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Abstract

We live in an era where there are multiple devices with different kinds of operating systems
and hardware. Some of those devices have limitations in physical size and power consumption,
making them incapable of delivering a 3D graphics rendering experience comparable to high-end
desktops. Furthermore, many applications that render intensive graphics are unable to run on
mobile platforms directly, due to incompatibilities in both hardware and software. This issue
can be addressed with the idea of a web-based 3D application that uses streaming to display
3D content. The heavy 3D graphics rendering computation runs on a powerful server and the
results are streamed to a web-based client.

This thesis presents a fully functional remote streaming web-based 3D visualization application,
that will enable any device to render interactive 3D graphics in real-time. The application only
requires a web browser to work and is not limited by the hardware/software and the physical size
of the used device. Our application takes advantage of real-time communication technologies, like
WebRTC, and multimedia frameworks, like GStreamer, to stream 3D content through the web
browser. We also study the performance limitations of native rendering 3D content on mobile
devices, by evaluating the number of objects various mobile devices are capable of rendering,
concluding that mobile devices are less adequate to render a high number of polygons. In our
experiments, the server completed the rendering, on average, 10% faster than our most powerful
smartphone, and rendered 46 300 more objects.

i





Resumo

Vivemos numa era onde existem múltiplos dispositivos com diferentes categorias de sistemas
operativos e equipamento físico. Alguns destes dispositivos apresentam limitações no seu tamanho
e consumo de energia, o que faz com não sejam capazes de reproduzir uma experiência de gráficos
3D comparável com um computador de topo. Além disso, muitas aplicações que fazem render
intensivo de gráficos, não são capazes de serem executadas diretamente num dispositivo móvel,
devido às incompatibilidades em ambos, equipamento físico e software. Este problema pode ser
resolvido, com a ideia de uma aplicação 3D baseada em web que utiliza streaming para visualizar
conteúdo 3D. Devido à quantidade de recursos necessários, o render de gráficos 3D, é efetuado
num servidor, e os resultados são posteriormente transmitidos para um cliente em web.

Esta tese apresenta uma aplicação para visualizar transmissões remotas de conteúdo 3D
baseada em web, que faz com que seja possível qualquer dispositivo renderizar gráficos 3D
interativos em tempo real. A aplicação apenas requer um navegador web para funcionar, e não
está limitado pelo equipamento físico ou software e o tamanho físico do dispositivo utilizado. A
nossa aplicação utiliza tecnologias de comunicação em tempo real, como WebRTC, e frameworks
de multimédia como o GStreamer, para transmitir conteúdo 3D através de um web browser. Vamos
estudar as limitações de desempenho da renderização nativa de conteúdo 3D em dispositivos
móveis, através da avaliação do número de objetos que vários objetos são capazes de renderizar,
chegando à conclusão que os dispositivos móveis são menos adequados para renderizar números
altos de polígonos. Nos nossos testes, o servidor completou a renderização, em média, 10% mais
rápido do que o nosso melhor smartphone e renderizou mais 46 300 objetos.
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Chapter 1

Introduction

This chapter provides an overview of the thesis by presenting and defining a web-based real-time
streaming 3D visualization solution. We start by describing the motivation, the overview, the
objectives, the contributions, and to finalize the organization of the chapters.

Since 2007, with the first release of the iPhone 1, the percentage of the population that
is actively using a smartphone has been increasing exponentially, wherein 2021 according to
Statista, approximately 48.34% of the population have a smartphone [37]. The increase in
different types of mobile devices available, such as smartphones and tablets, has been changing
the way people interact with their computing devices. Although the computational resources
available on mobile devices has been improving throughout the years, they are more focused on
lightweight graphics rendering, and due to the limitations and restrictions of physical size and
power consumption, they are still far from being able to provide similar Three-dimensional (3D)
rendering capabilities as a desktop. With the rapid advances in hardware capabilities and network
transmission, streaming technologies have been a practical solution to a variety of tasks like
video streaming, web conferencing, and cloud gaming.

1.1 Motivation

With the recent increase in computational resource demand, there has been a development in the
availability of cloud-based services. Normally, graphics-intensive workloads do not run smoothly
on low-power Central Processing Unit (CPU) and Graphics Processing Unit (GPU) devices,
but, by utilizing a cloud-based service, we can run computational-intensive visualizations on
any device. Most of the existent solutions are currently either proprietary or require additional
software to be installed, and are not compatible with all the major platforms and devices. The
most common open-source streaming solutions used to remotely control and visualize content
have not seen a significant leap in performance in several years. Popular tools like Virtual
Network Computing (VNC) and Remote Desktop Protocol (RDP) are still the most used remote

1More information at: https://en.wikipedia.org/wiki/IPhone_(1st_generation)

1

https://en.wikipedia.org/wiki/IPhone_(1st_generation)


2 Chapter 1. Introduction

desktop solutions over the internet, but they are not well suited for the modern web browser,
since they usually require you to install additional client software or plug-ins.

There are solutions like Guacamole, noVNC, and X Persistent Remote Applications (Xpra),
that we studied with more detail in the state-of-the-art section 3, which already provide a web-
based experience, but unfortunately they don’t meet the performance and latency requirements for
graphic-intensive workloads, like rendering high-fidelity 3D content. In the table 1.1, inspired by
the one found in the Google cloud solutions article "GPU-accelerated streaming using WebRTC"
[15], we can compare the most popular open-source streaming tools capabilities.

Most of the modern GPUs can encode real-time streams in hardware, which massively improves
the performance of streaming technologies by decreasing the CPU usage and bandwidth required to
deliver content. Some existent tools like Guacamole and noVNC don’t support hardware encoding,
which makes it hard when it comes to delivering good performance at a high resolution, other
tools like Xpra have support for hardware encoding, but still suffer when it comes to optimizing
bandwidth for graphic demanding tasks. One possible solution to the described problem is
to stream content to a web browser by using Web Real-Time Communication (WebRTC) and
GStreamer which enables you to perform low-latency communication in real-time and access
any available GPUs for hardware encoding or decoding of real-time streams, through the web
browser.

Table 1.1: Open-source streaming capabilities

Solution Web based Hardware encoding Hardware decoding
VNC No No No

RDP No No No

Guacamole Yes No HTML5 Canvas

NoVNC Yes No HTML5 Canvas

Xpra Yes Yes HTML5 Canvas

1.2 Overview

In this thesis, our focus was to implement a web-based 3D visualization application that took
advantage of real-time streaming technologies to provide high-fidelity graphics-intensive content
through the web browser, while maintaining good performance metrics, such as, latency and
framerate.

With that in mind, we developed a full-stack application, which, as we can observe in
the application overview figure 1.1, is composed of three main components, the client, the
communication, and the server. The first component is the client web browser, which serves

https://www.html5rocks.com/en/tutorials/canvas/performance/
https://www.html5rocks.com/en/tutorials/canvas/performance/
https://www.html5rocks.com/en/tutorials/canvas/performance/


1.3. Objectives 3

the purpose of visualizing the content that is being transmitted from the server. Due to the
importance of having multiple device compatibility, the client does not require any additional
software or plug-in installation and the User Interface (UI) was implemented to be compatible
with a variety of windows resolutions. The next component is communication, for the client and
the server to be able to establish peer connection between each other we utilized the WebRTC
protocol. With WebRTC we were able to include real-time communication capabilities in our
application. The final component is the server, which contains the streaming engine and the
application we want to stream. The streaming engine was developed using the GStreamer
multimedia framework and its respective Python binding, by implementing a pipeline that was
capable of capturing an application window, encode it through the usage of a hardware-based
encoder, and send the video stream by utilizing WebRTC.

Figure 1.1: Application Overview

1.3 Objectives

The overall goal of this thesis is to provide a way for multiple people to visualize high-fidelity 3D
content, without having restrictions on devices, operative systems, and available computational
resources, a good example would be to use this system for visualization and interaction of 3D
characters with a dense number of polygons and high resolution textures. We want the user to be
able to stream any application with high resolution and low latency. As a result, we have a client
and a server, where the client is a web browser page that is capable of receiving the video stream
by establishing a connection with the server, and the server hosts the streaming engine, the
application we want to broadcast, and also acts as an Application Programming Interface (API)
to listen to a possible client request, such as, changing window resolution and video bitrate.
For the experiments and tests, we created a fully functional web-based 3D application, using
an efficient Web Graphics Library (WebGL) framework called three.js [24], which allows the
usage of any device with a WebGL compatible web browser [45], without the need to install any
additional software, enabling the evaluation to be performed in mobile devices and the streaming
server in simultaneous.

To accomplish the described goals we have the following objectives throughout the thesis:

1. Study of the current state of the art for the existing frameworks and streaming technologies.

2. Develop a real-time web-based client that connects with the server and visualizes the
streamed content.
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3. Implement an API that receives the client requests and processes them on the server.

4. Develop the server streaming engine.

5. Perform tests regarding the streaming quality against native rendering on mobile devices.

1.4 Contribution

In the present thesis we have made the following contributions:

1. Web Based Live Streaming Server: By utilizing state-of-the-art technologies like
WebRTC and GStreamer, we developed an open-source streaming application, that can
stream and remotely control any 3D application with low latency and high rendering
quality.

2. Web Client: We implemented a web-based client application, that communicates with a
server, and can visualize streamed content from a cloud server.

3. Evaluation tests: Made experiments and tests that demonstrated the current limitations
of mobile devices, by comparing the number of polygons that mobile devices are capable of
rendering against a streaming server.

1.5 Outline

The present thesis is divided into six chapters, each describing a variety of work that was done.

Chapter 1 introduces our work by describing the context of our thesis and the problem we
want to solve, what and why we want to do it, and how we achieved our objectives.

Chapter 2 gives a background by presenting the foundations of our work, giving theoretical
aspects and background material that we need, to understand the terminology and expressions
used in the following chapters.

Chapter 3 discusses the current state of the art related to our thesis, describing the existing
frameworks, technologies, and related work previously done by others.

Chapter 4 describes the contribution of the work done and how our streaming application
was implemented by outlining the different development phases for the server and client.

Chapter 5 presents the experiments and tests that were done to evaluate the benefits and
performance results of our streaming solution.

Chapter 6 concludes the project thesis and describes the possibilities for future work.



Chapter 2

Background

This chapter presents the foundations needed to fully understand our work. We establish the
context of our thesis, by explaining all theoretical aspects and background material that is
used in the remaining chapters. We will start by explaining Web Graphics Library (WebGL),
following by describing protocols such as Real-time Transport Protocol (RTP), Session Description
Protocol (SDP) and Web Real-Time Communication (WebRTC).

2.1 WebGL

WebGL is a JavaScript Application Programming Interface (API) for rendering Three-dimensional
(3D) and Two-dimensional (2D) graphics within any compatible web browser without the need
to use additional plugins. It is developed and maintained by the Khronos Groups and is the
standard for 3D graphics on the web. WebGL enables the developers to take advantage of the
computer’s graphics rendering hardware by only using JavaScript and a web browser [35]. Due
to being based on Open Graphics Library (OpenGL), WebGL provided numerous advantages,
such as [44]:

• WebGL API: the WebGL API is based on the most common and widely accepted 3D
graphics standard.

• Cross-platform: WebGL is capable of running on any operating systems and devices, with
the only limitation being the availability of a compatible web browser.

• Hypertext Markup Language (HTML) Content Integration: WebGL is closely integrated
with HTML content, layering with other page content, interacting with other HTML
elements, and makes use of the standard HTML event handling mechanisms.

• Dynamic Web Applications: the technology was developed with web delivery as the main
focus. WebGL has OpenGL for Embedded Systems (ES) as its foundation, but adaptations
were made with specific features to improve the integration with web browsers.

5
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In this thesis, we used WebGL to develop a cross-platform 3D web application for executing
experiments and tests. Because of the low-level nature of the WebGL API, we utilized a JavaScript
framework to aid in the development. In the state-of-the-art chapter 2, we reviewed the most
popular WebGL frameworks and performed an analysis to identify which one is the most suited
for our needs.

2.2 RTP

RTP provides end-to-end network transport operations suitable for applications that require
the transmission of real-time data, such as interactive audio and video or simulation data, over
multicast or unicast network services [38]. The data transport is secured through the usage of a
control protocol Real-time Transport Control Protocol (RTCP), which enables the monitoring of
the data delivery in a scalable way to large networks. Additionally, some core definitions, that
are used throughout the thesis, are the following:

• RTP payload: the payload contains the data transported by RTP in a packet, such as
audio samples or compressed video data.

• RTP packet: RTP packet is a data packet that contains a fixed RTP header, a possibly
empty list of contributing sources, and the payload data. An illustration of the RTP header,
can be seen in the figure 2.1.

• RTCP packet: RTCP packet is a control packet that consists of a fixed header, in part
similar to that of RTP data packet, followed by structured elements that may differ
depending on the RTCP packet type. An illustration of the RTCP packet format, can be
seen in the figure 2.2.

Figure 2.1: RTP Header
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Figure 2.2: RTCP Packet Format

2.3 SDP

SDP supplies a way to convey information about media streams in multimedia sessions to enable
the recipients of a session description to engage in a session [3]. The protocol provides a standard
representation for information, such as media details, transport addresses, and other session
description metadata that is required of the participants, which are necessary when initiating
multimedia teleconferences, voice-over-IP calls, or streaming videos. In general, a SDP session
description consists of the following information:

• The purpose of a session and its respective name.



