN

constitutes a relevant task.

2.1. NEURAL NETWORKS 37

2.1.8 Autoencoders

AE is a NN used for unsupervised learning of efficient codings [Liou et al., 2014]. An AE aims

to learn a representation – encoding – for a set of data, i.e., dimensionality reduction. AEs

are typically used for data reconstruction, which can have a direct application in anomaly

detection [Yin et al., 2020] and denoising information [Chen et al., 2020]. These type of

models are normally trained to match the output with the input (or similar to the input like

in denoising tasks). This type of training is considered unsupervised learning [Baldi, 2012].

x1

x2

x3

x4

x5

z1

z2

z3

x̂1

x̂2

x̂3

x̂4

x̂5

Figure 2.18: Simple AE of dense layers with one hidden layer

AE can also be used for normal classification or regression problems. In addition to the

normal supervised learning, a first stage of unsupervised criterion can be relevant to help in

classification or regression tasks. This two-stage technique is considered a semi-supervised

learning approach, and is useful in scenarios where a large amount of unlabeled data along

with small amount of labeled data is available. Exploiting the input part of the data, to

encode it and regularize it, can serve as AFE technique, thus helping approaching better

generalization error in the supervised phase [Erhan et al., 2010]. In this sense, an AE NN

can be used to get a higher abstract level of information. The encoding part of the AE is

used as a pre-trained model to feed and train a classification or regression NN with labeled

data as illustrated in Figure 2.19.

To encode information, the AE is trained to make x̂ = x. Considering the MSE function

(see Section 2.2.4) for the model represented in Figure 2.18, we have:

J(θ) =

N∑
n=1

(xn − x̂n)2 (2.26)

being θ the set of weights applied in the AE and N the number of input and output neurons.

The output computation is made by x̂n = a2a1xn. Moreover, al represents the computation

of layer l, which in this case l = 2 is the output layer, i.e., decoding layer, and l = 1 is the

38 CHAPTER 2. LITERATURE REVIEW

x1

x2

x3

x4

x5

z1

z2

z3

H 1

H 2

O1 Output

Encoder
(AE pre-trained split in half)

FNN
(used for supervised learning)

Figure 2.19: Pre-trained encoder used to feed a regression FFNN with generalized compressed

information of the inputs.

middle layer, i.e., encoding layer. The error function becomes:

J(θ) =

N∑
n=1

(xn − a2a1xn)2 (2.27)

This equation is similar to a PCA, which is a mathematical procedure that transforms

a number of possibly correlated variables into a smaller number of uncorrelated variables

called principal components. Nevertheless, AEs are much more flexible than PCA. NNs use

have activation functions that introduces non-linearities to the encoding, whereas PCA can

only represent linear transformations. Using the NN architecture representation also means

that it is possible to stack AEs, called Stacked Autoencoders (SAEs) NNs. In addition, all

other benefits of the DL framework can be applied such as backpropagation, regularization,

dropout, different error functions, architecture flexibility, etc. SAEs can be constructed with

dense layers as illustrated in Figure 2.18, recurrent, or even convolutional layers. When

the input has temporal correlation, a LSTM SAE can be applied or, when there is spacial

multidimensional correlation, CNN SAE can be used to compress information.

2.2 Optimization

2.2.1 Backpropagation

Backpropagation refers to two things:

• The mathematical method used to calculate derivatives and application of the derivative

chain rule; and

2.2. OPTIMIZATION 39

• The training algorithm for updating network weights to minimize error.

The goal of backpropagation is to compute partial derivatives of the cost or error function

J(θi) with respect to weight’s w (being the set of all w’s on iteration i : θi) in the NN. Cur-

rently, the backpropagation algorithm is the workhorse of learning in NN. The research for the

automatic derivation of the weights of NNs started with the work of Werbos [1975] where the

author mentions that the gradient descent could be used for the training of NNs. Previously,

researchers only used gradient descent to find the minimum of functions. Rumelhart et al.

[1985] were the first to apply gradient descent to NNs training. Backpropagation was thus

introduced. Backpropagation was initially ineffective at training NNs with significantly more

than two hidden layers and it was not known if NNs actually benefited from many layers

[Bengio, 2009].

Backpropagation applies gradient descent to NN training. The gradient of each weight is

the partial derivative of the loss function for that weight, while holding all other weights

constant. The gradient of each weight is calculated and determines a change that should

occur in the weight for the current training iteration. In backpropagation, the gradient of

cost function ∇J(θ), in conjunction with the NN computation applying the derivative of

activation function, is used to compute the derivative error (i.e., correction direction) δ(θ)

using the set of weights θ = {w1, ...wn} via :

δ(θ) = ∇J(θ)� φ′(
∑

(θ ·X) + b) (2.28)

where φ′(
∑

(θ · X) + b) is a concise notation representing the NN computation with the

derivative of activation function (see equation 2.4).

Standard backpropagation computes a weight correction v for the iteration i in order to

minimize the error function. vi is calculated with the derivative error resulting from the

previous weight δ(θi−1) scaled by the learning rate λ:

vi = −λ · δ(θi−1) (2.29)

The weight correction vi is applied to the previous NN weight’s θi−1 to obtain the new weight

θi for the current iteration:

θi = θi−1 + vi (2.30)

There have been several important enhancements to the basic backpropagation weight update

rule. Momentum (γ) has been a significant component of backpropagation training for some

time. Polyak [1964] introduced the seminal momentum algorithm that is a regularization

technique for gradient ascent/descent. Momentum backpropagation adds a portion of the

40 CHAPTER 2. LITERATURE REVIEW

previous iteration’s weight change to the current iteration’s weight change.

vi = γ · vi−1 − λ · δ(θi−1) (2.31)

Consequently, weight updates may have the necessary momentum to push through local

minima and to continue the descent of the output of the loss function. Nesterov [1983]

momentum was later applied to NNs, and further enhances the momentum calculation

concept and increases the effectiveness with calculation of the gradient for current parameters

plus the momentum constant multiplied by the previous calculated correction (vi−1):

vi = γ · vi−1 − λ · δ(θi−1 + γ · vi−1) (2.32)

Researchers have developed several innovations beyond the classic backpropagation and

Nesterov momentum update rules. Classic backpropagation, even with Nesterov momentum

requires that researchers choose learning rate and momentum training parameters that are

applied across all weights in the NN. For these cases, it is usually advantageous to decay the

learning rate as the NN trains [Bottou, 2012].

Silva and Almeida [1990] introduced the idea of a technique were each weight in a NN might

benefit from a different learning rate. Duchi et al. [2011] took this idea further and developed

the Adaptive Gradient algorithm (AdaGrad) to address both issues: decay the learning rate,

as well as vary this rate per weight. Depending on the gradient force, the learning rate

(i.e., step size for the descent on the error function) is adapted. Zeiler [2012] attempted to

mitigate the aggressive monotonic learning rate decay of AdaGrad by defining a window of

values for the gradients that affect the learning rate variation, named the Adadelta update

rule .

Kingma and Ba [2014] introduced the Adam update rule that derives its name from the

adaptive moment estimates that it uses. Adam estimates the first (mean) and second

(variance) moments to determine the weight corrections. Adam begins with exponentially

decaying averages of past gradients m:

mi = β1 ·mi−1 + (1− β1) · δ(θi) (2.33)

This average value is calculated automatically based on the current gradient δ(θi). Kingma

and Ba [2014] propose default values of 0.9 for parameter β1. The update rule calculates the

second moment v as follows:

vi = β2 · vi−1 + (1− β2) · δ(θi)2 (2.34)

Kingma and Ba [2014] propose the value of 0.999 for parameter β2. The values mi and vi are

estimates of the first moment (i.e., the mean) and the second moment (i.e., the uncentered

2.2. OPTIMIZATION 41

variance) of the gradients. They will have a strong bias towards zero in the initial training

cycles. Because of it, the first moment’s bias is corrected as follows:

m̂i =
mi

1− β1
(2.35)

Similarly, the second moment is also corrected:

v̂i =
vi

1− β2
(2.36)

These bias-corrected first and second moment estimates are applied to the ultimate Adam

update rule as follows:

θi = θi−1 −
λ√
v̂i + ε

· m̂i (2.37)

The proposed value for ε parameter is 10−8. This dissertation uses the Adam update rule

as standard NNs training due to the rule’s robustness to initial learning rate (λ) and other

training parameters. Also, this option is justified due to the best results obtained during

experiments.

NNs must start with random weights [Bengio, 2009]. These random weights are frequently

sampled within a specific range. However, this simple range initialization can occasionally

produce a set of weights that are difficult for backpropagation to train. As a result, re-

searchers have shown interest for weight initialization algorithms that provide a good set of

starting weights for backpropagation [Nguyen and Widrow, 1990]. Glorot and Bengio [2010]

introduced what has become one of the most popular methods called the Xavier weight

initialization algorithm. Because of its ability to produce consistently performing weights

suitable for backpropagation training, the research experiments done in this dissertation uses

the Xavier weight initialization.

2.2.2 Genetic Algorithms

Holland [1975] developed the concepts associated with Genetic Algorithms (GAs) in the book

Adaptation in Natural and Artificial Systems. Another significant contributor in the field

is Goldberg [1989, 2002]. GAs are adaptive search algorithms, which can be used for many

fields, science, business, engineering, and medicine. GAs are adept at searching large and

non-linear spaces. An extreme non-linear search space problem has a large number of local

minimums and finding the optimal solution can be very difficult using conventional iterative

gradient descent methodologies. GAs are most efficient and appropriate for situations in

which:

• the search space is large, complex, or not easily understood; and

42 CHAPTER 2. LITERATURE REVIEW

• there is no hard coded programming method that can be used to narrow the search space.

A GA possesses the ability to determine near optimal solutions in a reasonable time frame by

simulating biological evolution. GAs closely resemble the biological model of chromosomes

and genes. Individual organism in a GA generally consists of a single chromosome. The

chromosomes are composed of genes. By manipulating the genes new chromosomes are

created. These manipulations occur through crossover and mutation, just like they occur

in nature. Crossover is analogous to the biological process of mating, and mutation is one

way in which new information can be introduced into an existing population. In a GA each

chromosome or individual represents one possible solution to the problem, and is composed

by a collection of parameters to be optimized (i.e.,genes). Each chromosome or individual

is initially assigned with a random collection of genes. This solution is used to calculate the

fitness level, which determines the individual suitability to survive as in Darwin’s theory of

natural selection. Figure 2.20 illustrate how one NN individual solution can be represented

in a chromosome.

x1

x2

x3

H 1

H 2

O1 Output

NN Chromosome

w1

w2

w3

w4

w5

w6

w7

w8

w1 w2 w3 w4 w5 w6 w7 w8

Figure 2.20: Transforming a NN into a linear chromosome θi for individual i.

The goal is to find the optimal weights for a NN solution. The GA works as follows:

1. Create an initial population of random possible solutions (i.e., chromosomes) spread

across the search space;

2. Evaluate the fitness of each chromosome computing the associated NN, and using an

error function;

3. Based on the fitness level of each chromosome, select the ones that will mate;

4. Crossover the selected chromosomes and produce offspring;

5. Randomly mutate some of the genes of the chromosomes in the population;

2.2. OPTIMIZATION 43

6. Evaluate the fitness of each individual and discard part (e.g., half) of the population

with bad fitness; and

7. Repeat steps 3–6 until the best solution has not changed for a selected number of

generations.

Crossover is achieved by selecting two parents and taking a splice from each other gene

sequences. These splices normally divide the chromosome gene sequence into three parts.

The children’s are then created based on genes from each of these three sub-selections. This

method can lead to a problem in which no new genetic material is introduced into the

population. To introduce new genetic material, the process of mutation is used.

Mutation can be thought of natural experiments. These experiments introduce alterations

in the genes of some individuals in the population. Natural selection will take care of the

possibility of the mutation is good or bad for the individual not to stay alive or to mate.

An important consideration for any GA is the mutation level that will be used. If the level

of mutation is too high, the GA will be performing nothing more than a random search,

and there will be no adaptation. If the mutation is too low, the GA will suffer from a too

fast convergence problem (into a local minimum). Figure 2.21 illustrates the crossover and

mutation process.

Mother

Father

Offpring 1

Crossover

Mutation

Offspring 2

Cut points

Random

Figure 2.21: NN chromosome evolving with mating (crossover) and mutation.

GA has great potential to find, or stay close to, the global minimum of the error function due

to the spread of the population (i.e., possible solutions) across the search space. As such,

for problems with multiple local optimal points, with a noisy or stochastic (i.e., not smooth)

objective function, GA can be a good choice. Also, in the context of DNNs, the vanishing

gradient problem does not apply with GA training, so classical activation functions can be

used, since the fitness score is obtained directly from the error functions without computing

derivatives. The main disadvantage of this optimization method is that it is computationally

expensive. However, it is again gradually gaining attention from the research community

[Surakhi et al., 2020, Baldominos et al., 2020].

44 CHAPTER 2. LITERATURE REVIEW

2.2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is another metaheuristic search algorithm [Poli, 2008].

It is a promising optimizer since it was projected to avoid local minima on the error function.

This algorithm is based on the migratory action of birds in a flock [Kennedy and Eberhart,

1995]. The basic idea is that, in a flock of birds looking for food, there is one bird located

closest to the food. If that bird then communicates his proximity to the food with the

other birds in the flock, they will swarm towards the area and search closely for food there.

Likewise in GAs each bird is a candidate solution. The coordinates of the bird correspond

to the variables to optimize. in the context of NNs, these dimensions are the weights θ. The

search space has as many dimensions as the weights defined in the NN architecture.

Suppose θti denotes the position vector (i.e., weights values of one NN) of a given particle

i in the multidimensional search space at iteration t. Then the position of each particle is

updated in the search space as follows:

θt+1
i = θti + vt+1

i (2.38)

where vti is the velocity vector (i.e., orientation) of particle i at iteration t that drives

the optimization process and reflects both the own experience knowledge and the social

experience knowledge from the all particles. Therefore, in a PSO method, all particles are

initiated randomly and then evaluated to compute fitness together. The algorithm finds

and saves the initial personal best for each particle and also the global best, i.e, best value

of particle in the entire swarm. After that, a loop starts to find an optimal solution. In

the loop, the velocity of particles is updated by personal and global bests, and then each

particle’s position is updated by the current velocity vector.

Each particle also has a personal best position in search space the is stored. The Pbest,i

corresponds to the position in search space where particle i had the smallest value as

determined by the error function J(θti). The P t+1
best,i for the next iteration is updated as

follows:

P t+1
best,i =

P t
best,i ifJ(θti) > P t

best,i

θti ifJ(θti) < P t
best,i

(2.39)

The global best Gbest position at step t is calculated by:

Gt
best = min{P t

best,i}, where i ∈ [1, ..., n] and n > 1 (2.40)

Note that Gbest is the best position discovered by any of the particles in the entire swarm

since the first iteration. Afterwards, the individual and social cognitive components can be

2.2. OPTIMIZATION 45

included in the velocity vector, whose calculation is given by:

vt+1
i = vti + c1[P t

best,i − θti] + c2[Gt
best − θti] (2.41)

where parameters c1 and c2 are positive acceleration constants used to level the contribution

of the individual and social cognitive components respectively. The constant c1 expresses how

much confidence a particle has in itself, while c2 expresses how much confidence a particle

has in the group. Other parameters used in PSO are the maximum velocity of the particles

and the number of particles used.

Gbest

x2

x1

(a) at time t = 0

Gbest

x2

x1

(b) at time t = 1

Figure 2.22: Particles moving in the search space using PSO, from one iteration to the next.

Figure 2.22 illustrate the convergence of n particles with position θ and update velocity

vectors v in iteration t according to the new global best Gt
best found by the swarm. Since

the search space in this illustration is bi-dimensional, the number of parameters optimized

by particle is two (i.e., NNs with two weights).

2.2.4 Error Functions

The objective of a ML model, therefore, is to find parameters, weights or a structure that

minimizes the error function J(θ,B,Xr, Y r). It my also be referred to as loss or cost function.

Since we are describing the error functions in detail, we will represent all arguments in this

Section. They are the complete set of parameters on the NN: θ weights and B NN’s set of

bias terms; for a given example r in the training set with the inputs X and respective real

output Y . NNs focus on the approach that illustrates statistical learning based on learning

from data, thus minimizing an error function. Error functions are used to estimate how badly

models are performing. It is a measure of how wrong the model is in terms of its ability

to estimate the relationship between input X and Y . The error function gives a distance

between the real value Y and the predicted value Ŷ . Depending on the type of problem, this

46 CHAPTER 2. LITERATURE REVIEW

distance may be calculated in different ways to have the best statistical significance, thus

influencing the quality of the generated model.

As explained in Section 2.2.1, backpropagation uses the gradient of error function∇J(θ,B,Xr, Y r)

(see equation 2.28) in order to use the update rule to direct the weights movement (v)

towards a minimum, hopefully the global minimum. Thus, the respective gradient of the

error function used in the computation is also provided. Next, are presented some of the

most known and used error functions.

• Quadratic cost

Quadratic cost also known as MSE, maximum likelihood, and sum squared error, it is defined

as:

JMST (θ,B,Xr, Y r) =
1

n

n∑
j

(aLj − Y r
j)2 (2.42)

The gradient of this cost function with respect to the output of a NN and some sample r is:

∇JMST = − 2

n
(aL − Y r) (2.43)

where aL corresponds to the complete computation of the NN (i.e., all layers processed:

Ŷ = aL). This error function is normally applied to regression problems since it outputs a

comprehensive distance from optimal values Y to the predicted values Ŷ .

• Root Mean Squared

RMSE is very similar to MSE. Is given by the following equation:

JMST (θ,B,Xr, Y r) =
√
MSE =

√√√√ 1

n

n∑
j

(aLj − Y r
j)2 (2.44)

and the derivative used for gradient calculation is given by:

∇JMST =
1

2
√
MSE

(2.45)

• Cross-entropy

Also known as log loss, the cross-entropy formula is given by:

JCE(θ,B,Xr, Y r) = −
∑
j

[Y r
j ln aLj + (1− Y r

j) ln (1− aLj)] (2.46)

2.3. AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE MODEL 47

The gradient of this cost function relative to the output of a NN processing some sample r

is:

∇JCE =
(aL − Y r)

(1− aL)(aL)
(2.47)

This error function is normally applied to NNs with a softmax activation function on the

output layer used for classification. It penalizes hard wrong classifications made with a high

degree of certainty (i.e., wrong certainty).

• Exponential

The choice of this function requires to set a parameter τ . This is manually configured until

the best results are achieved. The respective formula is given by:

JEXP (θ,B,Xr, Y r) = τ exp(
1

τ

∑
j

(aLj − Y r
j)2) (2.48)

and the gradient is:

∇JEXP =
2

τ
(aL − Y r)JEXP (θ,B,Xr, Y r) (2.49)

• Kullback-Leibler divergence

This cost function is also known as information divergence, information gain, relative entropy,

or KL divergence [Kullback and Leibler, 1951].

JKL(θ,B,Xr, Y r) =
∑
j

Y r
j log

Y r
j

aLj
(2.50)

The respective gradient used in computation for this function is given by:

∇JKL =
Y r

aL
(2.51)

2.3 Auto-Regressive Integrated Moving Average Model

Auto-Regressive Integrated Moving Average (ARIMA) models are a popular among economic

research community and flexible class of forecasting models that utilize historical information

to make predictions. The ARIMA model is included in this Section due to its relevance in

MTS and also because it is used as a baseline comparison in regression analysis in Chapter 4.

ARIMA is a general model for the time series which encapsulates the autoregressive model,

non-seasonal differencing, and the moving average model [Box and Jenkins, 1990, Hipel and

McLeod, 1994, Kirchgässner and Wolters, 2007].

48 CHAPTER 2. LITERATURE REVIEW

Without integration, ARMA(p, q) model is a combination of AR(p) and MA(q) models and

is suitable for univariate stationary time series modeling. In an AR(p) model the future value

of a variable is assumed to be a linear combination of p past observations and a random error

together with a constant term. Mathematically, the AR(p) model can be expressed by:

Ŷ = c+

p∑
i=1

ar
wixt−i + εt = c+

ar
w1xt−1 +

ar
w2xt−2 + · · ·+ ar

wpxt−p + εt (2.52)

The model output Ŷ corresponds to the xt value of time series x at the present moment. It

is the value we want to predict based on t − i, with i = 1, 2, . . . , p. The integer constant p

is known as the autoregressive order of the model. εt is the random error at time period t,
ar
wi are parameters, and c is a constant term. Sometimes, the constant term c is omitted for

simplicity. Usually, for estimating parameters of an AR process using a time series, Box and

Jenkins [1990] equations are used.

Like AR(p) models regress against past values of the time series, MA(q) models use past

errors as explanatory variables. The MA(q) model is given by:

Ŷ = µ+

q∑
j=1

ma
w jεt−j + εt = µ+

ma
w 1εt−1 +

ma
w 2εt−2 + · · ·+ ma

w qεt−q + εt (2.53)

where µ is the mean of the time series,
ma
w j are parameters, with j = 1, 2, ..., q. Also, q is

the moving average order of the model. Random shocks are assumed to be a white noise

process, meaning a sequence of independent and identically distributed values (i.e., random

variables with zero mean and a constant variance). Conceptually, MA model is a linear

regression of the current observation of the time series against the random shocks of one or

more prior observations. AR and MA models can be effectively combined together to form a

general and useful class of time series models known as the ARMA models. Mathematically,

ARMA(p, q) model is represented as:

Ŷ = c+ εt +

p∑
i=1

ar
wixt−i +

q∑
j=1

ma
w jεt−j (2.54)

Usually, ARMA models are manipulated using the lag operator notation. The lag or backshift

operator is defined as Lyt = yt−1 . Polynomials of lag operator or lag polynomials are used

to represent ARMA models as follows:

AR(p) model: εt =
ar
w(L)yt (2.55)

MA(q) model: yt =
ma
w (L)εt (2.56)

ARMA(p, q) model:
ar
w(L)yt =

ma
w (L)εt (2.57)

where
ar
w(L) = 1−

∑p
i=1

ar
wiL

i and
ma
w (L) = 1 +

∑q
j=1

ma
wjL

j .

2.3. AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE MODEL 49

ARMA models can only be used for stationary time series data. However, in practice,

many time series contain trend and seasonal patterns and are non-stationary in nature.

For this reason, Box and Jenkins [1990] proposed and Fischer and Planas [2000] refine the

ARIMA model, which is a generalization of the ARMA model to include the case of non-

stationarity. In ARIMA models, a non-stationary time series is made stationary by applying

finite differencing to the data points. The mathematical formulation of the ARIMA(p, d, q)

model using lag polynomials is given by:

ar
w(L)(1− L)dyt =

ma
w (L)εt i.e. : (2.58)(

1−
p∑

i=1

ar
wiL

i

)
(1− L)dyt =

1 +

q∑
j=1

ma
wjL

j

 εt (2.59)

Here, p, d and q are integers greater than or equal to zero and refer to the order of the

autoregressive, integrated, and moving average parts of the model respectively. The integer d

controls the level of differencing, i.e., the number of discrete differences the forecast variable’s

data has undergone in order to remove seasonality. Generally, d = 1 is enough in most cases.

When d = 0, the ARIMA model is reduced to the ARMA(p, q) model.

To train the weights in ARIMA, it is normally used the combination of conditional sum of

squares and maximization of the log-likelihood function, resulting in the CSS-Log-likelihood

algorithm. More details and other related methods with a comparative study are reported

by Safi and Saif [2014]. ARIMAX models extend ARIMA models through the inclusion of

multiple exogenous variables X, meaning that multivariate inputs are captured [Pektas and

Cigizoglu, 2013].

Sumary

In this Chapter, we discuss several model architectures and some types of modeling tech-

niques to handle time series forecasts. Concerning the DL framework, the instantiation,

parametrization, and inner workings of several components in NN models is described. The

content is concentrated on the discussion of the main ones, those used as ground base for this

dissertation. The following Chapters will discuss the exact methodologies that were used

and developed to build MTS models. The next Chapter focuses on the case studies used to

test the developed methodologies.

50 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Case Studies

In this Chapter, we describe the case studies used to mitigate the MTS modeling problem.

Real world datasets were used to evaluate the developed DL methodologies.

The first case study is related to the HAR dataset from UCI. This is a well outlined problem

and a very competitive dataset among the data scientist community [Shaohua Wan et al.,

2020, Qin et al., 2020, Slim et al., 2019, Lockhart and Weiss, 2014, Anguita et al., 2013,

Ronao and Cho, 2016, Sharma et al., 2008, Ignatov, 2018, Jiang and Yin, 2015, Romera-

Paredes et al., 2013, Kaden et al., 2013]. By default, the HAR is a MTS classification

problem. Data were extracted from smartphone accelerators and gyroscopic sensors in order

to classify the type of action that is being performed by the user. Since this dissertation is

also focus on MTS classification, minor FE procedures were applied to this case study. It

also enables us to compare our results with other studies observed in the literature. This

case study uses 2.56 seconds of information to predict the user activity. The sampling has

50% sliding window overlap.

The second case study provides a way for benchmarking the developed DL architectures

against each other considering the air quality dataset of Beijing’s PM2.5 concentration [Sun

et al., 2020, Pardo and Malpica, 2017, Li et al., 2017, Liang et al., 2015, Beijing US Embassy,

2014, Wang et al., 2013, Zhang et al., 2013]. The main goal is to predict the pollution level

(i.e., PM2.5 concentration) 12 hours ahead based on the last 72 hours information. The

sampling methodology uses a 12 hours sliding window (i.e., 83% overlap).

The third case study is related to the individual household electric power consumption. This

dataset is also provided by the UCI ML repository. In this dissertation, the target value is the

average level of the global house active power consumption for the next 24 hours, categorized

in five classes, based on the last 168 hours, i.e., 7 days. We use a sliding window of 24 hours

(i.e., 86% overlap between examples). Normally, the metric used in the literature for this

51

52 CHAPTER 3. CASE STUDIES

dataset, to evaluate the performance, is RMSE [Koschwitz et al., 2018, Georges Hebrail,

2010, Chujai et al., 2013, Kim and Cho, 2018, Behera et al., 2016]. We focus on MTS

classification, and so we provide a comparison of results between different DL methodologies

using accuracy and categorical cross-entropy metrics.

