
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Privacy-oriented Task Orchestration
System for IoT Networks

Nuno Tiago Tavares Lopes

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Hugo Sereno Ferreira, Assistant Professor

Second Supervisor: Tiago Boldt Sousa, Assistant Professor

FhP AICOS Supervisors: Marcos Liberal, Pedro Madureira

July 16, 2021

Privacy-oriented Task Orchestration System for IoT
Networks

Nuno Tiago Tavares Lopes

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. João Pedro Correia dos Reis

External Examiner: Prof. Ângelo Manuel Rego e Silva Martins

Supervisor: Prof. Hugo José Sereno Lopes Ferreira

July 14, 2021

Abstract

The Internet-of-Things (IoT) represents a network of heterogeneous devices embedded with sen-
sors and other technologies connected to the Internet. The usage of IoT systems in areas such
as home automation, industry, and health scenarios has been rising over time. However, most of
these existing IoT systems were built following a centralized approach where the main component
manages and executes most of the computation on the data provided by edge devices (e.g., sensors,
actuators). These approaches neglect the edge devices’ computation capabilities, and local data
may be transferred across boundaries without need.

With Fog and Edge Computing’s recent appearance, the storage and computation of data were
moved to the edge of the network, thus closer to the users, making better use of the computational
capabilities of edge devices. Herewith, orchestration mechanisms capable of decomposing the
system into smaller tasks and allocating them to edge devices began to emerge. However, these
devices are usually less secure since they have lower capabilities and energy constraints when
compared to the execution of computation in cloud devices. Moreover, many of the edge devices
generate, process, and exchange privacy-sensitive data, thus are more appealing targets for attacks
that aim to access private data. Although several approaches allow the orchestration of distributed
IoT systems, they lack of protection mechanisms that guarantee the privacy of data flowing in the
system.

In this work, we propose mechanisms that can automatically guarantee a safe flow of privacy-
sensitive data in IoT systems where computational tasks are orchestrated to devices at the edge
of the network. To achieve this, we extend an existing platform, NoRDOr, which consists of
a modified version of Node-RED capable of orchestrating distributed IoT systems in real-time.
We address privacy concerns in this platform by (1) preventing privacy-sensitive data from being
sent to possible unsafe devices, (2) making use of the computational power of the available devices
without compromising private data, and (3) by allowing the orchestrator to prioritize the allocation
of privacy-sensitive nodes to safer locations.

In order to validate and evaluate our solution, we performed virtual experiments with simulated
IoT devices, where faults were introduced to simulate real-world scenarios. Several metrics were
collected from the devices to better understand and analyze if our solution protected the privacy-
sensitive data but at the same time used the computational power provided by the edge devices.
We conclude that the proposed improvements would lead to a system where the privacy of private
data is ensured. We further identified some limitations and research work to improve our solution
in the future.

Keywords: IoT, Privacy, Orchestration, Edge Computing, Node-RED, Fog Computing

i

ii

Resumo

A Internet-of-Things (IoT) representa uma rede de dispositivos heterogéneos que incorporam sen-
sores e outras tecnologias que estão ligados à Internet. O uso de sistemas IoT em áreas como
a domótica, a indústria e em cenários de saúde tem vindo a aumentar ao longo do tempo. No
entanto, a maioria dos sistemas IoT existentes foram construídos seguindo uma abordagem cen-
tralizada, onde um componente principal gere e executa a maior parte da computação sobre os
dados fornecidos por dispositivos edge (p.e., sensores, atuadores). Estas abordagens negligenciam
o poder computacional dos dispositivos edge que por sua vez leva a que os dados locais sejam
transferidos através das fronteiras sem necessidade.

Com o recente surgimento dos paradigmas Fog e Edge Computing, o armazenamento e a
computação dos dados começaram a ser movidos para a periferia da rede, ou seja, mais perto dos
utilizadores, utilizando melhor as capacidades computacionais dos dispositivos edge. Com isto,
começaram a surgir mecanismos capazes de decompor os sistemas em tarefas mais pequenas que
são orquestradas e alocadas a dispositivos edge. No entanto, estes dispositivos são geralmente
menos seguros pois têm menos recursos e mais restrições de energia quando comparados com os
dispositivos cloud. Além disso, muitos dos dispositivos edge geram, processam e trocam dados
privados, sendo assim alvos bastante atrativos para ataques que visam obter acesso a este tipo de
dados. Embora existam várias abordagens que permitem a orquestração de sistemas IoT distribuí-
dos, não existe um grande foco na utilização de mecanismos capazes de garantir a privacidade dos
dados que circulam pelo sistema.

Neste trabalho, propomos mecanismos que permitem garantir automaticamente um fluxo se-
guro de dados sensíveis em sistemas IoT e que ao mesmo tempo aproveitem as capacidades dos
dispositivos edge enviando tarefas para eles executarem. De forma a atingirmos o nosso objetivo,
estendemos uma plataforma existente, NoRDOr, que consiste numa versão modificada do Node-
RED que é capaz de orquestrar em tempo real tarefas em sistemas IoT distribuídos. Para abordar
as questões de privacidade nesta plataforma, a nossa solução (1) evita que dados privados sejam
enviados para dispositivos considerados inseguros, (2) utiliza o poder computacional dos disposi-
tivos disponíveis sem comprometer a privacidade de dados sensíveis e (3) permite a prioritização
de alocação de nós sensíveis em locais mais seguros durante a orquestração.

Para validar e avaliar nossa solução, foram realizas experiências virtuais com dispositivos IoT
simulados, onde foram introduzidas falhas para simular cenários do mundo real. Durante as exper-
iências foram recolhidas várias métricas dos dispositivos para melhor entender e analisar se a nossa
solução protegia os dados privados e ao mesmo tempo usava o poder computacional fornecido pela
rede. Concluímos que as melhorias sugeridas levariam a um sistema onde a privacidade dos dados
privados é garantida quando comunicada entre dispositivos. Foram também identificadas algumas
limitações à nossa solução que podem ser endereçadas em trabalho futuro.

Keywords: IoT, Privacy, Orchestration, Edge Computing, Node-RED, Fog Computing

iii

iv

Acknowledgements

I would like to start by thanking everyone that made it possible for me to finish this dissertation
and my Master’s Degree.

First of all, I would like to thank my supervisors from FEUP, Professors Hugo Sereno Fer-
reira and Tiago Boldt Sousa, and my supervisors from FhP AICOS, Marcos Liberal and Pedro
Madureira, for the guidance and insights provided throughout these last months which helped me
produce a better work.

Then, I would like to thank my parents and my sister, for their love and encouragement, for
being a critical pillar of my life providing me with the best conditions possible to be successful. I
would not be where I am today without you.

To Inês Bernardo, my girlfriend, for all the love and support, for always being there for me,
motivating me to be better every day.

Lastly, but not least, a huge thank you to all my friends who accompanied me on this journey
through university. Without you, it would not be as memorable as it was. Thank you for the
memories that will persist for many years.

Nuno Lopes

v

vi

“You can’t put a limit on anything.
The more you dream, the farther you get.”

Michael F. Phelps

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem . 3
1.4 General Goals . 3
1.5 Document Structure . 4

2 Background 5
2.1 Internet-of-Things . 5

2.1.1 IoT Tiers . 6
2.1.2 Industrial Internet-of-Things & Industry 4.0 8
2.1.3 IoT for Ambient Assisted Living . 8

2.2 Privacy & Security Concerns in IoT . 9
2.3 Summary . 11

3 State of the Art 13
3.1 Introduction . 13

3.1.1 Research Questions . 13
3.1.2 Databases . 14
3.1.3 Search Process . 14

3.2 Orchestration of Distributed Systems . 14
3.3 Data Privacy & Security in IoT Systems . 19
3.4 Summary . 24

4 Problem Statement 27
4.1 Assumptions . 27
4.2 Open problems . 28
4.3 Desiderata . 29
4.4 Scope . 29
4.5 Research Questions . 29
4.6 Methodology . 30
4.7 Summary . 30

5 Privacy-oriented Task Orchestration 33
5.1 Overview . 33
5.2 Devices’ Zones . 34
5.3 Node-RED Computation Orchestration . 35
5.4 Node Assignment Algorithm . 36

ix

x CONTENTS

5.5 Known Limitations . 39
5.6 Summary . 39

6 Experimentation and Evaluation 41
6.1 Scenarios . 41
6.2 Experiments . 43

6.2.1 ES1 Experiments . 44
6.2.2 ES2 Experiments . 46
6.2.3 Metrics collected . 48

6.3 Results Analysis . 49
6.3.1 ES1: Sanity Checks . 49
6.3.2 ES1: Experimental Tasks . 51
6.3.3 ES2: Experimental Tasks . 56
6.3.4 ES2: Limitations . 60

6.4 Replication Package . 63
6.5 Desiderata Revisited . 64
6.6 Research Questions Revisited . 64
6.7 Summary . 66

7 Conclusions 69
7.1 Conclusions . 69
7.2 Contributions . 71
7.3 Difficulties . 71
7.4 Future Work . 71

A ES1 Sequence Diagram 75

References 77

List of Figures

2.1 IoT, IIoT, and Industry 4.0. 8
2.2 Example of an AAL scenario. 9
2.3 The CIA Triad. 11

3.1 DDFlow system architecture. 16
3.2 DeTEC solution architecture. 17
3.3 NoRDOr solution’s overview. 18
3.4 Dwivedi et al. logical flow execution of the system. 21
3.5 Aggregation gateway pattern example. 23

5.1 High-level overview of the system modules. 34
5.2 Node-RED node properties example. 36
5.3 Orchestration sequence diagram. 37

6.1 Node-RED implementation of scenario 1. 42
6.2 The eCAALYX system overview. 42
6.3 Scenario 2 overview. 43
6.4 Node-RED implementation of scenario 2. 44
6.5 Node-RED implementation for the limitation experiments in scenario 2. 47
6.6 ES1-SC1 measurements. 49
6.7 ES1-SC1 node assignment. 50
6.8 ES1-A measurements. 51
6.9 ES1-A node assignment. 52
6.10 ES1-B measurements. 53
6.11 ES1-C measurements. 54
6.12 ES1-D measurements. 55
6.13 ES1-D node assignments. 56
6.14 ES2-A measurements. 57
6.15 ES2-A node assignment. 58
6.16 ES2-B measurements. 59
6.17 ES2-L1 measurements. 61
6.18 ES2-L2 measurements. 62
6.19 ES2-L2 node assignment. 63

A.1 ES1-SC1 sequence diagram. 76

xi

xii LIST OF FIGURES

List of Tables

3.1 Orchestration of Distributed IoT Systems Analysis 19
3.2 Privacy & Security in IoT Systems Analysis . 24

6.1 ES1-SC1 devices’ specification. 44
6.2 ES1-SC2 devices’ specification. 45
6.3 ES1-A devices’ specification. 45
6.4 ES1-B devices’ specification. 45
6.5 ES1-D devices’ specification. 46
6.6 ES2-A devices’ specification. 47
6.7 ES2-L1 devices’ specification. 48
6.8 ES2-L2 devices’ specification. 48

xiii

xiv LIST OF TABLES

Abbreviations

AAL Ambient Assisted Living
DDoS Distributed Denial of Service
DNS Domain Name System
DoS Denial of Service
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
ES Experimental Scenario
HTTP Hypertext Transfer Protocol
IIoT Industrial Internet-of-Things
IoT Internet-of-Things
MQTT Message Queuing Telemetry Transport
NoRDOr Node-RED Distributed Orchestrator
REST Representational State Transfer
RQ Research Question
SA Simulated Annealing
SC Sanity Check
URL Uniform Resource Locator
VPL Visual Programming Language
WWW World Wide Web

xv

Chapter 1

Introduction

1.1 Context . 1

1.2 Motivation . 2

1.3 Problem . 3

1.4 General Goals . 3

1.5 Document Structure . 4

This chapter introduces the context and motivation behind this dissertation, along with a short

definition of the problem this work aims to solve. Section 1.1 details the context of this project in

the area of Internet-of-Things and its applications. Section 1.2 (p. 2) defines some of the issues

of current systems and their consequences. Section 1.3 (p. 3) explains the problem we intend to

tackle, motivated by the issues mentioned in the previous section, while Section 1.4 (p. 3) details

the goals this dissertation aims to achieve and how they are validated and evaluated. Finally,

Section 1.5 (p. 4) gives a short overview of this document structure and what should be expected

from each chapter.

1.1 Context

The Internet-of-Things (IoT) is the name given to a unified network of intelligent objects capable

of communicating with each other in a universal and ubiquitously way [15]. In 2014, the number

of “things” that were connected was around 20 billion [3]. It is expected that within six years, that

number will increase to 30 billion. Furthermore, the applications are endless and will increase day

after day [3]. Some examples of where IoT systems can be applied are smart homes, smart cities

[49], industry [20, 38], and health [74, 59].

In the industry scenario, the advances in IoT sensors made possible the development of em-

bedded and connected systems, which aimed to monitor and control the equipment, transporters,

and products through a feedback cycle that collects large amounts of data (big data). This data is

used to update virtual models with the physical processes’ information, resulting in a smart factory

1

2 Introduction

[38]. However, Industrial Internet-of-Things (IIoT) networks can also be used to monitor factory

workers’ health and well-being [45]. The data collected from these sources is much more personal

and consequently more privacy-sensitive since it mostly belongs to the operators. IIoT systems

that deal with this kind of data must ensure that it is correctly secured and can only be accessed

by authorized entities.

Internet-of-Things systems also began to be used in Ambient Assisted Living (AAL) scenarios

helping older adults and people with special needs during their daily routine by fostering their

autonomy and increasing their safety by monitoring them in real-time [59]. Similarly, the data

collected in these systems is highly private, thus the systems should provide ways to guarantee the

privacy of data without compromising the real-time flow of it, which is critical in this case.

For these referred scenarios, it is transversal that users require the protection of their personal

information related to their movements, habits, and interactions with other people. Thus, the pri-

vacy of all the data generated, processed, and exchanged by smart objects should be ensured [66].

However, the implementation of such mechanisms comes with challenges as edge devices used to

collect data are highly heterogeneous, have lower computational power and storage capacity, and

are more vulnerable compared to fog or cloud servers [4].

1.2 Motivation

The usage of Internet-of-Things systems in areas such as home automation, industry, and health

has been rising over time [16, 21]. Most of these existing IoT Systems were built following a cen-

tralized approach where the main component manages and executes most of the computation on

the data provided by edge devices (e.g., sensors, actuators) [67, 68]. Thus, these approaches ne-

glect the edge devices’ computation capabilities making local data to be transferred across certain

boundaries, which increases the risk of it being compromised.

With the increase of the computational capabilities of even the smaller devices in the Internet-

of-Things, the Fog and Edge computing paradigms started to emerge [41, 39, 37, 40]. The com-

putation and storage of the collected data began to be performed at the edge of the network, thus

closer to the users. Many of these edge devices began to generate, process, and exchange more

security and safety-critical data as well as privacy-sensitive information, and hence are appeal-

ing targets of various attacks since they are less secure due to the low capabilities and energy

constraints [2, 75].

The broad range of IoT application scenarios impulses the need for tools that enable non-

technical users to setup and adjust their systems to their requirements [71]. As a result, several

low-code programming solutions emerged to reduce programming and configuring complexity

of these systems, leveraging both visual and conversational interfaces [13, 21, 27, 46]. One of

such development solutions’ is Node-RED, being one of the most popular and widespread visual

programming tools for IoT [22].

1.3 Problem 3

The security and privacy of IoT systems are key factors for deploying new applications since

people will only accept these deployments if they are based on secure, trustworthy, and privacy-

preserving infrastructures [65, 49, 58, 24]. Therefore, it is crucial to ensure the privacy of data

produced, processed, and exchanged between the devices in these systems.

1.3 Problem

The majority of solutions that leverage the computational capabilities of distributed edge devices

in an IoT network by orchestrating custom tasks do not have mechanisms to protect possible

privacy-sensitive data that flows in the system. According to Ni et al. [54], the four most relevant

types of information that an IoT system should always protect are (1) identity, (2) sensitive data,

(3) information usage, and (4) location data. In some use cases, other types of information also

needs to be protected. Thus, it should be a users’ choice what type of information they wish to

keep private the system.

In this work, we intend to research privacy methods that can be used in IoT systems without

compromising the system’s ability to take advantage of the computational power of the network.

However, when choosing the privacy mechanisms, we have to bear in mind that most edge devices

have low capabilities and energy constraints.

Chapter 4 further analyses the problem under study in this dissertation, defining its scope,

desiderata, and research questions that guide the development of our work and are later answered

in the experiments.

1.4 General Goals

The main goal of this dissertation is to develop mechanisms that can automatically guarantee a

safe flow of privacy-sensitive data in distributed IoT systems. To achieve our goal, we extend

a previously developed platform, NoRDOr [19, 67], which is comprised of a modified version

of Node-RED with the ability to leverage the computational capabilities of edge devices in an

IoT network. In this platform, Silva et al. also developed a custom MicroPython firmware which

allowed the devices to execute custom scripts of MicroPython that were sent by an orchestrator

running in the enhanced version of Node-RED.

To ensure the privacy of data in the NoRDOr platform, our solution should (1) prevent privacy-

sensitive from being sent to possible unsafe devices, (2) make use of the computational power of

the available devices without compromising private data, and (3) be capable of prioritizing the

allocation of privacy-sensitive nodes to safer locations.

To validate the proposed solutions, we have performed several experiments with virtual IoT

devices, where faults were introduced to simulate real-world scenarios [26]. The results of these

experiments were analyzed, providing answers to each one of the research questions that guided

the development of this dissertation.

4 Introduction

1.5 Document Structure

This chapter serves to introduce the motivation and scope of this project, as well as the problem it

aims to solve. This document contains six more chapters, structured as follow:

• Chapter 2 (p. 5), Background, introduces some concepts necessary to fully understand this

dissertation;

• Chapter 3 (p. 13), State of the Art, describes the state of the art regarding the scope of

this project, including a literature review on orchestration of distributed IoT systems and

a literature review on privacy techniques applied to the orchestration of Internet-of-Things

systems;

• Chapter 4 (p. 27), Problem Statement, presents the current issues under study, the require-

ments our solution should fulfill and the research questions that will guide the development

of this dissertation;

• Chapter 5 (p. 33), Privacy-oriented Task Orchestration, details the implementation of our

solution and discusses the reasons behind every choice made;

• Chapter 6 (p. 41), Experimentation and Evaluation, presents the experiments performed

and analysis of the respective results which are used to answer the research questions of this

dissertation;

• Chapter 7 (p. 69), Conclusions, summarizes the work developed during this dissertation,

outlines the main difficulties and contributions, and also suggests future directions to im-

prove our work.

Chapter 2

Background

2.1 Internet-of-Things . 5

2.2 Privacy & Security Concerns in IoT . 9

2.3 Summary . 11

This chapter describes the key concepts and the relationships between them, which are neces-

sary to fully understand this work. Section 2.1 defines the term Internet-of-Things while Sec-

tion 2.1.1 (p. 6) describes the tiers and computing paradigms related to it. Industrial IoT and

Ambient Assisted Living are common scenarios where IoT systems are used. For both cases, the

IoT systems used in these areas can generate vast amounts of privacy-sensitive data thus they are

good examples where data needs to be protected. In Section 2.1.2 (p. 8), we present a brief de-

scription of the concepts of Industrial IoT and Industry 4.0 while in Section 2.1.3 (p. 8) we define

the term Ambient Assisted Living and explain how IoT systems are used in AAL scenarios. Fi-

nally, Section 2.2 (p. 9) explains the current concerns in privacy and security in IoT, presenting

the model CIA Triad, which is commonly used as guidance in the efforts and policies aimed at

keeping data secure.