8 Chapter 2. Background

• The time that the current session is active.

• Which media the session is composed of.

• Additional information needed to receive those media, such as addresses, ports, and formats.

For our thesis, the most relevant is the media and transport information, for that, the SDP
session descriptions include the following media information:

• Type of media, for example, audio and video.

• Transport protocol, such as the previously discussed RTP.

• The format of the media, like H.264 video or Moving Picture Experts Group (MPEG)
video.

2.4 WebRTC

WebRTC is the standard when it comes to peer-to-peer real-time communications on the web
browser [25]. It enables Web applications and sites to exchange in real-time, audio, video, and
data. The set of technologies that comprise WebRTC makes it possible to share peer-to-peer
data, such as video-calling applications and screen sharing, without requiring the user to install
additional plug-ins or third-party software.

The technology consists of numerous interrelated APIs and Protocols [53]. The protocol is a
set of rules for two WebRTC agents to negotiate peer-to-peer secure real-time communication.
The API enables the developers to utilize the protocol through the usage of JavaScript and must
provide accordingly a wide set of functions, like connection’s management, encoding/decoding
negotiation capabilities, media control and firewall, and Network Address Translation (NAT).

The wide range of capabilities that WebRTC provides can enable us to implement a web-based
streaming solution. In the following sections, we describe the three main processes necessary to
establish peer-to-peer communication, and some technologies from the WebRTC protocol, that
are relevant to understand the topics presented in our thesis.

2.4.1 Signaling

At the start, a WebRTC agent has no means to know who will communicate with and what they
will communicate about. For multiple agents on different networks to be capable of locating
each other, the discovery and media format negotiation needs to take place in a process called
signaling. Signaling uses the previously discussed SDP to deliver the message. Each message is
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conceived of key/value pairs that consist of a list of media descriptions. The SDP message can
be used to exchange three types of information 1:

• Session control messages: this is required to initialize or terminate the communication and
can also be used to report errors that occurred during the session;

• Network configuration: when communicating outside our local network, signaling can give
information about your computer’s IP address and port.

• Media capabilities: determine what codecs and resolutions are compatible with your browser
and the browser it wants to communicate with.

2.4.2 Connecting

After the two agents successfully communicate with the signaling service, they will be able to
attempt to connect. Due to the constraints of the real-world networks, such as two agents not
being on the same network, protocol restrictions, and firewall rules, WebRTC uses Interactive
Connectivity Establishment (ICE) technology and Session Traversal Utilities for NAT (STUN)
or Traversal Using Relays around NAT (TURN) servers, to provide a solution.

• ICE: ICE is a protocol that allows for the establishment of a connection between two
agents, by finding the best way possible to communicate. Each ICE candidate publishes
the way they can be reached, by providing information about the transport address of the
agent. The protocol then determines which are the best pairing of candidates 2.

• STUN: STUN is a protocol that was created to aid in dealing with NAT traversal, and it
can be used to help an endpoint that is behind an NAT to determine its respective address
and port 3.

• TURN: One of the disadvantages of STUN is that it only works when direct connectivity
is possible. When there are two NAT types that are incompatible or different protocols, a
TURN server might be required. TURN is a dedicated server that supports STUN and is
used to relay traffic if direct peer-to-peer connections are unsuccessful 4.

2.4.3 Communicating

The communication between two WebRTC agents is possible once the connection processes are
completed with success. With WebRTC it is possible to receive and send unlimited amounts
of audio and video stream while being codec agnostic. To communicate, two existing protocols

1More information at https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_
video_calling

2More information at https://www.rfc-editor.org/rfc/rfc8445.html
3More information at https://www.rfc-editor.org/rfc/rfc8489.html
4More information at https://www.rfc-editor.org/rfc/rfc8656.html

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://www.rfc-editor.org/rfc/rfc8445.html
https://www.rfc-editor.org/rfc/rfc8489.html
https://www.rfc-editor.org/rfc/rfc8656.html
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can be used: RTP and RTCP. As we saw previously in the RTP section 2.2, the protocol
was designed to enable the delivery of real-time video stream, and RTCP is focused on the
communication of metadata.

In addition to media communication, another key feature of WebRTC is the existence of
data channels for data communication. The Data Channel API was created to provide a generic
transport service, enabling multiple clients to exchange bi-directional peer-to-peer data, with low
latency and high performance.



Chapter 3

State of The Art

In this chapter we discuss the current state-of-the-art, starting with the analysis of the currently
available Web Graphics Library (WebGL) frameworks, following with the most common remote
desktop technologies, streaming multimedia frameworks, and cloud gaming services, concluding
with the review of related work and articles.

In the last few years, there has been an evolution in the development of new technologies
for the creation of Web-Based Three-dimensional (3D) Visualizations. Browsers have gotten
more powerful and have become capable of delivering complex applications and graphics. The
most popular browsers have adopted WebGL, which enables you not only to develop Two-
dimensional (2D) applications but also 3D applications, by using the capabilities of the Graphics
Processing Unit (GPU). WebGL-based technologies and frameworks are still dependent on the
client and are limited by the computational resources available from the device that is being
used for the rendering. One solution for this issue is to use a streaming-based service, where the
3D content is being rendered on a server, and frames are streamed through the web browser. To
have a concrete notion of what is the current status of these concepts, we explore some of the
work that has been done and compare it with what we want to accomplish with the dissertation.

3.1 WebGL Frameworks

Programming with WebGL directly, is very time-consuming and complex. Because of that,
multiple frameworks have been developed to facilitate the development of Web-Based 3D
Applications. Frameworks abstract the complexities of WebGL and help you become more
productive and simplify the learning process. Below we talk about some of the most popular
frameworks.

11
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3.1.1 three.js

Three.js, in November 2020, was the most widely used JavaScript framework for displaying
3D content on the web [24]. The three.js library provides a very easy-to-use JavaScript (JS)
Application Programming Interface (API) based on the features of WebGL. The JS framework
allows you to create and display animated 3D applications in the web browser, without the need
to learn the WebGL details [7]. Three.js provides numerous features and APIs that can be used
to develop 3D scenes and includes a variety of examples and modules with very useful additions
like for example an Orbital Camera and a Filmbox (FBX) Loader, which makes developing a 3D
Visualization tool very easy and hassle-free. Some key features of the three.js framework are the
following [6]:

• Built-in vector and matrix operators.

• API wrapper implementation of cameras, lights, materials, shaders, objects, and common
geometries.

• Import and Export utilities (Supported formats can be seen in table 3.1).

• Great documentation and examples.

3.1.2 babylon.js

Babylon.js is a similar framework to three.js in that it allows for the creation of 3D applications
and video games for the Web [2]. The babylon.js is a JavaScript framework developed using
TypeScript, it can be used to create 3D applications and video games. The framework was built
with the core focus around simplicity by adding tools like:

• Playground: is a live editor for Babylon.js WebGL 3D scenes. You can write code and
simply see the result instantly.

• Sandbox: viewer tool, that allows you to import supported files and display them in the
browser (Supported formats can be seen in table 3.1).

• Node Material Editor: allows you to avoid writing complicated shader language core, by
instead replacing it with an interactive node-based User Interface (UI). It can also be used
to create procedural textures, particle shaders, and post-process effects.

• Particle Editor: you can create and configure particle systems with the click of the mouse.

• Sprite Editor: enables you to create, control, and save sprite systems.

• Skeleton Viewer: makes it quick and easy to debug rigging issues inside your scene.

• Inspector: allows the analysis and debug of a scene.

https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene
https://github.com/mrdoob/three.js/tree/master/examples
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With all the features presented, Babylon.js is one of the simplest frameworks to work with and
learn, but that can also add some unnecessary overhead, which can produce worse performance
results. We analyze the differences in performance from Three.js versus Babylon.js in 3.1.9
"Three.js vs Babylon.js".

3.1.3 PixiJS

PixiJS is a free open-source rendering library that allows the creation of interactive graphics
experience, cross-platform applications, and games without having to directly deal with the
WebGL API and facilitates multiple device and browser compatibility. One of the PixiJS
strengths is the performance, but contrarily to three.js and babylon.js, it only allows for 2D
graphics rendering [14].

3.1.4 PlayCanvas

PlayCanvas is an open-source game engine, that uses HTML5 and WebGL to run games and
other interactive 3D content in any mobile or desktop browser. PlayCanvas is a fully-fledged game
engine similar to Unity or Unreal Engine but for the web browser. The engine comes with an
editor, that enables a drag-and-drop environment for building 3D scenes with the integration of
physics, animations, audio engines, and a scripting interface. Although open-source PlayCanvas
has some paid features, like for example private projects and team management features [36].

3.1.5 Clara.io

Clara.io is a full-featured cloud-based 3D modeling, animation, and rendering software tool that
runs in the web browser. The tool shares similarities with Maya and Blender, it lets you create
complex 3D models, make photorealistic renderings, and share them without the need to install
any additional software. Clara.io supports Three.js and Babylon.js, but it is more suited to 3D
modeling instead of the development of 3D applications [11].

3.1.6 Unity

Unity, in November 2020 was the world’s leading platform for creating and operating interactive,
real-time 3D content [47]. It provides tools for developing games and publish them to a wide
range of different devices. Although Unity is not a framework like for example three.js, it is
still relevant to evaluate since it has a WebGL build option. Some key features of Unity that
differentiate it from the others are the following:

• Real-time 3D creation for everyone: you can create 2D or 3D scenes, animations, or
cinematics directly in the Unity editor
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• Create once, deploy anywhere: you can build your content once and deploy across 20
different platforms, one of them being WebGL. The WebGL build option allows Unity to
publish content as JavaScript programs, using HTML5/JavaScript, Web Assembly, WebGL
rendering API and other web standards to run Unity content in a web browser.

Compared to other game engines, Unity has a more user-friendly experience by providing a
scripting API in C# and an easy-to-use interface with drag and drop functionalities.

3.1.7 Unreal Engine

Unreal Engine is the world’s most open and advanced real-time 3D creation tool developed by
Epic Games [9]. Unreal Engine is a real-time engine and editor that contains photorealistic
rendering, dynamic physics, and effects. When it comes to the language used, the engine utilizes
C++ and their Blueprints Visual Scripting, which is a complete gameplay scripting system based
on the concept of using a node-based interface to develop within the Editor. Similar to Unity,
Unreal Engine also supports HTML5 projects by utilizing the Emscripten toolchain from Mozilla
to cross-compile UE4’s C++ code into JavaScript [10].

3.1.8 Comparison between different frameworks

To find the most optimal framework for our project, we can look at the table 3.1 which compares
different frameworks’ features. The table was based on the "List of WebGL frameworks" found
in [54].

3.1.9 Three.js vs Babylon.js

Three.js and babylon.js are the two most popular frameworks when it comes to developing
web-based 3D applications. To find which one is the most adequate for our project, we evaluate
the performance of both. Babylon.js with its playground and node material editor has the
advantage when it comes to the creation of 3D applications easier and faster, but, as we will
observe further if performance is a priority three.js might be a better option. Karlsson and
Nordquist [22] made a performance comparison of three.js and babylon.js about rendering Voronoi
height maps in 3D, although such rendering is not particularly useful to our project, their analysis
is still relevant to our decision. In their analysis they ran performance tests for GPU, Central
Processing Unit (CPU) and Random-access Memory (RAM):

• GPU: when it came to GPU performance they found that three.js was a better performer
than babylon.js.

• CPU: similar to GPU results, three.js had less CPU usage when compared to babylon.js.
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Table 3.1: Comparing framework features

Scripting Modeling Animation Import License
three.js JavaScript No Yes glTF, DRACO,

FBX, OBJ,
STL, MMD,
PRWM, PCD,
PDB

MIT

babylon.js JavaScript,
TypeScript

No Yes OBJ, FBX,
STL, Babylon,
glTF

Apache License
2.0

PixiJS JavaScript No Yes MIT
Clara.io JavaScript,

REST API
Yes Yes OBJ, FBX,

Blend, STL,
STP

Freemium or
commercial

PlayCanvas JavaScript No Yes DAE, DXF,
FBX, glTF,
GLB, OBJ

MIT (engine),
proprietary
(cloud-hosted
editor)

Unity C# Yes Yes FBX, OBJ Proprietary
Unreal Engine C++,

Blueprints
Visual
Scripting

Yes Yes FBX, OBJ Proprietary

• RAM: for the RAM performance, three.js had slightly more RAM usage than babylon.js,
but in their analysis, they concluded that the difference was not statistically significant.

When looking at strictly performance results, three.js used significantly less CPU and GPU than
babylon.js, because of that if performance is a priority, three.js would be our best choice, however,
as we saw in 3.1.2 babylon.js wins when it comes to features and simplicity. Because of the
benefits in CPU and GPU performance, three.js is the best framework for the experiments and
tests of our project.