The last case study is related to exchange markets. For this case study, we describe the

software framework developed to collect data, FE, and put the models into production using

trading strategies, i.e., simulate the AI agent actions in the market. This was an end-to-

end ML project concerned with preparing complex data, training models on it, and then

deploying those models. Indicator analysis and modeling is only a part of the full trading

system. When building a forecast system that uses models and trading strategies, a global

system evaluation to measure the performance of the combined components must also be

done [Gonçalves et al., 2013, Goncalves et al., 2019]. This case study works over the last

10 minutes of pre-live betting exchange horse racing markets. 8 minutes are used to classify

the price movement in the final 2 minutes before the beginning of the race, and there is no

sliding window overlap, i.e., each race is one example.

3.1 Human Activity Recognition

The HAR dataset from the UCI ML repository is one of the datasets used to train, test

and compare the methodologies described in this dissertation. This is a well-known and

competitive dataset retried from smartphone sensors, which contains 3-axial gravitational

acceleration, 3-axial body acceleration and 3-axial body gyroscope readings captured at a

constant rate of 50Hz, totalizing 9 variables over 128 time steps. Readings were taken from 30

volunteers holding a smartphone to record six different types of activities: walking, walking

upstairs, walking downstairs, sitting, standing, and laying. Overall, the UCI HAR dataset

consists of 10299 examples. Figure 3.1 is the plot the 9 inputs for one train example of

walking class output.

It is important to highlight that the UCI repository provides the separation of data into train

and test datasets. The training set contains 7352 examples, while the testing set has 2947

examples. This working setup is referred to as 21-9, which means that 21 subjects are used

for training and 9 subjects are used for testing. Models of this type of working setup are

said to fall into the category of impersonal models Lockhart and Weiss [2014]. As clarified

in Table 3.1, another relevant point is the number of examples per class. Any unbiased

comparison of test results between different studies requires a persistent consistency on the

adoption of these values.

In addition to the Raw Time Distributed (RTD) dataset, UCI also provides a FE dataset

3.1. HUMAN ACTIVITY RECOGNITION 53

Figure 3.1: A sample example of HAR dataset for walking class.

walking upstairs downstairs sitting standing laying

Test set 496 471 420 491 532 537

Train set 1226 1073 986 1286 1374 1407

Table 3.1: Number of examples per class in the train and test HAR dataset provided by

UCI.

that transforms the RTD data into 561 non-temporal features (e.g., average, max, min, etc.).

Since the FE dataset maintains the order and number of examples equal to the RTD dataset,

the performance of models that use the FE dataset can be compared to the performance of

models that use the original RTD dataset.

Table 3.2 summarizes test results of some prominent studies. Romera-Paredes et al. [2013]

proposes a OVO multi-classification SVM with a linear kernel for the classification task. The

method uses majority voting to find the most likely activity for each test sample from an

arrangement of 15 binary classifiers. Anguita et al. [2013] introduces the HAR dataset and

obtain results exploiting a multi-classification SVM. Kaden et al. [2013] employs a sparse

kernelized matrix Learning Vector Quantization (LVQ) model. Their method is a variant of

LVQ in which a metric adaptation with only one prototype vector for each class is defined.

Ronao and Cho [2016] presents a temporal Fast Fourier Transform (FFT) plus a CNN

model. The temporal FFT concept was developed by Sharma et al. [2008]. It is used to

process information that subsequently feeds a CNN. Similarly, Jiang and Yin [2015] applies

a bi-dimensional Discrete Fourier Transform (DFT) to the MTS raw inputs followed by the

use of a CNN.

The best result in the Kaggle competition was 98.01% in the private dataset (i.e., internal

dataset used for the final ranking of competitors) and 97.18% in the public test dataset (i.e.,

54 CHAPTER 3. CASE STUDIES

Study Method HAR Dataset Type ACC (%)

Romera-Paredes et al. [2013] OVO SVM Ensembling Voting FE 96.40

Anguita et al. [2013] OVA SVM FE 96.37

Kaden et al. [2013] Kernel variant of LVQ FE 96.23

Ronao and Cho [2016] tFFT + CNN RTD 95.75

Jiang and Yin [2015] DFT + CNN RTD 95.18

Table 3.2: Most relevant studies using the UCI HAR dataset with 21-9 working setup.

the one used by competitors for testing and development). However, results from these highly

problem-dependent architectures are not comparable with results from studies presented in

Table 3.2 since the train and test partition of public and private datasets is not equal to the

original 21-9 working setup.

Similar concern is applied to Ignatov [2018] reporting an accuracy of 97.63% but it is not

clear the type of partition considered by the author. After running the available code in his

GitHub repository, we not only observe that the test dataset contains an excessive number

of examples, namely 2993, but also the number of examples per class is different from the

canonical UCI partition. Other works with variants of this dataset include Shaohua Wan

et al. [2020], Qin et al. [2020], Slim et al. [2019]. As such, based on Table 3.2, we consider the

current state-of-the-art accuracy, for studies that maintain the original UCI 21-9 working

setup unchanged, stands at 96.40%.

This is a pure MTS classification problem and all the raw data is ready in the right format

to feed the models (Examples × TimeSteps × Variables). The data is well centered, well

distributed, with no significant outliers, normalized with all indicators in the same order of

magnitude, and no missing values. As such, no important FE was made.

3.2 Air Pollution - PM2.5 Concentration

An air quality dataset retrieved from UCI repository is used for the second case study.

With the development of the economy and population all over the world, most metropolitan

cities are experiencing elevated concentrations of ground-level air pollutants, especially in fast

developing countries like India and China. Exposure to air pollution can affect everyone, but

it can be particularly harmful to people with heart diseases or lung conditions, elderly people,

and children. Studies show that long-term exposure to fine particulate air pollution or traffic-

related air pollution is associated with mortality rates, even at concentration ranges below

the standard annual mean limit value [Wang et al., 2018, Cohen et al., 2017]. Therefore,

building an early warning system, which provides precise forecast and also health alerts to

3.2. AIR POLLUTION - PM2.5 CONCENTRATION 55

local inhabitants, will provide valuable information to protect humans from damage by air

pollution. Understanding the behavior of air pollution is needed to predict it and then to

guide action to ameliorate it. Currently, three major approaches are used to forecast real-

time air quality: simple empirical approaches, advanced physical-based approaches, and ML

approaches.

Simple empirical approaches like persistence and climatology methods are based on assump-

tions or hypothesis; that is, thresholds of forecasted meteorological variables can indicate

future pollution level [Dye, 2003]. They are computationally fast but have low accuracy and

are primarily used as references by other methods. Advanced physical-based approaches

like chemical transport models simulate the formation and accumulation of air pollutants

by a solution of the conservation equations and transformation relationships among the

mass of various chemical species and physical states. They can provide valuable insights

for understanding pollutant diffusion mechanisms. But they are computationally expensive,

demanding reliable meteorological predictions, and tuned by a high level physical chemistry

experts [Zhang et al., 2012].

0 10000 20000 30000 40000
0

1000 pollution

0 10000 20000 30000 40000
25
0

25 dew

0 10000 20000 30000 40000

0
25 temp

0 10000 20000 30000 40000
1000
1025 press

0 10000 20000 30000 40000
0

500 wnd_spd

0 10000 20000 30000 40000
0

25 snow

0 10000 20000 30000 40000
0

25 rain

Figure 3.2: 5 years of the MTS used to predict the air pollution - 43800 time steps, one per

hour.

Some ML methods have been applied to predict the air quality. Widely used methods

include classical ARIMA [Kumar and Jain, 2010], SVM methods [Saxena and Shekhawat,

2017, Vong et al., 2012], simple ANNs methods [Russo et al., 2015, Karatzas et al., 2017],

and DL LSTM-based methods [Pardo and Malpica, 2017, Li et al., 2017]. More lately, DL

methods based on CNN were also applied to this subject [Sun et al., 2020].

The dataset used in this dissertation reports on the weather and the level of pollution each

hour for five years at the US embassy in Beijing, China [Beijing US Embassy, 2014]. Data

56 CHAPTER 3. CASE STUDIES

include the date-time stamp, the PM2.5 concentration pollution indicator, and the weather

information including dew point, temperature, pressure, wind direction, wind speed and the

cumulative number of hours of snow and rain. The complete feature list in the raw data is

as follows:

1. PM2.5 concentration;

2. Dew Point;

3. Temperature;

4. Pressure;

5. Combined wind direction;

6. Cumulated wind speed;

7. Cumulated hours of snow; and

8. Cumulated hours of rain.

Figure 3.3: Inputs of a training example for pollution prediction. 72 time steps × 8 variables.

The target class for this example is level o pollution 1.

The data used in this case study frame a forecasting problem where, given the weather

conditions and pollution for prior hours, the level of pollution forecast is made for the next

t+m hours.

Feature Engineering

At the input level, minor manual FE is made. It is performed hot encoding of the wind

direction into a possible set of four values {0.0, 0.33, 0.66, 1.0}, normalization of all other

variables, and dimensionality transformation for model input compatibility. This dimen-

sionality transformation consists of defining a sliding window with size n over the entire

dataset and construct a bi-dimensional feature map of TimeSteps × Variables. For the

model input, we use a sliding window of n = 72 time steps (i.e., 72 hours) with the 8 input

3.3. INDIVIDUAL HOUSEHOLD ELECTRIC POWER CONSUMPTION 57

variables. Each time a frame advances 12 time steps, a new training sample example is

constructed. Figure 3.3 shows one input example for this dataset.

Classification Analysis

At the output level, because we want to work with classification, a frequency analysis of the

variable to predict is performed. This is the first indicator itself, pollution level, i.e., PM2.5

concentration. The training example output is filled with a value representing the pollution

level 12 hours ahead. So the average of 12 time steps ahead is transform into 5 categorical

levels of pollution.

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

Level 0

Level 1

Level 2

Level 3

Level 4

0 1 2 3 4
0

250

500

750

1000

1250

1500

1750

Histogram of values of target Class (equally distributed)

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 3.4: Output conversion to obtain an equalitarian number of examples per category.

Figure 3.4 shows how the five classes value intervals are defined to obtain a balanced training

dataset by class:

Level 0 PM2.5 [0, 18 [

Level 1 PM2.5 [18, 48 [

Level 2 PM2.5 [48, 89 [

Level 3 PM2.5 [89, 153[

Level 4 PM2.5 [153,1000]

3.3 Individual Household Electric Power Consumption

The accurate prediction of electric energy consumption in the residential sector is a desirable

action to ensure the minimization of potential losses and the maximization of social welfare.

A considerable number of studies attempts to extract features from energy consumption data

and predict electric energy consumption in the residential sector [Khan et al., 2020, Kim and

Cho, 2019, Fumo and Biswas, 2015]. In general, three types of models are used for this

58 CHAPTER 3. CASE STUDIES

purpose: statistical or econometric [Chujai et al., 2013, Kaur and Ahuja, 2017], classical ML

[Amber et al., 2015] and DL methods [Kim and Cho, 2019]). Although statistical approaches

are relatively easy to implement and allow to eliminate covariates without explanatory power

on the target, they do not avoid the risk of multicollinearity [Kim and Cho, 2019]. Moreover,

researchers may have a concern with endogeneity, spurious correlation, omitted variable bias

and reverse causation [Wooldridge, 2016]. This endogeneity was confirmed by Fumo and

Biswas [2015] that predicts the electric energy consumed in the residential sector through

a multiple linear regression models and confirm that the time resolution chosen drastically

affects the predictive performance. E.g., if one works in low resolution and tries to predict

the nest step, this will be very similar to the previous one. The correct framing of the

problem is important to build a model that extracts meaningful information.

Kim and Cho [2019] have put efforts into developing DL models to predict energy consump-

tion using the same datset described in this Section. They propose a DL model that combines

CNN and LSTM layers to learn spatial-temporal features of electric energy consumption. A

CNN layer extracts relevant features among the set of inputs and respective outputs are used

as inputs in the subsequent LSTM layer. The output of the LSTM layer is passed into a dense

layer, which generates predicted values of energy consumption (i.e.,in regression mode). The

authors also modify the time resolution to understand whether their main result is robust

and provide a variable of importance analysis for input attributes. The authors show that

their CNN-LSTM model is more capable of capturing irregular trends of power consumption

compared to more classical approaches, while simultaneously allowing to identify inputs with

a significant effect on the output. Unfortunately, this article does not provide information

about the size or part of the data considered for test purposes. Also it is claimed that ”A

total of 25,979 missing values were removed for preprocessing” which perverts the premise

of analyzing uniform time intervals of data, crucial for the type of models described. In case

of missing values, the best approximation possible should be considered. In this dissertation

we filled the missing values with the value at the same time from the previous day.

Retrieved from the UCI ML repository, the present analysis uses the dataset containing

information about the electric energy consumption of a home located in France during a

period of approximately four years, gathered between December 2006 and November 2010

[Hebrail and Berard, 2012]. It contains measurements of electric power consumption with a

one-minute sampling rate. Different electrical quantities and some sub-metering values are

available in the dataset. The 7 variables available in the dataset are (as described in the

UCI website):

1. Global active power: household global active power (in kilowatt);

2. Global reactive power: household global reactive power (in kilowatt);

3.3. INDIVIDUAL HOUSEHOLD ELECTRIC POWER CONSUMPTION 59

3. Voltage: minute-averaged voltage (in volt);

4. Global intensity: household global current intensity (in ampere);

5. Sub metering 1: energy sub-metering No. 1 (in watt-hour of active energy). It

corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave

(hot plates are not electric but gas powered);

6. Sub metering 2: energy sub-metering No. 2 (in watt-hour of active energy). It

corresponds to the laundry room, containing a washing-machine, a tumble-drier, a

refrigerator and a light; and

7. Sub metering 3: energy sub-metering No. 3 (in watt-hour of active energy). It

corresponds to an electric water-heater and an air-conditioner.

Feature Engineering

DL NN models employed in this study are trained and tested considering a 80%-20% partition

rule. As required by MTS problems, shuffling of samples is not used. Figure 3.5 clarifies that

the time resolution of inputs (outputs) is defined in hours (days), respectively. In particular,

168 hours time steps are used as inputs, while the output corresponds to the average of the

next 24 hours time steps. As such, when configured for regression, DL NN developed models

could be comparable with alternative options that consider a measurement of the output in

days.

Output Prediction: AVG of next 24h Time Steps

168h Time Steps Sequences of 7 InputsSample N

168h Time Steps Sequences of 7 InputsSample N+1

24h Sliding Window

Figure 3.5: Sample format used for the developed models.

Hancock et al. [1988] and Hamilton et al. [2007] highlight the need to normalize data in cases

where inputs have different units of measure. In addition, outliers can substantially affect

the learning ability of NN models. A relevant characteristic of learning algorithms is that

they tend to smooth out noise, which allows to effectively model noisy systems. However, if

data are concentrated in a very small portion of the input range, then explanatory variables

subject to this type of bias may not have a significant impact on learning and final predictions

60 CHAPTER 3. CASE STUDIES

of the model. Deboeck [1994] proposes a solution based on FE to mitigate this concern, which

consists of applying a bilateral truncation to the MTS values based on frequency analysis

and histogram re-scaling.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

2000
Global Active Power

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1000 Reactive Power

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1000
Voltage

0 2000 4000 6000 8000 10000 12000 14000
0

20000

Fr
e
q

u
e
n
cy

Global_active_power

0 2000 4000 6000 8000 10000 12000 14000
0

20000

Fr
e
q

u
e
n
cy

Global_reactive_power

0 2000 4000 6000 8000 10000 12000 14000
0

10000

Fr
e
q

u
e
n
cy

Voltage

0.0 0.2 0.4 0.6 0.8 1.0
0

5000 Global_active_power

0.0 0.2 0.4 0.6 0.8 1.0
0

5000
Global_reactive_power

0.0 0.2 0.4 0.6 0.8 1.0
0

20000
Voltage

(A) (B) (C)

Figure 3.6: Data treatment possibilities: (A) raw data, (B) standardization, (C) histogram

re-scaling.

Figure 3.6 presents three data treatment possibilities. Panel (A) shows the distribution of

output and input variables without normalization, panel (B) presents the distribution of

output and input variables with standardization and panel (C) clarifies the distribution of

output and input variables with normalization based on frequency analysis and histogram

re-scaling. Data presented in panel (C) concentrate values between -1 and 1 that are used

in the subsequent analysis.

Classification Analysis

Figure 3.7: Definition of output classes. Levels of energy consumption.

At the output level it is shown a transformation of this problem into a classification problem,

according to electric energy consumption levels, to maintain compatibly with the global

framework of this dissertation. However, for this case study in particular it is also provided

more detailed information, in Chapter 4, about the robustness of the best model configured

3.4. BETTING EXCHANGE MARKETS 61

for regression. Knowing that a frequency analysis is used at the output level to impose a

classification problem, Figure 3.7 clarifies that an egalitarian distribution in the number of

examples is considered for each qualitative class. Five output categories are defined, which

correspond to different consumption levels of electric energy.

3.4 Betting Exchange Markets

Modeling exchange markets requires to consider a market as a platform in which people and

entities can trade fungible items of value, with low transaction costs, at prices that reflect

supply and demand. The extracted models consists of a representation of the multiple

interactions among participants. As in most modeling problems, unexpected external events

can override the assumptions on which the system’s predictive behavior relies. The described

framework concerns with purely speculative markets, thus, the system considered here is

based on a closed-loop interaction, i.e., forecasting is exclusively dependent on market data

itself.

One of the best exchange markets compliant with the mentioned closed-loop interaction

property found in the real world are markets present in betting exchanges. A betting

exchange is an entity that offers trading services to buy and sell bookmaking contracts.

These contracts are structured as binary options (i.e., win or lose) where the payoff is either

some fixed amount of money or nothing at all, depending on the outcome of a future event

[Chen et al., 2008, Schumaker et al., 2010]. Betting exchanges trade heavily on sports events

but also offer markets on elections and other types of events. In analogy to the financial

markets, the buy and sell operations are replaced by betting for and against (i.e., Back

and Lay). The presented methodology can be applied to exchange markets that provide

market depth access, the so-called level 2 market data. Examples include futures (e.g.,

Dorman Trading, Phillip Capital), forex (e.g., FXCM), securities (e.g., Euronext Bonds),

betting exchanges (e.g., Betfair, Betdaq, Matchbook), and cryptocurrency (e.g., Coinbase,

Bitmex). All of them share the same functional basis; therefore, they can be adapted into

our framework. Some other types of exchanges do not provide market depth data (e.g.,

CFDs - exchange virtualization) and can not be considered.

Table 3.3 shows a snapshot example of a market depth view. This information is referred

throughout the manuscript as a Raw Data Frame (RDF). The “Price” column describes

the ladder of possible transaction prices. The market buys and sell amounts are listed in

the “Bid” and “Ask” columns. The “Buy” and “Sell” columns represent the agent’s own

orders waiting to be matched. When the buy and sell orders reach the same price, there is a

matched amount transaction. The amount transacted at each price is listed in the ”Volume”

column. The yellow cell shows the last matched price.

62 CHAPTER 3. CASE STUDIES

Buy Bid Price Ask Sell Volume

...

5,1 20

5,0 250 93

4,9 68

4,8 263 24

4,7 148 10,00 70

4,6 349 5,00 76

8 4,5 217

2 4,4 23

10,00 10 4,3 4

448 4,2

398 4,1

335 4,0
...

Table 3.3: Snapshot of market depth RDT information.

Betfair exchange is considered as case study since it provides an easy and free Application

Programming Interface (API) access to obtain markets raw data. Bets are sold and bought

at different prices, which can also be referred to as odds. The price dynamics allows to

achieve Profit & Loss (PL) before knowing the event’s final outcome. Depending on the

investor’s beliefs, a price may move just a few or many ticks 1. Thus, price volatility is

shared knowledge. The UK To-Win horse racing market is characterized by high liquidity

and volatility levels, constituting a decisive factor for its selection to meet our research scope.

The chosen moment to act in the market is 10 minutes before starting the race, i.e., pre-

live. The reason for this choice is straightforward: before the beginning of the horse race,

the price of each runner is highly subject to speculation. This moment of action does not

depend on external factors but rather on the information available in the market itself, thus

constituting a strongly closed-loop system. As such, given this atomistic property, this study

is exclusively concerned with purely speculative markets.

10 minutes before the race start is when intense activity on the market starts to happen.

Fig. 3.8 exposes the average value of trading volume, liquidity (i.e., sum of all runners

amounts waiting to be matched - at the bid and ask price only), and volatility (i.e., number

of ticks variation in absolute value per minute) for the complete sample of observed races,

considering all runners involved in a given race. From the 10th minute before each race starts

until the effective start of each race, the average trading volume increases about 4.2 times,

the average liquidity increases approximately 3.4 times, and the average volatility increases

1The unit of measure of a price change is designated by tick.

3.4. BETTING EXCHANGE MARKETS 63

about 1.6 times. Hence, from a dynamic point of view, we observe that all variables increase

as we approach the beginning of a race.

10 9 8 7 6 5 4 3 2 1
Minutes

150000

200000

250000

300000

350000

400000

450000

500000

£
Volume

10 9 8 7 6 5 4 3 2 1
Minutes

2000

3000

4000

5000

6000

7000

£

Liquidity at bib/ask Prices

10 9 8 7 6 5 4 3 2 1
Minutes

700

800

900

1000

1100
Nr.

Ticks Variation

Figure 3.8: Average trading volume, average liquidity at the bid and ask price, and average

number of ticks variation in absolute value per minute.

Raw data were collected directly from Betfair servers in real-time at a 2 frames/samples per

second rate from the 1st September 2014 to the 29th August 2016. For the sake of brevity,

summary statistics with respect to volume, liquidity, and volatility at the race level on a per-

minute basis during the 10 minutes time window before the start of each race are provided in

Table A1 of the Appendix. Globally, we recorded a personalized database related to the UK

To-Win horse racing markets characterized by 15 to 30 daily races with 3 to 25 competing

horses per race.

We use 8 minutes of information to predict the last 2 minutes price variation of runners before

the race starts. This type of trading, with a short time of exposure that gives primordial

importance to the market data itself, is normally performed by day traders and called “day

trading”. Also, when performed automatically, the execution of very sort-term trades can be

called high-frequency trade. The methodologies implemented in this thesis can be framed in

these groups. Access to the market depth is fundamental in high-frequency trading or day

trading. In contrast with long-term trading, the information about what happens in detail

at different prices, transacted one and around, in every second, is very important. To access

this type of information, the trader (or agent) must have a ”ladder view” of the market

(see Table 3.3). All the data used in this case study for price forecasting is present on the

evolving price ladder.

In order to archive some PL prices need to move up or down. Prices fluctuate due to the

supply and demand law. If demand for a promising company stock is high, the shares price

will rise. If there are a lot of sellers, prices will drop. The same applies to betting exchange

markets. If there is most of the participants Lay on a runner (e.g., horse in a race or team

in a football match), the fixed odds for winning the event will drift up. If bettors stats to

invest in favor of a runner to win, it will cause the odds to decrease. Depending on the force

64 CHAPTER 3. CASE STUDIES

and investor’s believes, a price or odd may move just a few ticks or a lot more.

3.4.1 Trading Framework

As betting markets are short-lived, yield easily quantifiable final payoffs for the assets traded,

and have a degree of repetition, they provide clean tests of efficiency. In betting exchanges,

there are events, e.g., tennis match or horse race. On each event there are runners , e.g.,

horses in a horse race. On runners, Back and Lay bets are placed. A Back option is a bet on

the runner to win, while Lay is a bet on the runner to lose. Bets are placed at a given price.

For instance, the price 2.0 is a 50% of chances (1/2 = 0.5), price 1.01 is a 99% of chances

(1/1.01 = 0.99), 100 is a 1% of chances (1/100 = 0.01). In Table 3.3 we have the following

bets placed (but not matched yet):

• Lay of £10.00 at 4.30 (Lay 10@4.3);

• Back of £10.00 at 4.70 (Back 10@4.7); and

• Back of £5.00 at 4.60 (Back 5@4.6).

If a bet is placed at one price that ”the market” is willing to buy, the bet will be matched

at the best price offered. For example, in the market state of Table 3.3 if one Back bet

15@4.4 is placed (on the blue side) it will match £8.00 at 4.5, £2.00 at 4.4, and will leave the

remaining £5.00 at 4.4 unmatched on the ask side waiting for someone to buy with a Lay

bet. The traded volume information will have its update. This is how the prices move in

the market. Since this bet was matched in two (N = 2) different prices, the global matched

price of this bet can be calculated using equation 3.1.

Price Average =

∑N

n=1
(Pricen ×Amountn)∑N

n=1
(Amountn)

(3.1)

If a Back is placed above the best offer in the market (4.5 in Table 3.3), for example, 15@4.9,

it will stay in the market unmatched and, so for, waiting to be matched in a First In First

Out (FIFO) queue of all back orders on that price. The same happens to a Lay bet if it is

placed at a lower price than the best offer (i.e., counter bet waiting to be matched). Only

unmatched or partial unmatched amount of bets can be canceled.

The profit of a Back bet is calculated using equation 3.2 and the liability (i.e.,in case of loss)

of a Back bet is the amount of the bet itself.

Profit Back Bet = Amount Back × (Price Back − 1) (3.2)

3.4. BETTING EXCHANGE MARKETS 65

The liability or amount in case of loss of a Lay bet is given by equation 3.3 and the profit is

the amount of the bet itself. In resume, Lay is the mirror of Back.

Liability Lay Bet = Amount Lay × (Price Lay − 1) (3.3)

Using Back and Lay combinations, it is possible to assure a fixed PL before the end result

of an event. Example of a trade where it does not need to know the result of an event to

have a fixed PL:

• Back of £2.00 at 2.12 (Back 2@2.12) Matched; and

• Lay of £2.00 at 2.10 (Lay 2@2.1) Matched;

For a bet to be matched, it must become the best offer in the market and it has to be

purchased with a counter bet.

When the runner is a winner, then the profit (Back) - loss (Lay) is: 2 × (2.12 − 1) − 2 ×
(2.10− 1) = 2.24− 2.20 = 0.04

When the runner is a looser, then the profit (Lay) - loss (Back) is: 2− 2 = 0

Notice that if we have this kind of Back and Lay bet combination with the same amount at

different prices, there will be profit (if the Back price is higher than the Lay price) or loss

(if the Back price is lower than the Lay price) only if the runner in question wins the event.