2.1 Internet-of-Things

The term Internet-of-Things (IoT) does not have a unique definition acceptable by the whole com-

munity of users. Instead, this term was defined by different groups of people. Atzori et al. [8]

define IoT as:

"A conceptual framework that leverages on the availability of heterogeneous devices

and interconnection solutions, as well as augmented physical objects providing a

shared information base on global scale, to support the design of applications in-

volving at the same virtual level both people and representations of objects."

However, Madakam et al. [51] believe the best description for the Internet-of-Things is:

5

6 Background

"An open and comprehensive network of intelligent objects that have the capacity to

auto-organize, share information, data and resources, reacting and acting in face of

situations and changes in the environment."

This network of smart objects appeared to solve people’s problems — limited time, accuracy,

and attention — when capturing data about things in the real world [5]. According to Atzori

et al. [7], the applications of IoT can be grouped in the following domains: (1) Transportation and

logistics (e.g., assisted driving, environment monitoring, augmented maps), (2) Healthcare (e.g.,

patients tracking, identification, and authentication of patients), (3) Smart environment, (e.g., com-

fortable homes and offices, industrial plants) and (4) Personal and social, (e.g., social networking,

historical queries). The authors also define a futuristic domain since several applications rely on

technologies that either do not exist yet or whose implementation is still too complex to accept

them as practical applications (e.g., autonomous taxi, enhanced game room).

2.1.1 IoT Tiers

Most IoT systems manage a vast amount of data that needs to be processed efficiently by taking

into account the computation power required and reducing costs, resources and time. These IoT

systems are generally composed of three tiers [79]:

Cloud Tier: is characterized for having more computational power and storage capacity, however,

higher latency. They are mostly composed of data centers and servers.

Fog Tier: is composed of gateways and devices which stand between the cloud and the edge tiers.

It has lower computation capacities than the cloud tier. However, it has less latency. It is

also characterized for being more geographically and logically distributed and for having a

higher heterogeneity.

Edge Tier: provides less latency but also less computational power due to the low capabilities

and energy constraints of edge devices (e.g., sensors, actuators, embedded systems).

Nowadays, most of the existing IoT systems follow a Cloud-based approach to process and

store the system’s vast data. This type of approach may introduce problems in terms of latency,

network traffic management, and power consumption. Moreover, for the applications that rely

on real-time processing of data, the delay caused by the communication between the devices that

collect the data and the cloud where it is processed can negatively impact the system’s performance

[32]. With this in mind and the increase of computational capabilities of even the smallest devices,

new paradigms have emerged, allowing to process data closer to where it was generated, reducing

system latency and network traffic. These new computation paradigms are named: Fog Computing

and Edge Computing.

2.1.1.1 Fog Computing

Fog Computing was introduced in 2012 by Bonomi et al. [14] in the following way:

2.1 Internet-of-Things 7

"(...) a highly virtualized platform that provides compute, storage, and networking

services between end devices and traditional Cloud Computing Data Centers, typi-

cally, but not exclusively located at the edge of network."

Fog Computing brings the computation and storage services closer to the edge devices remov-

ing all the cloud responsibility. The computation can be powered by high-performance servers or

even typical network devices — e.g., routers, gateways — that are closer to the end devices. Fog

Computing is characterized by low latency, location awareness, geographical distribution, a vast

number of nodes, heterogeneity, and real-time applications [14]. It makes computing resources

and intelligent services more flexible, accessible, efficient and cost-effective in the IoT network

[79].

Regardless of all the benefits of Fog Computing, there are several issues when compared to

Cloud Computing [52]: (1) some of the devices that can be used in Fog Computing are not pre-

pared for computing tasks, and equipping them to do so can be challenging, (2) not all nodes are

suitable for specific processing needs, so it can be challenging when deploying them, (3) since

Fog Computing uses traditional networking devices, it is more vulnerable to security attacks, and

it is harder to ensure privacy.

2.1.1.2 Edge Computing

Shi et al. [64] refer Edge Computing as:

"(...) enabling technologies allowing computation to be performed at the edge of the

network, on downstream data on behalf of cloud services and upstream data on behalf

of IoT services. Here we define “edge” as any computing and network resources

along the path between data sources and cloud data centers."

Since Edge Computing wants to put the computing at the proximity of data sources it has less

resources and capabilities but also lower latency which is perfect to handle delay-sensitive tasks

(e.g., data collection and compression, information extraction and event monitoring) at the local

level [79].

However, it brings several challenges to the IoT systems, such as energy and computing con-

straints of the edge devices and system reliability, due to the difficulty of detecting failures in this

type of devices. Moreover, there is a lack of frameworks and tools to build these systems and it is

missing standard ways of naming, and addressing the edge devices.

Keeping data where it is collected lets the users fully own their data and adds the ability to

denature data (e.g., blur faces in images, aggregate sensor reading, omit specific fields) before

releasing it to the cloud or untrusted devices, which is a better solution for privacy protection.

However, edge devices are highly resource constrained, which prevents the deployment of the

current security protection methods. Moreover, the highly dynamic environment at the edge of the

network also makes the network more vulnerable and unprotected [63, 64].

8 Background

2.1.2 Industrial Internet-of-Things & Industry 4.0

Industrial Internet-of-Things (IIoT) and Industry 4.0 are two terms that are often used mutually,

however, they slightly differ.

Industry 4.0 refers to the current fourth generation of industry focusing on the manufacturing

industry scenario. The term was conceived in 2011 by a German initiative of the federal gov-

ernment with universities and private companies with the objective of increasing productivity and

efficiency of the national industry. Industry 4.0 relies on the adoption of digital technologies to

gather data in real time and analyze it, providing useful information that adds value to the whole

product life cycle [35, 1].

IIoT was first introduced in 2012 as the industrial Internet demanded the adoption of the IoT in

the perspective of industry in general (both manufacturing and non-manufacturing). It consists of

connecting all the industrial assets — machines and control systems — with the business processes

and information systems. Consequently, a large amount of data is collected and used to feed

analytical models that improve industrial operations’ efficiency and productivity [69].

Figure 2.1 presents the concept of IIoT and Industry 4.0 within IoT.

Figure 2.1: IoT, IIoT, and Industry 4.0 [1]. This image represents how the IoT, IIoT
and Industry 4.0 terms correlate between them. Industry 4.0 applications are the most
specific and are included in the IIoT concept, which in turn is represented by IoT in
general.

Industry 4.0 would not exist without IIoT, but IIoT would not be very effective without the

bigger-picture framework of Industry 4.0. IIoT is, at its core, about connecting devices, while

Industry 4.0 is a cultural philosophy about how to be more competitive by increasing visibility,

flexibility, and efficiency across the production. Despite the differences, IIoT and Industry 4.0 are

intended to improve manufacturing processes and should be pursued and implemented to achieve

positive results and sustain global competitiveness [1].

2.1.3 IoT for Ambient Assisted Living

Ambient Assisted Living (AAL) term is used to define a system that focuses on providing assis-

tance to older adults and people with special needs in their daily routine. The main goal of AAL is

2.2 Privacy & Security Concerns in IoT 9

to "maintain and foster the autonomy of those people and, thus, to increase safety in their lifestyle

and in their home environment" [30].

According to Calvaresi et al. [17] there are several objectives behind the AAL systems: (1)

extend the time people can live in an environment they are used to by increasing their autonomy,

self-confidence, and mobility, (2) maintain health and functional capability of the elderly individ-

uals, (3) promote a better and healthier lifestyle for individuals at risk, (4) enhance security, (5)

prevent social isolation, and (6) support caregivers, families and care organizations.

There is a strong relationship between AAL and IoT. The evolution of technology allows the

creation of new advanced systems that can be more accurate in the prevention of problems that

may arise for patients. By using Internet-of-Things devices and sensors, it is possible to develop

solutions that are closer to the elderly and to the doctors and relatives [43, 59]. By using these

types of smart objects, thus smart homes, it is possible to collect data in real-time from the elderly

lifestyle and make it more accessible to emergency services which sometimes can be critical when

there is n urgent need to provide help to the patient.

Figure 2.2 presents a possible general organization of an AAL scenario with the groups of

people who are part of the system, as well as some devices are normally used.

Figure 2.2: Example of an AAL scenario [74].

2.2 Privacy & Security Concerns in IoT

The increase of IoT systems and the increase of personal information generated, processed, and

exchanged by smart objects in IoT networks raised several privacy and security concerns. Wher-

ever there are valuable resources, there are also criminal attempts to obtain value from the illegal

use of technology or to disable the access for those resources by others [48, 23].

IoT systems present several vulnerabilities that make the sensitive information prone to the

access of cybercriminals. These vulnerabilities can be related to the Internet connection, making

the system susceptible to remote attacks, either by direct access to networked control interfaces

10 Background

or downloading malware to devices. Another vulnerability comes from the edge devices used in

IoT systems that have lower computational power and storage capacity than a fog or cloud server,

which prevents the implementation of complex security algorithms. Moreover, the devices’ het-

erogeneity also makes the system more vulnerable since they use a large variety of protocols and

operating systems without a standardized regulation, generally because they come from different

manufacturers [4].

To combat the vulnerabilities found in IoT systems, it is necessary to hide the personal infor-

mation as well as the ability to control what happens with it. To ensure privacy and security, IoT

systems need to obey the following requirements [4, 42, 48, 77]:

Data authentication: Verify if data was not modified and is sent by the claimed author;

Access control: Only allow suitably authorized users to access data, communications infrastruc-

ture, and computing resources, and ensure that the access is not denied to those authorized

users;

Confidentiality: Keep data private so that only authorized users can access it. Cryptography is a

crucial technology for achieving confidentiality;

Location privacy: Prevent leakage of nodes’ location by ensuring it is impossible to track back

to the entity that generated the information;

Resilience to attacks: The system needs to be secured from some common known attacks (e.g.,

DDoS attacks, side-channel attacks, malware injection attacks, and authentication, autho-

rization attacks). Moreover, it has to avoid single points of failure and should adjust itself to

node failures.

Privacy issues in IoT are not limited to consumers but may also impact the industry. Industrial

IoT is more complex than traditional IoT systems since, in addition to the risk of violating sensitive

employee or customer details, the potential loss of intellectual data increases the possibility of

competitors copying the victim’s organization’s knowledge and capabilities, which may destroy

competitive advantage [53].

The initial focus on protecting information was based on ensuring the system’s reliability due

to expensive hardware costs and computers’ rarity. With the increase of technology, the focus

shifted from protecting computers to protect the information, which brought more importance to

the notion of confidentiality, integrity, and availability, thus appearing the term CIA Triad [62].

The CIA Triad’s roots are deeply embedded in the military security ideology, which has al-

ways focused on protecting information from external threats. The following three categories that

address potential security risks, also represented in Figure 2.3 (p. 11), become the foundation of

the CIA Triad [76, 62]:

Confidentiality: relates to protecting data from unauthorized access that may want to take advan-

tage of information stored in the computer;

2.3 Summary 11

Integrity: concerns the protection of data validity against undesired modifications or destruction

(e.g., sabotage);

Availability: refers to the timely and reliable access of information — and systems — to autho-

rized individuals and processes in the form and format needed.

Figure 2.3: The CIA Triad [76].

The CIA Triad represents the basis for privacy rules and the protection of systems that deal

with privacy-sensitive data. By analyzing the confidentiality, integrity, and availability of informa-

tion or information systems, it is possible to perform a classification and qualitative assessment of

the security risks and the development of relevant security controls.

The CIA Triad has been criticized for having a particular point of view — data is the center

point around how security efforts should be structured — narrowing technical orientation and

focus. However, the term is still valuable because it provides a straightforward way to understand

and resolve information security issues. The term should never be used in isolation but paired with

other security models (e.g., five pillars of information assurance, Parkerian Hexad [57]) to achieve

defense in depth [62].

2.3 Summary

This chapter introduces concepts regarding IoT, IIoT, Industry 4.0, AAL and privacy and security

concerns in IoT systems. Section 2.1 (p. 5) defines Internet-of-Things, as well as each one of

its tiers — Cloud, Fog, Edge — explaining in more detail the paradigms of Fog Computing and

Edge Computing. Moreover, Section 2.1.2 (p. 8) briefly describes the concepts of both Industrial

IoT and Industry 4.0, highlighting the key differences between them. In Section 2.1.3 (p. 8) the

purpose of AAL systems are explained as well as how they make use of IoT technology to get

real-time information of elderly people. Section 2.2 (p. 9) explains the principal vulnerabilities

IoT systems face nowadays, the requirements that should be followed to ensure basic privacy

and security protection against threats that may attempt to access or modify data and disable the

12 Background

system’s expected performance, and explains the model CIA Triad used to validate if systems

comply with privacy and security rules established by it.

Chapter 3

State of the Art

3.1 Introduction . 13

3.2 Orchestration of Distributed Systems . 14

3.3 Data Privacy & Security in IoT Systems . 19

3.4 Summary . 24

This chapter describes the state of the art for security and privacy in the Internet-of-Things, as

well as systems that orchestrate tasks among devices or servers in distributed architectures. In

Section 3.1, the methodology behind the research done is explained. Section 3.2 (p. 14) presents

the results for solutions that orchestrate distributed systems, whereas in Section 3.3 (p. 19), we

present privacy and security solutions for IoT systems.

3.1 Introduction

To perform a literature review for the current state of the art, we used an iterative methodology

(cf. Section 3.1.3, p. 14). It consisted of gathering some keywords and define a group of search

queries related to each literature research question (cf. Section 3.1.1). These queries were then

adapted and used to several databases (cf. Section 3.1.2, p. 14). The results obtained were then

sorted and filtered using some criteria such as the similarity with the domain of this thesis, number

of citations and the publish date.

3.1.1 Research Questions

To better understand the work already developed in the scope of this project and to guide the

literature review process, we defined the following literature research questions (LRQs):

LRQ1 What solutions exist that allow the orchestration of devices in distributed IoT system?

LRQ2 What techniques have been used to address privacy and security concerns over data that

can be applied to orchestration of IoT systems?

13

14 State of the Art

3.1.2 Databases

The solutions analyzed during this research were retrieved from the following databases: (1) IEEE,

(2) ACM Digital Library, and (3) Scopus. The material used in the researched literature consists

of conference papers, journal and survey articles, as well as popular reference books.

3.1.3 Search Process

To find the analyzed literature, a bottom-up approach, described below, was followed. This ap-

proach consisted of executing the following steps in a iterative way:

1. Find keywords related to each research question and generate a query;

2. Use the query to search in the databases, redefining them based on the results when needed;

3. Sort and filter based on number of citations, publication date, and similarity to the domain;

4. Choose relevant results based on title, abstract, and conclusions;

5. Analyze the chosen results with more detail, filtering the ones that are not relevant for this

work. From the remaining papers, inspect for important references they may have (snow-

balling);

6. Repeat the process if new terms and concepts were identified by improving the queries used.

3.2 Orchestration of Distributed Systems

Silva et al. [68] performed a survey that tries to summarize the state of art in this topic. From the

survey results we have analyzed the following tools:

Giang et al. [36] propose a Distributed Dataflow (DDF) programming model for the IoT systems

that makes use of the computing infrastructures across the Fog and the Cloud. The authors’

motivation behind their solution came from the possibility of leveraging the computational

capabilities of edge devices to filter, aggregate, and analyze data collected instead of push-

ing raw data directly to the Cloud which, consequently, lowers the communication cost,

storage needs and overall responsiveness of the system. They evaluated their approach by

implementing a DDF framework based on Node-RED1, an open-source flow based run time

and visual programming tool for building IoT applications. In their DFF model, the flow is

deployed on multiple physical devices rather than just one. Each one of the physical devices

may be responsible for executing one or more nodes in the flow, so mechanisms that allow

the communication between nodes on different devices are required.

Giang et al. implementation consist of D-NR processes running on several devices in local

networks and servers. The developers use one of the processes as a development server

1https://nodered.org

3.2 Orchestration of Distributed Systems 15

where the flow is designed by using a dataflow editor. The devices are all subscribed to

an MQTT topic, which represents the status of the flow. Whenever an update to the flow

occurs, all the participating devices and servers are notified so they can update and parse

a new version of the flow and posteriorly decide which nodes should be deployed locally

and which ones are to be replaced. When making these decisions, the participators take into

account some constraints, namely (1) computation resources, (2) network bandwidth, (3)

available storage, and (4) user-defined properties.

Even though their DDF framework provides an alternative approach for designing and de-

veloping distributed IoT systems, there are some open issues, such as the need to include a

distributed discovery and communications infrastructure between devices and networks.

Blackstock et al. [11] proposed a cloud-based platform called named WoT Flow. The system

makes use of the open source Node-RED system to provide an execution engine suitable

for both multi-user cloud environments and individual devices. By taking advantage of data

flow, the authors aim to move the computation between processors and devices so that parts

of a data flow can be executed in parallel on different devices. The split and distribution of

the data flow makes possible the execution of the operations in the cloud or edge devices,

depending on user preferences (e.g., cost, speed of communications, host performance). At

the time of the writing, the WoT Flow was in the early stages of development. The future

steps were about supporting the automatic partitioning and distribution of data flows based

on participating resource capabilities and constraints imposed by the developer around cost,

performance and security by using optimization heuristics.

Noor et al. [55] introduced DDFlow, a macro programming abstraction that provides an efficient

means to build high quality distributed application on an IoT network. The motivation

behind the DDFlow system was to provide a framework that would abstract the developer

from low-level network, hardware, and coordination details between the devices in the IoT

network. To cope with the authors’ motivation, DDFlow allows the developers to state high-

level objectives by using a system runtime that translates them into a dataflow graph that is

dynamically deployed to the devices in the IoT network. The system runtime is based on

Node-RED and, by enabling dynamic scaling and adaptation, leads to improved end-to-end

latency preserving the system’s behavior despite device failures.

The DDFlow system architecture can be seen in Figure 3.1 (p. 16). The intra-device coor-

dination is done through a lightweight web server that runs on every device in the network

named Device Manager. In contrast, the inter-device coordination is accomplished through

a Coordinator, a web server that accepts and manages DDFlow apps. The Coordinator

is responsible for mapping services to available devices in the network while minimizing

end-to-end latency and dynamic adapt and recover the system functionality when network

changes or device failures occur.

16 State of the Art

Figure 3.1: DDFlow system architecture [55].

Additionally, we performed a search on Google search engine to find post-survey or non-

survey works related to this topic described in the following paragraphs. The keywords used for the

search were one or a combination of the following: Internet-of-Things, orchestration,

distributed, decentralized and iot.

Cui et al. [18] propose a decentralized and trusted platform for edge computing (DeTEC) for the

IoT where the users can submit their computational tasks to the system. These tasks are

allocated to the most appropriate edge server by the DeTEC controller using a heuristic

algorithm that takes into consideration the propagation latency, node capacity, and reward

fairness of the system. The system integrates blockchain technologies to organize the dis-

tributed resources and provide incentives for the distributed edge servers’ computational

contributions.

As seen in Figure 3.2 (p. 17), the DeTEC platform consists of four main components: IoT

user, Edge servers, Controller, DNS server. The IoT users can apply for the DeTEC service

to perform computational tasks by calling a remote interface and receiving the results from

the edge servers. Each Edge server computes the assigned tasks, producing results that are

verified and the contributions recorded in the blockchain. The Controller is responsible for

collecting the network state of the users and edge servers and compute the task allocation

scheme. Finally, the DNS server resolves the requests from IoT users and binds the target

Edge server according to the allocation scheme computed by the Controller.

In order to guarantee the trustworthiness of the system, Cui et al. designed a police patrol

model that is responsible for verifying, periodically and randomly, the computational re-

sults submitted by edge servers. When the results are incorrect, they are rejected, and the

corresponding edge servers are punished. The police patrol model can be centralized or

3.2 Orchestration of Distributed Systems 17

Figure 3.2: DeTEC solution architecture [18].

decentralized. In the case of a centralized approach, the DeTEC controller verifies the com-

putation result of edge servers. On the other hand, in a decentralized approach, the DeTEC

system elects a supervisory consortium, and the consortium members are responsible for

verifying the results.

