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ABSTRACT 

Active travel modes can help solve adverse problems such as pollution and congestion caused by 

motorized mobility in recent years. The bicycle, when compared to other modes of transportation, has a 

significant impact on environmental, social, and economic aspects. Due to the emerging issues faced 

globally by motorized modes of transportation, governments around the world are promoting initiatives 

that curb this. Amongst such promotions, cycling is much discussed; however, its practical application 

in many cities faces significant challenges. The investments made to increase cycling rates still seek a 

concrete place within the policies applied to a city. Therefore, various methods and tools are being 

developed to support and transform the built environment from a cycling perspective. The “BooST - 

Boosting Starter Cycling Cities” project has developed tools that provide technical and specific insights 

for starter cycling cities. Among these, the Gross Potential for Cycling (GPC) tool aims to evaluate the 

propensity to cycle in starter cities. 

The objective of this thesis is to trial the validity of the conceptual model of the Gross Potential for 

Cycling. The research area chosen is in the eastern part of the Netherlands, close to the German border. 

To reach the objective, descriptive analyses are performed between the GPC and cycling demand data 

to have a spatial understanding of the data’s performance. Then, bivariate statistical analyses are 

performed; these comprise correlation analysis and simple linear regressions, which are intended to 

identify the relationship of the GPC and its indicators individually with the cycling demand data. 

Multivariate statistical analysis, particularly multiple regression analysis, is performed to test the 

validity of the GPC conceptual model. 

The research identified that among the cycling demand data, the results of the Gross Cycling Potential 

explain approximately 32% of the total number of bicycle trips. The number of trips per capita by 

bicycle, total kilometers traveled by bicycle, and kilometers traveled per capita by bicycle are explained 

by GPC respectively 22.8%, 10.5% and 4.5%. However, when analyzing the conceptual model from 

which the GPC originates, a different trend was found among some indicator’ weights and their 

statistical significance; that is, some indicators that had more relevant weights in the conceptual model 

proved to be less relevant in the analyses performed, and in some cases non-significant. The conclusions 

drawn from this thesis support the idea that the GPC tool is relevant to evaluate the number of bicycle 

trips. However, it can still be improved with the combination of similar indicators and the adequacy of 

the weights of specific indicators. 

 

KEYWORDS: Gross Potential for Cycling, starter cycling cities, cycling assessment method, the 

Netherlands, cycling demand.  
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RESUMO 

Os modos de viagem activos podem ajudar a resolver problemas adversos como a poluição e o 

congestionamento provocados pela mobilidade motorizada nos últimos anos. A bicicleta, quando 

comparada a outros modos de transporte, tem um impacto significativo sobre os aspectos ambientais, 

sociais e econômicos. Devido às questões emergentes enfrentadas globalmente pelos meios de transporte 

motorizados, os governos de todo o mundo estão promovendo iniciativas que restringem isto. Entre tais 

promoções, o ciclismo é muito discutido; entretanto, sua aplicação prática em muitas cidades enfrenta 

desafios significativos. Os investimentos feitos para aumentar as taxas de ciclismo ainda buscam um 

lugar concreto dentro das políticas aplicadas a uma cidade. Portanto, vários métodos e ferramentas estão 

sendo desenvolvidos para apoiar e transformar o ambiente construído a partir de uma perspectiva 

ciclística. O projeto “BooST - Boosting Starter Cycling Cities” desenvolveu ferramentas que fornecem 

conhecimentos técnicos e específicos para as cidades principiantes ao ciclismo. Entre elas, a ferramenta 

Potencial Bruto para a Bicicleta (PBB) visa avaliar a propensão para ciclismo em cidades principiantes. 

O objetivo desta tese é testar a validade do modelo conceitual do Potencial Bruto para a Bicicleta. A 

área de pesquisa está localizada na parte leste da Holanda, perto da fronteira com a Alemanha. Para 

alcançar o objetivo, são realizadas análises descritivas entre os dados PBB para a área de estudo com 

seus respectivos dados de demanda de ciclismo, no intuito de ter uma compreensão espacial do 

desempenho dos dados. Em seguida, são realizadas análises estatísticas bivariadas; estas compreendem 

em análises de correlações e regressão linear simples, que se destinam a identificar a relação do PBB e 

seus indicadores individualmente com os dados de demanda ciclística. A análise estatística multivariada, 

particularmente a análise de regressão múltipla, é realizada para testar a validade do modelo de cálculo 

do PBB. 

A pesquisa identificou que entre os dados de demanda de ciclismo, o número total de viagens de bicicleta 

é explicado pelo resultado final do Potencial Bruto para a Bicicleta em aproximadamente 32%. O 

número de viagens per capita por bicicleta, o total de quilômetros percorridos por bicicleta e os 

quilômetros percorridos per capita por bicicleta são explicados pelo PBB respectivamente 22,8%, 10,5% 

e 4,5%. Entretanto, ao analisar o modelo conceitual do qual o PBB se origina, foi encontrada uma 

tendência diferente entre os pesos de alguns indicadores e sua significância estatística em relação ao 

estudo realizado nesta tese, ou seja, alguns indicadores que tinham pesos mais relevantes no modelo 

conceitual provaram ser menos relevantes nas análises realizadas, e em alguns casos não significativos. 

As conclusões extraídas desta tese apóiam a idéia de que a ferramenta PBB é uma ferramenta altamente 

eficiente para avaliar o número de viagens de bicicleta. No entanto, ela ainda pode ser melhorada com 

a combinação de indicadores similares e a adequação dos pesos de certos indicadores. 

 

PALAVRAS-CHAVE: Potencial Bruto para a Bicicleta, cidades principiantes ao ciclismo, método de 

avaliação ciclística, Holanda, demanda ciclistica. 
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1 

INTRODUCTION 
 

 

Mobility has a crucial role in the socio-economic development of cities (Ros-McDonnell et al. 2020). 

However, over the last 30 years, mobility has brought adverse effects to urban areas (Ros-McDonnell et 

al. 2020). Problems such as high levels of noise, pollution, congestion, parking problems, road trauma, 

and negative impacts on health are due considerably to high automobile use (Albertí et al. 2017; 

McLeod, Babb, and Barlow 2020; Ros-McDonnell et al. 2020). However, active modes of travel can 

offer solutions to these problems (McLeod et al. 2020). By comparing cycling to other modes of 

transportation, cycling can significantly impact environmental, social, and economic issues (Arellana et 

al. 2020; Cavenett 2010; Glavić, Mladenović, and Milenković 2019). Bicycle travel is low-cost and 

health-enhancing, as the only source of energy used is from the rider (Cavenett 2010; Handy, van Wee, 

and Kroesen 2014). Over the years, though, the marginalization of cycling has created a historical barrier 

to its use (Koglin 2015, Urry 2004, as cited in McLeod et al. 2020). 

Cycling is a way to move to more sustainable transportation, making cities more livable (Koglin 2014). 

Due to the benefits that cycling can offer to society and the emergency issues faced globally, 

governments worldwide promote initiatives to improve cycling in their cities (Arellana et al. 2020). In 

Denmark, Germany, and the Netherlands, cycling as a transport option is already widespread (Pucher 

and Buehler 2008). However, the implementation of bicycling in many cities faces many challenges 

(Rupprecht, Urbanczyk, and Laubenheimer 2010). There is a need to change the culture regarding 

bicycling and its practicality, showing it is a practical, fast, and flexible mode of transport. Bringing this 

information to society is necessary to invest in cycling policies and provide quality infrastructure and 

safety for its users (Bypad 2008; Mitra and Schofield 2019). Cycling as a mode of transport has been 

promoted worldwide through initiatives to promote its use as well as providing infrastructure and 

policies (Osama et al. 2020). But investments are still searching for a concrete place within a policy 

package applied to a city (Glavić et al. 2019). Several methods and tools are being developed and applied 

to transform the built environment through a cycling perspective (Arellana et al. 2020). As a result, there 

is a breadth of studies focusing on identifying factors that influence bicycle (Cervero, Denman, and Jin 

2019). 

Studies suggest that bicycle travel is related to various factors, ranging from topographical and climate 

issues to the quality of the existing cycling network and pro-bicycling policies (Cervero et al. 2019). In 

summary, such factors are generally divided into physical, individual and social (Silva et al. 2018). The 

physical environment factors are significantly related to natural environmental and built environmental 

ones (Silva et al. 2018), as well as individual and social factors, which are strongly related to socio-

demographic features (Handy et al. 2014; Xing, Volker, and Handy 2018). Several tools to support 

cycling development have been made available. Popular methods applied in the literature are the Bicycle 

Level of Service and Bikeability Index (Arellana et al. 2020). The Bikeability Index analyzes the easy 
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access to a destination by bicycle as a mode of transportation (Arellana et al. 2020; Chevalier and Xu 

2020).  

Many of these tools are easily applicable in mature cycling cities, which are often called “champion” or 

“climbing” cities (Silva et al. 2021; Silva, Marques, et al. 2019). “Champion” cycling cities have more 

than 20% bicycle modal share and focus on keeping people cycling (Bypad 2008). Climber cities have, 

generally, between 10% and 20% bicycle modal share and aim to improve their cycling networks and 

promote cycling to different groups (Bypad 2008). Starting cycling cities are cities with less than 10% 

bicycle share, usually aiming to make bicycle commuting possible, safe and comfortable (Bypad 2008). 

However, there is a lack of specific tools for cycling starter cities (Silva, Marques, et al. 2019). In this 

context, the project “BooST - Boosting Starter Cycling Cities” developed tools that provide technical 

and specific knowledge for these contexts (Silva et al. 2021).  

Among these tools, the Gross Potential for Cycling (GPC) aims to assess the propensity to cycle under 

a spatial perspective (Silva et al. 2021). Based on the literature, this tool was developed to support 

planners in this transition through a spatial visualization of potential cycling areas calculated via two 

dimensions (Silva et al. 2021). The first dimension, comprised of four indicators, is about the target 

population, evaluated through socio-economic factors (Silva et al. 2021). The second dimension, with 

six indicators, is based on the target areas, verifying issues of the natural and built environment (Silva 

et al. 2021). The tool has so far only been applied in starter cycling cities in Portugal and has never been 

applied to other contexts (Silva et al. 2021). The GPC was developed from an evolution of another tool, 

called the Potential for Cycling Assessment Method (Silva et al. 2018). The Potential for Cycling 

Assessment Method was proved helpful in the planning process during a workshop with planners (Silva, 

Teixeira, Proença, et al. 2019). After attending the workshop, planning professionals defined the tool as 

having high utility to support daily planning decisions regarding cycling (Silva, Teixeira, Proença, et al. 

2019). 

In summary, the GPC tool is being applied in several cities, as its usefulness among planners has already 

been tested in its previous version. However, the model is based on a conceptual model developed 

through a literature review. The literature review is focused on bicycle travel behavior, with a particular 

emphasis on the factors influencing bicycling in starter cycling cities. Since the GPC model is 

conceptual, there is a need to trial the validity of this model. 

 

1.1. OBJECTIVE 

The objective of this thesis is to trial the validity of the conceptual model of the Gross Potential for 

Cycling. In summary, the thesis’s primary purpose is to test the conceptual model of the GPC, the 

relevance and explanatory power of its indicators, and the aggregate model in generating bicycle 

demand. To answer the central objective of this thesis, an area in the eastern Netherlands was selected 

as a case study. The case study site was chosen as it is a “champion” area. The purpose of applying the 

tool to a “champion” area is to have a high spatial disaggregation database with a significant number of 

bicycle users to do statistical tests. The validation of the tool is explored using cycling demand data 

based on the 2018 Dutch mobility survey.   

The objective is answered through descriptive analysis, bivariate, and multivariate statistical analysis 

based on the cycling demand. The bivariate statistical analysis is performed using correlations and 

simple linear regressions. The multivariate analysis is performed through multiple linear regressions. 

After such analysis, some model optimization tests are developed. 
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1.2. STRUCTURE OF THE DISSERTATION 

This initial chapter includes a brief background on the research’s problems, the research justification, 

the research question, its objective, and the organizational structure of the work. Chapter two presents 

the literature review, aiming to elucidate the most recent theoretical issues about (a) factors that 

influence bicycling measures and (b) cycling assessment methods. The first part identifies the factors 

that influence bicycling, whether or not it is incorporated into cycling assessment methods. It was 

divided into three major groups: individual, physical environment, and social environment factors. A 

second part reviewed methods for assessing cycling potential, revealing fourteen tools.   

Chapter three presents a methodological proposal for this study. First, the (a) objective and research 

approach are presented, followed by (b) the study area, (c) data collection, (d) the Gross Potential for 

Cycling and (e) the research methods. The GPC tool is explored in this thesis, based on a case study in 

the eastern Netherlands. The data collection is performed through five different databases. Finally, the 

methods presented are based on statistical methods.  

Chapter four presents (a) a descriptive analysis of the results obtained with the GPC tool linked with 

cycling demand. Next, (b) statistical analyses developed based on the methods presented in the 

methodology are shown. Finally, a (c) discussion about the obtained results is performed. Chapter five 

presents the final considerations relative to the research as well as recommendations for future research. 

Figure 1 summarizes the structure of this research. 

 

Figure 1 – Structure of the research 

Source: Elaborated by the author  
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EVALUATION OF FACTORS AND 
MEASURES ON CYCLING 

 

 

This chapter aims to elucidate the theoretical discussion about the factors that influence cycling and the 

tools that identify the most prone areas for cycling. The chapter is developed in two sections: the first 

section aims to understand the factors that influence cycling; the second section is intended to present 

some of the methods for assessing cycling potential available worldwide. This chapter aims to present 

the academic contributions to inform the discussion of this thesis. 

 

2.1. FACTORS INFLUENCING CYCLABILITY MEASUREMENT 

Bicycle commuting depends on several factors, which need to be identified to understand their influence 

on cycling. Several authors research the factors that influence bicycle commuting. For this study, 34 

papers were reviewed, including papers of literature reviews and case studies. The factors presented by 

these authors were divided in this study into physical environment, individual and social factors.  

 

2.1.1. PHYSICAL ENVIRONMENT FACTORS 

In the literature review conducted by Silva et al. (2018), it is concluded that several studies relate the 

factors of cycling potential with the physical environment, especially with natural environmental and 

built environmental factors. Based on the papers studied, the cycling infrastructure, bicycle facilities, 

security, bike-sharing, bicycle parking, traffic calming, distance, signaling of intersections, dangerous 

traffic conditions, the mix of land use, pavement quality, vegetation at the intersections, population 

density, and presence of a university and school were analyzed as built environments factors. 

Topography and weather were analyzed as natural environment factors. 

Regarding the built environment, this literature review revealed 16 different factors from a total of 27 

papers, whether literature reviews or empirical studies. The factors are discussed below. Factors related 

to cycling infrastructure were found more accessible in the papers studied, so those are more detailed 

than the others. 

Sites with a high rate of bicycle use tend to have a good cycling infrastructure (Aldred, Woodcock, and 

Goodman 2016; Mitra and Schofield 2019; Pucher and Buehler 2008; Pucher, Buehler, and Seinen 2011; 

Pucher, Dill, and Handy 2010). A paper that analyzes Welsh and English census data and bicycle 

commuting via surveys present that good quality infrastructure is paramount for using the bicycle 
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(Pucher and Buehler 2008). In England, improvements to cycle infrastructure combined with other 

policies increased cycling trips of 30 minutes or more once a month by 2.78% (Sloman et al. 2009 as 

cited in Yang et al. 2010). Other studies outside the European context also confirm that improvements 

in bicycle infrastructure are related to high cycling rates. The city of Portland in the United States of 

America (USA) has improved infrastructure and the implementation of integrated policies in various 

fields, which has resulted in a six-fold increase in cycling in the city since 1990 (Pucher et al. 2011). In 

the region of Toronto in Canada, infrastructure improvements have helped promote cycling as a fast, 

convenient and flexible mode of transportation (Mitra and Schofield 2019). Pucher et al. (2010), based 

on several authors, point out that high levels of infrastructure correlate with high travel rates.  

Another strong influence in using the cycling infrastructure is segregated or off-road bicycle paths 

(Buehler, Pucher, and Bauman 2020; Hull and O’Holleran 2014; Titze et al. 2008 as cited in Pucher et 

al. 2010). Off-road bicycle paths usually have two lanes separated from motorized traffic (Pucher et al. 

2010). The guidelines for cycle infrastructure in the Netherlands can be used as good examples for 

adopting segregated bicycle paths (Hull and O’Holleran 2014). In the Netherlands, the segregation of 

bicycle paths leads to a feeling of increased safety. According to the analysis conducted by Hull and 

O’Holleran (2014), in six cities, there is a higher number of cyclists who use segregated paths than other 

paths; the study presents segregation as an intervention not so expensive since bollards/vegetation are 

cheap and can offer enough segregation from the cyclists’ point of view. In Odense, Denmark, cyclists 

see off-road bike paths as very safe, and these are used by women and men, old and young people (Troels 

Andersen - City of Odense s.d. as cited in Pucher and Buehler 2008). 

A study conducted in Australia shows that off-road bicycle paths are more likely to be used (Titze et al. 