3.2 Streaming Technologies

In this section, we go through some of the solutions that utilize the most common protocols
to provide a web-based experience, multimedia frameworks that can be used to stream video,
and also some of the most recent technologies that take advantage of protocols like WebRTC to
enable real-time streaming of 3D content. Throughout the years there have been many streaming
solutions available in the market, most of them are divided into two different approaches, the first
one is to simply stream video and audio, this is commonly used for non-interactive video content
on platforms like YouTube and Twitch, the other is based on remote-desktop technologies, where
the user can utilize a client application to remotely connect to their desktop. The last approach
is the one that is most related to what we want to achieve, but the most common protocols, like
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Virtual Network Computing (VNC) and Remote Desktop Protocol (RDP), were not designed to
work with a modern web browser, requiring the users to install additional software, which makes
it difficult to support compatibility with multiple platforms.

3.2.1 xpra.org

X Persistent Remote Applications (Xpra) is an open-source multi-platform persistent remote
display server and client for forwarding applications and desktop screens [55]. Xpra gives you
remote access to the full desktop or an individual application by running an X client on a remote
host, and direct their display to a local machine. The tool differs from others, in that it allows
disconnection and reconnection without disrupting the forward application, and it also has an
Hypertext Markup Language revision 5 (HTML5) Client which is particularly useful for our
project.

3.2.2 Apache Guacamole

Apache Guacamole is a clientless remote desktop gateway. As opposed to, Xpra it supports
multiple standard protocols like VNC, RDP, and Secure Shell (SSH). Apache Guacamole doesn’t
require any plugin or client software, since everything is accessible through an HTML5 web
application. The software supports cloud computing, which means that we can access desktops
that don’t exist physically and use a desktop operating system hosted in the cloud. Apache
Guacamole is free and open-source software and is licensed under the Apache License, version
2.0 [43].

3.2.3 NoVNC

noVNC is an open-source browser-based VNC client implemented using HTML5 Canvas and
WebSockets [21]. noVNC is both a Hypertext Markup Language (HTML) VNC client JavaScript
library and an application built on top of that library. The VNC client supports all modern
browsers including mobile, which is particularly useful for our project, it also supports scaling,
clipping, and resizing the desktop, local cursor rendering, clipboard copy/paste, and touch
gestures for emulating common mouse actions. For the server component, noVNC follows the
standard VNC protocol, but unlike other VNC clients, it does require WebSockets support.
There are many VNC servers that already include support for WebSockets, but if there is a need
to use a VNC server without the support we can use a WebSockets to Transmission Control
Protocol (TCP) socket proxy, like websockify [31] which is developed by the same team as
noVNC.
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3.2.4 GStreamer

GStreamer is a multimedia framework for constructing graphs of media-handling components
and creating streaming media applications [17]. The framework is based on plugins that can
provide different codecs and functionalities. The various existing plugins can be arranged and
linked in a pipeline, which defines the flow of the data. GStreamer framework is designed to
easily implement applications that handle both audio and video. The pipeline design is made to
have a low overhead above what is already induced by the applied filters, which makes GStreamer
a good framework for the design of the high-end application that places high demands on latency.
The GStreamer core function is to serve as a framework for plugins, data flow, and media type
handling/negotiation. It also provides an API to write applications using the various plugins [41].
To assist in the development GStreamer has bindings for some of the most popular languages
including Python, Perl, C++, .NET, Java, and many more [18]. The GStreamer plugins can be
classified into [19]:

• protocols handling

• sources: for audio and video

• formats: formaters, muxers, demuxers, metadata, and parsers

• codecs: encoders and decoders

• filters: converters, mixers, and effects

• sinks: for audio and video

The "GStreamer Bad Plug-ins" has a Web Real-Time Communication (WebRTC) bin, that
enables the connection of a streaming server with a web-based client by using the WebRTC
protocol, which is particularly useful for our project.

3.2.5 FFmpeg

FFmpeg is a free and open-source solution to record, convert and stream audio and video.
FFmpeg is used by well-known software and websites to read and write audiovisual files, for
example, VLC, Google Chrome, and YouTube [13]. FFmpeg can be used as a command-line
tool to perform tasks like transcoding or extracting metadata from files [12]. Like GStreamer,
FFmpeg allows the user to live stream video and audio from a desktop, but it does not support
WebRTC connections, which makes it harder to be used in a web-based application.

3.2.6 Furioos

Furioos is a cloud-based service that enables you to stream fully interactive 3D experiences from
Unity, Unreal Engine, other real-time 3D platforms, and applications [48]. Their technology
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makes it easy to share the interactive 3D applications on web browsers and embed them onto
websites, and the cloud rendering service can be set up almost instantly with no download and
low latency to any platform. Furioos can stream 3D applications to almost any device, with
the only requirement being a device that is capable of receiving a video stream through a web
browser. Some key benefits of Furioos are the following [49]:

• Easy upload: Furioos can automatically detect the corresponding executable file from a
ZIP archive containing an application, by simply dragging and dropping.

• Easy sharing: the interactive 3D projects can be shared with the clients and collaborators
through a generated URL or iFrame to embed on a website.

• Seamless end-user experience: their technology does not require account creating, down-
loading a plug-in, or a high-end computer, making it accessible to any user.

• Easy streaming: the cloud rendering service can be set up instant, independently of the
end-user device, with almost no download time and low latency.

• Automatic scaling: Furioos can scale to accommodate various web traffic from anywhere in
the world.

• Multiplatform power: the Furioos cloud rendering service, is compatible with multiple
types of equipment capable of receiving a video stream, including computers and mobile
devices.

Furioos was acquired by Unity in 2019 and has been integrated into the Unity Render
Streaming technologies [26].

3.2.7 Unity Render Streaming

Unity Render Streaming provides Unity’s high-quality rendering via web browser, by taking ad-
vantage of WebRTC technology. It was designed to provide a solution to viewing graphic-intensive
tasks like car configurators or architectural models on mobile devices [50]. When compared to
other streaming technologies like Furioos, Unity Render Streaming has the disadvantage of being
limited to only streaming Unity-based projects. Nevertheless, the core features introduced by
the Unity Render Streaming package are the following [51]:

• Video streaming: enable the broadcast of the video rendered on Unity to the web browser
via the network.

• Audio streaming: allows the streaming of sounds generated by Unity, additionally it can
also cast to multiple browsers simultaneously.

• Remote control: grants the ability to send input messages to Unity from the browser and
supports sending inputs from multiple browsers. As for the input devices, the feature can
handle mouse, keyboard, touch, and gamepad events.
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Additionally, Unity Render Streaming is also natively supported by the Furioos platform, as a
result, we can use the service to easily build a render streaming application, upload it to Furioos
and take advantage of the features that were presented in the Furioos section.

3.3 Cloud Gaming

In recent years Cloud Gaming has been growing immensely, and although some products already
existed years ago like for example OnLive, only since 2019 we have seen a rise in the quality and
quantity of cloud gaming services available, with major companies, like Microsoft, Google, Sony,
and Nvidia launching their own proprietary service. Cloud Gaming is very relevant for what
we want to accomplish in our dissertation since the whole premise of the service is to stream
3D content that is running in a remote server into a user’s device, a common cloud gaming
workflow can be seen in figure 3.1, taken from Youhui Zhang et al. [57]. A more complete
architecture and performance comparison can be seen in more detail in the Shea et al. [39]
"Cloud Gaming: Architecture and Performance" article, where they conducted an analysis of
the state-of-the-art cloud gaming platforms and measured their real work performance with a
different type of games. Although very relevant, cloud gaming is still a difficult topic to research
since every major development made through the years is proprietary.

Figure 3.1: The whole workflow of cloud-gaming

3.3.1 OnLive Cloud Gaming Platform

OnLive was one of the first-ever game streaming services, which was founded in 2009 and later in
2015 was acquired by Sony [34]. Although the service wasn’t particularly ground-breaking, the
technology used to develop it can still serve as a base for our concept. Due to Onlive technology
being proprietary, we need to use M. Manzano et al. [27] article to evaluate what kind of protocols
were being used. They were able to identify the different flows that composed the OnLive traffic,
and the protocols employed to transport it. The OnLive platform employs several controls and
data protocols, transported using Transport Layer Security (TLS) over TCP connections and
Real-time Transport Protocol (RTP)/User Datagram Protocol (UDP) flows, which are used for
a variety of purposes during the different phases of an OnLive session. When it came to the
different phases, they identified three main phases in an OnLive session. In the first phase, the
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OnLive client authenticates and measures the latency and available bandwidth with different
OnLive sites. In the second phase, once a suitable OnLive site is selected by the client, the servers
start streaming the menu. Finally, in the third phase, the client selects a video game and starts
playing. For the protocols, the OnLive client authentication uses TLS/TCP connection and the
menu and the playing session are streamed, employing multiple RTP/UDP flows multiplexed
over a single UDP port. Most of the articles had a big focus in the third phase corresponding to
the gaming phase which employed the OnLive Streaming Protocol, which includes the Quality of
Service (QoS) monitoring, control, and mouse pointer flows, they also explained the RTP flows.
They found RTP flows like Monitor, Control, CBR-Audio, Cursor, VBRAudio, Video, and Chat
in the downstream direction, and Keys, Mouse Control-ACK, and Mic in the upstream direction.
And finally, they also found that the Video flow generates the largest network traffic load.

3.3.2 CloudRetro

CloudRetro is an open-source cloud gaming service for retro games. The application uses
technologies like WebRTC,2.4 and libretro, which is a simple API that allows for the creation of
games and emulators [42]. Like any cloud gaming, the game logic and storage of CloudRetro is
hosted on a cloud service. Since it runs on a web browser, it is compatible with any platform
and the most common web browsers .For further understanding of the system architecture we
can observe both pictures 3.2 and 3.3, taken from their GitHub page [42]. CloudRetro also has
features like collaborative gameplay, online multiplayer, and cloud storage to save your game
state. Since most cloud gaming services are proprietary, CloudRetro is one of the most relevant
applications for our project, due to being open-source and most importantly because it uses
WebRTC, which is used in some of the most recent cloud-related services, like Stadia, Chrome
Remote Desktop and Parsec Gaming.

Figure 3.2: High level overview of the system architecture of CloudRetro

https://stadia.google.com/
https://remotedesktop.google.com/
https://remotedesktop.google.com/
https://parsec.app/
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Figure 3.3: Worker internal for CloudRetro

3.4 Related Work

3.4.1 A Streaming-Based Solution for Remote Visualization of 3D Graphics
on Mobile Devices

In 2007 Fabrizio Lamberti et al. [23] implemented a streaming-based solution to be able to
visualize 3D graphics on mobile devices. In the paper, they used a system where clusters of
computers equipped with GPUs managed by the chromium software, were able to handle remote
visualization sessions based on Moving Picture Experts Group (MPEG) video streaming. Their
proposed framework would allow mobile devices to be able to visualize 3D objects with millions
of textured polygons at 30 Frames Per Second (FPS) or more, the frame rate is dependent on the
hardware resources at the server-side and the client-side also. The way that they implemented
the server-side also allow them to concurrently manage multiple clients, computing a video
stream for each one, resolution and quality of each stream were also tailored according to screen
resolution and bandwidth of the client. In the figure 3.4 taken from the article, we can better
evaluate how their three-tier architecture works. As said before one or more clients can remotely
control a 3D graphics application by interacting with Remote Visualization Server (RVS) based
layer, that is responsible for handling distributed rendering on a cluster of existing PCs using
Chromium, then the frames generated by the RenderVideo SPU are encoded into multiple video
sequences by the Encode server and finally, they are streamed to the clients using multi-cast
wireless channels by the Streaming Server components.

3.4.2 GamingAnywhere: an open cloud gaming system

GamingAnywhere was one of the first open cloud gaming systems developed in 2014 by Huang et
al. [20]. GamingAnywhere, in contrast to OnLive 3.3.1, is an open system, in the sense that a
component of the video streaming pipeline can be replaced by different components with different
algorithms, standards, or protocols. By default, GamingAnywhere employs a highly optimized
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Figure 3.4: Fabrizio Lamberti et al. layout of the proposed three-tier architecture

H.264/AVC encoder [52], to encode captured raw videos. The system has been designed to be
efficient, by minimizing the time and space overhead, using a shared circular buffer to reduce the
number of memory copy operations. Such optimizations, allow GamingAnywhere to provide a
high-quality gaming experience with a shorter response delay when compared to similar services.
When it comes to the system architecture, as we can see in both figures 3.5 taken from the
article, GamingAnywhere has two distinct components, the Game Server and Game Client. The
user starts by logging into the system via the portal server for the game client, then selects the
game and requests to play it. When the request is received, the portal server starts by finding an
available game server and then launches the chosen game into the available server.