The authors validated the system by focusing more on analyzing the latency in task alloca-

tion and resource scheduling performance. However, they did not validate if the privacy of

the system data was preserved.

NoRDOr Silva et al. [19] propose a method capable of automatically orchestrate constrained de-

vices in a distributed IoT network by exploring their computation capabilities. The authors

aim to solve the consequences that arise from centralized approaches by developing a pro-

totype that is divided in two parts: (a) extended Node-RED, a visual programming language

(VPL), to automatically distribute computational tasks among the available devices, and (b)

developed a MicroPython framework that runs custom code assigned by the orchestrator.

Visual programming languages allow experienced users to perform rapid application devel-

opment and non-technical users to extend their application or create their own applications

without requiring a lot of programming knowledge [13].

In Figure 3.3 (p. 18), the authors present an overview of the designed system. The devices in

the network announce their address and capabilities to a Registry node from the Node-RED

which, consequently, stores a list of the available devices. The Orchestrator has access to

the list and assigns, using HTTP, computation tasks to the available devices. Node-RED is

centralized by design, so the authors performed some changes to implement a distributed

architecture: MQTT was used as the communication protocol to allow the deployment of

18 State of the Art

Figure 3.3: NoRDOr solution’s overview [19].

nodes externally, and some nodes were modified to convert JavaScript to MicroPython-

compatible code, which runs on edge devices. For these edge devices, Silva et al.developed

a custom firmware that contains packages for a HTTP server and MQTT communication,

which are used to communicate the current state of the device (e.g., running, out-of-memory,

not running tasks) to the Orchestrator and receive custom scripts to be executed. Since the

Orchestrator knows the state of the orchestrabable nodes, it can re-orchestrate the tasks in

the case of a failed deployment to keep the flow of the system running.

The mentioned tools were analyzed based on their approach to the following categories:

• Scope: The authors, when developing these tools, had specific use cases in mind. Therefore,

it is important to know each solution’s scope to understand the gap in what we aim to

develop. Example values are Several, Education, Industry, Home Automation.

• Approach: The solutions present different ways to build the system, for example some can

use frameworks or provide a graphical interface. Possible values are: VPL, Framework or

Methodology.

• Computational location: Each solution distributes computational tasks, however, they dif-

fer on the layer where the tasks are executed. Possible values are: Cloud, Fog and/or Edge.

• Privacy/Security: Due to the context of this dissertation, it is important to understand if the

tools address, in some way, security and privacy concerns over the data or the system.

3.3 Data Privacy & Security in IoT Systems 19

Table 3.1: Orchestration of Distributed IoT Systems Analysis

Solution Scope Approach Computational location Privacy/Security

Giang et al. [36] Several VPL Fog and Edge -

Blackstock et al. [11] Several VPL Cloud, Fog and Edge Future work

DDFlow [55] Security VPL Fog and Edge -

Cui et al. [18] Healthcare Methodology Fog -

NoRDOr [19] Home Automation VPL Edge Out of scope

VPL: Visual Programming Language

From the analysis and the characteristics of Table 3.1, we can conclude that there are several

approaches to orchestrate computation tasks in different layers of a distributed system. Even

though the solutions presented do not have the same scope, they can be adapted to the scope we

wish. It is also possible to conclude that none of these solutions implemented methods to mitigate

potential security and privacy issues they may have. Some even refer that secure data privacy is a

future work [11] or a secondary goal for their implementation [19].

The fact that these issues have been ignored raises some possible problems. In the case of

DDF [36] the orchestrator is responsible to notify the participating devices and servers whenever

a new version of the flow is available. This can bring a privacy problem because an untrustworthy

orchestrator can send a malicious update to the network, which is consequently deployed to all the

devices and servers. This malicious update may compromise the visibility of the data being treated

on those devices and servers, thus compromising the whole orchestrated system and, consequently,

data privacy. In the case of Silva et al. [19] prototype, we can see a possible privacy problem when

an orchestrator sends a custom code to run directly in the edge devices. Similarly, this can leverage

unwanted access and compromise sensitive data that may flow through those devices. Like these

problems, other data privacy and security problems can be found in the other researched systems

so it is important to urge solutions for these concerns.

3.3 Data Privacy & Security in IoT Systems

In the previously analyzed systems there are no implemented mechanisms to mitigate potential se-

curity and privacy issues they may have. Thus we performed an extended literature review where

we intend to find techniques that can be used to address privacy and security concerns over data

that can be applied to orchestration of IoT systems. The works have been selected after a curated

search on Google search engine, and are shortly described in the following paragraphs. The key-

words used for the search were one or a combination of the following: Internet-of-Things,

privacy, security and iot.

Skarmeta et al. [70] propose a distributed capability-based access control mechanism built on

public key cryptography fitting the requirements of IoT regarding scalability and interoper-

ability. To cope with privacy and security challenges in IoT, the authors use technologies

20 State of the Art

that facilitate a distributed approach in which IoT devices themselves are capable of mak-

ing fine-grained and context-aware authorization decisions. They developed an optimized

version of the Elliptic Curve Digital Signature Algorithm (ECDSA), which is implemented

within the IoT device providing end-to-end authentication, integrity, and non-repudiation.

Li et al. [47] propose an ECC- and biometric-based user authentication protocol scheme with pri-

vacy preserving for IIoT. It aims to guarantee that only valid users can access the sensitive

data collected by sensors on an IoT network. The authors’ protocol is divided into three

essential phases: (a) Registration Phase, (b) Authentication and Key Agreement Phase, and

(c) Password Change Phase. For each phase, Li et al. detail by steps the procedures that

need to be followed in this protocol. They prove the security of the protocol by giving a

formal proof of it under a random oracle model and show that the proposed scheme can

resist well-known attacks (e.g., Anonymity and Untraceability, Resist Replay Attack, ...).

Even though the developers simulated the protocol using the NS-3 network simulator with

satisfactory results, it is still missing the protocol’s validation in a real case scenario.

Dwivedi et al. [31] propose a decentralized privacy-preserving blockchain for a healthcare IoT

system. The proposed model’s motivation comes from the necessity to secure the data col-

lected from patients’ wearable devices and consulted by a Health Service. The authors

decided to use a decentralized overlay network to ensure the system’s scalability and elim-

inate a single point of failure and delay problems with the data. Moreover, they use a

lightweight digital signature scheme to authenticate the data transferred throughout the sys-

tem, preventing the information from being modified, and a lightweight ring signature to

ensure anonymous transactions by authentic users. To prevent hacker attacks, the system

uses a double encryption scheme, encrypts the data using a lightweight ARX algorithm,

and afterward encrypts the symmetric key used to encrypt the data by using a public key.

The developers also use the Diffie–Hellman key exchange technique for securely exchange

cryptographic keys over a public channel. By using these lightweight techniques together,

the model can guarantee security, privacy, and anonymity of user’s data even on small IoT

devices.

The system is divided in five parts: Cloud storage, Overlay network, Healthcare providers,

Smart contracts and Patient with wearable IoT devices. Instead of storing the patient’s

healthcare data over the blockchain, the authors decided to use a Cloud storage server. The

Overlay network is divided into several clusters and it is where the patient digital signa-

ture and public key are verified whenever a signed transaction is sent to the network. The

Healthcare providers are entities that receive alerts generated by Smart contracts and are

authorized to receive detailed patient data from the cloud. Finally, Patients with wearable

IoT devices is the part that collects all the data that flows in the system. A summarized

logical flow execution of the system can be seen in Figure 3.4 (p. 21).

The authors conclude by evaluating the security margins of the model, proving theoretically

that the system can protect itself against the following threats: (a) Denial of Service (DoS)

3.3 Data Privacy & Security in IoT Systems 21

Figure 3.4: Dwivedi et al. logical flow execution of the system. Extracted from [31].

Attack, (b) Mining Attack, (c) Storage Attack, and (d) Dropping Attack. However, this work

does not guarantee the security in all its components from other potential threats since it was

not tested in a real case scenario.

Xing et al. [78] propose a mutual privacy preserving k-means clustering scheme for a social par-

ticipatory sensing application that protects participants’ private data and the community data

(e.g., patterns, distribution, etc.). By doing this, the authors want to make possible to extract

and analyze data (data analyst) about the community without getting access to any user’s

private information. They also intend to prevent any participant from accessing data from

another participant and the community itself.

Two privacy-preserving algorithms compose the scheme: (1) the first one is utilized by

each participant to find the nearest cluster, using the Euclidean distance, while the cluster

centers are kept secret to them; (2) the second one keeps the cluster centers up to date with-

out leaking any information to the participants by making use of an additive homomorphic

encryption scheme. The authors validate the scheme’s security against collusion attacks

that can happen between the data analyst and participants or among the participants. For

both cases, they concluded that even when collusions happen, no private information of the

participants is leaked. As future work, the developers want to explore the mutual privacy

protection of other clustering algorithms.

Pape and Rannenberg [56] performed an investigation to improve users’ privacy by mapping

several privacy patterns to IoT, Fog computing, and Cloud computing architectures. Ac-

cording to Ni et al. [54], privacy in IoT is mostly relevant in the next four types of informa-

tion: (1) identity (e.g., name, address, etc.), (2) sensitive data (e.g., health status, etc.), (3)

information usage (e.g., usage pattern of a service, etc.), and (4) location data (e.g., current

22 State of the Art

location, trajectory, etc.). Pape and Rannenberg explain how can privacy be guaranteed in

this types of data by using the following privacy patterns:

• Personal data store: users have total control over their personal data, and it is stored

on their personal devices. Ideally, necessary computations are performed locally in the

IoT device, however, in the case of insufficient computational power, the computations

can be done in the user’s mobile phone. If the data needs to be stored in the cloud then

the IoT device should encrypt the data and save the decryption key on the mobile

phone.

• Data isolation at different entities: data is distributed among several entities (e.g.,

fog nodes, clusters) where each entity can only see a part of the data.

• Decoupling content and location information visibility: fog nodes can alert the user

if he is transmitting location information or remove it.

• Added noise measurement obfuscation: add noise to measurements whenever a user

uses a resource repeatedly over time, depending on the type of information used. The

noise can be added by the fog nodes or the user’s mobile phone.

• Aggregation of data: aggregate the usage information of multiple users or the usage

information of a single user over time. Similarly to adding noise, the aggregation can

be done by a trustworthy provider or by the users themselves.

• Aggregation gateway: this pattern is used when the service provider needs a continu-

ous measurement, and adding noise is not acceptable. An homomorphic encryption is

used to encrypt each measurement in the IoT device or user’s mobile phone, and then

they are transmitted to the cloud computing provider. The cloud can operate on the

data received (e.g., aggregate), even though they cannot access the data in clear, and

then send it to the fog node. Since the key used for the encryption is shared between

the IoT device and fog node, the fog node can have clear access to the result without

having individual information of the users or devices. The flow of this pattern can be

seen in Figure 3.5 (p. 23).

• Single Point of Contact: a cloud computing service manages and coordinates a dis-

tributed storage on different fog nodes by issuing security tokens, authenticate local

domain users as an Identity Service Provider, certify attributes as an Attribute Provider,

and accept external claims as a Relying Party.

For each of these privacy patterns, the authors demonstrated that they could be applied in

real-world scenarios. However, they raise a question about whether it is more secure to store

data in the IoT nodes or at a central database of the cloud.

The mentioned approaches in IoT systems were analyzed based on the following categories:

3.3 Data Privacy & Security in IoT Systems 23

Figure 3.5: Aggregation gateway pattern example [56].

• Privacy Category: The approaches differ on which data privacy issues they attempt to

solve. By categorizing the methods, it is possible to better understand the focus of each

solution. The possible values for data privacy are:

– Data perturbation: distortion of dataset values while keeping its basic statistical distri-

bution properties by introducing additive or multiplicative noise directly into original

raw data.

– Data encryption: cryptography-based privacy preserving methods that hide sensitive

data.

– Publishing restriction: enables secure data release without revealing sensitive infor-

mation by converting original data into an anonymous dataset.

• Architecture: Some of the analyzed approaches are applied to different IoT systems archi-

tectures. Possible values are centralized, decentralized or distributed architectures.

• Essence of the Solution: This category exposes in few words the solution each author used

to address privacy and security issues in IoT systems.

From the analysis in Table 3.2 (p. 24), we can conclude that solutions that address some

widespread concerns about protecting privacy-sensitive data already exist.

Mostly by using encryption algorithms, the authors can hide data from layers of their networks

that are more susceptible to attacks [70, 47, 31, 78]. There are also solutions based on biometric

authentication [47], data signature [31], and homomorphic encryption [78] that guarantees the

anonymity of the user to whom the sensitive data belongs when an entity of the system needs to

have access to the data unchanged/unencrypted. It is also noticeable a trend towards the use of

24 State of the Art

Table 3.2: Privacy & Security in IoT Systems Analysis

Reference Privacy Category Architecture Essence of Solution

Skarmeta
et al. [70]

Data encryption Distributed An optimized version of the Elliptic Curve
Digital Signature Algorithm (ECDSA)

Li et al. [47] Data encryption and Publishing
restriction

- An ECC and biometric-based user
authentication protocol

Dwivedi et al. [31] Data encryption and Publishing
restriction

Decentralized A lightweight digital signature scheme to
authenticate the data and a lightweight ring
signature to ensure anonymous transactions

Xing et al. [78] Data encryption and Publishing
restriction

- An homomorphic encryption scheme

Pape and
Rannenberg [56]

Data perturbation, Data encryption
and Publishing restriction

- Several solutions 1

1 The authors present several solutions by mapping privacy patterns to IoT.

blockchains to guarantee that data being interchanged is authentic and unchanged (e.g., preventing

data fabrication and falsification) in IoT [58], concept which was already well-explored in domains

such as AAL [29, 24].

In the context of privacy and security, we can also verify how several patterns [56] address

these problems in other situations and can also be applied to IoT, making the systems more secure

to potential threats.

The implementation of most of these techniques is not trivial and straightforward in some

of the IoT systems analyzed before. Most of the edge devices have low capabilities and energy

restriction, thus they cannot run heavy algorithms to ensure the privacy of data. However, by

applying some privacy patterns it is possible to develop a system that orchestrate tasks to devices

in IoT networks without compromising the privacy of data flowing in the system.

3.4 Summary

Section 3.1 (p. 13) presents the methodology followed, the key research questions, and the databases

used to perform the literature review.

Section 3.2 (p. 14) presents solutions found for the orchestration of computational tasks for

distributed IoT systems. For each one of the solutions found they are analyzed and summarized the

scope, their approach, in which layer of the system computation tasks are executed and whether or

not they address security and privacy problems that may urge in those systems. With the analysis

done, we can conclude most of the solutions discard protection methods to the data that flows in

the systems and so are prone to attacks that may want to steal the privacy-sensitive data.

Section 3.3 (p. 19) introduces several approaches found that guarantee the anonymity and

confidentiality of data and device authentication in the IoT network. Each of the techniques is

classified in terms of privacy category, the architecture of the solution, and the solution’s essence.

By analyzing the results in Section 3.2 (p. 14) and Section 3.3 (p. 19) it is possible to find a

clear gap when it comes to the privacy of data during the orchestrations of distributed IoT systems,

3.4 Summary 25

as there are no solutions that perform the orchestration guaranteeing that the information that flows

in the system is kept private even though there already exist several ways of doing so in general

IoT systems.

26 State of the Art

Chapter 4

Problem Statement

4.1 Assumptions . 27

4.2 Open problems . 28

4.3 Desiderata . 29

4.4 Scope . 29

4.5 Research Questions . 29

4.6 Methodology . 30

4.7 Summary . 30

This chapter describes the problem we aim to tackle in this dissertation, research questions and

our experimental methodology. Section 4.1 presents some assumptions done for this project. In

Section 4.2 (p. 28) is described the limitations found in the performed literature review. Sec-

tion 4.3 (p. 29) presents a set of propositions for the system to be implemented. Section 4.4 (p. 29)

defines the scope of this work and Section 4.5 (p. 29) describes the research questions to be ex-

plored during the development and posteriorly analyzed with the system evaluation. Finally, Sec-

tion 4.6 (p. 30) outlines the experimental methodology.

4.1 Assumptions

Despite the several concerns over privacy in IoT systems, this project will not try to answer the

privacy needs of all the IoT systems. Instead, it will focus on distributed IoT systems with real-

time orchestration that use VPLs, specifically the NoRDOr system [19]. The NoRDOr system is

comprised of a modified version of Node-RED enhanced with the ability to dynamically allocate

computational tasks to edge devices, which can execute custom code due to the custom MicroPy-

thon firmware developed. The reasons behind choosing this system as a starting point comes from

the fact (1) Node-RED is a tool often used by system integrators [22] in the IoT domain, which

provides a flow-based way of connecting together a plethora of devices and online services with-

out requiring programming knowledges, (2) the system is capable of assigning Node-RED nodes

27

28 Problem Statement

to be executed in edge devices, (3) it is open-source and (4) due to the closer connection with

those responsible for the development of the system which allows to easily clarify any doubts

that may arise. The other analyzed systems were not preferred due to the following reasons: (1)

lack on an automatic discovery and communications infrastructure between devices and networks

[36], (2) are cloud-based platforms [11], (3) integrate blockchain technologies [18], and (4) are

not open-source [55].

Throughout this dissertation, the concept of privacy-sensitive data is used several times. Pri-

vate data can be data of any type, such as identity, health data, information usage, location data.

Thus it is up to the users to define what they think is essential to be protected.

4.2 Open problems

Section 3.2 (p. 14) presents several solutions that orchestrate computational processes in dis-

tributed IoT systems. However, these approaches do not use methods that mitigate potential

privacy issues over the data that flows in the system. Particularly, in the NoRDOr [19] system,

there is no concern to ensure that the data communicated between the edge and fog devices stays

private throughout the whole system. Moreover, there is no mechanism to certify if the announced

devices are secure to handle possible privacy-sensitive data. With this being said, it is possible to

outline the following limitations in this system that should be addressed:

• Unprotected data: when defining the flow in the Node-RED there is no way to identify

nodes that can collect privacy-sensitive data. The orchestrator should be aware of the pres-

ence of nodes that can introduce private data to the flow so it can make an informed and

better choice when assigning the nodes to the available devices. Like this, the system could

be able to protect the data whenever it needs to be sent to risky locations.

• Data identification: there are some types of private data (e.g., health data, location, iden-

tity) that, when being published to communication channels that other devices may access,

is vital to prevent its traceability to any user of the network. Thus, the system should be able

to hide the identity of the data flowing.

• Unauthenticated devices: devices in the network announce themselves by communicating

their address and capabilities. The only concern the orchestrator has with the announced

devices is their status — if they are running or if they have failed — and the respective

capabilities to execute Node-RED nodes. There is no preoccupation in ensuring the fidelity

of devices. Therefore, it is necessary that each device is properly authenticated to avoid the

system being compromised.

The actual orchestration strategy used in the NoRDOr system does not have enough infor-

mation to guarantee the privacy of data that flows in the system. The fact that the orchestrator

only knows the capabilities of devices and the priorities of nodes makes it unable to find out

if devices are safe to handle private data and understand which nodes will potentially generate

4.3 Desiderata 29

or process privacy-sensitive data. Thus, in the current system, the orchestrator cannot make a

privacy-oriented choice when assigning nodes to the available devices in the IoT network.

4.3 Desiderata

The purpose of this dissertation is to develop a system that addresses the limitations from the

NoRDOr system explained above. This system should fulfill the following desiderata:

• D1: Automatically protect privacy-sensitive data, so that no private data reaches possible

unsafe locations without first going through some transformation that ensures the data stays

private.

• D2: Generate privacy-oriented node assignment, so that the orchestration can prioritize

the execution of nodes that handle privacy-sensitive data in safer locations.