2008 as cited in Pucher et al. 2010), and the same happens for studies conducted in the USA (Buehler 

et al. 2020). There is a greater preference in using this type of bike path than the use of painted lanes on 

roads, as it brings more safety to the user (Cavenett 2010; McNeil, Monsere, and Dill 2015; Mitra and 

Schofield 2019; Winters et al. 2013). Besides safety, in a survey conducted in Vancouver, Canada, users 

preferred off-road bike paths because they were closer to beautiful landscapes, without noise, traffic, or 

pollution (Winters et al. 2011, 2013). According to a study conducted in Melbourne, Australia, women 

prefer off-road bike paths, and 20% would not use the bicycle in another type of bike path (Rose 2007 

as cited in Pucher et al. 2010). 

Investigations highlight the importance of an infrastructure network (Buehler and Pucher 2012; Hull 

and O’Holleran 2014; Winters et al. 2013; Xing et al. 2018). In the Netherlands, an empirical study 

shows that the improvement and the increase of the extension of bicycle networks increased the use of 

this type of transport. During the three-year follow-up, there was an 8% increase in the distance cycled 

per person and 4% in the bicycle use frequency per person (Wilmink e Hartman 1987, as cited in Yang 

et al., 2010). An investigation conducted in the cities of Edinburgh located in Scotland, Cambridge 

located in England, Amsterdam, Den Haag, Rotterdam and Utrecht located in the Netherlands, 

concluded that cycling infrastructure design is essential to encourage cycling, specifically with a vast 

network to connect all land uses (Hull and O’Holleran 2014).  

It is essential to connect the cycling network with bicycle facilities (Winters et al. 2013). These may be 

described as lockers, changing rooms, locker rooms, bicycle maintenance equipment, showers, among 

others (Pucher and Buehler 2008). Bicycle facilities encourage women to use this type of transport 

(Buehler et al. 2020). Denmark, Germany, and the Netherlands have been planning and building bicycle 

facilities since the 1970s; each municipality is responsible for developing plans that fit their local needs 

(Pucher and Buehler 2008). There is a need for bike facilities between three and six blocks from 

anywhere in the city (Pucher et al. 2011).  
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The most mentioned bicycle facilities are showers at workplaces (Hull and O’Holleran 2014; Lee and 

Pojani 2019; Pucher et al. 2010), which significantly impact the bicycle use to go to work (Wardman et 

al. 2007, as cited in Pucher et al. 2010). In surveys conducted in Singapore, sweating was one of the 

most significant barriers for workers to go to work by bicycle; also, for women, there is a need for a 

changing room to change clothes and redo their makeup (Lee and Pojani 2019). Other factors mentioned 

are bicycle repair facilities, lockers near public transportation, bicycle rental, bike wash, and elevators. 

Hartanto (2017) presents the need for bicycle hubs with existing bicycle repair stations. Based on an 

application of a Western Bikeability Index in the Chinese context, Chevalier and Xu (2020) opine that 

bicycle repair stores impact bicycle ownership. The use of lockers has significant impacts on cyclists at 

transportation stations (Taylor and Mahmassani 1996 as cited in Pucher et al. 2010). In the Netherlands, 

rental bicycles in train stations resulted in a slight reduction of car use and increased train travel (Martens 

2007; Pucher and Buehler 2008). Moreover, the review conducted by Pucher et al. (2010) emphasizes 

the importance of bicycle washing in stations. In Washington, the Metrorail system has elevators to 

facilitate the access of bicycles (Pucher et al. 2011). 

The word safety is strictly related to cycling, as this is one of the main reasons that the Netherlands, 

Germany, and Denmark have higher levels of bicycle use than countries as the United Kingdom (UK) 

and USA, among the elderly, children, and women (Pucher and Buehler 2008). These authors (2008) 

show that cycling in Germany and Denmark is twice as safe as cycling in the UK and that in the 

Netherlands, it is three times as safe as cycling in the UK. The authors also point out that the three 

countries have started to improve cycling safety since 1970. Winters et al. (2011) conclude from surveys 

applied in Metro Vancouver that one of the essential factors in the probability of riding a bicycle is 

safety. Mitra and Schofield (2019) applied surveys in Toronto at three train stations, and their literature 

review suggests that women are encouraged to ride a bicycle to train stations in the suburbs if they feel 

safe.  

Bicycle theft, lack of lighting, and traffic safety are significant concerns of cyclists. In the research 

conducted by Cavenett (2010), one of the biggest concerns of cyclists in Amsterdam in 2006 was bicycle 

theft. In interviews conducted in Cambridge, England, most respondents had hostile relationships with 

owning a bike due to the high risk of theft and vandalism (Aldred 2010). In the literature review by 

Pucher et al. (2010), in northern European countries, such as the Netherlands, Germany, and Denmark, 

specific facilities such as guarded parking are proposed to reduce theft and increase safety. Lee and 

Pojani (2019) also show that the most important safety concerns are bike theft and better lighting in their 

literature review. The cities of Amsterdam, Den Haag, Rotterdam, and Utrecht in the study conducted 

by Hull and O’Holleran (2014) are scored as the highest in terms of attractiveness due to the high 

perception of safety. One of the best points analyzed was that the suburban cycling routes had high-

quality lighting even at night.  

Bicycle parking and traffic calming; distance and population density; intersections signalization and 

dangerous traffic conditions; the mix of land use, pavement quality, vegetation, and presence of the 

university and school had a similar incidence in the papers studied. These are described in a decreasing 

way, being the bicycle parking and traffic calming with more mentions and mix of land use among 

others with fewer mentions. 
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Table 1 – Influence on the use of the bicycle on built environment factors I 

Source: Elaborated by the author 

Factor Definition Influence  References 

Cycling 
infrastructure 

Good infrastructure for 
cycling 

+ 

Aldred et al. (2016); Pucher and Buehler (2008); 
Pucher at al. (2011, 2010); Sloman et al. (2009), as 
cited in Yang et al. (2010); Mitra and Schofield 
(2019) 

Cycling 
infrastructure 

Segregated bicycle 
paths or off-road 
bicycle paths 

+ 

Buehler et al. (2020); Cavenett (2010); Hull and 
O’Holleran (2014); McNeil et al. (2015); Mitra and 
Schofield (2019); Rose (2007), as cited in Pucher et 
al. (2010); Titze et al. (2008), as cited in Pucher et al. 
(2010); Troels Andersen - City of Odense s.d., as 
cited in Pucher and Buehler (2008); Winters et al. 
(2013) 

Cycling 
infrastructure 

Existence and 
increase of networks 

+ 
Buehler and Pucher (2012); Hull and O’Holleran 
(2014); Wilmink e Hartman (1987), as cited in Yang 
et al. (2010); Winters et al. (2013); Xing et al. (2018) 

Bicycle 
facilities 

Bicycle facilities at 
workplaces 

+ 
Hull and O’Holleran (2014); Lee and Pojani (2019); 
Wardman et al. 2007, as cited in Pucher et al. (2010) 

Bicycle 
facilities 

Different bicycle 
facilities 

+ 
Chevalier and Xu (2020); Martens (2007); Pucher 
and Buehler (2008); Taylor and Mahmassani (1996), 
as cited in Pucher et al. (2010) 

Safety Safety + 
Mitra and Schofield (2019); Pucher and Buehler 
(2008); Winters et al. (2011) 

Safety Bicycle theft - Aldred (2010); Cavenett (2010); Pucher et al. (2010) 

Safety Lack of lighting - Hull and O’Holleran (2014) 

 

Several authors present the importance of good and secure bicycle parking infrastructure in the physical 

environment to positively influence bicycle commuting (Hull and O’Holleran 2014; Martens 2007; 

Mitra and Schofield 2019). The literature review by Pucher et al. (2010) shows that bicycle parking lots 

in European, North American and Australian cities have grown almost threefold in the recent decades. 

Parking increases the perception of convenience when using the bicycle (Pucher et al. 2011) since the 

lack of secure parking areas negatively influences the use of the bicycle (Cavenett 2010). Hull and 

O’Holleran (2014) studied the three Dutch cities with high-quality bicycle parking; Martens (2007) 

study states that cyclist satisfaction has increased after a program to upgrade bicycle parking near Dutch 

train stations was applied. In Cambridge, some car parking was converted into bicycle parking and had 

positive results (Hull and O’Holleran 2014). In surveys applied in Toronto, bicycle parking lots are 

established as necessary at the end of trips to the recreational cyclist (Mitra and Schofield 2019). Also, 

it is recommended in some empirical studies that cycling infrastructure, such as bicycle parking, should 

be strongly related to public transport use so that users can cycle to public transportation stations or 

stops (Cavenett 2010; Martens 2007; Mitra and Schofield 2019).  

Another facilitator of cycling are bicycle-sharing systems, according to the literature review of  McLeod 

et al. (2020) and Xing et al. (2018). As reported, bicycle rental at public transportation stations or stops 

and other strategic places positively influences bicycle commuting (Martens 2007; Mitra and Schofield 

2019). According to a literature review by Pucher et al. (2010), the city of Amsterdam started bike-

sharing programs in 1960, promoting access to bicycles for the entire community, whether short-term 
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or annual sharing. As another example, China offers a very accessible bicycle sharing system for cyclists 

(Yang et al. 2019); after the implementation of the program, more than 19 million Chinese started using 

the system (Tsing Hua University Planning and Design Institution and Mobike 2017, as cited in Yang 

et al. 2019). In Washington, in the USA, the expansion of bicycle sharing tripled bicycle trips to work 

between 1990 and 2008 (Handy et al. 2014). 

Traffic calming increases the perception of safety (Hull and O’Holleran 2014; Pucher and Buehler 

2008). It limits cars’ speed in residential neighborhoods, imposing restricted traffic rules (Pucher and 

Buehler 2008). Among the central policies and measures to promote bicycle use, Dutch, German and 

Danish cities promote traffic calming for all neighborhoods, streets where the bicycle has priority over 

cars (Pucher and Buehler 2008). The European experience shows that traffic calming encourages cyclists 

to pedal (Clarke and Dornfeld 1994, as cited in Pucher et al. 2010). Cambridge promotes comfort to 

cyclists due to the traffic calming measures (Hull and O’Holleran 2014). The city of Vancouver, Canada, 

is a leader in traffic calming (Pucher et al. 2011), and the streets with traffic calming are the most used 

by cyclists (Winters et al. 2011). 

The use of the bicycle as a mode of transportation is more common among small distances (Carse et al. 

2013; Cavenett 2010). A study conducted in Vancouver, Canada, states that cyclists are willing to ride 

a maximum of half an hour (Winters et al. 2013). The study conducted in Cambridge indicated distance 

as the key to success in using the bike (Carse et al. 2013); in the city, the distances to points of interest 

are mainly short, facilitating the use of the bicycle (Aldred 2015). The literature review by Handy et al. 

(2014) and Lee and Pojani (2019) shows that in short distances, cycling is positive, and longer distances 

generate a negative impact on each increment of distance, which favors the use of another type of 

transport, such as the car. 

According to studies conducted in the United States applied in the form of a survey, people living in 

high-density neighborhoods are more likely to use the bicycle (Buehler et al. 2020; Schneider and 

Stefanich 2015, as cited in Kamel, Sayed, and Bigazzi 2020; Pucher and Buehler 2006). Land use 

planning in northern European countries promotes mixed and compact development in cities to drive 

high-density neighborhoods, consequently generating more healing travel distances and encouraging 

bicycle use (Schmidt and Buehler 2007 as cited in Pucher et al. 2010). 

Priority in the intersection is a concern of cyclists. In 2006, research conducted by Cavenett (2010) in 

Amsterdam showed that one of the biggest concerns between cyclists was the long wait at intersections. 

Bicycle lanes should become colorful at intersections, which should feature synchronized signals and 

signaling along the road to indicate the correct speeds (Pucher and Buehler 2008). It is becoming more 

and more apparent that roads designed for cars can negatively affect bicycle use (Aldred 2010; Buehler 

et al. 2020). As proof of this need, one author brings the information that people are willing to make 

longer journeys if it is related to less traffic (Aldred 2015). 

Other relevant factors that are included in the choice of this type of transport are a mix of land use 

(McLeod et al. 2020), which aims to keep trips short, reducing the need for the car (Pucher and Buehler 

2008); quality of the pavement (Landis et al. 1998 as cited in Pucher et al. 2010), and vegetation at the 

intersections. Regarding this last factor, cited during interviews conducted in Singapore, interviewees 

stated that they prefer shading provided by vegetation to human-made shelters (Lee and Pojani 2019). 

Also, the presence of student environment, such as schools and universities, is more likely to promote 

the use of the bicycle (Sisson et al. 2006 as cited in Pucher et al. 2010). 
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Table 2 – Influence on the use of the bicycle on built environment factors II 

Source: Elaborated by the author 

Factor Definition Influence  References 

Bicycle parking  Bicycle parking + 
Cavenett (2010); Hull and O’Holleran (2014); 
Martens (2007); Mitra and Schofield (2019) 

Bicycle sharing 
Bicycle sharing in 
strategic points 

+ 
Handy et al. (2014); Martens (2007); Mitra and 
Schofield (2019); Yang et al. (2019) 

Traffic calming Traffic calming + 
Clarke and Dornfeld (1994), as cited in Pucher et al. 
(2010); Hull and O’Holleran (2014); Pucher and 
Buehler (2008); Winters et al. (2011) 

Distances  Small distances + 
Carse et al. (2013); Cavenett (2010); Winters et al. 
(2013) 

Population 
density 

High population 
density 

+ 

Buehler et al. (2020); Schmidt and Buehler (2007), 
as cited in Pucher et al. (2010); Schneider and 
Stefanich 2015, as cited in Kamel, Sayed, and 
Bigazzi (2020) 

Intersections 
signalization  

Intersections 
signalization 

+ Cavenett (2010) 

Intersections 
signalization 

Shortcuts + Pucher and Buehler (2008) 

Dangerous 
traffic 
conditions  

Roads designed for 
cars 

- Aldred (2010); Buehler et al. (2020) 

The mix of 
land use 

The mix of land use + McLeod et al. (2020); Pucher and Buehler (2008) 

Pavement 
quality 

Pavement quality + Landis et al. 1998, as cited in Pucher et al. (2010) 

Vegetation Vegetation + Lee and Pojani (2019) 

Presence of 
university and 
school 

Presence of university 
and school 

+ Sisson et al. 2006, as cited in Pucher et al. (2010) 

 

Regarding the natural environmental factors, attention is drawn to topography and climate (Pucher et al. 

2011). These are referred to equally among the papers studied. 

Table 3 – Influence on the use of the bicycle on natural environment factors 

Source: Elaborated by the author 

Factor Definition Influence  References 

Topography Flat topographies + Cavenett (2010) 

Topography Steep topographies - Hartanto (2017); Winters et al. (2013)  

Weather Rainy climate - Winters et al. (2013) 

Weather High temperatures - Lee and Pojani (2019) 

 

Flat topographies are more convenient for cyclists. This is why the Amsterdam topography is ideal for 

cycling (Cavenett 2010). The literature review by Lee and Pojani (2019) shows that steep topography is 

not very suitable for cyclists. Steep topographies are usually avoided, according to a study conducted at 

21 train stations in the Arnhem-Nijmegen region of the Netherlands (Hartanto 2017). Hilliness is 

negatively associated with cycling in the study conducted in Metro Vancouver (Winters et al. 2013). 

Slopes between 0% and 3% are considered flat and with total fitness for cycling, stretches with 3% to 

5% slope are considered somewhat satisfactory for cycling up to medium distances, while slopes above 
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5% are unsuitable for cycling (Instituto da Mobilidade e dos Transportes Terrestres 2011). However, 

slopes of 5% to 6% are acceptable for up to 240 meters, 7% routes up to 120 meters, 8% routes up to 90 

meters, 9% routes up to 60 meters, 10% routes up to 30 meters and greater than 11% routes up to 15 

meters (Instituto da Mobilidade e dos Transportes Terrestres 2011).  

Rainy climates are not convenient for cyclists (Winters et al. 2011), but the climate is also a barrier in 

high temperature environments. For example, in Singapore, cycling rates fall during the afternoon due 

to high temperatures (Lee and Pojani 2019). A mild climate is best suited for cycling (Heinen, van Wee, 

and Maat 2010). 

 

2.1.2. INDIVIDUAL AND SOCIAL FACTORS 

Individual and social factors are strongly related to socio-demographic factors (Handy et al. 2014; Xing 

et al. 2018). The influence of gender, age, income, car ownership, presence of students, level of 

education, and ethnicity are analyzed as individual factors. The support to the social environment is 

analyzed at the end. A total of 19 papers were analyzed, being literature reviews or empirical studies.  

Gender is among the preferred individual factors, then age, income, and car ownership were detailed 

similarly, as they were found in similar empirical studies. Education level, ethnicity and the social 

environment support were the less detailed factors since they were less common in the literature studied. 

The influence of gender on bicycle use is a subject frequently discussed among authors. Gender 

influence on bicycle commuting is seen differently among countries. Investigations in English-speaking 

countries such as Australia, Canada, the USA, and the UK,  shows that these are more likely to have 

more men using the bicycle than women, revealing a significant gender difference (Aldred 2010; 

Buehler et al. 2020; Mitra and Schofield 2019; Pucher and Buehler 2008; Pucher et al. 2011; Garrard 

2003, as cited in Steinbach et al. 2011; Winters et al. 2011), and up to three times as likely in countries 

as the USA (Buehler et al. 2020). In countries like Australia, Canada, the USA, and the UK, just 30% 

or less of women use the bicycle as a mode of transportation (Pucher and Buehler 2008; Pucher et al. 