(a) The deployment scenario of
GamingAnywhere

(b) A modular view of GamingAnywhere server and
client

Figure 3.5: GamingAnywhere System Architecture
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3.4.3 A Cloud Gaming System Based on User-Level Virtualization and Its
Resource Scheduling

Due to the recent increase in cloud gaming popularity, there have been different takes on how
to best implement such a service. In 2016 Zhang et al. [57] wrote an article on developing
a cloud gaming system based on user-level virtualization. The article is particularly relevant
for our project since in cloud gaming we need to have interaction between client and server
and user-level virtualization is useful when trying to deal with the existence of multiple clients
using the service at the same time. They proposed the design of a GPU/CPU hybrid system
called GCloud, which used the user-level virtualization technology to implement a sandbox for
different types of games, which allow them to isolate more than one game instance from each
other on a game-server, capture the game video and audio outputs for streaming and handle
the remote client device inputs, the proposed system can be seen in more detail in the figure
3.6 found in the paper. Additionally, they implemented a performance model, that analyzed
the resource consumption of games and performance bottlenecks of a server, by performing
experiments using a variety of hardware performance counters. When it came to games, they
categorize them into two types: CPU-critical and memory-io-critical, because of that they also
implemented several scheduling strategies to improve resource utilization. When compared to
GamingAnywhere, GCloud differs from it since it starts by implementing a virtual input layer
for each of currently-running instances, rather than a system-wide one, which enables them
to support more than one Direct-3D games at the same time. GCloud also designs a virtual
storage layer that stores each client configuration across all servers, which was not implemented
in GamingAnywhere.

Figure 3.6: Zhang et al. user-level virtualization system architecture

3.4.4 GPU-based remote visualization of dynamic molecular data on the web

Mwalongo et al. [29] implemented an efficient web application for visualization of dynamic
molecular data using WebGL. Although their focus was on streaming large amounts of data
instead of 3D content, their approach to building an efficient web application is still relevant
since we want to be able to use as few resources as possible. Their application implements a
client-server architecture that can be seen in the figure 3.7 taken from the article. First, the
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client starts by sending a request Uniform Resource Identifier (URI) to the server, then the server
parses the request and sends a set of HTML files, JavaScript code, and the WebGL OpenGL
Shading Language (GLSL) shaders required to use in the user interface and visualization. The
client-side works by establishing a WebSocket connection to the server, which is later used to
request and obtain the raw visualization. The server-side is implemented as part of a visualization
framework that loads the client’s requested molecular data, which contains atomic coordinates
at specific time periods, than extracts the values for rendering, and transmits them through
the already existing WebSocket connection. Finally, the server encodes the data, so that the
client only needs as few operations as possible to obtain a directly renderable representation, the
encoded data also needs to be as small as possible so that the message is quickly transferable to
the client.

Figure 3.7: Mwalongo et al. remote visualization of molecular data system architecture

3.4.5 A real-time remote rendering system for interactive mobile graphics

In 2012, Shi et al. presented an advanced low-latency remote rendering system that assisted
mobile devices to render 3D graphics in real-time [40]. They used a workstation as a rendering
server, which rendered 3D content and transmitted the extracted result images to the mobile
clients, the client was used to display the 3D image and didn’t perform any rendering. To handle
user interactions, like changing the rendering viewpoint, the mobile client runs 3D image warping
with the received depth images to synthesize an image at the updated rendering viewpoint. As a
result, the interaction latency of the remote rendering system is reduced to the time of image
synthesis on mobile, which is independent of the network. The framework and an illustration of
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the interaction latency can be seen in the figure 3.8, taken from the article.

When comparing the discussed proposed system with the one that we saw for example in
OnLive 3.3.1, they differ by instead of sending one color image per frame to the client, they
render the 3D scene from multiple rendering viewpoints and send multiple depth images to the
client, which helps to reduce the interaction latency and keep the high rendering quality but has
the cost of extra consumption on the server and more network bandwidth for streaming all the
extra depth images.

Figure 3.8: Shi et al. remote rendering system framework and an illustration of interaction
latency

3.4.6 A Hardware-Accelerated System for High Resolution Real-Time Screen
Sharing

In 2018, Yang et al. introduced a hardware-accelerated system for real-time screen sharing, that
focused on streaming at ultra-high resolution, which decreased the encoding workload by taking
advantage of content redundancies between successive screen frames [56]. Their approach made
use of multiple codecs that were capable of utilizing various encoders with H.264 Advanced Video
Coding (AVC) of different input sizes, as a result, they were able to save encoding time by always
selecting the appropriate encoder for the specific updated screen content. Additionally, they
proposed a frame split mode in metadata processing, that separated small screen updates into
independent frames to obtain lower encoding complexity and better latency performance.

For the experiments, they compared the performance improvements of applying the multiple
codec approach to the screen content compression and frame split mode to metadata processing
against the basic single H.264/acAVC codec implementation. They concluded that the multiple
codec approach outperforms the single codec in encoding time for common screen sharing
scenarios, the presented frame split mode in metadata processing lowered the computational
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complexity in interactive scenarios with minimal addition in network traffic usage. Lastly, when
regarding the latency measurement, the proposed solution provided low end-to-end latency,
ranging from 17 to 65 Milliseconds (ms).

3.4.7 GPU-accelerated streaming using WebRTC

GPU-accelerated streaming using WebRTC is an article found on the Google Cloud solutions
page, where they describe the components of a web-based interactive streaming solution for
graphic-intensive workloads [15]. The article works as a guide on how to develop the streaming
solution by discussing every detail regarding the components necessary to the implementation.
Their reference architecture can be seen in the figure 3.9, where they take advantage of three
core technologies to create an individualized streaming application:

• WebRTC: WebRTC is the protocol utilized for adding real-time communication capabilities
to the streaming application. With WebRTC they were able to establish a connection
between the web client and the server backend and broadcast the video stream over the
web with low latency.

• GStreamer: GStreamer was the multimedia framework, that served as the streaming engine.
They implemented a GStreamer pipeline that captured an X11 window and encoded
the buffer to H.264 on a GPU using Compute Unified Device Architecture (CUDA) and
NVIDIA Encoder (NVENC).

• Google Cloud Platform: Google Cloud Platform (GCP) handled the individualization and
scaling of the streaming application. They used GCP to deploy the WebRTC streaming
stack and make it available to individual users, by authenticating requests and assigning a
Compute Engine instance to each client.

Although the article mentioned is more focused on the implementation of the streaming solution,
they also published a second article on "Orchestrating GPU-accelerated streaming apps using
WebRTC" [16] that describe how the GCP can be used for building an orchestrated multi-tenant
Virtual Desktop Infrastructure (VDI), which is particularly useful for understanding how Virtual
Machines (VMs) can be used to scale a streaming application to be utilized by multiple users,
additionally, the project behind this article is still in active development, and is now maintained
by the Selkies Project [5].

3.5 Conclusion

Throughout this chapter, we researched and analyzed the existing frameworks, streaming
technologies, and related work to our thesis. In this section, we will highlight the conclusions
that were possible to be taken from the previous analysis.

https://cloud.google.com/compute/docs/instances
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Figure 3.9: GPU-accelerated streaming using WebRTC Architecture

We started by exploring the current WebGL frameworks, to evaluate the most appropriate
solution that could be used to develop the web application required to achieve the experiments
and tests. During our research, we evaluated various frameworks, where we concluded that the
most commonly used frameworks were Three.js and Babylon.js. In section 3.1.9 we compared
both frameworks and evaluated the features and performance results for each, concluding that
due to the simplicity, extensive documentation, and performance the framework Three.js would
be the most optimal solution to be used in the development of our testing web application.

Following the WebGL frameworks, we proceeded with the research of the current streaming
technologies. We started by researching the current web-based solutions used to remotely control
and visualize an application. The most common solutions found were Xpra, Apache Guacamole,
and NoVNC. These applications have support for web-browsers and make use of existing protocols
like VNC and RDP. Although these are the most popular, we concluded that they are not
appropriate to streaming graphically intensive 3D content due to o limitations in the encoder
that is supported. Due to that reason, we proceeded with the research of the existing multimedia
frameworks, that enables the streaming of video and audio which could be used during the
implementation of our solution. With that in mind, we evaluated two frameworks, GStreamer
and FFmpeg. Both of these frameworks, enable the creation of applications capable of streaming
content with video and audio. FFmpeg was one of the most popular technologies, but it does not
support WebRTC communications. Since our objective was to implement a web-based solution,
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we concluded that GStreamer was the best multimedia framework, due to providing WebRTC
support through the usage of a plugin.

To conclude the state-of-the-art, we studied the current related work and articles. One of
the most relevant was the "GPU-accelerated streaming using WebRTC", which described in
detail the components for a web-based streaming solution to visualized graphically intensive
content through the usage of WebRTC, GStreamer, and the Google Cloud Platform. The first
technology that their solution used was the WebRTC protocol for web-based communications in
real-time. The next technology was the GStreamer multimedia framework, which was utilized to
implement a pipeline capable of capturing a window and stream it to a web-based client. The
final technology was the Google Cloud platform, which served the purpose of handling the client
individualization and expanding the streaming application.



Chapter 4

Implementation

In this chapter, we describe the contributions and the development that was done. The imple-
mentation is divided into the server-side and client-side, where we structure and outline each
component that was involved in the development phase. We start by explaining the setup required
to develop our streaming solution, following by a general illustration of the system architecture,
succeeding with the server backend, and conclude with the web client.

The overall goal of our thesis is to provide a streaming solution, where a user can visualize
and interact with graphic-intensive applications on any device. Our implementation had as its
focal point the user experience, by providing a simple to use User Interface (UI) and optimizing
performance metrics, such as latency and framerate. With that in mind, we developed a simple
and efficient web-based client that was capable of connecting with the server and visualize the
content being transmitted, and a server backend that contains the streaming engine and a data
communication Application Programming Interface (API).

In figure 4.1 we can observe the three main components required for the functioning of our
streaming solution. For the server-side, we studied various solutions for the streaming component,
concluding that the usage of a multimedia framework like GStreamer, would provide the best
streaming engine for our application, due to the possibility of being able to create multiple
pipelines with various encoders and the existence of a Web Real-Time Communication (WebRTC)
plugin. Since we used WebRTC, the server-side also needs to provide a signalling service, required
to establish WebRTC-based connections between the client and the server.

Regarding the client-side, we developed a web-based application, that allows the user to
establish connections between the server backend, to visualize and interact with the content that
is being streamed, by utilizing the JavaScript framework Vue.js. The web client interface was
designed to be as simple and minimal as possible to provide the best streaming experience while
being compatible with multiple devices.

29
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Figure 4.1: System Overview

4.1 Specification

Before proceeding with the development, we need to specify the set of requirements that our
implementation needs to comply with.

Starting with the web browser client, the following set of assumptions were defined to ensure
we achieve the best streaming experience:

• The first requirement is compatibility. We want the client to be agnostic to the device
and platform. Due to that reason, the client must not require any additional software
installation and the UI must support different resolutions and devices.

• Regarding the UI, we will want to display various metrics that can be used for debug-
ging purposes and also provide useful information about the server. Besides displaying
information, we will also need to provide a set of options, to enable the user to adjust the
streaming experience.

• For the provided options, we want the user to be able to change the bandwidth usage,
framerate, and dynamically alter the streaming application resolution.

• To conclude the client specification, we also need to handle the input events generated by
the user, by capturing touch, mouse, or keyboard events and send them to the server.

To finalize the implementation specification, we set the following assumptions and requirements
for the server backend:

• To commence, the server and the client need to establish a connection between each other.
For that, the server will need to have a signalling server that will enable communication
between both peers.

• For the streaming component, the server will need to have a GStreamer pipeline, that is
capable of capturing an application window and broadcast the video stream to the client,
by using WebRTC.

• Additionally, we want the client to be able to stream any application. With that in mind,
the streaming component will need to support the broadcast of any application, through
the inclusion of an application argument.
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• We want the client to adjust the bandwidth usage, to accommodate different network
conditions. For this to be possible, our streaming pipeline will need to support dynamically
changing the bitrate values.

• To support the user-generated inputs incoming from the client, the server will need to
emulate the mouse and keyboard client events.

4.2 Environment

We start our development phase by preparing our work environment. When it comes to operative
systems, we utilized Ubuntu 20.04 Long-term Support (LTS) throughout the entire development
phase. Another major component in our development is the web browser, although the most recent
and wide available browsers already have available the necessary support for the technologies we
want to use, there is still a need to ensure that the browser contains the full compatibility for
WebRTC 1.

Additionally, even though some browsers may support WebRTC they might not have fully
implemented all of its features, also, some browsers still have prefixes on some or all WebRTC
APIs [28]. To mitigate some of the described issues, a adapter provided from the WebRTC
organization was used. The adapter is a JavaScript library that allows your code to be written
to the specification so that it works in all browsers with WebRTC support. To simplify the
development of our application, only Google Chrome was used for the entire duration of the
implementation phase. As future work, testing with different browsers should be made, to ensure
compatibility with multiple browsers.

For the server backend, the environment is more complex, due to the dependencies and
different tools that were necessary to be used to accomplish the defined objectives. Three key
tools were necessary during the development of the server-side:

• Node.js: Node, was mostly used for the development of the web client and served the
purpose of managing any package or dependency that was necessary for the implementation.

• Python: Python 3.8.5 was the language of choice when it came to the signalling server and
the development of the server backend.

• Docker: Docker, was used for the server-side of our application, mainly on the development
of our streaming engine. The tool facilitated the overall development and delivery of the
application and helped to manage the different dependencies by allowing the creation of
various containers.

A much more in-depth illustration of the system architecture and the reasoning behind the usage
of each one of these tools is done in their respective following sections.