• D3: Validate devices’ identity on the network, so that no unauthorized devices can an-

nounce themselves as safe devices and consequently access or produce data they were not

supposed to.

Our work will focus more on providing a system that fulfills desiderata D1 and D2. Any

development made towards D3 is secondary.

4.4 Scope

The scope of this work is to come up with mechanisms that can facilitate privacy in a distributed

IoT system with real-time orchestration. These mechanisms will be developed based on existing

platforms that allow the orchestration of computation tasks among edge devices on an IoT network.

Thus, the focus of our work is to ensure the privacy of the data exchanged between these devices.

The target audience for our platform are developers that are willing to use a visual programming

language to explore the computation capabilities of IoT devices in a network where it is essential

to preserve the privacy of data.

Despite existing several approaches that deal with privacy and data integrity using blockchain-

based systems [24, 58, 29], it is a solution out-of-scope for this work’s focus due to natural com-

plexity of such mechanisms and the complexity of the network needed for a better efficiency,

which may not be possible with our scenarios.

4.5 Research Questions

The work developed in this dissertation aims to answer the following research question:

How can we improve the NoRDOr system to automatically guarantee a safe flow of

privacy-sensitive data?

30 Problem Statement

The main research question can be split into several other research questions derived from the

presented Desiderata (cf. Section 4.3, p. 29):

RQ1: How can we guarantee that privacy-sensitive data without any type of transformation
is only processed by trusted devices?

Private data generated or processed by a device should only be sent without any type of

transformation (raw data) to devices that can be trusted by it.

RQ2: How can we ensure the privacy of data but at the same time explore the most of the
computational power available in the network?

To allow the system to make use of most of the computational capabilities of edge devices in

the network, the system should be able to transform privacy-sensitive data so that it remains

private even when sent and processed in possible untrusted devices.

RQ3: Can we provide a way to prioritize the allocation of sensitive nodes to safer locations?

If we could prioritize the assignment of privacy-sensitive nodes to trusted devices without

compromising the performance of the devices, the risk of private data being handled in

unsafer locations could be minimized.

All these decomposed research questions will be used to analyze the experiments (cf. Sec-

tion 6.3, p. 49) and answer the main research question.

4.6 Methodology

To validate if our proposed solution fulfills the desiderata presented in Section 4.3 (p. 29) and

provides reasonable answers to the research questions in Section 4.5 (p. 29), we will use two

test scenarios (cf. Section 6.1, p. 41) and multiple controlled experiments using virtual devices.

In each one of the experiments, we will try to explore different system behaviors by measuring

several metrics from the simulated devices that are posteriorly going to be analyzed to validate our

solution (cf. Section 6.3, p. 49).

4.7 Summary

The assumptions performed for the development of this work are described in Section 4.1 (p. 27).

The current issues identified from the literature review on the orchestration of distributed IoT sys-

tems are introduced in Section 4.2 (p. 28). A set of requirements that our solution aims to fulfill are

detailed in Section 4.3 (p. 29), which summarizes the desired improvements to be implemented

to ensure the privacy of sensitive data in a distributed IoT system. The scope and focus of this

work are to develop mechanisms that can correctly deal with privacy-sensitive data that flows

in distributed IoT systems that can be orchestrated, as indicated in Section 4.4 (p. 29). In Sec-

tion 4.5 (p. 29) we establish several research questions to guide the development of our solution

4.7 Summary 31

and which will be answered along with the analysis of the results from the experiments performed.

The methodology for these experiments is detailed in Section 4.6 (p. 30). We will simulate phys-

ical devices to execute the experiments in multiple scenarios to gather relevant information to

validate our work.

32 Problem Statement

Chapter 5

Privacy-oriented Task Orchestration

5.1 Overview . 33

5.2 Devices’ Zones . 34

5.3 Node-RED Computation Orchestration . 35

5.4 Node Assignment Algorithm . 36

5.5 Known Limitations . 39

5.6 Summary . 39

This chapter introduces and describes in detail our implementation to tackle down the problems

presented in Chapter 4 (p. 27). Section 5.1 provides an overview of the whole solution. In Sec-

tion 5.2 (p. 34) we further explain the changes made to the devices while Section 5.3 (p. 35)

presents, in detail, the improvements implemented in the orchestrator to guarantee the privacy in

the system. In Section 5.4 (p. 36), we explain how the node assignment algorithm prioritization

was modified. Finally, Section 5.5 (p. 39) presents some limitations of our solution.

5.1 Overview

In our implementation, we extend the Node-RED version developed by Silva et al. [19, 67], named

NoRDOr, providing a more privacy-oriented solution over the data that flows in the system. In

Node-RED-based solutions, the term flow is used to describe a set of connected nodes. Silva

et al. platform allows the insertion of flows, where for each node present are generated tasks that

are orchestrated to the edge devices in the network. The platform can be divided into two main

components (1) Node-RED instance and (2) a MicroPython based firmware that is flashed to the

edge devices in the network. The MicroPython firmware allows the devices to run arbitrary Python

code scripts that are generated and sent by the Node-RED orchestrator using HTTP. In our solu-

tion, we mostly introduced improvements in the Node-RED component, leaving the behavior and

functionality of the device almost unchanged. We also kept the communication layer implemented

in the NoRDOr system, which allowed the distributed computation communication by using an

33

34 Privacy-oriented Task Orchestration

MQTT-based instead of an event-based one, present in vanilla Node-RED, that does not support

communication with external entities.

Regarding the devices, we have extended the announcement functionality to also communicate

their zone, in addition to their address and capabilities, to the Registry node. Devices’ zones can be

interpreted as virtual barriers that separate trustworthy devices from devices that may be unsafe to

receive and handle potential privacy-sensitive data. Upon receiving the devices’ information and

the nodes from the flow, the Orchestrator node is responsible for assigning each node to one of the

available devices. When deciding the nodes’ assignment, the orchestrator takes into consideration

the devices’ zone and if the nodes generate or deal with sensitive data. Whenever sensitive data

is assigned to devices in different zones, the orchestrator introduces a transformation node in the

middle of the communications between those zones, guaranteeing the privacy of the sensitive

data. Moreover, the node assignment algorithm was also improved to prioritize the allocation of

sensitive nodes to safer locations, reducing the number of zones crossed by private data.

An high-level overview of the system can be seen in Figure 5.1.

Registry Node

Orchestrator Node

Announcer

Flow (nodes)

DeviceNode-RED

Announce
{address, capabilities, zone}

Specification

Devices'
specification

Script

Assign nodes

Ping / Echo messages

HTTP Server

Figure 5.1: High level overview of the system modules. Adapted from [19].

5.2 Devices’ Zones

As previously mentioned, in Silva et al. solution, the edge devices announce themselves to the

Registry node by sending their address and capabilities. In our implementation, we extended the

devices’ announcement to also contain the zone of the device. A device’s zone can be interpreted

as a virtual barrier that separates devices. Two devices in the same zone are considered to be

trusted devices for each other, so data can flow between them without the need to ensure privacy.

On the other hand, two devices in different zones are not considered to be safe to each other, and

so, whenever data flows from one device to another, we must ensure the data is protected before

reaching the other device.

5.3 Node-RED Computation Orchestration 35

With the definition of zones, we are setting privacy boundaries when orchestrating tasks to

the devices. The Node-RED component is aware of each device’s zone and capabilities when

choosing which devices the nodes will be assigned to. Thus, the orchestrator can make a more

privacy-oriented node assignment choice and introduce transformation nodes when needed.

In Silva et al. ’s work, a custom firmware was used for the devices where one of the main

modules was an HTTP Server responsible for the endpoint that allows the monitoring of the device

status and the reception of the assigned MicroPython script. In our solution, we had the need to

also implement an endpoint for the HTTP server that triggered a delete action inside the device,

removing all the custom scripts from the assigned nodes it had.

5.3 Node-RED Computation Orchestration

In order to achieve a distributed IoT system with real-time orchestration capable of ensuring that

privacy is kept when generating, processing, and exchanging privacy-sensitive data, the orchestra-

tor needs to take action when the data is sent from one device to another in two different zones.

Whenever this happens, the system needs to process and transform the data before it leaves the

zone where it was generated.

As seen in Section 3.3 (p. 19), several privacy-preserving solutions have been presented, mak-

ing use of data encryption algorithms [70, 78], signature schemes to authenticate data and protect

the anonymity of users [31, 47], and some privacy patterns used in IoT [56]. However, these al-

gorithms and signature schemes presented are not trivial to implement. Therefore, to simplify the

development of our solution, we followed some privacy patterns commonly used in IoT.

Firstly, when developing the flow, we introduced the possibility to select if the output of a

node is privacy-sensitive data — for developing purposes, this option was implemented to the

temperature-humidity node — signaling the data that needs to be protected by the orchestrator.

This functionality can be seen in Figure 5.2 (p. 36). Once the orchestrator receives the nodes’

specification, it goes through the flow as a graph and marks the nodes where privacy-sensitive data

will pass through. To check when privacy-sensitive data is going to be processed in a node, the

orchestrator verifies if there is at least one MQTT input topic of the node that matches the MQTT

output topic of an already marked node. Once the nodes are marked, the orchestrator proceeds to

find the best devices for each one of the nodes.

After finding the best node assignment (cf. Section 5.4, p. 36), the orchestrator moves on

to find where privacy-sensitive data is flowing between different zones. Whenever it finds two

nodes that communicate between each other assigned to devices that are not in the same zone, the

orchestrator proceeds to transform the data before it leaves a zone. The data transformation could

be, for example, encrypting, aggregating, or anonymizing the data. As a proof-of-concept, we

introduced to the Node-RED Palette an Aggregation node, which can aggregate a specified number

of messages or the messages received during a specified time. The default configuration used by

the orchestrator when inserting aggregation nodes is to group messages for 20 seconds or until it

receives ten messages and then send the aggregated messages as an array. When the orchestrator

36 Privacy-oriented Task Orchestration

Figure 5.2: Node-RED node properties example.

needs to transform data to ensure its privacy, it generates and inserts an aggregation node in the

middle of the communication of the two nodes, changing the respective MQTT input and output

topics. The default configuration of the Aggregation node is to group messages for 20 seconds or

until it receives ten messages and then sends the aggregated messages as an array. Posteriorly, the

orchestrator finds the best possible devices for the inserted transformation nodes by using a similar

algorithm used by Silva et al. . Only after ensuring that all the needed transformation nodes were

introduced to the flow, the orchestrator generates the nodes python scripts and sends them to the

respective devices.

A visual representation of these events can be seen in Figure 5.3 (p. 37).

5.4 Node Assignment Algorithm

Originally, in the NoRDOr system, the orchestrator uses a greedy algorithm to iteratively find the

best possible device for each one of the nodes by filtering the devices that comply with each node’s

predicates and choosing the one with a higher value of a heuristic. This heuristic is calculated by

taking into account the number of priorities the device can provide and the number of nodes that

have already been assigned to the device. The NoRDOr assignment algorithm does not meet

the requirements of our solution because the information it receives when choosing the nodes’

assignment is not enough to make a privacy-oriented decision to guarantee a safe flow of private

data in the system.

We started by calculating all possible node assignments. However, we had some memory and

efficiency problems when deploying more complex flows since its computation was too heavy for

the Node-RED orchestrator. To prevent problems like this from appearing during the orchestration,

we decided to use a task assignment algorithm to generate the first node assignment. Finding

and choosing the best possible algorithm for our system is out-of-scope, and so we chose to use

5.4 Node Assignment Algorithm 37

NodeRED Registry

start

Orchestrator Devices

announce

deploy flow

devices

assign nodes

tag data
sensitive nodes

verify zone
crosses

assign data transformation nodes

success

error

execute scripts

[while device
assignment error]

[else]

success

error

[else]

ping[while devices are
active]

no response

alive

[else]

[sensitiveData == true]

[zoneCross == true]

[assignment error]

[assignment error]

[device active]
alt

alt

alt

alt

alt

loop

loop

loop

Figure 5.3: Orchestration sequence diagram.

the Simulated Annealing (SA) algorithm in our solution since it is simple to implement and is

capable of finding near-optimal allocation efficiently for this system and scenarios [6, 44]. With

this algorithm, we aim to obtain a node assignment as close as possible to an ideal one given a

set o heuristic values defined next. The SA algorithm uses an energy function which it intends to

minimize. In our solution the energy function corresponds to the function that calculates the score

38 Privacy-oriented Task Orchestration

of an assignment.

The implemented SA algorithm starts off by using a random possible assignment and sets it

as the current assignment. The algorithm proceeds to generate a random neighbor to the current

assignment, accepting it if the assignment score is better than the score of the current assignment.

Otherwise, the algorithm can still accept a worse assignment with a calculated probability, which

tends to decrease during the algorithm iterations. The algorithm only stops once the value, know

as temperature, reaches zero. This value decreases in each iteration by a constant cooling rate.

For experimental purposes, we chose to use the value 10000 as the temperature and value 0.003 as

the cooling rate. However, these values may not be the best for our system, and their improvement

is out-of-scope for this work. All the random neighbor assignments generated by the algorithm

take into account the devices’ status — active or not — and the match of capabilities between the

devices and nodes.

Algorithm 1 Calculate node assignment score.
Input : nodesAssignment, deviceList, α = 0.4,β = 0.2,γ = 0.3,θ = 0.1
Output : assignmentScore

1: nodesSum← ∑
d∈deviceList

∣∣∣∣(#devices)−1− #d.nodes
#nodes

∣∣∣∣
2: nrTransformations← #(n ∈ nodesAssignment|n.sensitiveData∧n.zoneCross)

3: prioritiesSum← ∑
n∈nodesAssignment

#(n.priorities∩n.device.capabilities)
#n.priorities

4: predicatesSum← ∑
n∈nodesAssignment

#(n.predicates∩n.device.capabilities)
#n.device.capabilities

5: transformationsScore← (1+nrTransformations)−1

6: nodesScore← (1+nodesSum)−1

7: prioritiesScore← prioritiesSum
#nodes

8: predicatesScore← predicatesSum
#nodes

9: return α × transformationsScore + β × nodesScore + γ × prioritiesScore + θ ×
predicatesScore

The score calculation of a possible node assignment takes into account the number of transfor-

mation nodes the orchestrator needs to introduce in the system, which is the most valued heuristic

with 0.4 factor. The number of priorities each device can provide to the respective nodes is mea-

sured with a factor of 0.3, while the number of predicates each device can provide is measured

with a factor of 0.1. Lastly, with a factor of 0.2, the average number of assigned nodes to each

device is measured. The pseudo-code for the score calculation of a node assignment can be found

in Algorithm 1. The goal of the values used is to find the best assignment possible that reduces

the number of transformation nodes inserted to the system — which can also be understood as the

number of zones crossed by data — and spreads the tasks through all the available devices. Sev-

eral examples of node assignments will be presented along with the discussion of the performed

experiments to validate our implementation (cf. Section 6.3, p. 49).

5.5 Known Limitations 39

5.5 Known Limitations

Despite ensuring privacy is kept for sensitive data in our system, there are some limitations to our

solution regarding the insertion of transformation nodes in the flow.

In some cases, the flow is successfully deployed, and the nodes are correctly assigned to the

respective devices. However, the flow does not act as expected because some nodes cannot under-

stand the messages they receive. This node’s misunderstanding can be explained by the insertion

of transformation nodes that can change the structure of the messages exchanged that the nodes

are expecting to receive.

Similarly, the addition of transformation nodes can change the expected behavior of a flow

even if the privacy is kept. For example, let’s assume a flow with two nodes where node A is

responsible for measuring the heart rate of a patient while node B is responsible for checking if

the value received from node A is greater than a certain X value, triggering an alert message if it is

verified. In the possibility of the nodes being assigned to devices in different zones, an aggregation

node will be inserted in the middle of node A and B communication. The new node will collect

several values from node A and send an average value to node B. Even if node A sends a value

that is greater than X, there is a possibility that the average value will not get greater than X, and

so no alert will be triggered. Even though the system complies with the implemented privacy

constraints, the flow fails to fulfill its expected behavior, which can be critical in some scenarios.

In an initial phase of the development of our solution, we chose to make the devices announce

their respective zone to the orchestrator without any kind of verification. This allowed us to focus

more on improving the orchestrator to correctly handle privacy-sensitive data when crossing zones.

However, by doing this, we are introducing a possible security flaw into the system since unsafe

devices can announce themselves as if they belong to a zone which they do not just to get access to

private data without any type of transformation. As future work, other strategies should be tried,

such as devices’ zone being configured directly in the orchestrator or the devices’ announcement

being validated by the orchestrator.

In Section 6.2 (p. 43), we explore in experiments two of the mentioned limitations, while in

Section 7.4 (p. 71), we look into possible solutions for all of them.

5.6 Summary

In this chapter, we describe in detail the implementation choices made during the development of

our solution.

Section 5.2 (p. 34) describes the implemented changes related to the devices. We have intro-

duced the concept of zones to the devices, which can be understood as virtual barriers that separate

devices that can be trusted from devices that cannot be trusted. A device in the same zone as the

zone where data is being produced is considered safe to handle privacy-sensitive data.

The introduction of zones and keeping the data flowing between a restricted group of devices

was not enough since other devices’ capabilities were being wasted. To tackle this problem, our

40 Privacy-oriented Task Orchestration

implementation allows the orchestrator to insert transformation nodes in during the assignment to

devices. These transformation nodes are then used to transform privacy-sensitive data before it

leaves a zone. The implementation of transformation nodes is detailed in Section 5.3 (p. 35).

To prevent privacy-sensitive data from being processed in possible unsafe locations, we have

improved the node assignment algorithm as described in Section 5.4 (p. 36). Our assignment

algorithm can prioritize the allocation of privacy-sensitive nodes by preventing zones from being

crossed by private data. This could be achieved by the addition of a heuristic to the algorithm that

takes into account the number of transformation nodes the system would have to insert for each

one of the assignments.

Our solution still faces some limitations, mainly regarding the insertion of transformation

nodes in the system. The addition of these nodes to the system can protect the data but, without a

correct configuration, they may change the expected behavior of the system’s flow. Moreover, by

allowing the devices to announce their respective zone, we are also introducing a possible security

flaw. These limitations are described in more detail in Section 5.5 (p. 39).

Although, with the introduction of zones, the addition of transformation nodes, and the im-

provement in the node assignment algorithm, our solution can successfully answer the research

questions present in Section 4.5 (p. 29).

Chapter 6

Experimentation and Evaluation

6.1 Scenarios . 41

6.2 Experiments . 43

6.3 Results Analysis . 49

6.4 Replication Package . 63

6.5 Desiderata Revisited . 64

6.6 Research Questions Revisited . 64

6.7 Summary . 66

This chapter presents and analyzes the results of the experiments that will be used to validate and

evaluate our implementation. Section 6.1 describes the scenarios where we based the definition

of our experiments. Section 6.2 (p. 43) proposes the experiments to be performed, detailing the

flows and devices’ specification to be used. Then, Section 6.3 (p. 49) analyzes and discusses the

obtained results while in Section 6.4 (p. 63) we present the replication package for the experi-

ments. In Section 6.5 (p. 64) we analyze if our solution meets the defined requirements. Finally,

Section 6.6 (p. 64) presents answers to the research questions that guided the development of our

solution.

6.1 Scenarios

To validate and evaluate if our implementation was able to achieve the goals mentioned earlier

(cf. Section 1.4, p. 3), we evaluate our proposal with a virtual setup using containerized virtual

devices. More details regarding the setup used for the experiments in Section 6.2 (p. 43).

We defined the following two experimental scenarios (ES) as a starting point for the experi-

ments to evaluate the implementation:

41

42 Experimentation and Evaluation

ES1 A system with two devices, one capable of gathering body temperature data and another

responsible to publish data to a specified MQTT topic. For this scenario, we use a sim-

ple Node-RED flow (cf. Figure 6.1) where it is expected that the data generated by the

body_temperature node is sent to the device running the output node. We aim to test how

the system reacts when data is sent from one zone to another by forcing the nodes to be exe-

cuted in devices in different zones, as well as verify other system behaviors when changing

small details in the system.