2011). 

Table 4 – Influence on the use of the bicycle on individual factors 

Source: Elaborated by the author 

Factor Definition Influence  References 

Gender Female  - 

Aldred (2010); Buehler et al. (2020); Garrard 
(2003), as cited in Steinbach et al. (2011); Mitra and 
Schofield (2019); Pucher and Buehler (2008); 
Pucher et al. (2011); Winters et al. (2011) 

Age  Adults and youth + Aldred et al. (2016); Buehler et al. (2020) 

Age Elderly and children - 
Buehler et al. (2020); Dill and McNeil (2013); 
Transport for London (2017) 

Income  High income - 
Aldred (2010); Cavenett (2010); Lee and Pojani 
(2019); Pucher and Buehler (2006) 

Car ownership  Car ownership - 
Aldred (2015); Buehler et al. (2020); Pucher and 
Buehler (2008); Winters et al. (2011) 

Students   Students  + Cavenett (2010); Yang et al. (2010) 

Education 
Level 

Graduates  + Buehler et al. (2020) 

Ethnicity  White ethnicity + Steinbach et al. (2011) 

 

In countries with high cycling rates, such as the Netherlands and Denmark, women are more likely to 

use this type of transport (Lovelace et al. 2017; Pucher and Buehler 2008). In the Netherlands, most of 
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the trips made by women are shopping, leisure and educational trips (Harms, Bertolini, and te 

Brömmelstroet 2014, as cited in Aldred et al. 2016) while women’s travel in London accounts for only 

a third and face barriers with shopping and educational trips (Garrard 2003 as cited in Steinbach et al. 

2011). This gender difference between countries may be because women are more concerned about their 

safety when using their bicycles (Aldred et al. 2016; Mitra and Schofield 2019).  

Pucher and Buehler (2008) conclude that older people in the Netherlands do 24% of their trips by 

bicycle. The literature review of Aldred et al. (2016) shows that this percentage is higher than the 

reported perception in any other Dutch age group over 26 years. In Amsterdam, from children to the 

elderly, everyone uses the bicycle for at least 20% of their trips (City of Amsterdam 2003b as cited in 

Cavenett 2010). The Dutch law protects young cyclists and states that drivers have redoubled care with 

elderly and children’s cyclists. The same happens in German law (Cavenett 2010). In the USA, bicycle 

use is predominant among people between 16 and 44 years old (Buehler et al. 2020), and a study in 

Portland, USA, revealed that people over 55 years of age were in the non-cyclist category but had an 

interest in cycling (Dill and McNeil 2013). In England and Wales, cycling is also dominated by adults 

and youth (Aldred et al. 2016). In London, a study proved that children and older people are less likely 

to ride bicycles over long distances (Transport for London 2017). Still, in countries with low bicycle 

use, it is necessary to take more measures that impact the use of the bicycle by the elderly, adolescents, 

and children since their use rates are the smallest (Buehler et al. 2020). Some authors present the need 

to build a more favorable environment for cycling by the elderly and the change of stereotype that only 

young people use this type of transportation (Aldred et al. 2016). 

Based on the literature review carried out by Silva et al. (2018) on studies focused on income, it is 

concluded that the relationship between income and the use of the bicycle is not very clear. A significant 

impact of high income is related to the probability of car ownership (Pucher and Buehler 2006). Some 

authors cite the prejudice of users who think the bicycle is for the poor and prefer to drive a car (Aldred 

2010; Cavenett 2010; Lee and Pojani 2019). Thus, car ownership is directly related to the low use of the 

bicycle (Aldred 2015; Buehler et al. 2020). Regular cyclists are less likely to own cars in a study 

performed in Vancouver, Canada (Winters et al. 2011). People who ride a bicycle often use this type of 

transport because it is cheap (Aldred 2015), since the purchase of a car in countries such as the 

Netherlands, Denmark and Germany is significantly related to high parking fees and fees for obtaining 

a driver’s license (Pucher and Buehler 2008).  

The literature reviews by Lee and Pojani (2019), Pucher et al. (2011), and Silva et al. (2018) regarding 

the relationship between students and cycling concluded that students are more likely to use the bicycle, 

and they are the principal target of the population to promote cycling. There are several policies related 

to encouraging students to use the bicycle. In Amsterdam, the Netherlands, the government provides 

bicycles for those who cannot afford them (Cavenett 2010). Some schools in several countries promote 

promotional activities related to using this type of transportation (Yang et al. 2010). 

A study shows that the relationship between people who use bicycles and the level of schooling has 

varied over the years, as in 2001, graduates had similar rates of ridership than undergraduates, whereas, 

in 2017, graduates had rates twice as high (Buehler et al. 2020). Another factor identified is ethnicity, 

as verified in London, the UK, where 94% of the cyclists identified themselves as white (Steinbach et 

al. 2011).   
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Table 5 – Influence on the use of the bicycle on social environment factors 

Source: Elaborated by the author 

Factor Definition Influence  References 

Social 
environment  

Family and friends + 
Bartle, Avineri, and Chatterjee (2013), as cited in 
Handy et al. (2014) 

Social 
environment  

Sharing information + Aldred (2010) 

 

As social environment support, family and friends are essential in encouraging the use of the bicycle 

(Bartle, Avineri, and Chatterjee 2013, as cited in Handy et al. 2014), and it can happen in the suggestion 

of equipment and cycling information sharing (Aldred 2010). 

 

2.2. CYCLING ASSESSMENT METHODS 

A review of the assessment methods on cycling potential revealed fourteen tools summarized in Table 

6. Methods were applied at the global level or for specific contexts, such as the Chinese and global 

south, as well as at the local level. When evaluating these tools, it was recognized that almost all studies 

bring mapping information as final data presentation, and most studies have limitations on data 

extracting and analyzing data, as well as the use of open data platforms. Most of the presented methods 

are GIS-based, and a few of them are presented in ranking and statistics. All tools are indicated to support 

planners; some are presented as user-friendly tools, such as those presented by Copenhagenize Index 

(2019), Winters et al. (2013), Krenn, Oja, and Titze (2015). Other tools can be easily used by inhabitants, 

like the one presented by Walk Score (2020). These tools are intended to support the planning and 

development of policies, mainly focused on cycling.  

Planning Support Systems (PSS) are a particular field of supporting tools for planning and development 

of policies (Klosterman, 1997 as cited in Lovelace et al. 2017), introducing spatial information to support 

planning actions (Brömmelstroet 2013). Lovelace (2017) also explains that a PSS generally presents an 

interactive map of the needs of the areas studied, thus facilitating the visualization of change scenarios 

and the possibility of changes. Among the PSS, Silva et al. (2021) highlights in the literature review the 

PSS focused on cycling, being these tools based on the evaluation of cycling in the city by broad 

measures, indicators of evaluation of streets for cycling, bikeability index, among others. The Propensity 

to Cycle Tool is an example of PSS (Lovelace et al. 2017).  

Most of the methods studied are based on the concept of bikeability. This is defined as the review of the 

literature of Kellstedt et al. (2020) as the analysis of the perception of the safety of the real environment 

in the use of the bicycle, but the author adds that there is no universal definition of the word. The 

evaluations made according to the concept of bikeability evaluate the bike facilities and the areas that 

are less suitable for bicycle use (McNeil 2011). Some examples may be related to bike route density, 

bike route separation, connectivity, topography, destination density (Winters et al. 2012). The analysis 

of bikeability can be carried out from surveys, discussions, interviews to analyze perceptions and 

geospatial methods to analyze physical characteristics (Kellstedt et al. 2020).  

The Bike Score (Walk Score 2020), the Bikeability Index (Winters et al. 2013), the Potential Bikeability 

(Greenstein 2015), and the Index of City Readiness for Cycling applied to Egyptian cities (Zayed 2016) 

are grouped by similarity, as these authors only consider slightly different factors in their evaluations, 

such as bicycle network, bicycle infrastructure and topography.   
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Table 6 – Cycling assessment methods summary 

Source: Elaborated by the author 

Methods Application  Shape Strength 

The Bike Score (Walk Score 2020) 
 

Canada and 
USA 

Ranking/ 
Map-based 

This tool can be used by planners or by 
inhabitants, for example, to search for 
bikeability zones to live 

The Bikeability Index (Winters et al. 
2013) 
 

Metro 
Vancouver 
region 
(Canada) 

GIS-based This tool intended to be flexible by using 
standard data 
 

Potential Bikeability (Greenstein 
2015) 
 

Austin  
(USA) 

GIS-based It reveals the most critical factors 
related to bikeability in Austin and 
guides planners to make investments in 
strategic points to have a more 
significant impact on cyclists 

The Bikeability Index for a Mid-sized 
European Cities (Krenn et al. 2015) 
 

Mid-
European 
cities, 
Graz  
(Austria) 

GIS-based The index tends to be a simple tool to 
be applied in the European territory 
 

The Index of City Readiness for 
Cycling (Zayed 2016) 
 

Egyptian 
cities 

Statistic The study serves as a basis for the 
development of frameworks for bicycle-
friendly cities. 

The Bikeability Index (Motta 2017) 
 

Curitiba 
(Brazil) 

GIS-based It was the first study to apply the bike-
ability method in a Brazilian city 
 

The Copenhagenize Index 2019 
(Copenhagenize Index 2019) 
 

Global Ranking Cities can easily compare their efforts to 
be bicycle-friendly cities with other cities 
around the world 

The Street Score Framework for 
Walkability and Bikeability (Gu et al. 
2018) 

Chinese 
context 

Statistic/  
Map-based 

The tool intended to be directly 
connected to China’s urban 
transportation planning and uses open-
source data 

The Bikeability Framework (Grigore 
et al. 2019) 

Basel 
(Switzerland) 

GIS-based Method to model cyclability, it is suitable 
as a collaborative tool in urban planning 

The Urban Bikeability Index 
(Arellana et al. 2020) 
 

Global South, 
Barranquilla 
(Colombia) 

GIS-based The methodology is focused on different 
types of cyclists, distinguishing them 
socio-economically, by perceptions of 
the built environment and by 
preferences 
 

The Bicycle Level of Service 
(Landis, Vattikuti, and Brannick 
1997) 

America Statistic/ 
Ranking 
 

A popular method to calculate the safety 
and comfort score of roadway segments 

The Bicycle Compatibility Index 
(Federal Highway Administration 
1998) 

America Statistic/ 
Ranking 

A popular method to calculate the 
quality of bicycles facilities 

Analysis of Cycling Potential Tool 
(Transport for London 2010) 

London Statistic The tool help plan interventions that 
attend the cycling needs and that bring 
an excellent cost-benefit to the city 

The Propensity to Cycle Tool 
(Lovelace et al. 2017) 

The United 
Kingdom and 
Wales 

Map-based It is open source to map the cycling 
potential; it is possible to view the 
results at different geographical levels 

 

The Bike Score (Walk Score 2020) defines whether a site is suitable for cycling on a scale of 0-100, 

analyzing destinations and road connectivity. The method is based on bike lane infrastructure data taken 

from the OpenStreetMap (OSM), topography data taken from the National Elevation Data set from the 

United States Geological Survey’s, connectivity and destination data calculated based on the 

calculations presented in the Walk Score. Similarly, Greenstein (2015) analyzes road network 
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connectivity, while others analyze network-related issues slightly differently, such as bike network 

density and bike-friendly streets connectivity analyzed by Winters et al. (2013), as well as road network 

length analyzed by Zayed (2016). These tools can be used by planners or by inhabitants, for example, 

to search for bikeability zones to live in.  

The Bikeability Index (Winters et al. 2013), applied across the Metro Vancouver region in Canada, is 

one of the pioneering methods that analyze cycling potential by zones. The purpose of the tool is to 

show the areas that are most likely to be used by cyclists and the less likely ones. To develop the study, 

a GIS tool, travel behavior studies, and opinion surveys were applied. Focus groups were identified to 

help define the main factors of the index, and these groups were divided into prospective cyclists, regular 

cyclists, cycling activists, and occasional cyclists. Among the established factors, the topography factor 

is the one that is most repeated when correlating with other studies. Krenn et al. (2015), Motta (2017) 

and Winters et al. (2013) have a factor called topography in their analysis, whereas Greenstein (2015) 

and Walk Score (2020) present slightly different factors but related to the topography as slope and hills, 

respectively. To summarize the results of the Bikeability Index, a map is generated with a score for more 

and less cycling-friendly zones. This tool is intended to be flexible by using standard data. The authors 

present the definition of latent demand for cycling as a limitation of this study, as it does not foresee any 

changes in cycling rates. 

The Potential Bikeability (Greenstein 2015) was developed based on the city’s 2014 Bicycle Master 

Plan Update for the city of Austin in the USA. The plan aims to improve bicycle conditions in central 

Texas, which is related to ensuring infrastructure for 8 to 80 years old to relate short trips with bike trips, 

while another goal of the plan is to reduce network barriers. Each factor has a weight, being bicycling 

facilities the most important factor since. Among the five factors analyzed, two are correlated by 

similarity with other authors, being land-use, a slightly similar factor considered in Motta (2017) as a 

mix of land-use, and another is topography. The author (Greenstein 2015) maps current bikeability and 

potential bikeability in Austin, Texas; the second map brings an idea of how the implementation of the 

2014 Bicycle Master Plan Update impact bicycle use in the city, i.e., the map transmits recommendations 

of locations to increase the bicycle network and locations to implement security components for cyclists. 

The spatial analysis used in the maps was based on GIS. A positive point of the study is that it reveals 

the most critical factors related to bikeability in Austin and guides planners to make investments in 

strategic points to have a more significant impact on cyclists.  

The Bikeability index for mid-sized European cities (Krenn et al. 2015), applied in Graz, Austria, aims 

to map the bicycle-friendliness of the city. The data was based on studies conducted with inhabitants 

who drew their most frequent bicycle routes on a map and with inhabitants who proposed to use GPS 

data to identify the paths they took. The final mapping was based on GIS and aimed to show bicycle-

friendliness in urban areas of the city through different colors. Three factors out of five correlates to 

infrastructure, being these bicycle infrastructure, main roads without any parallel bicycle infrastructure, 

and presence of separated bicycle pathways. Other authors correlate to infrastructure, such as the cases 

of the Walk Score (2020), Arellana et al. (2020) and Copenhagenize Index (2019). However, thesewere 

not grouped in this item because they do not correlate with many other factors in this grouping. Motta 

(2017) correlates to bicycle infrastructure in a slightly different way, by differentitating infrastructure 

by types (those where it is possible to ride bicycles, being bicycle paths, roads in general or exclusive 

lines for buses). The index tends to be a simple tool to be applied in the European territory. This research 

indicates that regular cyclists tend to live in bicycle-friendly neighborhoods, which differs from non-

cyclists. They present as a negative point the dependence on the database containing maps, particularly 

when not updated after a change in the built environment. As a positive point, cycling maps can be of 

great value for the development of bicycle-friendly transportation, especially in the European context.   
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The Index of City Readiness for Cycling, applied to Egyptian cities (Zayed 2016), aims to analyze city 

readiness for cycling and classify cities with high, neutral, and low readiness levels. The factors related 

to this study were based on the main variables of 20 case study cities, which were present in the 

Copenhagenize Index. The author suggests that the most important indicator of this study is the city 

population and that this study serves as a basis for the development of frameworks for bicycle-friendly 

cities. The Bikeability Index (Motta, 2017), applied in Curitiba, Brazil, analyzes five different variables. 

This Index is related to the study of Krenn et al. (2015) and Winters et al. (2013) due to the similarity 

of variables. GIS, government data, and surveys were used to better understand the motivators and 

barriers to bicycle use to analyze the variables. In the surveys, inhabitants were divided by transport 

behavior and by income level, and at the end, a binary logistic regression was performed to correlate 

these. There was a higher value description between topography, climate, distance, and integration with 

public transport for non-users, and cyclists were more concerned with accessibility improvements for 

bicycle and speed reduction measures. A weight was assigned to each index variable to present a 

bikeability map, demonstrating areas more prone to bicycle use and areas that need improvement. This 

was the first study to apply a bikeability method in a Brazilian city. The study’s weakness is the low 

amount of survey results, which may not have been ideal for factor analysis.  

The methodologies of the Copenhagenize Index 2019 (Copenhagenize Index 2019), the Street Score 

Framework for Walkability and Bikeability (Gu et al. 2018), the Bikeability Framework (Grigore et al. 

2019), and the Urban bikeability Index (Arellana et al. 2020), were, moreover, grouped by similarity, 

according to the relation of their factors with attractiveness, comfort, and safety.  

The Copenhagenize Index 2019 (Copenhagenize Index 2019) is an international index that analyzes 

three groups: physical environment, social environment, and individual. This index is one of the most 

holistic and established globally, is updated every year since 2011, and aims to create a ranking of the 

cities with more than 600,000 inhabitants that are more bicycle-friendly. The Top 20 is published on the 

index website. In the 2019 edition, a section called “Success Stories” was added on the website, bringing 

stories of cities that are not in the Top 20 of the ranking but serve as inspiration as how to create 

initiatives to make bicycle-friendly. Every year the number of cities is expanded by increasing the data 

set to hundreds represented worldwide. The first place in the ranking is given to the city that makes the 

most efforts to use the bicycle as an accessible and viable type of transport. These efforts are measured 

in thirteen factors. One of those is the image of the bicycle, attributing points to the cities where the 

bicycle is respected, attractive, and accepted as a standard type of transport. This factor has slight 

differences from those presented by Grigore et al. (2019) and Arellana et al. (2020) as attractiveness. 