1A list of the currently supported browsers can be seen at https://en.wikipedia.org/wiki/WebRTC#Support

https://github.com/webrtc/adapter/
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4.3 System Architecture

To fully understand what was involved in the development phase, we start by explaining the
general system architecture of our application. An illustration of the system architecture can be
observed in figure 4.2.

Our application is divided into a client-side and a server-side. The client is composed of a web
browser that utilizes, WebRTC for real-time communication and Vue.js for UI development. The
server-side of our application contains the streaming engine built using the GStreamer framework,
the Signalling server, and the application we want to stream.

Regarding how the communication between the client and the server occurs, WebRTC requires
the usage of a Signalling service for the negotiation and discovery process, the service allows for
the multiple peers in a different network to find each other. Besides the signalling service, the
WebRTC application can use the Interactive Connectivity Establishment (ICE) framework, to
find the best path to connect peers, for ICE to make a connection, it needs to obtain an external
address using a Session Traversal Utilities for NAT (STUN) server. Since, for our project, the
connection with the client and server strictly occurs on a local network, only a simple, Google
STUN server like "stun:stun.l.google.com:19302" was necessary. A detailed explanation about
the communication is done in section 4.4.2, where we discuss how the Signalling server was
implemented and illustrate how the communications take place.

For the application we want to stream, we decided to use Unity with one of the provided
sample projects. Nonetheless, the streaming engine is completely independent of the chosen
application, which means that any application can be used to stream and, it’s not required by
the server for the same application to be running on the same machine.

In the following sections, we discuss in detail each one of the elements presented in the
architecture. We start, by detailing the implementation of the server backend, where we explain
the development of the Signalling server and the GStreamer WebRTC application, and to conclude
the web client.

4.4 Server Backend

The most common tools used to remotely control applications and desktops, like NoVNC and
Apache Guacamole, are not suited for high graphical intensity tasks and low latency interaction
through the web browser. WebRTC is the current state-of-the-art technology used in services that
require the most graphics-intensive and low latency possible workloads, such as web conferencing
and cloud gaming. Because of these reasons, we decided that WebRTC would be the best solution
for our project, when it comes to stream and control Three-dimensional (3D) content from a
server through the web browser.

WebRTC allows real-time, peer-to-peer media exchange between multiple devices. For the
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Figure 4.2: System Architecture

development of a WebRTC based application, we need to implement a client and a server, and
the connection between these components is established through a discovery and negotiation
process called signalling. Although WebRTC handles the real-time communication side of the
application, we still need the major component that deals with capturing a window and stream
it to a client. For that, we used the multimedia framework GStreamer, which provides a library
to develop a high-performance streaming pipeline by making use of the current state-of-the-art
video encoders.

One of the disadvantages of the most commonly used remote desktop tools is the lack of
hardware encoding. Nowadays, most modern computing architectures already include dedicated
chips designed for image and video processing. NVIDIA Graphics Processing Units (GPUs)
contains a hardware-based encoder, called NVIDIA Encoder (NVENC), that supports accelerated
video encoding and is independent of system graphics. When deciding the encoder we want to
use for our implementation, there are two distinct types in which we can classify them, Software
and Hardware-based encoders. Since our project involves streaming 3D content to the web,
we need to choose the encoder that allows you to have the best performance possible in both
latency and framerate. According to NVIDIA granted results [32], the NVENC H.264/AVC
GPU-based video encoding can be 5 times faster, on average, than the CPU-based X264 [52]
implementation. Furthermore, in 2017, Albanese et al. [1], evaluated the performance of various
software and GPU accelerated video transcoding units for multi-access edge computing scenarios.
They carried many tests, to achieve a full performance characterization of the Video Transcoding
Unit (VTU), for both software and hardware only versions. In particular, they showed results
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(expressed in frames per second), featuring the H.264 and H.265 transcoding with Software (SW)
acceleration and with Hardware (HW) acceleration (using a GPU), where they decoded an input
video file to four different video resolutions. They also, compared the computational resources
used during transcoding for both SW and HW only, and to finalize, they compared the efficiency
of these two solutions in terms of performance/watts. On all the tests discussed above, they
concluded that hardware-accelerated implementation, presented superior results, not only in
performance when regarding Frames Per Second (FPS), but also in power consumption, they
also concluded that, when it came to performance, H.264 provided better results than H.265
for video encoding. When it comes to streaming high-resolution content, the utilization of a
hardware-based encoder, such as the NVENC H.264, for our streaming engine pipeline, provides
higher performance capabilities that can be utilized to boost screen frame processing and offload
workload from the Central Processing Unit (CPU).

Our implementation was based on the article "GPU-accelerated streaming using WebRTC"
[15], and also on the recent Selkies Project [5], that was forked from that same article. Although
these projects were focused on the deployment of the WebRTC streaming stack to the Google
Cloud platform, both their implementation and article described in detail how to create a
general-purpose web-based streaming application.

In the following sections, we discuss what was involved in developing the backend of a
WebRTC based application that utilizes GStreamer to access a GPU for hardware encoding, by
discussing the system architecture and further explaining in detail each respective component.

4.4.1 Server Backend Architecture

In section 4.3, we saw a broader view of our system architecture. To have a better understanding
of the server backend component, we start by explaining the respective architecture and follow
up, by analyzing each component of the server architecture.

In our illustration of the system architecture 4.2, we observed that our server backend had
three major components: the Signalling Server, the GStreamer WebRTC application, and the
application to stream. For the simplicity of the development, all of these components are running
on the same server, although this is not, by any means, a requirement, since the three components
are independent of each other. As an improvement for future implementation optimization, the
presented components should be in three separate servers or containers. These changes would
ensure better expandability, system reliability and also would present benefits in performance,
by not having the application to stream occupy computational resources that could be used by
the streaming engine and vice-versa.

Regarding the purpose of each component, the signalling server is utilized for the discovery
and negotiation of multiple peers, the GStreamer WebRTC application contains the streaming
engine and also serves as an interface for various components, and finally, the application to
stream is the application that we feed through the streaming engine to stream to the web browser.
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As a more detailed system architecture of the server backend, we can observe figure 4.3.
Although the three components are running in the same server, the GStreamer WebRTC
application containing the streaming engine is functioning inside a docker container, due to the
necessity of having an isolated environment from the rest of the components, with the docker
container, we could more easily manage the different dependencies that were necessary to build
the GStreamer application and test the application without the need to change the host system
installation, which could affect other applications and make the host machine less stable. The
docker container also brings benefits in the packaging and expandability of our infrastructure,
since it makes it easier to expand by deploying our application in multiple servers. More in-depth
information on the docker container and its receptive configuration are done in the following
sections.

Figure 4.3: Server Backend Architecture

4.4.2 Signalling Server

For multiple devices on different networks to find each other, the discovery and negotiation need
to be done through the signalling process. The process of signalling does not require you to use
a single messaging protocol, instead, you have the choice to use the protocol that suits you best.

Our signalling server has to communicate with a GStreamer Pipeline to stream video. Since
in our project the communication is only done between two devices, we can use as our signalling
server the example provided by the GStreamer team [30].

Their implementation of the signalling server manages the peers and loads data between
those peers, by utilizing the WebSockets protocol. First, the server registers the peers, which
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is done by connection with the WebSockets server and sending and receiving "HELLO <uid>"
messages with the unique identifier of the peer. For the second step, since our application only
supports the connection to a single peer, the signalling server sends a "SESSION <uid>" message
that identifies the peer we want to connect to and receives "SESSION_OK" once the connection
is established. Finally, once the connection has been set up with the signalling server, the peers
must negotiate Session Description Protocol (SDP) and ICE candidates with each other. Once
the peer connection has been established, the signalling server is no longer required, and all
further messages are made directly to the peer. The diagram 4.4, is based on the diagram found
in [15] in section "Core Concepts", and shows the described process in more detail.

Figure 4.4: Signalling Server Connection Handshake
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4.4.3 GStreamer WebRTC Application

The GStreamer Pipeline is the core of our streaming component, which enables us to stream
3D content through the web with high performance. GStreamer is a framework that links a
variety of media processing systems, capable of handling multimedia streams with audio and
video. In 2018, the support for WebRTC connections was added, with the release of GStreamer
1.14 [46]. The GStreamer WebRTC plugin facilitated the possibility of utilizing the framework
in a web-based environment.

In our implementation, GStreamer is not only utilized as the streaming engine but also serves
as an interface with the different required components, like, capturing an X11 window with a
given Identifier (ID), communicate with the signalling server, handling the usage of the NVIDIA
GPU and treating the user inputs received from the web client.

In figure 4.5, we illustrate in detail the architecture of the GStreamer WebRTC application.
The development of the application was done using Python, which is one of the languages officially
supported by the framework. Python brings some advantages due to the extensive library that
is supported, which includes the XLib library, that allows the management of X Windows. In
the following sections, we observe how the language and its libraries were applied during the
development.

Regarding the organization and architecture of our application, as expected, the application
is started by utilizing the "MAIN" component, which initiates each one of the required modules
and processes the received arguments. The application has 3 core arguments:

• Encoder: the encoder argument allows you to choose the type of encoder you want to
use on the pipeline, from a range of supported hardware and software-based encoders. The
supported encoders are the following: nvh264enc, nvh265enc, x264enc, x265enc,
vp8enc and vp9enc. Throughout the project, the implementation was mostly focused on
the nvh264enc, since it was the one that showed the best performance.

• Signalling Server: the argument lets you choose the address of the signalling server,
which might be useful in cases where the signalling service is located in a different server
or machine. For the project, the signalling server defaults to the localhost.

• App Name: contrarily to the previous arguments, the app name is obligatory for correct
usage of the application. With the argument, we can choose the application we want to
stream by giving its name. After parsing the application name argument, the "getXWin-
dowID" method is called, to convert the name to an ID, which can, later, be used for the
GStreamer pipeline and input handling. In case, an application name is not provided as an
argument, the GStreamer pipeline tries to stream the entire desktop.

As discussed earlier, the application is composed of three core modules, that are initiated by the
"MAIN" component:

https://github.com/python-xlib
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• WebRTCSignaling: which interfaces with the signalling server discussed in section 4.4.2.

• GSTWebRTCApp: the GSTWebRTCApp module contains the GStreamer pipeline necessary
to create the streaming engine.

• WebRTCInput: the third and last module, handles the user input attained from the web
client.

In the next sections, we start by explaining in detail the configuration required to run the
GStreamer application inside a docker container, and we also further explain each module
discussed in the list above.

Figure 4.5: GStreamer WebRTC Application Architecture
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4.4.3.1 Docker Configuration

In the following section, we discuss how docker was configured and its utilization. One of the key
requirements to ensure we obtain the best performance possible in our container is the ability to
pass through the host GPU to the docker container. To make that possible we utilized the Nvidia
Container Toolkit [33], which allows the users to build and run GPU accelerated containers, by
automatically configuring containers to leverage NVIDIA GPUs.

The first step was to package the GStreamer WebRTC application by creating a Docker image.
The image is a template that contains a set of instructions for creating our Docker container, that
simplifies the development and packaging of the application by having a preconfigured server
environments with all the dependencies necessary to fully run the application without the need
for further setup. Since we utilized our application, we created and built a custom image, which
was done by implementing a Dockerfile. A Dockerfile is a text document that contains all the
commands that a user could call on the command line to assemble an image 2.

To develop a Dockerfile, we need to decide our base image. The base image is the parent
that our image is based on, and it can usually be a minimal Operative System (OS) based
image or, in our case, a preconfigured NVIDIA image. For our base image, we chose the Ubuntu
20.04 based NVIDIA CUDA development image, that comes with the Compute Unified Device
Architecture (CUDA) toolkit, and includes GPU-accelerated libraries, a compiler, development
tools and the CUDA runtime, which are a dependency for one of the CUDA based GStreamer
pipeline. The complete name of the chosen base image can be seen in the listing 4.1.

� �
FROM nvidia/cuda:11.2.0-devel-ubuntu20.04� �

Listing 4.1: Dockerfile base image

The next step in development is to build GStreamer and install all the required dependencies.
To ensure, we have the most optimal and up-to-date version of GStreamer we built it from the
source. We start by cloning each necessary GStreamer module from the official repository and
build it by following the instructions provided in the official documentation [8]. The modules
that we built for our project were the following:

• gstreamer: GStreamer is the core in which all the modules resolve around. It includes
the base functionality and libraries.

• gst-plugins-base: The "base" module contains collections of well-maintained GStreamer
plug-ins and elements. Some useful plugins that we can find here, are the "videoscale" and
"videoconvert" that we used in our pipeline.

• gst-plugins-good: The "good" module, includes a set of plugins that are considered
to have good quality code, correct functionality, and preferred license. Here, we can find

2More information at https://docs.docker.com/engine/reference/builder/

https://hub.docker.com/r/nvidia/cuda/
https://gitlab.freedesktop.org/gstreamer/gstreamer
https://gitlab.freedesktop.org/gstreamer/gst-plugins-base
https://gitlab.freedesktop.org/gstreamer/gst-plugins-good
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most of the required modules for our pipeline, such as, "ximagesrc", "rtp" and "vpx".

• gst-plugins-bad: The "bad" module, includes plugins that aren’t to par when com-
pared with the ones included in the previous module. The provided plugins might require
further testing, documentation, or code reviews. Here we can find some of the most
important plugins for our application, the "webrtc" and "nvcodec", the first one contains
the elements required to establish WebRTC based connections, and the last plugin contains
the encoder required to encode video streams using NVIDIA GPUs.