Figure 6.1: Node-RED implementation of scenario 1.

ES2 An AAL scenario inspired in the eCAALYX system [59] where several metrics are collected

from an elderly person, which are, posteriorly, accessed by the respective doctor, caretaker,

and relatives. The eCAALYX system data acquisition is centralized, and its analysis is

performed in a central server. Figure 6.2 represents a simplified overview of the eCAALYX

system.

Gateway

Blood Oxygen
Saturation Sensor

ECG
Sensor

Respiratory
Rate Sensor

Body Temperature
Sensor

Heart Rate
Sensor

Mobile Phone

Caretaker

Doctor

Relatives

Elder

Mobile Monitoring System

Home Monitoring System
Caretaker

Server

Blood Pressure
Sensor

Weight Sensor

Figure 6.2: The eCAALYX system overview, adapted from [59], including two main
parts: the mobile monitoring system and the home monitoring system. Also shown
are the end-users: Elder, Caretaker, Doctor and Relatives.

To evaluate our system, the scenario was adapted by introducing zones in the system. In

Zone 0 we include the devices and sensors that collect the elderly data, both the mobile

monitoring system and the home monitoring system. The mobile monitoring system is

composed of the (1) heart rate sensor, (2) body temperature sensor, (3) respiratory rate

sensor, and (4) mobile phone, while the home monitoring system includes the (1) ECG

6.2 Experiments 43

sensor, (2) blood oxygen saturation sensor, (3) blood pressure sensor, (4) weight sensor, and

(5) a gateway. For the caretaker, doctor, and relatives, Zones 1, 2, and 3 were, respectively,

assigned. In this scenario, the data gathered in Zone 0 needs to be sent to all the other zones

respecting the zone boundary-crossing constraints. The zones assignment to this scenario

can be seen in Figure 6.3.

Gateway

Weight Sensor

Blood Pressure
Sensor

Blood Oxygen
Saturation Sensor

ECG
Sensor

Respiratory
Rate Sensor

Body Temperature
Sensor

Heart Rate
Sensor

Mobile Phone

Caretaker

Doctor

Relatives

Elder

Zone 0 Zone 1

Zone 2

Zone 3

Figure 6.3: Overview of Scenario 2 adapted from eCAALYX system. Includes a
visual representation of the assigned zones: devices and sensors from the Elder are in
Zone 0, the Caretaker is in Zone 1, the Doctor in Zone 2 and the Relatives are assigned
to Zone 3. Devices in Zone 0 communicate with each one of the other zones.

To summarize, ES2 represents a real-world scenario inspired in AAL scenarios [59, 34, 33,

72, 73] which has the objective of testing the system with a more complex Node-RED flow

(cf. Figure 6.4, p. 44) and more devices. With this scenario, we expect that all the data

collected from the devices of the elder are sent to the caretaker, doctor, and relatives in

real-time.

6.2 Experiments

The series of experiences were performed in a MacBook Pro Mid-2015 running macOS Big Sur

version 11.3 with a 2.2GHz Intel Core i7-4770HQ processor and 16Gb of RAM. The Eclipse

Mosquitto MQTT Broker was running the version 2.0.10, the modified version of Node-RED

(NoRDOr) uses the version 1.0.6 of Node-RED and the MicroPython firmware used for the devices

was running the version 1.12. The virtualized experiments were performed using Docker Desktop

for Mac running version 3.4.0, which in turn was running Docker Engine 20.10.7.

44 Experimentation and Evaluation

Figure 6.4: Node-RED implementation of scenario 2.

6.2.1 ES1 Experiments

Regarding scenario ES1, we divided our experiments into two main groups: (1) Sanity Checks to

validate if our solution complies with the constraints defined in the simplest cases; and (2) Exper-

imental Tasks where we change certain aspects of the system to verify some specific behaviors.

6.2.1.1 Sanity Checks

ES1-SC1 A simple flow (cf. Figure 6.1, p. 42) where the body_temperature node is configured to

collect data with an interval of 5 seconds and is tagged as a node that produces sensitive data.

The devices were specified with different capabilities and zones, as shown in Table 6.1, with

the objective of forcing the nodes to be executed in different devices, which in turn forces

the data to flow from one zone to another.

Table 6.1: ES1-SC1 devices’ specification.

Device Capabilities Zone
1 body_temperature, aggregate z1
2 output z2

6.2 Experiments 45

ES1-SC2 With two devices, none of them with capabilities to execute transformation nodes (cf.

Table 6.2). The orchestrator will try to assign the nodes to the devices in different zones but

we expect that it will not be possible since it is required to have a transformation node when

private data crosses zones.

Table 6.2: ES1-SC2 devices’ specification.

Device Capabilities Zone
1 body_temperature z1
2 output z2

6.2.1.2 Experimental Tasks

We further defined a set of complementary experiments for ES1, where we want to evaluate how

the system behaves when device-related aspects change, namely:

ES1-A With four devices, each one with different processing capabilities as shown in Table 6.3.

The devices with capabilities to execute transformation nodes will appear and disappear one

by one, forcing the system to re-orchestrate. We expect that the system can assign another

device to execute the transformation node whenever possible, if the previously assigned

device fails.

Table 6.3: ES1-A devices’ specification.

Device Capabilities Zone
1 body_temperature z1
2 aggregate z1
3 aggregate z1
4 output z2

ES1-B Both devices have the same capabilities but remain in different zones as it can be seen in

Table 6.4. We will verify the orchestrator decision of assigning nodes in different zones or

in the same zone. With this experiment we expect the orchestrator to give more preference

in executing all the nodes in one zone instead of using both devices.

Table 6.4: ES1-B devices’ specification.

Device Capabilities Zone
1 body_temperature, aggregate, output z1
2 body_temperature, aggregate, output z2

ES1-C The same devices’ specification used in ES1-B. However, we will evaluate if the orches-

trator decision when assigning nodes to devices can change comparatively to ES1-B by

modifying the heuristic scores of the assignment algorithm (cf. Section 5.4, p. 36). For this

46 Experimentation and Evaluation

experiment we will use a factor of 0.2 to the number of transformation nodes the orches-

trator needs to introduce in the system heuristic, and a factor of 0.4 to the heuristic of the

average number of assigned nodes to each device.

ES1-D With five devices distributed between two zones and with the capabilities shown in Ta-

ble 6.5. A nothing node, which only redirects the received data to the following linked

node, was introduced in the flow (cf. Figure 6.1, p. 42), between the body_temperature node

and output node. With this experiment we want to verify how the orchestrator finds a middle

term in distributing nodes equally between the devices and, at the same time, avoiding data

to flow from one zone to another, which may lead to the insertion of more nodes into the

system. We expect that the orchestrator gives more preference to the execution of all the

nodes in "z2" since it can distribute equally the number of nodes per device, comparatively

to "z1".

Table 6.5: ES1-D devices’ specification.

Device Capabilities Zone
1 body_temperature, aggregate z1
2 output, nothing z1
3 body_temperature, output, nothing z2
4 body_temperature, output, nothing z2
5 body_temperature, output, nothing, aggregate z2

6.2.2 ES2 Experiments

With ES2 experiments, we intend to verify how our system performs in a real-case scenario by

collecting several metrics of the system and further analyzing them. We divided the following ex-

periments into two main groups: (1) Experimental Tasks where we explore more system behaviors;

and (2) Limitations to show the current shortcomings of our implementation.

6.2.2.1 Experimental Tasks

In the experimental tasks, we use a flow (cf. Figure 6.4, p. 44) where the nodes that produce data

are set up to collect data with an interval of 5 seconds and, all of them are tagged as producers

of sensitive data. The time between each collection of data by the nodes is chosen merely for

experimental purposes and does not reflect reality for some of the simulated sensors (e.g., weight

sensor) since normally they do not produce data so frequently.

ES2-A Using a more complex flow (cf. Figure 6.4, p. 44) and the devices’ capabilities and zones

defined as shown in Table 6.6 (p. 47). The expected results for these experiments are that

data collected from the elderly sensors can reach the respective caretaker, doctor, and rela-

tives but only after suffering a transformation (e.g., aggregation, anonymization, encryption)

since the data collected is highly privacy-sensitive and should not be easily accessed by ev-

eryone.

6.2 Experiments 47

Table 6.6: ES2-A devices’ specification.

Device Capabilities Zone
1 heart_rate, ecg, blood_oxygen z1
2 blood_pressure z1
3 body_temperature z1
4 respiratory_rate z1
5 weight z1
6 gateway z1
7 mobile z1
8 caretaker z2
9 doctor z3
10 relatives z4

ES2-B Using the same flow and devices’ specification as ES2-A, however, with this experiment,

we aim to simulate when the elderly leaves the house to evaluate if the system is capable of

still running properly. The type of data collected in this scenario needs to be delivered in

real-time so that medical help can be triggered as fast as possible when needed. To simulate

an elderly leaving their house, we introduce a failure to the Gateway forcing the system to

re-orchestrate the transformation nodes, expectably, to the Mobile Phone.

6.2.2.2 Limitations

To explore our solution’s limitations pointed out in Section 5.5 (p. 39), we will carry out two

experiments. For such, we use a simpler flow based on the ES2, as can be seen in Figure 6.5. For

both experiments, we will simulate a sensor that collects the heart rate value of an elderly with an

interval of 5 seconds, and whenever the heart rate value reaches 100, an alert should be sent. In

the following experiments, we aim to analyze if the system fulfills the privacy constraints as well

as if the flow works as expected.

Figure 6.5: Node-RED implementation for the limitation experiments in scenario 2.

ES2-L1 With four devices distributed between two zones and with the capabilities shown in Ta-

ble 6.7 (p. 48). With this experiment, we expect to verify a limitation introduced when a

transformation node is added to the system, which may change the structure of the messages

some nodes may be used to.

ES2-L2 With five devices distributed between two zones with the capabilities shown in Table 6.8 (p. 48).

For this experiment, we will change the behavior of two nodes: (1) if node to only send a

message when the result of its condition is "True", and (2) aggregate node to calculate the

48 Experimentation and Evaluation

Table 6.7: ES2-L1 devices’ specification.

Device Capabilities Zone
1 heart_rate z1
2 aggregate z1
3 if z2
4 alert z2

mean value of the aggregated messages instead of sending all the messages as an array. With

this experiment, we aim to show the system complies with the privacy constraint but does

not fulfill the expected behavior of the flow.

Table 6.8: ES2-L2 devices’ specification.

Device Capabilities Zone
1 heart_rate z1
2 aggregate z1
3 heart_rate z2
4 if z2
5 alert z2

6.2.3 Metrics collected

For each one of the experiments mentioned previously, several metrics of the system will be mea-

sured. Each device firmware was modified to send the respective metrics to MQTT topics every

5 seconds, consequently being captured by a bridge that populated an InfluxDB database (version

1.8). The metrics collected are explained next:

Uptime: represents how long a device is running during an experiment. This graph is useful to

verify when devices fail and when they announce themselves back to the system.

Number of allocated nodes: shows how many nodes the orchestrator assigns to each device that

announced itself to the system.

Number of allocated transformation nodes: shows how many transformation nodes were intro-

duced in the system and to which devices they are allocated.

Number of allocated nodes per zone: represents the number of nodes assigned per zone. This

graph is useful to understand some of the choices of the orchestrator.

Number of exchanged messages per device: displays the number of messages sent and received

by each device. This graph can be used to verify if messages are lost and/or if the commu-

nication between nodes and devices is working as supposed.

6.3 Results Analysis 49

6.3 Results Analysis

During the experiments, we collect several metrics that are detailed in Section 6.2.3 (p. 48) and

present them in charts, as well as the nodes’ assignment to devices, to better understand the system

behavior and validate our implementation.

In the following sections, we present and analyze the results from the experiments.

6.3.1 ES1: Sanity Checks

6.3.1.1 ES1-SC1

In this experiment, the objective is to observe how the system handles zone crossing in a controlled

way. The system is tested using two devices (cf. Table 6.1, p. 44) and a Node-RED flow with

two nodes (cf. Figure 6.1, p. 42). A visual representation of the system events for this specific

experiment is presented in Annex A (p. 75). In Figure 6.6, it is possible to see the metrics measured

from the respective devices.

80k

100k

120k

1.94M

1.96M

1.98M

2M

46.953M

46.95305M

46.9531M

46.95315M

2000

3000

4000

5000

6000

Dev. 1

Dev. 2

Dev. 1

Dev. 2

Dev. 1

Dev. 2

Zone 1

Zone 2

0 50 100 150 200

Dev. 1

Dev. 2

Dev. 1 Dev. 2

RAM allocated (bytes)

Free RAM (bytes)

Free Flash Space (bytes)

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Number of transformation nodes allocated per device

Number of nodes allocated per zone

Number of sent/received messages per device

Time (s)

5 11 21 26 37 47 58 68 79 89 100 110 121 131 137 147 158 168 179 189 200

11 21 26 37 47 58 68 79 89 100 110 121 131 137 147 158 168 179 189 200

0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0/0 0/0 0/0 0/0 1/1 3/3 6/5 8/7 10/9 13/11 15/13 18/15 20/17 24/20 25/21 27/23 30/25 32/27 34/29 37/31 39/33

0/0 0/0 0/0 0/0 0/0 1/1 1/1 1/1 2/2 2/2 3/3 3/3 3/3 4/4 4/4 5/5 5/5 5/5 6/6 6/6

Figure 6.6: ES1-SC1 measurements.

50 Experimentation and Evaluation

Since the nodes are assigned to devices in different zones and the body_temperature node was

tagged as a producer of privacy-sensitive data, the orchestrator needs to create a transformation

node to prevent raw data from being sent from one zone to another. An aggregate node is assigned

to Device 1, which is the same device where the body_temperature node is executed and, thus,

they are executed in the same zone. Even though the aggregate node was not defined in the initial

flow of this experiment, the final flow can be interpreted as Figure 6.7 shows. In the same figure,

it is also represented the remaining nodes’ assignment to each device.

Figure 6.7: ES1-SC1 node assignment.

Each node starts to communicate with each other as soon as the devices start executing the

generated scripts sent by the orchestrator. All the messages sent and received by each device are

counted to verify if all nodes receive and produce the expected output messages and to check if

the data is transformed before leaving Device 1 and reaching Device 2. The number of sent and

received messages per device can be seen in Figure 6.6 (p. 49). As expected, Device 1 sends and

receives more messages since it is executing two nodes that communicate between each other.

The fact that the two sequential nodes being executed in the same device communicate via MQTT

topics instead of calling themselves through code was a limitation already pointed out in Silva

et al. [19] work, and its improvement is out-of-scope for our solution. The difference between sent

and received messages in Device 1, which constantly increases over time, represents the number

of messages sent by the aggregate node to Device 2, which is the same number as the number

of messages received by Device 2. Taking into account that the output node is a MQTT node,

the number of messages received and sent by Device 2 are the same because for each message

received, the output node forwards it to the specified MQTT topic.

The results from this sanity check are satisfactory since the system performs as expected,

showing that no raw data is sent from one zone to another without first going throw a transforma-

tion process.

6.3.1.2 ES1-SC2

The second sanity check of ES1 has the objective of validating how the system reacts to the

deployment of a flow where it is impossible to transform data since no device has such capabilities

(cf. Table 6.2, p. 45).

As expected, the orchestrator can’t find a feasible solution that guarantees data privacy because

both nodes are forced to be executed in different zones, and it is not possible to transform the data

6.3 Results Analysis 51

collected before it crosses zones. Instead, the orchestrator produces an error that can be used in

future work (cf. Section 7.4, p. 71), to inform the user of the lack of privacy-preserving capability

of the system.

6.3.2 ES1: Experimental Tasks

6.3.2.1 ES1-A

This experiment is a complement to experiment ES1-SC1, where we evaluate how the system

behaves when devices capable of executing transformation nodes fail and reappear, using the same

flow but with different devices’ specifications (cf. Table 6.3, p. 45). The measurements performed

for this experiment can be consulted in Figure 6.8.

200k

400k

1.6M

1.8M

2M

46.3093M

46.3094M

46.3095M

2000

3000

4000

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Zone 1

Zone 2

0 50 100 150 200 250

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

RAM allocated (bytes)

Free RAM (bytes)

Free Flash Space (bytes)

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Number of transformation nodes allocated per device

Number of nodes allocated per zone

Number of sent/received messages per device

Time (s)

5 16 21 32 42 53 63 74 84 94 105 115 126 131 144 154 165 175 186 196 202 212 223 233 244 254

10 16 26 37 42 52 63 73 10 16 26 37 47 58

5 16 26 32 42 53 63 73 84 94 105 115 126 136 142 152

16 21 32 42 53 63 74 84 95 105 116 126 131 142 152 163 173 184 195 205 216 226 237 242 252

0 0 0 1

0 0 0 1 1 1 1 1 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 1

0 0

0 0 0 1 1 1 1 1 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0

0 0 0 0 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2

0 0 0 0 1

0/0 0/0 0/0 1/0 3/0 5/0 7/0 9/0 12/0 14/0 17/0 19/0 21/0 22/0 24/0 27/0 29/0 31/0 33/0 34/0 37/0 40/0 43/0 45/0 47/0 49/0

0/0 0/0 0/0 0/2 0/3 1/5 1/7 2/9 0/0 0/0 0/1 0/4 1/6 1/8

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/2 0/4 1/6 1/8 1/9 2/11

0/0 0/0 0/0 0/0 1/1 1/1 2/2 2/2 2/2 2/2 2/2 3/3 3/3 3/3 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 5/5 5/5

Figure 6.8: ES1-A measurements.

52 Experimentation and Evaluation

In an initial phase, since body_temperature node and output node are assigned to devices in

different zones, the orchestrator introduces a transformation node to the system which is assigned

to a different device from where the other nodes are assigned, as it can be observed in Figure 6.9.

Figure 6.9: ES1-A node assignment.

By analyzing the uptime graphic (cf. Figure 6.8, p. 51), it is possible to identify when a device

fails. Whenever a device fails to respond to the ping message sent by the orchestrator, it tries to

re-orchestrate the flow with the remaining devices. However, sometimes, it may not be possible.

For this experiment, it is possible to verify that Device 2 fails and the system, after a while, was

able to re-orchestrate the aggregate node to Device 3 since it has the needed capabilities. How-

ever, after the failure of Device 3, the orchestrator could not find any device with transformation

capabilities, and so the system has no way of processing data before it changes zones. As soon as

Device 2 announces itself back to the orchestrator, the normal flow of the system is established.

Figure 6.8 (p. 51) also presents the number of messages sent and received by each device over

time. When Device 2 and Device 3 are not working, it is possible to see that, even though Device

1 is sending messages from the body_temperature node, they are not being received by Device 4.

During that time, the number of messages received and sent by Device 4 remains unchanged.

This experiment and results allow us to validate one of the main constraints of our system, the

zone cross constraint, which ensures that no data is sent from one zone to another before being

transformed.

6.3.2.2 ES1-B

Based on ES1-SC1 (cf. Section 6.3.1.1, p. 49), this experiment makes use of the same flow and

the same number of devices in the same zones. However, both devices have the same capabilities

(cf. Table 6.4, p. 45). With this experiment, we want to verify what are the orchestrator priorities

when assigning the nodes to the devices.

By analyzing Figure 6.10 (p. 53), it is possible to see that the orchestrator prefers to assign all

the nodes to Device 1 because, like that, there is no need to add a transformation node since the

data does not flow between zones.

A few seconds after the first orchestration is performed, a failure is introduced to Device 1

to verify how the orchestrator reacts. As expected, after the failure, all the nodes that are being

executed in Device 1 are moved to Zone 2.