The authors bring the competitiveness between cities as a positive point of the tool, as cities can easily 

compare their efforts with other cities worldwide. A failure of the index is that the factors are focused 

on cities that already have bicycle infrastructure, which makes it difficult for beginner cities to use the 

tool. There is also a barrier to small cities since the application is for cities with over 600,000 inhabitants. 

Moreover, some authors show that this tool is suitable only for the western context (Chevalier and Xu 

2020). 

The Copenhagenize Index has been adapted for creating other indexes, such as the Western Bikeability 

Index in the Chinese Context (Chevalier and Xu 2020). This study has the city as a scale of application 

and was applied in Shanghai to verify the level of relevance of each factor of the Copenhagenize Index. 

During the study, Shanghai is presented as a unique city because of the urban environment, economy, 

demography and exemplify that the factors can be attenuating between the city and the whole country. 

Thus, some factors used in the Copenhagenize Bikeability Index had their objectives reformulated to be 

used in the Western Bikeability Index in the Chinese Context, and three new parameters have been 

added: parallel economies, urban forms, and bicycle ownership. Even if this tool tries to adapt to the 
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Western context, it presents limitations in several factors, being one of most critical the higher 

propensity of the Chinese to use the bicycle than the other inhabitants of Western countries. 

The Street Score Framework for Walkability and Bikeability (Gu et al. 2018) was applied in the Chinese 

context directly in four cities: Tianjin, Shijiazhuang, Kunming, and Chongqing. The tool is intended to 

be directly connected to China’s urban transportation planning and uses open-source data. This tool 

evaluates walkability and bikeability in the form of scores considering safety, comfort, and convenience. 

One of the study’s results was that there is a bad influence on bicycle use from the illegal car parking 

on bike lanes and sidewalks and a relationship between comfort and safety when riding a bike. The study 

shows that flat cities tend to have a preliminary cycling network, but this network is drastically shorter 

than sidewalks. The four cities had high scores related to safety, which shows that the government 

prioritizes this factor. One limitation of the study is that it depends on open-source data, and the authors 

recommend that the results are tested in other contexts. 

The bikeability framework (Grigore et al. 2019), applied in Basel, Switzerland, intended to be a method 

to model bikeability and suitable as a collaborative tool in urban planning, i.e. this tool can help identify 

places that need improvement the cyclability. Initially, it analyzed the quality factors of cycling; among 

them is the comfort that is also analyzed in the methodologies of Copenhagenize Index (2019), Gu et al. 

(2018) and Arellana et al. (2020). After identifying the trips’ main destinations and calculating the 

cycling quality, the mapping of cycling quality was performed on GIS. A map of bikeability to Basel 

was developed, representing places with high and low bikeability divided by colors. As a result of the 

study, the authors state that in Basel city center the values found were better than in other neighborhoods, 

because the distances to workplaces were shorter. A weak point of the study is that a deeper analysis of 

the influence of factors on cycling quality is needed to have more concrete results. 

The Urban bikeability Index (Arellana et al. 2020) is a global south index applied in Latin America in 

Barranquilla, Colombia. First, the factors for the construction of the cycling index were selected based 

on surveys and expert reviews. Then weights for each factor were estimated based on surveys applied 

to frequent cyclists and non-cyclists. Among the factors analyzed, those related to safety and traffic 

safety are slightly different from those considered as safety indicators by the Copenhagenize Index 

(2019) that scores cities that place the responsibility for safety on drivers. However, other authors such 

as Motta (2017), Gu et al. (2018), and Grigore et al. (2019) consider safety in their analysis. At the end 

of the analysis, a mapping using GIS represents where investments in infrastructure for cyclists should 

be prioritized, and cartographic data was also obtained by traffic counting and OD (origin-destination) 

surveys. The positive point of the methodology is that it focuses on different types of cyclists, 

distinguishing them socio-economically, by perceptions of the built environment and by preferences. 

This research has positive results in terms of choosing the type of transportation and available 

infrastructure among sports users, while the biggest concern of workers is safety. The problem with 

safety is also documented in other studies conducted in Latin America. The authors suggest that 

investments in infrastructure could close the gap between rich and poor people in these Latin American 

cities and improve safety. 

The Bicycle Level of Service (Landis et al. 1997) and the Bicycle Compatibility Index (Federal Highway 

Administration 1998) were developed based on the concept of level of service and thus are similar. What 

differs in their analysis, according to a detailed study conducted by Liu, Homma, and Iki (2019), are 

some factors referent to pavement condition, lane number, which are present only in the study of Federal 

Highway Administration (1998), as well as roadside development and right turns, which are present 

only in the study of Landis et al. (1997). The Analysis of Cycling Potential tool (Transport for London 

2010) is an analytical tool that estimates the impact of cycling policies as well as infrastructure 

interventions on the level of cycling service and demand. The Propensity to Cycle Tool (Lovelace et al. 
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2017) has a theoretical relation with the Analysis of Cycling Potential tool (Transport for London 2010); 

both use Origin-Destination surveys. 

The Bicycle Level of Service (Landis et al. 1997) is based on the level of service (LOS) presented by the 

Highway Capacity Manual (HCM). It was developed in 1960 to measure safety in bicycle facilities on 

roads in America. The development of the Index had the help of 150 participants who filled out a form 

with general questions, recognized the profile of the participants, and then participated in a course to 

evaluate the quality of road links, excluding intersections. Participants had to assess on a scale of A-F 

(6 points) how comfortable and safe they felt with their right-of-way, so that level A was the least 

dangerous and level F the most dangerous. With the results obtained, the most relevant variables were 

identified and the best configuration of each variable. After the evaluation, it is possible to use GIS to 

demonstrate the results in a color-coded map, which presents streets and their classifications. This study 

considers the Bike Level of Service (BLOS) model 2.0. 

The Bicycle Compatibility Index (Federal Highway Administration 1998) is a tool that also has a Level 

of Service concept. Created in 1998 to measure cycling in road segments in America, especially for 

urban and suburban areas, it was based on the perspective of 200 participants from three different 

locations who classified on a six-point scale (A-F) videos from 67 sites; the scale varied from highly 

comfortable to highly uncomfortable to cycling. Based on this analysis, the most important variables 

were identified, and a regression model formula for the analysis of Bicycle Compatibility Index (BCI) 

was defined. The result is inserted in a six-point table to identify the compatibility level, and this is 

classified from highly high (A) to shallow (F). After the score analysis, it is possible to develop a color-

coded map in GIS that identifies the streets and their capability level. Mapping can help planners to 

easily identify areas that need intervention. 

The Analysis of Cycling Potential (Transport for London 2010, 2017) was developed by Transport for 

London (TFL) in 2010. It presents heat maps to identify the cycling potential in the city of London, UK. 

The tool’s purpose is to help plan interventions that meet the inhabitants’ cycling needs and bring an 

excellent cost-benefit to the city. The Analysis of Cycling Potential (ACP) uses data from travel demand 

research based on TFL's Travel Demand Survey (LTDS). This seeks to analyze which of the motorized 

trips conducted in the survey could be transformed into cycling trips based on travel and individual 

criteria. Two layers are evaluated; the first is the cycling potential achieved by providing a suitable 

cycling environment, and the second is the cycling potential of existing behavior. However, one 

weakness of the tool is that it does not analyze the cycling potential of visitors and tourists in London. 

The Propensity to Cycle Tool (Lovelace et al. 2017) was founded by the UK's Department for Transport. 

Developed after the ACP, the Propensity to Cycle Tool (PCT) also uses OD surveys in the methodology. 

The creation of the tool responds to a generalizable and scalable tool deficit based on PSS. With an 

open-source nature, it maps cycling potential and estimate the health and carbonic gas (CO2) data at the 

street level. The tool brings the possibility to visualize results at different geographical levels, for 

example, at a local or regional level. The tool's primary approach is to use OD data grouped in pairs 

which, combined with geographic population data, represent “desire lines” for the transportation 

network. For the development of the tool, the 2011 census data on cycling in Wales and England were 

used and modeled according to the slope of routes and distances. Four bicycle usage scenarios were 

developed: Government goal, gender equality, GoDutch, E-bikes. It was evaluated how each scenario 

can impact users’ health, for which the World Health Organization’s Health Economic Assessment Tool 

(HEAT) data were used. As well, it measures the CO2 reduction that each group can generate. As a result 

of the analysis, an interactive online map is presented with the “desire lines” defined through aggregate 

pairs OD in two directions and a “flow” centroid. The map has different layers according to the pre-

established scenarios. The online map can be downloaded in GIS software. A strength of the tool is that 
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it has an open-source code to be studied and modified as needed by users for future research. For the 

current case, the data is limited to the 2011 Census because this is the only one that presents OD data 

regarding cycling levels and with high geographic resolution nationwide; this limitation is, therefore, 

one of the weaknesses of this tool. 

Table 7 – Cycling assessment methods and factors 

Source: Elaborated by the author 

Cycling Assessment Methods Factors 

The Bike Score (Walk Score 2020) 
 

Bike lanes, hills, destinations and road connectivity, bike 
commuting mode share 

The Bikeability Index (Winters et al. 2013) 
 

Bike network density, route separation, bike-friendly streets 
connectivity, bike-friendly destination density, and topography 

Potential Bikeability (Greenstein 2015) 
 

Bicycle facilities, network connectivity, land-use, slope, and 
barriers 

The Bikeability Index for a Mid-sized 
European cities (Krenn et al. 2015) 
 

Cycling infrastructure, presence of separated bicycle pathways, 
main roads without any parallel bicycle infrastructure, aesthetic 
areas, and topography 

The Index of City Readiness for Cycling 
(Zayed 2016) 
 

City population, city area, city form, road network length and 
motorized transport modal split as the fundamentals of cycling 
commuting 

The Bikeability Index (Motta 2017) 
 

Residential density, mixed land-use, topography, safety and 
types of infrastructure 

The Copenhagenize Index 2019 
(Copenhagenize Index 2019) 
 

Bicycle infrastructure, bicycle facilities, traffic calming, gender 
split, modal share for bicycles, modal share increase over the 
last 10 years, indicators of safety, image of the bicycle, cargo 
bikes, advocacy, politics, bike share, urban planning 

The Street Score Framework for Walkability 
and Bikeability (Gu et al. 2018) 

Safety, comfort, convenience 

The bikeability framework (Grigore et al. 
2019) 

Comfort, safety, attractiveness for cycling, distance for cycling 
routes, perceived distance to the destinations of interest 

The Urban bikeability Index (Arellana et al. 
2020) 
 

Directness and coherence, comfort and attractiveness, traffic 
safety, security, climate, presence of bicycle infrastructure, and 
cost of the trip 

 

 

The Bicycle Level of Service (Landis et al. 

1997) 

Volume of directional traffic in 15-minute time period, total 
number of through lanes, effective speed limit, percentage of 
heavy vehicles, average effective width of outside through lane, 
total width of outside lane and shoulder/parking pavement, 
width of paving from outside lane stripe to pavement edge, 
width reduction due to encroachments in outside lane, and 
Federal Highway Administration in America 5-point surface 
condition rating 

The Bicycle Compatibility Index (Federal 
Highway Administration 1998) 

Presence of a bicycle lane or paved shoulder, bicycle lane 
width, curb lane width, curb lane volume, other lanes volume, 
legal speed limit, presence of a parking lane with more than 
30% occupancy, and type of roadside development 

Analysis of Cycling Potential tool (Transport 
for London 2010) 

Trip distance, time of day and commuters characteristics like 
age and profession 

The Propensity to Cycle Tool (Lovelace et al. 
2017) 

Origin-destination data set 

 

Among these tools, high utilization of factors enhances the existing bicycle infrastructure, which is a 

barrier for beginning cities to start using such tools. The factors with the highest repetition among all 

studies are within the group of physical environments are the presence and network of cycling 
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infrastructure, safety perception, and topography. Factors related to the presence and network of cycling 

infrastructure include all the bike lanes inside and outside the streets, i.e., from lane sharing cyclists to 

off-road bike lanes (Chevalier and Xu 2020; Copenhagenize Index 2019; Walk Score 2020). This factor 

is given as one of the most critical that influence the choice of the bicycle as a mode of transportation 

(Arellana et al. 2020). The perception of safety is considered through installations with basic security 

for cyclists, whether on footpaths, intersections, or bicycle paths (Gu et al. 2018). One of the biggest 

problems with safety is related to illegal parking of cars on footpaths (Gu et al. 2018), the number of 

lanes (Grigore et al. 2019), legislation (Chevalier and Xu 2020; Copenhagenize Index 2019; Gu et al. 

2018). This factor is seen as one of the most important for those travelling to work by bicycle (Arellana 

et al. 2020). Finally, the topography factor is positive if inversely related to the hills (Grigore et al., 

2019; Krenn et al., 2015; Winters et al., 2013). 
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3 

METHODOLOGY 

 

 

The theoretical contributions presented in the previous chapter allow for an understanding of the 

measurement factors that influence bikeability and of some tools that exist worldwide to measure it. To 

answer the research objective, the approach of this research is based on a case study in the eastern 

Netherlands. This section presents the objective and research approach, followed by presenting the study 

area, the database, and Gross Potential for Cycling tool. Finally, the method is presented, explaining the 

statistical analysis process used. 

 

3.1. OBJECTIVE AND RESEARCH APPROACH 

The objective of this thesis is to trial the validity of the conceptual model of the Gross Potential for 

Cycling. The objective is achieved through descriptive analysis, bivariate and multivariate statistical 

analysis; these compare the GPC and its indicators with cycling demand data. A “champion” area was 

chosen as a case study because it has a significant amount of cycling demand data than starter cycling 

cities. However, the author was aware of the limitations of the analysis concerning exploring a tool 

created for the starter context in a “champion” area; these were explored later in this chapter and the 

results. The cycling demand data for this thesis is defined in four concepts based on the Dutch mobility 

survey, On the road in the Netherlands1 (CBS and RWS 2018).  

The first cycling demand concept refers to the total bicycle kilometers traveled (𝑘𝑚𝑡1). 𝑘𝑚𝑡1 is a 

multiplication of the area’s inhabitants by the per capita bicycle kilometers traveled. The second is the 

kilometers traveled per capita by bicycle (𝑘𝑚𝑡2). To obtain the 𝑘𝑚𝑡2 value the total distance traveled 

by bicycle is divided by the total number of mobility survey respondents. The third concept refers to the 

total number of bicycle trips (𝑞𝑡𝑦𝑡1). This formula is similar to 𝑘𝑚𝑡1’s, however, using data of the 

number of bicycle trips. The last formula refers to the number of trips per capita by bicycle (𝑞𝑡𝑦𝑡2).  

 

 

𝑘𝑚𝑡1 =
𝐼ℎ𝑎𝑏𝑖𝑡𝑎𝑛𝑡𝑠𝑡𝑜𝑡𝑎𝑙  𝑥 𝐾𝑚𝑏𝑖𝑘𝑒

𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠𝑡𝑜𝑡𝑎𝑙

  

 

 

 

1 Translated from Dutch, Onderweg in Nederland. 

(1) 
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𝑘𝑚𝑡2 =
𝐾𝑚𝑏𝑖𝑘𝑒

𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠𝑡𝑜𝑡𝑎𝑙

 

 

𝑞𝑡𝑦𝑡1 =
𝐼ℎ𝑎𝑏𝑖𝑡𝑎𝑛𝑡𝑠𝑡𝑜𝑡𝑎𝑙   𝑥 𝑇𝑟𝑖𝑝𝑠𝑏𝑖𝑘𝑒

𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠𝑡𝑜𝑡𝑎𝑙

 

 

𝑞𝑡𝑦𝑡2 =
𝑇𝑟𝑖𝑝𝑠𝑏𝑖𝑘𝑒

𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠𝑡𝑜𝑡𝑎𝑙

 

 

The ODIN 2018 is an origin-destination survey, this was provided in the form of microdata. For this 

thesis, all trips that start and end in the study area were considered. The trip chain2 concept (Li et al. 

2013; Transport for London 2017) supports the decision to consider all trips that begin and end in the 

study area. Among cycling demand data collection, the ODiN 2018 differentiates between electric and 

non-electric bicycle trips, but the GPC tool does not distinguish between both modes. Thus, both trips, 

whether made by electric bicycle or not, were considered bicycle trips.  

Table 8 – Gross Potential for Cycling: Cycling indicators and weight  

Source: Adapted from BooST (2020) 

Group Code Indicators Weight Description 

Target 
area 

A1 Accessibility 
to education 
facilities 

3 Identifies the areas prone to cycling to access education 
facilities 

A2 Accessibility 
to centralities 

2 Identifies the areas prone to cycling to perform day-to-day 
trips (shopping, leisure, among others) 

A3 Accessibility 
to transport 
interfaces 

2 Identifies the areas prone to cycling as extending the 
coverage of public transport (first and last kilometres) 

A4 Relative 
accessibility 

3 Classifies the municipalities’ urban area according to the 
average distance a bicycle can circulate in 5 minutes in 
comparison to a car’s average distance in the same period 

A5 Connectivity 1 Identifies the areas with more blocks with adequate cycling 
dimensions 

A6 Occupation 
diversity 

1 Identifies the areas with a greater diversity of commerce and 
services 

Target 
population 

P1 Age 3 Identifies the areas where more people with ages prone to 
cycling reside 

P2 Population 
density 

3 Identifies the areas with a greater density  

P3 Employment 
density 

3 Identifies the areas with more workers 

P4 Motorization 
rate 

2 Identifies the areas with more residents who own a car, this 
value is compared with the national average 

 

 

 

2 A trip chain correlates with travel mode choice due to the location or nature of the trip initiation  

(Transport for London 2017). A person who commutes from home to work by bicycle is likely to make 

the subsequent trips by bicycle. The chain concept assumes that the trips made by an individual are 

linked together until the person returns to his home (Transport for London 2017). 