If any other runner wins the event and the combination of Back/Lay bets have the same

amount, the PL will be 0. The agent can distribute the guaranteed PL in one runner across

all other runners. To distribute the PL equal for all outcomes the amount to close the trade

bet must be recalculated. This process is called ”do the greening” or ”hedging”. If a Back

position is open on the market, the amount to close the position with the corresponded Lay

bet is calculated using equation 3.4.

Close Amount Lay =
Price Open in Back

Price Lay to Close
×Amount Open in Back (3.4)

If a Lay position is open on the market, the amount to close the position with the corre-

sponded Back is calculated using equation 3.5.

Close Amount Back =
Price Open in Lay

Price Back to Close
×Amount Open in Lay (3.5)

Software

The developed software framework is described as follows. It is an event-based architecture

[Zweigle et al., 2010, Kefalas et al., 2009, Deugo et al., 2001]. The connections between mod-

ules are made through interfaces based on architecture patterns promoting the production,

66 CHAPTER 3. CASE STUDIES

detection, consumption of, and reaction to events. Figure 3.9 illustrates the main modules

and their connections. Parallel-processing approaches [Magee et al., 1994, Yau et al., 1995]

were also applied, in the sense that it is possible to instantiate several Trading Agents, with

different policies, running in parallel, managing several trades simultaneously. Next, it will

Trading Agent

Trading Mechanisms

Orders Manager

Data Repository

Historical Data
Retrieved/Saved With

Fixed Frame Rate

 Exchange Provider API

Get Market Prices Get Matched/Unmatched Orders

Saved
Info

DB
Simulator

Figure 3.9: High level architecture for automated betting exchange.

be provided a brief description of each module.

• Exchange API

We use Betfair [Betfair, 2012, Pitt et al., 2005] exchange API for the work presented in

this dissertation. Betfair API allows software developing companies to access Betfair data.

In this case Betfair is a service provider and other companies are clients to its services.

Usually, it is used to develop trading software or software for tipsters. Its goals are speed

and manageability. Betfair API can also be used to develop autonomous agents. Betfair API

is used as low layer communication between our framework and the exchange server. For the

software framework described here, this low level layer interacts with the Data Repository

module, providing data about the prices and volumes of each runner, and the Orders Manager

module, providing data about the states of the bets, and also for placing and canceling bets

interactions. The main Betfair API services [Betfair, 2012] used for these actions are:

• Data Repository

– Get Complete Market Prices; and

– Get Market Traded Volume.

• Orders Manager

– Get Matched and Unmatched Bets;

– Place Bets;

3.4. BETTING EXCHANGE MARKETS 67

– Update Bets; and

– Cancel Bets.

Depending on the type of licensing, there are different number of calls permitted per minute

for each service.

• Data Repository

The Data Repository module is responsible for data gathering, inform listeners about new

data or new states of the market, save the data, and replay saved data.

The main interface of this module is shown on Listing 3.1. The Market Update event type

simply informs listeners that new data about the runners prices and volume has arrived.

It is possible to trade either before or after one race starts. Thus, we have the event type

Market live that is activated when the market becomes in-play. The Market Suspended event

type is activated when the market is suspended. The market can be suspended for different

reasons depending on the type of market, e.g., in a soccer match the market is suspended

after a goal until the game restarts. Also, right after the markets become in-play, they are

suspended for a short time. The Data Repository module can be instantiated with a new

market by an external object. When this happens, the Market New event is delivered.

Listing 3.1: Market Change Listener Interface

1 public interface MarketChangeListener {
2

3 public enum EventType {MarketUpdate , MarketLive , MarketClose , MarketSuspended ,

4 MarketNew }
5

6 public void MarketChange (MarketData md,

7 MarketChangeListener . EventType marketEventType) ;

8 }

This module can be connected to the Betfair server through the Betfair API or saved files

to be used for data replay and simulation, as explained later in this Section.

• Orders Manager

The Orders Manager module assures the correct treatment of bets information and manages

all objects with a BetListener interface (i.e., Trading Mechanisms) informing them about the

state of their bets. It is important to centralize all the bets processing to optimize the number

of calls to the Get Matched and Unmatched Bets service, which is limited. Also, sometimes

the Betfair API does not return the ID of a placed bet, leaving the program unclear about

68 CHAPTER 3. CASE STUDIES

Not Placed
[Place]

[Cancel || SYS]

Unmatched Partial Matched

Matched

In Progress Placing Error

Canceled Partial Canceled

[Place] [Place]

[SYS]

[Cancel || SYS]

[SYS]

[Cancel || SYS]

[Cancel || SYS]

[Cancel || SYS]

[SYS]

[SYS]
[SYS]

[Place]

[Place]

Figure 3.10: State machine for an order.

the placement. In this cases, the Bets Manager module tracks the bets without ”owner”

and re-assigns them correctly (see Figure 3.10 state In Progress). Figure 3.10 represents the

possible states and transitions of a bet in the framework. [Place] and [Cancel] transitions are

made by the agent or Trading Mechanism modules (i.e., client side active action). The [SY S]

is made by the system, e.g., the system automatically changes the state from unmatched to

matched when the order is filled. This state machine is the base and heavily used by the

Trading Mechanisms module to control the market’s agent position.

• Trading Agents

To instantiate a Trading Agent object, it has to be extended to the abstract superclass

”Bot”. This class implements all the interfaces and virtual methods to interact with the Data

Repository and Trading Mechanisms modules. The Trading Agents objects are normally

attached to one market observing one runner but is possible (and useful, e.g., for dutching

and bookmaking techniques) to make these objects observe several markets and runners

simultaneously. The Trading Agent object can also initialize Trading Mechanisms objects,

i.e., trading processes, whenever it takes some conclusion about a runner forecasting. When

a Trading Mechanism starts, running in parallel, the Trading Agent is informed about the

state of the trade along the execution. On top of this high-level object, it becomes easy to

implement decision policies interacting with the markets, since simple rule-based decisions

policies to more complex methodologies, e.g., time series predictions.

• Trading Mechanisms

The Trading Mechanisms are used in some way to discipline the trader attitude towards the

market. In other words, these methods are likely to be implemented on a computer. They

3.4. BETTING EXCHANGE MARKETS 69

are executed after a decision on the market forecasting. Once the decision for depreciation or

appreciation of a runner is taken, a sequence of steps is started in order to maximize profit.

In this dissertation, we will focus on three of these trading methodologies:

• Scalping;

• Swing; and

• Trailing-Stop.

In the framework, these methods are implemented on the Trading Mechanism module (see

Figure 3.9). After one Trading Agent parametrizes and instantiates one Trade Mechanism,

it will run in parallel and will inform the owner agent along the way about the state of the

trade. Ultimately it will inform the agent that trade is over and the PL of the operation.

• Scalping

Scalping is used for very short-term trading. A scalping trader looks to make lots of small

profits, which in time add up. Scalping relies on lots of active participants in the market.

Scalping works better in markets with lots of liquidity. The concept is simple: if a Back bet

is placed at a certain price, a Lay bet must be placed right in the next lower price, or the

other way around for the opposite direction to make profit. The PL is equal to the difference,

or spread, between the Back and Lay price as explained in Section 3.4.1. The Betfair betting

exchange is an ideal place to trade in this way. Mainly in horse racing because there is lots

of liquidity in these markets, in particular just before the start of the race. Scalping the

market means trading in the market tick by tick. One tick is one step in the prices scale

of the ladder. For example, if a Back at 2.12 is placed, one successful scalp will close the

position with Lay at 2.10 (i.e., one tick down). If a trade starts with a back, it means that

the price was predicted to go down. If it is predicted to go up, the scalp starts with a Lay

bet.

Figure 3.11 represents the state machine used to process one Back⇒Lay scalping (i.e.,

prediction for the price to go down). One Lay⇒Back scalp will be a ”mirror” of this state

machine. The Price Back Request (PBR) is the price where the agent enters the market,

while the Price Back Now (PBN) is the price at the current moment. If the price has already

moved (i.e., [PBR 6= PBN]) when the order reach the scalp module (i.e., the start state), it

will assume the opportunity was lost (i.e., the prices already went down) or the prices went

in the wrong predicted direction, so it ends the process without doing nothing. Otherwise,

[PBR == PBN] opens position on the market with a Back bet. After the bet is ordered

to be placed, if the bet was not matched after some time, it will end the trade (canceling

70 CHAPTER 3. CASE STUDIES

the bet) because it will assume the prices already move down, and the opportunity was lost.

Otherwise, it will try to close the position placing a Lay bet. If the price goes one tick down,

it will close the trade with profit. If the price does not move, it will wait some time. After

that time is over and the close bet was not been matched, it will try to close at same price

with null PL. If the price goes up, it will close in ”emergency” with loss.

Start

Place Back
(Open)

[PBR==PBN]

End

[PBR<>PBN]

[MAB==0]

Place Lay and
Wait Price to Go Down

(Close)

Place Emergency Lay
(Emergency Close)

[PBR==PBN || PBR > PBN] [PBR < PBN]

[PBR < PBN]

[MAL==ALR] [MAL==ALR]

• PBR – Price Back Request
• PBN – Price Back Now
• MAB – Matched Amount Back
• MAL – Matched Amount Lay
• ALR – Amount Lay Request

Figure 3.11: Simplified graph scheme for a Back-¿Lay scalp implementation.

Listing 3.2 presents the declaration of the constructor method of the object that runs the

scalping process in parallel. The MarketData md argument identifies the event (e.g., horse

race, soccer game, tennis), the RunnersData rd identifies the runner to be traded. The

double entryAmount initial stake of the trade and double entryPrice is the entry price to

open position on the market. The int waitFramesNormal is the number of actualizations

received from the Data Repository before it tries to close at the same price he entered (i.e.,

with null PL). After the int waitFramesNormal expire, the int waitFramesEmergency

also starts a count down and, when expiring, it will close at the best offer available to place

the counter bet (i.e., emergency close with loss). The Bot botOwner is the owner agent

of the trade, used to be informed about the state of the scalp. Finally, the int direction

argument indicates the predicted direction of the price movement.

Listing 3.2: Main parameters for Scalping mechanism

1 public Sca lp ing (MarketData md,

2 RunnersData rd ,

3 double entryAmount ,

4 double entryPr ice ,

5 int waitFramesNormal ,

6 int waitFramesEmergency ,

7 Bot botOwner ,

8 int d i r e c t i o n , . . .) ;

3.4. BETTING EXCHANGE MARKETS 71

• Swing

The swing methodology is very similar to the scalping. The main difference is the number

of ticks the price has to move in order to enter the close state [Carter, 2007]. On the swing

methodology it is possible to define the offset number of ticks to close in profit and the offset

number of ticks to close in loss. If the price stays inside this interval offset, it does not do

nothing. Swing with offset of 1 tick for profit and offset of 1 tick for loss is the same as

scalping.

Listing 3.3 describes the constructor for the swing process initialization. Besides the same

parameters present on the scalping constructor, there are the int ticksUp and int ticksDown

representing the offset number of ticks to close in profit and loss, which depend on the

direction parameter. There is also the boolean frontLine and int waitFramesOpen new

arguments. These are used when the agent does not want to enter the market where offer

is available, but wants to wait until the market reaches the price given in the entryPrice

argument. If waitFramesOpen expires and the market does not match the entry bet, it will

cancel the trade process. If frontLine = true it will ignore this time (i.e., waitFramesOpen)

and assumes the agent wants to enter the market at the entryPrice argument where the

counter offer is available.

Listing 3.3: Swing constructor example

1 public Swing (MarketData Market ,

2 RunnersData rd ,

3 double entryAmount ,

4 double entryPr ice ,

5 boolean f rontL ine ,

6 int waitFramesOpen ,

7 int waitFramesNormal ,

8 int waitFramesEmergency ,

9 Bot botOwner ,

10 int d i r e c t i o n ,

11 int ticksUp ,

12 int ticksDown) ;

• Trailing-Stop

The trailing-stop methodology is used when the agent is looking to catch a broader trend in

a market but wants to retain a stop loss condition if the trend starts to turn. The concept

is simple, after a position is open in the market the close bet is set to close with a tick offset

behind, and moves only when the price moves in the predicted direction. Eventually, the

price will move in the reverse direction reaching the close price and the order is placed to

close the trade.

72 CHAPTER 3. CASE STUDIES

Figure 3.12 represents the state machine used to process this methodology for the price

prediction to go down (i.e., Back⇒Lay). The Price Lay to Close - PLC represents the

dynamic changing price N ticks above the PBN . The state ”Update PLC N Ticks Above

PBN” performs the price update repeatedly when [PBP > PBN], i.e., the runner price

moves in the predicted direction, for this case, down. The PLC is updated only when PBN

goes in the predicted direction. When the price turns direction, eventually it reaches the

PLC. When it reaches, the close order (i.e., Lay bet) is placed. Then, when [MAL = CAL],

it means the close bet is completely matched. The price went in the reverse direction (i.e.,

up) filling completely the close bet and closing the trade.

Start

Place Back
(Open)

[PBR==PBN]

End

[PBP>PBN]

[MAB==0]

Place Lay @ PLC

[MAL==CAL]

• PBR – Price Back Request
• PBN – Price Back Now
• PBP – Price Back Previous Update
• PLC – Price Lay to Close
• MAC – Matched Amount Back
• CAL – Close Amount Lay
• MAL – Matched Amount Lay

[MAB<>0]

[PBR<>PBN]

Update PLC N
Ticks Above PBN

[PBN==PLC]

Wait for Market
Update

Figure 3.12: Simplified graph scheme for a Back⇒Lay Trailing-Stop implementation.

Listing 3.4 is the the constructor method of the object that runs the trailing-stop process

in parallel. The offset is the number of ticks offset to follow the runner price. Also, we

have included a number of frames update waitFramesNormal to close after a given time to

control the duration of the trade.

Listing 3.4: Trailing-Stop constructor example

1 public Tra in l ingStop (MarketData Market ,

2 RunnersData rd ,

3 double s takeS i ze ,

4 double entryPr ice ,

5 boolean f rontL ine ,

6 int waitFramesOpen ,

7 int waitFramesNormal ,

8 int waitFramesEmergency ,

9 Bot botOwner ,

10 int d i r e c t i o n ,

11 int o f f s e t) ;

3.4. BETTING EXCHANGE MARKETS 73

• Simulation

This Section addresses issues and limitations to achieve simulation in this kind of markets.

This process implies the simulation of the bet placement. There are two main problems to

simulate a bet placement on the market:

(I) The first main problem is the bet amount influence on the market. The unmatched

bets will not appear in the real market and matched bets will not consume or alter the

available amounts in the real market. This issue is impossible to bypass since, in simu-

lation, the actual amount of the bets is not placed. For example, this limitation makes

it impossible to simulate and test Trading Agents relying on spoofing methodologies.

(II) The second problem is the simulation of the matching process. The bets of all traders

on the market are placed in a FIFO queue of bets for each price on the runner. It

is impossible (there is no data provided by Betfair API about it) to know in which

position in the queue is our bet. It is possible to have an approximate idea by looking

to the volume matched in the placement price and monitoring this volume evolution.

But since these markets are of very high frequency trade, it is impossible to know the

exact volume on the price when the placement order reaches the Betfair server. Also,

it is impossible to know if canceled bets were ahead or behind our bet, damaging the

process of volume monitoring to try to solve this issue. For the described framework,

we assume the worst case possible: bets are considered to be in the front of the queue

when the amount of volume transacted is equal to the amount that was in front of the

order when it was placed. Also, after that, we control the amount matched of the order

with the volume variation. An order is fully matched only when the volume variation

reaches the order amount.

3.4.2 Data Collection and Feature Engineering

Raw data was collected on a twice per second basis. There are between 15 to 25 races per

day and data is only collected during 10 minutes before a race starts. The goal is to treat

the collected data and update the models every month, as shown in Figure 3.13.

The raw data corresponds to the data frames listed in Table 3.3. Then, we transform

them into examples used to fit the models. The examples are organized in training and test

datasets. The set of examples is constructed from the present to the past until the maximum

number of examples defined for the training purpose is reached.

74 CHAPTER 3. CASE STUDIES

Raw Data Collected Over Time

Optional Split For ValidationMoment of Start Collecting Present

Build Training Data Set of Examples From Present to Past
until it reach the Optimal Number of Examples

Raw Data Collected Over Time New Data

New PresentOptional Split For Validation DisplacementMoment of Start Collecting

Rebuild Training/ Test Data Set of Examples

Discretization or Resampling Step - For model Retrain and Update

Time Laps

Figure 3.13: Add-in information to the raw dataset for global re-training of the models.

Rule-Base Filtering

This step has required expert opinions on this type of market. Table 3.4 systematizes the

decision tree that underlies the specificities of each market dynamics. The combination of

the properties listed in Table 3.4 generates 54 different categories (i.e., tree leaves). These

are indexed to simplify data treatment. For instance, category 41 corresponds to a market

dynamics characterized by the following properties:

root/nofavorite/mediumRunners/midleOdd/highLiquidity/⇒Model(41)

From the 54 categories only 9 satisfy the minimum amount of data required to train the

models because only these correspond to the more likely market states. To train a model from

scratch, we define the minimum number of examples to be 1200. For the other categories,

further studies must be taken concerning the use of transfer learning. The transfer must be

done sequentially, from category to category, by similarity.

Inputs and Outputs

For the input, 514 RDFs are used which corresponds to about 8 minutes of data to predict

the last 2 minutes price movement before the start of the race. Segments of 4 RDF are

compressed into a single value (see Figure 3.15), which leads to the consideration of 128

time steps. This data compression facilitates the computation and attenuates the risk of

overfitting. Each race constitute one example for the training. Nine indicators correspond

to the model inputs, this leads us to the consideration of the input format : 128 TimeSteps ×
9 Variables. Figure 3.14 illustrates 4 examples, i.e., 4 races with the 9 indicators evolution.

3.4. BETTING EXCHANGE MARKETS 75

Favorite Runners Price Liquidity

(1) (2) (3) (4)

Yes Few High High

No Medium Medium Medium

Many Low Low

Favorite

Runners
[Few] [Many][Medium]

Price
[High] [Low][Medium]

Liquidity
[High] [Low][Medium]

Cat 0 Cat 1 Cat 2 ... Cat 53
 ...

 ...

 ...

-Data
-Models

...

-Data
-Models

...

-Data
-Models

...

-Data
-Models

...
 ...

[No]

 ...

Not enough data[Yes]

Runners
[Few] [Many][Medium]

Price
[High] [Low][Medium]

Liquidity
[High] [Low][Medium]

Table 3.4: Rule-based decision tree.

Time Time Time Time

Figure 3.14: 4 races input examples, indicators evolution. Each input sample has 8 minutes

of data.

The 9 indicators selected as inputs of the DL NN models are:

1. Integral of the price change of the runner in trade;

2. Integral of the price change of the competitor runner;

76 CHAPTER 3. CASE STUDIES

3. Liquidity variation in the ask side;

4. Liquidity variation in the bid side;

5. Volume variation and direction;

6. Price variation relative to the beginning of the sequence of the runner in trade;

7. Price variation relative to the beginning of the sequence of the competitor runner;

8. Weight Of Money (WoM) of the runner in trade; and

9. WoM of all the others runners combined;

Figure 3.15 shows an example of the market state evolution corresponding to a 3 RDFs,

in discrete time period, compressed into one time segment value. It serves as a show case

for the construction of the indicators considered in our case study. The selected indicators

are also exposed in Figure 3.15. The first indicator corresponds to the integral of the price

change of the runner subject to modeling, being given by the ticks’ integration during the

time segment. The second indicator corresponds to the integral of the price change of the

competitor runner. In our case, the competitor runner is the one holding the closest price.

In financial markets, this choice may be given by an expert’s opinion, i.e, another market

with strong positive or negative correlation. Since this is similar to the previous indicator,

its graphical representation is omitted. The third and fourth one corresponds to the amount

variation on the Ask and Bid side respectively. Note that, for this example, it is assumed

that the fourth past frame is equal to the third past frame. The fifth indicator highlights

the market strength. It is given by the variation of the matched amounts which provides

information about the volume direction and strength. The sixth indicator corresponds to

the price variation between the beginning of the entire sequence t0 and the segment in

processing ti; for this example, in Figure 3.15, we assume this 3th RDF segment is the fist of

the 8 minutes. The seventh indicator is the same but applied to the competitor runner. The

eighth indicator is the average WoM of the RDFs in the segment. The WoM is represented

by a percentage value and shows when the market is balanced or unbalanced. The market

is said to be balanced when the amount of money unmatched on each side of a selection is

the same. This means the amount placed on ask side must be approximately equal to that

placed on bid side. The underly logic is: when there is more unmatched money on ask side

than the bid side the price decrease. The WoM pushes the price down. The same applies

the other way around. WoM indicator is given by :

WoM =
Amounts Bid

Amounts Bid−Amounts Ask
(3.6)

For this example, in Figure 3.15, we consider only the depth of the best 3 prices around the

transacted price. Depending on if the price is high, medium, or low (see Table 3.4), the depth

3.4. BETTING EXCHANGE MARKETS 77

used is 2, 3, and 4. For the ninth indicator, WoM is also applied but to all others runners.

The logic is that if the ladder of the unmatched amounts in all other runner is pressing the

price in one direction the runner in trade will be pressed in the opposite direction.

(Past) Frame 3
Price Ask Volume

...
4,8 263 24
4,7 148 70
4,6 349 76

8 4,5
2 4,4
10 4,3
448 4,2

...

Bid Price Ask Volume
...

4,8 263 24
4,7 148 70
4,6 349 76
4,5 92 8

2 4,4
10 4,3
448 4,2

...

Bid Price Ask Volume
...

4,8 263 24
4,7 148 70
4,6 349 76
4,5 92 8
4,4 98 2
4,3

448 4,2
...

Bid
Frame 1 (Present)Frame 2

Indicator 1 (and 2)

Frame 3 Frame 2 Frame1

4,6

4,5

4,4

∫
= −3

Indicator 3
Frame 3 Frame 2 Frame1

0

+92

+98

∑
= +190

Indicator 4
Frame 3 Frame 2 Frame1

0

-8

-2-10 = -12

∑
= −20

Indicator 5
Frame 3 Frame 2 Frame1

0

-8

-2

∑
= −10

Indicator 6 (and 7)

Frame 3 Frame 2 Frame1

4.6

4.5

4.4

Diff Ticks = −2

Indicator 8 (and 9)

Frame 3 Frame 2 Frame1

0.02

0.43

.45

AV G(WoM) = 0.43

Figure 3.15: Example of processing the 9 indicators given a segment of 3 RDF2.

Finally, the model output or target corresponds to the integral of the price variation,

measured in ticks, for the last two minutes before the race starts. By compressing the data

from various segments in this way, we define a multivariate time series prediction problem

with 128 time steps.

Frequency Distribution Histograms

The same technique, to address outliers, applied for the case study described in Section 3.3

was applied here [Deboeck, 1994]. Figure 3.16 clarifies the automatic process of outliers trun-

cation. Data is normalized into the interval [−1, 1] after a frequency analysis and histogram

re-scaling. The rescale of maximum and minimum raw values consists of truncating 10% of

the histogram tails, the original examples are altered but not removed. Only then data is

fed as input for the models training. This operation is systematically applied to all inputs

for each category. Figure A1 in Appendix illustrates this operation result for all indicators

used in this case study.

2On frame 1 of Figure 3.15 the Lay amount of 10 at 4.3 disappears not due to the matching process but

to exemplify a cancellation amount.

78 CHAPTER 3. CASE STUDIES

2000 1000 0 1000 2000 3000
0

20000

40000

60000

80000

100000

120000

140000

Fr
e
q
u
e
n
cy

Trunc 10% of histogram from maxTrunc 10% of histogram from min

Amount Offer Variation AVG Back Depth

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

5000

10000

15000

20000

25000

Fr
e
q

u
e
n
cy

Amount Offer Variation AVG Back Depth

Figure 3.16: Example of histogram re-scaling with truncated tails at 10% level to find min-

max values for input normalization. The illustration represents input #3 (Liquidity variation

on the ask side) on category #41 of the rule-based system index.

Thenceforth, similar technique of using the histogram for data partition is applied at the

output level to transform the regression problem into a classification problem. An egalitarian

distribution in the number of examples per qualitative class is obtained in order to avoid

overfitting and/or biased models. The output for this case study is the integral , i.e., area,

of the tick variation of the runner price, relative to the last 2 minutes before the start.

When the integral is hugely negative, a “strong down” price change is considered, and the

first qualitative class is established. When the numerical solutions falls into the second

qualitative class, a “weak down” price change is considered. When the numerical solution

falls into the third qualitative class, there is a “neutral” price change. When the numerical

solution falls into the fourth qualitative class, we have a “weak up” price change. Finally, a

“strong up” price change occurs when the numerical solution falls into the fifth qualitative

class. The classification procedure is clarified in Figure 3.17. This way each class has

approximately 20% of examples in the training dataset. A ”strong” movement prediction

class suggest an activation of a trailing-stop trading mechanism while a ”weak” movement

prediction suggest a small swing activation. The choice of target and stop-loss prices in each

category depends on the de-normalization of the output based on the histogram presented

in Fig. 3.17. The main idea is that this process allows to adjust the parametrization of

the trading mechanisms (target and stop-loss) according to each category. The target price

corresponds to the average of the maximum tick variation for all examples of the collected

data falling at a given class during the predicting time. The stop-loss is defined as 80% of

the target price for swings and 60% of the target price for trailing stop. Table 3.5 presents

3.4. BETTING EXCHANGE MARKETS 79

Figure 3.17: Example of the histogram for the qualitative classification of the output

representing the integral of tick variation for the last 2 minutes: strong down (left white),

weak down (light gray), neutral (gray), weak up (dark gray), and strong up (right black),

respectively.

an example of the definition of target and stop-loss prices for each class of a given category.

Class Mean of the ticks variation Target Stop-loss

Strong Up 6.44794 6 4

Weak Up 3.51428 4 3

Weak Down -3.19424 3 2

Strong Down -6.33173 6 4

Table 3.5: Example of trading mechanism parameters for a particular category.

