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Resumo

Uma das principais necessidades de um robô autónomo é este ser capaz de se localizar, em tempo
real e no seu ambiente, ou seja, saber a sua posição e orientação. Para obter a localização de um
robô é possível recorrer a diferentes metodologias, no entanto existem metodologias que apresen-
tam problemas em diferentes circunstâncias. Um desses problemas é a incerteza na deteção do
robô devido a ruído presente nos sensores utilizados. Assim, com o intuito de obter uma local-
ização mais robusta do robô e mais tolerante a falhas é possível combinar diversos sistemas de
localização, combinando assim as vantagens de cada um deles.

Neste trabalho, é utilizado o sistema Pozyx, uma solução de baixo custo que fornece infor-
mação de posicionamento, mais especificamente medidas de distância, com o auxílio da tecnologia
Ultra-WideBand Time of Flight (UWB ToF). Também são utilizados marcadores ArUco dispersos
pelo ambiente, que através da sua identificação por uma câmara incorporada no robô é também
possível obter informação de posicionamento, incluindo medidas de distância e de ângulo. Estas
duas soluções foram estudadas e implementadas num robô móvel diferencial, através de um es-
quema de localização baseado em marcadores. Primeiramente, foi realizada uma caracterização
do erro de ambos os sistemas, uma vez que as medidas não são perfeitas, havendo sempre algum
ruído nas medições. De seguida, as medidas fornecidas pelos sistemas, mais especificamente as
medidas de distância fornecidas pelo sistema Pozyx e as medidas de ângulo e distância obtidas
através dos marcadores ArUco, são fundidas com os valores da odometria do robô através da im-
plementação de um Filtro de Kalman Estendido (EKF), obtendo assim uma estimação da pose
do robô. Um sistema de localização adicional é também desenvolvido, com o intuito de obter
o Ground-Truth do robô. Para tal, um marcador ArUco é colocado no topo do robô, marcador
este que é detetado por uma câmara colocada no teto. A partir da deteção do marcador é depois
possível determinar a pose do robô com o auxílio da biblioteca ArUco. Posteriormente, a pose
estimada pelo Filtro de Kalman é comparada com a pose fornecida pelo sistema de Ground-Truth,
determinando assim a precisão do algoritmo de localização desenvolvido. Neste trabalho, diversos
testes de localização foram realizados em dois ambientes, o simulado, em que no caso, o simulador
SimTwo foi utilizado, e o real.

O trabalho desenvolvido mostrou que com a utilização do sistema Pozyx e de marcadores
ArUco é possível melhorar a localização do robô, o que significa que é uma solução adequada e
eficaz para este fim.
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Abstract

One of the main needs of a truly autonomous robot is to be able to locate itself, in real time, in its
environment, that is, to know its position and orientation. To obtain the localization of a robot it
is possible to use different methodologies, however there are methodologies that present problems
in different circumstances.One of these problems is the uncertainty in the sensing of the robot due
to noise present in the sensors used. In order to obtain a more robust localization of the robot
and more fault tolerant it is possible to combine several localization systems, thus combining the
advantages of each one.

In this work, the Pozyx system is used, a low-cost solution that provides positioning infor-
mation, more specifically distance measurements, through Ultra-WideBand Time of Flight (UWB
ToF) technology. ArUco markers scattered around the environment are also used, which through
their identification by a camera built into the robot, it is also possible to obtain positioning in-
formation, including distance and angle measurements. These two solutions were studied and
implemented on a differential mobile robot, using a beacon-based scheme. First, an error charac-
terization of the two systems was performed, since the measurements are not perfect, and there
is always some noise in the measurements. Next, the measurements provided by the systems,
specifically the distance measurements provided by the Pozyx system and the angle and distance
measurements obtained through the ArUco markers, are fused with the robot’s odometry data
through the implementation of an Extended Kalman Filter (EKF), thus obtaining an estimation
of the robot’s pose. An additional localization system is also developed, in order to obtain the
Ground-Truth of the robot. For this purpose, an ArUco marker is placed on top of the robot, which
is detected by a camera placed on the ceiling. Once the marker is detected, it is then possible to
determine the robot’s pose with the aid of the ArUco library. Afterwards, the pose estimated by the
Kalman Filter is compared with the pose provided by the Ground-Truth system, thus determining
the accuracy of the localization algorithm developed. In this work, several localization tests were
performed in two environments, the simulated one, in which case the SimTwo simulator was used,
and the real one.

The developed work showed that with the use of the Pozyx system and ArUco markers it is
possible to improve the robot localization, meaning that it is an adequate and effective solution for
this purpose.
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“Success is not the key to happiness.
Happiness is the key to success.

If you love what you are doing, you will be successful.”
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Chapter 1

Theme Introduction

The ability to locate a robot is one of the main needs for it to be truly autonomous. Robot lo-

calization is the process of determining where it is located, its position and orientation, in its

environment [16].

Since the first mobile robot was invented, the problem of pose determination has been investi-

gated by many researches and developers around the world due to its complexity and the multitude

of possible approaches.

Different methodologies can be used to determine robots location as accurately as possible,

however presents several problems in some circumstances. One of these problems is the existence

of uncertainty in the sensing of the robot. To solve this is necessary to combine the uncertain

information properly [17]. In this way is possible to have a system that allows a more robust

location of the robot, more tolerant to failures and disturbances.

This dissertation concerns the implementation of an accurate localization system, whose goal

is to improve the pose estimation of mobile robots.

1.1 Context and Motivation

In a semi-structured environment a mobile robot needs to be able to locate itself without human

intervention, i.e. autonomously. Being that if the robot knows his own pose (position and orienta-

tion) means that is truly autonomous to execute given tasks [18].

Robot localization answer to the following question: “Where am I?”. By answering this ques-

tion and finding a reliable solution to this problem, location of a mobile robot, it is possible to

answer the following questions: "Where am I going?" and "How should I get there?". These three

questions, presented previously, summarize the navigation problem of a robot [19].

The localization methods can be classified in two great categories: relative methods and abso-

lute methods [19, 20]. Relative localization methods gives the robot’s pose relative to the initial

one and for this purpose dead reckoning methods such as odometry and inertial navigation are

used. Odometry is a technique in which it is common to use encoders connected to the rotation

axes of the robot wheels. The basic idea of odometry is the integration of information from the

1



2 Theme Introduction

mobile robot during a certain period of time, which leads to the accumulation of errors with the

distance traveled by the robot [20].

Absolute localization methods gives the global pose of the robot and do not need previously

calculated poses. In these methods, data from odometry and data from external sensors are com-

bined to estimate the robot’s pose [19, 20].

In an indoor environment, a mobile robot needs to localize itself accurately because of the

limited space and obstacles present in space. Today, the number of applications which relay on

indoor localization is rapidly increasing and because of this, localization of a robot in an indoor

environment it has become in an active research area.

The localization methods can also be classified according to the application context and are

divided into two groups: indoor state estimation and outdoor state estimation [21]. Global Posi-

tioning System (GPS) is usually used at present in outdoor state estimation, nevertheless the use

of GPS in indoor state estimation is difficult. Due to this, different alternative technologies has

been proposed and developed to solve this. Among these technologies that has been proposed,

Ultra-WideBand (UWB) is known for its low-cost, high precision and easy deployment [21]. An

UWB based localization system can be characterized by an UWB tag present in the robot that can

be located by measuring the distance till UWB anchors, whose position is known. Since UWB

based localization systems cannot provide robot orientation information, another way to achieve

this information is required. To solve this problem is possible to use odometry information to

achieved the orientation of the robot. Another solutions to locate the robot are based on the visual

field, whose aim is to find the correspondence between the real world and the image projection.

To achieve this goal, methods based on binary squared fiducial markers have been widely utilized,

such as ArUco markers [22]. So, all the information can be fused to combine the advantages of

each system, and if one fails, the estimate localization can be improved through others. This fu-

sion of information is accomplished through the use of a filter, where an Extended Kalman Filter

(EKF) will be used, since a non-linear system is being handled. This method increases robustness,

scalability and accuracy of location [23].

1.2 Objectives

Following the context and motivations addressed in the previous Section (Section 1.1), the main

objectives of this dissertation are:

• Study the different localization systems and algorithms available;

• Study the different methodologies for sensor fusion;

• Development of the localization systems;

• Development of the sensor fusion algorithm;

• Implement the methodology developed in SimTwo simulation environment;
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• Implement the methodology developed in real environment using a mobile robot provided,

i.e a localization system based on odometry, UWB ToF and ArUco markers;

• Validation of the developed systems/algorithms through testing and analyze the results ob-

tained.

1.3 Document Structure

The document is divided into seven chapters, to describe the work carried out throughout the

dissertation. Following Chapter 1 (Theme Introduction), the document has been organized as

follows:

• Chapter 2 that presents the Literature Review for indoor positioning technologies, with a

special emphasis to the UWB and Image Based technologies, fusion algorithms and robotic

simulators;

• Chapter 5 presents the system architecture used in this work, demonstrating its structure

used to address the problem and presenting and describing the software, hardware and sim-

ulation environment;

• Chapter 4 describes the selected approaches to deal with the robot localization problem and

explains their theoretical implementation;

• Chapter 5 describes the different performance and localization tests performed;

• Chapter 6 demonstrates and discusses the results obtained in the different tests;

• Chapter 7 lists some final conclusions and presents considerations regarding future work.
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Chapter 2

Literature Review

This chapter presents the literature review on indoor localization technologies, fusion algorithms

and robotic simulators. First, Section 2.1 have an introduction to Indoor Positioning Systems and

then discusses the positioning algorithms, techniques and technologies, with a special emphasis to

the UWB and Image Based technologies, since are the technologies used in the implementation.

Section 2.2 analyses the algorithms that are used in fusion and estimations problems. Lastly,

Section 2.3 presents some robotic simulators, including its features.

2.1 Indoor Positioning Systems

Positioning systems can be classified as: Global Positioning Systems (GPS - most popular) and

Local Positioning Systems (LPS).

Global Positioning Systems refer to systems that provide localization information through the

use of satellites. In outdoor environments it is possible to obtain the localization of the users with

an accuracy of a few meters. However, it provides good operation for outdoor environments only,

in an indoor environment and in harsh environments it fails because signals of GPS cannot pene-

trate through buildings and that are hugely affected by indoor surroundings, becoming impractical

for many indoor environments. The indoor environment is more complex due to the existence of

obstacles that influence the propagation of the signals and due to the interference added to the

propagation signal by noise sources from other wireless networks [24].

With Local Positioning Systems it is possible to obtain localization information through base

stations or anchors that can generate beacon signals. The coverage of this type of positioning

systems is restricted and localization is obtained only inside the coverage area of the network.

Local Positioning Systems can be classified according to different network criteria: computation,

environment and medium for transmission. In particular to the environment criteria, Local Po-

sitioning Systems can be categorized into three categories: outdoor (outside buildings), indoor

(inside buildings) and underwater [24].

Depending on the type of application, the type of positioning technologies is different in order

to satisfy all the needs and constraints of the application. Focusing on the theme of the work in

5



6 Literature Review

point, it is about applications on indoor environments and because of this, this study will focus

on Indoor Positioning System (IPS) and technologies used, that have become very popular in

recent years. The indoor positioning is very interesting and although there are already a number

of studies on this area, it remains an active and attractive research area because there is a great

market opportunity for technologies in this domain [24, 1].

An indoor positioning system determine the position of an object or a person in a physical

indoor space continuously and in real-time, and has a lot of different applications, such as home,

public buildings and medical applications [15]. IPSs use a various positioning approaches that

vary considerably in terms of accuracy, cost, precision, technology, scalability, robustness and

security. So, depending on the application, the requirements are different and because of this there

are different performance metrics that should be evaluated. This metrics and their definition are

presented in the Table 2.1

Table 2.1: Performance metrics of IPSs [15]

Metric Definition
Accuracy Closeness between the true and measured value of a given measure.
Availability The availability of the positioning service in terms of percentage of time.
Coverage Area The area covered by an indoor positioning system.
Cost Can be measured in terms of: money, time, energy and space. Can be

affected at different levels of the system: system installation and main-
tenance, infrastructure components and positioning devices.

Scalability The degree to which the system ensures the normal positioning function
when it scales in one of two dimensions: number of users and geogra-
phy.

Privacy Access control over how users’ personal information is collected and
used.

As already verified, different characteristics distinguish indoor positioning from outdoor po-

sitioning. Indoor environments may rely on Non-Line-of-Sight (NLOS) propagation, which due

to obstacles in the environment, signals cannot travel directly in a straight line from a emitter to a

receiver [2], as shown in Figure 2.1. Due to this, the receiver may have to deal with inconsistent

time delays. The presence of obstacles causes high attenuation and signal dispersion.

Figure 2.1: (a) Line-of-Sight and (b) Non-Line-of-Sight [1]
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To deal with small areas and obstacles, which is common in indoor environments, indoor

positioning requires higher accuracy compared to outdoor positioning [2].

2.1.1 Indoor Positioning Algorithms

Positioning algorithms indicate how to estimate the position of a given object. More specifically,

this algorithms specify how the signal properties that are captured can be measured and then con-

verted to a given position. Signal properties are geometrical parameters consisting of metrics such

as angle and distance to measure an object’s position using calculations [1]. There are four basic

indoor positioning algorithms: Angle of Arrival (AoA), Time of Arrival (ToA), Time Difference of

Arrival (TDoA) and Received Signal Strength Indication (RSSI), which will be presented below.

2.1.1.1 Angle of Arrival (AoA)

In the AoA algorithm, the estimation of the signal reception angles, from at least two sources

(reference points), is compared with either the signal amplitude or carrier phase across multiple

antennas. The location can be found using triangulation, where there is intersection of the angle

line for each signal source, as can be seen in the Figure 2.2. In a 2D-dimension plane, AoA

algorithm requires only two sources to estimate the position of a given object, while in a 3D-

dimension plane requires three sources. However, to improve the accuracy of this algorithm more

sources are used for position estimation [1, 15].

Figure 2.2: AoA algorithm [1]

The accuracy of this type of AoA algorithms tends to decrease when the distance between the

emitter and receiver increases. These algorithms also have a great complexity when compared to

others, having a hardware that tends to be complex and expensive [1, 15].

2.1.1.2 Time of Arrival (ToA)

ToA, which is also called Time of Flight (ToF) is relative to the circle intersection for multiple

transmitters, and the radius of the circles is the distance between the transmitter and the receiver.

The distance is determined by calculating the one-way propagation time between the transmitter

and receiver. So, the measurement of ToA is mainly distance-based. It is important to note that for

this algorithm it is necessary to synchronize the time of all transmitters. This algorithm provides

high accuracy but at a cost of higher hardware complexity [1, 15].
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Figure 2.3: ToA algorithm [1]

A mobile device sends a time-stamped signal in the direction of the receiving beacons. When

the signal is received the distance between the receiver and the transmitter is calculated using

the speed and the measured time. Subsequently, the localization of the target object is estimated

through triangulation [2].

2.1.1.3 Time Difference of Arrival (TDoA)

Similar to ToA, TDoA algorithm is also distance-based. In this algorithm the determination of the

relative position of a mobile transmitter is done using the difference in the propagation time of

the arrival of the transmitter and the multiple reference points (receivers). This means that TDoA

measures the difference in ToA at two different reference points, thus eliminating the necessity

of knowing when the signal was transmitted. Since TDoA eliminates the modification of the

transmitter to the absolute time of arrival, it reduces its complexity. Furthermore, the TDoA also

offers high precision [1, 15].

So, in a TDoA algorithm, the various receivers receive a transmission, whose start time is

unknown. It should be noted that only the receivers require time synchronization. A hyperbolic

curve in the localization space is thus generated through the difference in measurement of the

arrival time. The possible localizations for the target object are determined from the intersection

of the multiple hyperbolic curves, however only one of these intersections will represent the lo-

calization of the object. Therefore some previous knowledge is required to eliminate the position

ambiguity [1, 15, 2]. This algorithm is illustrated in the Figure 2.4.

Figure 2.4: TDoA algorithm [1]
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2.1.1.4 Received Signal Strength Indication (RSSI)

RSSI is a measure of power level of the Received Signal Strength (RSS) present in a radio in-

frastructure that can be used to estimate distance between the transmitters and receivers. More

specifically, this algorithm takes measurements of the attenuation of the transmitted signal in order

to calculate the decrease or loss of signal strength because of the propagation. Then the distance

between transmitters and receivers can be estimated, and from this estimate, position information

can be obtained [1, 15]. Figure 2.5 demonstrates this algorithm.

Figure 2.5: RSSI algorithm [1]

Since in indoor environments there are several obstacles, it is difficult to obtain Line-of-Sight.

Therefore, RSSI and positioning can be subject to multi path and shadow effects, which leads to a

decrease in accuracy, showing that this method is not good for IPS [1, 15].

2.1.2 Indoor Positioning Technologies

There are several indoor positioning technologies and this technologies can be used at the same

time with the objective of reach the advantages of each one. An indoor environment may require

different quality attributes, depending on the application in question. Because of this, the indoor

positioning system to be used must be chosen properly [1, 2].