(2) 

(3) 

(4) 
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The GPC is a tool that analyzes the gross potential for bicycle use in starting cycling cities through four 

indicators referring to the target population and six indicators referring to the target areas (Table 8). The 

target population group, through its indicators, verifies information identifying the location of the 

population segment most prone to cycling (Silva et al. 2021). The target areas indicators evaluate the 

cycling potential of the built environment and the natural environment (Silva et al. 2021). Each of the 

ten indicators has a weight (Table 8) relative to the impact in promoting bicycle use (BooST 2020). The 

aggregated value, called the GPC score, is calculated based on a weighted average of the indicator 

weights and their final values. 

 

𝐺𝑃𝐶 =  
∑𝑖𝑠𝑖  𝑥 𝑤𝑖

∑𝑖𝑤𝑖

  

 

Where: 

𝑠 = 𝑠𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑖 

𝑤 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑖 

 

Thus, the conceptual model to be trialled is the one represented in formula 5. For this thesis, variable P3 

was not considered due to a lack of data; this is discussed further. Furthermore, the GPC methodology 

needed to be adapted for this research due to the scale of disaggregation of cycling demand data. All 

analyses are performed at the smallest disaggregation scale and weighted by the population at the same 

disaggregation scale for cycling demand. The only indicator calculated directly at the same 

disaggregation scale as cycling demand is the motorization rate indicator (P4). The methodology applied 

to some indicators also needed to be adapted. The adaptations are explored more effectively in the 

following sections, where the application of the tool to the Dutch context is discussed. 

 

3.2. STUDY AREA 

The Netherlands is a remarkable case concerning cycling as transport (Pucher and Buehler 2008), as the 

bicycle is an important way to move around the country (Cavenett 2010). The Netherlands is among the 

countries that make cycling safe, attractive, and comfortable for users (Pucher and Buehler 2008). In 

2019 the country had 273,417 km of bike routes (CBS 2019a). Within the proportion of passenger 

kilometers in the Dutch modal split, 9% of daily trips were made by bicycle in 2018 (CBS 2019b). This 

commuting mode grew by 1% from 2017 to 2018 (CBS 2019b). In 2019, 4.8 billion bicycle trips were 

made (CBS 2020b), and 17.6 billion bicycle kilometers were traveled (CBS 2020b). In 2019, 28% of all 

trips were made by bicycle (CBS 2019b), similar to the 27% recorded in 2018 (CBS 2020b). The study 

area of this thesis is located in two provinces in the Netherlands, namely Gelderland and Overijssel 

(Figure 2). 

The province of Overijssel in 2019 had 28,128 km of bike routes, the fourth largest among the provinces 

(CBS 2019a). In Overijssel, the study area partly covers 17 municipalities, 1,712 km², with 729,605 

inhabitants (CBS 2016). The province of Gelderland in 2019 had the most extensive bike routes among 

the provinces, totaling 42,067 km (CBS 2019a). In Overijssel, the study area partly covers 17 

municipalities with 459,220 inhabitants and 1,377 km² (CBS 2016). The population of the province of 

Overijssel and Gelderland commutes on average 38.91 km per day per person (CBS 2020a). The average 

cycled in Overijssel is 3.17 km and in Gelderland is 3.53 km (CBS 2020a).  

(5) 
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Figure 2 – Map of the study area location 

Source: Elaborated by the author from the data provided by CBS (2016) 

 

The municipalities with the most significant territorial extensions are Apeldoorn, Ede, and Hardenberg 

(CBS 2016). The smallest municipalities in territorial extension are Westervoort, Doesburg and 

Oldenzaal (CBS 2016). Some municipalities in the study area border Germany, namely Hardenberg, 

Twenterand, Tubbergen, Dinkelland, Losser, Enschede, Haaksbergen, Zevenaar and Rijnwaarden. 

Among the municipalities covered by the study area, Apeldoorn, Enschede, and Ede are the most 

populated (CBS 2016). The lowest populated were in 2016, Rozendaal, Rijnvaarden and Doesburg (CBS 

2016). Westervoort, Oldenzaal and Hengelo have the highest population density (CBS 2016). Among 

the cities with the lowest population density are Rozendaal, Ommen and Bronckhorst (CBS 2016).   

Apeldoorn and Enschede are defined as metropolitan agglomerations (CBS 2015); these are areas of 

urban development in which most human activities occur, where most business and public facilities are 

located (CBS 2015). Both metropolitan agglomerations are surrounded by smaller municipalities (CBS 

2015). According to CBS (2015), (A) Enschede is connected to Borne, Oldenzaal, Losser, Hengelo, 

while (B) Apeldoorn is connected to Voorst, Rozendaal, Rheden, Westervoort, Duiven. 

In addition to these two urban agglomerations identified by CBS (2015), the analysis of population 

density (Figure 4) and road network (Figure 5) highlights four clusters with potential for urban 

agglomeration. These are located among the municipalities of (C) Twenterand, Wierden, and Almelo; 

(D) Deventer; (E) Zutphen; (F) Montferland and Zevenaar. The six centers in this thesis are referred to 

as densely populated centers (Figure 6). 
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Table 9 – Main characteristics of the study area 

Source: Elaborated by the author from the data provided by CBS (2016) 

 
Municipality Population 

Total area 

(𝒌𝒎𝟐) 

Population density 

(𝒊𝒏𝒉𝒂𝒃 𝒌𝒎𝟐⁄ ) 
Urbanity(1) 

O
v

er
ij

ss
el

 

Almelo 72,425 69.41 1043.44 Highly urban 

Borne 22,343 26.16 854.09 Moderately Urban 

Deventer 98,869 134.30 736.18 Highly urban 

Dinkelland 26,120 176.80 147.74 Non-urban 

Enschede 158,351 142.70 1109.68 Highly urban 

Haaksbergen 24,332 105.50 230.64 Moderately Urban 

Hardenberg 59,687 317.10 188.23 Suburban 

Hellendoorn 35,651 139.00 256.48 Suburban 

Hengelo  81,075 61.83 1311.26 Highly urban 

Hof van Twente 34,881 215.40 161.94 Suburban 

Losser 22,444 99.62 225.30 Suburban 

Oldenzaal 32,110 21.95 1462.87 Moderately Urban 

Ommen 17,696 182.00 97.23 Suburban 

Rijssen-Holten 37,875 94.38 401.30 Moderately Urban 

Tubbergen 21,120 147.40 143.28 Non-urban 

Twenterand 33,846 108.10 313.10 Suburban 

Wierden 23,952 95.39 251.10 Suburban 

G
el

d
er

la
n
d

 

Apeldoorn 159,025 341.20 466.08 Highly urban 

Berkelland 44,437 260.50 170.58 Suburban 

Bronckhorst 36,510 286.40 127.48 Non-urban 

Brummen 20,938 85.01 246.30 Suburban 

Doesburg 11,336 12.96 874.69 Suburban 

Duiven 25,433 35.19 722.73 Moderately Urban 

Ede 112,427 318.60 352.88 Highly urban 

Lochem 33,333 215.90 154.39 Suburban 

Montferland 35,173 106.60 329.95 Suburban 

Oost Gelre 29,537 83.34 354.42 Suburban 

Rheden 43,824 84.35 519.55 Moderately Urban 

Rijnwaarden 10,866 48.08 226.00 Moderately Urban 

Rozendaal 1,498 27.92 53.65 Highly urban 

Voorst 23,984 126.50 189.60 Suburban 

Westervoort 15,001 7.84 1913.39 Moderately Urban 

Zevenaar 32,269 58.00 556.36 Moderately Urban 

Zutphen 46,997 42.93 1094.74 Highly urban 
(1) Determined by the address density of an area with a radius of 1 km around that address is determined. The 

perimeter address density of a municipality is the average value of this for all addresses within that municipality. 

Urbanity terms according to CBS  (2016): Highly urban (surrounding address density of 1,500 or more); 

moderately urban (surrounding address density of 1,000 to 1,500); suburban (local address density of 500 to 1,000); 

non-urban (surrounding address density of less than 500). 

 

For the wider study area, in 2018, cycling accounts for 29.70% of all trips made; of all trips, 53.83% are 

made by private motor vehicle, 8.31% by public transport, 8.03% walking and 0.12% by other types of 

transportation (CBS and RWS 2018). An aggregation of travel data between 2004 and 2016 shows that 

among the cities studied, cycling mode share rates are between 32% and 38% (Goudappel Coffeng 

2016). In most central municipalities, cycling mode share data tends to be higher than 20%. Some 
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municipalities have high rates for their entire territory, such as the municipality of Berkelland, which 

has a population density below 250 inhabitants per km2, has in most of the study area between 30% and 

40% cycling mode share. Berkelland, with an average cycling mode share of 31% (Goudappel Coffeng 

2016), is ranked among the top 100 cycling cities of 2020 by Cycling City3 (Fietsersbond 2020b). The 

municipality of Borne, which has a population density close to 900 inhabitants per km2, has cycling 

mode share rates mostly above 30%, which is reflected in the final average cycling mode share of the 

municipality, which is approximately 38% (Goudappel Coffeng 2016). Borne is one of the cities studied 

that were among the top 100 cycling cities in 2018 and 2020, according to Cycling City (Fietsersbond 

2018, 2020a). Rijssen-Holten stands out among the best cycling cities in the Netherlands; it is among 

the Cycling City top 10 in 2018 and 2020 (Fietsersbond 2018, 2020a). The municipality has an average 

population size of fewer than 500 inhabitants per km2. When looking at a smaller disaggregation scale, 

most of the municipality area with a population density higher than 500 inhabitants per km2 has cycling 

rates of 30% to 40%; the municipality average is around 35% (Goudappel Coffeng 2016).  

 
Figure 3 – Map of the study area’s location divided by municipalities 

Source: Elaborated by the author from the data provided by CBS (2016) 

 

 

3 Translated from Dutch, Fietsstad. It is a national election to encourage municipalities in the 

Netherlands to promote cycling (Fietsersbond 2020b). The election takes place once every two years. 

This is developed by Fietsersbond.  
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Figure 4 – Map of population density of the study area 

Source: Elaborated by the author from the data provided by CBS (2016) 

 

 
Figure 5 – Map of the road network of the study area 

Source: Elaborated by the author from the data provided by CBS (2016) 
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Figure 6 – Urban agglomeration scheme 

Source: Elaborated by the author from the data provided by CBS (2015, 2016) 

 

 
Figure 7 – Cycling mode share map of the study area 

Source: Elaborated by the author from the data provided by CBS and RWS (2018). 

 

Also, among the municipalities studied, Enschede, the largest city in Overijssel, has the highest Cycling 

City title; it is among the top 5 cities in 2020 and the top 10 in 2018. For the most part, Enschede has 

cycling rates higher than 20%, but in areas that appear to be more densely populated, the cycling rate is 

higher than 30%. The final average cycling share in the city of Enschede is close to 35% (Goudappel 

Coffeng 2016). For years, Enschede is an ambitious city for cyclists to implement measures and invest 

in innovation to make cycling more attractive (Gemeente Enschede 2021). The city was a pioneer in the 

1990s in implementing roundabouts with priority for cyclists (Keypoint Consultancy 2011) and 

developed the first traffic signals that turn green in all directions when the motor vehicle traffic signal 

is closed (Wagenbuur 2014). Enschede has policies that pay attention to cycling since 1996 (Keypoint 
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Consultancy 2011). The city made several investments in bicycle bridges and off-road cycling paths 

(Fietsersbond 2020c) and uses its demographics effectively in bicycle policies to improve cycling 

(Kuiper 2012). 

The municipality with the highest bicycle use among those studied is Borne. However, among the 

municipalities studied, all have a cycling modal share rate above 24% in 2018 (CBS and RWS 2018). 

Among the two agglomerations identified by CBS (2015) and among the four clusters identified by the 

author are the locations with the most cycling modal share rates above 30% (CBS and RWS 2018). Of 

the 34 municipalities, 14 were selected in 2018 among the 100 best cities for cycling, and 11 of these 

remained in the next edition of the ranking in 2020. Enschede and Rijssen-Holten were among the 10 

best cycling cities in the Netherlands in 2018 and 2020. 

 

3.3. DATA COLLECTION 

Five databases supported the data collection process. Population information and area limits were taken 

from Statistics Netherlands4 (CBS), the national statistical office of the Netherlands. This study use data 

from 2016, one of the most recent years for which CBS provides free information at the six-digit postal 

zones (PC6) level. This database was chosen because, for some GPC indicators, the values at the PC6 

level can be used to calculate averages at the four-digit postal zones (PC4) level.  

Table 10 – Data collection  

Source: Elaborated by the author 

Source Year Collected Information Usefulness  

CBS 2016 Age distribution Age (P1) 

Population distribution All GPC indicators, aggregated GPC value; 𝑘𝑚𝑡1, 
𝑘𝑚𝑡2, 𝑞𝑡𝑦𝑡1 and 𝑞𝑡𝑦𝑡2 

Borders of postal areas All GPC indicators, aggregated GPC value, 𝑘𝑚𝑡1, 𝑘𝑚𝑡2, 
𝑞𝑡𝑦𝑡1 and 𝑞𝑡𝑦𝑡2 

Copernicus 2021 Topography Calibration 

ODiN 2018 Cycling demand 𝑘𝑚𝑡1, 𝑘𝑚𝑡2, 𝑞𝑡𝑦𝑡1 and 𝑞𝑡𝑦𝑡2 

Car ownership Motorization rate (P4) 

OSM 2021 Road infrastructure 
 

Accessibility to education facilities (A1), accessibility to 
centralities (A2), accessibility to transport interfaces 
(A3), relative accessibility (A4), and calibration 

Urban grid Connectivity (A5) 

Areas of interest Accessibility to centralities (A2) and occupation 
diversity (A6) 

Transportation interface Accessibility to transport interfaces (A3) 

Schools on 
the Map 

2021 Schools and Universities Accessibility to education facilities (A1) 

 

Topographic data, from 2021, were downloaded from the Copernicus Land Monitoring Service. The 

data referring to the 2021 road infrastructure were based on the OpenStreetMap5 (OSM) platform. Also, 

through OSM, information such as the location of the areas of interest and transportation interfaces were 

 

 

4 Translated from Dutch, Centraal Bureau voor de Statistiek. Available on: https://www.cbs.nl/. 

5 Available on: https://www.openstreetmap.org/.  



Trialling the Gross Potential for Cycling: Exploring the Link with Cycling Demand in the Netherlands 

 

30  

downloaded, with Google Maps6 being used for occasional validation. The address of the educational 

establishments was collected based on Schools on Map7 (Scholen op de kaart 2021).  

Information about the car ownership and bicycle commuting was obtained from the ODiN database. The 

ODiN compiles statistical information about the daily mobility of the Dutch (CBS 2018). The ODiN 

results are available as microdata, so it is possible to access the individual answers. Among the answers, 

it is only possible to access information at the PC4 level due to privacy concerns (CBS and RWS 2018). 

The author had access to the 2018 version of this survey through the Data Archiving and Networked 

Service8 (DANS) in January 2021. The ODiN is a continuation of other mobility surveys from previous 

years, such as Research on Mobility in the Netherlands9 (OViN), Mobility Research Netherlands10 

(MON), Survey on Transportation Behavior11 (OVG). 

 

3.4. THE GROSS POTENTIAL FOR CYCLING 

The Gross Potential for Cycling is one of the tools developed by the project “BooST - Boosting Starter 

Cycling Cities”12 (Silva et al. 2021). The first version of the tool was developed by Silva et al. (2018); 

later refined in the BooST research project. The GPC tool was developed to identify the spatial 

disaggregation of cycling potential; the tool’s results can be easily used to evaluate scenarios, comparing 

the current condition of the city and the potential gains that could happen by building a new cycling 

infrastructure (Silva et al. 2019). The GPC does not evaluate the existing cycling infrastructure, a 

common factor used to evaluate “champion” cycling cities (BooST 2020). This PSS been developed for 

starter cycling cities and has only been applied in such contexts (Silva et al. 2021). 

The factors investigated in this method were established based on an extensive literature review (Silva 

et al. 2018), summarizing the international practices regarding indicators that influence bicycle use. The 

GPC evaluates ten indicators, divided into two groups, target area and target population. Each indicator 

is rated on a scale of 1 (lowest potential) to 5 (highest potential). The model is also calibrated by the 

conditions of circulation, which comprise cycling infrastructure, road hierarchy, road network speed, 

accidents, and topography (BooST 2020). The calibration is necessary since these factors can influence 

the average speed of the bicycle, and hence the behavior of the territory. Detailed maps are developed 

per indicator and an aggregate map to provide a unique overview of the cyclists’ potential (Silva 2019).  