6.3 Results Analysis 53

70k

80k

90k

100k

110k

120k

1.94M

1.96M

1.98M

46.3096M

46.30965M

46.3097M

3819

3,819.5

3820

3,820.5

3821

Dev. 1

Dev. 2

Dev. 1

Dev. 2

Dev. 1

Dev. 2

Zone 1

Zone 2

0 20 40 60 80 100 120 140

Dev. 1

Dev. 2

Dev. 1 Dev. 2

RAM allocated (bytes)

Free RAM (bytes)

Free Flash Space (bytes)

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Number of transformation nodes allocated per device

Number of nodes allocated per zone

Number of sent/received messages per device

Time (s)

11 21 32 42 47 58 68 79

11 21 32 42 53 58 68 79 89 100 110 121 131 142

0 0 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 2 2 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 2 2 2 2 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 2 2

0/0 0/0 2/1 8/4 10/5 14/7 18/9 22/11

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4/2 8/4 12/6

Figure 6.10: ES1-B measurements.

6.3.2.3 ES1-C

Similar to ES1-B (cf. Section 6.3.2.2, p. 52), the objective of this experiment is to verify if the

orchestrator priorities can change. As explained in Section 5.4 (p. 36), the node assignment algo-

rithm makes use of several heuristic values that change the score calculation of the best assign-

ment. For this experiment, we change the number of transformation nodes the orchestrator needs

to introduce in the system heuristic to a factor of 0.2, and we use a factor of 0.4 to the heuristic

of the average number of assigned nodes to each device. With such factor values, we aim to give

more priority to spreading the nodes among the available devices instead of reducing the number

of zones crossed by the data that flows in the system. The flow and the devices we use are exactly

the same used in ES1-B.

Since we gave more importance to the equal distribution of nodes between the devices when

changing the assignment values, the orchestrator prefers to distribute the nodes among the devices

instead of avoiding the zones being crossed by the data. In Figure 6.11 (p. 54), we can see that

due to the body_temperature and output node being assigned to devices in different zones, the

orchestrator adds a transformation node to the device generating data.

54 Experimentation and Evaluation

60k

80k

100k

120k

1.94M

1.96M

1.98M

2M

46.3096M

46.30965M

2000

3000

4000

5000

6000

Dev. 1

Dev. 2

Dev. 1

Dev. 2

Dev. 1

Dev. 2

Zone 1

Zone 2

0 20 40 60 80 100 120

Dev. 1

Dev. 2

Dev. 1 Dev. 2

RAM allocated (bytes)

Free RAM (bytes)

Free Flash Space (bytes)

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Number of transformation nodes allocated per device

Number of nodes allocated per zone

Number of sent/received messages per device

Time (s)

11 21 32 42 53 63 74 84 90 100 111

11 21 32 44 49 60 70 81 91 102 112

0 0 1 1 1 1 1 1 1 1 1

0 0 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 2 2 2 2 2 2 2 2 2

0/0 0/0 0/0 0/0 1/1 1/1 1/1 2/2 2/2 3/3 3/3

0/0 0/0 1/1 3/3 4/4 8/7 10/9 13/11 15/13 18/15 20/17

Figure 6.11: ES1-C measurements.

In comparison to the experiment ES1-B, the algorithm chooses to assign the nodes to different

devices, giving less importance to the fact of data flowing from one zone to another. However,

because of that, the orchestrator needs to insert a new node into the system. When comparing the

number of nodes being executed in each device, we can conclude that, like experiment ES1-B,

one of the devices needs to run two nodes. With this being said, the default values used for the

assignment algorithm in ES1-B behave better than the ones we use for this experiment.

With this experiment, we can conclude that by changing the default values used in the assign-

ment algorithm, we can change the behavior of the orchestrator when allocating the nodes to the

devices where they will be executed.

6.3.2.4 ES1-D

To further assess the orchestrator behavior, we use more complex devices’ specification (cf. Ta-

ble 6.5, p. 46) and introduce one nothing node which only forwards what it receives to the linked

nodes. By increasing the complexity of the system, we allow the orchestrator to have more assign-

ment possibilities, either by assigning the flow to the same zone or between zones, and even inside

6.3 Results Analysis 55

each zone, the nodes can be assigned to different devices. With this experiment, we intend to have

a better evaluation of the system’s performance.

In the first node assignment, the orchestrator decides to send all the nodes to Zone 2, as can

be interpreted in Figure 6.12. The reason behind the first assignment choice comes from the fact

that the system can achieve a better node distribution among the devices in Zone 2 than doing the

same distribution in Zone 1.

80k

100k

120k

140k

1.6M

1.8M

2M

45.0674M

45.0676M

45.0678M

45.068M

45.0682M

0

1000

2000

3000

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Zone 1

Zone 2

0 20 40 60 80 100 120 140

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 1 Dev. 2 Dev. 3 Dev. 4 Dev. 5

RAM allocated (bytes)

Free RAM (bytes)

Free Flash Space (bytes)

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Number of transformation nodes allocated per device

Number of nodes allocated per zone

Number of sent/received messages per device

Time (s)

5 16 26 37 47 58 68 79 89 100 105 115 126

5 16 26 37 47 58 68 79 89 94 105 117 128

17 28 38 49 59 70

5 16 26 37 47 58 68 79 89 100 105 116 126

5 16 28 39 44 55 65 76 86 97 107 118 128

0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 2 2 2 2 2

0 0 1 1 1 1

0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3 3 3 3 3

0 0 0 1 3 3 3 3 2 0 0 0 0 0

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 2/0 3/0 5/0 7/0 9/0

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4/4 8/8 12/12 16/16

0/0 0/0 2/2 4/4 7/7 9/9

0/0 0/0 0/0 2/2 4/4 6/6 8/8 11/11 12/12 12/12 12/12 12/12 12/12

0/0 0/0 1/0 2/0 4/0 6/0 8/0 10/0 12/0 12/0 12/0 12/0 12/0

Figure 6.12: ES1-D measurements.

However, when a failure is introduced to Device 3 at approx. 80 seconds, the system has to

re-orchestrate choosing to move the nodes’ execution to Zone 1 instead of just assigning the node

running in Device 3 to another device in the same zone. This orchestrator behavior is expected

due to the factor values used in the node assignment algorithm (cf. Section 5.4, p. 36). After

reducing the number of zones crossed by data and equally distributing the nodes among devices,

the orchestrator gives more preference to devices with fewer capabilities since there can be other

56 Experimentation and Evaluation

nodes with the requirement of more device capabilities. Both node assignments the orchestrator

performs can be compared in Figure 6.13.

Figure 6.13: ES1-D node assignments.

By analyzing the messages exchanged per device and the number of nodes allocated per device

(cf. Table 6.12, p. 55), it is possible to observe that, even though Devices 4 and 5 do not stop

working when Device 3 fails, they stop the execution of the nodes that they had previously assigned

once the re-orchestration was complete.

6.3.3 ES2: Experimental Tasks

6.3.3.1 ES2-A

As mentioned previously (cf. Section 6.1, p. 41), the second scenario consists of a real-case

situation where data is collected by sensors in the possession of an elderly person, which are

subsequently sent to the respective doctors, caretaker, and family. Since the data generated by the

sensors may be privacy-sensitive in some situations, the objective of this experiment is to validate

that no person outside the elderly zone can access the data that does not have been through a

process of transformation.

The ES2 scenario, based on previous work done in the AAL area, was adapted to our system

by introducing four zones (cf. Figure 6.3, p. 43). For the experiment, ten possible devices are

defined and scattered around the zones where they made sense to be (cf. Table 6.6, p. 47).

The measurements performed for this experiment are visible in Figure 6.14 (p. 57). The or-

chestrator creates one node for each sensor owned by the elderly, so in Zone 1, the orchestrator

assigns seven nodes that collect data and seven aggregation nodes. While the remaining three

nodes are assigned to the other three zones, as expected.

By analyzing the number of messages sent and received by the devices, it is possible to see that

Devices 8, 9, and 10 receive the same amount of messages, which means that all the data collected

from sensors is delivered equally between the doctor, caretaker, and relatives. Moreover, we can

6.3 Results Analysis 57

100k

200k

300k

1.7M

1.8M

1.9M

2M

45.0655M

45.066M

45.0665M

45.067M

5k

10k

15k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

Dev. 10

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

Dev. 10

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

Dev. 10

Zone 1

Zone 2

Zone 3

Zone 4

0 20 40 60 80 100 120 140
Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

Dev. 10

Dev. 1 Dev. 2 Dev. 3 Dev. 4 Dev. 5 Dev. 6 Dev. 7 Dev. 8 Dev. 9 Dev. 10

RAM allocated (bytes)

Free RAM (bytes)

Free Flash Space (bytes)

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Number of transformation nodes allocated per device

Number of nodes allocated per zone

Number of sent/received messages per device

Time (s)

11 23 28 39 49 60 70 81 91 102 112 123

11 21 32 37 47 58 68 79 89 100 110 121

5 23 28 39 49 60 70 76 86 96 107 117

10 21 31 36 47 57 68 78 89 99 110 120

5 23 28 39 49 60 70 76 86 96 107 117

5 16 26 37 42 53 63 76 86 96 107 112 123

11 21 26 37 47 58 68 79 89 100 110 121

11 23 28 39 49 60 70 81 91 102 112 117

11 23 28 39 49 60 70 81 86 97 107 117

11 21 26 37 47 58 68 79 89 100 110 121

0 3 3 3 3 3 3 3 3 3 3 3

0 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

0 0 4 4 4 4 4 4 4 4 4 4 4

0 3 3 3 3 3 3 3 3 3 3 3

0 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 4 4 4 4 4 4 4 4 4 4 4

0 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 14 14 14 14 14 14 14 14 14 14 14

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0/0 6/0 9/0 15/0 21/0 27/0 33/0 39/0 45/0 51/0 60/0 66/0

0/0 2/0 4/0 5/0 7/0 9/0 11/0 13/0 15/0 17/0 19/0 21/0

0/0 1/0 3/0 5/0 7/0 10/0 12/0 13/0 15/0 17/0 19/0 21/0

0/0 2/0 3/0 5/0 7/0 9/0 11/0 13/0 15/0 17/0 19/0 21/0

0/0 1/0 3/0 5/0 7/0 10/0 12/0 13/0 15/0 17/0 19/0 21/0

0/0 0/0 0/5 0/9 3/17 12/25 15/33 24/41 24/49 36/61 36/65 48/73 48/81

0/0 0/4 0/7 3/13 9/19 12/25 18/31 21/37 27/43 27/49 33/56 39/64

0/0 0/0 0/0 2/2 7/7 9/9 14/14 15/15 21/21 21/21 28/28 28/28

0/0 0/0 0/0 2/2 7/7 9/9 14/14 15/15 21/21 21/21 27/27 28/28

0/0 0/0 0/0 2/2 7/7 9/9 14/14 15/15 21/21 21/21 27/27 29/29

Figure 6.14: ES2-A measurements.

also observe that, over time, all the data produced in Devices 1-5 is received in Devices 6 and 7,

which is aggregated, and posteriorly sent to Devices 8-10. Even though the aggregation nodes

are not defined when deploying the flow, the orchestrator introduces them to keep the privacy of

data when being sent from one zone to another. A detailed node assignment of this scenario is

58 Experimentation and Evaluation

represented in Figure 6.15.

Figure 6.15: ES2-A node assignment.

As expected, even with a more complex scenario, the system was able to guarantee that the

fundamental constraint of our system was kept.

6.3.3.2 ES2-B

For the second scenario, we perform another experiment where we intended to simulate the elderly

leaving their house. To do so, we introduce a failure to the device that simulates the gateway since

it is a device that should only be on the elderly house.

The event we aim to test occurs at approx. 90 seconds. As it can be seen in Figure 6.16 (p. 59),

Device 6, which represents the elderly gateway, fails in the middle experiment and, since there are

nodes assigned to it, the system re-orchestrates and allocates those nodes to Device 7, which is

the only device available capable of transforming the data. Even though Device 7 is given more

computational load, it is able to receive, transform, and deliver all the messages to the destinations.

6.3 Results Analysis 59

200k

400k

600k

1.6M

1.8M

2M

45.065M

45.066M

45.067M

0

10k

20k

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

Dev. 10

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

Dev. 10

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

Dev. 10

Zone 1

Zone 2

Zone 3

Zone 4

0 20 40 60 80 100 120 140 160
Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 6

Dev. 7

Dev. 8

Dev. 9

Dev. 10

Dev. 1 Dev. 2 Dev. 3 Dev. 4 Dev. 5 Dev. 6 Dev. 7 Dev. 8 Dev. 9 Dev. 10

RAM allocated (bytes)

Free RAM (bytes)

Free Flash Space (bytes)

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Number of transformation nodes allocated per device

Number of nodes allocated per zone

Number of sent/received messages per device

Time (s)

22 28 38 49 59 70 80 90 101 106 117 127 138 148 159

5 11 26 32 42 53 60 70 81 91 102 112 123 133 144 154 165

11 21 26 37 47 58 68 79 89 100 110 121 126 136 147 157

11 21 32 37 47 58 68 79 89 100 110 121 131 142 147 157

11 23 28 39 49 60 70 81 91 97 107 117 128 138 149 159

17 22 33 38 49 59 69 80

11 21 26 37 47 58 68 79 89 100 110 121 131 136 147 157

11 21 32 42 53 58 68 79 89 100 110 121 131 142 152 157

11 23 28 39 49 60 70 81 91 102 112 123 128 138 149 159

11 23 28 39 49 60 70 81 91 96 107 117 128 138 149 159

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 4 4 4 4 4 4 4

0 3 3 3 3 3 3 3 3 3 7 7 7 7 7 7

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 4 4 4 4 4 4

0 3 3 3 3 3 3 3 3 3 7 7 7 7 7 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 14 14 14 14 14 14 14 10 10 14 14 14 14 14 14

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3/0 6/0 15/0 21/0 27/0 33/0 39/0 45/0 48/0 57/0 63/0 69/0 75/0 81/0 90/0

0/0 0/0 1/0 2/0 4/0 7/0 9/0 10/0 12/0 14/0 16/0 19/0 21/0 24/0 26/0 28/0 30/0

0/0 1/0 2/0 4/0 6/0 9/0 11/0 13/0 15/0 17/0 20/0 22/0 23/0 25/0 27/0 29/0

0/0 1/0 2/0 4/0 6/0 8/0 10/0 13/0 15/0 17/0 20/0 22/0 24/0 25/0 27/0 29/0

0/0 2/0 3/0 5/0 7/0 9/0 11/0 13/0 14/0 16/0 19/0 21/0 23/0 25/0 28/0 30/0

0/0 0/0 0/4 0/12 12/20 12/28 21/36 24/48

0/0 0/1 0/4 0/10 9/16 9/22 18/30 21/37 27/43 27/49 36/59 36/73 60/87 60/94 60/108 81/122

0/0 0/0 0/0 1/1 7/7 7/7 13/13 14/14 15/15 17/17 20/20 20/20 28/28 28/28 34/34 35/35

0/0 0/0 0/0 0/0 7/7 7/7 14/14 15/15 17/17 17/17 20/20 20/20 21/21 28/28 28/28 35/35

0/0 0/0 0/0 1/1 7/7 8/8 14/14 15/15 15/15 17/17 19/18 21/20 22/21 29/28 29/28 36/35

Figure 6.16: ES2-B measurements.

60 Experimentation and Evaluation

6.3.4 ES2: Limitations

6.3.4.1 ES2-L1

With this experiment, we have the objective of testing a limitation to our solution described in

Section 5.5 (p. 39). This limitation occurs whenever a transformation node is inserted before

a node that is expecting to receive data in a certain format. Since the transformation node can

change the structure of the messages, it can impede the flow to run accordingly to what was defined

in Node-RED.

In this experiment, we use an AAL-based flow (cf. Figure 6.5, p. 47) with an if node and the

devices mentioned previously (cf. Table 6.7, p. 48). The if node is expecting to receive a message

with a numerical value in the payload, which will then be used to verify a defined condition, and

posteriorly the result will be sent to the following linked node. The measurements collected from

the system are presented in Figure 6.17 (p. 61).

By analyzing the graphics, it is possible to see the nodes are assigned to two different zones,

which leads to the addition of a transformation node in the flow. The heart_rate node is assigned

to Device 1, which is in Zone 1, while the other nodes — if node and alert node — are assigned

to Zone 2. To comply with the privacy constraints, the orchestrator adds an aggregation node to

Device 2 in Zone 1, which is placed right before the if node. As it can be seen in the number

of sent and received messages per device graph, Devices 1 and 2 are sending and receiving the

messages correctly, but Devices 3 and 4 are not exchanging messages as supposed. Device 3 is

still receiving the transformed data, but it cannot interpret the message, and consequently, nothing

is sent to Device 4. We can see here that, even though the system complies with the defined privacy

restrictions, the flow fails to be executed properly.

The limitation verified in this experiment can be explained due to the fact the aggregation node

is configured to aggregate the messages into an array during 20 seconds and then send the group

of messages as an array to the linked nodes.

6.3.4.2 ES2-L2

To explore the second limitation referred in Section 5.5 (p. 39), we proceed to use the same flow

utilized in ES2-L1. This limitation does not refer to problems in understanding the messages

exchanged, but to the fact the system cannot comply with the expected results of a system given

its flow.

In this experiment, we use the same flow (cf. Figure 6.5, p. 47) used in ES2-L1 which is

based on an AAL scenario where the heart rate from an elderly is measured, and whenever it

reaches a specified value, the system triggers an alert message, which in reality would be an alert

sent to the Emergency Services. For this scenario, it is critical that when the heart rate reaches

some value, an alert message is triggered. The measured values for the experiment are shown

in Figure 6.18 (p. 62), and the respective node assignment can be seen in Figure 6.19 (p. 63).

A graph comparing the expected number of alerts and the actually sent alerts is introduced to

6.3 Results Analysis 61

60k

80k

100k

120k

140k

1.94M

1.96M

1.98M

2M

43.3357M

43.33575M

43.3358M

43.33585M

2000

3000

4000

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Zone 1

Zone 2

0 20 40 60 80 100 120 140 160 180

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

RAM allocated (bytes)

Free RAM (bytes)

Free Flash Space (bytes)

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Number of transformation nodes allocated per device

Number of nodes allocated per zone

Number of sent/received messages per device

Time (s)

5 16 26 37 47 58 63 76 86 97 107 118 128 133 144 154 165 175

5 16 26 37 47 58 63 74 84 95 105 116 126 137 147 158 168 173

5 16 28 34 44 55 70 76 86 97 107 118 128 133 144 154 165 175

5 16 26 37 47 58 68 79 86 97 107 118 128 139 149 154 165 175

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0/0 0/0 0/0 2/0 4/0 7/0 9/0 10/0 12/0 14/0 16/0 18/0 20/0 22/0 24/0 26/0 28/0 30/0

0/0 0/0 0/0 0/2 0/4 1/6 1/9 2/10 2/12 2/14 3/16 3/18 4/20 4/22 5/24 5/26 5/27 6/30

0/0 0/0 0/0 0/0 0/0 0/1 0/1 0/2 0/2 0/2 0/3 0/3 0/4 0/4 0/5 0/5 0/5 0/6

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Figure 6.17: ES2-L1 measurements.

better understand the system capacity to fulfill the expected behavior from the flow. The system is

expected to send an alert message whenever the heart rate goes beyond the value of 100.

As explained before, to perform this experiment, we have modified the behavior of two nodes:

(1) the if node to only send a message when the result of the condition verified is "True"; and (2)

the aggregation node to collect the messages and only send the mean value calculated from them.

In the initial phase of the experiment, it is possible to see that the system chooses to execute

the nodes in Zone 2 without the need for a transformation node. During some time, the system

works as expected because for each time the heart rate reaches a value of 100, an alert is sent,

which can be seen by the same number of expected and sent alerts. However, to provide evidence

for the limitation previously mentioned when a transformation node is added to the system, we

purposely made Device 3 fail, which in turn is executing the heart_rate node. This event occurs at

approx. 160 seconds since the experiment has started.