Over the years different researchers have been classifying indoor positioning technologies in

many different ways. In the articles [1, 2] present these different ways of classifying the indoor po-

sitioning technologies and the respective researchers who proposed the classification. In addition

to these classification proposals, the authors of this articles suggest a new classification for these

technologies. This classification is made depending on the infrastructure of the system that uses

them and can be seen in the Figure 2.6. The new classification divide the technologies into two

main classes: building dependent and building independent. The first one refer to technologies

that rely on the building in which they would operate and on existing technology in the building

or on the map and structure of the building. The second refers to technologies that don’t need any

specific hardware in a building, i.e. dead reckoning and image-based technologies. Building de-

pendent indoor positioning technologies can be classified into two main classes, indoor positioning

that required dedicated infrastructure and indoor positioning technologies that use the building’s

infrastructure. Depending on the structure of the buildings, it is possible to understand whether

the use of dedicated infrastructure is necessary. For example, most buildings have Wi-Fi, while

very few have Radio Frequency Identification (RFID) [1, 2].
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Figure 2.6: Classification of indoor positioning technologies [1, 2]

In the following subsections each of the technologies present in the diagram in Figure 2.6

will be introduced. In particular, more emphasis will be given to the UWB and Image based

technologies as it will be the main focus of this work.

2.1.2.1 Ultra-WideBand (UWB)

Ultra-WideBand (UWB) is a recent and accurate technology that has emerged as a viable candidate

for precise indoor positioning due to its distinctive characteristics. The Federal Communications

Commission (FCC) defines UWB as a Radio Frequency signal occupying a portion of the fre-

quency spectrum that is greater than 20 % of the center carrier frequency, or has a bandwidth

greater than 500 MHz [15, 2]. UWB technology transmits very short pulses and uses techniques

that cause radio energy to spread across a wide frequency band with a low power spectral density

[15].

In UWB technology the use of time-based positioning algorithms such as TDoA and ToA

are the most widely used, since they exploit the high temporal resolution provided by the large

bandwidths. The AoA algorithm can be a challenge because of a number of distinct identified

paths [15].

UWB technology can be used in several application areas, including communication, posi-

tioning and tracking. Regarding positioning, the use of UWB can provide real time precision

tracking for various applications, including locators for emergency services and tracking of peo-

ple or objects. So, UWB signals provide an accurate estimate of position and location for indoor

environments [15, 25].
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Advantages of using UWB
Regarding the work to be developed (localization of mobile robots), UWB can be a useful tech-

nology, due to its low cost and great time domain. Due to the larger bandwidth of the radio

spectrum (greater than 500 MHz) and the sub-nanosecond duration pulses, it is not only robust

to the interference of other types of RF signals, but can also discriminate the different multipath

components of the received signal, thus being better than other technologies [26]. In addition, the

lowest frequencies of the UWB spectrum can penetrate through a variety of materials (walls and

objects), which makes it especially interesting for indoor applications. Typically, this technology

can provide for the majority of applications an accuracy level of centimeter as opposed to the most

traditional narrow band technologies such as Wi-Fi and Bluetooth, that only have a meter level of

accuracy [15, 25, 27, 1].

Challenges of using UWB
Although UWB has several advantages, it also has some limitations and challenges in its use. The

variation of time measurements in a Non-Line-of-Sight environments is typically much greater

than in a Line-of-Sight environments. Indeed, the error based on the ToA range can be modeled

as a Gaussian LOS distribution, however for the NLOS case, it adds an exponentially distributed

random variable. Because of this difference, an accurate characterization of the system becomes

more difficult [28]. In conclusion, clear LOS is the ideal scenario and is when the system has both

the best range and the best accuracy [28].

As already mentioned, one of the advantages of using the UWB is that it can penetrate a

variety of materials. However, when a signal goes against an obstacle, one part partially penetrates

the object, another is absorbed, and the rest is reflected. The effect caused depends on the type

of material the obstacle is made of. The type of materials can be divided into two categories:

insulators and conductors. Insulators are very transparent to radio waves, which means that if the

obstacle is made up of this type of material, the effect is usually insignificant. On the other hand,

the conductors, whose most common are the metals, will reflect most of the radio waves, which

will give rise to more difficulties, and the signal will have less power and therefore a reduced

range, and the signal will spend more time trying to cross the obstacle, reducing accuracy [28].

Operational Principle
The UWB works through an omnidirectional radio wave that is sent from the transmitter to the

reference points (also known as anchors) and measures the time between the emission and recep-

tion of the wave using one of the time ranging methods, such as ToF. As radio waves travel at the

speed of light (c = 299792458 m/s), the distance traveled can be easily deduced by dividing the

ToF by the speed of light. With this distance it is then possible to obtain an estimated position of

a given object [3].

Radio waves travel very fast, and so there is a need for high temporal precision that can only be

achieved in the presence of a very narrow pulse [3]. From the Heisenberg’s uncertainty principle

(Equation 2.1) it is possible to determine approximately the pulse width (∆t), given a certain
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bandwidth (∆ f ). From the analysis of Equation 2.1 it is possible to conclude that if it is desired to

have a very narrow pulse, a large bandwidth is required [3].

∆t∆ f =
1

4π
(2.1)

The UWB signal has a bandwidth of about 500 MHz which results in impulses of 0.16 ns

duration. Thanks to this time resolution, the receiver is able to distinguish various reflections from

the signal (Figure 2.7), thus making it possible to have a precise range even in places where there

are many reflectors, such as indoor environments.

Figure 2.7: Several reflections of the signal [3]

The higher bandwidth comes at the expense of rigorous low-power regulations regarding UWB

systems (power spectrum density must be below -41.3 dBm/MHz) (Figure 2.8). Consequently, a

single pulse is not distinguishable from noise (pulse will probably be below noise level) when

it reaches the receiver. To solve this problem a pulse train is sent by the transmitter instead of

just one, which are accumulated. With sufficient pulses, the power of the accumulated pulse will

increase above the noise level and reception is possible [3].

Figure 2.8: Regulated UWB spectrum [4]



2.1 Indoor Positioning Systems 13

UWB solutions in Market and Previous Work
In order to obtain an efficient UWB-based solution for indoor environments, several companies

manufacture UWB chipsets and hardware. Ubisense that takes advantage of AoA and TDoA

(Dimension 4), DecaWave that uses ToA and TDoA (DW 1000), Uniset with TDoA (Sequitir)

and Zebra Technologies that uses TDoA (Dart UWB), are among the best known commercial

implementations that use UWB and that allow to acquire accuracies from 10 to 30 cm [29, 30, 31,

32, 25].

UWB has been increasingly used in applications related to localization on indoor environ-

ments and therefore several studies have been conducted by various researchers. For example, the

authors of [21] proposed a method that uses Particle Filter to fuse UWB range measurements with

odometry to obtain a real-time posture estimation of a wheeled robot in an indoor environment.

The firmware of the UWB devices and the trilateration algorithm were also improved in order to

obtain greater measurement stability in the presence of obstacles. It was concluded that with the

method used the estimator has sufficient performance for the robot to maintain a position for a

period of time and to run along a simple path. The experiments also showed that the interferences

caused by dynamic obstacles could be partially relieved.

The authors of the paper [17] use a Kalman filter to combine information from a mobile robot’s

odometry and Ultra-Wideband ToF distance modules, which lacks the orientation. The proposed

system is used to localize the robot and make a 3 DoF scanning of magnetic field in a room. Is

also implemented a pre filtering system composed by a median based gate allows to reduce the

covariance. The implemented system allowed the localization error to be reduced.

The paper [23] proposed a method to accurately locate mobile robots through sensor fusion.

The acceleration from an inertial measurement unit (IMU) and the 2-D coordinates received from

Ultra-Wideband (UWB) anchors are fused through a Kalman Filter to obtain an accurate loca-

tion estimate. The proposed method increases robustness, scalability and location accuracy. The

measurement results, which were obtained using the proposed fusion, show considerable improve-

ments in the accuracy of location estimation (the original error was reduced by 75 %). They also

concluded that the fusion of different sensor and evaluation systems using Kalman filtering, there-

fore allows for real-time capability.

The paper [33] presents an accurate and easy-to-use method for UWB anchor self-localization,

using the UWB ranging measurements and readings from a low-cost IMU. The locations of the

anchors are automatically estimated by freely moving the tag in the environment. The method is

inspired by the Simultaneous Localization and Mapping (SLAM) technique used by the robotics

community. They use a tightly-coupled Error-State Kalman Filter to fuse UWB and inertial mea-

surements, producing UWB anchor position estimates and Six Degrees of Freedom (6DoF) tag

pose estimates. Simulated experiments show that the method used enables accurate and robust

UWB anchor self-localization within a few seconds and is capable of drift-free localization of the

moving tag.

The authors of the paper [34] propose a methodology to identify the LOS/NLOS conditions.

They use an EKF to fuse the odometry information of a robot, IMU and UWB in order to esti-
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mate its pose in an unknown interior environment. An algorithm based on variance measurement

technique of distance estimates along with power envelope of the received signal is proposed for

NLOS identification. Further, adaptive adjustment of sensor noise covariance approach is devised

to mitigate the NLOS effect. A novel approach based on dynamic adaption of noise covariance is

incorporated for further improvement in localization accuracy. Experiments performed with the

proposed fusion approach achieves ∼ 2X improvement in accuracy.

2.1.2.2 Image Based

Image based technologies include a camera and computer vision based technologies. For this tech-

nologies can be used different types of cameras, including omni-directional and three dimensional

cameras. The performance of these cameras varies according to the amount of information that

can be derived from their images [2, 15].

There are two main categories of image based positioning systems: ego-motion systems and

static sensor systems [15]. The first one uses the camera’s movement with respect to a rigid scene

in order to estimate the current position of the camera. On the other hand, the second one locate

moving objects in the images.

Since nowadays almost all newly developed mobile robots have a built-in camera system, it

is possible to use this to determine the robot’s pose in a given environment [6]. A visual system

that include one camera should detect some markers in the environment by using computer vision

tools.

2D planar fiducial marker systems
In the last few year, fiducial markers have become a popular and efficient tool to solve monoc-

ular localization and tracking problems at a very low cost in indoor environments [35]. Fiducial

marker systems consists of patterns (artificial landmarks) that are placed in the environment and

automatically detected in camera images using an accompanying detection algorithm. These sys-

tems are useful for Augmented Reality (AR), robot navigation and applications where the relative

pose between camera and object is required, due to their high accuracy, robustness and speed [5].

2D fiducial markers can be circular, square or others depending on the system. Circular sys-

tems can provide only a single point (the center) with a high degree of accuracy, so multiple

circular markers are needed for full pose estimation. On the other hand, square fiducial markers

can provide a key point for each of the four corners, which are sufficient to perform the camera

pose estimation. Several fiducial marker systems have been proposed in the literature such as

ARSTudio, ARToolkit and ARTag, shown in Figure 2.9. These markers have a similar function,

their performances differs in terms of computing time and detection rate. To clearly identify the

markers, a visual localization system using 2D markers consists of a set of plane patterns and

algorithms that recognize these patterns. In addiction, it is necessary to ensured that the pattern

encoding the unique marker identifier cannot be created by rotation of another pattern used in the

environment [6]. Currently, the most popular marker in academic literature is the ArUco which is
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based on ARTag and comes with a library OpenCV of functions for detecting and locating markers

[36].

Figure 2.9: Examples of 2D marker systems [5]

The markers in ArUco system are defined as 7x7 square matrix. Each of these squares is either

black or white, however the outer two rows and columns are black (Figure 2.10). The ArUco sys-

tem comes with an OpenSource library developed by Rafael Muñoz and Sergio Garrido, wherein

algorithms are implemented in functions for detecting, recognizing and locating the markers [37].

With use of digital coding theory, the system achieves a low level of confusion or detection of

false markers. In general, the detection process of squared markers involves thresholding the

scene, where a set of square regions, i.e candidate markers, are extracted from the background.

Then, the interior of the regions is analyzed, discarding those that cannot be identified. Lastly,

using the four corners of at least one marker, the camera position can be estimated. For efficient

marker detection, the system assumes that the marker size and the camera calibration parame-

ters are known. After a successful marker detection, ArUco library functions provide position

information relative to optical center of the camera. For the rotation, the ArUco system provides

standard transformation matrix or quaternion [6]. Moreover, several type of research have been

successfully conducted based on this type of system: [22, 6, 38, 35, 39].

Figure 2.10: ArUco markers [6]

Camera Calibration
Some pinhole cameras (simple cameras, without a lens and with a single small aperture) intro-

duce significant distortion into images. So, when using vision-based technologies it is important

to calibrate the camera uses for a correct information extraction from the images. Camera cali-

bration estimates the parameters of a lens and image sensor of an image or video camera. These

parameters are used to correct the lens distortion, measure the size of an object in world units or

determine the location of the camera in the environment.
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There are two main kind of distortion: radial distortion and tangential distortion [7]. Radial

distortion causes straight line appear curved and becomes greater the further the points are from

the center of the image. The Figure 2.11 shows this kind of distortion well, where the two edges

of the chessboard are marked with red lines. It can be seen that the edge of the chessboard is not a

straight line and does not match the red lines, so the image shows distortion. Radial distortion can

be represented by the Equations 2.2 and 2.3.

Figure 2.11: Radial Distortion in a chessboard [7]

xdistorted = x(1+ k1r2 + k2r4 + k3r6) (2.2)

ydistorted = y(1+ k1r2 + k2r4 + k3r6) (2.3)

Tangential distortion occurs because the image pickup lens is not perfectly aligned with the

image plane. Thus, some areas of the image may appear closer than expected. This kind of

distortion can be represented by the Equations 2.4 and 2.5.

xdistorted = x+(2p1xy+ p2(r2 +2x2)) (2.4)

ydistorted = y+(p1(r2 +2y2)+2p2xy) (2.5)

In brief, it is necessary to find five parameters, known as distortion coefficients given by the

matrix present in Equation 2.6.

Distortion_Coe f f icients = [ k1 k2 p1 p2 k3 ] (2.6)

In addition, other parameters such as intrinsic and extrinsic parameters of the camera are

needed to perform the camera calibration. The extrinsic parameters correspond to the rotation

and translation vectors that translate the coordinates of a 3D point to a coordinate system. Intrin-

sic parameters are camera-specific parameters that include information such as focal length ( fx,

fy) and optical centers (cx, cy). The focal length and optical centers can be used to create a camera
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matrix, which can be used to remove distortion due to the lenses of a specific camera. This matrix

is unique to a specific camera, so once calculated, it can be reused in other images taken by the

same camera [7]. It is expressed by the matrix present in Equation 2.7.

Camera_Matrix =

 fx 0 cx

0 fy cy

0 0 1

 (2.7)

To find all these nine parameters, it is necessary to provide some sample images of a well-

defined pattern, for example a chessboard. By finding some specific points of which the relative

positions are known, i.e. the square corners on the chessboard, and knowing the coordinates of

these points in real world space (3D points) and the coordinates in the image (2D points), it is

possible to find the distortion coefficients using correspondences [7].

2.1.2.3 Radio Frequency Identification (RFID)

Radio Frequency Identification (RFID) is a technology that uses radio waves to transmit the iden-

tify of a given object or a person wirelessly. This technology is very used to identify objects in

large systems automatically [15, 2].

RFID technology consists of an exchange of different frequencies of radio signals between

two components: RFID readers and RFID tags. The RFID reader reads the data emitted by the

RFID tags, whereas the tags respond in conformity with the unique identification or information

stored in them. Both components use a defined radio frequency and protocol in order to transmit

and receive data [40].

RFID tags are fixed to objects that require tracking and consist of a micro ship and a radio

antenna. The tags are categorized as either passive or active. The active RFID tag is a battery-

powered transceiver, and therefore has a wider transmission range, thus reducing the number of

tags needed for an installation. Passive RFID tag has a shorter transmission range since it does not

use a battery and it gets its power from the reader’s signal before it can respond with information.

RFID reader consist of different components, including an antenna, transceiver, power supply,

processor and interface, in order to connect to a server [1, 15]. Even though, different positioning

methods can be used with RFID, proximity is the most used one and it senses the presence of

RFID tags rather than the exact position [15].

2.1.2.4 Infrared (IR)

Infrared (IR) is a technology that is similar to the idea of infrared light, the only difference is

the fact that it estimates its local position rather than estimating an object position. The use of

the invisible spectrum of light just below the red edge of the visible spectrum by infrared wire-

less communication makes this technology less intrusive compared to indoor positioning which is

based on visible light. There are several positioning methods that are frequently used with these

technology, including Angle of Arrival, differential phase-shift and proximity [41, 2, 15].
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Infrared technology can be used in two different ways: direct IR and diffuse IR. There is an

example of direct IR that is Infrared Data Association (IrDA). IrDA uses a point-to-point Ad-hoc

data transmission standard designed for very low-power communications and requires a Line-of-

Sight communication between devices over a very short distance. Diffuse IR uses wide angle

LEDs that emit signals in multiple directions, which allows one to many connections and doesn’t

need direct Line-of-Sight. Diffuse IR has a more powerful signal than direct IR and, for this

reason, has a longer range [15, 2].

2.1.2.5 Ultrasonic

The ultrasound wave is a mechanical wave which is an oscillation of pressure that is transmitted

through a medium, doesn’t interfere with electromagnetic waves and has a relative short range.

Since ultrasound is a mechanical wave, it depends on the state of the medium and its temperature

[2, 41].

Ultrasonic technology estimates a given position by measurements of Time of Arrival (ToA),

where the receiver can determine the distance traveled by the wave emitted by the emitter. An

estimation of the emitter’s coordinates is possible by multilateration from three or more ranges to

some fixed receivers deployed at known locations [15].

2.1.2.6 Zigbee

Zigbee is based on the IEEE 802.15.4 standard that addresses the physical and MAC levels for low

data rate, low cost and energy efficient personal area networks. This standard is a short distance

and low rate wireless personal area network [2, 27].