Among the target area indicators, six indicators are considered. The accessibility to education facilities 

(A1) is considered based on the time it takes to reach an education facility by bicycle. The A1 is included 

in the tool due to positive empirical evidence of the impact of cycling in areas with more significant 

 

 

6 Free tool for searching, viewing maps and satellite images of the earth provide by Google. Available 

on: https://www.google.com/maps.  

7 Translated from Dutch, Scholen op Kaart. Available on: https://scholenopdekaart.nl/.  

8 Dutch national center of expertise and research data repository. Available on: https://dans.knaw.nl/. 

9 Translated from Dutch, Onderzoek Verplaatsingen in Nederland. 

10 Translated from Dutch, Mobiliteitsonderzoek Nederland. 

11 Translated from Dutch, Onderzoek Verplaatsingsgedrag. 

12 Available on: https://boost.up.pt/. 
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numbers of young people, such as educational establishments (Silva et al. 2021). The highest level (5) 

refers to areas where the time to reach a basic education or secondary education facility is a maximum 

of five minutes, or a university facility a maximum of ten minutes (BooST 2020). The lowest level (1) 

is a bicycle ride of at least 20 minutes to a primary school, at least 25 minutes to a secondary school, or 

at least 30 minutes to a university (BooST 2020). The indicator accessibility to centralities (A2) refers 

to the time needed to reach the closest centrality by bicycle, intending to measure the compactness of a 

city (BooST 2020). The A2 is based on studies developed by several authors who argue that bicycle use 

is mainly carried out over shorter travel distances, which are made possible through denser urban areas 

(Silva et al. 2021). The highest score (5) equals less than 10 minutes to reach the primary center (often 

represented by the city council building) and less than 5 minutes to reach the secondary center (BooST 

2020). The lowest score (1) represents more than 30 minutes to reach the primary center and more than 

15 minutes to reach the secondary center (BooST 2020). The accessibility to transport interfaces (A3) 

is defined by the time to reach a transport interface by bicycle (BooST 2020). A transport interface is 

defined as an element of a transport network featuring a high capacity service, namely a train, tram or 

major bus station. The A3 is based on the fact that accessibility to interfaces, when integrated with 

cycling, extends the travel distance and becomes competitive with car use (Silva et al. 2021). The highest 

level (5) equals areas with an average maximum time to reach bicycle transport interfaces of 2.5 minutes. 

The lowest level (1) equals a time of at least 10 minutes.  

Relative accessibility (A4) compares average distances by car and bicycle (Silva et al. 2021). It identifies 

competitiveness between these two modes (Silva, Teixeira, and Proença 2019). The highest (5) score 

level indicates that the average distance traveled by bicycle is higher than the distance traveled by car. 

The lowest (1) score level indicates that the average distance cycled is less than 25% of the distance 

driven by car. The indicator connectivity (A5) identifies average block areas according to their cycling 

capacity. The A5 refers to the effectiveness of the road network to reach destinations, highlighting the 

concern discussed by several authors about minimizing travel time as of utmost importance for active 

mobility (Silva et al. 2021). It is considered that smaller blocks improve physical connectivity (Silva et 

al. 2021). The indicator defines average block sizes based on a manual of good urban design practices 

(Barton, Grant, and Guise 2003, as cited in Silva et al. 2021). The most suitable areas, characterized by 

level 5, have, on average, blocks with areas smaller than 8,000 m2. The average of blocks larger than 

200,000 m2 is considered as a weaker connectivity; these are identified as level 1.   

Table 11 – Target area indicators score scale 

Source: Elaborated by the author from the data provided by BooST (2020) 

  5 4 3 2 1 

A1 Basic Education < 5 min 5 − 10 min 10 − 15 min 15 − 20 min > 20 min 

Secondary Education < 5 min 5 − 10 min 10 − 15 min 15 − 20 min > 20 min 

Superior Education < 10 min 10 − 15 min 15 − 20 min 20 − 30 min > 30 min 

A2 Primary Centre < 10 min 10 − 15 min 15 − 20 min 20 − 30 min > 30 min 

Secondary Centre < 5 min 5 − 7.5 min 7.5 − 10 min 10 − 15 min > 15 min 

A3 < 2,5 min 2.5 − 5 min 5 − 7.5 min 7.5 − 10 min > 10 min 

A4 Bike
> Car 

Bike 
∈ [75%
− 100%]Car 

Bike 
∈ [50%
− 75%[ Car 

Bike 
∈ [25%
− 50%[ Car 

Bike
< 25% Car 

A5 < 8,000  
m² 

8,000
− 20,000 m² 

20,000
− 80,000 m² 

80,000
− 200,000 m² 

> 200,000  
m² 

A6 9 types of 
activities 

8 − 9 types of 
activities 

6 − 4 types of 
activities 

3 − 1 types of 
activities 

0 types of 
activities 

 

The occupation diversity indicator (A6) analyses nine types of businesses and services within a radius 

of 500 meters. It is based on the idea that the active mobility environment has high densities and diversity 
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of uses, while the car commuting environment is the opposite (Silva et al. 2021). The facilities comprise 

primary and secondary education institutions, restaurants, food service facilities, shopping facilities, 

pharmacies, health centers, general interest services, culture, and leisure. Level 5 is the highest score, in 

which there is a variety of these nine facilities. On the other levels, this variety of establishments 

gradually decreases. Level 1 identifies areas that are not close to any of these facilities. 

Among the target population indicators, four indicators are considered. The age indicator (P1) measures 

the distribution of age profiles (BooST 2020). The indicator is based on several authors who claim that 

the most cycling-friendly ages are younger ages and is based on the understanding that students and 

younger adults are crucial elements in changing travel behavior in starter cycling cities. Among the 

authors on which this indicator was based is cited Goldsmith (1992, as cited in Silva et al. 2018), who 

analyze census data from major USA cities and conclude that bicycling rates are highest in the twenties 

and that the decline is steady until age 45, the age at which the reduction is significant. Other American 

studies on which the indicator was based identifies a low cycling rate among ages over 55 (Plaut 2005, 

as cited in Silva et al. 2018), Dill and McNeil (2013) classify this group as non-cyclists. The indicator 

defines the age group most likely to travel (level 5) by bicycle as those between the ages of 15 and 29. 

The group least prone to cycling (level 1) is younger than 10 or older than 50. Usually, the GPC age 

scale is divided into five different age groups; however, the indicator score must be adapted for this 

thesis due to the unavailability of data at this age group level. The CBS open data only has age 

information divided into five broad groups (Van Leeuwen 2019): up to 14 years, 15 year to 25 years, 26 

years to 44 years, 45 years to 64 years, 65 years and older. The indicator was adapted as directed by the 

BooST team. The age group with the highest propensity (level 5) to cycle was changed to 15 to 25 years 

old. The age group with the lowest propensity (level 2) became 65 and older.  

Table 12 – Comparison of the scoring scale of the age indicator (P1) 

Source: Elaborated by the author from the data provided by BooST (2021) 

Score Usual Adapted 

5 15-29 years  15-25 years 

4 10-14 or 30-39 years 0-14 or 26-44 years 

3 40-44 years 45-64 years 

2 45-49 years > 65 years  

1 < 10 or > 50 years   

 

The potential demand density (P2) refers to the density of people who travel within distances with a 

propensity for cycling (BooST 2020). A filter is used to check the people who use any mode of transport 

which could start using the bicycle; this filter is applied on an 8 km threshold (Silva et al. 2021). This 

indicator is based on several authors who claim that longer travel distances have a negative impact on 

cycling (Silva et al. 2021). In this thesis, due to the lack of detailed data on modal share for commuting, 

this indicator was replaced by population density. The highest value (5) of the scale refers to the 

population density of the specific study area greater than or equal to the cities’ average plus its standard 

deviation. The lowest value of the scale (1) identifies that the density potential demand is less than the 

mean minus the standard deviation. Employment density (P3) identifies the most likely areas to offer 

employment opportunities; this follows the same scale of levels as the potential demand density indicator 

(P2) (Silva et al. 2021). The P3 indicator is not considered in this thesis due to a lack of access to such 

data. The decision to remove indicators due to lack of data has already been made in other cities where 

the GPC was previously calculated (BooST 2020).  

The motorization rate (P4) indicator refers to the number of drivers per thousand residents (Silva et al. 

2021). The indicator uses for the calculation a variable present in the Portuguese census, which is the 
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primary mode of transportation used for the trips, compared to the national average (Silva et al. 2021). 

Indicator P4 is based on research that identifies car ownership as a negative influence on cycling rates 

(Silva et al. 2021). For this thesis, the indicator was adapted. The ODiN response of car ownership in 

the study region was considered a proxy for census data. The highest level (5) of the score is equivalent 

to a rate of fewer than 120 drivers per 1000 residents. The lowest level (1) of motorization rate equals 

higher 484 (the Dutch national average) drivers per 1000 residents. At the end of the analysis of the 

indicators, an aggregate value of these is calculated based on the weighted average of the indicators’ 

weights and their final scores.  

Table 13 – Target population indicators score scale  

Source: Elaborated by the author from the data provided by BooST (2021) 

 1 2 3 4 5 

P2  Dens.
≥ x̅ + σ 

x̅ + σ > Dens.

≥ x̅ +
1

2
σ 

x̅ +
1

2
σ > Dens.

≥ x̅ −
1

2
σ 

x̅ +
1

2
σ > Dens.

≥ x̅ − σ 

Dens. < x̅ − σ 

P3 Dens.
≥ x̅ + σ 

x̅ + σ > Dens.

≥ x̅ +
1

2
σ 

x̅ +
1

2
σ > Dens.

≥ x̅ −
1

2
σ 

x̅ +
1

2
σ > Dens.

≥ x̅ − σ 

Dens. < x̅ − σ 

P4 ≥ 484 363 − 483 242 − 362 121 − 241 ≤ 120 

 

For this thesis, the BooST team calculated the GPC indicators and aggregate value. The data collection 

for these calculations was done by the author and the BooST team (Table 14), as well as the development 

of the maps.  

Table 14 – Summary of the average values of the indicators and the final GPC score 

Source: Elaborated by the author from the data provided by BooST (2021) 

Group Code Indicators Score 

Target area A1 Accessibility to education facilities 4.882 

A2 Accessibility to centralities 4.602 

A3 Accessibility to transport interfaces 2.088 

A4 Relative accessibility 2.637 

A5 Connectivity 3.298 

A6 Occupation diversity 2.741 

Target 
population 

P1 Age 4.086 

P2 Population density 3.159 

P4 Motorization rate 1.349 

Gross Potential for Cycling 3.320 

 

Within the target area group, the indicator with the highest score is the accessibility to education 

facilities (A1), also classified as the indicator with the highest value between the two groups. The 

indicator with the lowest score is the accessibility to transport facilities (A3). In the target population 

group, the indicator with the highest score is age (P1), and the indicator with the lowest score is the 

motorization rate (P4), classified as the indicator with the lowest value of the two groups. The aggregate 

indicator representing the value of the Gross Potential for Cycling refers to a score of 3.320. An overall 

GPC map is presented in Figure 8; these are presented in a larger size in Appendix I. 
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Figure 8 – Overall Gross Potential for Cycling 

Source: Elaborated by the author from the data provided by BooST (2021) 
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3.5. METHOD 

In this thesis, three analyses are performed, descriptive analysis, bivariate and multivariate statistical 

analysis. The descriptive analysis refers to a side-by-side analysis of the maps developed by the GPC 

indicator and the maps with the cycling demand data. In the bivariate statistical method (Figure 9), 

correlation tests identify the association level between two variables, as Motulsky (2018) indicated. 

Furthermore, within the bivariate statistical method, simple linear regression (SLR) tests were 

performed. Among the multivariate statistical methods (Figure 9), multivariate linear regression (MLR) 

is used. The linear regression analysis aims to verify the predictive relationship between the variables 

(Field and Viali 2000; Motulsky 2018; Seltman 2018; Weisberg 2014). In the end, extra tests were 

performed to optimize the model applied in the multivariate analysis through backward stepwise MLR, 

as Field and Viali (2000) indicated. 

 
Figure 9 – Method overview 

Source: Elaborated by the author 

 

In summary, to achieve the objective, 11 models are developed for each variable of cycling demand, 10 

of these referring to bivariate analysis and one referring to multivariate analysis (Figure 10). The data 

that comes from the GPC calculation, whether its indicators or aggregated value, are defined as 
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independent variables13 (IV), while the dependent variable14 (DV) is evaluated through the cycling 

demand data. In the case of bivariate analysis, there is only one dependent and one independent variable. 

In the multivariate analysis, there is one dependent variable and two or more independent variables, in 

this case, nine independent variables, i.e., all the GPC indicators. In total, 52 models were tested, 

including 44 statistical analysis models (Figure 10) and 7 additional model optimization tests (Figure 

11). Before performing the established statistical tests, a treatment was performed on all the data, 

including the dependent and independent variables, such as a normalization process (Eesa and Arabo 

2017; Al Shalabi and Shaaban 2006). The normalization transformed the data on a scale from 0 

(minimum value) to 1 (maximum value). 

 

Figure 10 – Schematic of the models 

Source: Elaborated by the author 

 

 

13 The independent variable, also called the predictor variable, is the variable that is used to explain 

the variation in the dependent variable of a model (Field and Viali 2000). 

14 The dependent variable is the variable that is being explained by the independent variable in a model 

(Field and Viali 2000). 
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Figure 11 – Schematic of the additional models’ optimization 

Source: Elaborated by the Author 

 

Moreover, some of the variables were submitted to outlier elimination (Chagas 2017; Cook and 

Weisberg 1999; Field and Viali 2000). This elimination was performed on each model separately. 

Outliers were identified using Cook Distance (𝐷𝑖) (Cook and Weisberg 1999), the 𝐷𝑖 values that 

obtained a result higher than 4 𝑛⁄  were checked, results above such value are mainly detrimental to the 

model (Belsley et al. 1980 as cited in Meer and Grotenhuis 2010). Each outlier was analyzed separately; 

when the model was significantly improved by eliminating such an outlier, it was eventually eliminated 

for the model analysis, as indicated by Chagas (2017), Rousseeuw and van Zomeren (1990).  

Due to the several requirements for performing linear regression, which is discussed below, some of the 

models also have suffered logarithmic transformation of both the dependent and independent variables 

to pass the linear regression requirements; this transformation was based on Benoit (2011), Field and 

Viali (2000). 

For all statistical analyses, all cycling demand samples with fewer than nine respondents or a response 

rate of less than 0.19% were not considered for analysis. The choice to remove such data from the sample 

was based on the tendency to misinterpret the statistical tests due to having too few respondents. After 

exclusion, the response rate is defined in the range of 0.19% to 0.55%. Of the 276 spatial units for which 

statistical data was collected, 136 remained (Figure 12). Besides bringing more consistency to the 

research data, the choice of excluding this data set was defined as not leaving the sample smaller than 

the minimum acceptable, according to Green (1991, as cited in Field and Viali 2000). The minimum 

number of samples was defined as 122. 

The Statistical Package for the Social Sciences (IBM SPSS) 2715 was used to perform the statistical 

analyses. A normality check through the Shapiro-Wilk test was also performed in the software before 

proceeding to the statistical tests. The data is non-normal (𝑝 < 0.001), except for the GPC, as in the 

Shapiro-Wilk test, the GPC present normality (𝑝 = 0.102).  

 

 

15 Available on: https://www.ibm.com/analytics/spss-statistics-software. 
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Figure 12 – Study area related to statistical analysis 

Source: Elaborated by the author from the data provided by CBS (2016) 

 

Correlation is an analysis of the linear relationship between variables (Field and Viali 2000). It brings a 

numerical value corresponding to the magnitude of association between two variables (Buxton 2008). 

In this thesis, the Pearson correlation coefficient (𝑟) was used for the calculation, which uses a two-sided 

test. The models submitted to the correlation test are continuous, linear, and mainly with a non-normal 

distribution, except for the variable referring to the aggregate value of the GPC. However, the person 

correlation test continued to be used because it is a robust coefficient to non-normality, so the 

assumption of normality can be disputed (Havlicek and Peterson 1977).   

The effect of Pearson’s 𝑟 is verified through Field and Viali’s (2000) concept. Values of ± 0.100 

represent a weak correlation effect, values of ± 0.300 represent a medium effect, and ± 0.500 a highly 

effect. The positive sign of Pearson’s 𝑟 indicates that the variables are positively correlated and the 

negative sign negatively correlated (Buxton 2008; Field and Viali 2000; Schober, Boer, and Schwarte 

2018). When the variables are negatively correlated, the higher the value of one variable, the lower the 

value of the other variable. 

Correlation helps check the intensity of the relationship between variables but does not provide 

information about the power of the relationship of variables (Altman and Krzywinski 2015; Field and 

Viali 2000). Regression makes it possible to check the power of relationships between variables by 

exploring the dependent variable as a function of one or more independent variables (Field and Viali 

2000).  
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A simple linear regression (SLR) model predicts an output variable through only one independent 

variable (Field and Viali 2000). Several simple linear regression models were developed, always with 

the cycling demand data as the dependent variable and the GPC indicators and their aggregated value as 

independent variables analyzed separately. The multiple linear regression (MLR) model, on the other 

hand, predicts the output variable through two or more independent variables (Field and Viali 2000).  In 

the multiple linear regression models adopted, data referring to cycling demand analyzed separately 

were used as dependent variables, and as independent variables, all the GPC indicators were inserted in 

the model in a forced manner. 