Once the developed DL NN models are ready to go into production, they are subject to the

final validation in the simulator described in Section 3.4.1 and Gonçalves et al. [2013].3 To

provide a better intuition of a trading execution based on the model prediction, Table 3.6

presents the log results of one trading execution. In the Appendix A2 is shown a stretch

of the .csv output file containing fields of trading mechanisms parametrization and results,

according to the DL models prediction during several races.

3Source codes are freely available online and can be consulted in this GitHub link: https://github.com/rjpg.

80 CHAPTER 3. CASE STUDIES

Instantiation

Runner category nofavorite/mediumRunners/midleOdd/highLiquidit (Model #41)

Model predicted probabilities [0.14 , 0.19, 0.17 , 0.20 , 0.30]

Predicted class 5th class: Strong Up

Bets/trade direction Up: Lay (open) ⇒ Back (close)

Trading mechanism Trailing Stop (strong movement predicted)

Parameters (in ticks) Stop-loss: 4 , Target: 6

Parameters (in odds) Entry odd: 4.6 , Target odd: 5.2 , Stop odd: 4.2

Time parameters 20 frames open, 80 frames start close best price, 20 close emergency

Open amount stake £3.00 (Lay)

Potential PL Profit: £0.35 , Loss: −£0.28

Result

Trade final state CLOSED

Moved ticks 6

Open amount stake £3.00 (Lay)

Effective open odd (price) 4.6

Close amount stake £2.65 (Back)

Effective PL £0.35

Effective close odd (price) 5.2

Table 3.6: Example of one trading execution log given the category parameters and the

model prediction.

3.4. BETTING EXCHANGE MARKETS 81

Summary

This Chapter has a focus on the case studies used to test the developed MTS DL approaches

empirically. They are UCI HAR, Beijing PM2.5 levels, household electric power consumption,

and Betfair betting exchange horse racing markets. For each case study, some bibliography

study is made, the personalized FE applied is described in detail, and preliminaries are

presented for the next Chapter. For the case study related to exchange markets, the end-

to-end software framework project is detailed. The next Chapter focuses on the modeling

stage.

82 CHAPTER 3. CASE STUDIES

Chapter 4

Methodologies and Results

In this chapter, we will explain in detail the DL methodologies that are the basis for the

contributions of this thesis. Their application to a number of case studies will be illustrated

with results. Let us explain in detail the base DL NN architectures considered in this study

and the proposed extensions.

4.1 Models Architectures

4.1.1 CNN LeNet Based Models

LeCun et al. [1998a] proposed a NN architecture for handwritten and machine-printed

character recognition which they called LeNet. The architecture, is based on convolution

layers and is a type of straightforward CNN, simple to understand. The LeNet-5 architecture

consists of 2 sets of convolutional and average pooling layers, followed by a flattening

operation, then 3 dense layers (see Figure 4.1).

Conv2D(20, K=(16,5), Pad=Same)

Conv2D(50,K=(16,5), Pad=Same)

Dense(400, Relu)

Dense(150, Relu)

Dense(6, Softmax)

Figure 4.1: CNN 2D using same padding in convolutional layers

83

84 CHAPTER 4. METHODOLOGIES AND RESULTS

CNNs are also described in detail in LeCun et al. [2010]. This simple model is introduced

here as a mere formalization and should be interpreted as a basic benchmark point relative

to the alternative architectures. It is also used to identify improvements with the add-ons

described through out this Section.

Consider a bi-dimensional input feature map xl in the layer l of size (H,W) and a stride δ

of (1, 1). The simple mathematics for the computation of a convolutional layer l to obtain

the output feature map yl with kernel K of size (kH , kW) can be expressed as:

yli,j = φl(

H−kH∑
i=0

W−kW∑
j=0

K · xli,j) (4.1)

where φ is the activation function. This equation represents the application of kernel K in

the input map xl in layer l at coordinates i, j. A bias term b is usually added to yli,j , which

is omitted for a clearer presentation. An example of this computation, without applying the

activation function, is given in Section 2.1.4, considering the convolution of input size 4× 4

the 3×3 kernel K and stride δ = [1, 1], generating one output feature map of size 2×2. One

observes that the output is smaller than the input when the convolution kernel is larger than

(1, 1). If the input has size (H,W) and the kernel K = (kH , kW), then the convolution result

has size (H − kH + 1,W − kW + 1), which is smaller than the original input. Usually, this is

not a concern for inputs with large dimensions (i.e., images) and small filters. However, it

can constitute a problem with small input dimensions or when considering a high number of

staked convolutional layers. As such, the practical effect of large filter sizes and/or very deep

CNNs on the size of the resulting feature map entails loss of information such that the model

can simply run out of data upon which it operates. The padding operation is conceived to

tackle this issue.

4.1.1.1 Traditional Paddings

Currently, the standard procedure to avoid the border effect problem consists of applying

same padding (i.e., the inclusion of zeros outside of the input map). For every channel of

the bi-dimensional input x, we insert zeros kH−1
2 rows above the first row and kH

2 rows below

the last row, and kW−1
2 columns to the left of the first column and kW

2 columns to the right

of the last column. In this way, the convolution output size will be (H,W), thus, having

the same spatial extent as the input. Note, however, that if the goal of the research is to

analyze a MTS problem, the input feature map has a relatively small size in the variables

component. Therefore, the inclusion of zeros through the same padding approach implies a

weaker learning capability since the learned kernel is affected by the dot product operation

with the included zero values, thus, potentially promoting an erroneous generalization.

4.1. MODELS ARCHITECTURES 85

Example of padded info

Method Pad Input Pad

Valid (None) a b c d e f

Same (Zero) 0 0 0 0 a b c d e f 0 0 0 0

Reflect (Mirror) d c b a a b c d e f f e d c

Reflect101 e d c b a b c d e f e d c b

Constant n n n n n a b c d e f n n n n

Tile 2 a b a b a b c d e f e f e f

Causal (Zero Left) 0 0 0 0 a b c d e f

Wrap c d e f a b c d e f a b c d

Table 4.1: Padding examples of size 4 for unidimensional input.

According to Hamey [2015], there are other known padding methods that are commonly

provided in image processing environments. These make use of the information in the input

x to fill in the borders. Table 4.1 exemplifies each one. One contribution of this dissertation

consists in providing a new type of padding to the existing literature.

4.1.1.2 Roll Padding

Roll padding is an extension of wrap padding conceived for MTS analysis. Wrap copies

information from the opposite sides of the image, effectively mapping the image onto a torus.

This operation corresponds to four copies of information under a bi-dimensional input. The

wrapped rows (columns) above the top (on the left) of the input are a copy of the bottom

rows (right columns), respectively and vice-versa. Although wrapping is not typically useful

for natural images, it is very appropriate for computed images such as Fourier transforms and

polar coordinate transforms where pixels in opposite borders are computationally adjacent.

As observed in Figure 4.2, roll padding copies information from the opposite sides but only

in one dimension, which is the variables component in the MTS bi-dimensional input map

(i.e., TimeSteps × Variables). In turn, the time steps component remains with no padding

(i.e., valid) resulting in a cylinder instead of a torus. The reduction of time steps component

after several convolutions is not problematic due to the frequent presence of a high number of

time steps in this type of problems. Nevertheless, for the time steps component, roll padding

can be combined with other types of padding methods (e.g., causal) as exemplified in Figure

4.10 and Subsection 4.1.4.

As clarified in Figure 4.3, the skeleton of CNNs using roll padding is also derived from LeNet-

5 [Lecun et al., 1998]. Both CNNs use exactly the same hyperparameters, the only difference

relies on the type of padding employed. In this way, we can infer implications of the use

86 CHAPTER 4. METHODOLOGIES AND RESULTS

CNN Kernel

Variables

Ti
m

e
st

ep
s

Ti
m

e
 s

te
p

s

Variables

Roll Variables Roll

V
a
li
d

cdef abcdef abcd

ijkl ghijkl ghij

T
im

e

opqr mnopqr mnop

V
a
li
d

Figure 4.2: Roll padding scheme in MTS analysis.

of roll padding at the performance level. Note that, in Figure 4.3 for the second CNN, we

specify the padding method employed in each dimension. The valid padding is used for the

time steps component, while the roll padding is considered for the variables component.

Conv2D(20, K=(16,5), Pad=(Valid,Roll=5/2))

Conv2D(50, K=(16,5), Pad=(Valid,Roll=5/2))

Dense(400, Relu)

Dense(150, Relu)

Dense(6, Softmax)

Figure 4.3: CNN 2D using valid padding in time steps component and roll pading, of size
KH

2 , in the variables component.

4.1.2 LSTM Based Models

The base LSTM [Hochreiter and Schmidhuber, 1997] employed in this study is constituted

by four layers, three of them using bidirectional LSTMs plus a dense with softmax for

classification (see Figure 4.4). Likewise in Section 4.1.1 this model serves as a base point to

verify improvements when docking extra methodologies to it. RNN and LSTM inner-working

is explained in Section 2.1.2. RNNs have been used successfully for many tasks involving

sequential data. Improved RNN models, such as LSTMs, enable training on long sequences

overcoming problems like vanishing gradients. However, even the more advanced models

have their limitations and researchers had a hard time developing high-quality models when

working with long data sequences. Many MTS problems have to find connections between

long input and output, between layers, composed of dozens of time steps. The existing RNN

4.1. MODELS ARCHITECTURES 87

Bidirectional LSTM(100)

Bidirectional LSTM(50)

Bidirectional LSTM(20)

Dense(6, Softmax)

Input(TimeSteps,Variables)

Figure 4.4: Stacked Bidirectional LSTMs

architectures needed to be changed and adapted to better deal with such tasks.

4.1.2.1 Standard Attention

Attention is a mechanism to be combined with RNN allowing it to focus on certain parts

of the input sequence when predicting a certain part of the output sequence, enabling a

faster and resilient convergence. Combination of attention mechanisms enabled improved

performance in many tasks making it an integral part of modern RNN networks. A very

important paper about attention is Vaswani et al. [2017]. It was originally introduced for

machine translation tasks, but it has spread into many other application areas. On its basis

attention can be seen as a residual block that multiplies the result with its own input hi

and then reconnects to the main NN pipeline with a weighted scaled sequence. This scaling

parameters are called attention weights αi and the result is called context weights ci for each

value i of the sequence, all together, are called context vector c of sequence size n. This

operation is given by :

ci =

n∑
i=0

αihi (4.2)

Computation of αi is given by applying a softmax activation function to the input sequence

xl on layer l:

αi =
exp(xli)

n∑
k

exp(xlk)

(4.3)

Meaning that the input values of the sequence will compete with each other to receive

attention, knowing that, the sum of all values obtained from the softmax activation is 1, the

scaling values in the attention vector α will have values between [0, 1]. The mechanism we

described previously is called soft attention because it is a fully differentiable deterministic

mechanism that can be plugged directly into a backpropagation based system. The gradients

88 CHAPTER 4. METHODOLOGIES AND RESULTS

are propagated through the attention block the same way they are propagated through the

rest of the network. Hard attention, instead of a weighted average, uses αi as a sample rate to

choose if xi will be considered in the context vector. Hard attention replaces a deterministic

method with a stochastic sampling model. To calculate the gradient descent correctly in the

backpropagation for the entire NN, inside the hard attention block samplings are performed

using the Monte Carlo method, and then results are averaged. Monte Carlo performs end-to-

end episodes to compute an average for all sampling results [Xu et al., 2015]. The accuracy

is subject to how many samplings are performed and how well it is sampled. On the other

hand, Soft attention follows the regular and easier application of backpropagation, in the

computation of the gradients inside the attention block. However, the accuracy is subject to

the assumption that the weighted average is a good representation for the area of attention.

Both have their shortcomings. Currently, Soft attention is more popular because the seamless

and direct backpropagation application seems more effective. For this dissertation we only

use soft attention.

Bidirectional LSTM(NRC)

Permute(2, 1)

Input(TimeSteps,Variables)

Dense((Variables,Timesteps), Softmax)

Permute(2, 1)

Bidirectional LSTM(NRC, ReturnSeq=true)

Permute(2, 1)

Dense(6, Softmax)

Input(TimeSteps,Variables)

Dense((NRC,Timesteps), Softmax)

Permute(2, 1)

Dense(6, Softmax)

Figure 4.5: MTS attention before LSTMs on the left subplot and attention after LSTM on

the right subplot.

If attention is applied to the input directly, before enter the LSTM (or any type of recursive

layer), we call it attention before, otherwise, if it is applied to the LSTM output sequence,

it is called attention after as represented in Figure 4.5. Since we are dealing with MTS we

use a bi-dimensional dense layer for attention and therefore we permute before and after this

layer so the attention mechanism is applied in the time steps component of each sequence

and not in the variables component. It is important to highlight that when the attention is

applied after, the LSTM layer must return the internal recursive generated sequences, which

is equal to the number of units defined NRC. This parameter is used inside the attention

block to know how many sequences it must process.

4.1. MODELS ARCHITECTURES 89

4.1.2.2 Multi-Head Convolutional Attention

A contribution of this dissertation is the introduction of convolutional layers inside the

attention block. Attention primordial design was made for text processing in long sequences

of words. For each embedded word in the sequence, a level of attention is given individually.

For a ”less discrete” type of problem involving time series, it can be useful to give attention

to patterns in small contiguous segments instead of individual values.

Bidirectional LSTM(NRC)

Input(TimeSteps,Variables)

Conv1D(Input=(Timesteps),
N_filters = 1,

 ,
pad=Same,
Stride(),
activation(Softmax))

Bidirectional LSTM(NRC, ReturnSeq=true)

Dense(6, Softmax)

Input(TimeSteps,Variables)

Dense(6, Softmax)

k=(kW)

δ=1

Lambda(Split by Variables)

E
.g. O

ne level

L
ast level m

ust be w
ith N

_filter s=
=

1

and Softm
ax activation

Concatenate(Conv1D vector)

...

N Variables Blocks...

Conv1D(Input=(Timesteps),
N_filters = 1,

 ,
pad=Same,
Stride(),
activation(Softmax))

k=(kW)

δ=1

Lambda(Split by Sequences - NRC)

E
.g. O

ne level

L
ast level m

ust be w
ith N

_filter s=
=

1

and Softm
ax activation

Concatenate(Conv1D vector)

...

NRC Blocks...

Figure 4.6: Attention using convolutional layers before and after LSTMs.

In Figure 4.6 is illustrated the implementation process. The MTS is split into individual

time series, using Keras Lambda function. For each sequence is created a path with 1D

convolutional layers and the result is concatenated again. In Figure 4.6 is illustrated only

one filter convolution per sequence, i.e., per variable of the MTS, if attention before LSTM,

or per Number of Recursive Cell (NRC) generated sequence, if after LSTM. It is important

that before the concatenation operation each path return a one dimensional vector with size

TimeSteps. This vector concatenated with the others results in a attention weights feature

map of size TimeSteps × Variables. This map is compatible for multiplication with h to

obtain the 2D context map c. To have many filters, i.e., to process many small sub sequence

patterns, we must stack multichannel 1D convolution layers before. However, the last one,

inside the attention block, must return only one channel, as explain before. Another way to

force a 1D output vector for each path would be using the AveragePooling1D keras layer to

average previous channels into one dimension. Also, this last single channel 1D convolution

output, must use the softmax activation so each value, in the resulting vector per variable,

competes with each other, summing to 1, and has a scaling factor in [0, 1] range.

90 CHAPTER 4. METHODOLOGIES AND RESULTS

4.1.3 ConvLSTM2D Based Models

4.1.3.1 ConvLSTM2D for Segmented Time Series

ConvLSTM2D(NRC=20, , Pad=(Valid,Roll=), ReturnSeq=true)

Dense(400, Relu)

Dense(6, Softmax)

k=(kW , kH) kH /2

ConvLSTM2D(NRC=30, , Pad=(Valid,Roll=))k=(kW , kH) kH /2

Input(Segments, TimeSteps, Variables)

Figure 4.7: Base scheme for staked ConvLSTM2D with roll padding on the variables

component.

Figure 4.8: MTS input processing for ConvLSTM2D. The bottom subplot describes the

application of roll padding in the variables component for each segment.

The ConvLSTM2D layer was proposed by Shi et al. [2015]. The motivation of this structure

was to predict future rainfall intensity based on sequences of meteorological images. Applying

this layers in a NN architecture they were able to outperform state-of-the-art algorithms for

this task. The ConvLSTM2D is a recurrent layer, just like the LSTM, but internal matrix

multiplications are exchanged with convolution operations. As a result, the data that flows

through the ConvLSTM2D cells keeping the input dimension, 3D in our case, Segments ×
TimeSteps × Variables, instead of being just a 2D map, TimeSteps × Variables (see Figure

4.8). As explained in Section 4.1.1.2 we can also apply roll padding in this input on the

variables component. ConvLSTM2D layers can be useful in MTS that can be partitioned

into segments, e.g., the household electric power consumption case study (see section 3.3).

4.1. MODELS ARCHITECTURES 91

The time series will have representative patterns for every day of the weak that can be

grouped and contained in a 2D map.

4.1.3.2 ConvLSTM2D Convolutional Attention with Roll Padding

 ConvLSTM2D(NF)

Input(Segments, TimeSteps,Variables)

Conv2D(Input=(Segments,
Timesteps),

N_filters = 1,
 ,

Pad=(roll= ,Same),
Stride(),
activation(Softmax))

k=(kW , kH)

δ=1

Lambda(Split by Variables)

E
.g. O

ne level

L
ast level m

ust be w
ith N

_filter s=
=

1

and Softm
ax activation

Concatenate(Conv2D vector, Axis=2)

...

N Variables Blocks...

kW /2

Segments

T
im

e
S

te
ps

Var 1 Var 2 Var 3 Var 4 Var 5

Eg. Roll Pad in Segments dimension inside the attention block

...

......

..
.

T
im

eS
te

ps
 (

e.
g.

, 2
4

ho
ur

s)

Segments (e.g.,Days=7)

Roll Padding

Roll Padding inside the attention block
to process the 2D attention maps

...

... ..
.

..
.

..
.

..
.

.....
.

Figure 4.9: Attention using 2D convolutional layers before ConvLSTM2D. The bottom

subplot describes the application of roll padding in the segments component for each variable

inside the attention block.

When entering the attention block, after splitting by variables, the resulting 2D map, to be

processed by convolution layers, will have Segments × TimeSteps format. This means the

2D kernels will try to capture patterns relating contiguous time steps, and the same temporal

steps in the previous and next segments. E.g., if the segments represent days and the time

steps are divided by hours a 2D kernel will capture attention patterns relating some hours of

the day and also the same period in the days before and after. Moreover, if we have segments

of 7 days we can use roll padding in the segments component so the border processing, by the

kernel, can correlate the first day of the week with the last day of the week if the data tends

to have a strong weekly cycle (see Figure 4.9). This technique is useful in MTS that exhibit

cyclic properties. If it is not desirable to correlate data between segments an one dimension

kernel must be defined (i.e., 2D K = (1, kw) since we are in a bi-dimensional convolution

layer). Each 2D output map will be the result of a sofmax activation. Each value, in the

resulting 2D map per variable, competes with each other, summing all to 1, with a scaling

factor between [0, 1], as explain before. After all convolutions/2D maps are concatenated,

92 CHAPTER 4. METHODOLOGIES AND RESULTS

the resulting α will be 3D and compatible to scale the inputs h of the attention block to

obtain c, as described in equation 4.2.

4.1.4 Multivariate WaveNet

4.1.4.1 WaveNet 1D with Multichannel Input

One relevant DL architecture applied in time series is WaveNet from Google DeepMind

[van den Oord et al., 2016]. WaveNet was originally developed for audio signal generation.

One important component developed to accomplish this task was a sound classifier. The

WaveNet sound classifier is based on 1D convolutional layers. For unidimensional data the

causal convolution is implemented by shifting the input a few time steps behind as described

in Section 2.1.6. In the first two left subplots of Figure 4.10, one can observe the output

difference between resorting or not to the use of causal padding in 1D convolutions. Causal

1

2

3

4

5

6

7

Pad = Valid

1

2

3

4

5

6

2

3

4

5

6

7

Pad = Causal

K=4

K=3

Ca
us

al

Pad = (Causal, Roll)

K=4

K=3

Roll Variables Roll

V
a
li
d

cdef abcdef abcd

ijkl ghijkl ghij

T
im

e

opqr mnopqr mnop

0000 000000 0000

0000 000000 0000

C
a
u
sa

l

Figure 4.10: On the left subplot, comparison behavior between valid and causal padding.

On the right subplot, combination of causal and roll padding scheme for MTS analysis with

WaveNet 2D.

padding allows to preserve the time steps of past information for the next layer. In MTS this

requires that the number of zeros to be added before the beginning of all sequences is given

by k − 1, being k the size of the unidimensional kernel for 1D convolutions. Note that, for

MTS inputs, each variable is treated as a channel in 1D convolutions and the causal padding

is applied equally to every channel.

WaveNet uses dilated convolutions to gradually increase the receptive field. Thus, in the

time steps component, when using dilation rate dr (i.e., for dr > 1) the causal padding has

a size given by dr × (k − 1). The residual block of the WaveNet architecture is executed a

given number of times in depth in the network, with N = {1, ..., depth}. Inside this block,

the dilatation dr of sigmoid and Tanh convolutions, applied to the time steps component,

4.2. RESULTS 93

increases exponentially according to the formula dr = kN . The third and final convolution

inside the residual block (see Figure 4.11 and 2.16) has k = 1 and dr = 1 for dimensionality

reduction and manage model complexity. This layer is also called channel-wise pooling layer.

The standard WaveNet uses 1D convolutions and we can adapt to MTS problems by simply

using the input as a multichannel of several 1D sequences of variables. In this thesis, to test

the inclusion of roll padding in the variables component, the WaveNet is extended to work

with 2D convolutions.

4.1.4.2 WaveNet Extended with 2D Convolutions and Roll Padding

Figure 4.11 shows the extended WaveNet to work with 2D maps instead of 1D multichannel.

The developed architecture maintains the standard WaveNet processing in the time steps

component, using causal padding, while it introduces roll padding in the variables component.

Since we are using 2D convolutions now, the kernel size is defined by (kH , kW). The kH

component (i.e., time steps component) is processed as explained in Section 4.1.4.1, for k.

Also in this time steps component, the drH and causal padding is applied as described in

Section 4.1.4.1. The combination of both types of padding, causal and roll, is clarified in the

last two right subplots of Figure 4.10. In the second dimension (i.e., variables component)

the use of roll padding is illustrated, whose size depends on kW . We establish a roll padding

of size kW
2 , copying opposite kW

2 columns information of the input map. For simplicity, we

assume odd fixed sizes in kW . No dilation rate is considered in the variables component (i.e.,

drW = 1).

In short, everything is processed likewise the basic WaveNet philosophy in the time steps

component, while everything is processed as normal convolutional layers with roll padding in

the variables component. Finally, after adding the skip connections, three 2D convolutional

layers are considered. In this scheme, we use a stride δ = (δH , δW) with δH > 1 and δW = 1

to down sample only the time steps dimension rather than considering pooling layers. The

last convolution has x filters (x = 6 in Figure 4.11) to generate x feature maps in which a

global average pooling is applied. In this way, we use softmax directly in the x resulting

values for classification of x number of classes.

4.2 Results

This Section presents the results obtained for the case studies described in Chapter 3. Some

case studies, due to their nature, have relatively low accuracies. Nevertheless, it is shown that

small gains can have a significant impact on some problems with low precision ranges. The

94 CHAPTER 4. METHODOLOGIES AND RESULTS

k=(k H ,kW
)

Residual Block

∑
N=1

depth

.

Conv2D(N_filters, ,
 Pad=(Causal= ,
 Roll=),
 Dilat_rate(,),
 Activation(Tanh))

(kH)N (kH−1)
kW /2

K=(kH , kW)

(kH)N

Conv2D(N_filters, ,
 Pad=(Causal= ,
 Roll=),
 Dilat_rate(,),
 Activation(Sigmoid))

(kH)N (kH−1)
kW /2

K =(kH , kW)

(kH)N

Conv2D(N_filters, ,
 Pad=(Causal= ,Roll=),
 Dilat_rate(,),
 Activation(Relu))

kH−1 kW /2
K =(kH , kW)

Conv2D(N_filters, ,
 Pad=(Valid , Roll=),
 Dilat_rate(,),
 Activation(Relu))

kW /2

... 1

de p th

Conv2D(N_filters,K=(4,5),
 Pad=(Valid, Roll=5/2),
 Stride(4, 1),
 Activation(Relu))

Conv2D(N_filters,K=(8,5),
 Pad=(Valid, Roll=5/2),
 Stride(4, 1),
 Activation(Relu))

Conv2D(6 ,K=(4,5),
 pad=(Valid, Roll=5/2),
 stride(4, 1),
 activation(Relu))

GlobalAVGPool2D()
Average each previous 6 channels

making output 6 for 6 classes

Activation(Softmax)

K =(1,kW)

1

1 1

1

1 1

Figure 4.11: WaveNet 2D architecture for MTS classification using 2D convolutions with

causal padding in the time steps component and roll padding in the variables component.

main goal is to compare models and study the influence of the add-ons described throughout

Section 4.1 of this Chapter.

4.2.1 HAR - UCI Dataset

This Section highlights the results related to the HAR dataset (see Section 3.1). Comparative

results are mainly related to applying standard LSTM, CNN with and without roll padding,

and the best model of all WaveNet 2D with roll padding. With these models, we can infer

about the introduction of roll padding.

Figure 4.12 presents the evolution of accuracy and loss in the train and test datasets and the

epoch threshold. The highest accuracy is achieved, which corresponds to the point where

the best model is found. These charts result from the best run, in 5 repetitions, of a learning

process composed of 150 epochs. 150 epochs were not needed for some models, resulting in

overfitting, but are presented for global comparison. Observing the loss’s variance, it is also

clear that the partition for the validation set should be increased. Note that this case study

has a standard partitioning established by the data providers [Anguita et al., 2013].

4.2. RESULTS 95

0 20 40 60 80 100 120 140
Epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

CNN Same=0.9348
CNN Roll=0.9508

WaveNet Roll=0.9647

LSTM=0.9243

CNN Same
CNN Roll
WaveNet Roll
LSTM

0 20 40 60 80 100 120 140
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

CNN Same
CNN Roll
WaveNet Roll
LSTM

Figure 4.12: Learning process evolution. Accuracy on the left subplot and loss (i.e.,

categorical cross-entropy) on the right subplot. Doted lines refer to the train dataset, while

solid lines refer to the test dataset.