Exists two distinct types of physical devices that are typically used for Zigbee nodes which are

Full Function Device (FFD) and Reduced Function Device (RFD). Zigbee technology achieves

positioning through coordination and communication with neighboring nodes and typically uses

RSS values to estimate the distance between the nodes [15, 2].

2.1.2.7 Wireless Local Area Network (WLAN)

IEEE 802.11 WLAN, commonly known as Wi-Fi is another good wireless way of estimation,

which relies on the strength of the signal received. A WLAN is a high-speed wireless network that

by using high-frequency radio waves can connect and communicate between nodes and devices

within a building or area. In this way, it is possible to assist the mobility of users within the

coverage area [1].

With this technology it is possible to locate and determine the position of a certain object or

person inside a coverage area using WLAN infrastructures [1]. Moreover, using Wi-Fi on indoor

positioning and navigation systems depends on knowing a list of wireless routers that are available

in an area in which the system operates [15].

The RSS, ToA and AoA techniques and any combination of them (i.e. hybrid methods) can be

used to provide Wi-Fi based localization services. However, the most popular technique is RSS in
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which it is possible to achieve the accuracy of WLAN positioning systems around 3 to 30 m, with

an update rate in the range of few seconds [15, 2].

2.1.2.8 Cellular Based

Global System for Mobile Communications (GSM) is accessible in the most countries that achieve

WLAN coverage with the lowest positioning accuracy. GSM works in licensed bands that prevent

interference from other devices that operate in the same frequency [15].

Indoor positioning based on mobile cellular network is only possible if the building is covered

by several base stations or one base station with strong RSS received by indoor mobile clients.

So, the most common method of GSM indoor positioning is fingerprinting which is based on the

power level (RSS) [40].

2.1.2.9 Bluetooth

Bluetooth is a wireless standard for Wireless Personal Area Networks (WPANs). This technology

involves the specifications of the physical and MAC layers to connect different fixed or moving

wireless devices within a given personal space [27]. Bluetooth typically uses proximity and RSS

methods for position estimation [15].

Bluetooth is a low-power technology in peer-to-peer communications. The advantage of using

Bluetooth in positioning systems is its high security, small size and low cost. However, it cannot

be used for real-time localization due to its comparative high delays with respect to the other

techniques in this category [41]. Compared to WLAN, presented earlier, the raw bit rate is lower

and the range is shorter [15].

2.1.2.10 Dead Reckoning

Using dead reckoning, an object can roughly determine its current position from its past position

and the speed at which it is moving [15]. It is a cheap solution for determining the location of

a given object and it is possible to obtain the location accurately in the short term and at high

sampling rates. However, it should be noted that it is not an absolute form of localization.

Using dead reckoning it is possible to obtain accurate positioning information. However, this

information is subject to error accumulation over a long period of time. With the aim of improving

accuracy and reducing positioning error, other methods can be used to adjust the position after each

interval [15].

2.1.2.11 Comparison between the technologies

As previously mentioned, depending on the application in question and its requirements, a given

technology may be more or less appropriate. Therefore, the choice of the technology to be used

for the location must be made carefully, taking into account the advantages, disadvantages and

mode of operation of the technologies.
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So, Table 2.2 presents the main advantages and disadvantages of each of the technologies

previously presented. This table was suggested by the authors of the articles [15, 2].

2.1.3 Indoor Positioning Techniques

IPS can combine more than one of the positioning technologies discussed above and uses posi-

tioning techniques to locate objects and offer absolute, relative and proximity location information

[42]. This techniques specify how to calculate the position of a target object, more specifically,

translate a recorded signal properties into distances and angles and then computes the actual po-

sition of the object. The signal properties and the positioning techniques work together in order

to determine the position of a given object [1]. According to the authors of the article [1] the

main techniques used for positioning include trilateration, triangulation, proximity analysis and

scene/fingerprint analysis. Where the triangulation and trilateration are the most common tech-

niques.

2.1.3.1 Triangulation

To perform triangulation it is necessary to use the geometric properties of triangles to estimate

the position of a given target object through the calculation of angular measurements with respect

to two known reference points. In order to determine an object’s position, the calculation of a

transmitter’s position based on angle and distance in relation to reference points is used [1]. So,

the position is determined through the intersection of a pair of angle direction lines, including the

distance between the lines. Triangulation uses the direction angle of arrival (AoA) as a foundation

of measurement.

In general, two dimensional triangulation requires two angle measurements and one length

measurement that is the distance between the reference points. In contrast, in three dimension re-

quires one length measurement, one azimuth measurement and two angle measurements to specify

a precise position [2].

When triangulation uses two or three reference points to determine a given position, the result

is a simple and low-cost system. But when the coverage area is larger and with multiple reference

points, the position determination can contain several errors which can result in a lower accuracy.

In addition, the hardware requirement for a large coverage area tends to be complex and expensive

[2].

2.1.3.2 Trilateration

Trilateration or lateration, like the triangulation, uses the geometric properties of triangles to esti-

mate the position of a target object. But in trilateration, the determination of a position is accom-

plished using distance measurements with respect to three known reference points [1].

In two dimensions the calculation of the position requires distance measurements from three

non-collinear points. In three dimensions requires distance measurements from four non-coplanar

points [2]. In two dimensions case, each distance will be the radius of a circle and the intersection
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Table 2.2: Comparison between the different indoor positioning technologies [15, 2]

Technology Advantages Disadvantages
RFID Penetrate solid and non-metal objects. Does

not require LOS between RF transmitters
and receivers.

The antenna affects the RF signal, the po-
sitioning coverage is small, cannot be inte-
grated easily with other systems, RF com-
munication is not inherently secure and con-
sumes more power than IR devices.

UWB High accuracy positioning, even in the pres-
ence of severe multipath, effectively passes
through walls, equipment and any other ob-
stacles. UWB will not interfere with existing
RF systems if properly designed.

Although UWB is less susceptible to inter-
ference relative to other technologies, it is
still subject to interference caused by metal-
lic materials.

Infrared Since IR signals cannot penetrate through
walls, it is suitable for sensitive communica-
tion because it will not be accessible outside
a room or a building.

Does not penetrate walls, therefore it is typi-
cally used in small spaces such as a room. IR
communication is blocked by obstacles that
block light which includes almost every-
thing solid. Requires LOS between sender
and receiver when using direct IR.

Ultrasonic Does not require LOS. Do not interfere with
electromagnetic waves.

Does not penetrate solid walls. There may
be loss of signal because of obstruction.
There are false signals because of reflections
and interference caused by high frequency
sounds.

Zigbee Its sensors require very little energy. It is a
low cost technology.

ZigBee seems vulnerable to interference
caused by a wide range of signal types (us-
ing the same frequency). This might disrupt
radio communication. It is suitable for net-
works in which conversation between two
devices takes some few milliseconds which
allows the transceiver to switch to sleep
mode quickly.

WLAN Use existing communication networks that
may cover more than one building. The
majority of devices available nowadays
are equipped with WLAN connectivity.
WLANs exist approximately in the majority
of buildings. LOS is not required.

A major drawback of WLAN fingerprinting
systems is the recalculation of the predefined
signal strength map in case of changes in the
environment (e.g. open/closed doors and the
moving of furniture in offices).

Cellular
Based

No interference with devices that operate at
the same frequency. The hardware of cus-
tomary mobile phones can also be used.

Low reliability due to varying signal propa-
gation conditions.

Bluetooth Does not require LOS between communicat-
ing devices. It use a lighter standard and
highly ubiquitous. It is also built into most
smartphones, personal digital assistants, etc.

The greater the number of cells, the smaller
the size of each cell and hence better accu-
racy, but more cells increase the cost. Re-
quires some relatively expensive receiving
cells. Requires a host computer to locate
the Bluetooth radio. Because of the 2.4
GHz spectrum that Bluetooth is using is un-
licensed, new uses for it are to be expected,
and as the spectrum becomes more widely
used radio interference is more likely to oc-
cur.

Dead Reck-
oning

Does not require additional hardware such
as sensors.

The Dead Reckoning calculates only an ap-
proximate position.

Image Based
Technologies

They are relatively cheap compared with
other technologies such as ultrasound tech-
nologies.

Requires LOS and the coverage is limited.
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of all circles will be a unique point, theoretically. But, in practice, measurements are prone to

noise and uncertainties, and therefore the intersection may be a region of points rather than a

unique point. In three dimensions the principle is the same, but instead circles the distances forms

spheres [2].

To automatically measure the distance between the target object and the reference positions

in IPSs is common use Time of Flight (ToF) approach, that measure the time it takes to travel

between the object and the reference points at a known velocity [2]. Multilateration is another

technique that is similar to trilateration and uses four or more reference points [1].

2.1.3.3 Proximity

In contrast to triangulation and trilateration presented earlier, proximity cannot provide an estimate

of absolute or relative position, since it only gives position information. To provide the information

a dense grid of antennas, that have a well-known positions is used to derive the position of a target

object. When a mobile target is detected by a single antenna (closest antenna) it is considered to

be collocated with it. However if more that one antenna detects the mobile target, it is considered

to be collocated with the one that receives the strongest signal. This method is relatively simple to

implement [1, 40].

Usually, in proximity technique, the position of a given object is specified using the RSS

technique. The accuracy of the proximity technique is associated with the density of the detectors

and the signal range of each one. When high accuracy and wider coverage area is required, is

important to be careful with the concentration of detectors that can bring complexity and high cost

[1].

This technique can be implemented over different types of physical media. In particular, the

systems using IR, RFID and Bluetooth are often based on this [40].

2.1.3.4 Scene Analysis and Fingerprinting

To estimate the position through Scene Analysis it is not necessary to use angle or distance. Scene

Analysis, also known as fingerprinting, refers to the type of techniques that begins by collecting

information or characteristics (fingerprints) from a scene and later estimates the position of a

given object through matching or comparing the information collected with that found within an

available database. A fingerprint is a unique feature or signature that allows a distinction between

scenes. In the scene analysis technique, the collected information that is later compared is usually

the received signal strength (RSS) that depends on the location [1, 2, 40].

In order to collect the location fingerprints there are two phases: offline stage and online stage.

In the offline stage, which is also called the training phase, an environment within a building is

monitored and grid points are computed at different places in the building. At each grid point, a

list of Received Signal Strength Indicator (RSSI) values for visible access points at the locations

is listed. In addition the positioning and signal strength information for the different locations

are collected for position estimation needs. During the online stage, which is also called the
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serving stage or run time stage, a positioning technique makes use of the currently observed signal

strengths and previously collected information to discover an estimation of the location [1, 2, 40].

There are a few challenges related to techniques based on location fingerprinting: the RSS

could be affected by diffraction, reflection and scattering in the propagation indoor environments.

In addition, is a time-consuming process and have high computational cost [1, 2].

2.2 Fusion Algorithms

To determine the position of a robot it is possible to use any of the solutions presented above.

However, there may be uncertainties in the results, due to, for example, environment dynamics,

inaccurate models and limitations of the sensors used, such as resolution or noise in the measure-

ments.

With the use of probabilistic algorithms it is possible increase the accuracy and robustness of

the location systems, since it can handle with ambiguous measurements and noise from the sensors

that compose the system, from the detection of unexpected disturbances from the environment.

In addition, these algorithms can be used to fuse different technologies, which can increase the

redundancy of the state estimation.

There are two techniques to perform estimation: recursive state estimation techniques and

batch methods. Batch methods are less common in robotics since they cannot be used in real

time, once they cannot employ future measurements to estimate past states [43]. On the other

hand, recursive state estimation techniques are more used in robotics and are therefore the ones

that will be addressed in this section. This last technique has a representation based on Bayes’

theorem present on the Equation 2.8. The probability p(x|y) is known as the posterior probability

distribution over x [44]. This represents the confidence that the system is in state x given the

measure y. It should be noted that in robotic localization systems state x is usually the robot’s

pose. It should also be noted that past and future data does not depend on knowledge of the current

state, and because of this knowledge of the immediately previous state and current measurements

is sufficient to predict the current state [44].

p(x|y) = p(y|x)p(x)
p(y)

(2.8)

The probabilistic localization is a method which calculates/approximates the probability dis-

tribution of the robot localization at each instant. This method usually have two phases:

• Action/Prediction phase: uses proprioceptive sensors, such as encoders and gyroscopes. In

other words robot sensors that measures position/movement without depending on anything

external to the robot;

• Perception/Actualization phase: Uses exteroceptive sensors such as sonar, compasses and

cameras. In other words robot sensors that measure the position/movement but rely on

something external to the robot.
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2.2.1 Gaussian Filters

In this section will be discussed the most used filters family to date in localization algorithms, the

Gaussian filters.

Gaussian filters share the basic idea that beliefs are represented by well known unimodal dis-

tribution, the multivariate gaussian distribution and can be characterized by just a mean and a

covariance [44]. The best known filters of this type are the Kalman Filters and their extended

versions and for this reason it will be these that will be addressed below.

2.2.1.1 Kalman Filter

Kalman Filter (KF) is a widely investigated technique for implementing Bayes filters as mentioned

in [44], because of its simplicity, optimality and robustness. This filter is a linear, discrete time,

finite dimensional time-varying system that evaluates the state estimate that minimizes the mean-

square error.

The dynamics of this filter results from the consecutive cycles of Prediction and Filtering/ Cor-

rection [45]. Prediction and Correction are the two different phases for follow the state estimation

and its uncertainty. On the first phase, prediction phase, the new state is predicted by introducing

the previous estimate and its uncertainty, along with the motion data into a state transition model.

On the second phase, correction phase, the sensors data are integrated into the calculate state in

the previous phase, this obtaining a final estimation and its uncertainty.

It is important to note that most robotics problems deal with nonlinear systems and therefore

the use of the Kalman Filter is not a good option. In order to overcome this problem the Extended

Kalman Filter (EKF) was created [45], which is an extension of the Kalman Filter that will be

addressed below.

2.2.1.2 Extended Kalman Filter

The Extended Kalman Filter, as mentioned above, is an extension of Kalman Filter that was created

with the intention of dealing with nonlinear systems. This type of filter assumes that the next state

probability and the measurement probabilities are governed by nonlinear arbitrary functions [45].

The EKF estimates an approximation to the true belief and represents this approximation by

a Gaussian. Thus, this filter is also represented as a Gaussian probability distribution over the

variables, like the Kalman Filter, but this probability is just an approximation of the true belief,

not exact as was the case with the Kalman Filter.

The key idea underlying the Extended Kalman Filter is called linearization. There are a mul-

titude of linearization techniques for nonlinear functions, but EKF uses the (first-order) Taylor

expansion method, which builds a linear approximation to a function f through the value of f and

the slope. The first order Taylor Expansion is demonstrated on the Equation 2.9.

f (x)≈ f (a)+ f ′(a)(x−a) (2.9)
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The EKF is based on two important assumptions: the state estimation is relatively close to

the actual value and nonlinear functions can be approximated accurately. If these functions are

approximately linear, the EKF approximation may generally be a good and accurate one. However,

in the same cases, the functions are not only nonlinear. These functions may also be multimodal

or highly nonlinear, in which case linearization can be a poor approximation.

It also important to note that the use of EKF has various advantages. The major advantages

are its simplicity and computational efficiency, because of the unimodal Gaussian distribution.

In addition, the computational complexity just depends on the dimension of the measurement

and state vectors. So the EKF is more efficient than Non Parametric Filters, whose algorithms

uses more sophisticated representations and will be addressed on Section 2.2.2. Due to these

advantages, this filter is arguably the more popular tool for state estimation in robotics and can be

proven from several papers like this ones: [20, 18, 46].

2.2.1.3 Unscented Kalman Filter

As previously addressed, there are multiple linearization techniques for nonlinear functions, which

Taylor expansion is one of this. However, there are other techniques that produce superior results.

One of these is the Unscented Kalman Filter (UKF). This filter appears in order to addresed the

error caused by the linearization of the Extended Kalman Filter.

UKF yields performance equivalent to the Kalman Filter for linear systems, yet generalizes

elegantly to nonlinear systems without linearization steps required by Extended Kalman Filter

[47]. This filter uses a deterministic sampling technique known as the unscented transformation

to pick a minimal set of sample points, called sigma points, around the mean. The state is still

approximated as a gaussian random variable, although is just linearized in a smaller set of sampled

points (sigma points picked by the unscented transformation).

Although the computational complexity of this technique is similar to the EKF technique, the

process of picking the sigma points involves a little more effort. Comparisons between EKF and

UKF have been proposed in several contexts ranging spacecraft localization ([48]), mobile robot

localization ([49, 50]) and others. In particular, in the last article mentioned it was compared the

performance of an UWB-based localization system for a quadcopter on indoor and outdoor scenar-

ios using the EKF and UKF. The authors concluded that for UWB-based localization systems the

EKF is preferred because reveals a more consistent results. In contrast UKF reveals a sensitivity

of the weights of sigma points to different anchor configurations. It is possible conclude that for

measurement models that have large nonlinearities, UKF produces better performance, however,

if measurement models don’t have large nonlinearities and are reasonably stable, EKF is better,

because is simpler and reaches a great levels of accuracy.

2.2.2 Non-parametric Filters

A common alternative to gaussian techniques are non-parametric filters. This type of filters, in

contrast to gaussian filters, removes the fixed distribution form (gaussian distribution) of the beliefs
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representation. Non-parametric filters approximate posteriors by a finite number of values, each

roughly corresponding to a region in state space [44].