Table 15 – Summary of bivariate models 

Source: Elaborated by the author  

Model  1 2 3 4 5 6 7 8 9 10 

 (DV) (IV) A1 A2 A3 A4 A5 A6 P1 P2 P4 GPC 

I 𝑘𝑚𝑡1 Transformation Log          

Outliers   2  2 3  3 0 3 

II 𝑘𝑚𝑡2 Transformation           

Outliers      1  2 1 2 

III 𝑞𝑡𝑦𝑡1 Transformation Log         Log 

Outliers 5 2 2 1 8 5  8 2 6 

IV 𝑞𝑡𝑦𝑡2 Transformation Log Log        Log 

Outliers 1 4 5  2 8  1 1 7 
(1) The “Log” symbolizes logarithmic transformation in both the dependent and independent variables.  

 

Table 16 – Summary of multivariate models 

Source: Elaborated by the author 

Model 
11 12 13 

a b a b c d 

 

(DV) (IV) 

A1, A2, 
A3, A4, 
A5, A6, 
P1, P2, 
P3 

A4, A6, 
P1, P2 

A3, A6, 
P1, P2, 
P4 

A2, A4, 
A6, P1, 
P2 

A2, A4, 
A6, P2 

A3, P1, 
P2, P4 

P1, P2 

I 𝑘𝑚𝑡1 Transformation        

Outliers 9   9   9 

II 𝑘𝑚𝑡2 Transformation        

Outliers 6 6     6 

III 𝑞𝑡𝑦𝑡1 Transformation     2   

Outliers 2    **   

IV 𝑞𝑡𝑦𝑡2 Transformation Log  Log   Log  

Outliers 4  4   4  

(1) The “Log” symbolizes logarithmic transformation in both the dependent and independent variables.  

 

The linear regression models applied to this thesis did not violate the assumptions defined by Field and 

Viali (2000) for the method. The linear regression method is robust to non-normality (Chagas 2017; 
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Seltman 2018), so this does not affect the proposed analysis. Each model was tested using a t-test16 

considering a standard error to check if an output value is significant (Field and Viali 2000); models that 

were considered non-significant (𝑝 > 0.05) were not considered for this analysis. To check if the 

established models could predict the outcome of a sample, the principle of cross-validation called 

adjusted 𝑟217, was used. At last, to obtain an optimized model, a MLR analysis through the backward 

stepwise method was used; this was calculated step-by-step by the author. The backward stepwise 

method initially incorporates all variables into the model, and then, in stages, variables that do not have 

significant coefficients are excluded from the model (Chagas 2017). The initial models of the stepwise 

backward analysis, which incorporate all variables, are the same models applied in the multivariate 

analysis performed (model I.11, II.11, III.11, IV.11). For this thesis, in the model optimization tests, 

only the models that obtained significant coefficients at 10% and 5% are presented.  

 

 

16 The t-test compares a model with no predictor to the specified model (Field and Viali 2000). A model 

with no significance means that the fit of the intercept-only model is significantly reduced compared 

to the specified model (Field and Viali 2000). 

17 The adjusted 𝑟2 is the percentage of variation in the response that is explained by the model (Field 

and Viali 2000). The adjusted 𝑟2 is calculated as one minus the ratio of the mean square of the error 
to the total mean square (Field and Viali 2000). 
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4 

COMPARING GROSS POTENTIAL 

FOR CYCLING AND CYCLING 

DEMAND IN THE NETHERLANDS 

 

 

This chapter presents a descriptive analysis of the comparison of the results obtained through applying 

the Gross Potential for Cycling in the study area with the cycling demand data extracted from the ODiN 

2018. After that, different statistical analyses are performed, these divided into bivariate and multivariate 

analyzes. The bivariate analyses comprise the individual evaluation of each GPC indicator and its 

aggregate value with the cycling demand data. The multivariate analysis comprises a joint evaluation of 

the GPC indicators with the cycling demand data. Following the analysis, model optimization tests are 

performed. In the end, a discussion of the results verified through the analyses is conducted. 

 

4.1. A DESCRIPTIVE ANALYSIS OF THE GROSS POTENTIAL FOR CYCLING 

The spatial analysis of the Gross Potential for Cycling shows the highest potential among Enschede and 

Apeldoorn, which are known as municipal agglomerations, being employment and facility access hubs. 

These municipalities center areas have a population density higher than 2000 inhabitants per km2.  

When relating the total kilometers traveled by bicycle (𝑘𝑚𝑡1) to the aggregated value of the GPC, there 

is an ascending trend, which means wherever there are fewer kilometers traveled, the GPC score is also 

lower and so on. Where the GPC score is below level two, the total bicycle kilometers traveled is less 

than 20,000 km, except for two locations, south of the municipality of Almelo and southwest of Lochem. 

The areas have approximately 21,000 km and 23,000 km traveled by bicycle, respectively; both have 

low population density, are located not so far from primary centralities and close to secondary 

centralities.  

The area corresponding to the aggregated value of level three has 90% of its extension with a total 

amount of travel distance below 60,000 km (Table 17). The data are more dispersed when comparing 

the total bicycle travel distance and the GPC scores corresponding to four and five. Level four has a 

lower value of locations with travel distances over 100,000 km than locations with travel distances under 

20,000 km; however, there are more locations with travel distances between 20,000 and 60,000 km. 

Within level five, the higher number of travel distance areas is between 60,000 km and 100,000 km. The 

areas corresponding to scores four and five mostly have easy access to primary and secondary 

centralities. 

Some areas within municipalities tend to contain few similarities to the GPC (Figure 13); for example, 

some locations within the highly dense municipality center of Apeldoorn have bicycle travel distances 
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of less than 20,000 km and a score of three according to the GPC. In the case of Apeldoorn, this region 

has high accessibility to educational facilities and transportation interface. Among the municipalities 

defined as densely populated centers, their limits tend to have lower cycling demand. Voorst and Losser, 

suburban municipalities, on the other hand, do not follow this trend and have lower cycling demand in 

the whole territory. However, in most municipal centers, where population density is high and access to 

facilities is easy, the total travel distance tends to increase more than in other regions. Most of the GPC 

aggregate areas with scores equivalent to levels two and three have more significant similarity to the 

total kilometers traveled by bicycle data (Figure 13); in these areas, the tendency to have shorter trip 

distances is similar to the tendency to obtain lower GPC scores. The areas with low score have lower 

population densities, on average less than 250 inhabitants per km2 and do not have a diversity of 

educational establishments; most of the establishments in these localities are primary schools. Moreover, 

the relative accessibility in these areas is also low; that is, the distance traveled by car is relatively higher 

than the distance traveled by bicycle. For the most part, accessibility to transport interfaces is low. All 

these causes tend to contribute to this similarity for shorter bicycle distances to have lower GPC score 

values. 

 

 

Figure 13 – Total kilometers traveled by bicycle (𝑘𝑚𝑡1) compared to GPC 

Source: Elaborated by the author from the data provided by CBS (2016) and BooST (2021) 
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Table 17 – Total kilometers traveled by bicycle (𝑘𝑚𝑡1) compared to GPC by area and inhabitants 

Source: Elaborated by the author from the data provided by CBS (2016) and BooST (2021) 

 Area [%] Inhabitants [%] 

𝒌𝒎𝒕𝟏              GPC 2 3 4 5 2 3 4 5 

≥ 100,000  2.42 9.72 9.59  9.49 8.95 18.41 

80,000 ≤ x < 100,000   1.43 14.46 31.42  3.30 24.71 45.31 

60,000 ≤ x < 80,000      10.51 21.89 24.72 

40,000 ≤ x < 60,000  18.60 29.71 23.85  0.13 0.03 0.01 

20,000 ≤ x < 40,000 6.14 25.07 16.63 18.20 8.97 32.14 34.21 11.55 

< 20,000 93.86 46.69 9.51  91.03 44.43 10.21  

 
Considering the kilometers traveled per capita by bicycle (𝑘𝑚𝑡2) map compared to the aggregated GPC 

map, there is an increasing tendency between the data again on a macro scale. However, the analysis on 

a micro scale does not tend to be so precise as on a macro scale. The localities with a score of level two, 

in more than half of its extension, has average users making trips up to 2 km. These locations tend to be 

closer to the borders between the municipality, where population density is below 250 inhabitants per 

km2, and access to facilities is limited. There is a dispersion of travel distance at levels three and four of 

the GPC, but there is a tendency to have a more significant travel distance per capita near densely 

populated centers. At level five, the travel distance per capita is always more than 4 km. Those living 

on half of the territorial extension of the area, classified as level five, make on average a travel distance 

per capita of more than 10 km per trip; these areas are between the densely populated centers of 

Apeldoorn and Enschede. 

Table 18 – Kilometers traveled per capita by bicycle (𝑘𝑚𝑡2) compared to GPC by area and inhabitants 

Source: Elaborated by the author from the data provided by BooST (2021) 

 Area [%] Inhabitants [%] 

𝒌𝒎𝒕𝟐              
GPC 2 3 4 5 2 3 4 5 

≥ 10 20.53 16.00 16.69 50.51 14.51 15.81 9.88 45.39 

8 ≤ x < 10  1.89 10.31 16.46 12.56 18.49 43.48 52.16 39.44 

6 ≤ x < 8 3.61 19.61 19.84 20.25     

4 ≤ x < 6 7.08 24.02 34.23 16.68 13.13 21.43 25.46 15.17 

2 ≤ x < 4 11.78 13.02 6.92  12.98 10.65 9.88  

< 2 55.11 17.04 5.85  40.89 8.62 2.62  

 

The lowest similarities of travel distance per capita with the GPC are in localities with a GPC score of 

two and three with total travel distance per capita of more than 10 km, such values exceeding the average 

(Figure 14). However, these localities are close to densely populated centers and have relatively close 

access to facilities. In most of these areas, the population tends to be young and adult on average. The 

most significant similarities are the places that obtain level two classification in half of their territorial 

extension (Figure 14). These have inhabitants who travel less than 2 km on average. Such locations tend 

to be close to municipal borders, places with no diversity of schools, far from public transportation 

interfaces, and lack a range of facilities around them. The places with a level five classification have 

inhabitants who make on average trips of more than 10 km in half of their territorial extension. However, 

these areas are among the densely populated centers with more than 2000 inhabitants per km2 and easy 

access to public transportation, jobs, and educational establishments. These trends show that residents 
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who have easy access to a diversity of activities tend to cycle longer distances than those who are more 

distant from these facilities. 

 

Figure 14 – Kilometers traveled per capita by bicycle (𝑘𝑚𝑡2) compared to GPC 

Source: Elaborated by the author from the data provided by CBS (2016) and BooST (2021) 

 

The total amount of trips (𝑞𝑡𝑦𝑡1) compared to the aggregate value of the GPC on a macro scale has an 

increasing scale; the more trips, the higher the GPC score. At the micro scale, this tendency tends to 

remain clear. Level two areas have trip quantity almost entirely below 4,000 trips except for one locality 

south of Almelo, which has 4,600 trips made by bicycle. Level three areas have an average of less than 

16,000 bicycle trips except for just under one-fifth of the areas with an average number of bicycle trips 

higher than 16,000. These exception areas have lower inhabitants’ numbers and lower territorial 

distribution than all the areas scored at level three. As for the level four areas, there is a tendency for the 

average number of trips to exceed 12,000. There are some exceptions, like some areas located in the 

center of Apeldoorn and Twenterand, but these have a lower amount of inhabitants compared to the 

other areas at level four. More than half of the areas at level five have a trip number higher than 20,000; 

these tend to have more inhabitants and have easy access to centralities. The areas that have low 

similarity are few compared to those that have high similarity (Figure 15). Among the areas with low 

similarity are those identified at level three. Among such areas, the population is lower than the whole 

area, which may cause an unexpected trend in such zones. The localities farthest from the population 
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centers have lower GPC values, as well as a lower total number of trips, and those closer to the 

population centers have a higher number. 

 

Figure 15 – Total number of bicycle trips (𝑞𝑡𝑦𝑡1) compared to GPC 

Source: Elaborated by the author from the data provided by CBS (2016) and BooST (2021) 

 

Table 19 – Total number of bicycle trips (𝑞𝑡𝑦
𝑡1

) compared to GPC by area and inhabitants 

Source: Elaborated by the author from the data provided by BooST (2021) 

 Area [%] Inhabitants [%] 

𝒒𝒕𝒚𝒕𝟏              
GPC 2 3 4 5 2 3 4 5 

≥ 20,000  0.71 19.12 67.19  3.56 24.49 71.39 

16,000 ≤ x < 20,000   3.42 16.10 7.17  3.10 17.85 9.47 

12,000 ≤ x < 16,000  5.45 27.78 7.44  9.21 20.27 10.75 

8,000 ≤ x < 12,000  14.92 24.24 5.12  22.57 23.39 3.56 

4,000 ≤ x < 8,000 3.23 24.95 8.14 13.08 5.43 29.06 12.21 4.84 

< 4,000 96.77 50.55 4.62  94.57 32.49 1.80  

 

The number of trips per capita by bicycle (𝑞𝑡𝑦𝑡2) has an increasing trend at the macro scale of analysis 

compared to the GPC, similar to the other cycling demand coefficients. However, in a micro analysis, 
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this trend is not as clear as the one observed in the 𝑞𝑡𝑦𝑡1 analysis. Score two areas have in more than 

half of their extension less than one trip per capita (Table 20). Some level two areas have average per 

capita trips above three; these have fewer inhabitants than the rest of the level two area. The exception 

areas are located south of Almelo and northwest of Apeldoorn. The south of Almelo location has already 

been highlighted in the other comparisons made. The locations with a score of three have, within a large 

part, an average of per capita travel amounts below three; however, there are some localities among 

Enschede, Apeldoorn, and Deventer with per capita travel amounts above four. Among the areas 

classified at level four on GPC, the number of trips tends to be below three; there are some areas with 

over five trips per capita, these have a relatively low number of inhabitants when compared to the rest 

of the area at level four, they are among localities with a population density above 500 inhabitants per 

km2 and in centralities, with easy access to educational establishments and facilities.  Among the areas 

classified at level five, there is a difficulty in verifying a trend in the data; however, such areas have a 

per capita number of trips above one. 

 

Figure 16 – Number of trips per capita by bicycle (𝑞𝑡𝑦𝑡2) compared to GPC 

Source: Elaborated by the author from the data provided by CBS (2016) and BooST (2021) 
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Table 20 – Number of trips per capita by bicycle (𝑞𝑡𝑦
𝑡2

) compared to GPC by area and inhabitants 

Source: Elaborated by the author from the data provided by BooST (2021) 

 Area [%] Inhabitants [%] 

𝒒𝒕𝒚𝒕𝟐              
GPC 2 3 4 5 2 3 4 5 

≥ 5  1.89 1.09 18.46  0.84 1.73 15.13 

4 ≤ x < 5  7.59 1.16   0.74 1.50   

3 ≤ x < 4 1.08  5.67 37.18 1.29  5.98 41.93 

2 ≤ x < 3 12.28 6.86 16.66 23.85 13.21 11.77 22.05 27.35 

1 ≤ x < 2 11.58 50.83 61.45 20.52 12.52 56.63 60.31 15.59 

< 1 67.48 39.26 15.13  72.24 29.26 9.94  

 

Similarly, to the comparison made with 𝑞𝑡𝑦𝑡1, the areas that present low similarities are areas that have 

few inhabitants on average (Figure 16). Such locations are classified with scores two and three on GPC 

and with a per capita number of trips higher than three. The areas with the highest similarities are those 

that have fewer trips below level two. As well as the number of trips per capita below two, which 

represent more than half of all areas at level three. In summary, the areas with the highest rates of cycling 

demand tend to be among the densely populated centers. However, the data for the total amount of trips 

and per capita number of trips seem to have more similarity between scaled values of the aggregated 

GPC value than those for total trip distance and per capita trip distance.  

Considering the target area indicators used to calculate the aggregate value of the GPC, the accessibility 

to education facilities indicator (A1) and the relative accessibility indicator (A4) have the highest weight 

from the calculation of the aggregate value of the GPC. However, performing a spatial analysis of the 

indicator of accessibility to education facilities shows a distribution of educational facilities throughout 

the study area, but this distribution is greater in densely populated centers. The areas identified as having 

the best accessibility to education facilities do not appear to be strongly correlated with cycling demand 

data. The relative accessibility indicator (A4), on the other hand, has higher accessibility levels among 

densely populated centers, specifically among Apeldoorn and Enschede, metropolitan agglomerations, 

as well as Almelo, Deventer, Duiven, Hengelo, Losser Zevenaar, and Zutphen. These densely populated 

center areas tend to have higher cycling demand. Within the indicator for accessibility to centralities 

(A2), areas on average within reach of the primary center in less than 10 minutes are in parts with higher 

values of cycling demand. Such areas, have on average per capita bicycle trip distances (𝑘𝑚𝑡2) higher 

than 2 km. When analyzing accessibility to transport interfaces (A3), measured by the time to reach a 

transport interface by bicycle, it is one of the indicators with the lowest value; its final average value is 

2.08. A large part of the map of accessibility to transport interfaces is indicated as having lower potential, 

i.e. time to reach a transport interface by bicycle more than 10 minutes. The connectivity indicator (A5) 

has weight one among the GPC aggregate value, the areas with the highest connectivity have block sizes 

below 20,000 m2, these are mostly between densely populated centers, places in which tend to have 

higher cycling demand rates; this means that blocks are more permeable between densely populated 

centers, and people make in part more trips than other areas. It is noticeable that in the areas farther 

away from these centers, people tend to make fewer trips, but longer trips; this can partly be associated 

with the level of connectivity in which these areas are located. The level of connectivity indicates that 

the blocks in areas farther away from the centers are less permeable. Therefore, people need to travel 

long distances to reach their destination. This leads to the idea that more permeable blocks encourage 

more travel due to the ease of getting from point A to point B. The occupation diversity indicator (A6) 

has weight one among the aggregated GPC value. This shows that there is great diversification in the 

number of activities present in the study area. A large portion of the study area has access to one to six 

types of activities within a 500 meter ratio. Sites with fewer than six different activities tend to have 
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longer per capita travel distances but fewer trips per capita; this suggests that places that do not have a 

range of activities within a 500 meter radius force people to travel longer distances and tend to 

discourage cycling. 