In terms of accuracy, one observes that the CNN with same padding has a similar evolution to

the LSTM. On average, the CNN with roll padding has a slightly superior accuracy relative

to the previous models both in the train and test datasets. Therefore, the first relevant

conclusion is the improvement of accuracy with the introduction of roll padding in the CNN.

Moreover, the WaveNet 2D model with roll padding surpasses all the alternative options in

terms of accuracy. As such, the second relevant conclusion is that the incorporation of roll

padding in the WaveNet allows to achieve the best performance result.

In terms of loss, the WaveNet 2D model with roll padding is the best model in the train

and test datasets. At the training level, loss values are very close to zero. The associated

accuracy reaches near 100% in some epochs, which seems to suggest there is some room for

improvement in the test dataset results by choosing the right amount of regularization.

The second best loss is achieved by the LSTM. Furthermore, CNN with same padding and

CNN with roll padding have equivalent loss values. A lower loss in the LSTM and a higher

accuracy in the CNN with roll padding means that the later model responds with great

certainty to some wrong guesses, which drastically penalizes its error but such effect is not

passed onto the level of accuracy. Convolutional based models tend to have more sparsified

outputs in relation to LSTMs due to the heavy use of ReLU activation function. At this

point, it is important to highlight that the error function is the categorical cross-entropy.

The observed phenomenon is relatively common in the development of DL models given

that, from a practical point of view, neglecting a small increment of the loss can sometimes

allow to obtain benefits at the accuracy level.

Table 4.2 summarizes results by class of the best DL model : WaveNet 2D. This corresponds

96 CHAPTER 4. METHODOLOGIES AND RESULTS

Predicted

Classes W
al

k
in

g

U
p

st
a
ir

s

D
ow

n
st

ai
rs

S
it

ti
n

g

S
ta

n
d

in
g

L
ay

in
g

Recall(%) ACC (%)

R
ea

l

Walking 474 15 4 1 1 0 95.77

96.47

Upstairs 2 462 0 5 2 0 98.09

Downstairs 2 3 415 0 0 0 98.81

Sitting 0 0 0 458 33 0 93.28

Standing 1 0 0 33 498 0 93.61

Laying 0 2 0 0 0 535 99.63

Precision (%) 98.96 95.85 99.05 92.15 93.26 100

Table 4.2: Confusion matrix for the best run applying the WaveNet 2D with roll padding

model on the HAR RTD validation dataset as provided by UCI.

to the point where the final best model is obtained for the case study described in Section 3.1.

Table 4.3 presents accuracies related to all models described in Section 4.1 and respective

baselines. The ConvLSTM2D-based model was configured with 8 segments and 16 time

steps for each segment (see Section 4.1.3). This case study and the obtained results are also

described in Gonçalves et al. [2021]

Model Min Max Mean Variance

CNN 0.9226 0.9348 0.9262 2.4503e-05

CNN ROLL 0.9423 0.9508 0.9460 1.0143e-05

LSTM 0.9219 0.9243 0.9231 1.0132e-06

LSTM Att. 0.8571 0.8646 0.8609 1.1802e-05

LSTM Att. Conv1D 0.8629 0.8781 0.8692 3.4980e-05

ConvLSTM2D 0.9127 0.9141 0.9133 3.7997e-07

ConvLSTM2D Att. Conv2D 0.9298 0.9321 0.9309 1.0132e-06

WaveNet 0.9545 0.9596 0.9575 3.5349e-06

WaveNet2D ROLL 0.9579 0.9647 0.9612 7.6225e-06

Table 4.3: Descriptive statistics of accuracies obtained with 5 repetitive runs of the fitting

process for each model applied to the UCI HAR case study.

4.2.2 Air Pollution - PM2.5 Concentration

This Section presents the results related to the classification of PM2.5 concentration in the

air as described in Section 3.2. Table 4.4 reveals that the standard ConvLSTM2D has the

4.2. RESULTS 97

Model Min Max Mean Variance

CNN 0.3969 0.4080 0.3997 2.2307e-05

CNN ROLL 0.4122 0.4226 0.4163 1.6030e-05

LSTM 0.4121 0.4208 0.4150 1.3006e-05

LSTM Att. 0.4035 0.4139 0.4080 1.6030e-05

LSTM Att. Conv1D 0.4035 0.4122 0.4066 1.4215e-05

ConvLSTM2D 0.4243 0.4348 0.4285 1.9055e-05

ConvLSTM2D Att. Conv2D 0.4157 0.4226 0.4191 1.2098e-05

WaveNet 0.3983 0.4173 0.4062 6.1399e-05

WaveNet2D ROLL 0.4253 0.4305 0.4281 3.9183e-06

Table 4.4: Descriptive statistics of accuracies obtained with 5 repetitive runs of the fitting

process for each model applied to the air pollution case study.

highest accuracy. However, we also observe that the application of roll padding improved

the accuracy of CNN-based models and WaveNet-based models. We can also conclude that

attention mechanisms did not have a positive effect on accuracy. The ConvLSTM2D-based

model was configured with 6 segments and 12 time steps for each segment (see Section 4.1.3).

This means that the LSTM part receives segments of size 6, where each is composed of 12

hours processed in convolution.

0 20 40 60 80 100
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

A
cc

u
ra

cy

ConvLSTM2D=0.4348

ConvLSTM2D Att. Conv2D=0.4226

ConvLSTM2D

ConvLSTM2D Att. Conv2D

0 20 40 60 80 100
Epoch

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

Lo
ss

ConvLSTM2D

ConvLSTM2D Att. Conv2D

Figure 4.13: Learning process evolution of the ConvLSTM2D-based models for the air

pollution case study. Accuracy on the left subplot and loss (i.e., categorical cross-entropy)

on the right subplot. Doted lines refer to the train dataset, while solid lines refer to the test

dataset.

Figure 4.13 compares the learning curves between the models of the ConvLSTM2D family.

Both are similar, suggesting that a correct parametrization of the input time windows

for an optimal processement of the developed attention mechanisms can further improve

98 CHAPTER 4. METHODOLOGIES AND RESULTS

Predicted

Classes L
ev

el
1

L
ev

el
2

L
ev

el
3

L
ev

el
4

L
ev

el
5

Recall(%) ACC (%)

R
ea

l

Level 1 85 20 5 2 3 73.91

43.48

Level 2 37 63 24 9 9 44.37

Level 3 14 48 46 17 15 32.86

Level 4 5 25 32 19 27 17.59

Level 5 5 9 15 4 37 52.86

Precision (%) 58.22 38.18 37.70 37.25 40.66

Table 4.5: Confusion matrix for the ConvLSTM2D model without add-ons. Best model on

the air pollution validation dataset.

the accuracy. Note that the developed attention mechanism with roll padding applied to

ConvLSTM2D-based models relies on the assumption of cyclicity (e.g., weekly) in the input

sequence. This issue was addressed in the household electric power consumption case study

further analyzed. Table 4.5 presents the confusion matrix of the best DL model.

4.2.3 Household Electric Power Consumption

This Section highlights the results related to the household electric power consumption

dataset (see Section 3.3). Table 4.6 presents the main results, which are summarized as

Model Min Max Mean Variance

CNN 0.3916 0.4090 0.3986 4.2789e-05

CNN ROLL 0.4196 0.4301 0.4224 2.0783e-05

LSTM 0.4266 0.4336 0.4308 8.5578e-06

LSTM Att. 0.3986 0.4126 0.4055 4.8902e-05

LSTM Att. Conv1D 0.4231 0.4336 0.4266 2.4451e-05

ConvLSTM2D 0.4231 0.4371 0.4273 3.3009e-05

ConvLSTM2D Att. Conv2D 0.4372 0.4476 0.4413 2.0783e-05

WaveNet 0.4021 0.4336 0.4147 1.5648e-04

WaveNet2D ROLL 0.4231 0.4440 0.4308 7.5798e-05

Table 4.6: Descriptive statistics of accuracies obtained with 5 repetitive runs of the fitting

process for each model applied to household electric power consumption case study.

follows. First, we find evidence that introducing roll padding in a standard CNN improves

4.2. RESULTS 99

the accuracy level for this MTS problem. Moreover, we conclude that top 3 best models are

the ConvLSTM2D using multi-head 2D convolution attention with roll padding, WaveNet2D

with roll padding, and standard ConvLSTM2D. For the 3D tensor input of ConvLSTM2D-

based models, we use 7 Segments × 24 TimeSteps × 7 Variables. This means convolutions

will extract features for each day and the LSTM architecture will process these features

over sequences of 7 days. Moreover, this produces the ideal setup to apply the multi-head

convolutional 2D attention with roll padding as described in Section 4.1.3.2.

Table 4.7 presents the confusion matrix of the best DL model in classification mode. Results

Predicted

Classes L
ev

el
1

L
ev

el
2

L
ev

el
3

L
ev

el
4

L
ev

el
5
.

Recall(%) ACC (%)

R
ea

l

Level 1 31 14 8 0 2 56.36

44.76

Level 2 10 53 7 0 1 74.65

Level 3 0 38 23 6 6 31.51

Level 4 0 25 14 15 5 25.42

Level 5 1 9 7 5 6 21.43

Precision (%) 73.81 38.13 38.98 57.69 30.00

Table 4.7: Confusion matrix for the ConvLSTM2D-based model with roll padding, on the

variables component, and multi-head (per variable) attention with roll padding, on the 7

segments (days of the weak), inside the attention block. Model execution on the household

electric power consumption test dataset, i.e., last 20% of global data.

indicate that the best DL model outperforms the ARIMAX. Although the accuracy of 44.76%

may seem a low value at first glance, we must consider that are dealing with a multi-

classification problem in which the dependent variable is segmented into 5 classes. Knowing

that these 5 classes correspond to a ranking of the output, the most important aspect is

to observe to which extend the values of the confusion matrix approximate to the diagonal.

Note that the accuracy corresponds only to the values that fall precisely into the diagonal.

Model MSE RMSE MAE

ARIMAX 0.01648 0.12838 0.09259

ConvLSTM2D Att. Conv2D 0.01400 0.11831 0.08746

Table 4.8: Forecasting error metrics of the two models in the test dataset for the normalized

output.

For this case study, we compare the best DL model with the classical ARIMAX assuming

100 CHAPTER 4. METHODOLOGIES AND RESULTS

daily observations as the time unit (see Section 2.3). To perform the analysis, we change the

output layer of our model to work in regression mode. In particular, we change the 5 output

neurons with softmax activation to a single neuron with tanh activation, since the output is

normalized between [-1,1], and the error function from categorical cross-entropy to MSE. To

test whether the regression problem provides better insights than the classification mode,

we create a confusion matrix based on the dependent variable’s predicted values resulting

from the regression analysis plugged into the predefined intervals. It is a common strategy

observed in Kaggle competitions for multi classification ordered problems. As a result from

applying this technique, the accuracy increases. This result is expected since the categorical

cross-entropy does not take into consideration that classes are ordered. Note that the goal

in this Section is not to achieve the best possible refined output value for the DL model,

but rather to compare models maintaining the same structure. Nevertheless, we optimize

hyperparameters for the ARIMAX model with a grid search, whose optimal result gives

(p, d, q) = (2, 0, 1) (see Section 2.3). Figure 4.14 shows the regression output on the test

0 50 100 150 200 250 300
days

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

v
a
lu

e

model predictions

pred

real

Figure 4.14: Step by step regression outputs vs real values for the ConvLSTM2D with

Conv2D attention mechanism and roll padding. The test set corresponds to the last 286

days.

dataset and Table 4.9 presents the confusion matrix of the output of the model, in regression

mode, converted into classes.

4.2.4 Betting Exchange - Horse Racing Markets

This Section focus on the results related to the betting exchange markets (see Section 3.4).

An end-to-end analysis is performed for this case study since a complete framework was

established, from data gathering to market interaction. Table 4.10 shows the best result is

achieved using an LSTM-based model with multi-head attention processing each variable

evolution with Conv1D. LSTM models outperform the other presented alternatives. As

such, the intrinsic nature behind the LSTM philosophy seems to fit into this type of data

adequately. It is also visible that the inclusion of roll padding in the simple CNN and

4.2. RESULTS 101

Predicted

Classes L
ev

el
1

L
ev

el
2

L
ev

el
3

L
ev

el
4

L
ev

el
5.

Recall(%) ACC (%)
R

ea
l

Level 1 32 16 4 1 2 58.18

48.95

Level 2 9 40 18 4 0 56.34

Level 3 2 20 35 9 7 47.95

Level 4 0 4 23 27 5 45.76

Level 5 1 5 10 6 6 21.43

Precision (%) 72.73 47.06 38.89 57.45 30.00

Table 4.9: Confusion matrix for the ConvLSTM2D-based model in regression mode with

2D multi-head attention and roll padding. The results of the model in regression mode are

converted back into the respective consumption level interval (see Figure 3.7).

WaveNet improves their base models accuracy. However, due to the relatively low sampled

data in this case study, these CNN-based models tend to be very sensitive to overfitting and

smaller CNNs based solutions with convergence should be further investigated.

Model Min Max Mean Variance

CNN 0.2342 0.2488 0.2381 3.6756e-05

CNN ROLL 0.2391 0.2536 0.2430 3.9674e-05

LSTM 0.2826 0.2874 0.2840 4.6675e-06

LSTM Att. 0.2681 0.2826 0.2720 3.9674e-05

LSTM Att. Conv1D 0.2971 0.3092 0.3005 2.5088e-05

ConvLSTM2D 0.2584 0.2801 0.2671 7.1763e-05

ConvLSTM2D Att. Conv2D 0.2608 0.2705 0.2642 1.3419e-05

WaveNet 0.2512 0.2681 0.2589 7.1180e-05

WaveNet2D ROLL 0.2826 0.2922 0.2864 1.3419e-05

Table 4.10: Descriptive statistics of accuracies obtained by 5 repetitive runs of the fitting

process for each model applied to the betting exchange case study.

Table 4.11 presents the best DL model, which reaches 30.92% of accuracy. Although it only

goes 11 p.p. above the baseline, given that we have 5 classes equally distributed, we need

to consider that the goal of this problem is to obtain a positive PL. Some wrong predictions

can still generate a positive PL, e.g., a predicted movement to the weak up class when the

real movement is a strong up class. All cases with a positive PL are identified in Table

4.11 by the green color. Analogously, similar is applied to the values represented by the red

102 CHAPTER 4. METHODOLOGIES AND RESULTS

color, but with the difference that a negative PL is generated. The DL model’s marginal

convergence makes values approximate to the principal diagonal, making them attracted to

the green cells and repelled from the red cells, thus allowing them to obtain a profitable

model even with low accuracy. For this case in particular, knowing that 20% of data are

used to validation, the total number of predicted trades with expected positive PL is equal

to 173, the total number of predicted trades with expected negative PL is equal to 98, so

that there are 75 expected positive predicted trades in total.

To truly understand its potentialities, we need to analyze the model in production given that

numerous factors can affect the trade execution. This task resorts to a final test dataset of 30

days ahead, that has not been used in the modeling phase, to test the model in production.

Predicted

Classes S
tr

on
g

D
ow

n

W
ea

k
D

ow
n

N
eu

tr
al

W
ea

k
U

p

S
tr

on
g

U
p

Recall(%) ACC (%)

R
ea

l

Strong Down 32 7 11 9 10 46.38

30.92

Weak Down 39 9 17 10 11 10.47

Neutral 27 6 23 9 18 27.71

Weak Up 23 13 19 9 27 9.89

Strong Up 14 8 15 10 38 44.71

Precision (%) 23.70 20.93 27.06 19.15 36.54

Table 4.11: Confusion matrix for LSTM-based model with Conv1D multi-head attention on

the validation dataset.

Figure 4.15 presents the cumulative PL of the trades’ execution in simulation (see Section 3.4)

in the final test dataset for one category. The left-hand side subplot presents the absolute

PL obtained with stakes of £3.00 and £100.00, while the right-hand side subplot shows

the relative PL with stakes of £3.00 and £100.00 concerning the initial investment. When

executing the same predicted trades, one can observe that using stakes of £3.00 generates a

higher ROI compared to stakes of £100.00, which is explained by the absorption capability

of the market. Further studies should evaluate the optimal stake policy that maximizes the

absolute PL.

Table 4.12 summarizes the number of executed trades, greens, reds, positive and negative

ticks for the best DL model. The number of trades is the number of times one trading

mechanism is instantiated. Greens is the number of times the trading mechanism closes

4.2. RESULTS 103

Figure 4.15: Evolution of the PL during 30 days of trading using the best model, of one

category (#41), with stakes of £3.00 and £100.00. On the left subplot, absolute PL values.

On the right subplot, relative PL values in relation to the investment stake.

Stake £3.00 £100.00

Trades 134 134

Greens 54 50

Reaches target 14 13

Closes]null;target[40 37

Swings 14 13

Trailing-Stops 40 37

Reds 36 39

Reaches stop-loss 13 14

Breaks stop-loss 3 5

Closes]null;stop-loss[23 25

Swings 10 11

Trailing-Stops 26 28

Null 44 45

Positive ticks 134 129

Swings 31 28

Trailing-Stops 103 101

Negative ticks 87 100

Swings 23 26

Trailing-Stops 64 74

Table 4.12: Global trading simulation results with the model in production on the final test

dataset.

104 CHAPTER 4. METHODOLOGIES AND RESULTS

in profit. Reds is the number of times the trading mechanism had to close in loss. The

sum of greens and reds is not equal to the number of trades because sometimes the trading

mechanism can close the trade on the same entry price without making a profit or a loss.

This can happen when the trading mechanism reaches the timeout exposure and closes at

the same entry price. For these cases the result is null. Also, when the opening bet is not

matched during the opening time, the result is null. Positive ticks is the number of total

ticks that result from profitable trades. Negative ticks is the total number of ticks that result

in loss. These are the main values to get conclusions about how well-succeeded a trading

policy is.

Predicted

Classes S
tr

on
g

D
ow

n

W
ea

k
D

ow
n

N
eu

tr
al

W
ea

k
U

p

S
tr

on
g

U
p

Recall(%) ACC (%)

R
ea

l

Strong Down 16 3 2 2 4 59.26

28.26

Weak Down 12 6 1 5 11 17.14

Neutral 14 4 1 3 6 3.57

Weak Up 10 2 0 3 8 13

Strong Up 2 5 0 5 13 52

Precision (%) 29.63 30 25 16.67 30.95

Table 4.13: Confusion matrix for the LSTM-based model with Conv1D multi-head attention,

i.e., best model, on the final test dataset.

Table 4.13 is the confusion matrix for the model predictions on this same final test dataset

that produces Table 4.12. The results are congruent; it can be observed that the number of

trades instantiated is equal to the number of times a class that results in action is predicted,

134. The total expected green trades in Table 4.13 is 66 and reds is 41, different from the

actual result in Table 4.12. This can be explained by the number of times the model predicts

some direction, but the real class is Neutral. This will result in a trade instantiating with

a small red or green outcome. Also, the classes are feature engineered from the raw value

representing the integral of the price evolution during the predicting time. This area can

mean a consistent movement to one side, but some rapid, aggressive move to the opposite

side can occur. This is another explanation of why the confusion matrix’s expected results

can differ from what happens in reality. As indicator of the model resilience, is verified that

the overall ratio of results remains similar in the production phase (Table 4.13) and also on

the validation dataset confusion matrices (Table 4.11).

4.2. RESULTS 105

Summary

In this Chapter, we present in detail new add-ons to formalize new DL architectures, namely

roll padding, multi-head attention using Conv1D for LSTM-based models, and multi-head

attention using Conv2D with roll padding for ConvLSTM2D. We demonstrate that these

add-ons can improve the learning process. In particular, the type of attention conceived

for the ConvLSTM2D is a powerful mechanism for cyclical MTS problems. In the betting

exchange case study, an end-to-end framework is shown at work. In what follows, we discuss

the final conclusions and future research avenues.

106 CHAPTER 4. METHODOLOGIES AND RESULTS

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This dissertation proposes applying a new padding method designated by roll padding

and introduces new types of attention mechanisms in LSTMs and ConvLSTM2D for MTS

problems. Multi-head attention mechanisms split the MTS into individual time series, and

create a path of attention for each sequence. Within each sequence path, we introduce

convolutional layers to build the attention vector. While Conv1D layers are used in LSTM-

based models, Conv2D layers can be used in the ConvLSTM2D model. We also take

advantage of roll padding by introducing it into the ConvLSTM2D proposed attention

mechanism to capture cyclical properties of the MTS when deemed necessary.

We also extend the WaveNet to work with Conv2D layers rather than with Conv1D layers.

By doing so, we can personalize the level of correlation between sequences, to be found by

the convolution kernel. While the standard WaveNet combines all sequences of the MTS

treating them as channels of feature maps to be processed by the kernel, the proposed

extension allows specifying, by the kernel size, how many sequences the kernel should focus

on. As such, the standard WaveNet becomes a particular case of the proposed extension.

Using Conv2D layers instead of Conv1D in the WaveNet also allows combining roll padding

with causal padding, which is the main ingredient of the WaveNet. Overall, all these new

particularities improve the performance of DL models in MTS predictions. Another main

conclusion of this dissertation is that the chosen architecture is very problem dependent

given the heterogeneity of the results.

107

108 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Human Activity Recognition

The application of a WaveNet 2D with roll padding overcomes all other models in terms of

accuracy. The combination of roll padding with causal padding in the WaveNet allows to

achieve the best results in the RTD dataset of this case study. Also, accuracy improves with

the introduction of roll padding in the basic CNN which serves as a sandbox to demonstrate

the potential of roll padding.

Air Pollution - PM2.5 Concentration

Despite the roll padding improving base architectures, the best model is the ConvLSTM2D

without add-ons, which neither improve nor affect the learning curves. The proposed

attention mechanism for the ConvLSTM2D aims at taking advantage of possible cyclic input

sequences. Consequently, a potential justification is the inadequate definition of the input

sequence size. For this dissertation 72 time steps were defined, where each corresponds to

one hour. To capture week cyclic behavior, future work should consider sequence sizes of

168 time steps and similar transformations to what was developed in the household electric

power consumption case study.

Household Electric Power Consumption

This case study reveals the positive impact of proposed Conv2D attention mechanisms on

the ConvLSTM2D-based model with roll padding. Although the accuracy result may seem

relatively low, the main observation that should be considered to make conclusions about

the convergence of DL models in MTS classification is approximating the confusion matrix’s

values to the principal diagonal. To confirm the good performance, we compare it with the

classical ARIMAX in regression mode, surpassing it.

Exchange Markets

A complete trading framework was developed for this case study. The pre-live horse race

markets were analyzed, which is a challenging environment for prediction. We conclude that

the DL model with the best performance is the LSTM with multi-head Conv1D attention.

CNN-based models exhibit a low performance, which can be explained by the heavy use

of the ReLU activation function that tends to produce sparse weights (see Section 2.1.1).

Differently, LSTM-based models avoid the ReLU activation function in the main pipeline,

resulting in a thinner learning evolution that is adequate for the hard MTS problem in hand.

This issue can also be tackled by analyzing the learning rate in future research. Finally,

5.2. FUTURE WORK 109

we also tested the Cohen’s kappa error function normally used for ordered classification

problems, but results did not improve.

5.2 Future Work

One of the dissertation’s future paths is to direct the work of time series towards sequences of

images. The analysis and/or forecasting of image sequence problems has application in the

most varied areas, particularly in industrial engineering, where the detection of anomalies

(e.g., paper industry) is desirable. In this way, the focus will be on problems of time series of

images where there is a continuity of information that should be processed to find anomalies.

The objective is to create a DL conceptual model using architectures based on ConvLSTM2D

layers for this purpose. This future development aims to model time series of images using,

for this purpose, DL methodologies to automatically extract knowledge from a given context

and help identify anomalous properties. The final goal is to have a sequence-to-sequence

model to generate the expected image. Like AEs, we train this model in a unsupervised

manner. This way, it is not needed prior information about the type of anomalies.

|| || || ||

C
on

v2
D

U
pS

am
p

lin
g2

D

C
o

nv
2D

⊗ Class

Real

Fake

“Colored” Noise (Latent Variable)
to orient the input generation for
a specif c (fake) class.

Generator Model

In
pu

tS
h

ap
e

[8
]x

[5
]x

[8
]

S
of

tm
a

x
ou

tp
ut

[5
]

C
on

vL
S

T
M

2
D

C
on

vL
S

T
M

2
D

D
en

se

D
e

ns
e

Discriminator Model

D
e

ns
e

S
ig

m
oi

d[
1]

Enhance Generator using half of the time series as
Latent Variable and N to N (Seq. to Seq.) Recurrent
Layers to Generate the other half.

C
on

vL
S

T
M

2
D

C
on

vL
S

T
M

2
D

C
on

vL
S

T
M

2
D

Generator Model

C
la

ss
R

ea
l/F

ak
e

Figure 5.1: Projected Auxiliary Classification Generative Adversarial Network (AC-GAN)

architecture for MTS problems.

Another relevant future path is to introduce AC-GANs for synthetic construction of indi-

cators based on context, meaning that experimental methodologies will be developed and

tested based on deep generative architectures. Within this research domain, AC-GANs

based on sequence-to-sequence generators can provide useful insights into MTS’s evolution

problems. As highlighted in Figure 5.1, both generator and discriminator use layers that

110 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

process sequential information. The generator considers an initial partition of the MTS

sequence as the latent space to generate the complementary partition of the MTS sequence,

thus, defining a sequence-to-sequence generator. Then, the discriminator decides whether

the input information is real or not, and the class where it falls. Ultimately, this methodology

will allow the construction of indicators from a given future scenario.