Unlike gaussian filters, non-parametric filters are well-suited to represent complex multimodal

beliefs. They can handle well with phases of global uncertainty and with data association prob-

lems. This type of filter makes no assumptions regarding the initial state, so in robot localization

problems, the robot can start from any unknown position. The representative power of these tech-

niques has a price: increase of the computational complexity that relies on the number of parame-

ters used to approximate the posterior. It is important to note that the quality of the approximation

varies according to the number of parameters used: the higher number of parameters the better

will be the quality of the approximation. Therefore, a trade-off analysis must be made keeping in

mind the complexity of the posterior.

There are two principal non-parametric approaches: histogram filter and particle filter. The

first one will be addressed on Section 2.2.2.1 and the second one on Section 2.2.2.2.

2.2.2.1 Histogram Filter

Histogram filter splits the state space into finitely many regions and represents the posterior by a

histogram. The histogram assigns a single cumulative probability to each of the regions generated

by the filter. By choosing the sampled region with the highest probability it is possible to complete

the estimation.

The histogram filter is used in a grid localization approach [44]. In this approach the envi-

ronment where the robot is located is discretized in a grid map and each cell of the grid map

represents the probability that the robot is in it. A critical variable of grid localization is the grid

resolution. If the choice of grid resolution is well done, this technique can be a good solution

for localization problems, so this decision should be made with caution. For example if a too

high resolution is chosen for the grids discretization, the algorithm may become extremely slow

and memory consumption extremely high. This approach, grid localization, has also various ad-

vantages, in particular its robustness and ability to converge to the correct value even in dense or

unstructured environments.

2.2.2.2 Particle Filter

Another type of non-parametric filters is the particle filter, which concept is similar to histogram

filter (the posterior is approximated by a finite number of parameters). This two type of filters

differs in the way that these parameters are generated and in which they populate the state space.

The key idea of the particle filter is to represent the posterior by a set of random state samples,

called particles, drawn from this posterior. Instead of representing the distribution by a parametric

form, particle filter represents a distribution through a set of samples taken from this distribution

[44].

For global localization problems is very common the use of algorithm called Monte Carlo

Localization (MCL), that use the particle filter, as can be verified by [51, 52]. In this algorithm each
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particle represents the probability of the robot being in a specific pose. It is a recursive algorithm

based on Bayes rule, which propagates (Prediction phase - sampling) and updates (Update phase

- resampling) the particles. If everything goes well, at the end, the region with more particles

(denser region) is the region around the truth robot’s pose. The number of particles influences the

precision of the result, so it is important to be careful with the computational weight.

Monte Carlo Localization has problems associated with resampling. The particle filter may

not be able to recover from a kidnapping of the robot or from a bad estimate of the localization

because after a while, all the the particles will be in one area near real position of the robot. To

avoid this some particles should be introduced randomly along the navigation space of the robot.

This turns the algorithm more robust.

Article [51] presents also a series of advantages of using particle filter in comparison with

other filters. By analyzing these advantages it is possible to conclude that particle filter reduces

drastically the memory consumption compared to histogram filters. It is also more accurate than

histogram filters with a fixed cell size. The advantages of using the particle filter have made this

method very popular in mobile robotics applications, as can be seen from the articles [53, 54, 55].

2.3 Robotic Simulators

The validation of projects in the area of robotics is a complicated task. To support and facilitate

this task there are several tools, such as 3D simulators.

Simulation softwares are a simple and more economical alternative for validation of complex

systems, platforms or prototypes [8]. These are very useful to test the implemented code/algorithms

before moving to the real system. Because of this, they make possible investigations that would not

be possible without the use of this type of tools, due to limited resources or financial restrictions

[8].

The use of simulators brings several advantages [8]:

• Allows the production and validation of the software, even without access to hardware,

allowing a fast reconfigurability;

• Has a lower development cost, since initially only the intellectual cost exists, before invest-

ing in materials/hardware;

• It is a low risk environment, since it is a controlled experiment, which avoids accidents and

damages;

• It can be flexible and dynamic, adapting specific sensors to improve results.

It should be noted that the more realistic the simulated model is greater the certain that it will

work in the real robot, after work properly in the simulator. However, realism must be adapted

to the application and the requirements of each application in order not to make the simulator

unnecessarily complex and computationally heavy.

When choosing a simulator, the following features must be taken into account:
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• Detail and realism of physical models (physics engine);

• Programming languages;

• Connection to other applications or external equipment;

• License type (open source, free, commercial or other);

• Included sensors and possibility of creating other sensors;

• Simplicity of installation and use;

• Computational resources;

• Operating Systems.

There are several 3D robotic simulators, among them Gazebo and V-Rep, which are the most

used by the robotic community, according to [8]. And that’s why they are the ones that will be

analyzed in this section. Besides these two simulators mentioned above, Webots and SimTwo

simulators will also be analyzed.

2.3.1 Gazebo

Gazebo is an open-source 3D robotic simulator for UNIX-like operating system, which allows its

distribution without any costs. Gazebo software supports a wide variety of wheeled mobile robots

or even humanoids [8]. The Figure 2.12 shows the Gazebo simulator software.

Figure 2.12: Gazebo simulator [8]

Gazebo is widely used by the Robot Operating System (ROS) community because of its ready

integration with ROS. It also allows communication using sockets, facilitating integration with

scripts in several languages that support this protocol [8]. Gazebo also have a good documentation

on the Internet and a large library of scene elements. Gazebo website has tutorials and examples

that teach how to use it and how to integrate it with ROS.

Regarding programming languages, Gazebo allows C/C++, Python and Ruby. Gazebo of-

fers access multiple high-performance physics engines including Open Dynamics Engine (ODE),

Bullet, Simbody and DART [56].
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2.3.2 V-Rep

V-Rep is a non open-source 3D robotic simulator for UNIX-like operating system, Windows or

Mac-OS. However presents a free version for educational applications. V-Rep software supports

a variety of sensors, robotic arms, mobile robots and also accepts user-created import models on a

graphical development platform [8]. The Figure 2.13 shows the V-Rep simulator software.

Figure 2.13: V-Rep simulator [9]

In [9] it is possible conclude that V-Rep was discontinued on November 2019 and substituted

by CoppeliaSim that is totally compatible with V-Rep. However CoppeliaSim is fastest and have

more features.

V-Rep/CoppeliaSim allows integration with ROS, such as Gazebo. Simulator and simula-

tions are fully customizable, with six programming approaches that are mutually compatible and

that can even work hand-in-hand (remote Application Programming Interface (API), ROS nodes,

BlueZero nodes, plugins, embedded scripts and add-ons) [8]. Controllers can be written in C/C++,

Python, Java, Lua, Matlab or Octave [9]. V-Rep offers access multiple high-performance physics

engines including ODE, Bullet, Vortex and Newton [8].

2.3.3 Webots

Webots is an open source robotic simulator developed by Cyberobotics Ltd since 1998. It is a

simulator that is very used in industry, education and research areas and it provides a complete

development environment to model, program and simulate robots [10].

Webots has an asset library that includes various robots such as two-wheeled table robots,

industrial arms and autonomous underwater vehicles, sensors, actuators, objects and materials.

In addition, it is also possible to build new models from scratch or import them from 3D CAD

software.

This simulator runs on Windows, Linux and Mac-OS and uses a ODE physic engine. The

robots in this simulator may be programmed in multiple languages: C, C++, Java, Matlab or ROS

with a simple API converting all the basic robotics needs. The Figure 2.13 shows the Webots

simulator software.
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Figure 2.14: Webots simulator [10]

2.3.4 SimTwo

SimTwo is a realistic 3D simulator with ODE physic engine. Is very simple to use and install and

highly realistic concerning electric motors. SimTwo is very flexible and provides a great variety of

sensors and actuators. This simulator is a free software that is not open source [11]. It is available

for Windows operating system and its software can be visualized in the Figure 2.15.

Figure 2.15: SimTwo simulator [11]

Many types of robots can be implemented, such as wheeled mobile robots with different con-

figurations, manipulators, legged mobile robots and underwater vehicles with thrusters [57]. The

dynamics realism in SimTwo is obtained by decomposing a robot in rigid bodies hinge or prismatic

joints, optionally actuated by electric motors. SimTwo allows the analysis of the interactions be-

tween the different bodies that are portrayed in the simulator in a very realistic way and in real

time. This bodies have a set of parameters, such as shape, mass and moments of inertia, which

allows to adjust mechanical properties and simulate their dynamics [11]. To enable the actuation

of the robots, DC motors and controllers are also available, whose parameters of their models

can also be adjusted, and their control can be done in the simulator itself or through a remote

application that communicates via UDP or serial port.
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It should also be noted that the SimTwo have a code editor that offers an Integrated Develop-

ment Environment (IDE) for high-level programming based in Pascal language, that is the main

tool in this simulator [11].

Table 2.3 provides a comparison of SimTwo simulator with the other simulators presented.

Table 2.3: Comparison of the different robotics simulators

Simulator Physics
Engines

Programming
languages

Connection
to other
applications

License Operating
Systems

Gazebo ODE, Bullet,
Simbody,
DART

C/C++,
Python, Ruby

ROS, TCP,
UDP, etc

Free Linux

V-Rep ODE, Bul-
let, Vortex,
Newton

C/C++,
Python, Java,
Lua, Matlab,
Octave

ROS, TCP,
UDP, etc

Free only
for non
commercial
applications

Linux, Win-
dows, Mac-OS

Webots ODE C, C++, Java,
Matlab

TCP, ROS Free Linux, Win-
dows, Mac-OS

SimTwo ODE Free Pascal UDP, RS232 Free Windows
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Chapter 3

System Architecture

This chapter describes the software and hardware components used in the proposed approach to

get a precise robot localization in real-time. Figure 3.1 presents the system architecture proposed

for this work and its data flow. This system has an easy switching between the real environment

and the simulation environment, since it share the same communication protocol. The real robot

used in this project was previously made by the supervisors for other projects that encompass

mobile robotics.

Figure 3.1: Architecture proposed for the interaction between the user and the robot

3.1 Remote Computer

Beginning with the remote computer, this is where a Graphical User Interface (GUI) has been de-

veloped for remote access to the robot (real or simulated) and is where the center of all operations

is located. The GUI deals with real and simulation environment. The idea was to create a control

system that allows a user to perform commands on the computer through the use of buttons and

other graphical elements, thus being able to interact with the robot. It is in the remote computer

33
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that the robot localization algorithm was implemented, based on the messages received by the

robot.

The Graphical User Interface was developed in Lazarus that is a professional open-source

cross platform IDE using the Free Pascal compiler. It has variety of components ready for use and

a graphical form designer to easily create complex graphical user interfaces [58].

The protocol for the communication is User Datagram Protocol (UDP). Packets with informa-

tion from odometry, UWB technology and ArUco markers is sent from the robot to the remote

computer, whereas a packet containing the right and left speed wheels is sent from the remote

computer to the robot. The Section 3.6 will describe this communication better.

The developed GUI presents a header and five main tabs. Through the header it is possible to

establish connection with the real or simulated robot, through the "Send" button, which sends a

packet to the desired IP, and the "Simulator" check-box, respectively. It is also possible to establish

a connection to the Ground-Truth system through the corresponding check-box. This header can

be seen in the upper part of Figure 3.2a.

In the first tab, represented in Figure 3.2a, it is possible to visualize different information re-

ceived through the robot, such as speed and acceleration of each motor, corresponding to each

wheel and data from the Pozyx system, i.e. distance, RSS and timestamp relative to each one

of the anchors. In this tab it is also possible to check the robot’s battery. The second tab, pre-

sented in Figure 3.2b, has the objective of setting different parameters of the robot, i.e. distance

between wheels, wheel radius and steps to turn. It is also possible to indicate the position of each

Pozyx anchor. Note that all these parameters are taken into account in the robot’s pose estimation

algorithm.

(a) Received data from the robot (b) General configurations tab

Figure 3.2: Tabs of robot configurations and data

The third tab is used to characterize the Pozyx system and consists of two sub-tabs. The first

one (Figure 3.3a) is used to characterize the error of the Pozyx measurements, by placing the tag,

incorporated in the robot, and an anchor separated by a given distance, and indicating a given
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number of measurements and the real distance measurement. After acquiring the number of mea-

surements indicated in the respective text box, a histogram is generated with these measurements

and the normal distribution that fits the histogram. The second sub-tab, represented in Figure 3.3b,

is used to characterize the frequency of the measurements received from the Pozyx system, by

indicating a given number of measurements. After this acquisition results a histogram and the

average of the frequency with which the Pozyx measurements reach the remote computer.

(a) Pozyx distance characterization histogram (b) Pozyx time characterization histogram

Figure 3.3: Tabs of Pozyx characterization

The fourth tab, presented in Figure 3.4, is used to characterize the different measures acquired

through the ArUco markers. For this it is necessary to indicate the type of measure to be character-

ized, through the available check-boxes, the number of measures used for this characterization and

the real measure. As a result a histogram is generated with all the measurements and the normal

distribution that fits the histogram.

Figure 3.4: Tab of ArUco measurements characterization

The last tab is dedicated to the Kalman Filter, used to estimate the pose of the robot and

is composed of four different tabs. The first one, represented in Figure 3.5a, is used to define
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the initial values of the filter. In this tab it is also possible to see the current values of the pose

estimated by the EKF, the pose obtained by the Ground-Truth system and the error present in the

estimation. In the second tab dedicated to the Kalman Filter, and represented in Figure 3.5b, it is

possible to observe in a map, the resulting positions of the EKF and the Ground-Truth system. The

map also shows the position of all Pozyx anchors and ArUco markers, as well as the predefined

path to be taken by the robot. Finally, the last two tabs, represented in Figures 3.5c and 3.5d, are

useful to observe the evolution of the filter over time, namely the EKF gain matrix and the state

estimation covariance matrix, respectively.

(a) Filter configurations (b) Positions map

(c) Kalman Filter gains matrix evolution (d) Covariance state estimation matrix evolution

Figure 3.5: Tabs relative to Kalman Filter

3.2 Real Robot Description

A mobile robot prototype presented in Figure 3.6 was provided by the supervisors of this disserta-

tion. This section will describe the features of the real robot. First, the structural part that makes

up the body of the robot will be presented. Then, it will be presented the robot’s electronic schema.

Lastly, it will be described the software that operates on the robot.
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Figure 3.6: Real mobile robot

3.2.1 Structural Constitution of the Robot

The used robot has a differential wheel drive system. So, the robot has three degrees of freedom:

[x,y,θ ]T . The prototype has three wheels, two of which are coupled to independent stepper motors.

The other is a castor wheel, which has the support function. Differential robots are widely used

because of the simplicity of their control. The dimensions of the mobile robot’s structure are

shown in Table 3.1. This dimensions will be used for model the simulated robot.

Table 3.1: Dimensions of the robot

Description Dimension
Length 0.31 m
Width 0.22 m

Wheel diameter 0.10 m
Wheel thickness 0.027 m
Wheel clearance 0.02 m

Distance from wheel to robot front 0.03 m
Castor wheel diameter 0.02 m
Castor wheel thickness 0.017 m

Robot mass 3.4 kg

3.2.2 Electronic Hardware

The mobile robot, in which the practical tests were carried out, has embedded in its base some

electronic components, battery, sensors, Raspberry computer and Arduino microcontroller boards.

A block diagram of the mobile platform architecture is presented in Figure 3.7. The following

subsections will be devoted to describing the components that compose the robot.
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Figure 3.7: Mobile platform architecture

3.2.2.1 Raspberry Pi 3 Model B and Camera Module

The top level consists of a Raspberry Pi 3 Model B (Figure 3.8). This is a microcomputer that runs

the raspbian operative system and has a low cost and small size. It has integrated Wi-Fi, avoiding

the use of adapters.

The microcomputer is powered by a DC/DC step down converter which has a 12 V battery

voltage input and provides 5 V to the Raspberry Pi. The Raspberry Pi runs an application that

is responsible for the communication with the remote computer over Wi-Fi and communication

with two Arduinos via USB, emulated serial port. It is responsible for receive the data of the

Pozyx sensor obtained through the Arduino 2 and receives data to the Arduino 1 that corresponds

to the speed and voltage of the motors and battery current. A Raspberry Pi Camera Module is also

connected to the Raspberry and is tasked with acquiring positioning information from the ArUco

markers placed in the environment. This information is acquired by a python script that runs on

the Raspberry Pi and is sent to the remote computer via Wi-Fi.

Figure 3.8: Raspberry Pi 3 Model B [12]

3.2.2.2 Arduino UNO

The Arduino Uno (Figure 3.9) is an open-source microcontroller board based on the Microchip

ATmega328 microcontroller with a 5 V operating voltage. The robot has in its architecture two

Arduinos Uno.
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The Arduino 1, depicted in the Figure 3.7, is directly connected to the CNC V3 shield and

the Allegro MicroSystems-A4988 chip that makes up the power drive and stepper motor control

(discussed in the Subsection 3.2.2.3). The development board is also responsible for odometry

calculations and has connection with shields to obtain current, voltage and power management

values.

Figure 3.9: Arduino UNO [13]

The Arduino 2 is directly connected to the Pozyx Ultra-WideBand tag (Figure 3.10). Thus, the

development board along with the Pozyx tag acquires the data of the four Pozyx anchors scattered

around the environment where the robot is, obtaining the distance between the robot and each of

the anchors.

Figure 3.10: Connection between Pozyx tag and Arduino UNO [14]

3.2.2.3 Drive and Stepper Motors

The robot has two NEMA 17HS16 stepper motors, each one attached to each traction wheels.