• gst-plugins-ugly: The "ugly" module, consists of plugins that are up to par with the
"good" module, in terms of code quality and expected functionality, but present problems
regarding distribution due to their license. The module has the "x264" plugin, which is
used for software-based accelerated pipelines.

• gst-python: this module, facilitates the development of the GStreamer WebRTC
application utilizing the Python language.

All plugins and elements referred to in the list above, are explained in detail in the GStreamer
Pipeline section 4.4.3.3. A more detailed example of the commands required to include in the
Dockerfile, to build one of the modules can be seen in the listing 4.2. The following example
starts by installing the meson build dependencies and builds the GStreamer core module.� �

RUN \

apt-get update && apt install -y \

python3-pip \

python-gi-dev \

ninja-build && \

pip3 install meson

RUN \

cd /opt/gstreamer && \

meson build --prefix=/usr && \

ninja -C build install� �
Listing 4.2: Dockerfile commands to build gstreamer from source

After all the required GStreamer modules are built, we can finalize our Dockerfile, by installing
the application dependencies, copy the python source files, set environment variables, and set up
the entry point script. When it comes to environmental variables, two variables were required
for a fully functioning docker container:

• NVIDIA_DRIVER_CAPABILITIES=compute, utility, video: The NVIDIA envir-
onment variable controls which driver libraries or binaries are mounted inside the container.
For our application there were three necessary driver capabilities 3:

3More information at https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/user-guide.htmldriver-
capabilities

https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad
https://gitlab.freedesktop.org/gstreamer/gst-plugins-ugly
https://gitlab.freedesktop.org/gstreamer/gst-python
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– compute: The "compute" driver is required for CUDA and Open Computing
Language (OpenCL) applications.

– utility: The "utility" diver provides command-line tools like "nvidia-smi" that can
be used for management and monitoring of NVIDIA GPU.

– video: The "video" driver is required for using the Video Codec Software Develop-
ment Kit (SDK).

• DISPLAY :1 : the "DISPLAY" environment variable indicates the X Display server
located in the host server, which can be necessary to stream the application window.
Additionally, there is also the need to mount the X server volume, which is necessary for
the X server to communicate with the X client.

An example of how we can set up, in a Dockerfile, these two variables and also mount the required
volume for the "DISPLAY" variable, can be seen in the listing 4.3.� �

ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility,video

ENV DISPLAY :1

VOLUME ["/tmp/.X11-unix:/tmp/.X11-unix:rw"]� �
Listing 4.3: Setup of environmental variables in Dockerfile

To conclude our Dockerfile, we developed an entry point script, which defines how the
container will run. For our Dockerfile, the entry point needs to specify the startup of the
GStreamer WebRTC application. An example of how we can include an entry point script to
the Dockerfile can be seen in the listing 4.4 and the respective entry point script can be looked
at in detail in the listing 4.5.� �

COPY entrypoint.sh /

RUN chmod +x /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]� �
Listing 4.4: Adding entrypoint script to the Dockerfile

4.4.3.2 Signalling Interface

In the Signalling Server section 4.4.2, we discussed in specific how such a service is used in our
application to establish peer connections between different devices. For the GStreamer WebRTC
application to communicate with the web client, it needs first to establish a connection with the
signalling server, which can be done with the signalling interface.

The class "WebRTCSignalling", interfaces with the WebSocket based signalling server. The
class itself is very simple and abstract, and the interface isn’t dependent on the usage of the



42 Chapter 4. Implementation

� �
!/bin/bash

FRAMERATE=60

AUDIO=false

while true; do

python3 /opt/app/main.py --debug \

--app_name $APP_NAME \

--framerate $FRAMERATE \

--enable_audio $AUDIO \

--encoder $ENCODER

sleep 1

done� �
Listing 4.5: Entrypoint Script

signalling server, with that, the GStreamer WebRTC application can be independent of any
signalling server, which allows us to use, if necessary, different servers with minimal changes in
our signalling interface.

The signalling interface is composed of four main phases, which follow the principles discussed
in the Signalling Server Connection Handshake figure 4.4:

• Connect: Connects to the signalling server with a given address and sends the "HELLO"
command to the server with the attributed ID. When looking at the connection handshake
sequence 4.4, we can see the method at the beginning of the connection with the delivery
of the "HELLO P2" message.

• Setup Call: The "Setup Call" method is called after the "HELLO" message from the
client is received and initiates the session with the peer by ID, through the delivery of a
"SESSION <uid>" message.

• Send SDP: Once the connection is established by receiving a "SESSION_OK" message,
the interface proceeds by sending the SDP to the peer.

• Send ICE: Once the connections are established we send the ICE candidates to the peer.

After following through these phases, the GStreamer WebRTC application can establish with
success, when possible, a connection with a peer. In these cases, our peer is the web client, where
the streamed content can be visualized. The client, and its corresponding implementation of the
signalling interface, are discussed in its respective section.

4.4.3.3 GStreamer Pipeline

GStreamer utilizes a pipeline-based processing model. To fully understand the implementation of
the streaming component some pipeline core concepts need to be explained, namely the concept
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of "Elements". Elements are the core object when it comes to implementing a GStreamer pipeline,
in general, elements receive, process, and output a result. For elements to communicate with each
other, they utilize ports called "pads". Each element in the pipeline can have two different pads,
the pad through which the data enters an element and the pad through which the data exits
the element, these are called the sink and source pad respectively [41]. To further understand
these concepts, we can observe the image 4.6, that demonstrates theoretically a simple pipeline
example of a basic Ogg player, based on the Dynamic pipelines tutorial example found in the
GStreamer documentation [19], and also the listing 4.6 which shows a real pipeline, using
the command-line tool, to encode H.264 video streams using NVIDIA’s hardware-accelerated
NVENC.

Figure 4.6: GStreamer Pipeline for a basic Ogg player

� �
gst-launch-1.0 filesrc location=test.mp4 ! qtdemux ! h264parse ! nvh264dec !

videoscale ! "video/x-raw,width=1280,height=720" ! nvh264enc ! h264parse !

mp4mux ! filesink location=out.mp4� �
Listing 4.6: GStreamer pipeline to encode H.264 video streams

Now that some core concepts are explained, we can start exploring what was implemented
into our own GStreamer pipeline. The class "GSTWebRTCApp" seen in the GStreamer WebRTC
Application Architecture 4.5, contains the implementation of the video pipeline. Next, we
describe the reasoning behind each element that was used, in our pipeline and their respective
python code.

We start our class by initiating the pipeline and setting up the webrtcbin element, here we
also set up some initial configuration properties like, connecting to the signalling handlers and
adding the STUN server. The listing 4.7, illustrates the class setup, where the pipeline is initiated,
by utilizing the "new" method from the Pipeline module. As for the elements that compose our
pipeline, each one is created by utilizing the "make" method from the "ElementFactory" module,
and their respective properties are configured by using the "set_property" method.

The next step is to assemble the video stream pipeline. For the video stream pipeline, several
elements are required, to be able to stream an X11 display to the browser with WebRTC. As
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� �
self.pipeline = Gst.Pipeline.new()

self.webrtcbin = Gst.ElementFactory.make("webrtcbin", "app")

self.webrtcbin.set_property("stun-server", self.stun_server)

self.pipeline.add(self.webrtcbin)� �
Listing 4.7: Initiating GStreamer Pipeline

observed in the GStreamer WebRTC Application Architecture figure 4.5 our video pipeline has
6 elements:

• ximagesrc: The ximagesrc element is utilized to capture an X Display Window and
creates raw Red, Green and Blue (RGB) video. Two key properties needed to be configured,
the first one was the property "xid" which specifies the exact window we want to stream,
the second property was the "framerate", by default the element fixates to 25 FPS, setting
the framerate target to 60 FPS lowers the overall latency. Some code necessary to create
and configure the described elements can be seen in the listing 4.8.

� �
ximagesrc = Gst.ElementFactory.make("ximagesrc", "x11")

ximagesrc.set_property("xid", self.windowID)

ximagesrc_caps = Gst.caps_from_string("video/x-raw")

ximagesrc_caps.set_value("framerate", Gst.Fraction(self.framerate, 1))

ximagesrc_capsfilter = Gst.ElementFactory.make("capsfilter")

ximagesrc_capsfilter.set_property("caps", ximagesrc_caps)� �
Listing 4.8: Creating and configuring the ximagesrc element

• videoscale: The videoscale element is utilized to resize video frames. By default,
the element always tries to apply the same size on the source and sinkpad so that there is
no need to scaling. Because of that, it is always safe to include this element in a pipeline
to achieve a more robust behavior without any cost if no scaling is needed. To create
the element, we can utilize the element-making method defined earlier, and there is no
additional configuration necessary to be done.

• videoconvert: Contrarily to the videoscale, the videoconvert element is mandat-
ory in our pipeline. The element, converts video frames between a variety of video formats,
for our pipeline. By default, it converts the RGB buffer coming from the ximagesrc
element to a NVENC compatible format. Since our application includes multiples pipelines
for different types of encoders, the video format for which the element converts might differ
based on the chosen encoder. On the listing 4.9, we can observe how the element was
created and configured for the H.264 NVENC.

• Encoder: In general, the encoder element, encodes the buffer to a specific video format. Our
pipeline supports a variety of different encoders, including Software and Hardware-based
encoders, like x264, x264 with NVENC and VP8. The encoder can be chosen by modifying
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� �
videoconvert = Gst.ElementFactory.make("videoconvert")

videoconvert_caps = Gst.caps_from_string("video/x-raw")

videoconvert_caps.set_value("format", "I420")

videoconvert_capsfilter = Gst.ElementFactory.make("capsfilter")

videoconvert_capsfilter.set_property("caps", videoconvert_caps)� �
Listing 4.9: Creating and configuring the videoconvert element

the encoder argument, by default we utilize the element nvh264enc which encodes H.264
video streams using the NVIDIA hardware-accelerated NVENC. The encoder element
contains the most properties that can be configured to achieve different levels of performance,
as expected, the properties vary from the type of encoder chosen. On the listing 4.10
we can observe how the nvh264enc was created and the properties that were configured.
Two properties made the biggest difference regarding performance:

– bitrate: With the bitrate property we are able to manage the video quality. The
higher the bitrate the sharper the video image can be, which is particularly important
when dealing with a streaming service. The video bitrate defines the video data
transferred at any given time, because of that, the bitrate value is highly dependent
on the client bandwidth. By default, we set the bitrate to "2000", since, in our tests,
it was the minimum value that showed good results. The bitrate property can be
changed while the pipeline is running, which makes it possible for the client to adjust
the bitrate value based on the bandwidth that he has available.

– preset: For the preset property, the "Low Latency High Quality" option was the
one that exhibited the best results, a more in-depth explanation of the different presets
possible and their results can be seen in the article "Using Netflix machine learning to
analyze Twitch stream picture quality" [4], where they analyzed the picture quality
of encoded video game footage, across different encoders and encoders properties.

� �
nvh264enc = Gst.ElementFactory.make("nvh264enc", "nvenc")

nvh264enc.set_property("bitrate", 2000)

nvh264enc.set_property("preset", "low-latency-hq")

nvh264enc_caps = Gst.caps_from_string("video/x-h264")

nvh264enc_caps.set_value("profile", "high")

nvh264enc_capsfilter = Gst.ElementFactory.make("capsfilter")

nvh264enc_capsfilter.set_property("caps", nvh264enc_caps)� �
Listing 4.10: Creating and configuring the nvh264enc element

• RTP Payloader: In general, the Real-time Transport Protocol (RTP) payloader creates a
RTP packet to be sent over the peer connection. The element varies based on the encoder
and the video format, by default, since we are encoding H.264 video streams, our RTP
Payloader is the element rtph264pay which payload-encodes the H.264 video coming
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from the encoder into RTP packets. The code necessary to create the payloader for the
nvh264enc, can be seen in the listing 4.11.

� �
rtph264pay = Gst.ElementFactory.make("rtph264pay")

rtph264pay_caps = Gst.caps_from_string("application/x-rtp")

rtph264pay_caps.set_value("media", "video")

rtph264pay_caps.set_value("encoding-name", "H264")

rtph264pay_capsfilter = Gst.ElementFactory.make("capsfilter")

rtph264pay_capsfilter.set_property("caps", rtph264pay_caps)� �
Listing 4.11: Creating and configuring the rtph264pay element

• webrtcbin: The webrtcbin is the bin for WebRTC-based connections. It handles the
WebRTC handshake and the contract negotiations, and it is required to be configured
before initiating the video pipeline. To finalize the pipeline, the last element, namely the
RTP Payloader is linked to the webrtcbin.

To finalize the construction of our pipeline, we need to add each element, that was previously
created to the pipeline that was initiated in our class. Each element needs to be linked to each
other following the order that was seen in the GStreamer WebRTC Application Architecture
figure 4.5. The code necessary to add and link each element to the pipeline can be observed on
the listing 4.12 and 4.13 respectively.