Appendix

Betting Exchange Statistics

Mean Std Dev Min Max

Volume

1st min 520865 275541 14242 4858654

2nd min 423930 247598 10783 4713870

3rd min 347772 223834 8390 4569493

4th min 285066 201834 7014 4237354

5th min 236840 183575 5818 3944767

6th min 200076 168577 4514 3779854

7th min 172516 156206 2524 3554934

8th min 150905 145219 1898 3481841

9th min 134880 137576 1647 3450423

10th min 122693 131643 1503 3420282

Liquidity

1st min 6974 12301 531 451241

2nd min 5967 13151 682 468516

3rd min 4975 12832 526 454538

4th min 4205 12544 393 453012

5th min 3652 12143 329 428307

6th min 3105 11137 285 399753

7th min 2774 10808 245 359948

8th min 2451 9825 212 331043

9th min 2224 9540 191 323377

10th min 2029 8935 171 292921

Volatility+

1st min 1052 1443 77 29899

2nd min 1100 1593 0 31323

3rd min 1107 1357 22 37893

4th min 1067 1524 0 29442

5th min 984 1412 20 33069

6th min 868 1437 29 49078

7th min 796 1191 4 30815

8th min 729 1162 7 27630

9th min 650 961 2 29686

10th min 642 1326 1 38439

Table A1: Pre-live betfair horse racing markets summary statistics.
Note: Total number of observations (i.e. races): 14421. Each line represents the x minute before the start of a race,

x = {1st, ..., 10th}. Units of measure are clarified in Fig.3.8 .
+ Ticks variation in absolute value per minute.

111

112 APPENDIX

P
&

L
T
M

E
N
D

S
T
A
T
E

E
V
E
N
T

R
U
N
N
E
R

V
O

L
U
M

E
N

R
E
N
T
R

T
A
R
G

S
T
O

D
IR

T
P

T
L

P
T

P
P
T

L
O

O
D

D
C

O
D

D
O

A
M

C
A
M

£
0
,0

0
2

N
O

T
O

P
E
N

H
a
m

2
n
d

S
e
p

N
ig

h
t
s
t
e
r

3
8
1
8
9
.2

7
8

5
.5

6
.2

5
.1

L
B

6
4

£
1
1
,2

9
-£

7
,8

4
0

0
£
0
,0

0
£
0
,0

0

£
0
,0

0
2

N
O

T
O

P
E
N

H
a
m

2
n
d

S
e
p

T
e
c
t
o
n
ic

1
8
4
1
5
.7

6
8

4
.5

3
.9

5
4
.9

B
L

6
4

£
1
3
,9

2
-£

8
,1

6
0

0
£
0
,0

0
£
0
,0

0

£
6
,5

2
1

C
L
O

S
E
D

F
fo

s
L

2
n
d

S
e
p

M
c
c
o
o
l
B
a
n
n
a
n
a
s

2
3
4
6
5
.9

6
6

4
.9

4
.6

5
.2

B
L

3
3

£
6
,5

2
-£

5
,7

7
4
.9

4
.6

£
1
0
0
,0

0
£
1
0
6
,5

2

-£
2
,0

0
1

C
L
O

S
E
D

H
a
m

2
n
d

S
e
p

K
in

g
O

f
P
a
r
a
d
is
e

1
5
5
0
1
.3

1
6

5
.1

5
.5

4
.7

L
B

4
4

£
7
,2

7
-£

8
,5

1
5
.1

5
£
1
0
0
,0

0
£
1
0
2
,0

0

£
0
,0

0
1

N
O

T
O

P
E
N

F
fo

s
L

2
n
d

S
e
p

C
a
b
u
c
h
o
n

2
2
7
1
6
.3

1
7

4
.4

4
.1

4
.7

B
L

3
3

£
7
,3

2
-£

6
,3

8
0

0
£
0
,0

0
£
0
,0

0

£
0
,0

0
1

C
L
O

S
E
D

F
fo

s
L

2
n
d

S
e
p

M
e
n

D
o
n
t

C
r
y

2
4
8
1
4
.1

4
7

4
.5

4
.9

4
.1

L
B

4
4

£
8
,1

6
-£

9
,7

6
4
.5

4
.5

£
1
0
0
,0

0
£
1
0
0
,0

0

£
0
,0

0
2

N
O

T
O

P
E
N

H
a
m

2
n
d

S
e
p

G
e
o
r
g
e

F
e
n
t
o
n

2
0
9
7
6
.6

9
9

4
.9

4
.3

5
.3

B
L

6
4

£
1
3
,9

5
-£

7
,5

5
0

0
£
0
,0

0
£
0
,0

0

£
6
,0

0
1

C
L
O

S
E
D

B
r
ig

2
n
d

S
e
p

A
d
m

ir
a
lo

ft
h
e
s
e
a

2
0
2
4
9
.8

6
9

5
.3

5
5
.6

B
L

3
3

£
6
,0

0
-£

5
,3

6
5
.3

5
£
1
0
0
,0

0
£
1
0
6
,0

0

£
0
,0

0
1

C
L
O

S
E
D

M
u
s
s

3
r
d

S
e
p

M
is
h
a
a
l

2
1
2
8
0
.9

6
9

5
4
.7

5
.3

B
L

3
3

£
6
,3

8
-£

5
,6

6
5

5
£
1
0
0
,0

0
£
1
0
0
,0

0

£
1
1
,1

1
2

C
L
O

S
E
D

G
o
o
d

3
r
d

S
e
p

D
e
e
d
s

N
o
t

W
o
r
d
s

2
1
8
2
4
.3

6
6

6
5
.4

6
.8

B
L

6
4

£
1
1
,1

1
-£

1
1
,7

6
6

5
.4

£
1
0
0
,0

0
£
1
1
1
,1

1

£
0
,0

0
1

C
L
O

S
E
D

G
o
o
d

3
r
d

S
e
p

A
r
g
e
n
t

K
n
ig

h
t

4
5
2
6
9
.4

9
9

5
.6

5
.3

5
.9

B
L

3
3

£
5
,6

6
-£

5
,0

8
5
.6

5
.6

£
1
0
0
,0

0
£
1
0
0
,0

0

-£
5
,7

7
2

C
L
O

S
E
D

G
o
o
d

3
r
d

S
e
p

M
in

o
r
it
y

In
t
e
r
e
s
t

1
5
0
5
4
.5

3
1
0

4
.9

4
.3

5
.3

B
L

6
4

£
1
3
,9

5
-£

7
,5

5
4
.9

5
.2

£
1
0
0
,0

0
£
9
4
,2

3

£
5
,6

6
2

C
L
O

S
E
D

G
o
o
d

3
r
d

S
e
p

S
w
ift

B
la

d
e

1
9
6
1
4
.8

9
1
0

5
.6

5
6

B
L

6
4

£
1
2
,0

0
-£

6
,6

7
5
.6

5
.3

£
1
0
0
,0

0
£
1
0
5
,6

6

£
0
,0

0
2

N
O

T
O

P
E
N

L
in

g
3
r
d

S
e
p

P
r
o
s
p
e
r
a

3
0
6
3
5
.1

9
7

4
.8

5
.4

4
.4

L
B

6
4

£
1
1
,1

1
-£

9
,0

9
0

0
£
0
,0

0
£
0
,0

0

£
1
0
,7

1
2

C
L
O

S
E
D

L
in

g
3
r
d

S
e
p

R
o
c
k

G
o
d

2
9
4
2
9
.4

6
7

5
5
.6

4
.6

L
B

6
4

£
1
0
,7

1
-£

8
,7

0
5

5
.6

£
1
0
0
,0

0
£
8
9
,2

9

£
2
,2

7
2

C
L
O

S
E
D

B
a
t
h

4
t
h

S
e
p

K
a
k
a
p
u
k
a

3
1
5
4
3
.9

4
7

4
.5

3
.9

5
4
.9

B
L

6
4

£
1
3
,9

2
-£

8
,1

6
4
.5

4
.4

£
1
0
0
,0

0
£
1
0
2
,2

7

£
2
,0

4
2

C
L
O

S
E
D

B
a
t
h

4
t
h

S
e
p

D
r
e
a
m

s
O

f
G

lo
r
y

3
1
0
3
6
.0

5
7

4
.8

5
.4

4
.4

L
B

6
4

£
1
1
,1

1
-£

9
,0

9
4
.8

4
.9

£
1
0
0
,0

0
£
9
7
,9

6

£
5
,2

0
2

C
L
O

S
E
D

B
a
t
h

4
t
h

S
e
p

D
e
v
o
n

D
iv

a
6
3
4
3
.0

6
6

4
.3

3
.8

5
4
.7

B
L

6
4

£
1
1
,6

9
-£

8
,5

1
4
.3

4
£
6
9
,2

7
£
7
4
,4

7

£
0
,0

0
2

C
L
O

S
E
D

K
e
m

p
4
t
h

S
e
p

F
o
r

P
o
s
t
e
r
it
y

1
7
9
2
8
.3

6
8

4
.6

4
5

B
L

6
4

£
1
5
,0

0
-£

8
,0

0
4
.6

4
.6

£
1
0
0
,0

0
£
1
0
0
,0

0

£
0
,0

0
2

N
O

T
O

P
E
N

S
a
lis

5
t
h

S
e
p

M
y
s
t
e
r
io

u
s

M
a
n

2
9
9
6
1
.6

6
4
.2

3
.8

4
.6

B
L

6
4

£
1
0
,5

3
-£

8
,7

0
0

0
£
0
,0

0
£
0
,0

0

£
0
,0

0
2

N
O

T
O

P
E
N

S
a
lis

5
t
h

S
e
p

N
e
w

R
ic
h

1
4
1
9
4
.0

9
6

4
.2

3
.8

4
.6

B
L

6
4

£
1
0
,5

3
-£

8
,7

0
0

0
£
0
,0

0
£
0
,0

0

£
0
,0

0
1

N
O

T
O

P
E
N

S
a
lis

5
t
h

S
e
p

C
a
t
c
h
a
n
o
v
a

1
9
2
5
4
.9

6
7

4
.2

3
.9

5
4
.5

B
L

3
3

£
6
,3

3
-£

6
,6

7
0

0
£
0
,0

0
£
0
,0

0

£
3
,7

4
1

C
L
O

S
E
D

S
a
lis

5
t
h

S
e
p

S
o
u
t
h

C
a
p
e

1
7
1
2
8
.6

7
7

4
.3

4
.7

3
.9

5
L
B

4
4

£
8
,5

1
-£

8
,8

6
4
.3

4
.4

7
£
1
0
0
,0

0
£
9
6
,2

6

-£
0
,0

0
1

C
L
O

S
E
D

N
e
w
c

6
t
h

S
e
p

R
e
d

P
ik

e
1
7
8
8
3
.9

2
1
0

4
.3

4
.7

3
.9

5
L
B

4
4

£
8
,5

1
-£

8
,8

6
4
.3

4
.3

£
1
0
0
,0

0
£
1
0
0
,0

0

£
0
,0

0
2

C
L
O

S
E
D

N
e
w
c

6
t
h

S
e
p

N
o
b
le

A
s
s
e
t

3
3
5
8
3
.3

9
9

4
.3

4
.9

3
.9

5
L
B

6
4

£
1
2
,2

4
-£

8
,8

6
4
.3

4
.3

£
1
0
0
,0

0
£
1
0
0
,0

0

-£
2
,1

3
2

C
L
O

S
E
D

N
e
w
c

6
t
h

S
e
p

P
u
r
e

Im
p
r
e
s
s
io

n
s

1
1
9
7
2
.8

9
4
.6

4
5

B
L

6
4

£
1
5
,0

0
-£

8
,0

0
4
.6

4
.7

£
1
0
0
,0

0
£
9
7
,8

7

£
0
,0

0
1

C
L
O

S
E
D

H
a
y
d

6
t
h

S
e
p

A
s
h
p
a
n

S
a
m

2
0
7
4
0
.6

6
8

4
.3

4
.7

3
.9

5
L
B

4
4

£
8
,5

1
-£

8
,8

6
4
.3

4
.3

£
9
3
,2

5
£
9
3
,2

5

£
0
,0

0
1

N
O

T
O

P
E
N

H
a
y
d

6
t
h

S
e
p

A
n
o
m

a
ly

1
9
4
0
8
.3

8
8

5
.8

5
.5

6
.2

B
L

3
3

£
5
,4

5
-£

6
,4

5
0

0
£
0
,0

0
£
0
,0

0

£
0
,0

0
2

N
O

T
O

P
E
N

K
e
m

p
7
t
h

S
e
p

M
a
s
t
e
r
s
t
r
o
k
e

2
6
4
2
9
.9

9
1
0

6
5
.4

6
.8

B
L

6
4

£
1
1
,1

1
-£

1
1
,7

6
0

0
£
0
,0

0
£
0
,0

0

-£
3
,7

7
2

C
L
O

S
E
D

A
s
c
o
t

7
t
h

S
e
p

S
t
e
v
e
n
t
o
n

S
t
a
r

1
0
0
1
6
.6

9
7

5
.1

4
.5

5
.5

B
L

6
4

£
1
3
,3

3
-£

7
,2

7
5
.1

5
.3

£
1
0
0
,0

0
£
9
6
,2

3

£
3
,6

4
2

C
L
O

S
E
D

A
s
c
o
t

7
t
h

S
e
p

F
o
r
g
iv

e
1
9
0
0
5
.2

3
8

5
.3

5
.9

4
.9

L
B

6
4

£
1
0
,1

7
-£

8
,1

6
5
.3

5
.5

£
1
0
0
,0

0
£
9
6
,3

6

£
0
,0

0
1

N
O

T
O

P
E
N

W
o
lv

7
t
h

S
e
p

L
o
r
d

B
u
ffh

e
a
d

4
8
6
8
8
.3

7
1
0

5
.8

6
.4

5
.4

L
B

4
4

£
9
,3

8
-£

7
,4

1
0

0
£
0
,0

0
£
0
,0

0

£
2
,4

4
2

C
L
O

S
E
D

F
o
n
t

8
t
h

S
e
p

B
r
o
u
g
h

A
c
a
d
e
m

y
1
3
8
3
3
.7

3
7

4
.2

3
.8

4
.6

B
L

6
4

£
1
0
,5

3
-£

8
,7

0
4
.2

4
.1

£
1
0
0
,0

0
£
1
0
2
,4

4

£
2
,1

3
2

C
L
O

S
E
D

F
o
n
t

8
t
h

S
e
p

C
h
ilw

o
r
t
h

S
c
r
e
a
m

e
r

1
8
8
3
1
.1

1
7

4
.8

4
.2

5
.2

B
L

6
4

£
1
4
,2

9
-£

7
,6

9
4
.8

4
.7

£
1
0
0
,0

0
£
1
0
2
,1

3

-£
0
,0

0
2

C
L
O

S
E
D

F
o
n
t

8
t
h

S
e
p

T
h
e

T
r
a
c
e
y

S
h
u
ffle

4
4
1
3
2
.1

7
4
.1

4
.7

3
.8

5
L
B

6
4

£
1
2
,7

7
-£

6
,4

9
4
.1

4
.1

£
1
0
0
,0

0
£
1
0
0
,0

0

-£
7
,0

2
1

C
L
O

S
E
D

F
o
n
t

8
t
h

S
e
p

O
v
ilia

4
7
1
1
3
.2

9
5
.3

5
5
.6

B
L

3
3

£
6
,0

0
-£

5
,3

6
5
.3

5
.7

£
1
0
0
,0

0
£
9
2
,9

8

£
0
,0

0
2

N
O

T
O

P
E
N

H
u
n
t

9
t
h

S
e
p

B
r
im

h
a
m

B
o
y

1
9
7
8
3
.3

3
9

6
7
.2

5
.6

L
B

6
4

£
1
6
,6

7
-£

7
,1

4
0

0
£
0
,0

0
£
0
,0

0

£
1
,9

6
1

C
L
O

S
E
D

H
u
n
t

9
t
h

S
e
p

T
in

y
T
e
n
o
r

1
0
5
9
7
.6

4
6

5
5
.4

4
.6

L
B

4
4

£
7
,4

1
-£

8
,7

0
5

5
.1

£
1
0
0
,0

0
£
9
8
,0

4

-£
5
,1

3
2

C
L
O

S
E
D

P
e
r
t
h

9
t
h

S
e
p

R
a
t
h
m

o
y
le

H
o
u
s
e

1
5
1
0
5
.6

5
6

4
.1

4
.7

3
.8

5
L
B

6
4

£
1
2
,7

7
-£

6
,4

9
4
.1

3
.9

£
1
0
0
,0

0
£
1
0
5
,1

3

£
4
,5

5
2

C
L
O

S
E
D

H
u
n
t

9
t
h

S
e
p

G
e
t
a
w
a
y

C
a
r

4
3
1
5
8
.0

7
7

4
.6

4
5

B
L

6
4

£
1
5
,0

0
-£

8
,0

0
4
.6

4
.4

£
1
0
0
,0

0
£
1
0
4
,5

5

-£
4
,4

4
2

C
L
O

S
E
D

B
r
ig

9
t
h

S
e
p

A
r
le

c
c
h
in

o
3
4
1
6
2
.8

9
6

4
.3

3
.8

5
4
.7

B
L

6
4

£
1
1
,6

9
-£

8
,5

1
4
.3

4
.5

£
1
0
0
,0

0
£
9
5
,5

6

£
7
,1

4
1

C
L
O

S
E
D

B
r
ig

9
t
h

S
e
p

K
a
m

c
h
a
t
k
a

8
7
2
3
.9

4
6

4
.5

4
.2

4
.8

B
L

3
3

£
7
,1

4
-£

6
,2

5
4
.5

4
.2

£
1
0
0
,0

0
£
1
0
7
,1

4

£
2
,0

8
2

C
L
O

S
E
D

L
e
ic

1
0
t
h

S
e
p

T
a
t
lis

u
3
2
7
8
3
.1

3
7

4
.9

4
.3

5
.3

B
L

6
4

£
1
3
,9

5
-£

7
,5

5
4
.9

4
.8

£
1
0
0
,0

0
£
1
0
2
,0

8

£
7
,8

4
2

C
L
O

S
E
D

W
o
r
c

1
0
t
h

S
e
p

G
u
d

D
a
y

1
6
8
1
5
.9

3
6

4
.7

5
.3

4
.3

L
B

6
4

£
1
1
,3

2
-£

9
,3

0
4
.7

5
.1

£
1
0
0
,0

0
£
9
2
,1

6

£
0
,0

0
2

N
O

T
O

P
E
N

B
e
v

1
0
t
h

S
e
p

H
a
d
a
j

1
9
7
7
0
.6

5
8

4
.3

3
.8

5
4
.7

B
L

6
4

£
1
1
,6

9
-£

8
,5

1
0

0
£
0
,0

0
£
0
,0

0

-£
5
,0

0
1

C
L
O

S
E
D

B
e
v

1
0
t
h

S
e
p

B
o
n
d
i
B
e
a
c
h

B
o
y

1
6
9
2
2
.4

8
5
.7

5
.4

6
B
L

3
3

£
5
,5

6
-£

5
,0

0
5
.7

6
£
1
0
0
,0

0
£
9
5
,0

0

£
1
0
,9

4
2

C
L
O

S
E
D

B
e
v

1
0
t
h

S
e
p

D
u
b
a
i
D

y
n
a
m

o
2
0
4
0
3
.4

9
8

5
.7

6
.6

5
.3

L
B

6
4

£
1
3
,6

4
-£

7
,5

5
5
.7

6
.4

£
1
0
0
,0

0
£
8
9
,0

6

£
0
,0

0
2

N
O

T
O

P
E
N

B
e
v

1
0
t
h

S
e
p

S
t
a
r
lit

C
a
n
t
a
t
a

3
5
0
9
0
.7

9
9

5
.1

4
.5

5
.5

B
L

6
4

£
1
3
,3

3
-£

7
,2

7
0

0
£
0
,0

0
£
0
,0

0

-£
6
,6

7
2

C
L
O

S
E
D

U
t
t
o
x

1
1
t
h

S
e
p

T
e
a
k

1
9
6
5
5
.0

5
7

5
.6

5
6

B
L

6
4

£
1
2
,0

0
-£

6
,6

7
5
.6

6
£
1
0
0
,0

0
£
9
3
,3

3

...
...

...
...

...
...

...
...

...
...

...
...

..
...

...
..

...
...

...

T
a
b

le
A

2
:

S
tretch

of
th

e
en

tire
ou

tp
u

t
fi

eld
s

of
trad

in
g

m
ech

an
ism

s
(T

M
2

-
T

railin
g-stop

an
d

1
-

S
w

in
g)

an
d

p
aram

etrization
accord

in
g

to
th

e
D

L
m

o
d

els
p

red
iction

,
d

u
rin

g
several

races.
T

h
e

b
ase

stak
e

u
sed

is
£

100.00.

113

4000 2000 0 2000 4000 6000
0

50000

100000

150000

200000

250000

Fr
e
q

u
e
n
cy

Odd Variation Integral

4000 2000 0 2000 4000 6000
0

50000

100000

150000

200000

250000

Fr
e
q

u
e
n
cy

Neighbour Odd Variation Integral

4000 2000 0 2000 4000 6000
0

50000

100000

150000

200000

Fr
e
q

u
e
n
cy

Offer Variation AVG Back Depth

4000 2000 0 2000 4000 6000
0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
e
q

u
e
n
cy

Offer Variation AVG Lay Depth

4000 2000 0 2000 4000 6000
0

50000

100000

150000

200000

Fr
e
q

u
e
n
cy

Matched Amount Variation AVG

4000 2000 0 2000 4000 6000
0

50000

100000

150000

200000

250000

Fr
e
q

u
e
n
cy

Odd Relative Begin Variation

4000 2000 0 2000 4000 6000
0

50000

100000

150000

200000

250000

Fr
e
q

u
e
n
cy

Neighbour Odd Relative Begin Variation

4000 2000 0 2000 4000 6000
0

50000

100000

150000

200000

250000

Fr
e
q

u
e
n
cy

Wom AVG

4000 2000 0 2000 4000 6000
0

50000

100000

150000

200000

250000

Fr
e
q

u
e
n
cy

Wom Others AVG

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

20000

40000

60000

80000

100000

120000

Fr
e
q

u
e
n
cy

Odd Variation Integral

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

20000

40000

60000

80000

100000

120000

Fr
e
q

u
e
n
cy

Neighbour Odd Variation Integral

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

5000

10000

15000

20000

25000

30000

35000

40000

Fr
e
q

u
e
n
cy

Offer Variation AVG Back Depth

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

10000

20000

30000

40000

50000

Fr
e
q

u
e
n
cy

Offer Variation AVG Lay Depth

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

10000

20000

30000

40000

50000

Fr
e
q

u
e
n
cy

Matched Amount Variation AVG

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

10000

20000

30000

40000

Fr
e
q

u
e
n
cy

Odd Relative Begin Variation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

10000

20000

30000

40000

Fr
e
q

u
e
n
cy

Neighbour Odd Relative Begin Variation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

2000

4000

6000

8000

10000

Fr
e
q

u
e
n
cy

Wom AVG

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

2000

4000

6000

8000

10000

12000

14000

Fr
e
q

u
e
n
cy

Wom Others AVG

Figure A1: Example of histogram re-scaling with truncated tails at 10% level to find min-

max values for input normalization. The illustration represents inputs on category #41 of

the rule-based system index of the betting exchange horse race markets case study. Top 9

subplots are raw data and bottom 9 subplots are the result of applying this technique.

114 APPENDIX

Models Main Components

Listing A1: Python Keras layer implmentation of roll pading with causal pading. This layer

is used before a convolution with valid/no pading inside WaveNet 2D.

1 class Cyl indr ica lPadCausa l (Layer) :

2

3 def i n i t (s e l f , m=0,n=1, ∗∗kwargs) :

4 super (Cyl indr ica lPadCausal , s e l f) . i n i t (∗∗ kwargs)

5 s e l f . n = n

6 s e l f .m = m

7 #as s e r t n > 0 , ’n must be p o s i t i v e ’

8

9 def bu i ld (s e l f , input shape) :

10 s e l f . i nput spec = [InputSpec (shape=input shape)]

11 super (Cyl indr ica lPadCausal , s e l f) . bu i ld (input shape)

12

13 def compute output shape (s e l f , input shape) :

14 return (input shape [0] ,

15 input shape [1] ,

16 # ONLY ADD m 0 ’ s to the l e f t f o r ca susa l padding

17 input shape [2] + s e l f .m,

18 input shape [3] + 2∗ s e l f . n)

19

20 def g e t o u t p u t s h a p e f o r (s e l f , input shape) :

21 return (input shape [0] ,

22 input shape [1] ,

23 # ONLY ADD m 0 ’ s to the l e f t f o r ca susa l padding

24 input shape [2] + s e l f .m,

25 input shape [3] + 2∗ s e l f . n)

26

27 def c a l l (s e l f , Element , mask=None) :

28 f i r s tCo lumns=Element [: , : , : , 0 : s e l f . n]

29 lastColumns=Element [: , : , : , Element . shape [3]− s e l f . n : Element . shape [3]]

30 ## ROLL add end to beg inning and beg inning to the end

31 r e s u l t=t f . concat ([Element , f i r s tCo lumns] , a x i s =3)

32 r e s u l t=t f . concat ([lastColumns , r e s u l t] , a x i s =3)

33 i f s e l f .m != 0 : ### only add 0 ’ s to de l e f t f o r ca susa l pading

34 f i r s tRows=r e s u l t [: , : , 0 : s e l f .m, :]

35 sa=t f . shape (f i r s tRows) [0]

36 sb=t f . shape (f i r s tRows) [1]

37 sc=s e l f .m

38 sd=t f . shape (f i r s tRows) [3]

39 y = t f . f i l l ([sa , sb , sc , sd] , 0 .)