Using these stepper motors it is possible to easily control the speed of the robot’s wheels through

the steps of the motors. It uses a CNC shield V3 as an interface between the Arduino and the two

Allegro MicroSystems-A4988 drivers, each one responsible for each of the motors. In this way,

the stepper motor receives a sequence of voltage logic levels that will feed its coil, through which

current will pass, resulting in an electromechanical transformation, moving the robot’s wheels.

Figure 3.11 demonstrate how the Arduino is coupled together with the CNC shield V3 and the

Allegro MicroSystem-A4988 chip.
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Figure 3.11: Connection between Arduino, CNC shield V3 and Allegro MicroSystems-A4988
chip

3.2.2.4 UWB Pozyx Tag

To obtain an accurate localization of the robot the Pozyx positioning system based on UWB tech-

nology will be used, as already mentioned. This system has a total of five components, of which

four are immobile anchors scattered around the environment and one mobile tag that is on the

robot. In this subsection only the tag will be presented, because it integrates the robot. The Pozyx

system will be described in Subsection 3.3 in more detail.

The Pozyx Tag is an Arduino compatible shield that provides positioning and motion infor-

mation. The Pozyx Tag connects to an Arduino board using long wire-wrap headers that extend

through the shield. This keeps the pin layout intact and allows another shield to be stacked on top

(Figure 3.12).

Figure 3.12: Pin-out of Pozyx Tag [14]
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3.2.3 Robot Software

The software of the robot includes an application built in Lazarus that is responsible for several

operations. This application runs on the Raspberry Pi integrated in the robot and manages com-

munications with the two Arduinos as well as with the remote computer.

The application is responsible for receiving the data from the stepper motors and the data ob-

tained from the Pozyx system. These data are directly forwarded by UDP to the remote computer

which performs the sensory fusion through the Kalman Filter, thus estimating the pose of the robot

in its environment. From the estimated pose the velocities that each of the wheels must have to

perform a given trajectory are calculated. The remote computer then returns the velocity infor-

mation back to the application running on the Raspberry Pi, which then transmits it to the stepper

motors, thus actuating the robot’s wheels.

In addition to the application developed in Lazarus, the Raspberry Pi also runs a Python script

that acquires frames from the camera connected to the Raspberry Pi. After acquiring a frame, the

script processes it in order to detect ArUco markers present in it and then takes information from

the detected markers, such as angle and distance in relation to the camera. This information is

sent directly to the remote computer via Wi-Fi. In Figure 3.13 it is possible to see a diagram that

summarizes everything that has been explained about robot software, including also the commu-

nication protocol used for communication between modules.

Figure 3.13: Explanatory diagram of the robot software

3.3 Ultra-WideBand Time of Flight System

For the implementation of this work, namely the UWB ranging framework, Pozyx technology

[14] was selected, specifically the "Creator System" version. It is a hardware and software RTLS

solution that provides robust and accurate positioning, easy to use and easy to integrate. The

"Creator System" consists of five modules, a tag that works with an Arduino UNO and four anchors
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(Figure 3.14). Each module of the Pozyx system is uniquely and consistently identified, so the

problem of data association is immediately solved. The five modules together can provide raw

range measurements, position estimates and orientation estimates. Orientation is achieved by

an embedded IMU chip that collects additional data using sensors, such as an accelerometer, a

gyroscope, a magnetometer, all sensors within the IMU, and a pressure sensor. Concerning the

procedure for obtaining the range, it will be used and is based on the two-way ToF technique.

However it can also output the RSS of the signals received by the tag.

Figure 3.14: Pozyx anchor

The architecture of a Pozyx tag can be seen in Figure 3.15.

Figure 3.15: Architecture of a Pozyx tag [14]

3.4 Ground-Truth System

To determine the Ground-Truth of the real robot, a camera (Playstation Eye, shown in Figure 3.16)

was placed on the center of the ceiling, pointing to the square where the robot moves. This camera

is connected to a Raspberry Pi 4 that contains a Python script that obtains the robot’s pose.
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Figure 3.16: Playstation Eye

In addition, a 13 cm ArUco marker was placed on top of the robot, placed on its center of

rotation, as shown in Figure 3.17. The pose regarding the Ground-Truth is useful for determining

the accuracy of the developed algorithms by its comparison. The methodology used to determine

the robot’s pose will be explained in Section 4.3.

Figure 3.17: Robot with an ArUco Marker

3.5 Simulation Model Description

To test some of the algorithms used to obtain an accurate localization of the mobile robot, the

SimTwo simulator was used, a simulator mentioned in the literature review (Section 2.3.4). The

choice of this simulator took into account the fact that the real robot software and the user’s

interface are based on Lazarus (Free Pascal). Since SimTwo is also based on Free Pascal, the

code developed can be used in both the real robot and the simulation environment. In this way

the exchange between simulation and real environment is simplified. By using this simulator it

was possible to validate the approach in a virtual 3D environment before performing the tests for

practical validation. Note that the simulator was only used to validate the algorithms that use

the Pozyx system and robot’s odometry. This section will predefined the model performed for the

simulation describing the simulated robot, the scenario and methods used to insert uncertainty into

the Pozyx system.
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The modeled and simulated prototype is shown in Figure 3.6. The dimensions of the simulated

robot are faithful to those of the real robot, having the dimensions described in Table 3.1. The

entire structure of the simulated robot was defined using boxes, cylinders and joints (connections

between bodies and wheels), which are arranged to form a structure similar to that of the real

robot. The simulated robot is represented in Figure 3.18.

Figure 3.18: Simulated robot

SimTwo has a tab called "Code Editor" that represents the IDE where a Pascal based code is

implemented, referring to the actions that the robot will perform inside the simulator.In this tab the

UDP communication between the simulator and the interface is also implemented. The odometry

information can be sent to the remote computer in the same way as the real robot, this information

being the speed of the two drive wheels of the robot.

Real localization systems are subject to errors and uncertainties due to the real sensors. There-

fore, to emulate the behavior of the Pozyx system it was necessary to perform some previous tests

(Section 5.2.1) on the real robot in order to obtain information of the errors and noise associated

with this system. With this information it is possible to develop a model that simulates the behavior

of the Pozyx system. Thus, the simulator calculates the distances from the robot to the anchors and

then increments a determined uncertainty. Just like in the real robot, this information is then sent

to the remote computer. It should be noted that some tests performed and mentioned in Section

5.2.1 allowed understanding how often Pozyx measurements were sent to the remote computer.

Thus, in SimTwo this behavior was also simulated so that the performance of the simulator would

be as similar as possible to the real performance.

Finally, in the simulator, the robot’s Ground-Truth can be obtained directly from the simula-

tor’s own functions. So it can directly get x,y and θ from the robot and send this information to

the remote computer.

3.6 Communication Layer

Communication is what allows the connection and exchange of messages between the blocks that

compose the system. In order to obtain a more robust communication it was used a communica-

tion protocol using its own structure for the exchanged messages. The communication between the

robot, more specifically the Raspberry Pi, and the remote computer is done wirelessly. However, it
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should be noted that the Raspeberry Pi on board the robot does not only communicate with the re-

mote computer, but also communicates with two Arduinos, discussed earlier, via USB, emulating

serial port. Depending on the type of messages received by the Raspberry Pi, it must treat them in

a certain way. When a message is received from the remote computer and it is related to the speeds

to be applied to the wheels motors, it is forwarded via serial port to the Arduino which performs

this function (Arduino 1). In case one of the Arduinos sends a message to the Raspberry Pi, being

this message related to the Pozyx data or to the wheels motors, after being received it is sent back

to the remote computer. The data extracted from the ArUco markers, after being acquired, is also

sent back to the remote computer.

For the Ground-Truth system the same type of communication was used, but in this case only

information corresponding to the robot’s pose is sent to the remote computer.

As for the structure of the messages, they are composed of two components. The first is called

Channel and is represented by a non-hexadecimal character that indicates what type of message

is being sent. Then, eight hexadecimal characters represent the message being sent. The set of

these characters is called the value. As a result, each message exchanged between modules has a

corresponding size of two bytes. Figure 3.19 presents all the messages sent from each module.

Figure 3.19: Messages exchange between modules

Finally, it is also important to mention that the messages sent and received by the simulator

follow the same structure.
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Chapter 4

Problem Formulation

In this chapter, the selected and implemented approaches will be presented and their theoretical

background explained. First, the Beacon-Based localization formulation will be presented. Next,

the kinematics of the robot used will be described. Then, the methodology for determining the

Ground-Truth of the robot from a camera will be explained. Then, the approach followed to ex-

tract information from the ArUco markers present in the environment will be discussed. Finally,

a detailed analysis of the Extended Kalman Filter based localization algorithm used will be con-

ducted.

4.1 2D Beacon-Based Localization

The problem of Robot Beacon-Based Localization, as shown in Figure 4.1, can be defined as

the estimate of the Robot’s pose X =
[

xr yr θr

]
by measuring the distances and/or an-

gles to a given number of beacons, NB, placed in the environment at known positions MB,i =[
xB,i yB,i

]
, i ∈ 1...NB. X and MB,i are both specified in the global referential frame WXWY .

Figure 4.1: 2D localization from measurements to beacons

47
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For the specific problem, the following assumptions were made:

• Since the robot only navigates on the ground without any inclinations, it is assumed that the

robot navigates on a two-dimensional plane;

• Beacons positions, MB,i, are stationary and previously known;

• Every 40 ms the odometry values are available. This values will be used to provide the

system input uk =
[

vk ωk

]T
and refers to the odometry variation between k and k− 1

instants;

• ZB,i(k) identifies the measurements relative to Pozyx anchors or ArUco markers i at the

instant k.

4.2 Kinematics of Differential Mobile Robots

The robot’s advanced kinematics define the odometry equations that calculate the relative motion

of the robot. The Equations in 4.1 and 4.2 present the calculation of the angular and linear velocity

at instant k, respectively, of both wheels of the robot given a number of steps referring to each, and

where Re represents the resolution of the stepper motor. The Equations in 4.3 and 4.4 present the

calculation of the linear and angular velocity of the robot, respectively, given the linear velocities

of each of its wheels and where b represents the distance between the points of contact of the

wheels with the ground.

ωR/L,k = steps ·StepsToRad = steps · 2π

Re
(4.1)

vR/L,k = ωR/L,k ·WheelRadius (4.2)

vk =
vR,k + vL,k

2
(4.3)

ωk =
vR,k− vL,k

b
(4.4)

The inverse kinematics is also needed to control the robot along a given path. This requires

providing the robot with velocities for each of the wheels (left and right) at a given instant k, and

which can be calculated as shown in Equations 4.5 and 4.6.

vR,k = vk +
ωk ·b

2
(4.5)

vL,k = vk−
ωk ·b

2
(4.6)
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4.3 Ground-Truth Explanation

As already mentioned in Section 3.4 a camera is placed on the ceiling and looking down to be

able to detect the marker present on the robot, as shown in Figure 4.2. The marker, camera, robot

and world referential frames present in the Figure 4.2 are represented by the letters m, c, r and w

respectively.

Figure 4.2: Referential frames

A Python script was developed to detect the marker and estimate its pose. This was done

using the OpenCV ArUco Marker library [37], and following the [59] tutorial. It is important

to emphasize that for the extracted measurements to be reliable, it is necessary to calibrate the

camera with the help of a chessboard, as discussed in the literature review, in Section 2.1.2.2. The

calibration was performed from scripts developed for this purpose and present in [59].

The estimation of the pose of the marker, i.e. the robot (coincident referential frame), includes

the estimation of the marker’s position and attitude relative to the camera. For marker detection,

each captured frame is analyzed and the integrated OpenCV detection function, detectMarkers()

is used for marker detection. The detection procedure is divided into two parts:

1. The image frame is first analyzed by segmentation and thresholding to select the square-

shaped objects that were candidates for marker;

2. After the marker candidates are selected, the inner coding is extracted by transformation

and Otsu thresholding, so that it is possible to confirm that the marker belongs to the given

library, in this case Original ArUco, and to its specific identifier. After the detection is

finished is possible to obtain the coordinates of the four corners of the marker and its id.

To estimate the position and attitude of the marker relative to the camera frame the function

estimatePoseSingleMarkers() is used. This function has as input parameters the camera matrix,

the distortion coefficients, both obtained in the camera calibration, the coordinates of the corners

of the previously detected marker and the real size of the marker. As output parameters this
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function provides the rotation and translation vector that transforms points from the ArUco marker

coordinate system to the camera coordinate system. The translation vector contains the position

of the marker relative to the camera. To obtain the attitude of the marker relative to the camera, it

was used the OpenCV function Rodrigues which converts the rotation vector to a rotation matrix,

which contains the roll, pitch and yaw angles of the marker relative to the camera.

Then, it is still necessary to convert these measures so that they are referred to the world

referential frame. To do this a homogeneous transformation is applied to the translation vector

corresponding to the position of the marker referenced to the camera. The matrix that represents

the homogeneous transformation between the camera referential frame, (Xc,Yc,Zc), and the world

referential frame, (Xw,Yw,Zw), is present in Equation 4.7, where Rw
c represents the rotation and dw

c

the translation from the camera referential frame to the world, respectively. More specifically, the

origin of the world frame is taken as the point (x,y,z) = (0,0,0) and the camera is at a distance of

100 cm with respect to x and y and at a height z of 214 cm. The vector corresponding to the position

of the robot/marker in the world referential frame is calculated using Equation 4.8, of which only

the values of xw
m and yw

m are needed. In order to determine the robot’s attitude in relation to the

world referential frame it is only necessary to apply a rotation to the rotation matrix, Rc
m, given by

the function Rodrigues, obtained previously, through Equation 4.9. From the resulting matrix it is

only necessary to take the yaw angle (θ ), that is, the rotation in the z axis, since the robot only has

rotation in z.

Hw
c =

[
Rw

c dw
c

0 1

]
=


0 −1 0 100

−1 0 0 100

0 0 −1 214

0 0 0 1

 (4.7)

tw
m = Hw

c · tc
m =


xw

m

yw
m

zw
m

1

 (4.8)

Rw
m = Rw

c ·Rc
m (4.9)

In this way it is then possible to have the localization of the robot (x,y,θ) which will then be

compared with the pose extracted from the localization algorithm developed.

4.4 ArUco Markers in the Environment

As already mentioned the system developed is capable of extracting different type of measure-

ments from ArUco markers arranged in the environment (Figure 4.3), i.e angle (corresponding to

φ angle in Figure 4.1 and Figure 4.4), distance (corresponding to r in Figure 4.1 and d in Figure
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4.4) of the markers relative to the referential frame of the robot, and pitch angle corresponding to

the rotation of the Ym axis with respect to the Zr axis.

From the measurements mentioned above and knowing the position and orientation in the

world of ArUco markers, (xm,ym,θm), it is possible to determine directly the (xr,yr) position of the

robot. However, after some tests, presented in Section 5.2.2, it was found that these measurements

(xr and yr) are not as reliable as the measurements of distance d and angle φ , i.e. they present

greater error. For this reason these measurements will not be taken into account in the proposed

algorithm.

Each of the markers has an associated identification number that can be extracted when the

marker is detected in an image, which distinguishes each reference point.

Figure 4.3: ArUco marker in the environment

Using the OpenCV ArUco Marker library provided by the authors [37], it is possible to obtain

the rotation and translation of the ArUco marker referential frame to the camera referential frame,

through the same procedure mentioned in Section 4.3. Since it is necessary to have the measures

in the referential of the robot and not of the camera, and these referential are not coincident, as

verified in Figure 4.4 it is necessary to apply a homogeneous transformation in order to obtain the

measures of the markers relative to the frame referential of the robot. The matrix that represents

this transformation is shown in Equation 4.10, where Rr
c represents the rotation and dr

c the trans-

lation from the camera frame referential to the robot referential frame, respectively. The vector

corresponding to the position of the markers in the robot referential is calculated using Equation

4.11. Since the movement of the robot is only in 2D, just the values of xr
m and yr

m are needed to

calculate the φ angle and distance d of the marker relative to the robot.

To determine the pitch angle it is only necessary to use the Rodrigues function, mentioned in

Section 4.3, converting the rotation vector referring to the ArUco marker into a rotation matrix.

From the rotation matrix it can be extract the pitch angle.
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Figure 4.4: ArUco measurements

Hr
c =

[
Rr

c dr
c

0 1

]
=


0 0 1 −3.75

−1 0 0 −0.35

0 −1 0 0

0 0 0 1

 (4.10)

tr
m = Hr

c · tc
m =


xr

m

yr
m

zr
m

1

 (4.11)

The angle φ and the distance d from the marker to the robot can be extracted by Equations

4.12 and 4.13, respectively.

φ = atan2(
yr

m

xr
m
) (4.12)

d = ‖(yr
m,x

r
m)‖2 (4.13)

The (xr,yr) position of the robot can be determined from Equations 4.14 and 4.15, in which

θm represents the orientation of the ArUco marker relative to the world referential frame.

xr = xm +d · cos(pitch+φ +θm) (4.14)

yr = ym +d · sin(pitch+φ +θm) (4.15)

Lastly, it is important to emphasize that, as with the Playstation Eye camera, the robot’s camera

also needs to be calibrated so that the measurements taken are reliable.
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4.5 Extended Kalman Filter Localization

Through the distance measurements from the Pozyx tag to the anchors or the measurements re-

garding the angles and distances of ArUco markers it is not possible to obtain directly the pose of

the robot, i.e. (xr,yr,θr). Therefore, it was necessary to choose a localization algorithm to imple-

ment. It will be used the known EKF, which is widely used in this type of problems. It is important

to note that in the case of mobile robotics, the normal Kalman Filter could not be applied because

these are nonlinear functions, its extended model is required. The EKF is relatively simple to im-

plement and has a low computational cost, thus allowing to obtain localization information in real

time. In addition to this, it is possible to add more data from other sensors or technologies as it is

a flexible and expandable fusion algorithm.