� �
self.pipeline.add(ximagesrc)

self.pipeline.add(ximagesrc_capsfilter)

self.pipeline.add(videoscale)

self.pipeline.add(videoconvert)

self.pipeline.add(videoconvert_capsfilter)

self.pipeline.add(nvh264enc)

self.pipeline.add(nvh264enc_capsfilter)

self.pipeline.add(rtph264pay)

self.pipeline.add(rtph264pay_capsfilter)� �
Listing 4.12: Adding all elements to the pipeline

4.4.3.4 User Input Handler

To conclude the GStreamer WebRTC application, we have the module "WebRTCInput". The
class has the purpose of handling the input commands from the client WebRTC data channel, by
utilizing the Python XLib and the pynput libraries to change the window size of our application
and also send x11 keypress and mouse events to the X server. To conduct these functionalities,
there were five methods implemented:

• Connect: It utilizes the DISPLAY environmental variable, configured in the Docker

https://github.com/python-xlib
https://pynput.readthedocs.io/en/latest/index.html
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� �
Gst.Element.link(ximagesrc, ximagesrc_capsfilter)

Gst.Element.link(ximagesrc_capsfilter, videoscale)

Gst.Element.link(videoscale, videoconvert)

Gst.Element.link(videoconvert, videoconvert_capsfilter)

Gst.Element.link(videoconvert_capsfilter, nvh264enc)

Gst.Element.link(nvh264enc, nvh264enc_capsfilter)

Gst.Element.link(nvh264enc_capsfilter, rtph264pay)

Gst.Element.link(rtph264pay, rtph264pay_capsfilter)

Gst.Element.link(rtph264pay_capsfilter, self.webrtcbin)� �
Listing 4.13: Linking all pipeline elements

Configuration section 4.4.3.1, and the windowID obtained from the application name
argument, in order to establish connection to an existent X server.

• Send x11 mouse: Sends the mouse action events to the XServer, by utilizing methods
like mouse.move, mouse.scroll and mouse.press from the pynput mouse class.

• Send x11 keypress: The keypress method sends the keyboard action to the XServer,
but contrarily to the mouse method, the keysyms are converted to a keycode by using the
keysym_to_keycode method from the XLib library.

• Change Window Size: Changes the size of the application window that is being
streamed, to a given width and height. The size of the window is changed by utilizing the
configure method from the Window object obtained from the windowID.

• On message: The fifth and last method, handles the input messages incoming from the
web client data channel, with the format "<command>, <data>". The method supports
the following message commands:

– kd: Triggers the key down event by calling the send_x11_keypress method.

– ku: Similar to the previous, differs only in that it triggers the key up event.

– m: Handles the mouse events by calling the send_x11_mouse method.

– vb: Allows the client to dynamically set the video bitrate while streaming. The
change in the bit rate is immediate and does not require a pipeline restart.

– cws: Enables the client to change the application resolution on demand, by calling
the changeWindowSize method. Such a feature might allow the client to change
the resolution to obtain a better performance or might simply be used to adjust the
window resolution to match a particular device. The alteration of window resolution
requires a full restart of the pipeline for the change to be applied.

A more detailed explanation of how the input is captured and how it is sent through the data
channel is done in the next section regarding the Client Web Application.

https://pynput.readthedocs.io/en/latest/index.html
https://github.com/python-xlib
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4.5 Client Web Application

In the system architecture section 4.3, we discussed the existent modules of our application and
reviewed the necessity of a client to visualize and interact with the application that is being
streamed by the server. The client-side is a JavaScript frontend application that was written in
Vue.js, based on the web application from the selkies-project, where the necessary changes
were made both in the UI and in the application modules, to ensure the web client meets the
functionalities we want to achieve. The client web application connects with the STUN server,
communicates with the signalling server, establishes peer connection, captures user inputs, and
receives and renders the stream.

4.5.1 Web Client Architecture

The web client architecture was based on the client architecture found in the article "GPU-
accelerated streaming using WebRTC" [15] and can be seen in the figure 4.7. To ensure we
maximize the expandability of the client, the development was divided into five modules, where
each one concentrates specific functionalities necessary for the creation of the client:

• index.html: the index.html is the default page shown on the website and contains the
various Vue HTML components necessary to compose the UI.

• app.js: consists of the core for the Vue application and encloses the data structures and
methods necessary to have a functioning UI.

• signalling.js: contains the implementation for the signalling interface used to establish a
connection with the signalling server.

• webrtc.js: encompasses the interface to WebRTC that handles the data channel.

• input.js: handles receiving and sending the keyboard and mouse input events through the
WebRTC data channel.

In the following sections, we discuss in detail each one of these modules.

4.5.2 UI

Through the development of the UI, the main objective was to implement a straightforward
interface, that was compatible with any device including mobile and desktop and that could
demonstrate all the necessary information, such as performance metrics and some settings options,
that exemplify possible usages on how to communicate with the server. Regarding the settings,
we focused on options that could be used to expose how to possibly communicate with the
streaming engine by requesting particular changes while the pipeline is running:

https://github.com/selkies-project/selkies-vdi/tree/master/images/gst-web/src
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Figure 4.7: Web Client Architecture

• Video bitrate selection: dynamically changes the video bitrate for the hardware encoder
on the server. By selecting the video bitrate we can give the user the option to actively
change the video quality and bandwidth usage, which might be useful in cases where the
internet connection is limited.

• Video framerate: selects the desired framerate limit for the streaming engine. Such options
take no effect on the application that is being streamed, instead, it tells the streaming
engine to limit the current transmission to the selected framerate. Although we can limit
the FPS the performance is still dependent on the server hardware, additionally, the changes
made after the selection of the new option can only be applied after a full restart of the
pipeline.

• Window Resolution: actively changes the window resolution of the application that is being
streamed, such feature can be used to adjust the resolution to match the one of a particular
client device and also to regulate the streaming performance, by lowering the resolution
we can increase the framerate performance but decrease the visual quality. Although this
option takes immediate effect on the streaming engine a window reload is necessary for the
changes to be applied to the client.

For the performance metrics, we center our data on the information that could be useful for
testing, debugging, and comparing the performance with already existent technologies, therefore
the focal point of these metrics are on retrieving data from the server running the streaming
engine. The determined performance metrics were the following:

• Video bitrate: compares the current video bitrate in Megabits per second (Mbps) versus
the selected bit rate in the options. The bitrate data was used to ensure the streaming
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efficiency by making sure our engine wasn’t using more bandwidth than necessary, and to
aid in debugging the bitrate option setting.

• FPS: displays the current framerate the server is streaming at. With the FPS, we were
able to test the performance of different encoders and evaluate how the change in window
resolution affected the server performance.

• GPU usage: shows the current GPU load as percentage.

• GPU memory: presents the GPU memory used in Gigabyte (GB) of the total memory
available for the GPU.

The settings options and the performance metrics were integrated into the interface of the client
which is composed of three UI components:

• Toolbar: the toolbar can be observed in the figure 4.8a and 4.9a, for desktop and mobile
devices respectively. The component contains a button that triggers the appearance of
the navigation drawer, and various elements that show specific performance metrics. Such
metrics are composed of tooltips and progress circular elements, the first one is used for
conveying messages when a user hovers the element, like information of what metric is being
displayed, the second element is used to transmit data circularly to users, the tooltip wraps
the second element to integrate the progress circular with on hover messages, minimizing,
the overall size of the toolbar by removing the necessity of labels.

• Navigation drawer: the navigation drawer can be observed in the figure 4.8b and 4.9b, for
desktop and mobile devices respectively. The drawer component is accessed by utilizing
the button presented in the toolbar and accommodates the settings options. The options
were implemented by utilizing select field components which can provide the necessary
information from a predefined list of options. To ensure compatibility with multiple types
of devices, the drawer was configured to be expanded from the bottom of the screen when
a smaller window or a mobile device is detected.

• HTML5 Video: the video element is utilized to visualize the video stream. The video
stream object is received from the WebRTC connection and is then added to the HTML5
video element by assigning it to the srcObject property, which automatically loads the
stream.

4.5.3 Client Signalling Interface

The client and the server need to establish a connection with the same signalling server, as
a consequence, most of the client implementation for signalling interface and their respective
methods share various similarities with the interface that was implemented for the server in the
section 4.4.3.2. As seen in the figure 4.10, the core methods necessary in the interface, for the
client to establish peer connection with the signalling server, are the following:

https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/srcObject
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(a) Toolbar with performance metrics

(b) Navigation drawer with settings options

Figure 4.8: Client UI in desktop devices

• Connect: initiates the connections to the signalling server with a given address and binds
the event handlers. Consequently, a series of handshakes occur between the signalling
server and the streaming server to negotiate ICE candidates and media capabilities.

• Send SDP: transmits the SDP to the peer.

• Send ICE: once the connection is established we send the ICE candidates to the peer.

After the execution of these methods, the client is ready to establish, when possible, communica-
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(a) Toolbar with performance metrics (b) Navigation drawer with settings options

Figure 4.9: Client UI in mobile devices

tion with the signalling server. Once the connection is established with success, the web client is
qualified to receive the Real-time Transport Control Protocol (RTCP) packets containing the
video stream.

4.5.4 WebRTC Interface

The WebRTC class is a simple interface used for managing real-time communications between
peers. It has as the main functionality, conducting the initial connection with the signalling
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Figure 4.10: Client Signalling Interface

server, the creation of the RTCPeerConnection object, managing the receiving and sending of
messages through the data channel, and handling the video stream. Such processes are achieved
with the following methods:

• Connect: initiates the connection with the signalling server, creates the peer connection
object, attaches the event handlers to local functions, and binds the callbacks.

• Play Video: once the signalling server is connected and the SDP offer is received, the
stream is transmitted through the WebRTC connection, when the RTCPeerConnection
object emits an RTCTrackEvent containing the video stream object. Once the stream
object is received the playVideo method automatically loads the video stream.

• Send Data Channel Message: sends messages through the peer data channel. The
data channel is used throughout the application for sending messages such as settings
configuration and user-generated mouse and keyboard inputs.

4.5.5 User Input Handler

The mouse and keyboard inputs received from the user are managed by the "Input" class which
implements the event handlers for capturing, processing, and transmitting input data to the
server through the "RTCDataChannel". In the figure 4.11, we can observe the main methods
implemented by the class to manage the inputs generated by the user:

• Key: the existing library from the Apache Guacamole, was used for capturing the
keyboard events with the translated X11 keysyms. The keyboard symbols are then encoded
as Comma-separated values (CSV) before being sent over the data channel.

https://developer.mozilla.org/en-US/docs/Web/API/RTCTrackEvent
https://github.com/apache/guacamole-client/blob/1.0.0/guacamole-common-js/src/main/webapp/modules/Keyboard.js
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• Mouse Button Movement: handles the mouse button and motion events and sends
them to the server backend. Mouse events are more complex than the keyboard due
to the possibility of receiving either relative position or absolute coordinates in mouse
events mixed with multiple button presses in an individual event. Another key issue is the
requirement of calculating the translation of the mouse position based on the window size,
element offsets, and any scaling applied to the video element. Such calculation are done by
the "_clientToServerX()" and "_clientToServerY()", which utilize the current window math
to translate the pointer position. The x and y positions and the button masks are saved as
local variables so that we can send the last know mouse position on the following events.

• Touch: manages the touch events generated from a mobile device and transmits the
received data by using the data channel. The touch inputs are mapped to mouse events, and
similar to the previous, the touch events also require special attention when transmitting
the touched position relative to the server.

• Window Math: captures the display and video dimensions necessary for computing the
mouse pointer position relative to the application being streamed by the server.

Figure 4.11: User Input Handler
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4.6 Conclusion

Throughout this chapter, we specified and described the implementation steps that were necessary
to develop a full-stack web-based real-time streaming application, that is capable of visualizing
and interacting with an application that is being streamed by a server.

We started by making a specification of what were our requirements and assumptions for
the application we wanted to develop. Next, we defined the system architecture and describe in
detail the components that were implemented for the server backend. We successfully developed
a server backend that was capable of establishing communication with a web client, then we
implemented a streaming pipeline by using GStreamer, that can capture any application window,
encode the buffer to H.264 by using the hardware-based NVENC and use WebRTC to transmit
the video stream to the web client. To finalize the server implementation, we also added support
for user-generated mouse and keyboard inputs from the client.

Proceeding the server implementation, we continued with the development of the web-
based client. We were able to accomplish the previously defined specification, by developing a
simple and efficient client, that does not require any additional software or plugin installation.
Additionally, we built a UI that adapts to any device resolution, displays useful metrics, such as
bandwidth, framerate, and GPU usage, and provides a set of options, like changing the bitrate
and dynamically adjusting the application resolution. To conclude, we implemented methods for
handling the input generated by the user, by capturing touch, mouse, and keyboard events and
send them to the server.





Chapter 5

Experiments and Tests

In this chapter, we present the experiments and tests that were performed, by the end the reader
will be able to fully understand the capabilities and the importance of the implemented application.

When discussing the importance of streaming services, one fundamental advantage is the
ability to execute graphic intense applications in devices where otherwise would not be possible.
To further evaluate such significance, we start our experiments and tests by comparing the
performance of streaming against native rendering on mobile devices.