40 r e s u l t=t f . concat ([y , r e s u l t] , a x i s =2)

41 return r e s u l t

42

43 def g e t c o n f i g (s e l f) :

44 c o n f i g = { ’ n ’ : s e l f . n ,

45 ’m’ : s e l f .m}
46 b a s e c o n f i g = super (Cyl indr ica lPadCausal , s e l f) . g e t c o n f i g ()

47 return dict (l i s t (b a s e c o n f i g . i tems ()) + l i s t (c o n f i g . i tems ()))

115

in
pu

t_
15

: I
np

ut
L

ay
er

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
, 2

4,
 5

)

(N
on

e,
 7

, 1
, 2

4,
 5

)

cy
lin

dr
ic

al
_p

ad
_l

st
m

cn
n_

21
: C

yl
in

dr
ic

al
P

ad
L

S
T

M
C

N
N

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
, 2

4,
 5

)

(N
on

e,
 7

, 1
, 2

6,
 1

1)

co
nv

_l
st

_m
2d

_2
1:

 C
on

vL
S

T
M

2D
in

pu
t:

ou
tp

ut
:

(N
on

e,
 7

, 1
, 2

6,
 1

1)

(N
on

e,
 7

, 1
0,

 2
4,

 5
)

la
m

bd
a_

15
9:

 L
am

bd
a

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4,

 5
)

(N
on

e,
 7

, 1
0,

 2
4)

la
m

bd
a_

16
1:

 L
am

bd
a

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4,

 5
)

(N
on

e,
 7

, 1
0,

 2
4)

la
m

bd
a_

16
3:

 L
am

bd
a

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4,

 5
)

(N
on

e,
 7

, 1
0,

 2
4)

la
m

bd
a_

16
5:

 L
am

bd
a

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4,

 5
)

(N
on

e,
 7

, 1
0,

 2
4)

la
m

bd
a_

16
7:

 L
am

bd
a

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4,

 5
)

(N
on

e,
 7

, 1
0,

 2
4)

m
ul

tip
ly

_1
5:

 M
ul

tip
ly

in
pu

t:

ou
tp

ut
:

[(
N

on
e,

 7
, 1

0,
 2

4,
 5

),
 (

N
on

e,
 7

, 1
0,

 2
4,

 5
)]

(N
on

e,
 7

, 1
0,

 2
4,

 5
)

pe
rm

ut
e_

15
9:

 P
er

m
ut

e
in

pu
t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4)

(N
on

e,
 1

0,
 2

4,
 7

)
pe

rm
ut

e_
16

1:
 P

er
m

ut
e

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4)

(N
on

e,
 1

0,
 2

4,
 7

)
pe

rm
ut

e_
16

3:
 P

er
m

ut
e

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4)

(N
on

e,
 1

0,
 2

4,
 7

)
pe

rm
ut

e_
16

5:
 P

er
m

ut
e

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4)

(N
on

e,
 1

0,
 2

4,
 7

)
pe

rm
ut

e_
16

7:
 P

er
m

ut
e

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4)

(N
on

e,
 1

0,
 2

4,
 7

)

cy
lin

dr
ic

al
_p

ad
_1

49
: C

yl
in

dr
ic

al
P

ad
in

pu
t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

4,
 7

)

(N
on

e,
 1

0,
 2

7,
 9

)
cy

lin
dr

ic
al

_p
ad

_1
51

: C
yl

in
dr

ic
al

P
ad

in
pu

t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

4,
 7

)

(N
on

e,
 1

0,
 2

7,
 9

)
cy

lin
dr

ic
al

_p
ad

_1
53

: C
yl

in
dr

ic
al

P
ad

in
pu

t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

4,
 7

)

(N
on

e,
 1

0,
 2

7,
 9

)
cy

lin
dr

ic
al

_p
ad

_1
55

: C
yl

in
dr

ic
al

P
ad

in
pu

t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

4,
 7

)

(N
on

e,
 1

0,
 2

7,
 9

)
cy

lin
dr

ic
al

_p
ad

_1
57

: C
yl

in
dr

ic
al

P
ad

in
pu

t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

4,
 7

)

(N
on

e,
 1

0,
 2

7,
 9

)

co
nv

2_
0:

 C
on

v2
D

in
pu

t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

7,
 9

)

(N
on

e,
 5

, 2
4,

 7
)

co
nv

2_
1:

 C
on

v2
D

in
pu

t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

7,
 9

)

(N
on

e,
 5

, 2
4,

 7
)

co
nv

2_
2:

 C
on

v2
D

in
pu

t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

7,
 9

)

(N
on

e,
 5

, 2
4,

 7
)

co
nv

2_
3:

 C
on

v2
D

in
pu

t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

7,
 9

)

(N
on

e,
 5

, 2
4,

 7
)

co
nv

2_
4:

 C
on

v2
D

in
pu

t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

7,
 9

)

(N
on

e,
 5

, 2
4,

 7
)

cy
lin

dr
ic

al
_p

ad
_1

50
: C

yl
in

dr
ic

al
P

ad
in

pu
t:

ou
tp

ut
:

(N
on

e,
 5

, 2
4,

 7
)

(N
on

e,
 5

, 2
6,

 9
)

cy
lin

dr
ic

al
_p

ad
_1

52
: C

yl
in

dr
ic

al
P

ad
in

pu
t:

ou
tp

ut
:

(N
on

e,
 5

, 2
4,

 7
)

(N
on

e,
 5

, 2
6,

 9
)

cy
lin

dr
ic

al
_p

ad
_1

54
: C

yl
in

dr
ic

al
P

ad
in

pu
t:

ou
tp

ut
:

(N
on

e,
 5

, 2
4,

 7
)

(N
on

e,
 5

, 2
6,

 9
)

cy
lin

dr
ic

al
_p

ad
_1

56
: C

yl
in

dr
ic

al
P

ad
in

pu
t:

ou
tp

ut
:

(N
on

e,
 5

, 2
4,

 7
)

(N
on

e,
 5

, 2
6,

 9
)

cy
lin

dr
ic

al
_p

ad
_1

58
: C

yl
in

dr
ic

al
P

ad
in

pu
t:

ou
tp

ut
:

(N
on

e,
 5

, 2
4,

 7
)

(N
on

e,
 5

, 2
6,

 9
)

co
nv

_f
in

al
_s

of
tm

ax
_0

: C
on

v2
D

in
pu

t:

ou
tp

ut
:

(N
on

e,
 5

, 2
6,

 9
)

(N
on

e,
 1

0,
 2

4,
 7

)
co

nv
_f

in
al

_s
of

tm
ax

_1
: C

on
v2

D
in

pu
t:

ou
tp

ut
:

(N
on

e,
 5

, 2
6,

 9
)

(N
on

e,
 1

0,
 2

4,
 7

)
co

nv
_f

in
al

_s
of

tm
ax

_2
: C

on
v2

D
in

pu
t:

ou
tp

ut
:

(N
on

e,
 5

, 2
6,

 9
)

(N
on

e,
 1

0,
 2

4,
 7

)
co

nv
_f

in
al

_s
of

tm
ax

_3
: C

on
v2

D
in

pu
t:

ou
tp

ut
:

(N
on

e,
 5

, 2
6,

 9
)

(N
on

e,
 1

0,
 2

4,
 7

)
co

nv
_f

in
al

_s
of

tm
ax

_4
: C

on
v2

D
in

pu
t:

ou
tp

ut
:

(N
on

e,
 5

, 2
6,

 9
)

(N
on

e,
 1

0,
 2

4,
 7

)

pe
rm

ut
e_

16
0:

 P
er

m
ut

e
in

pu
t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

4,
 7

)

(N
on

e,
 7

, 1
0,

 2
4)

pe
rm

ut
e_

16
2:

 P
er

m
ut

e
in

pu
t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

4,
 7

)

(N
on

e,
 7

, 1
0,

 2
4)

pe
rm

ut
e_

16
4:

 P
er

m
ut

e
in

pu
t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

4,
 7

)

(N
on

e,
 7

, 1
0,

 2
4)

pe
rm

ut
e_

16
6:

 P
er

m
ut

e
in

pu
t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

4,
 7

)

(N
on

e,
 7

, 1
0,

 2
4)

pe
rm

ut
e_

16
8:

 P
er

m
ut

e
in

pu
t:

ou
tp

ut
:

(N
on

e,
 1

0,
 2

4,
 7

)

(N
on

e,
 7

, 1
0,

 2
4)

la
m

bd
a_

16
0:

 L
am

bd
a

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4)

(N
on

e,
 7

, 1
0,

 2
4,

 1
)

la
m

bd
a_

16
2:

 L
am

bd
a

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4)

(N
on

e,
 7

, 1
0,

 2
4,

 1
)

la
m

bd
a_

16
4:

 L
am

bd
a

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4)

(N
on

e,
 7

, 1
0,

 2
4,

 1
)

la
m

bd
a_

16
6:

 L
am

bd
a

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4)

(N
on

e,
 7

, 1
0,

 2
4,

 1
)

la
m

bd
a_

16
8:

 L
am

bd
a

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4)

(N
on

e,
 7

, 1
0,

 2
4,

 1
)

co
nc

at
en

at
e_

15
: C

on
ca

te
na

te
in

pu
t:

ou
tp

ut
:

[(
N

on
e,

 7
, 1

0,
 2

4,
 1

),
 (

N
on

e,
 7

, 1
0,

 2
4,

 1
),

 (
N

on
e,

 7
, 1

0,
 2

4,
 1

),
 (

N
on

e,
 7

, 1
0,

 2
4,

 1
),

 (
N

on
e,

 7
, 1

0,
 2

4,
 1

)]

(N
on

e,
 7

, 1
0,

 2
4,

 5
)

cy
lin

dr
ic

al
_p

ad
_l

st
m

cn
n_

22
: C

yl
in

dr
ic

al
P

ad
L

S
T

M
C

N
N

in
pu

t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
4,

 5
)

(N
on

e,
 7

, 1
0,

 2
6,

 1
1)

co
nv

_l
st

_m
2d

_2
2:

 C
on

vL
S

T
M

2D
in

pu
t:

ou
tp

ut
:

(N
on

e,
 7

, 1
0,

 2
6,

 1
1)

(N
on

e,
 2

0,
 2

4,
 5

)

fl
at

te
n_

7:
 F

la
tte

n
in

pu
t:

ou
tp

ut
:

(N
on

e,
 2

0,
 2

4,
 5

)

(N
on

e,
 2

40
0)

de
ns

e_
7:

 D
en

se
in

pu
t:

ou
tp

ut
:

(N
on

e,
 2

40
0)

(N
on

e,
 5

)

ac
tiv

at
io

n_
7:

 A
ct

iv
at

io
n

in
pu

t:

ou
tp

ut
:

(N
on

e,
 5

)

(N
on

e,
 5

)

Figure A2: Stacked ConvLSTM2D with roll padding, using input of: 7 segments/days,

1 channel, 24h/steps, and 5 variables. Multi-head attention blocks per variable with two

convolution layers using 2D maps of 7 segments/days × 24h/steps. Inside the attention

block roll padding is applied over the 7 days dimension. Architecture used for energy house

consumption prediction. (The case study has 8 variables; here, we plot the model with 5 variables for

simplicity.)

116 APPENDIX

original_input: InputLayer
input:

output:

(None, 1, 128, 9)

(None, 1, 128, 9)

roll_input: CylindricalPadCausal
input:

output:

(None, 1, 128, 9)

(None, 1, 129, 9)

dilated_conv_0: Conv2D
input:

output:

(None, 1, 129, 9)

(None, 64, 128, 3)

roll_dilated_conv_2_tanh: CylindricalPadCausal
input:

output:

(None, 64, 128, 3)

(None, 64, 130, 5)

roll_dilated_conv_2_sigm: CylindricalPadCausal
input:

output:

(None, 64, 128, 3)

(None, 64, 130, 5)

residual_block_1: Add
input:

output:

[(None, 64, 128, 3), (None, 64, 128, 3)]

(None, 64, 128, 3)

dilated_conv_2_tanh: Conv2D
input:

output:

(None, 64, 130, 5)

(None, 64, 128, 3)

dropout_29: Dropout
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

dropout_30: Dropout
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

dilated_conv_2_sigm: Conv2D
input:

output:

(None, 64, 130, 5)

(None, 64, 128, 3)

gated_activation_1: Multiply
input:

output:

[(None, 64, 128, 3), (None, 64, 128, 3)]

(None, 64, 128, 3)

skip_1: Conv2D
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

skip_connections: Add
input:

output:

[(None, 64, 128, 3), (None, 64, 128, 3), (None, 64, 128, 3)]

(None, 64, 128, 3)

roll_dilated_conv_4_tanh: CylindricalPadCausal
input:

output:

(None, 64, 128, 3)

(None, 64, 132, 5)

roll_dilated_conv_4_sigm: CylindricalPadCausal
input:

output:

(None, 64, 128, 3)

(None, 64, 132, 5)

residual_block_2: Add
input:

output:

[(None, 64, 128, 3), (None, 64, 128, 3)]

(None, 64, 128, 3)

dilated_conv_4_tanh: Conv2D
input:

output:

(None, 64, 132, 5)

(None, 64, 128, 3)

dropout_31: Dropout
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

dropout_32: Dropout
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

dilated_conv_4_sigm: Conv2D
input:

output:

(None, 64, 132, 5)

(None, 64, 128, 3)

gated_activation_2: Multiply
input:

output:

[(None, 64, 128, 3), (None, 64, 128, 3)]

(None, 64, 128, 3)

skip_2: Conv2D
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

roll_dilated_conv_8_tanh: CylindricalPadCausal
input:

output:

(None, 64, 128, 3)

(None, 64, 136, 5)

roll_dilated_conv_8_sigm: CylindricalPadCausal
input:

output:

(None, 64, 128, 3)

(None, 64, 136, 5)
dilated_conv_8_tanh: Conv2D

input:

output:

(None, 64, 136, 5)

(None, 64, 128, 3)

dropout_33: Dropout
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

dropout_34: Dropout
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

dilated_conv_8_sigm: Conv2D
input:

output:

(None, 64, 136, 5)

(None, 64, 128, 3)

gated_activation_3: Multiply
input:

output:

[(None, 64, 128, 3), (None, 64, 128, 3)]

(None, 64, 128, 3)

skip_3: Conv2D
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

activation_3: Activation
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

dropout_35: Dropout
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 3)

conv_5ms: Conv2D
input:

output:

(None, 64, 128, 3)

(None, 64, 128, 1)

downsample_to_200Hz: AveragePooling2D
input:

output:

(None, 64, 128, 1)

(None, 64, 32, 1)

dropout_36: Dropout
input:

output:

(None, 64, 32, 1)

(None, 64, 32, 1)

conv_500ms: Conv2D
input:

output:

(None, 64, 32, 1)

(None, 64, 32, 1)

downsample_to_2Hz: AveragePooling2D
input:

output:

(None, 64, 32, 1)

(None, 64, 4, 1)

dropout_37: Dropout
input:

output:

(None, 64, 4, 1)

(None, 64, 4, 1)

final_conv: Conv2D
input:

output:

(None, 64, 4, 1)

(None, 6, 4, 1)

final_pooling: GlobalAveragePooling2D
input:

output:

(None, 6, 4, 1)

(None, 6)

final_activation: Activation
input:

output:

(None, 6)

(None, 6)

Figure A3: Wavenet 2D with depth 3 using inputs of: 128 steps × 9 variables. It uses roll

padding on the variable component and causal padding in the time steps component. Model

used in the HAR case study. (The case study has residual blocks in depth 8; here, we plot the model

with 3 blocks for simplicity.)

Glossary

AC-GAN Auxiliary Classification Generative Adversarial Network. xx, 109

AdaGrad Adaptive Gradient algorithm. 40

Adam Adaptive Moment Estimation. 11, 14, 15, 40, 41

AE Autoencoder. 11, 37, 38, 109

AFE Automated Feature Engineering. 11, 37

AI Artificial Intelligence. xvii, 5, 52

ANN Artificial Neural Network. 4, 7, 19, 55

API Application Programming Interface. 62, 66, 67, 73

ARIMA Auto-Regressive Integrated Moving Average. 47, 49, 55

BPTT backpropagation through time. 28, 31

CNN Convolutional Neural Network. xviii, xix, 10, 11, 25, 31, 32, 38, 53–55, 58, 83–86,

94–98, 100, 101, 108

ConvLSTM2D Bi-dimensional Convolutional LSTM. xv, xvi, xix, xx, 10, 34, 90, 91,

96–101, 105, 107–109, 115

DFT Discrete Fourier Transform. 53, 54

DL Deep Learning. 4–7, 9, 12, 15, 17, 34, 38, 49, 51, 52, 55, 58, 59, 75, 79, 81, 83, 92, 95,

98–102, 105, 107–109

DNN Deep Neural Network. 12, 20, 25, 43

FE Feature Engineering. 10, 11, 13, 51–54, 56, 60, 81

FFNN Feed Forward Neural Network. xvii, xviii, 13, 15, 16, 19, 21, 27–31, 38

117

118 Glossary

FFT Fast Fourier Transform. 53, 54

FIFO First In First Out. 64

GA Genetic Algorithm. 41–44

GAN Generative Adversarial Network. 34

HAR Human Activity Recognition. xv, xviii, xx, 10, 51–54, 81, 116

LSTM Long Short-Term Memory. xvi, xviii, xix, 5, 10, 14, 29–31, 34, 36, 38, 55, 58, 86–90,

94–102, 105, 107, 108

LVQ Learning Vector Quantization. 53, 54

ML Machine Learning. 1, 3, 4, 8, 12, 51, 52, 55, 58

MSE Mean Square Error. 12, 37, 46

MTS Multivariate Time Series. xvii–xx, 6, 7, 10, 19, 29, 32, 34, 47, 49, 51–55, 59, 60, 81,

84–86, 88–94, 99, 105, 107–110

NN Neural Network. xviii, 4, 5, 7–9, 11–15, 19–22, 25–29, 31, 34, 36–47, 49, 59, 75, 79, 83,

87, 88, 90

OVA One-vs-All. 9, 54

OVO One-vs-One. 9, 53, 54

PCA Principal Component Analysis. 14, 38

PL Profit & Loss. 62, 63, 65, 69, 70, 80

PM2.5 Particulate Matter 2.5. 10, 51, 56, 57, 81

PSO Particle Swarm Optimization. xviii, 44, 45

RDF Raw Data Frame. 61, 74, 76, 77

ReLU Rectified Linear Unit. xviii, 23, 25, 26, 95, 108

RMSE Root Mean Square Error. 12, 46, 52

RMSprop Root Mean Square Propagation. 15

RNN Recurrent Neural Network. 14, 27–31, 35, 36, 86, 87

Glossary 119

RTD Raw Time Distributed. 52–54, 108

SAE Stacked Autoencoder. 38

SGD Stochastic Gradient Descent. 15

SRN Simple Recurrent NN. xviii, 15, 27, 28

SVM Support Vector Machine. 9, 53–55

TCN Temporal Convolutional Network. xviii, 36

UCI University of California Irvine. xv, 10, 51–54, 58, 81

VAE Variational Autoencoder. 34

WoM Weight Of Money. 76, 77

WPI Wholesale Price Index. xvii, 8, 9

XOR Exclusive Or. xvii, 19, 20

120 Glossary

References

KP Amber, MW Aslam, and SK Hussain. Electricity consumption forecasting models for

administration buildings of the uk higher education sector. Energy Build 2015;, 90::127–36,

2015.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz.

A public domain dataset for human activity recognition using smartphones. In Esann,

2013.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep

neural networks with rectified linear units. CoRR, abs/1611.01491, 2016. URL http:

//arxiv.org/abs/1611.01491.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling, 2018, 2018.

Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceedings

of ICML workshop on unsupervised and transfer learning, pages 37–49, 2012.

Alejandro Baldominos, Yago Saez, and Pedro Isasi. On the automated, evolutionary design

of neural networks: past, present, and future. Neural Computing and Applications, pages

1–27, 2020.

Snehasree Behera, Bhawani Shankar Pattnaik, Motahar Reza, and D. S. Roy. Predicting

consumer loads for improved power scheduling in smart homes. In Himansu Sekhar Behera

and Durga Prasad Mohapatra, editors, Computational Intelligence in Data Mining—

Volume 2, pages 463–473, New Delhi, 2016. Springer India. ISBN 978-81-322-2731-1.

Beijing US Embassy. Beijing PM2.5 Data Data Set , December 2014. https://archive.

ics.uci.edu/ml/datasets/Beijing+PM2.5+Data.

Y. Bengio. Learning Deep Architectures for AI. Essence of knowledge, The. Now Publishers,

2009. ISBN 9781601982940. URL https://books.google.pt/books?id=cq5ewg7FniMC.

121

http://arxiv.org/abs/1611.01491
http://arxiv.org/abs/1611.01491
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
https://books.google.pt/books?id=cq5ewg7FniMC

122 REFERENCES

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient

descent is difficult. Trans. Neur. Netw., 5(2):157–166, March 1994. ISSN 1045-9227. doi:

10.1109/72.279181. URL http://dx.doi.org/10.1109/72.279181.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In

Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Daniel Silver, editors,

Proceedings of ICML Workshop on Unsupervised and Transfer Learning, volume 27 of

Proceedings of Machine Learning Research, pages 17–36, Bellevue, Washington, USA, 02

Jul 2012. PMLR. URL http://proceedings.mlr.press/v27/bengio12a.html.

Betfair. Sports API Reference Guide - v1.101. The Sports Exchange API Documentation.

Betfair, March 2012.

Léon Bottou. Stochastic gradient descent tricks. In Grégoire Montavon, Genevieve B.

Orr, and Klaus-Robert Müller, editors, Neural Networks: Tricks of the Trade - Second

Edition, volume 7700 of Lecture Notes in Computer Science, pages 421–436. Springer,

2012. ISBN 978-3-642-35288-1. doi: 10.1007/978-3-642-35289-8 25. URL https:

//doi.org/10.1007/978-3-642-35289-8_25.

George Edward Pelham Box and Gwilym Jenkins. Time Series Analysis, Forecasting and

Control. Holden-Day, Inc., San Francisco, CA, USA, 1990. ISBN 0816211043.

John F. Carter. Mastering the Trade: Proven Techniques for Profiting from Intraday and

Swing Trading Setups. American Media International, 2007. ISBN 1933309628.

Yiling Chen, Sharad Goel, and David M. Pennock. Pricing combinatorial markets for

tournaments. In Proceedings of the 40th annual ACM symposium on Theory of computing,

STOC ’08, pages 305–314, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-047-0.

doi: 10.1145/1374376.1374421.

Yuanyi Chen, Yubin Wang, and Qiang Yang. Cascaded denoising convolutional auto-

encoders for automatic recovery of missing time series data. In 2020 19th International

Symposium on Distributed Computing and Applications for Business Engineering and

Science (DCABES), pages 283–286. IEEE, 2020.

Bing Cheng and D. M. Titterington. Neural networks: A review from a statistical perspective.

Statist. Sci., 9(1):2–30, 02 1994. doi: 10.1214/ss/1177010638. URL https://doi.org/

10.1214/ss/1177010638.

Pasapitch Chujai, Nittaya Kerdprasop, and Kittisak Kerdprasop. Time series analysis of

household electric consumption with arima and arma models. In Proceedings of the

International MultiConference of Engineers and Computer Scientists, volume 1, pages

295–300, 2013.

http://dx.doi.org/10.1109/72.279181
http://proceedings.mlr.press/v27/bengio12a.html
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1214/ss/1177010638
https://doi.org/10.1214/ss/1177010638

REFERENCES 123

Gali Cohen, Ilan Levy, Yuval, Jeremy D Kark, Noam Levin, David M Broday, David M

Steinberg, and Yariv Gerber. Long-term exposure to traffic-related air pollution and

cancer among survivors of myocardial infarction: A 20-year follow-up study. European

Journal of Preventive Cardiology, 24(1):92–102, 2017.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals and Systems, 2(4):303–314, Dec 1989. ISSN 1435-568X. doi: 10.1007/

BF02551274. URL https://doi.org/10.1007/BF02551274.

Patŕıcia de Oliveira e Lucas, Marcos Antonio Alves, Petrônio Cândido de Lima e Silva, and

Frederico Gadelha Guimar aes. Reference evapotranspiration time series forecasting with

ensemble of convolutional neural networks. Computers and Electronics in Agriculture, 177:

105700, 2020. ISSN 0168-1699. doi: https://doi.org/10.1016/j.compag.2020.105700. URL

http://www.sciencedirect.com/science/article/pii/S016816992031262X.

G. Deboeck. Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial

Markets. Wiley Finance. Wiley, 1994. ISBN 9780471311003.

Dwight Deugo, Michael Weiss, and Elizabeth Kendall. Reusable patterns for agent

coordination. In in: Omicini, A., Coordination of Internet Agents, pages 347–368.

Springer, 2001.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online

learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011.

ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1953048.2021068.

Timothy S Dye. Guidelines for developing an air quality (ozone and pm2. 5) forecasting

program. 2003.

Jeffrey L. Elman. Finding structure in time. COGNITIVE SCIENCE, 14(2):179–211, 1990.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent,

and Samy Bengio. Why does unsupervised pre-training help deep learning? J. Mach.

Learn. Res., 11:625–660, March 2010. ISSN 1532-4435. URL http://dl.acm.org/

citation.cfm?id=1756006.1756025.

Kevin Fauvel, Tao Lin, Véronique Masson, Élisa Fromont, and Alexandre Termier. Xcm: An

explainable convolutional neural network for multivariate time series classification, 2020.

Björn Fischer and Christophe Planas. Large scale fitting of regression models with arima

errors. Journal of Official Statistics, 16(2):173, 2000.

Nelson Fumo and MA Rafe Biswas. Regression analysis for prediction of residential energy

consumption. Renew Sustain Energy Rev 2015;, 47::332–43, 2015.

https://doi.org/10.1007/BF02551274
http://www.sciencedirect.com/science/article/pii/S016816992031262X
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1756006.1756025
http://dl.acm.org/citation.cfm?id=1756006.1756025

124 REFERENCES

Alice Berard Georges Hebrail. Individual household electric power consumption Data Set,

November 2010. http://archive.ics.uci.edu/ml/datasets/Individual+household+

electric+power+consumption.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of

Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia,

Italy, 13–15 May 2010. PMLR. URL http://proceedings.mlr.press/v9/glorot10a.

html.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, New York, 1989.

David E. Goldberg. The Design of Innovation: Lessons from and for Competent Genetic

Algorithms. Kluwer Academic Publishers, Norwell, MA, USA, 2002. ISBN 1402070985.

Rui Goncalves, Vitor Miguel Ribeiro, Fernando Lobo Pereira, and Ana Paula Rocha. Deep

learning in exchange markets. Information Economics and Policy, 47:38 – 51, 2019.

ISSN 0167-6245. doi: https://doi.org/10.1016/j.infoecopol.2019.05.002. URL http://

www.sciencedirect.com/science/article/pii/S0167624518300702. The Economics

of Artificial Intelligence and Machine Learning.

Rui Gonçalves, AnaPaula Rocha, and FernandoLobo Pereira. High level architecture for

trading agents in betting exchange markets. In Advances in Information Systems and

Technologies, volume 206 of Advances in Intelligent Systems and Computing, pages 497–

510. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-36980-3. doi: 10.1007/978-3-642-

36981-0 46. URL http://dx.doi.org/10.1007/978-3-642-36981-0_46.