In this work, the odometry data is fused with distance measurements to each Pozyx anchor and

φ angle and distance measurements regarding ArUco markers. Through odometry it is possible

to obtain information about the robot’s motion at high frequency. The remaining information

obtained from the other systems, i.e. Pozyx and ArUco, is absolute, independent of the past, and

the errors are not cumulative over time, unlike with odometry.

The EKF models the robot’s state as a Gaussian Distribution Xk ∼ N(µXk ,∑Xk
), in which µXk

represents the mean pose value of the robot and ∑Xk
the corresponding covariance matrix. The

fusion between the odometry model and the Pozyx and ArUco measurements is divided into two

phases. The Prediction phase, that estimates the actual pose from the State Transition Model,

presented in Section 4.5.1, and the Correction phase that corrects the prediction state input with

the Pozyx distance and ArUco φ angle and distance measurements in the Observation model,

presented in Section 4.5.2.

4.5.1 State Transition Model

The state transition model, present in Equation 4.16, is a probabilistic model that describes the

state distribution according to the inputs (uk), in this case the linear (vk) and angular (ωk) velocity

of the robot. In a robot localization problem, this model refers to the kinematic model, as it defines

the probability of a given state in relation to the relative motion of the robot. In addition to the

transition function f (Xk,uk), presented in the Equation 4.17, the noise model N is represented by

a Gaussian distribution with zero mean and covariance Q (4.18), which is assumed constant. The

noise model N is intended to represent the uncertainty associated with the odometry readings.

XK+1 = f (Xk,uk)+N(0,Q) (4.16)

f (Xk,uk) = Xk +

 vk ·∆t · cos(θk +
ωk·∆t

2 )

vk ·∆t · sin(θk +
ωk·∆t

2 )

ωk ·∆t

 (4.17)
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Q =

[
σ2

vk
0

0 σ2
ωk

]
(4.18)

To linearize the process EKF uses the Taylor expansion, which involves the computation of

the Jacobian of f in relation to Xk (4.19) and in relation to uk (4.20).

∇ fx =
∂ f
∂Xk

=

 1 0 −vk ·∆t · sin(θk +
ωk·∆t

2 )

0 1 vk ·∆t · cos(θk +
ωk·∆t

2 )

0 0 1

 (4.19)

∇ fu =
∂ f
∂uk

=

 ∆t · cos(θk +
ωk·∆t

2 ) −1
2 · vk ·∆t2 · sin(θk +

ωk·∆t
2 )

∆t · sin(θk +
ωk·∆t

2 ) 1
2 · vk ·∆t2 · cos(θk +

ωk·∆t
2 )

0 ∆t

 (4.20)

4.5.2 Observation Model

Similarly, the correction phase of the EKF will need a model to handle with the input measure-

ments, the Observation Model. The filter can have three types of information inputs to the filter:

distance measurement between the Pozyx tag and each anchor and φ angle and distance measure-

ment of ArUco markers to the robot referential frame. Therefore, it was decided to consider three

different observation models:

• One for the measurement of the distance between the Pozyx tag and each anchor;

• Another to consider only the measurement of the φ angle of ArUco markers to the robot’s

referential frame;

• The other one to consider the measurement of φ angle and distance from ArUco markers to

the robot’s referential frame.

Both models will have in common the covariance matrix of the state estimate of the current

state of the filter.

The model corresponding to the Pozyx measurements is presented in Equation 4.21. This

model characterizes the euclidean distance between the estimated position of the robot and the

position of the anchor i, as shown in Equation 4.22. As with the state transition model, the process

is affected by an additive Gaussian noise N(0,R) with zero mean and covariance R, a parameter

that must be changed according to the error characteristics of the sensor.

ZB,i = rB,i = h(MB,i,Xk)+N(0,R) R = [σ2
r ] (4.21)

ẐB,i = h(MB,i, X̂k) =
√

(xB,i− x̂r,k)2 +(yB,i− ŷr,k)2 (4.22)
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It is still necessary to calculate the Jacobian of h with respect to Xk for linearization of the

system (Equation 4.23).

∇hx =
∂h
∂Xk

=
[
− xB,i−x̂r,k√

(xB,i−x̂r,k)2+(yB,i−ŷr,k)2
− yB,i−ŷr,k√

(xB,i−x̂r,k)2+(yB,i−ŷr,k)2
0
]

(4.23)

The model corresponding to the ArUco φ angle measurements, on the other hand, is presented

in Equation 4.24 and characterizes the angle between the robot’s referential and the ArUco marker

i (Equation 4.25). One more time, the process is affected by an additive Gaussian noise N(0,R)

with zero mean and covariance R, which must be adjusted according to the error obtained by the

camera.

ZB,i = φB,i = h(MB,i,Xk)+N(0,R) R = [σ2
φ ] (4.24)

ẐB,i = h(MB,i, X̂k) = atan2(yB,i− ŷr,k,xB,i− x̂r,k)− θ̂r,k (4.25)

In this case the Jacobian of h with respect to Xk is calculated from Equation 4.26.

∇hx =
∂h
∂Xk

=
[

yB,i−ŷr,k
(xB,i−x̂r,k)2+(yB,i−ŷr,k)2 − xB,i−x̂r,k

(xB,i−x̂r,k)2+(yB,i−ŷr,k)2 −1
]

(4.26)

Finally, the model corresponding to the φ angle and distance measurements obtained from

ArUco markers is present in Equation 4.27 and characterizes the distance and angle between the

robot’s referential frame and the ArUco marker i (Equation 4.28). The process, as with the other

models, is affected by an additive Gaussian noise with zero mean and covariance R, which is

adjusted according to the error obtained in the measurements taken by the camera.

ZB,i =

[
rB,i

φB,i

]
= h(MB,i,Xk)+N(0,R) R =

[
σ2

r 0

0 σ2
φ

]
(4.27)

ẐB,i = h(MB,i, X̂k) =

[ √
(xB,i− x̂r,k)2 +(yB,i− ŷr,k)2

atan2(yB,i− ŷr,k,xB,i− x̂r,k)− θ̂r,k

]
(4.28)

In this case the Jacobian of h with respect to Xk is calculated from Equation 4.29.

∇hx =
∂h
∂Xk

=

 − xB,i−x̂r,k√
(xB,i−x̂r,k)2+(yB,i−ŷr,k)2

− yB,i−ŷr,k√
(xB,i−x̂r,k)2+(yB,i−ŷr,k)2

0
yB,i−ŷr,k

(xB,i−x̂r,k)2+(yB,i−ŷr,k)2 − xB,i−x̂r,k
(xB,i−x̂r,k)2+(yB,i−ŷr,k)2 −1

 (4.29)

4.5.3 Implementation

After presenting the theoretical and mathematical concepts outlined above, it is possible to de-

scribe the localization algorithm based on the EKF used (Algorithm 1).

The algorithm begins with the prediction phase, in which the State Transition Model is applied

and linearized (lines 1:3). The prediction of the new state covariance Pk+1 is calculated from the
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current uncertainty Pk and the propagation of the state and motion data around in the current state

(line 4). If there were no state correction from any of the measurements from the Pozyx or ArUco

systems, the filter accumulates the odometry errors, and Pk+1 would gradually increase. However,

whenever a new measurement from one of these systems is received, the location uncertainty is

decreased.

When new data is received for either Pozyx or ArUco system, the algorithm cycles through

each detected measurement (lines 5:15). In other words, in case new measurements relative to the

Pozyx system are received, NB cycles are performed, each cycle referring to each Pozyx anchor.

If new measurements on the ArUco system are received, NB cycles are also performed, but in this

case NB represents the number of markers detected. Depending on the system that is being treated

the equations for ẐB,i and ∇hx are different and equal to those presented in Section 4.5.2.

In lines 10:11 it is possible to verify that the update of the position estimate is only performed

in case the measurement is not considered an outlier. In the case that the measurement is not

considered an outlier, the state is updated relative to the Kalman gain Kk,i (lines 12:14). It should

be noted that the concept of outlier and how they are determined is explained in Section 4.5.4.

Finally, if the new data refer to measurements from the Pozyx system, an offset correction is

made (line 7), which is explained in Section 4.5.5.

Algorithm 1: EKF Localization Algorithm

Input : X̂k,ZB,i,uk,Pk,R,Q
Output : X̂k+1,Pk+1

PREDICTION
1 X̂k+1 = f (X̂k,uk)

2 ∇ fx =
∂ f
∂Xk

3 ∇ fu =
∂ f
∂uk

4 Pk+1 = ∇ fx ·Pk ·∇ f T
x +∇ fu ·Q ·∇ f T

u

CORRECTION
5 for i = 1 to NB do
6 ẐB,i = h(MB,i, X̂k)
7 ẐB,i =CorrectO f f set(ẐB,i) // only for Pozyx measurements

8 ∇hx =
∂h
∂Xk

9 Sk,i = ∇hx ·Pk ·∇hT
x +R

10 OutlierDetected = OutlierDetection(Sk,i, ẐB,i,ZB,i)
11 if not OutlierDetected then
12 Kk,i = Pk+1 ·∇hT

x ·S−1
k,i

13 X̂k+1 = X̂k +Kk,i · [ZB,i− ẐB,i]
14 Pk+1 = [I−Kk,i ·∇hx] ·Pk+1

15 end
16 end
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4.5.4 Outliers Detection

Normally, when taking measurements with sensors, they are prone to errors that can be gener-

ated due to hardware failures or unexpected changes in the environment. For proper use of the

measurements obtained, the systems must be able to detect and deal with the less reliable mea-

surements, i.e., those that deviate from the normal pattern and called outlier. Although there are

several approaches to solving this problem, in the presence of multivariate data, one of the com-

mon methods is to use the Mahalanobis Distance (MD) (Equation 4.30) as a statistical measure

of the probability of some observation belonging to a given dataset. In this approach, outliers are

removed as long as they are outside a specific ellipse that symbolizes a specific probability in the

distribution (Algorithm 2). Consequently, different ellipses represent different MD’s and therefore

different probability thresholds. In [60, 61, 26], it can be seen that this approach has been used

successfully in different applications, consisting of calculating the normalized distance between

a point and the entire population. It would be possible to use Euclidean Distance, however the

use of MD considers not only the distance to the mean but also the direction, i.e. the covariance.

Indeed, MD is only the same as the Euclidean distance if the covariance matrix is the identity,

which means that all variables are independent and have the same variance.

MD(x) =
√
(x−µ)T ·S−1 · (x−µ) (4.30)

In this case ẐB,i represents the mean population µ and S is a factor representing a combination

of the state uncertainty and the actual sensor measurement, present in line 9 of Algorithm 1. The

choice of the threshold value can be made by a simple analysis of the data by the determination of

some probabilistic statistical parameter. In this case the threshold was established according to the

χ2 probability table, in a way that observations with less than 5 % probability were cut off in the

case of the Pozyx system. For the ArUco system, more specifically for the φ angle measurements,

a threshold was chosen, in order to cut off the observations with less than 2.5 % probability. These

values were chosen through several iterations of the algorithm, and the values, which the algorithm

behaved best for, were chosen.

Algorithm 2: Outliers Detection Algorithm

Input : Sk,i, ẐB,i,ZB,i

Output : OutlierDetected

1 MD(ZB,i) =
√

(ZB,i− ẐB,i)T ·S−1
k,i · (ZB,i− ẐB,i)

2 if MD(ZB,i)> T hreshold then
3 OutlierDetected = True

4 else
5 OutlierDetected = False

6 end
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4.5.5 Pozyx Offset Correction

The Pozyx system distance measurements suffer from different offsets, i.e. difference between the

actual value and the measured value, depending on how far the Pozyx tag is from a given anchor.

These offsets also vary depending on the anchor at which the distance is measured, as verified in

Section 6.1. In order to correct this offset, the Algorithm 3 was implemented. After calculating

the estimated distance from the anchor to the robot tag, it is verified between which predefined

values this distance is, and then the correction is made through a linear interpolation. The variable

RealDist is an array with a set of predefined distances for which the offsets have been determined.

The variable O f f set is a 4× length(RealDist) matrix containing the offsets corresponding to each

distance for each of the four anchors placed in the environment.

Algorithm 3: Pozyx Offset Correction Algorithm

Input : ẐB,i

Output : ẐB,i

1 if ẐB,i <= RealDist[0] then
2 ẐB,i = ẐB,i +O f f set[i,0]

3 else if ẐB,i >= RealDist[7] then
4 ẐB,i = ẐB,i +O f f set[i,7]

5 else
6 for j = 0 to length(RealDist)−1 do
7 if ẐB,i >= RealDist[ j] and ẐB,i <= RealDist[ j+1] then
8 O f f setLin = O f f set[i, j]+ O f f set[i, j+1]−O f f set[i, j]

RealDist[ j+1]−RealDist[ j] · (ẐB,i−RealDist[ j])

9 ẐB,i = ẐB,i +O f f setLin

10 end
11 end
12 end



Chapter 5

Experimental Methodology

In this chapter the different types of tests performed will be described. First, the developed trajec-

tory control will be presented in order to later be able to perform the different localization tests.

Then, the tests performed in the simulation and real environment are presented.

5.1 Trajectory Control

In order to test the developed algorithms it was necessary make the robot perform a given tra-

jectory. This trajectory can be defined by a set of points (x,y) organized in a vector of the type:

[x1,y1,x2,y2, ...,xn,yn], where n is the number of points that define the trajectory. Each pair of con-

secutive points will define a line segment with a given start point (xi,yi) and an end point (x f ,y f ).

These points are then used in the Follow Line procedure shown in Figure 5.1, which makes the

robot move along the line segment defined by the points. When the robot reaches the first end

point, it moves forward in the vector to the next pair of consecutive points.

To calculate the distance the robot is from the line segment defined by a given pair of points,

the Equation 5.1 is used. This equation requires the prior calculation of ux and uy, which form the

û = (ux,uy) vector corresponding to the direction of the line segment. The calculation of these two

components is in Equations 5.2 and 5.3. The Equations 5.4 and 5.5 correspond to the errors of

orientation and distance of the current position of the robot in relation to the desired end point, re-

spectively. The Follow Line procedure still requires the use of several constants: LIN_V EL_NOM,

W_NOM, LIN_V EL_DA, GAIN_DIST , GAIN_FWD, which are used to adjust the linear and an-

gular velocity at which the robot must move. In addition to the constants mentioned above, three

more are used: DIST _DA, TOL_FINDIST and DIST _NEWPOSE, which are used to make the

state machine represented in Figure 5.1, advance from one given state to another, more specifically

they represent tolerances of the robot’s distance error.

dist2line =
(x̂r,k− xi) ·uy +(yi− ŷr,k) ·ux

u2
x +u2

y
(5.1)

59
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ux =
x f − xi√

(x f − xi)2 +(y f − yi)2
(5.2)

uy =
y f − yi√

(x f − xi)2 +(y f − yi)2
(5.3)

error_theta = θ̂r,k−atan2(y f − ŷr,k,x f − x̂r,k) (5.4)

error_dist =
√

(x̂r,k− x f )2 +(ŷr,k− y f )2 (5.5)

Figure 5.1: Follow line procedure

5.2 Experimental Tests

In order to characterize the entire developed system and evaluate its performance, several tests

were performed.

In characterizing system performance, it is worth noting that an error can have different sources

and can be of different types. The experiments performed in the characterization of the systems
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Pozyx and ArUco will focus mainly on the analysis of accuracy and precision, which are typ-

ically associated with systematic and random errors respectively. In the case of this particular

work the characterization of sensor accuracy is particularly important, since it will be used in the

EKF to characterize the noise measurement. Furthermore, accuracy measures how close the ob-

servations are to real values, thus characterizing the existing offset. So, first, some experiments

were performed in order to characterize the Pozyx system and the error and noise involved in the

measurements. Next, a set of experiments were also performed in order to characterize the ArUco

system, the error and noise in the measurements. Similarly, the developed Ground-Truth system

was characterized in order to conclude whether it obtained reliable measurements.

Finally, a set of localization tests were performed, using the results obtained from the previous

experiments. The GUI developed and presented in Section 3.1 was used to observe all the results

obtained.

5.2.1 Pozyx Error Characterization

In order to fully characterize the Pozyx system, several experiments were performed in an indoor

environment, the same one where the localization tests were performed. For this purpose, distance

measurements were performed between a static anchor and the Pozyx tag embedded in the robot,

as shown in Figure 5.2. The distances between tag and anchor for which the experiments were per-

formed were as follows: [0.6,0.8,1,1.2,1.4,1.6,1.8,2] meters. These experiments were repeated

for the four different anchors used in the work. It should also be noted that both the anchors and

the tag are at the same height from the ground and that the actual distance (Ground-Truth) was

measured with an appropriate laser sensor, a laser that has an accuracy of 1 mm. With these ex-

periments is possible to conclude on the error/offset and standard deviation of the measurements

and verify their evolution as a function of the distance between the anchor and the tag.