62 Experimentation and Evaluation

60k

80k

100k

120k

140k

1.95M

2M

43.3354M

43.33545M

43.3355M

43.33555M

43.3356M

2000

3000

4000

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

Zone 1

Zone 2

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 5

0 50 100 150 200 250

Alerts

Dev. 1 Dev. 2 Dev. 3 Dev. 4 Dev. 5

RAM allocated (bytes)

Free RAM (bytes)

Free Flash Space (bytes)

Payload Size (bytes)

Uptime (s)

Number of nodes allocated per device

Number of transformation nodes allocated per device

Number of nodes allocated per zone

Number of sent/received messages per device

Number of expected/sent alerts

Time (s)

5 16 23 34 44 54 65 75 86 96 107 117 128 133 143 154 164 175 185 195 206 216 227 237 248 253

5 16 23 34 44 55 65 75 86 96 107 117 128 133 143 154 164 175 185 196 206 217 227 238 248 253

5 16 28 34 44 55 65 76 86 97 107 118 128 139 144

5 16 26 37 47 58 68 79 89 100 105 116 126 137 147 158 168 179 189 200 210 215 226 236 247 257

5 16 23 34 44 55 65 76 86 97 107 118 128 133 144 154 165 175 186 196 207 217 228 238 243 254

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1

0 0 0 0 1

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2

0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 2/0 4/0 6/0 8/0 10/0 12/0 15/0 16/0 18/0

0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/2 0/4 1/6 1/8 2/10 2/12 3/15 3/16 3/18

0/0 0/0 0/0 0/0 2/0 4/0 6/0 8/0 10/0 12/0 14/0 16/0 19/0 20/0 22/0

0/0 0/0 0/0 0/0 1/2 3/4 3/6 4/8 4/11 4/13 4/14 5/16 5/18 7/20 7/22 7/23 7/23 7/23 7/23 8/24 8/24 8/25 8/25 8/25 8/26 8/26

0/0 0/0 0/0 0/0 1/1 3/3 3/3 4/4 4/4 4/4 4/4 5/5 6/6 7/7 7/7 7/7 7/7 7/7 7/7 8/8 8/8 8/8 8/8 8/8 8/8 8/8

0/0 0/0 0/0 0/0 1/1 3/3 3/3 4/4 4/4 4/4 4/4 5/5 5/6 7/7 7/7 7/7 7/7 8/7 10/7 10/8 11/8 11/8 11/8 11/8 12/8 12/8

Figure 6.18: ES2-L2 measurements.

When Device 3 fails, the system needs to re-orchestrate, and the only possible way it finds is to

use devices in both zones and consequently transform data before changing zones. By analyzing

the number of messages exchanged per device it is possible to see that, when the transformation

node is inserted, the number of messages received by the if node — Device 4 — does not match

the number of messages generated by the heart_rate node — Device 1. This happens because the

transformation node aggregates several messages and only calculates and sends a mean value of

them.

After the re-orchestration, the number of expected and sent alerts graph shows that the number

6.4 Replication Package 63

Figure 6.19: ES2-L2 node assignment.

of expected alerts does not match the number of actual alerts sent. This means that the values

measured by the heart_rate node sometimes exceed the value of 100. However, the same does not

happen with the mean value calculated by the aggregation node. This leads the system to miss

some critical alert messages to be triggered.

The limitation verified with this experiment does no invalidate our solution since the system

still ensures the privacy of the data when crossing zones. However, it fails to ensure the critical

behavior of this scenario.

6.4 Replication Package

To allow the full replication of the experiments presented in this chapter, we have built and pub-

lished an experiments replication package [50] with the following content:

Experiments folder: With one folder for each one of the experiments performed, where we have

included files with the data collected and the Node-RED flows used.

Source code folder: With the source code of the modified version of Node-RED and the Mi-

croPython firmware for the edge devices. For each one of the experiments we have included

docker-compose files.

64 Experimentation and Evaluation

6.5 Desiderata Revisited

By the analysis of these results, it is possible to conclude the following regarding the Desiderata

defined in Section 4.3 (p. 29):

D1 Automatically protect privacy-sensitive data: was fulfilled by preventing raw privacy data

from being sent to potentially unsafe zones. Moreover, to make use of the computational

power of the available devices in the IoT network, a mechanism was developed that automat-

ically introduces transformation nodes whenever privacy-sensitive data is sent to untrusted

devices to be processed.

D2 Generate privacy-oriented node assignment: was achieved by introducing a new value to

the heuristic in the calculation of a node assignment score and by improving the assignment

algorithm itself. Our assignment algorithm can prioritize the allocation of privacy-sensitive

nodes to devices in a way that it can reduce the total number of zones crossed by private

data in the system.

D3 Validate devices’ identity on the network: no advancements were made towards this require-

ment.

6.6 Research Questions Revisited

The research questions defined in Section 4.5 (p. 29) guided the experiments performed to validate

our implementation. Thus, we re-visit them and provide answers for each one of them by linking

the experiments to it:

RQ1: How can we guarantee that privacy-sensitive data without any type of transformation
is only processed by trusted devices?

To prevent private data from being generated or processed in possible unsafe devices, we

introduced the concept of zones to the devices. Devices’ zones are virtual barriers that

separate trustworthy devices from devices that may be unsafe to receive and handle potential

privacy-sensitive data. By introducing these boundaries in the system, we can ensure that

no private information in raw mode ends up in unsafe zones.

During most of the experiments performed, it is possible to verify this behavior in the

system. When the orchestrator assigns nodes to the available devices, it ensures that raw

data can only be dealt with in devices that ate in the same zone as where the data was

generated. Moreover, as it can be seen in the analysis of experiment ES1-SC2 (cf. Sec-

tion 6.3.1.2, p. 50), when privacy-sensitive data needs to be sent to a node that can only

be executed in a device outside of the zone where the data flows, and if the system cannot

guarantee the privacy of the data then the system won’t assign the nodes to the devices and

the system will trigger an error.

6.6 Research Questions Revisited 65

By the analysis of the experiments performed, we can conclude that the introduction of

zones boundaries to the system guarantees that privacy-sensitive data without any type of

transformation is only processed in devices in the same zone without compromising the

private data.

RQ2: How can we ensure the privacy of data but at the same time explore the most of the
computational power available in the network?

With this question, we intended to make use of most of the computational capabilities of

edge devices in the network, but at the same time ensure the privacy of data when being

sent from one zone to another. To achieve this, the orchestrator analyses the generated node

assignment and proceeds to verify where privacy-sensitive data crosses the zones boundaries

defined for the devices. When this is verified, the orchestrator introduces a transformation

node that processes and changes the private data so that it can be handled outside the zone

where it is originated from without compromising its privacy. This transformation node

could perform, for example, one of the following actions to data: (1) aggregate, (2) encrypt,

or (3) anonymize. For experimental purposes, we only implemented the possibility for data

to be aggregated before changing zones.

In the analysis of some of the experiments, we can see the transformation nodes being in-

serted into the system’s flow. ES1-SC1 (cf. Section 6.3.1.1, p. 49) is the simplest experiment

where this improvement can be analyzed. Since data needed to be sent from one zone to

another, the orchestrator correctly inserted a transformation node which was executed over

the private data before it left the zone where it was produced. This functionality was then

further analyzed in experiment ES1-A (cf. Section 6.3.2.1, p. 51). In this experiment, we an-

alyzed how the system would react if devices that can execute transformation nodes started

to disappear. As expected and by the analysis of the results, it is possible to conclude that

the orchestrator always tries to find a way to execute the transformation nodes, and when it

cannot succeed, it still ensures that no private data ends up in unsafe locations without first

being protected.

To sum up, the answer to this research question, the introduction of transformation nodes

indeed guarantees the privacy of sensitive data while at the same time enabling the flow to

be executed in different zones, making use of the computational power of the edge devices.

RQ3: Can we provide a way to prioritize the allocation of sensitive nodes to safer locations?

To allow the orchestrator to prioritize the assignment of privacy-sensitive nodes to trusted

devices without compromising the performance of the devices, we made some improve-

ments to the node assignment algorithm. The score calculation of a node assignment was

changed to take into account the number of times privacy-sensitive data crosses zones. By

doing this, we intended the orchestrator to find a better assignment that reduced the number

of transformation nodes that had to be inserted in the system but at the same time spread the

tasks among the available devices.

66 Experimentation and Evaluation

The changes performed in the node assignment algorithm were analyzed in experiments

ES1-B (cf. Section 6.3.2.2, p. 52) and ES1-C (cf. Section 6.3.2.3, p. 53). In ES1-B, we

show that our assignment algorithm gives more preference to execute the nodes in the same

zone to reduce the number of zones crossed by private data, while in ES1-C, we show that

by changing the factor values for the heuristics, we can easily adapt the orchestration prior-

ities when assigning nodes to devices. With experiment ES1-D (cf. Section 6.3.2.4, p. 54)

we proceeded to further analyze the performance of our assignment algorithm with more

devices in the system. It was possible to verify that the algorithm tries to reduce the risk of

private data being handled in unsafer locations by executing all the nodes in the same zone.

However, it also takes into consideration the importance of an equal spread of tasks among

the devices by choosing the zone with more available devices.

By observing the results of the experiments, we can conclude that our solution indeed pro-

vides a way for the orchestrator to prioritize the assignment of privacy-sensitive nodes to

trusted devices.

After answering each one of the decomposed research questions, we can then provide an an-

swer to the main research question of this work:

How can we improve the NoRDOr system to automatically guarantee a safe flow of

privacy-sensitive data?

Considering the result of all experiments and the answers to the decomposed research ques-

tions, we can then conclude that our implementation can facilitate privacy during the flow of

privacy-sensitive data by: (1) ensuring raw private data only flows in devices on the same zone,

(2) protect privacy-sensitive data by transforming it before being sent to untrusted devices, and (3)

prioritizing the execution of privacy-sensitive nodes in the same zone where data is collected.

6.7 Summary

In this chapter, we present and discuss the experiments performed to evaluate and validate our

solution.

To evaluate and validate our implementation, we have defined two experimental scenarios in

Section 6.1 (p. 41). For the first scenario, we chose a simple Node-RED flow which was used

to verify the basic functionality and some behaviors of our solution. The second scenario used

represents a real-world scenario that was based on Ambient Assisted Living systems. With such

scenario, we wanted to validate our solution with a more complex flow that is more close to reality.

In Section 6.2 (p. 43), we have defined several virtual experiments that were performed for both

scenarios with the objective of exploring and evaluating our solution. For all of the experiments,

we collect metrics from the simulated devices, thus translated into charts to better analyze and

discuss the results, which are present in Section 6.3 (p. 49). For some of the experiments, we

introduce failures to the devices so that we can analyze how the system reacts to certain changes in

6.7 Summary 67

the system. During the experimental process, we also explore and analyze some of the limitations

described in Section 5.5 (p. 39). Section 6.4 (p. 63) presents the developed replication package

which can be used to rerun the experiments mentioned.

The results obtained from the experiments are then used to revisit the defined desiderata in

Section 6.5 (p. 64) and to answer the research questions in Section 4.5 (p. 29).

68 Experimentation and Evaluation

Chapter 7

Conclusions

7.1 Conclusions . 69

7.2 Contributions . 71

7.3 Difficulties . 71

7.4 Future Work . 71

This chapter presents an overview of this dissertation and identifies future improvements for

our work. Section 7.1 outlines the main conclusions regarding the work developed. In Sec-

tion 7.2 (p. 71), we introduce the contributions that resulted from this dissertation. We then

mention the main difficulties faced during the development of our solution in Section 7.3 (p. 71).

Lastly, Section 7.4 (p. 71) presents possible future improvements for the limitations found in our

work as well as other research directions.

7.1 Conclusions

With the growth of the number of Internet-of-Things devices and the increase of the computational

capabilities of even the smaller devices, the Fog and Edge computing paradigms began to emerge.

The computation and storage of the collected data were moved to the edge of the network, thus

closer to the users. However, this comes with some drawbacks relative to the privacy of data. Since

edge devices have fewer capabilities and energy constraints and many of these devices generate,

process, and exchange privacy-sensitive data, they are appealing targets for attacks that aim to get

access to private information.

During the analysis of state of the art, we found several platforms that allowed the orchestra-

tion of distributed IoT systems leveraging the computational capabilities of edge and fog devices.

However, none of the platforms found have implemented mechanisms to ensure the privacy of data

that flows in the system, often being left for future work. We then proceeded to perform a literature

review on current methods used in IoT systems that address privacy and security concerns over

the data exchanged in them.

69

70 Conclusions

The developed solution addresses the problems identified in the literature review by expanding

an open-source Node-RED Distributed Orchestrator (NoRDOr) [19] with mechanisms that can

automatically guarantee the privacy of data when generating, processing, and exchanging safety-

critical data, as initially set by our main research question:

How can we improve the NoRDOr system to automatically guarantee a safe flow of

privacy-sensitive data?

The implementation started off by introducing zones to the system, which can be understood as

virtual barriers that separate trustworthy devices from devices that may be unsafe to receive private

data. By defining these boundaries, we were able to ensure that no raw private data ended up in a

different zone from where it was produced, which could represent a risk for the privacy-sensitive

data. However, by only preventing private data from reaching untrusted devices, the system would

not be able to use most of the computational capabilities provided by the available devices in

the IoT network. To leverage the computation capabilities of edge devices but at the same time

facilitate privacy of data, the orchestrator introduces new nodes to the flow, which transform the

private data before it leaves the respective zone.

In addition to protecting privacy-sensitive data exchanged by the devices on the network, the

system must also generate privacy-oriented allocation of nodes to minimize the risk of private data

being processed in possible unsafe locations. Hence, a new assignment heuristic was introduced

that aims to reduce the number of times privacy-sensitive data crosses privacy boundaries.

The experiments presented in Chapter 6 (p. 41) were made to validate and evaluate our so-

lution by assessing to which degree the requirements of the desiderata (cf. Section 4.3, p. 29)

were fulfilled and by answering the raised research questions (cf. Section 4.5, p. 29). In these

experiments, we have collected metrics from the simulated devices, which were then translated

into charts to better assess the system behavior. During the experimental process, we have per-

formed sanity checks which allowed us to confirm that our system could comply with privacy

restrictions in the most basic scenarios, experimental tasks where we analyzed the system in more

complex scenarios, and also experiments to explore some of the known limitations mentioned in

Section 5.5 (p. 39).

Considering the results of the performed experiments, by introducing the concept of zones to

the devices in our solution, it is possible to guarantee that no raw privacy-sensitive data ends up

in untrusted devices — answering RQ1 — and by adding transformation nodes before privacy-

sensitive data leaves a zone, we allow the system to make use of most of the computational capa-

bilities of the available devices without compromising the security of private data, thus answering

RQ2. Moreover, RQ3 is also answered, since our solution can prioritize the allocation of privacy-

sensitive nodes to safer zones by the addition of a new heuristic that counts the number of zones

crossed by private data, thus improving the assignment algorithm. Furthermore, we can similarly

conclude that desiderata D1 and D2 were fulfilled, and no advancements were made towards the

requirement D3.

7.2 Contributions 71

In conclusion, with the results of the experiments and the answers for the decomposed re-

search questions we can conclude that our implementation can automatically facilitate a safe flow

of privacy-sensitive data in a distributed IoT system by defining zones for the devices and trans-

forming private data whenever it needs to be sent to a different zone from where it was generated,

answering our main research question. However, we recognize that there are some limitations for

our solution, thus we believe our work is a good starting point for future work on the development

of privacy-oriented solutions to task orchestration system.

7.2 Contributions

The work developed during this dissertation resulted in the following contributions:

The performed Literature Review: The current state of the art of systems that orchestrate com-

putational tasks to devices in an IoT network and privacy and security mechanisms that can

be used in these types of systems was analyzed.

The developed solution: We developed a solution based on the NoRDOr platform that ensures

the privacy of data throughout the system.

7.3 Difficulties

During the development of our solution, we came across some difficulties that slowed the imple-

mentation process.

Understanding and experimenting with the system where we based the development of our

solution took more time than expected due to the complexity of the NoRDOr system and some

lack of project organization. Moreover, some things did not comply with the system’s expected

behavior, such as the fact that a device would still run a previously assigned node even if, in a

re-orchestration, it would not be used to run any node. Thus, after the re-orchestration, the device

was unexpectedly executing a node re-assigned to another device. Only after fixing the system

was it possible to further validate our improvements.

Running the experiments in both scenarios also presented some difficulties since we had to

perform some changes in certain experiments to validate specific behaviors, which led us to re-

build and restart the system several times.

7.4 Future Work

The mechanisms developed during the course of this dissertation solved some of the issues high-

lighted in Section 4.2 (p. 28). However, the implementation contains several limitations (cf. Sec-

tion 5.5, p. 39) and introduces problems that require further research. As such, we see some

improvements that could be implemented in future work, namely:

72 Conclusions

Implement new transformation nodes: Some limitations of our solution can be verified when

inserting transformation nodes into certain flows. The orchestrator can successfully deploy

the flow to the available devices in the network and ensure the privacy constraints of pri-

vate data. However, when introducing transformation nodes to the system, the expected

behavior of the flow can change since some nodes start to receive messages with a different

structure which they are not used to. Moreover, as seen in experiment ES2-L2 (cf. Sec-

tion 6.3.4.2, p. 60), for some flows the aggregation of messages and the calculation of an

average value leads the system to miss sending alerts when critical values are higher than a

certain threshold. Our implementation lacks on a way to specify how privacy-sensitive data

should be treated when being transformed. Nevertheless, a possible solution would be to

allow the users to define which transformations can be performed in the data collected when

inserting the flow into the Node-RED platform. For experimental purposes, our solution

only implemented a transformation node which allowed the aggregation of messages. How-

ever, it is possible to implement other types of transformation nodes — such as encryption

or anonymization — in future development.

Improve zones specification: Another limitation derived from our implementation comes from

the fact that devices announce their respective zone to the orchestrator and the system does

not validate the veracity of the devices’ announcements. This can introduce security flaws

into the system since malicious devices can announce themselves in certain zones just to get

access to the information without any type of privacy protection. A welcome change that

could prevent this from happening could be by introducing another layer of configuration in

the Node-RED where the person responsible for the IoT network could specify the correct

zones for each one of the devices in the system. Moreover, it is not clear if whether the

users or the devices should be responsible for defining the zones. By taking into account the

experiment ES2-B (cf. Section 6.3.3.2, p. 58), an elderly person who leaves the house and

carries devices with him, potentially skips zones and it is not trivial for this to be foreseen

in advance. With these being said, further research on this topic is still advised.

Alarmist scenarios: As seen in experiment ES1-SC2 (cf. Section 6.3.1.2, p. 50) when the system

cannot ensure the transformation of privacy-sensitive nodes, the system triggers an error

that is currently being presented in the console. Exploiting these types of error alerts can be

considered a good starting point to improve our solution. From this, we envision possible

alarmist scenarios that can be implemented: (1) alert the user when there are few devices

capable of executing transformation nodes, (2) alert the user when there are no available

devices capable of ensuring the transformation of privacy-sensitive data, and (3) alert the

user when there are no available devices to transform data but still allow the orchestration

of the flow without guaranteeing the privacy of data. This last scenario suggestion may be

used for systems where the execution of the flow is more important than ensuring the privacy

of data. However, whenever devices capable of transforming data are available, the system

7.4 Future Work 73

still wants to ensure the privacy of data in the IoT network without compromising the nodes’

correct execution.

Perform experiments with physical devices: The experiments defined to validate and evaluate

our implementation were only performed in virtual devices since the performance of the

inserted improvements in the NoRDOr system were not likely to change in physical devices,

compared to simulated ones. Although, the performance analysis of this privacy-oriented

orchestration system with physical devices is still doable.