Rui Gonçalves, Vitor Ribeiro, Fernando Pereira, and Ana Paula. Roll padding and wavenet

for multivariate time series in human activity recognition. In World Conference on

Information Systems and Technologies, WorldCist’21 - 9th conference. Springer Berlin

Heidelberg - AISC series, 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR,

abs/1410.5401, 2014. URL http://arxiv.org/abs/1410.5401.

Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting

Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent advances in convolutional

neural networks. Pattern Recognition, 77:354–377, 2018.

http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://www.sciencedirect.com/science/article/pii/S0167624518300702
http://www.sciencedirect.com/science/article/pii/S0167624518300702
http://dx.doi.org/10.1007/978-3-642-36981-0_46
http://www.deeplearningbook.org
http://arxiv.org/abs/1410.5401

REFERENCES 125

Calvin Janitra Halim and Kazuhiko Kawamoto. 2d convolutional neural markov models for

spatiotemporal sequence forecasting. Sensors, 20(15):4195, 2020.

L. G. C. Hamey. A functional approach to border handling in image processing. In

2015 International Conference on Digital Image Computing: Techniques and Applications

(DICTA), pages 1–8, Nov 2015. doi: 10.1109/DICTA.2015.7371214.

James D Hamilton, Daniel F Waggoner, and Tao Zha. Normalization in econometrics.

Econometric Rev 2007;, 26(2-4)::221–52, 2007.

Arthur A Hancock, Eugene N Bush, Dusanka Stanisic, John J Kyncl, and C Thomas Lin.

Data normalization before statistical analysis: keeping the horse before the cart. Trends

in pharmacological sciences 1988;, 9(1)::29–32, 1988.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Jeff Heaton. Encog: Library of interchangeable machine learning models for java and c#.

Journal of Machine Learning Research, 16:1243–1247, 2015. URL http://jmlr.org/

papers/v16/heaton15a.html.

Donald O. Hebb. The organization of behavior: A neuropsychological theory. Wiley, New

York, June 1949. ISBN 0-8058-4300-0.

G Hebrail and A Berard. Individual household electric power consumption data set: Uci

machine learning repository, school of information and computer science; 2012. 2012.

Keith W. Hipel and A. Ian. McLeod. Time series modelling of water resources and

environmental systems / Keith W. Hipel, A. Ian McLeod. Elsevier Amsterdam ; New

York, 1994. ISBN 0444892702.

Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Master’s thesis, Technical

University Munich, Institute of Computer Science, 7 1991. (diploma thesis).

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9

(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL

http://dx.doi.org/10.1162/neco.1997.9.8.1735.

John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan

Press, Ann Arbor, MI, 1975. second edition, 1992.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Netw.,

4(2):251–257, March 1991. ISSN 0893-6080. doi: 10.1016/0893-6080(91)90009-T. URL

http://dx.doi.org/10.1016/0893-6080(91)90009-T.

http://arxiv.org/abs/1512.03385
http://jmlr.org/papers/v16/heaton15a.html
http://jmlr.org/papers/v16/heaton15a.html
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/0893-6080(91)90009-T

126 REFERENCES

Xianxu Hou, LinLin Shen, Ke Sun, and Guoping Qiu. Deep feature consistent variational

autoencoder. CoRR, abs/1610.00291, 2016. URL http://arxiv.org/abs/1610.00291.

Chia-Yu Hsu, Wei-Chen Liu, et al. Multiple time-series convolutional neural network for fault

detection and diagnosis and empirical study in semiconductor manufacturing. Journal of

Intelligent Manufacturing, pages 1–14, 2020.

Andrey Ignatov. Real-time human activity recognition from accelerometer data using

convolutional neural networks. Applied Soft Computing, 62:915–922, 2018.

Jehn-Ruey Jiang, Juei-En Lee, and Yi-Ming Zeng. Time series multiple channel convolutional

neural network with attention-based long short-term memory for predicting bearing

remaining useful life. Sensors, 20(1):166, 2020.

Wenchao Jiang and Zhaozheng Yin. Human activity recognition using wearable sensors

by deep convolutional neural networks. In Proceedings of the 23rd ACM International

Conference on Multimedia, MM ’15, pages 1307–1310, New York, NY, USA, 2015. ACM.

ISBN 978-1-4503-3459-4. doi: 10.1145/2733373.2806333. URL http://doi.acm.org/10.

1145/2733373.2806333.

Michael I. Jordan. Serial order: A parallel, distributed processing approach. In Jeffrey L.

Elman and David E. Rumelhart, editors, Advances in Connectionist Theory: Speech.

Erlbaum, Hillsdale, NJ, 1990.

Marika Kaden, Marc Strickert, and Thomas Villmann. A sparse kernelized matrix learning

vector quantization model for human activity recognition. In ESANN, 2013.

Kostas Karatzas, Nikos Katsifarakis, Cezary Orlowski, and Arkadiusz Sarzyński. Urban air

quality forecasting: A regression and a classification approach. In Ngoc Thanh Nguyen,

Satoshi Tojo, Le Minh Nguyen, and Bogdan Trawiński, editors, Intelligent Information

and Database Systems, pages 539–548, Cham, 2017. Springer International Publishing.

ISBN 978-3-319-54430-4.

Harveen Kaur and Sachin Ahuja. Time series analysis and prediction of electricity

consumption of health care institution using arima model. In Kusum Deep, Jagdish Chand

Bansal, Kedar Nath Das, Arvind Kumar Lal, Harish Garg, Atulya K. Nagar, and

Millie Pant, editors, Proceedings of Sixth International Conference on Soft Computing

for Problem Solving, pages 347–358, Singapore, 2017. Springer Singapore. ISBN 978-981-

10-3325-4.

P. Kefalas, Holcombe M., Eleftherakis G., and Gheorghe M. Formal development of reactive

agent-based systems. In Encyclopedia of Information Science and Technology, Second

Edition, IGI Global. IAV2007, 2009.

http://arxiv.org/abs/1610.00291
http://doi.acm.org/10.1145/2733373.2806333
http://doi.acm.org/10.1145/2733373.2806333

REFERENCES 127

James Kennedy and Russell C. Eberhart. Particle swarm optimization. In Proceedings of

the 1995 IEEE International Conference on Neural Networks, volume 4, pages 1942–1948,

Perth, Australia, IEEE Service Center, Piscataway, NJ, 1995.

Zulfiqar Ahmad Khan, Tanveer Hussain, Amin Ullah, Seungmin Rho, Miyoung Lee, and

Sung Wook Baik. Towards efficient electricity forecasting in residential and commercial

buildings: A novel hybrid cnn with a lstm-ae based framework. Sensors, 20(5):1399, 2020.

Tae-Young Kim and Sung-Bae Cho. Predicting the household power consumption using cnn-

lstm hybrid networks. In Hujun Yin, David Camacho, Paulo Novais, and Antonio J. Tallón-

Ballesteros, editors, Intelligent Data Engineering and Automated Learning – IDEAL 2018,

pages 481–490, Cham, 2018. Springer International Publishing. ISBN 978-3-030-03493-1.

Tae-Young Kim and Sung-Bae Cho. Predicting residential energy consumption using cnn-

lstm neural networks. Energy 2019;, 182::72–81, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Gebhard Kirchgässner and Jürgen Wolters. Introduction to Modern Time Series Analysis.

Springer, Berlin, 2007. URL https://www.alexandria.unisg.ch/52116/.

D Koschwitz, J Frisch, and C Van Treeck. Data-driven heating and cooling load predictions

for non-residential buildings based on support vector machine regression and narx

recurrent neural network: A comparative study on district scale. Energy 2018;, 165::

134–42, 2018.

S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist., 22(1):

79–86, 1951.

Ujjwal Kumar and VK Jain. Arima forecasting of ambient air pollutants (o 3, no, no 2 and

co). Stochastic Environmental Research and Risk Assessment, 24(5):751–760, 2010.

Y. LeCun and Y. Bengio. Word-level training of a handwritten word recognizer based on

convolutional neural networks. In Proceedings of the 12th IAPR International Conference

on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5),

volume 2, pages 88–92 vol.2, Oct 1994. doi: 10.1109/ICPR.1994.576881.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN 0018-9219. doi:

10.1109/5.726791.

Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications in

vision. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems,

pages 253–256, May 2010. doi: 10.1109/ISCAS.2010.5537907.

http://arxiv.org/abs/1412.6980
https://www.alexandria.unisg.ch/52116/

128 REFERENCES

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2323, 1998a. ISSN

0018-9219. doi: 10.1109/5.726791.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient backprop.

In Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS

Workshop, pages 9–50, London, UK, UK, 1998b. Springer-Verlag. ISBN 3-540-65311-2.

URL http://dl.acm.org/citation.cfm?id=645754.668382.

Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic object

recognition with invariance to pose and lighting. In Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, CVPR’04,

pages 97–104, Washington, DC, USA, 2004. IEEE Computer Society. URL http:

//dl.acm.org/citation.cfm?id=1896300.1896315.

Xiang Li, Ling Peng, Xiaojing Yao, Shaolong Cui, Yuan Hu, Chengzeng You, and Tianhe

Chi. Long short-term memory neural network for air pollutant concentration predictions:

Method development and evaluation. Environmental Pollution, 231:997 – 1004, 2017.

ISSN 0269-7491. doi: https://doi.org/10.1016/j.envpol.2017.08.114. URL http://www.

sciencedirect.com/science/article/pii/S0269749117307534.

Xuan Liang, Tao Zou, Bin Guo, Shuo Li, Haozhe Zhang, Shuyi Zhang, Hui Huang, and

Song Xi Chen. Assessing beijing’s pm2. 5 pollution: severity, weather impact, apec and

winter heating. Proc. R. Soc. A, 471(2182):20150257, 2015.

Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran Liou. Autoencoder for

words. Neurocomput., 139:84–96, September 2014. ISSN 0925-2312. doi: 10.1016/j.

neucom.2013.09.055. URL http://dx.doi.org/10.1016/j.neucom.2013.09.055.

Jeffrey W Lockhart and Gary M Weiss. Limitations with activity recognition methodology

& data sets. In Proceedings of the 2014 ACM International Joint Conference on Pervasive

and Ubiquitous Computing: Adjunct Publication, pages 747–756. ACM, 2014.

J. Magee, N. Dulay, and J. Kramer. A constructive development environment for parallel

and distributed programs. In Proceedings of 2nd International Workshop on Configurable

Distributed Systems, pages 4–14, Mar 1994. doi: 10.1109/IWCDS.1994.289940.

Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5:127–147, 1943.

http://dl.acm.org/citation.cfm?id=645754.668382
http://dl.acm.org/citation.cfm?id=1896300.1896315
http://dl.acm.org/citation.cfm?id=1896300.1896315
http://www.sciencedirect.com/science/article/pii/S0269749117307534
http://www.sciencedirect.com/science/article/pii/S0269749117307534
http://dx.doi.org/10.1016/j.neucom.2013.09.055

REFERENCES 129

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational

Geometry. MIT Press, Cambridge, MA, USA, 1969.

Mohammad Amin Morid, Olivia R. Liu Sheng, Kensaku Kawamoto, and Samir Abdel-

rahman. Learning hidden patterns from patient multivariate time series data using

convolutional neural networks: A case study of healthcare cost prediction. Journal of

Biomedical Informatics, 111:103565, 2020. ISSN 1532-0464. doi: https://doi.org/10.

1016/j.jbi.2020.103565. URL http://www.sciencedirect.com/science/article/pii/

S1532046420301933.

Michael C. Mozer. Backpropagation. In Yves Chauvin and David E. Rumelhart, editors,

Backpropagation, chapter A Focused Backpropagation Algorithm for Temporal Pattern

Recognition, pages 137–169. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1995. ISBN

0-8058-1259-8. URL http://dl.acm.org/citation.cfm?id=201784.201791.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate

o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

Andrew Y. Ng. What data scientists should know about deep learning. In Extract Data

Conference, 2015.

D. H. Nguyen and B. Widrow. Neural networks for self-learning control systems. IEEE

Control Systems Magazine, 10(3):18–23, April 1990. ISSN 0272-1708. doi: 10.1109/37.

55119.

Esteban Pardo and Norberto Malpica. Air quality forecasting in madrid using long short-

term memory networks. In José Manuel Ferrández Vicente, José Ramón Álvarez-Sánchez,

Félix de la Paz López, Javier Toledo Moreo, and Hojjat Adeli, editors, Biomedical

Applications Based on Natural and Artificial Computing, pages 232–239, Cham, 2017.

Springer International Publishing. ISBN 978-3-319-59773-7.

Ali Osman Pektas and H. Kerem Cigizoglu. Ann hybrid model versus arima and arimax

models of runoff coefficient. Journal of Hydrology, 500:21 – 36, 2013. ISSN 0022-1694.

doi: https://doi.org/10.1016/j.jhydrol.2013.07.020. URL http://www.sciencedirect.

com/science/article/pii/S0022169413005374.

Leyland F Pitt, Richard T Watson, and Daniel M Shapiro. Www. betfair. com: World wide

wagering. Communications of the Association for Information Systems (Volume 15), 15:

149–161, 2005.

Riccardo Poli. Analysis of the publications on the applications of particle swarm

optimisation. J. Artif. Evol. App., 2008:4:1–4:10, January 2008. ISSN 1687-6229. doi:

10.1155/2008/685175. URL http://dx.doi.org/10.1155/2008/685175.

http://www.sciencedirect.com/science/article/pii/S1532046420301933
http://www.sciencedirect.com/science/article/pii/S1532046420301933
http://dl.acm.org/citation.cfm?id=201784.201791
http://www.sciencedirect.com/science/article/pii/S0022169413005374
http://www.sciencedirect.com/science/article/pii/S0022169413005374
http://dx.doi.org/10.1155/2008/685175

130 REFERENCES

Jordan B Pollack. Recursive distributed representations. Artificial Intelligence, 46(1-2):

77–105, 1990.

B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR

Computational Mathematics and Mathematical Physics, 4(5):1 – 17, 1964. ISSN 0041-5553.

doi: https://doi.org/10.1016/0041-5553(64)90137-5. URL http://www.sciencedirect.

com/science/article/pii/0041555364901375.

Zhen Qin, Yibo Zhang, Shuyu Meng, Zhiguang Qin, and Kim-Kwang Raymond Choo.

Imaging and fusing time series for wearable sensor-based human activity recognition.

Information Fusion, 53:80 – 87, 2020. ISSN 1566-2535. doi: https://doi.org/10.

1016/j.inffus.2019.06.014. URL http://www.sciencedirect.com/science/article/

pii/S1566253519302180.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with

deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015. URL

http://arxiv.org/abs/1511.06434.

Martin Riedmiller and Heinrich Braun. Rprop - a fast adaptive learning algorithm. Technical

report, Proc. of ISCIS VII), Universitat, 1992.

A. J. Robinson and Frank Fallside. The utility driven dynamic error propagation network.

Technical Report CUED/F-INFENG/TR.1, Engineering Department, Cambridge Univer-

sity, Cambridge, UK, 1987.

Bernardino Romera-Paredes, Min SH Aung, and Nadia Bianchi-Berthouze. A one-vs-one

classifier ensemble with majority voting for activity recognition. In ESANN, 2013.

Charissa Ann Ronao and Sung-Bae Cho. Human activity recognition with smartphone

sensors using deep learning neural networks. Expert Syst. Appl., 59:235–244, 2016.

F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Spartan Books, Washington, 1962.

D.E. Rumelhart, G.E. Hinton, R.J. Williams, and San Diego. Institute for Cognitive Science

University of California. Learning Internal Representations by Error Propagation. ICS

report. Institute for Cognitive Science, University of California, San Diego, 1985. URL

https://books.google.pt/books?id=Ff9iHAAACAAJ.

Ana Russo, Pedro G. Lind, Frank Raischel, Ricardo Trigo, and Manuel Mendes. Neural

network forecast of daily pollution concentration using optimal meteorological data

at synoptic and local scales. Atmospheric Pollution Research, 6(3):540 – 549, 2015.

ISSN 1309-1042. doi: https://doi.org/10.5094/APR.2015.060. URL http://www.

sciencedirect.com/science/article/pii/S1309104215302245.

http://www.sciencedirect.com/science/article/pii/0041555364901375
http://www.sciencedirect.com/science/article/pii/0041555364901375
http://www.sciencedirect.com/science/article/pii/S1566253519302180
http://www.sciencedirect.com/science/article/pii/S1566253519302180
http://arxiv.org/abs/1511.06434
https://books.google.pt/books?id=Ff9iHAAACAAJ
http://www.sciencedirect.com/science/article/pii/S1309104215302245
http://www.sciencedirect.com/science/article/pii/S1309104215302245

REFERENCES 131

Samir K Safi and Ehab A Abu Saif. Using gls to generate forecasts in regression models with

auto-correlated disturbances with simulation and palestinian market index data. American

Journal of Theoretical and Applied Statistics, 3(1):6–17, 2014.

Hasim Sak, Andrew W. Senior, and Françoise Beaufays. Long short-term memory based

recurrent neural network architectures for large vocabulary speech recognition. CoRR,

abs/1402.1128, 2014. URL http://arxiv.org/abs/1402.1128.

Akash Saxena and Shalini Shekhawat. Ambient air quality classification by grey wolf

optimizer based support vector machine. Journal of environmental and public health,

2017, 2017.

Robert P. Schumaker, Osama K. Solieman, and Hsinchun Chen. Sports data mining. In

Integrated Series in Information Systems 26. Springer, 2010. ISBN 978-1-4419-6729-9.

Lianyong Qi Shaohua Wan, Xiaolong Xu, Chao Tong, and Zonghua Gu. Deep learning

models for real-time human activity recognition with smartphones. Mobile Netw Appl 25,

page 743 – 755, 2020. doi: 10.14569/IJACSA.2019.0100311. URL https://doi.org/10.

1007/s11036-019-01445-x.

A. Sharma, Y. Lee, and W. Chung. High accuracy human activity monitoring using neural

network. In 2008 Third International Conference on Convergence and Hybrid Information

Technology, volume 1, pages 430–435, Nov 2008. doi: 10.1109/ICCIT.2008.394.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai kin Wong, and Wang

chun Woo. Convolutional lstm network: A machine learning approach for precipitation

nowcasting, 2015.

Fernando M. Silva and Lúıs B. Almeida. Acceleration techniques for the backpropagation

algorithm. In Luis B. Almeida and Christian J. Wellekens, editors, Neural Networks, pages

110–119, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg. ISBN 978-3-540-46939-1.

Salwa O. Slim, Ayman Atia, Marwa M.A. Elfattah, and Mostafa-Sami M.Mostafa. Survey on

human activity recognition based on acceleration data. International Journal of Advanced

Computer Science and Applications, 10(3), 2019. doi: 10.14569/IJACSA.2019.0100311.

URL http://dx.doi.org/10.14569/IJACSA.2019.0100311.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller.

Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014. URL

http://arxiv.org/abs/1412.6806.

S. Sridhar and A. Kalaivani. A survey on methodologies for handling imbalance problem in

multiclass classification. In P. Suresh, U. Saravanakumar, and Mohammed Saleh Hussein

http://arxiv.org/abs/1402.1128
https://doi.org/10.1007/s11036-019-01445-x
https://doi.org/10.1007/s11036-019-01445-x
http://dx.doi.org/10.14569/IJACSA.2019.0100311
http://arxiv.org/abs/1412.6806

132 REFERENCES

Al Salameh, editors, Advances in Smart System Technologies, pages 775–790, Singapore,

2020. Springer Singapore. ISBN 978-981-15-5029-4.

Qiang Sun, Yanmin Zhu, Xiaomin Chen, Ailan Xu, and Xiaoyan Peng. A hybrid deep

learning model with multi-source data for pm 2.5 concentration forecast. Air Quality,

Atmosphere & Health, pages 1–11, 2020.

Ola M Surakhi, Martha Arbayani Zaidan, Sami Serhan, Imad Salah, and Tareq Hussein.

An optimal stacked ensemble deep learning model for predicting time-series data using a

genetic algorithm—an application for aerosol particle number concentrations. Computers,

9(4):89, 2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions, 2014.

H. Tong. Threshold models in non-linear time series analysis. Lecture notes in statistics.

Springer-Verlag, 1983. ISBN 9780387909189. URL https://books.google.pt/books?

id=_hTvAAAAMAAJ.

Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, 2(42):230–265, 1936. URL http://www.

cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex

Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A

generative model for raw audio, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Chi-Man Vong, Weng-Fai Ip, Pak-kin Wong, and Jing-yi Yang. Short-term prediction of

air pollution in macau using support vector machines. Journal of Control Science and

Engineering, 2012, 2012.

Jin-Feng Wang, Mao-Gui Hu, Cheng-Dong Xu, George Christakos, and Yu Zhao. Estimation

of citywide air pollution in beijing. PLOS ONE, 8(1):1–6, 01 2013. doi: 10.1371/journal.

pone.0053400. URL https://doi.org/10.1371/journal.pone.0053400.

Yanwen Wang, Yiqun Han, Tong Zhu, Weiju Li, and Hongyin Zhang. A prospective study

(scope) comparing the cardiometabolic and respiratory effects of air pollution exposure on

healthy and pre-diabetic individuals. Science China Life Sciences, 61(1):46–56, 2018.

https://books.google.pt/books?id=_hTvAAAAMAAJ
https://books.google.pt/books?id=_hTvAAAAMAAJ
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
https://doi.org/10.1371/journal.pone.0053400

REFERENCES 133

Paul J. Werbos. Generalization of backpropagation with application to a recurrent gas market

model. Neural Networks, 1(4):339 – 356, 1988. ISSN 0893-6080. doi: https://doi.org/10.

1016/0893-6080(88)90007-X. URL http://www.sciencedirect.com/science/article/

pii/089360808890007X.

P.J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. Harvard University, 1975. URL https://books.google.pt/books?id=

z81XmgEACAAJ.

JM Wooldridge. Introductory econometrics: A modern approach, 2016. Nelson Education.,

2016.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,

Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation

with visual attention. In International conference on machine learning, pages 2048–2057,

2015.

Stephen S Yau, Doo-Hwan Bae, and Jun Wang. An architecture-independent software devel-

opment approach for parallel processing systems. In Computer Software and Applications

Conference, 1995. COMPSAC 95. Proceedings., Nineteenth Annual International, pages

370–375. IEEE, 1995.

Chunyong Yin, Sun Zhang, Jin Wang, and Neal N Xiong. Anomaly detection based on

convolutional recurrent autoencoder for iot time series. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 2020.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701,

2012. URL http://arxiv.org/abs/1212.5701.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.

In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer

Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International Publishing.

ISBN 978-3-319-10590-1.

An Zhang, Qingwen Qi, Lili Jiang, Fang Zhou, and Jinfeng Wang. Population exposure to

pm2.5 in the urban area of beijing. PLOS ONE, 8(5):1–9, 05 2013. doi: 10.1371/journal.

pone.0063486. URL https://doi.org/10.1371/journal.pone.0063486.

G. Peter Zhang. A neural network ensemble method with jittered training data for time

series forecasting. Inf. Sci., 177(23):5329–5346, December 2007. ISSN 0020-0255. doi:

10.1016/j.ins.2007.06.015. URL http://dx.doi.org/10.1016/j.ins.2007.06.015.

http://www.sciencedirect.com/science/article/pii/089360808890007X
http://www.sciencedirect.com/science/article/pii/089360808890007X
https://books.google.pt/books?id=z81XmgEACAAJ
https://books.google.pt/books?id=z81XmgEACAAJ
http://arxiv.org/abs/1212.5701
https://doi.org/10.1371/journal.pone.0063486
http://dx.doi.org/10.1016/j.ins.2007.06.015

134 REFERENCES

Guoqiang Peter Zhang. Time series forecasting using a hybrid arima and neural network

model. Neurocomputing, 50:159–175, 2003. URL http://dblp.uni-trier.de/db/

journals/ijon/ijon50.html#Zhang03.

Yang Zhang, Marc Bocquet, Vivien Mallet, Christian Seigneur, and Alexander Baklanov.

Real-time air quality forecasting, part i: History, techniques, and current status.

Atmospheric Environment, 60:632 – 655, 2012. ISSN 1352-2310. doi: https://doi.

org/10.1016/j.atmosenv.2012.06.031. URL http://www.sciencedirect.com/science/

article/pii/S1352231012005900.

O. Zweigle, U. P. Kappeler, K. Haussermann, and P. Levi. Event based distributed real-time

communication architecture for multi-agent systems. In 5th International Conference on

Computer Sciences and Convergence Information Technology, pages 503–510, Nov 2010.

doi: 10.1109/ICCIT.2010.5711108.

http://dblp.uni-trier.de/db/journals/ijon/ijon50.html#Zhang03
http://dblp.uni-trier.de/db/journals/ijon/ijon50.html#Zhang03
http://www.sciencedirect.com/science/article/pii/S1352231012005900
http://www.sciencedirect.com/science/article/pii/S1352231012005900

	Abstract
	Resumo
	List of Tables
	List of Figures
	Listings
	Introduction
	Deep Learning
	Time Series Prediction Problem
	Objectives of the Research
	Approach
	Definitions of Terms

	Literature Review
	Neural Networks
	Feed Forward Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	Convolutional Neural Networks
	Convolutional LSTM 2D
	WaveNet
	Temporal Convolutional Network
	Autoencoders

	Optimization
	Backpropagation
	Genetic Algorithms
	Particle Swarm Optimization
	Error Functions

	Auto-Regressive Integrated Moving Average Model

	Case Studies
	Human Activity Recognition
	Air Pollution - PM2.5 Concentration
	Individual Household Electric Power Consumption
	Betting Exchange Markets
	Trading Framework
	Data Collection and Feature Engineering

	Methodologies and Results
	Models Architectures
	CNN LeNet Based Models
	Traditional Paddings
	Roll Padding

	LSTM Based Models
	Standard Attention
	Multi-Head Convolutional Attention

	ConvLSTM2D Based Models
	ConvLSTM2D for Segmented Time Series
	ConvLSTM2D Convolutional Attention with Roll Padding

	Multivariate WaveNet
	WaveNet 1D with Multichannel Input
	WaveNet Extended with 2D Convolutions and Roll Padding

	Results
	HAR - UCI Dataset
	Air Pollution - PM2.5 Concentration
	Household Electric Power Consumption
	Betting Exchange - Horse Racing Markets

	Conclusions and Future Work
	Conclusions
	Future Work

	Glossary
	References