Figure 5.2: Pozyx distance measurement experiment

In addition to the above experiments, another experiment was performed to verify how of-

ten the Pozyx measurements reached the remote computer. To perform this experiment, a set of

Pozyx measurements were considered, and then the average of the time interval with which these

measurements reached the remote computer was calculated. By determining this frequency, along
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with the noise determined in previous experiments, it is then possible to emulate the behavior of

the Pozyx system in the SimTwo simulator.

5.2.2 ArUco Error Characterization

For the characterization of the ArUco system a similar procedure was followed as for the ex-

periments performed of the Pozyx system. However, for the ArUco system was necessary to

characterize five different types of measurements, the distance between the referential frame of

the robot and the ArUco marker, the φ angle, the pitch angle and the position of the robot (xr,yr),

measurements that are discussed in Section 4.4.

For the experiments related to distance, the robot was placed at the following distances from

a given ArUco marker: [0.5,1,1.5,2] meters, as shown in Figure 5.3a. Concerning the φ angle,

five different experiments were performed, demonstrated in Figure 5.3c: robot perpendicular and

just in front of the marker (1), in front of the marker but rotated with a given angle to the right (2),

in front of the marker but rotated with a given angle to the left (3), perpendicular to the marker

but translated to the right (4) and finally, perpendicular to the marker but translated to the left

(5). Regarding the pitch angle, four different experiments were performed. The first one with the

marker in front of the robot, that is, with a pitch angle of 0◦. For the next three, the marker was

tilted to obtain a rotation of the Ym axis of the marker of 20◦, 30◦ and 40◦, respectively. These

experiments are demonstrated in Figure 5.3b. Note that these experiments with the pitch angle

are useful, because this angle can be used to calculate the position of the robot (xr,yr), along with

other measurements, i.e distance and φ angle. Therefore, it is important to understand if these

measurements are accurate.

(a) ArUco distance experiments
(b) ArUco pitch angle experi-
ments

(c) ArUco φ angle experiments

Figure 5.3: ArUco measurements experiments
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Finally, for the measurements of the robot position (xr,yr), four different experiments were

performed. In these experiments the robot was placed in four different positions, represented in

Figure 5.4, in which only certain markers were visible by the robot’s built-in camera.

Figure 5.4: ArUco xr, yr measurements experiments

With these experiments it is possible to conclude about the noise, characterized by the standard

deviation, and error in obtaining the measurements discussed above. Note that the center of the

camera and the ArUco markers are at the same height from the ground. In addition, it should be

noted that the real value (Ground-Truth) of these measurements was obtained with the same laser

sensor used in the characterization of the Pozyx system.

5.2.3 Ground-Truth Characterization

In order to verify if the Ground-Truth system developed obtained accurate values, a characteriza-

tion of it was performed. For this, several experiments were performed where the robot was placed

in several poses in the environment, as shown in Figure 5.5. With these experiments it is possible

to conclude about the error of this system.

Figure 5.5: Ground-Truth xr, yr, θr measurements experiments
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5.2.4 Localization Tests

With the experiments for noise and error characterization of the Pozyx and ArUco systems already

completed, it is possible to proceed to a set of tests to verify the behavior of the various variants

of the developed EKF based localization system.

The developed localization system was tested on the robot in a 2 m × 2 m area (Figure 5.6).

Pozyx anchors were placed at each of the corners of the square and ArUco markers at the following

(x,y,θ) poses (with x and y in meters and θ in degrees): (0,0.5,0),(0,1.5,0),(0.5,2,−90), (1.5,

2,−90), (2,1.5,180),(2,0.5,180),(1.5,0,90) and (0.5,0,90). The initial pose (x,y,θ ) (with x and

y in meters and θ in degrees) of the robot is (0.4,0.5,90) and it moves clockwise. Different tests

were performed in the two available environments, the simulated environment with the SimTwo

simulator and the real environment.

Figure 5.6: Robot positions map

The real environment can be observed in Figure 5.7.

Figure 5.7: Real environment
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5.2.4.1 Simulator Localization Tests

As already mentioned in Section 3.5, in the simulated environment only tests related to odometry

and the Pozyx system were performed. The tests performed and explained below allowed to test

various parts of the developed EKF. Consequently, the following sequence of tests was performed:

1. Test with the robot stopped at the initial pose and with the Pozyx system on: This test

aims to verify if the filter was well designed, initializing it with a different position from the

real one, and then verifying if it converges to the correct one. The test also allows to verify

if the Pozyx system modeled in SimTwo is working properly and if the standard deviation

used for noise fits the system.

2. Test with the robot in motion and with the Pozyx system turned off: The purpose of this

test is to test the prediction phase of the EKF by being able to verify the results obtained

when using only the robot’s odometry for the localization.

3. Test with the robot in motion and the Pozyx system on: Having already concluded that

the various parts of the filter are working properly, the idea of this test is to verify how the

EKF behaves when it performs the prediction and correction phase. This way, it is possible

to later compare the robot localization results considering the fusion of odometry and Pozyx

data with the results obtained considering only the robot’s odometry. It can also be verified

if with the fusion of the odometry data with the distance data from the Pozyx system it is

possible to obtain an accurate localization of the robot.

To verify the accuracy achieved by the various tests performed, the robot localization results

obtained by these tests are compared with the true pose of the robot (Ground-Truth), a pose that is

determined directly by the SimTwo simulator and sent to the remote computer for later compari-

son.

5.2.4.2 Real Robot Localization Tests

For the real environment all the systems used, i.e. odometry, Pozyx and ArUco, have already been

considered. The different tests performed allowed to test the piecewise filter and to verify the

results obtained when using several different combinations of inputs to the EKF. Consequently,

the following tests were performed:

1. Test with the robot stopped at the initial pose and with only the Pozyx system on: This

test is the same performed in the simulator and aims to verify if the filter was well designed,

initializing it with a different position from the real one, and then verifying if it converges to

the correct one. It also verifies if the real Pozyx system is working well and if the standard

deviation used for the noise fits the system.

2. Test with the robot stopped in the initial pose and with only the ArUco system on (con-
sidering that the distance and φ angle of the markers relative to the robot is obtained):
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This test is similar to the previous one, however in this case the aim is to verify if the ArUco

system is working properly and if the standard deviations used for noise of the distance and

φ angle measurements are adequate.

3. Test with the robot in motion and with the Pozyx and ArUco systems off: As in the same

test performed in the simulator, the objective is to test the EKF prediction phase, being able

to verify the results obtained by using only the robot’s odometry to localize it.

4. Test with the robot in motion, with the Pozyx system on and with the ArUco system
off: The idea of this test is to verify the results obtained considering odometry data from the

robot and the distance data obtained by the Pozyx system. In this case, the EKF performs

the correction phase whenever new measurements are obtained from the Pozyx system.

5. Test with the robot in motion, with the ArUco system on (considering only the φ angle
measurements of the markers relative to the robot) and with the Pozyx system off: The

purpose of this test is to verify the results obtained considering the robot’s odometry data

and the data related to the φ angle measurements of the ArUco markers in relation to the

robot’s referential frame. In this case the EKF performs the correction phase whenever new

φ angle measurements are obtained from the ArUco system.

6. Test with the robot in motion, with the ArUco system on (considering the φ angle and
distance measurements of the markers relative to the robot) and with the Pozyx system
off: The aim of this test is to verify the results obtained considering the robot’s odometry

data and the data related to the φ angle and distance measurements of the ArUco markers in

relation to the robot’s referential frame. In this case the EKF performs the correction phase

whenever new φ angle and distance measurements are obtained from the ArUco system.

7. Test with the robot in motion, with the ArUco system on (considering only the φ angle
measurements of the markers relative to the robot) and with the Pozyx system on:
This test allows verifying the results obtained when considering the robot odometry data,

the ArUco marker φ angle measurements relative to the robot referential frame and the

distance measurements obtained by the Pozyx system. In this case the EKF performs the

correction phase whenever new φ angle measurements are obtained from the ArUco system

or new distance measurements from the Pozyx system.

8. Test with the robot in motion, with the ArUco system on (considering the φ angle and
distance measurements of the markers in relation to the robot) and with the Pozyx sys-
tem on: This test allows verifying the results obtained when considering the robot odometry

data, the ArUco marker φ angle and distance measurements relative to the robot referential

frame and the distance measurements obtained by the Pozyx system. In this case the EKF

performs the correction phase whenever new φ angle and distance measurements are ob-

tained from the ArUco system or new distance measurements from the Pozyx system.
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The localization results obtained by the various tests are compared with the developed Ground-

Truth system (presented in Section 3.4), in order to verify the accuracy achieved when using the

different variants of the developed EKF algorithm. By combining different inputs in the Kalman

filter, it is later possible to conclude with which one obtains a more accurate robot localization.
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Chapter 6

Results and Discussion

In this chapter, the results obtained in the experiments and tests discussed in the previous chapter

will be presented. Thus, the chapter will start by presenting the results concerning the charac-

terization of the Pozyx system, followed by the results concerning the characterization of the

different measurements acquired through the ArUco markers. Next, the results of the experiments

performed with the developed Ground-Truth system are presented. Finally, the results of each lo-

calization test presented in the previous chapter will be demonstrated and discussed. A comparison

between them will also be performed.

6.1 Pozyx Characterization Results

As mentioned in Section 5.2.1, several experiments were performed in order to characterize the

Pozyx system. These experiments involved determining the standard deviation and offset present

in the measurements of the four anchors used. Figures 6.1, 6.2, 6.3 and 6.4 show the histograms

resulting from the different experiments performed for each of the anchors, anchors that were

distanced from the Pozyx tag by a given distance.

By observing the resulting histograms it is possible to conclude that the Pozyx system mea-

surements follow an approximately Gaussian distribution, which enforces the use of the EKF

Gaussian process.

Tables 6.1, 6.2, 6.3 and 6.4 summarize the results obtained, i.e. mean, standard deviation

and offset, for each anchor for all of the distances performed. By analyzing these tables it is

possible to conclude that the standard deviation is approximately constant, i.e. it belongs to the

same range of values. Therefore, it is concluded that the standard deviation, used for the Kalman

filter noise variable, is independent of distance and anchor. However, as future work, it could

be interesting to check whether over larger areas the standard deviation remains approximately

constant. To minimize possible outliers, caused by a larger standard deviation, it is useful to use

an outlier detection filter, described in Section 4.5.4. Regarding the offset, it was concluded that

it is very variable, not following a concrete pattern. However, in an attempt to correct the offset in

the estimation of the Pozyx measurements, an algorithm was developed and presented in Section

69
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4.5.5. The results obtained for the offset in the different Pozyx anchors and distance were used in

this algorithm.

Figure 6.1: Distribution of Pozyx measurements - Anchor 1

Table 6.1: Offset and SD as a function of measurement Pozyx distance - Anchor 1

Real Distance (mm) Mean (mm) Offset (mm) SD (mm)
600 612 12 22.7
800 825 25 29.1
1000 1029 29 29.3
1200 1217 17 33.9
1400 1422 22 26.7
1600 1612 12 29.1
1800 1787 -13 27.2
2000 2020 20 33.9
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Figure 6.2: Distribution of Pozyx measurements - Anchor 2

Table 6.2: Offset and SD as a function of measurement Pozyx distance - Anchor 2

Real Distance (mm) Mean (mm) Offset (mm) SD (mm)
600 650 50 14.3
800 830 30 22.8
1000 956 -44 28.3
1200 1176 -24 35.9
1400 1418 18 21.3
1600 1578 -22 23.7
1800 1766 -34 18.1
2000 2001 1 25.6
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Figure 6.3: Distribution of Pozyx measurements - Anchor 3

Table 6.3: Offset and SD as a function of measurement Pozyx distance - Anchor 3

Real Distance (mm) Mean (mm) Offset (mm) SD (mm)
600 621 21 16.5
800 809 9 24.7
1000 1036 36 34.4
1200 1231 31 46.0
1400 1423 23 40.6
1600 1589 -11 48.1
1800 1807 7 21.6
2000 2037 37 36.8
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Figure 6.4: Distribution of Pozyx measurements - Anchor 4

Table 6.4: Offset and SD as a function of measurement Pozyx distance - Anchor 4

Real Distance (mm) Mean (mm) Offset (mm) SD (mm)
600 610 10 20.3
800 857 57 14.5
1000 1027 27 18.2
1200 1225 25 20.4
1400 1406 6 19.8
1600 1641 41 23.7
1800 1832 32 38.9
2000 2047 47 16.2

For the characterization of the Pozyx system one more experiment was performed. This exper-

iment was useful to understand how often the Pozyx measurements arrived at the remote computer,

to then be able to use this value in the simulation of the Pozyx system in SimTwo. The experiment

resulted in an average of 18 ms for the arrival of a measurement relative to any of the anchors.

Since SimTwo’s control cycle has a periodicity of 40 ms it was assumed that every 40 ms mea-

surements from two anchors were sent to the remote computer.



74 Results and Discussion

6.2 ArUco Characterization Results

From the ArUco markers it is possible to extract several useful measurements for estimating the

robot’s pose. Therefore it was necessary to perform a series of experiments in order to characterize

these measurements and verify if they are accurate. These experiments are described in detail in

Section 5.2.2. Next, it will be present the results for each of the experiments performed.

φ Angle Measurements
Regarding the measurements of the φ angle, five different experiments were performed. The

results of these experiments are summarized in Table 6.5 and Figure 6.5 presents the histograms

obtained for these experiments.

Through the analysis of Table 6.5 and Figure 6.5 it is possible to conclude that the φ angle

measurements are very low in noise, i.e. low standard deviation, and have a low error as well.

Therefore, it can be said that these measurements are accurate and useful to include in the robot’s

pose estimation algorithm.

Figure 6.5: Distribution of φ angle measurements

Table 6.5: φ angle measurement characterization experiments results

Experiment Real φ Angle (◦) Mean (◦) Error (◦) SD (◦)
1 0 0.0309 0.0309 1.1e-3
2 16.33 16.3359 0.0059 1.0e-3
3 -12.94 -12.9653 -0.0233 1.3e-3
4 11.43 11.4486 0.0186 1.2e-3
5 -15.33 -15.3583 -0.0283 9.0e-4
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Distance Measurements
Concerning the distance measurements of ArUco markers to the origin of the robot’s referential

frame, the experiments described in Section 5.2.2 were performed. The results obtained in these

experiments are summarized in Table 6.6. By analyzing this table it is possible to conclude that

just like the φ angle, the distance measurements are useful for the robot localization algorithm,

since it presents a very low error relative to the real value. Besides the error being low, it should

be noted that these measurements are not very noisy, given the low standard deviation.

Table 6.6: Distance measurements characterization experiments results

Experiment Real Distance (mm) Mean (mm) Error (mm) SD (mm)
1 500 503 3 5.0e-1
2 1000 995 -5 4.6e-1
3 1500 1496 -4 8.1e-1
4 2000 1992 -8 5.2e-1

Pitch Angle Measurements
As mentioned before, the characterization of the pitch angle measurements is important, since this

angle, along with the previous measurements can be used to calculate the (xr,yr) position of the

robot. Therefore, the experiments referred to in Section 5.2.2 were performed. Figure 6.6 presents

the histograms resulting from the experiments. The Table 6.7 summarizes the results obtained for

the error and standard deviation of the measurements, for each of the experiments performed.

Figure 6.6: Distribution of pitch angle measurements

Table 6.7: Pitch angle measurement characterization experiments results

Experiment Real pitch angle (◦) Mean (◦) Error (◦) SD (◦)
1 0 -3.0452 -3.0452 3.6e-1
2 20 19.5173 -0.4827 8.3e-2
3 30 29.7657 -0.2343 4.2e-2
4 40 39.6711 -0.3289 3.4e-2
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Through the analysis of Figure 6.6 and Table 6.7 it is possible to conclude that the pitch angle

measurements present more error and more noise, i.e. higher standard deviation, than the φ angle

measurements. The error is greater when the robot and the ArUco marker are facing each other,

that is, when they have a pitch angle of 0◦. Although these results were verified, the robot’s

position measurements (xr,yr) were still characterized, as described in Section 4.4.

Robot Position Measurements
Concerning the experiments of the (xr,yr) position measurements of the robot, the robot was

placed in several positions as described in Section 5.2.2. The purpose of these experiments is

to verify if the error in obtaining the position is high or low, to then decide if these are good

measurements to insert in the developed localization algorithm. In order to synthesize all the

information resulting from these experiments, the results obtained are summarized in Table 6.8.

Note that the number of the experiment indicated in the table refers to the position indicated with

the same number in Figure 5.4.

Table 6.8: Robot position (xr,yr) measurements characterization experiments results

Experiment Real
Position (m)

Visible
Markers ID Mean (m) Error (cm)

1 (0.4, 0.5) 12 and 13
ID 12: (0.433, 0.501)
ID 13: (0.190, 0.523)

ID 12: (3.3, 0.1)
ID 13: (-21, 2.3)

2 (0.4, 1.5) 15 and 16
ID 15: (0.419, 1.419)
ID 16: (0.424, 1.618)

ID 15: (1.9, -8.1)
ID 16: (-2.4, 11.8)

3 (0.8, 1.5) 18 and 19
ID 18: (0.835, 1.558)
ID 19: (0.708, 1.443)

ID 18: (3.5, 5.8)
ID 19: (-9.2, -5.7)

4 (1.6, 0.5) 15 and 16
ID 15: (1.323, 0.504)
ID 16: (1.589, 0.514)

ID 15: (-27.7, 0.4)
ID 16: (-1.1, 1.4)

After analyzing the data presented in Table 6.8 it is possible to conclude that the experiments

performed resulted in quite high position errors, reaching a maximum error of 27.7 cm. Due to

this, it was decided not to use these measurements in the localization algorithm developed, since

this would worsen the results. For the calculation of xr and yr several measures are used, namely φ

angle, pitch angle and distance from ArUco markers, measures that contain some error, especially

the pitch angle. Therefore, the high error in the position measurements can be justified by the fact

that it includes several measurements with error, resulting in an accumulation of errors.