Most of the limitations presented here have relevant literature that can be used to address them

to some degree. As an example, considering the deviations of normal service which can happen

as a result of our approach, these can, at some degree, be addressed using fault-tolerance [12, 9,

10, 61] and self-healing [22, 25, 28, 60] techniques.

74 Conclusions

Appendix A

ES1 Sequence Diagram

75

76 ES1 Sequence Diagram

NodeRED Registry

start

Orchestrator Device 1 Device 2

announce

announce
deploy flow

devices

assign body_temperature node

assign output B

success

error

tag sensitive
data nodes

verify zone
crosses

assign data transformation node

success

error

execute
body_temperature

node script

execute
aggregation node

script

send results

execute
output node

script

[while device
assignment error]

[else]

success

error

[else]

[else]

ping
ping[while devices are

active]

no response

alive

[else]

no response

alive

[else]

[sensitiveData == true]

[zoneCross == true]

[assignment error]

[assignment error]

[assignment error]

[sensitiveData == true and zoneCross == true]

[device active]

[device active]
alt

alt

alt

alt

alt

alt

alt

alt

loop

loop

loop

Figure A.1: ES1-SC1 sequence diagram.

References

[1] Mohammad Aazam, Sherali Zeadally, and Khaled A Harras. Deploying fog computing in
industrial internet of things and industry 4.0. IEEE Transactions on Industrial Informatics,
14(10):4674–4682, 2018.

[2] Alauddin Al-Omary, Ali Othman, Haider M AlSabbagh, and Hussain Al-Rizzo. Survey of
hardware-based security support for iot/cps systems. KnE Engineering, pages 52–70, 2018.

[3] S. A. Al-Qaseemi, H. A. Almulhim, M. F. Almulhim, and S. R. Chaudhry. Iot architecture
challenges and issues: Lack of standardization. In 2016 Future Technologies Conference
(FTC), pages 731–738, 2016.

[4] Mohammad S Ansari, Saeed H Alsamhi, Yuansong Qiao, Yuhang Ye, and Brian Lee. Se-
curity of distributed intelligence in edge computing: Threats and countermeasures. In The
Cloud-to-Thing Continuum, pages 95–122. Palgrave Macmillan, Cham, 2020.

[5] Kevin Ashton et al. That ‘internet of things’ thing. RFID journal, 22(7):97–114, 2009.

[6] Gamal Attiya and Yskandar Hamam. Task allocation for maximizing reliability of distributed
systems: A simulated annealing approach. Journal of Parallel and Distributed Computing,
66(10):1259–1266, 2006.

[7] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Com-
puter networks, 54(15):2787–2805, 2010.

[8] Luigi Atzori, Antonio Iera, and Giacomo Morabito. Understanding the internet of things:
definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks,
56:122–140, 2017.

[9] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fundamental Concepts of De-
pendability. Technical Report Seriesuniversity of Newcastle Upon Tyne Computing Science,
1145(010028):7–12, 2001.

[10] Algirdas Avižienis, Jean Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing, 1(1):11–33, 2004.

[11] Michael Blackstock and Rodger Lea. Toward a distributed data flow platform for the web
of things (distributed node-red). In Proceedings of the 5th International Workshop on Web
of Things, WoT ’14, page 34–39, New York, NY, USA, 2014. Association for Computing
Machinery.

77

78 REFERENCES

[12] Carlo Alberto Boano, Kay Uwe Römer, Roderick Bloem, Klaus Witrisal, Marcel Carsten
Baunach, and Martin Horn. Dependability for the internet of things: From dependable
networking in harsh environments to a holistic view on dependability. Elektrotechnik und
Informationstechnik, 133(7):304–309, 11 2016.

[13] Sousa Tiago Boldt. Dataflow programming: Concept languages and applications. In Proc.
2012 7th Doctoral Symposium in Informatics Engineering, pages 323–334, 2012.

[14] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, pages 13–16, 2012.

[15] Rajkumar Buyya and Amir Vahid Dastjerdi. Internet of Things: Principles and paradigms.
Elsevier, 2016.

[16] Rajkumar Buyya and Amir Vahid Dastjerdi. Internet of Things: Principles and Paradigms.
Elsevier, 2016.

[17] Davide Calvaresi, Daniel Cesarini, Paolo Sernani, Mauro Marinoni, Aldo Franco Dragoni,
and Arnon Sturm. Exploring the ambient assisted living domain: a systematic review. Jour-
nal of Ambient Intelligence and Humanized Computing, 8(2):239–257, 2017.

[18] L. Cui, S. Yang, Z. Chen, Y. Pan, Z. Ming, and M. Xu. A decentralized and trusted edge
computing platform for internet of things. IEEE Internet of Things Journal, 7(5):3910–3922,
2020.

[19] Ana Margarida Oliveira Pinheiro da Silva. Orchestration for automatic decentralization in
visually-defined iot. Master’s thesis, Faculty of Engineering, University of Porto, 2020.

[20] Lucas Santos Dalenogare, Guilherme Brittes Benitez, Néstor Fabián Ayala, and Alejan-
dro Germán Frank. The expected contribution of industry 4.0 technologies for industrial
performance. International Journal of Production Economics, 204:383 – 394, 2018.

[21] João Pedro Dias, João Pascoal Faria, and Hugo Sereno Ferreira. A reactive and model-based
approach for developing internet-of-things systems. In 2018 11th International Conference
on the Quality of Information and Communications Technology (QUATIC), pages 276–281,
September 2018.

[22] João Pedro Dias, Bruno Lima, João Pascoal Faria, André Restivo, and Hugo Sereno Fer-
reira. Visual self-healing modelling for reliable internet-of-things systems. In International
Conference on Computational Science, pages 357–370. Springer, 2020.

[23] João Pedro Dias, José Pedro Pinto, and José Magalhães Cruz. A Hands-on Approach on
Botnets for Behavior Exploration. In Proceedings of the 2nd International Conference on
Internet of Things, Big Data and Security, pages 463–469. SCITEPRESS - Science and
Technology Publications, 2017.

[24] João Pedro Dias, Hugo Sereno Ferreira, and Ângelo Martins. A blockchain-based scheme
for access control in e-health scenarios. In Ana Maria Madureira, Ajith Abraham, Niketa
Gandhi, Catarina Silva, and Mário Antunes, editors, Proceedings of the Tenth International
Conference on Soft Computing and Pattern Recognition (SoCPaR 2018), pages 238–247,
Cham, 2020. Springer International Publishing.

REFERENCES 79

[25] Joao Pedro Dias, Tiago Boldt Sousa, André Restivo, and Hugo Sereno Ferreira. A pattern-
language for self-healing internet-of-things systems. In Proceedings of the 25th European
Conference on Pattern Languages of Programs, EuroPLop ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[26] João Pedro Dias, Hugo Sereno Ferreira, and Tiago Boldt Sousa. Testing and deployment
patterns for the internet-of-things. In Proceedings of the 24th European Conference on Pat-
tern Languages of Programs, EuroPLop ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[27] João Pedro Dias, André Lago, and Hugo Sereno Ferreira. Conversational interface for man-
aging non-trivial internet-of-things systems. In Proceedings of the 20th International Con-
ference on Computational Science (ICCS), pages 27–36. Springer, 2020.

[28] João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Empowering visual internet-of-
things mashups with self-healing capabilities. In 2021 IEEE/ACM 2nd International Work-
shop on Software Engineering Research Practices for the Internet of Things (SERP4IoT),
2021.

[29] João Pedro Dias, Ângelo Martins, and Hugo Sereno Ferreira. A blockchain-based approach
for access control in ehealth scenarios. Journal of Information Assurance and Security,
13:125–136, 2018.

[30] A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier. The internet of things
for ambient assisted living. In 2010 Seventh International Conference on Information Tech-
nology: New Generations, pages 804–809, 2010.

[31] Ashutosh Dhar Dwivedi, Gautam Srivastava, Shalini Dhar, and Rajani Singh. A decentral-
ized privacy-preserving healthcare blockchain for iot. Sensors, 19(2), 2019.

[32] PJ Escamilla-Ambrosio, A Rodríguez-Mota, E Aguirre-Anaya, R Acosta-Bermejo, and
M Salinas-Rosales. Distributing computing in the internet of things: cloud, fog and edge
computing overview. In NEO 2016, pages 87–115. Springer, 2018.

[33] João Pascoal Faria, Bruno Lima, Tiago Boldt Sousa, and Angelo Martins. A testing and cer-
tification methodology for an ambient-assisted living ecosystem. In 2013 IEEE 15th Inter-
national Conference on e-Health Networking, Applications and Services (Healthcom 2013),
pages 585–589. IEEE, 2013.

[34] Hugo Sereno Ferreira, Tiago Boldt Sousa, and Angelo Martins. Scalable integration of mul-
tiple health sensor data for observing medical patterns. In International Conference on Co-
operative Design, Visualization and Engineering, pages 78–84. Springer, 2012.

[35] Alejandro Germán Frank, Lucas Santos Dalenogare, and Néstor Fabián Ayala. Industry 4.0
technologies: Implementation patterns in manufacturing companies. International Journal
of Production Economics, 210:15–26, 2019.

[36] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung. Developing iot applications in the
fog: A distributed dataflow approach. In 2015 5th International Conference on the Internet
of Things (IOT), pages 155–162, 2015.

[37] Nam Ky Giang, Rodger Lea, Michael Blackstock, and Victor CM Leung. Fog at the edge:
Experiences building an edge computing platform. In 2018 IEEE International Conference
on Edge Computing (EDGE), pages 9–16. IEEE, 2018.

80 REFERENCES

[38] Alasdair Gilchrist. Industry 4.0: the industrial internet of things. Springer, 2016.

[39] Alex Glikson, Stefan Nastic, and Schahram Dustdar. Deviceless edge computing: extending
serverless computing to the edge of the network. In Proceedings of the 10th ACM Interna-
tional Systems and Storage Conference, pages 1–1, 2017.

[40] Marjan Gusev, Bojana Koteska, Magdalena Kostoska, Boro Jakimovski, Schahram Dustdar,
Ognjen Scekic, Thomas Rausch, Stefan Nastic, Sasko Ristov, and Thomas Fahringer. A de-
viceless edge computing approach for streaming iot applications. IEEE Internet Computing,
23(1):37–45, 2019.

[41] Zijiang Hao, Ed Novak, Shanhe Yi, and Qun Li. Challenges and Software Architecture for
Fog Computing. IEEE Internet Computing, 21(2):44–53, 2017.

[42] Yan Huo, Chun Meng, Ruinian Li, and Tao Jing. An overview of privacy preserving schemes
for industrial internet of things. China Communications, 17(10):1–18, 2020.

[43] Antonio J Jara, Miguel A Zamora, and Antonio FG Skarmeta. An internet of things–based
personal device for diabetes therapy management in ambient assisted living (aal). Personal
and Ubiquitous Computing, 15(4):431–440, 2011.

[44] Qinma Kang, Hong He, and Jun Wei. An effective iterated greedy algorithm for reliability-
oriented task allocation in distributed computing systems. Journal of Parallel and Distributed
Computing, 73(8):1106–1115, 2013.

[45] AL Koray. Ergonomic conditions assessment of a bus factory. ICONTECH INTERNA-
TIONAL JOURNAL, 4(2):35–47, 2020.

[46] André Sousa Lago, João Pedro Dias, and Hugo Sereno Ferreira. Managing non-trivial
internet-of-things systems with conversational assistants: A prototype and a feasibility ex-
periment. Journal of Computational Science, 51:101324, 2021.

[47] X. Li, J. Niu, M. Z. A. Bhuiyan, F. Wu, M. Karuppiah, and S. Kumari. A robust ecc-
based provable secure authentication protocol with privacy preserving for industrial internet
of things. IEEE Transactions on Industrial Informatics, 14(8):3599–3609, 2018.

[48] Huichen Lin and Neil W Bergmann. Iot privacy and security challenges for smart home
environments. Information, 7(3):44, 2016.

[49] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A survey on internet
of things: Architecture, enabling technologies, security and privacy, and applications. IEEE
Internet of Things Journal, 4(5):1125–1142, 2017.

[50] Nuno Lopes. Privacy-oriented task orchestration system - experiments validation package.
Available at https://doi.org/10.5281/zenodo.5042831, 2021.

[51] Somayya Madakam, Vihar Lake, Vihar Lake, Vihar Lake, et al. Internet of things (iot): A
literature review. Journal of Computer and Communications, 3(05):164, 2015.

[52] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. Fog computing: A
taxonomy, survey and future directions. In Internet of everything, pages 103–130. Springer,
2018.

https://doi.org/10.5281/zenodo.5042831

REFERENCES 81

[53] Carsten Maple. Security and privacy in the internet of things. Journal of Cyber Policy, 2(2),
2017.

[54] Jianbing Ni, Kuan Zhang, Xiaodong Lin, and Xuemin Shen. Securing fog computing for
internet of things applications: Challenges and solutions. IEEE Communications Surveys &
Tutorials, 20(1):601–628, 2017.

[55] Joseph Noor, Hsiao-Yun Tseng, Luis Garcia, and Mani Srivastava. Ddflow: Visualized
declarative programming for heterogeneous iot networks. In Proceedings of the International
Conference on Internet of Things Design and Implementation, IoTDI ’19, page 172–177,
New York, NY, USA, 2019. Association for Computing Machinery.

[56] Sebastian Pape and Kai Rannenberg. Applying privacy patterns to the internet of things’ (iot)
architecture. Mobile Networks and Applications, 24(3):925–933, Jun 2019.

[57] Donn B Parker. Fighting computer crime: A new framework for protecting information. John
Wiley & Sons, Inc., 1998.

[58] Guilherme Vieira Pinto, João Pedro Dias, and Hugo Sereno Ferreira. Blockchain-based pki
for crowdsourced iot sensor information. In Ana Maria Madureira, Ajith Abraham, Niketa
Gandhi, Catarina Silva, and Mário Antunes, editors, Proceedings of the Tenth International
Conference on Soft Computing and Pattern Recognition (SoCPaR 2018), pages 248–257,
Cham, 2020. Springer International Publishing.

[59] Sandra Prescher, Alan K Bourke, Friedrich Koehler, Angelo Martins, Hugo Sereno Fer-
reira, Tiago Boldt Sousa, Rui Nuno Castro, António Santos, Marc Torrent, Sergi Gomis,
et al. Ubiquitous ambient assisted living solution to promote safer independent living in
older adults suffering from co-morbidity. In 2012 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pages 5118–5121. IEEE, 2012.

[60] Harald Psaier and Schahram Dustdar. A survey on self-healing systems: Approaches and
systems. Computing (Vienna/New York), 91(1):43–73, 2011.

[61] Antonio Ramadas, Gil Domingues, Joao Pedro Dias, Ademar Aguiar, and Hugo Sereno Fer-
reira. Patterns for Things that Fail. In Proceedings of the 24th Conference on Pattern Lan-
guages of Programs, PLoP ’17. ACM - Association for Computing Machinery, 2017.

[62] Spyridon Samonas and David Coss. The cia strikes back: Redefining confidentiality, integrity
and availability in security. Journal of Information System Security, 10(3), 2014.

[63] Mahadev Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–39,
2017.

[64] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing: Vision
and challenges. IEEE internet of things journal, 3(5):637–646, 2016.

[65] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini. Security, privacy and trust in
Internet of things: The road ahead. Computer Networks, 76:146–164, 2015.

[66] S. Sicari, A. Rizzardi, L.A. Grieco, and A. Coen-Porisini. Security, privacy and trust in
internet of things: The road ahead. Computer Networks, 76:146 – 164, 2015.

82 REFERENCES

[67] Margarida Silva, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Visually-
defined real-time orchestration of iot systems. In Proceedings of the 17th International Con-
ference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MOBIQ-
UITOUS 2020, New York, NY, USA, 2020. Association for Computing Machinery.

[68] Margarida Silva, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. A review on vi-
sual programming for distributed computation in iot. In Proceedings of the 21st International
Conference on Computational Science (ICCS). Springer, 2021.

[69] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael Gidlund. In-
dustrial internet of things: Challenges, opportunities, and directions. IEEE Transactions on
Industrial Informatics, 14(11):4724–4734, 2018.

[70] A. F. Skarmeta, J. L. Hernández-Ramos, and M. V. Moreno. A decentralized approach for
security and privacy challenges in the internet of things. In 2014 IEEE World Forum on
Internet of Things (WF-IoT), pages 67–72, 2014.

[71] Danny Soares, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Programming
iot-spaces: A user-survey on home automation rules. In Proceedings of the 21st International
Conference on Computational Science (ICCS). Springer, 2021.

[72] Tiago Boldt Sousa. Sensors, actuators and services: a distributed approach. In Proceedings of
the 2013 companion publication for conference on Systems, programming, & applications:
software for humanity, pages 161–166, 2013.

[73] Tiago Boldt Sousa and Angelo Martins. Monitor, control and process–an adaptive platform
for ubiquitous computing. In International Conference on Cooperative Design, Visualization
and Engineering, pages 47–50. Springer, 2013.

[74] Hong Sun, Vincenzo De Florio, Ning Gui, and Chris Blondia. Promises and challenges
of ambient assisted living systems. In 2009 Sixth International Conference on Information
Technology: New Generations, pages 1201–1207, 2009.

[75] M. S. Virat, S. M. Bindu, B. Aishwarya, B. N. Dhanush, and M. R. Kounte. Security and
privacy challenges in internet of things. In 2018 2nd International Conference on Trends in
Electronics and Informatics (ICOEI), pages 454–460, 2018.

[76] Merrill Warkentin and Craig Orgeron. Using the security triad to assess blockchain tech-
nology in public sector applications. International Journal of Information Management,
52:102090, 2020.

[77] Rolf H Weber. Internet of things–new security and privacy challenges. Computer law &
security review, 26(1):23–30, 2010.

[78] K. Xing, C. Hu, J. Yu, X. Cheng, and F. Zhang. Mutual privacy preserving k -means cluster-
ing in social participatory sensing. IEEE Transactions on Industrial Informatics, 13(4):2066–
2076, 2017.

[79] Yang Yang. Multi-tier computing networks for intelligent iot. Nature Electronics, 2(1):4–5,
2019.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem
	1.4 General Goals
	1.5 Document Structure

	2 Background
	2.1 Internet-of-Things
	2.1.1 IoT Tiers
	2.1.2 Industrial Internet-of-Things & Industry 4.0
	2.1.3 IoT for Ambient Assisted Living

	2.2 Privacy & Security Concerns in IoT
	2.3 Summary

	3 State of the Art
	3.1 Introduction
	3.1.1 Research Questions
	3.1.2 Databases
	3.1.3 Search Process

	3.2 Orchestration of Distributed Systems
	3.3 Data Privacy & Security in IoT Systems
	3.4 Summary

	4 Problem Statement
	4.1 Assumptions
	4.2 Open problems
	4.3 Desiderata
	4.4 Scope
	4.5 Research Questions
	4.6 Methodology
	4.7 Summary

	5 Privacy-oriented Task Orchestration
	5.1 Overview
	5.2 Devices' Zones
	5.3 Node-RED Computation Orchestration
	5.4 Node Assignment Algorithm
	5.5 Known Limitations
	5.6 Summary

	6 Experimentation and Evaluation
	6.1 Scenarios
	6.2 Experiments
	6.2.1 ES1 Experiments
	6.2.2 ES2 Experiments
	6.2.3 Metrics collected

	6.3 Results Analysis
	6.3.1 ES1: Sanity Checks
	6.3.2 ES1: Experimental Tasks
	6.3.3 ES2: Experimental Tasks
	6.3.4 ES2: Limitations

	6.4 Replication Package
	6.5 Desiderata Revisited
	6.6 Research Questions Revisited
	6.7 Summary

	7 Conclusions
	7.1 Conclusions
	7.2 Contributions
	7.3 Difficulties
	7.4 Future Work

	A ES1 Sequence Diagram
	References