5.1 Specification

The following experiment is based on performing load balance tests to evaluate the limits of native
mobile rendering against streaming and determine the overall drawbacks of rendering graphic-
intensive workloads on mobile devices. The evaluation is executed in various mobile devices
and in the server that was used throughout the implementation phase, the server experiment
is also done while streaming since due to the available computational resources the obtained
performance results might differ whether the server is or not currently streaming.

To conduct the analysis, we used Three.js [24] to implement a web application that utilizes
WebGL and Instancing 1 to continuously draw the same 3D object indefinitely until the following
parameters are met:

• Browser crash: the crash occurs once the page produces more resources than the device
can handle, causing the browser to decide to tell all the pages that they lost the con-
text. The crash can be determined once a context-lost message like "WebGL: CON-
TEXT_LOST_WEBGL: loseContext: context lost" is produced 2.

• Reach defined limit: the experiment for a specific device will stop once a prescribed limit
1More information at https://threejs.org/docs/api/en/objects/InstancedMesh
2More information at https://www.khronos.org/webgl/wiki/HandlingContextLost
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of rendered objects is reached. Due to the available hardware, we specified the limit to
100000 objects, since most of the available devices crashed before reaching the limit.

The application continuously increases the number of rendered objects on the screen and logs
the frame rate, number of polygons, and the time it took to draw each corresponding number
of objects. When regarding the available devices for the evaluation, we used 4 different devices
with various ranges of performance, for the hardware we focused on the CPU, RAM, GPU and
the Chipset for mobile devices. The available devices and their specifications are the following:

• Xiaomi Redmi 4A

– Chipset: Qualcomm MSM8917 Snapdragon 425

– CPU: Quad-core 1.4 Gigahertz (GHz) Cortex-A53

– RAM: 2 Gigabyte (GB)

– GPU: Adreno 308

• Xiaomi Redmi 7

– Chipset: Qualcomm SDM632 Snapdragon 632

– CPU: Octa-core Max 1.8 GHz

– RAM: 2 GB

– GPU: Adreno 506

• Xiaomi Pocophone F1

– Chipset: Qualcomm SDM845 Snapdragon 845

– CPU: Octa-core Max 2.8 GHz

– RAM: 6 GB

– GPU: Adreno 630

• Server:

– CPU: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz

– RAM: 16 GB

– GPU: GeForce GTX 960M

5.2 Execution

Our experiments and tests were executed by developing the WebGL application necessary to
evaluate multiple devices. As the base for the application, we took advantage of the Three.js
framework and their Instancing Performance example 3. To improve the efficiency of the
experiment, the following adjustments were made to the example:

3More information at https://github.com/mrdoob/three.js/blob/master/examples/webgl_instancing_performance.html
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• We started by removing any unnecessary functionalities, to make the User Interface (UI)
less cluttered and improve the evaluation on the mobile devices.

• Next, we implemented an "ADD COUNT" button, that incrementally increased the number
of objects rendered. By default, the button works in increments of 100.

• For the final change, we added an output, that was necessary for retrieving data to analyze
the results. The output implemented, was in Comma-separated values (CSV) format, and
included metrics such as the number of objects, framerate, number of polygons, and the
time it took to complete the rendering. An example of the output result can be seen in
figure 5.1.

Figure 5.1: WebGL Application Output

The developed WebGL application and its UI can be seen in the figure 5.2, where we can
observe the results at a different number of objects, 100 and 1000 respectively.

After concluding the development of the application, we proceed with the execution of the
experiments and tests. The tests were done with the same procedure for the entire set of mobile
devices and the server, however, the server evaluation was done while the streaming engine
was in execution. For the operation, we utilized the same browser (Google Chrome), and to
record the output results and save the CSV file from the mobile devices, we utilized the Chrome
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(a) 100 Objects (b) 1000 Objects

Figure 5.2: WebGL Application at different objects counts

remote debugging tool, that facilitated the inspection of a page running on an Android device 4.
By utilizing the discussed procedures, the execution was simple. We started by adding several
objects in increments of 100 until one of the previously defined parameters was met. Once the
execution was concluded, we utilized the remote debugging tool to save the produced output to
an CSV file.

5.3 Results

The first result that we examine from the executed experiment, is the obtained frame rate for
each number of instances rendered on the browser. In the figure 5.3, we can observe the results
for each device defined in the specification, where the x-axis is the number of instances and the
y-axis the frame rate. The results for each device were as following:

• Xiaomi Redmi 4A: the first experiment was done on the Redmi 4A, comparing to the
devices on the list, the 4A is the cheapest and has the lowest hardware specification, in
consequence, the results obtained were the worst, where the device was only able to render
3000 instances and was never able to achieve a stable framerate.

4More information at https://developer.chrome.com/docs/devtools/remote-debugging/
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• Xiaomi Redmi 7: the Redmi 7, exhibited performance improvements when compared to
the previous, it was capable of maintaining on average 60 Frames Per Second (FPS) until
around 700 instances, but from there on, the FPS exponentially decreased as the number
of instances increased, until the browser crashed when 26700 instances were reached.

• Xiaomi Pocophone F1: the Poco F1, showed clear improvements in performance from
the previous, it was capable of maintaining a stable frame rate until 3500 instances, and
rendered on a total of 55400 more instances than the Redmi 7. Still, it did not reach the
specified limit, crashing at 82100 instances.

• Server: the server results were undoubtedly superior to the ones obtained from the mobile
devices. It was capable of maintaining a stable FPS for a higher number of instances and
no crashes attained, reaching the specified limit.
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Figure 5.3: Frame rate per number of instances rendered

Additionally, the figure 5.4, displays the difference in performance between all devices, where
we can observe in more detail the discrepancy in the number of instances that each device is
capable of rendering, reinforcing the conclusion that we were able to obtain from the previously
discussed plots.
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Figure 5.4: Comparison of frame rate per number of instances rendered for entire available
devices

Another performance metric, retrieved from the experiment, was the time it took to draw
each number of instances on the screen. On the figure 5.5 we can observe in detail the time
for each device, where the x-axis contains the number of instances and the y-axis represents
the time in Milliseconds (ms). Contrary to the previous metric regarding the frame rate, the
results obtained from the current evaluation were considerably more inconsistent. Although
there is a clear increase in the time it takes to render as the number of instances increments, we
found spikes in performance where it took less time to render higher counts of instances on some
particular number of occasions. An example of these issues can be seen in the results obtained
from the Xiaomi Pocophone F1, where the time it took to render 82000 instances was lesser
than the time it took to render 24600 instances, taking 54.3 ms and 57.6 ms respectively. The
reasoning behind the event that might be causing the issue was not found, nevertheless, the data
obtained can still be useful for the experiment.

When comparing the results between the available devices, with the figure 5.6, we can observe
that for a smaller number of instances, all the devices take on average the same time to render,
that said, as the number of instances increases, the server is the only device that can consistently
render a higher number of instances in less time than any mobile device. The server was, on
average, 30% faster at rendering the same amount of objects than the Xiaomi Pocophone F1.

As expected, devices with better hardware are capable of rendering more instances, through
the discussion of the data and the observation of the plots we can observe that the server is much
more capable than the mobile devices. Due to the browser crashing, the mobile devices used in
the evaluation were not capable of reaching the specified instances limit, conversely, the server
was not only able of reaching the limit but could also surpass it if needed. As a result of being
apt of rendering a bigger number of objects in less time, the server is more suited for drawing
higher counts of polygons than any of the mobile devices available in the executed test. By
evaluating the time and the amount of instances that each mobile device is capable of rendering,
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Figure 5.5: Frame time per number of instances rendered

we were able to conclude, that through the usage of our streaming application it is possible to
display a higher number of polygons that would otherwise not be feasible for rendering natively
on mobile phones.
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Figure 5.6: Comparison of the time it takes to render per number of instances on screen for the
entire available devices



Chapter 6

Conclusion

In this chapter, we describe the problem and iterate through the solutions and their advantages,
by the end the reader will be able to conclude what was accomplished, the limitations, and the
possible development that can be done in the future.

Throughout the years, there has been an increase in the population that has access to mobile
devices. As a result of the advancements made in the hardware, the rendering capabilities of
the mobile devices have been increased, still, their performance results are limited on the size
and power consumption. To solve such limitations, we can exploit streaming technologies, where
the required computational resources are handled by a server and the result is transmitted to
the client. Previous streaming solutions were limited by the available bandwidth, but with the
increasing accessibility of 5G, mobile devices can accomplish faster internet speeds and lower
latency.

Throughout the thesis, we presented a web-based application that is capable of streaming
high-fidelity 3D visualizations to the web browser. When streaming high-fidelity content,
latency, resolution, and framerate were key metrics that we utilized to determine the best user
experience. To accomplish that, we implemented a full-stack application, containing a client
and a server backend, where we utilized state-of-the-art technologies such as Web Real-Time
Communication (WebRTC), GStreamer, and Vue.js.

The server backend was implemented using Python and GStreamer, the GStreamer multimedia
framework served as our streaming engine, where we implemented various pipelines that were
capable of utilizing a Graphics Processing Unit (GPU) for Hardware (HW) accelerated streaming
workloads and establish a connection with WebRTC to communicate with the client in real-time.
The client was developed using Vue.js and JavaScript, where we designed a minimal and functional
User Interface (UI) that provided a prototype on how to implement interface components that
could communicate with the server backend.

After the development phase, we specified evaluation tests, that showed the importance
of streaming services, and the advantages in our implementation, by gauging the constraints
of native rendering on mobile devices against our server. By utilizing state-of-the-art WebGL
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frameworks, such as Three.js, we developed a web-based testing application that continuously
rendered more objects and was compatible with any device that has a WebGL-supported browser
available. As a result, we concluded that mobile devices with better hardware are capable of
native rendering more objects, but due to the ability to render a much bigger number of objects
in less computing time, a server is more suited for drawing higher counts of polygons than any
mobile device available.

6.1 Future Work

The web-based real-time streaming application, presented in this thesis, enables the users to
visualize and interact with graphic-intensive applications on any device. Nevertheless, throughout
the development, there was a variety of improvements that could be done:

• Streaming Engine: When regarding the server backend, and in particular the streaming
engine, although efforts were made to obtain the best performance possible, such results
were still dependent on the hardware available at the time of writing. By updating the
GPU used on the server, we could bring instant benefits on performance, and we could
potentially enable different pipeline implementations, namely pipelines that take advantage
of Compute Unified Device Architecture (CUDA) based workflows.

• Communication Handling: Continuing with the server backend, enhancements on the
communication between the client and server could be achieved, at the moment, the server
only supports streaming a single application to one client, by improving the Signalling
server we could achieve the support for multiple clients streaming in simultaneous, as for
streaming multiple independent application, the implementation is much more complex,
and might require the usage of multiple systems for each user, which could be considerably
more expensive, or, as we previously saw in the state-of-the-art with articles such as "A
Cloud Gaming System Based on User-Level Virtualization and Its Resource Scheduling"
[57] and "Orchestrating GPU-accelerated streaming apps using WebRTC" [16] the usage
of virtualization and cloud computing services like Google Cloud Platform (GCP) could
be a good solution for a more cost-effective implementation to enable a user-independent
streaming application.

• Device Compatibility: We focused our implementation compatibility, to support the
available devices that we had available during the development, as a consequence, our testing
was limited to Android devices and an Ubuntu-based desktop. Although, theoretically, the
technologies used are supported by the most popular platforms, and efforts were made to
improve the compatibility such as using the WebRTC adapter.js [45], further testing in the
future could be done to ensure every platform and web browser has the best performance
and user experience possible.
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6.2 Final Thoughts

The concept of remotely accessing an application is something that already existed, but, the most
commonly used technologies are not suited to handle graphic demanding content. With the recent
rise in the availability of Cloud Gaming services, such as Google Stadia 1, NVIDIA GeForce NOW
2 and Microsoft Project XCloud 3, we have seen a technology leap in the performance that it is
possible to achieve through streaming, where games can be played with almost no latency and
high rendering fidelity. Unfortunately, the advancements made are proprietary, and the services
are limited when it comes to controlling what type of content you want to stream. Throughout
this thesis, we tried to solve some of these issues, by describing the development required to
implement a similar service to the ones described above, while mostly utilizing open-source
technologies and being agnostic to the content that can be streamed.

According to GSMA real-time intelligence data, in 2021, 5.27 Billion people have a mobile
device in the world 4, which is 67.03% of the world’s population. The population that as mobile
devices increased 14% since 2017, but the performance of each device is not equal, furthermore,
due to increasing prices necessary to acquire a mobile device, not all populations have access
to the same performance, in other words, not all people have access to the same content. By
utilizing a streaming solution, such as the one we developed during this thesis, we will be able to
ensure that a higher number of the population with mobile devices has access to more graphically
demanding content. Additionally, with the network improvements, such as 5G, reaching a
higher population, more companies will be able to adopt cloud-based applications. With the
possibility of moving the most demanding applications to the cloud, mobile devices might require
less computational resources, which can improve the costs in hardware manufacturing and the
availability of mobile devices to a higher population.

1More information at https://stadia.google.com/
2More information at https://www.nvidia.com/en-eu/geforce-now/
3More information at https://www.xbox.com/en-us/xbox-game-pass/cloud-gaming
4More information at https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
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