In addition to all the experiments mentioned above, an additional experiment was performed.

This experiment was performed with the robot in motion and allowed to conclude that when the

robot enters in rotation to change direction, the measurements estimated by the Kalman Filter and

the measurements that arrived to the remote computer, of the φ angle become distant. This no

longer happens when the robot moves in a straight line, where both measurements are close to
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each other. This behavior can be verified in Figure 6.7. The φ angle measurements resulting from

the ArUco markers when the robot is in rotation can be considered outliers, not being considered

for the estimation of the robot’s pose. Therefore, an outlier filter was used, the same as the one

used with the Pozyx system and explained in Section 4.5.4.

Figure 6.7: Comparison of φ estimation and ArUco φ measurements

6.3 Ground-Truth Characterization Results

In order to verify if the Ground-Truth system developed acquires precise information of the robot’s

pose ((xr,yr,θr)), the set of experiments described in Section 5.2.2 was performed. Through this

system it will be possible to perform a comparison with the results obtained in the different variants

of the localization algorithm based on EKF developed, concluding their accuracy. Through the

experiments performed it is then possible to conclude whether the system is accurate enough to be

used as the Ground-Truth of the system.

Therefore, the results obtained in the experiments performed are summarized in Table 6.9.

Note that the experiment number in the table coincides with the robot’s pose number in Figure

5.5. Also note that the x and y values in the Real Pose and Mean columns are in meters, while

the Error and SD columns are in millimeters. The θ values are always indicated in degrees.

Through the analysis of the Table 6.9 it is possible to conclude that the errors obtained are low.

Thus, it is concluded that this Ground-Truth system developed is accurate. It should be noted

that the Ground-Truth system also presents some noise in the measurements, which is usual in

measurements with sensors, in this case the camera used.

Table 6.9: Ground-Truth xr, yr, θr measurements experiments results

Experiment Real Pose Mean Error SD
1 (1, 1, 90) (0.998, 0.998, 89.92) (-2, -2, -0.08) (4.7e-1, 4.6e-1, 5.6e-2)
2 (0.8, 0.5, 180) (0.8, 0.498, 179.72) (0, -2, -0.28) (1.7e-1, 7.8e-1, 4.4e-2)
3 (0.8, 1.5, 0) (0.796, 1.495, 0.004) (-4, -5, -0.004) (3.2e-1, 6.4e-1, 4.4e-2)
4 (1.2, 0.5, 0) (1.204, 0.498, 0.02) (4, -2, -0.02) (1.1e-1, 4.9e-1, 5.4e-2)
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6.4 Localization Tests Results

This is the section where the results obtained in the localization tests are demonstrated and dis-

cussed. For these tests it was important to tune the EKF in order to achieve greater precision.

Changing the EKF parameters affects the convergence of the algorithm, as well as the smoothness

of the resulting trajectory estimate. The parameters R and Q were adjusted so that the estimation

results were neither sensitive to noise nor too slow. Thus, the adopted implementation relates the

dynamic noise Q with the measurements noise R, where the latter is divided into three, mentioned

in Section 4.5.2. RPozyx, which is relative to Pozyx distance measurements, RArUco→φ , relative to φ

angle measurements through ArUco markers, and RArUco→distance,φ , referring to combined distance

and φ angle measurements through ArUco markers. RPozyx, RArUco→φ and RArUco→distance,φ are de-

termined from the noise characterization previously performed, using an average of the standard

deviation values obtained. The Q was determined from trial error tests. After some tests, Q was

set to 0.001 ·RPozyx in case of using only the Pozyx system and 0.001 ·RArUco→φ in the case of also

using the measurements of the ArUco markers. Concerning the initial state estimates, P0 is a 3×3

identity matrix.

6.4.1 Simulator Localization Tests Results

In this subsection the results obtained from the tests performed on the SimTwo simulator are

presented. Note that the order in which the results are presented is the same order in which the

tests were described in Section 5.2.4.1.

Test 1 - Test with the robot stopped at the initial pose and with the Pozyx system on

Figure 6.8 demonstrates the result obtained in the first test performed on the SimTwo simulator. In

this test the EKF was initialized with a pose of (xr,yr,θr) = (0.7,1.5,90◦) and the simulator sends

to the remote computer the simulated distances relative to the four anchors of the Pozyx system.

As can be seen in Figure 6.8 the Kalman Filter converges to the correct estimated pose of the

robot, that is (xr,yr,θr) = (0.4,0.5,90◦) with an error of 7.75 mm, which is quite low. Therefore,

it is concluded that the standard deviation used for the Pozyx system noise is adequate. Note also

that in this case, since the Pozyx system does not provide information about the orientation of the

robot, there is no change in the orientation estimation.
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Figure 6.8: SimTwo localization test 1 result

Test 2 - Test with the robot in motion and with the Pozyx system turned off
Figure 6.9 shows the results obtained in the second test performed on the SimTwo simulator. In

this test only information from the robot’s odometry is considered in the localization algorithm.

As expected, and as it is possible to verify by analyzing Figure 6.9, the localization of the robot

is clearly affected by wheel slippage on curves and for this reason the error increases as the robot

travels longer distances. A position error of 11.84 cm is achieved, and this error would increase

more and more each time the robot completes more laps. For this reason it is possible to conclude

that using only the robot’s odometry information is not a good choice for determining the robot’s

pose.

Figure 6.9: SimTwo localization test 2 result

Test 3 - Test with the robot in motion and the Pozyx system on
The last test performed on the simulator considers the fusion of the robot odometry information

and the distance measurements from the simulated Pozyx system. The result of this test is illus-

trated in Figure 6.10. A position error of 2.1 cm and an orientation error of 0.94◦, relative to the

real pose of the robot is achieved, which are low errors compared to the error obtained in the previ-

ous test. Clearly the localization of the robot has improved significantly compared to the previous
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test, where only odometry was used. Therefore, it can be concluded that using distance to anchor

measurements are a good option for improving the robot’s pose estimation.

Figure 6.10: SimTwo localization test 3 result

6.4.2 Real Robot Localization Tests Results

In this subsection the results obtained from the tests performed with the real robot are presented.

Note that the order in which the results are presented is the same order in which the tests were

described in Section 5.2.4.2. Note also, that the first, third, and fourth tests are the same as those

performed on the simulator, but were repeated on the real robot to observe and compare the results

with the other tests performed.

Test 1 - Test with the robot stopped at the initial pose and with only the Pozyx system on

Figure 6.11 demonstrates the result obtained in the first test. In this test, such as in the simulator,

the EKF was initialized with a pose of (xr,yr,θr) = (0.7,1.5,90◦) and the Pozyx system provides

distance measurements relative to each of the four anchors placed in the environment. As can be

seen in Figure 6.11 the Kalman Filter converges to the correct estimated pose of the robot, that is

(xr,yr,θr) = (0.4,0.5,90◦) with an error of 4.7 mm, which is a fairly acceptable error. Therefore,

it is concluded that the standard deviation used for the noise of the Pozyx system measurements

is adequate. The Pozyx system does not provide information about the orientation of the robot, so

there is no change in the orientation estimation.
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Figure 6.11: Real robot localization test 1 result

Test 2 - Test with the robot stopped in the initial pose and with only the ArUco system on,
considering that the distance and φ angle of the markers relative to the robot is obtained
This test is similar to the previous one, except that in this case, the ArUco system can already

provide information about the orientation and position of the robot, unlike the Pozyx system

that only provides information regarding the robot’s position. The initial pose of the EKF is

(xr,yr,θr) = (0.7,1.5,90◦), just like in the previous test. Figure 6.12 illustrates the results ob-

tained in this test. As can be seen in the figure the robot pose estimated by the EKF algorithm

converges to the correct robot pose, (xr,yr,θr) = (0.4,0.5,90◦), with a position error of 8.8 mm

and an orientation error of 0.27◦, which are acceptable errors. As such, it can be concluded that the

standard deviations used for the noise of both measurements of the ArUco markers are adequate.

Figure 6.12: Real robot localization test 2 result

Test 3 - Test with the robot in motion and with the Pozyx and ArUco systems off
This test is a repetition of one of the tests performed in the simulator, where only the robot’s

odometry information is used in the robot’s pose estimation algorithm. Figure 6.13 shows the

results obtained in this test. Once again, as expected, the localization of the robot is clearly affected

by wheel slippage on curves and for this reason the error increases as the robot travels longer



82 Results and Discussion

distances. A position error of 10.38 cm is achieved, and this error would increase more and more

each time the robot completes more and more laps. For this reason it is possible to conclude that

using only the robot’s odometry information is not a good choice for determining the robot’s pose,

as had already been concluded in the simulator test.

Figure 6.13: Real robot localization test 3 result

Test 4 - Test with the robot in motion, with the Pozyx system on and with the ArUco system
off

In this test, only information from the Pozyx system’s distance measurements and information

from the robot’s odometry are used in the EKF algorithm. The result of this test is demonstrated

in Figure 6.14. A position error of 1.6 cm and an orientation error of 1.7◦, relative to the Ground-

Truth system, is achieved. The localization of the robot has improved significantly compared to

the previous test, where only odometry was used. The next tests will aim to verify whether using

another system, in this case the one related to ArUco markers, or a combination of the two will

allow further improvement of the accuracy of the robot’s pose estimation.

Figure 6.14: Real robot localization test 4 result
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Test 5 - Test with the robot in motion, with the ArUco system on (considering only the φ

angle measurements of the markers relative to the robot) and with the Pozyx system off

In this test, EKF only includes the fusion of the robot odometry measurements and the φ angle

measurements provided by ArUco markers placed in the environment. The result of this test is

illustrated in Figure 6.15. By fusing these measurements, a position error of 6.2 cm and an orien-

tation error of 0.24◦ was obtained. In comparison with the results of the previous test, in which

information from the robot’s odometry and the Pozyx system are used, it can be concluded that by

using measurements from the φ angle it is possible to obtain a higher precision in orientation, that

is, a lower error. However, the position accuracy is lower. A fusion of the three information, i.e.

φ angle, distance provided by the Pozyx system and odometry, would improve the accuracy of the

robot’s position.

Figure 6.15: Real robot localization test 5 result

Test 6 - Test with the robot in motion, with the ArUco system on (considering the φ angle
and distance measurements of the markers relative to the robot) and with the Pozyx system
off

For this test, EKF includes the fusion of the robot’s odometry measurements, and measurements of

the φ angle and distance to the markers, which are provided by the ArUco markers. The result of

this test is shown in Figure 6.16. Through the fusion of these measurements, it is possible to obtain

a position error of 1.7 cm and an orientation error of 0.21◦.It can be concluded that the accuracy,

both in terms of position and orientation, has improved compared to the results obtained in the

two previous tests. It is possible to affirm that the use of the distance and φ angle measurements,

along with the odometry information, for the estimation of the robot’s pose is better than the use

of the distance measurements provided by the Pozyx system.
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Figure 6.16: Real robot localization test 6 result

Test 7 - Test with the robot in motion, with the ArUco system on (considering only the φ

angle measurements of the markers relative to the robot) and with the Pozyx system on
Figure 6.17 exhibits the results obtained from this test. This test includes the fusion of the robot’s

odometry data, φ angle measurements provided through ArUco markers and distance measure-

ments relative to the four Pozyx anchors. The robot achieves a position error of 1.9 cm and an

orientation error of 0.39◦. As expected and as previously speculated, the position error has de-

creased significantly compared to the test where only φ angle and odometry measurements are

used. However it should be noted that considering the fusion of both measurements provided

through the ArUco markers and information from the robot’s odometry the accuracy in the robot’s

pose is higher, as verified in the previous test.

Figure 6.17: Real robot localization test 7 result

Test 8 - Test with the robot in motion, with the ArUco system on (considering the φ angle and
distance measurements of the markers in relation to the robot) and with the Pozyx system
on
Finally, in the last test performed, all measurements are used, that is, odometry, distance to the

four Pozyx anchors, and distance and φ angle provided by the ArUco markers. In other words,

a fusion of all previous measurements is performed. The result of this test is shown in Figure
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6.18. A position error of 2.1 cm and an orientation error of 0.75◦ is achieved. Although these

are considered low errors, they are still higher than the errors obtained in the test where only the

odometry measurements are fused with the distance and φ angle measurements provided by the

ArUco markers.

Figure 6.18: Real robot localization test 8 result

Summary of tests where the robot is in motion
The Table 6.10 presents the summary of the obtained results in each of the tests performed with

the real robot in motion. The numbers of the tests shown in the table are the same as the ones by

which the tests were presented earlier.

Table 6.10: Summary of the obtained results

Test Position Error (cm) Orientation Error (◦)
3 10.377 2.093
4 1.626 1.653
5 6.186 0.237
6 1.710 0.212
7 1.987 0.393
8 2.166 0.753

By analyzing the Table 6.10 it can be concluded that the combination of input measurements to

the Kalman Filter with which the most accurate robot pose is obtained, relative to Ground-Truth,

is the combination of the robot’s odometry data with the measurements of the φ angle and distance

extracted from the ArUco markers view, i.e. test 6. This is because these measurements extracted

from the ArUco markers have less error and less noise (lower standard deviation), as concluded in

previous experiments. Nevertheless, it should also be noted that the results obtained in tests 4, 5,

7 and 8 are also reasonable in comparison with the results obtained when using only the robot’s

odometry to determine the robot’s pose, referring to the test 3.
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Chapter 7

Conclusions and Future Work

For this dissertation, the main purpose was to develop a localization system using UWB technol-

ogy and ArUco markers. This system would be able to estimate the pose of a mobile robot with

high accuracy.

To achieve the goal of this work, a localization system based on beacons was developed,

using distance and angle measurements relative to these beacons. In this case, the beacons are

Pozyx anchors, from which it is possible to extract distance measurements, and ArUco markers,

from which it is possible to extract distance and angle measurements. The fusion of the different

extracted measurements was achieved by an Extended Kalman Filter.

In order to be able to compare the results with another localization system, an additional

localization system was developed, that should be accurate enough to be designated as the Ground-

Truth of the system. This additional system was developed by placing an ArUco marker on top

of the robot and centered with its referential frame and placing a camera above the environment

where the robot is moving. In this way, the camera can detect the marker placed on the robot and

determine its pose.

In order to understand the accuracy and noise of the Pozyx and ArUco measurements several

initial experiments were performed in different scenarios. These experiments allowed to conclude

that the distance and φ angle measurements extracted from the ArUco markers were very accurate

and not very noisy (low standard deviation). The position measurements (xr,yr) of the robot, on the

other hand, which are also possible to extract by combining several measurements extracted from

the ArUco markers, are not very accurate and have a high error. This is due to the accumulation of

errors from all the measurements used for the calculation, especially the pitch angle which, when it

should be 0◦, has a larger error. For this reason it was decided not to take into account these (xr,yr)

measurements in the developed localization algorithm. Regarding the distance measurements of

the Pozyx technology it was verified that they do not present a high error, however this error is

higher compared with the distance measurements extracted from the ArUco markers, as well as

the noise which is also higher. Thus, in the EKF algorithm, this study was important, because it

is necessary to quantify the noise of the measurements, through the standard deviation. For the

additional system developed, a similar study was performed, from which it was concluded that it

87



88 Conclusions and Future Work

is an accurate localization system given the low error achieved. Therefore, this system was used

as Ground-Truth.

Through the different localization tests performed, it was possible to conclude that the different

tested versions of the algorithm achieved promising results compared to localization results where

only the robot’s odometry is used. However, it was possible to conclude that the most favorable

combination of measurements, i.e., the one that led to the most accurate localization, was the use

of distance and φ angle measurements extracted from ArUco markers, and data from the robot’s

odometry. Thus it was possible to conclude that using the Extended Kalman Filter, with careful

tuning, is a successful algorithm for estimating the robot’s pose, along with the measurements

used in it. Overall, the results obtained through the use of these measurements showed a position

accuracy in the order of centimeters, unlike other existing technologies, such as GPS and Wi-Fi,

whose error is in the order of meters, as verified in the literature review.

It is worth mentioning that a paper was written about the work developed in this dissertation.

The paper, entitled Sensor Fusion for Mobile Robot Localization using Extended Kalman Filter,

UWB ToF and ArUco Markers, was accepted by the International Conference on Optimization,

Learning Algorithms and Applications (OL2A 2021).

As future work, it would be interesting to extend the studies of the different measurements in

larger spaces, in order to verify if the accuracy remains similar. Regarding Pozyx technology, it

would be interesting to perform studies on the possible restrictions of space, i.e. in NLOS envi-

ronments. Concerning the visualization of the ArUco markers, an intensive study of the influence

of the luminosity of the environment would help to understand its influence on the precision of

the acquisition of the measurements. The work could be expanded to use a larger robot, in a

larger space, and in an industrial environment. Finally, it would also be interesting to include

measurements from other sensors in the Kalman Filter algorithm. This way, it would be possible

to conclude if it is possible to improve the accuracy of the algorithm by using data from other

sensors.

In conclusion, through the work developed, it was possible to show that the use of Pozyx

technology and ArUco markers scattered around the environment, along with the measurements

extracted from them, are an effective tool to improve the accuracy of a robot’s localization, com-

pared to using only its odometry.
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