 
Figure 17 – Cycling demand data and Gross Potential for Cycling indicators referring to the target area 

Source: Elaborated by the author from the data provided by CBS (2016) and BooST (2021) 
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Figure 18 – Cycling demand data and Gross Potential for Cycling indicators referring to the target population 

Source: Elaborated by the author from the data provided by CBS (2016) and BooST (2021) 
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Looking at the age indicator (P1), half of the areas refer to localities with an age range of 15 to 25 years 

(level five). After the 15 to 25 age group, the 0 to 14 and 26 to 44 age group are adapted as the most 

cycling prone group (level four). The area indicated as level four in this research is equivalent to a little 

more than a quarter of the mapped areas. Next, the 45 to 64 age group (cycling propensity level 

equivalent to three) is represented on the map by a little more than a tenth of the entire study area.  

Finally, the over 65 age group is presented as having the least potential for cycling (level two), 

represented in only a few areas on the map. However, when comparing each value for 𝑘𝑚𝑡2 and 𝑞𝑡𝑦𝑡2, 

separated by the CBS age group, each age group follows similar commuting trends (Figure 19). 

However, the 45 to 64 age group has slightly higher rates than the average. With little difference to the 

45 to 64 age group, the group aged up to 15 years has more trips but fewer kilometers. Results tend to 

show that the age context seems to be not so relevant when applied in the “champion” context than in 

starter cycling cities.  

 

 
Figure 19 – Difference between age groups, kilometers traveled per capita by bicycle (𝑘𝑚𝑡2) and number of trips 

per capita by bicycle (𝑞𝑡𝑦𝑡2)  

Source: Elaborated by the author from the data provided by BooST (2021) 

 

Though, when combined with the data on the distance traveled per person (𝑘𝑚𝑡2) and the number of 

trips traveled per person (𝑞𝑡𝑦𝑡2) according to the groups indicated by the BooST team, there is a change 

in the classification of the groups. The group with the highest number of bicycle trips per person and the 

highest bicycle distance traveled per person is the group indicated at level two of the GPC, 0 to 14 years, 

and 26 to 44 years. The next group with the most significant variation is 45 to 64 years. The last two 

groups are reversed according to the distance per capita and the number of trips per capita. The per 

capita distance shows the 15 to 25 age as the group that makes the shortest trips. On the other hand, the 

per capita number of trips indicates that the group over 65 years old is the one that makes the fewest 

trips on average; the difference is almost null with the 14 to 25 age group, but it exists. In summary, the 

analysis of age showed a similar trend among the age groups regarding cycling demand. This may be 

directly correlated with the fact that the analysis was performed in a “champion” area. The assumption 

established by the GPC that the highest cycling potential is among the 15-29 age group is broken, 

showing that the behavior in this case study is different than in a starter city. Regarding the other 

indicators related to the target population, it is possible to verify a trend that locations with high 

population density (P2) tend to have higher cycling demand values than locations with low population 

density. Also, most of the population owns motor vehicles when compared to the national average. 

In summary, a significant portion of the territory has high accessibility to educational facilities (A1). A 

significant part of the indicators based on target areas highlight the presence of centers with a high 
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population density, places in which there is a wide range of access to facilities. Such centers are easily 

noticed when it comes to access to centralities (A2) and diversity of occupation (A6). Accessibility to 

public transportation (A5) follows the transportation interfaces, mostly train stations located within the 

centralities. The connectivity (A5) identifies that the most permeable areas are located within the 

centralities, where have designs more prone to human scale. Age (P1) seems to have a different behavior 

between the champion and starter cities contexts. In the areas evaluated in this study, the age groups 

seem to have similarity in bicycle use. Population density (P2) is higher in the centers of the 

municipalities. Such densely populated centers tend to have higher potential bicycle use, as well as 

higher cycling demand. The opposite happens in areas with low population density. 

 

4.2. STATISTICAL ANALYSIS 

The statistical analyses are divided into three steps: bivariate, multivariate, and additional model 

optimization tests. All models represented in this article related to bivariate statistical analysis are in 

Appendix II. The multivariate statistical analysis models are in Appendix III. The optimization models 

are presented in Appendix IV. Models that did not show significance in the t-test for overall significance 

are not considered in the appendices, as the statistical tests are non-relevant. 

 

4.2.1. BIVARIATE STATISTICAL ANALYSIS 

The analysis between the coefficients of cycling demand as dependent variables and Gross Potential for 

Cycling as an independent variable shows that GPC better explains the coefficients related to the number 

of bicycle trips (𝑞𝑡𝑦𝑡1). However, both the coefficient of the total number of bicycle trips (𝑞𝑡𝑦𝑡1) (model 

III.10) and the number of trips per capita by bicycle (𝑞𝑡𝑦𝑡2) (model IV.10) have a high correlation effect. 

The model (I.10) with the coefficient referring to the total kilometers traveled by bicycle (𝑘𝑚𝑡1) has a 

medium correlation. The model (II.10) with the coefficient of kilometers traveled per capita by bicycle 

(𝑘𝑚𝑡2) has the lowest correlation among the cycling demand coefficients, being a weak-medium 

correlation.  Such levels of correlation reflect the explanatory power among the variables; 32.4% of the 

indicator 𝑞𝑡𝑦𝑡1 is explained by GPC (model III.10), while GPC explains only 4.5% of the indicator 

𝑘𝑚𝑡2 (model II.10). 

Other analyses are performed, with the cycling demand coefficient as the dependent variable and the 

GPC indicators as independent variables. Among the analysis performed with the total kilometers 

traveled by bicycle (𝑘𝑚𝑡1), the indicators related to accessibility to centralities (A2), relative 

accessibility (A4), age (P1) and motorization rate (P4) do not show a significant relationship with 𝑘𝑚𝑡1 

when analyzed separately. The population density (P2) is the coefficient with the highest explanatory 

power among the bivariate analysis with 𝑘𝑚𝑡1 as the dependent variable; 13.3% of 𝑘𝑚𝑡1 is explained 

by population density (model I.8). Within the GPC conceptual model, this indicator weights three, the 

highest value of all the weights. Occupation diversity (A6) has the lowest explanatory power; 4.0% of 

𝑘𝑚𝑡1 is explained by occupation diversity (model I.6). This indicator, among the GPC conceptual 

model, has one of the lowest weights. However, all correlations between the dependent and independent 

variables are weak to medium.  

Using kilometers traveled per capita by bicycle (𝑘𝑚𝑡2) as the dependent variable, the accessibility to 

education facilities (A1), accessibility to centralities (A2), accessibility to transport interfaces (A3), 

relative accessibility (A4), and connectivity (A5) have no significant relationship. The other indicators 

are significant, but the correlation is weak. Among the bivariate analysis, the strongest explanatory 

power indicator is within indicator age (P1), which explains 3.3% of 𝑘𝑚𝑡2 (model II.7), while population 
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density (P2) explains 3.2% of 𝑘𝑚𝑡2 (model II.8). On the other hand, the motorization rate (P4) explains 

even less than 𝑘𝑚𝑡2, comprising 2.2% (model II.9). This indicator weighs two among the weights in the 

GPC conceptual model. Among the analyses, the model with the age indicator (P1) as an independent 

variable (model II.7) presents an inversely proportional correlation, meaning that the higher the 𝑘𝑚𝑡2 

value, the lower the age indicator’s level. 

Table 21 – Summary of bivariate model results 

Source: Elaborated by the Author 

Model 1 2 3 4 5 6 7 8 9 10 

 (DV) (IV) A1 A2 A3 A4 A5 A6 P1 P2 P4 GPC 

I 𝑘𝑚𝑡1 𝑟 0.241  0.222  0.308 0.218  0.374  0.334 

Adj 𝑟2 0.051 

** 

 0.042 

** 

 0.088 

** 

0.040 

* 

 0.133 

** 

 0.105 

** 

II 𝑘𝑚𝑡2 𝑟      0.192 -0.200 0.197 0.170 0.228 

Adj 𝑟2      0.030  

* 

0.033  

* 

0.032 

* 

0.022 

* 

0.045 

** 

III 𝑞𝑡𝑦𝑡1 𝑟 0.428 0.327 0.325 0.205 0.424 0.394  0.496 0.230 0.574 

Adj 𝑟2 0.177 

** 

0.100 

** 

0.099 

** 

0.035 

* 

0.173 

** 

0.149 

** 

 0.240 

** 

0.046 

** 

0.324 

** 

IV 𝑞𝑡𝑦𝑡2 𝑟 0.393 0.338 0.415 0.227 0.390 0.463  0.426 0.320 0.483 

Adj 𝑟2 0.148 

** 

0.108 

** 

0.166 

** 

0.045 

** 

0.145 

* 

0.209 

** 

 0.176 *

* 

0.092      

** 

0.228 

**                                        

(1) The 𝑟 corresponds to the value of the Pearson correlation. Values of ± 0.100 represent a weak correlation effect, 

values of ± 0.300 represent a medium effect, and ± 0.500 a high effect. The “Adj 𝑟2” represents the adjusted 𝑟2. 

The “*” symbolizes significance at 0.05. The “**” symbolizes significance at 0.01. 

 

When the total number of bicycle trips (𝑞𝑡𝑦𝑡1) is entered as the dependent variable, the correlations 

between the indicators and the dependent variable become, in most models, are significant correlations. 

Age (P1) has no significance with 𝑞𝑡𝑦𝑡1. The population density (P2) is the one that has the most 

significant explanatory indicator over 𝑞𝑡𝑦𝑡1 in the bivariate analysis, comprising 24.0% (model III.8). 

The relative accessibility (A4) explains 3.5% of 𝑞𝑡𝑦𝑡1 (model III.4); the smallest value of explanation 

among the analyses. The same trend that occurs in the total number of bicycle trips (𝑞𝑡𝑦𝑡1), occurs in 

the models that contain the number of trips per capita by bicycle (𝑞𝑡𝑦𝑡2) as the dependent variable. 

These models have significant correlations. The indicator with the lowest explanatory indicator power 

is also the same; relative accessibility (A4) explains 4.5% of 𝑞𝑡𝑦𝑡2 (model IV.4). However, the 

occupation diversity (A6) indicator has the most significant value; it explains 20.9% of the 𝑞𝑡𝑦𝑡2 (model 

IV.6). This differs sharply from the GPC conceptual model, which has the occupation diversity indicator 

as one of the lowest weights in the model. Age (P1) remains non-significant.  

In all analyses, the coefficients of the indicators remain positive, except for the age (P1) indicator. The 

indicator P1, referring to the age profile of residents, in its only significant relation, has an inversely 

proportional relation; this being with 𝑘𝑚𝑡2 as the dependent variable. However, in the GPC conceptual 

model, it has one of the highest weights. The population density (P2) is the one that best explains the 

cycling demand data among all the GPC indicators; there is an exception only in the model with 𝑞𝑡𝑦𝑡2. 

The population density (P2) indicator weights three in the GPC conceptual model, one of the indicators 

with the highest weight. The accessibility to centralities (A2) and accessibility to transport interfaces 
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(A3), when among significant models, have median coefficients, the weights of the conceptual models 

are equivalent to two. Occupation diversity (A6) among the models with 𝑘𝑚𝑡1and 𝑘𝑚𝑡2 have the lowest 

coefficient values, as happens in the GPC conceptual model, which presents a weight of one. However, 

occupation diversity (A6) among the models with 𝑞𝑡𝑦𝑡1 and 𝑞𝑡𝑦𝑡2 already seems to have coefficients 

with more significant weights. When significant, relative accessibility (A4) has the lowest coefficient 

values, contrary to the GPC conceptual model in which it weights three. The accessibility to education 

facilities (A1) weighs three in the GPC conceptual model, but it appears to have medium coefficients in 

the models tested in this thesis. Connectivity (A5) weights one in the GPC conceptual model, and in the 

tested models, it seems to have average coefficients. The significant models between the analyses in 

𝑞𝑡𝑦𝑡1 and 𝑞𝑡𝑦𝑡2 are similar. The analysis with 𝑘𝑚𝑡2 is the one that presents the least amount (four out 

of nine) of significant models. The variable 𝑘𝑚𝑡2 showed to be the one with the lowest correlation level 

between the indicators of the GPC and the aggregated value. On the other hand, the variable 𝑞𝑡𝑦𝑡1is the 

variable that is best explained by the GPC indicators and aggregated value.   

  

4.2.2. MULTIVARIATE STATISTICAL ANALYSIS  

The GPC indicators are classified as independent variables in the multivariate analysis, whereas the 

cycling demand data are classified as dependent. These models are called forced models since all 

indicators are entered at the same time. These models follow the hierarchy of explanatory power 

presented in the bivariate analysis with the GPC as the dependent variable. Thus, the model that has the 

total number of bicycle trips (𝑞𝑡𝑦𝑡1) as the dependent variable has the highest explanatory value, being 

this 33.3% (model III.11). All GPC indicators explain 32.8% of 𝑞𝑡𝑦𝑡2 (model IV.11), 26.0% of 𝑘𝑚𝑡1 

(model I.11), and 11.6% of 𝑘𝑚𝑡2 (model II.11).  

Table 22 – Summary of multivariate model results 

Source: Elaborated by the author 

Model 11 

 (DV) (IV) A1 A2 A3 A4 A5 A6 P1 P2 P4 

 I 𝑘𝑚𝑡1 Coefficients -0.386                 

 

-0.394 

. 

0.021 

 

-0.413 

** 

0.012 

 

0.341 

* 

-0.197 

. 

0.616 

** 

-0.200 

 

Adj 𝑟2 0.260 ** 

II 𝑘𝑚𝑡2 Coefficients -0.206 

 

-0.106 

 

0.020 

 

-0.160 

* 

0.070 

 

0.203 

* 

-0.116 

. 

0.127 

 

0.112 

 

Adj 𝑟2 0.116 ** 

III 𝑞𝑡𝑦𝑡1 Coefficients 0.396 

 

-0.537 

 

0.087 

 

-0.247 

 

-0.086 

 

0.322 

. 

-0.066 

 

0.745 

** 

-0.210 

 

Adj 𝑟2 0.333 ** 

IV 𝑞𝑡𝑦𝑡2 Coefficients 0.257 

 

-0.057 

 

0.083 

* 

-0.109 

 

0.097 

 

0.198 

. 

-0.160 

* 

0.190 

. 

0.211 

* 

Adj 𝑟2 0.328 ** 
(1) The “Adj 𝑟2” represents the adjusted 𝑟2. The “*” symbolizes significance at 0.05. The “**” symbolizes 
significance at 0.01. The “.” symbolizes significance at 0.10. 

 

The analysis with the total kilometers traveled by bicycle (𝑘𝑚𝑡1) as dependent variable (model I.11), 

comprises only five indicators with significance below 10%, i.e., four indicators present in the model 

do not tend to add to the explanatory power of the set of variables in relation to 𝑘𝑚𝑡1. These four 
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indicators are accessibility to education facilities (A1), accessibility to transport interfaces (A3), 

connectivity (A5), and motorization rate (P4), which have weights of three, two, one and two, 

respectively, in the GPC conceptual model. Among the five remaining indicators, population density 

(P2) is the indicator with the highest coefficient, which is also one of the indicators with the highest 

weight in the GPC conceptual model. For the age (P1) indicator, it has to tend the lowest coefficient and 

is inversely proportional. The age weight differs sharply from the GPC conceptual model, which 

presents this indicator with one of the highest weights, and in this case, it is the coefficient with the 

lowest value among the significant ones. Among the other three indicators that are in the middle of the 

extreme values presented, these have increasing coefficients, respectively occupation diversity (A6), 

accessibility to centralities (A2) and relative accessibility (A4). Such indicators also have increasing 

weights within the GPC conceptual model, respectively one, two, and three. However, the indicators of 

accessibility to centralities (A2) and relative accessibility (A4) are inversely proportional in the model.  

The analysis with kilometers traveled per capita by bicycle (𝑘𝑚𝑡2) as dependent variable (model II.11), 

which has the lowest explanatory power among the cycling demand variables, has six indicators as non-

significant out of nine. Among the three significant indicators, the one with the highest coefficient is 

occupation diversity (A6), which has the lowest weight in the GPC conceptual model. The model with 

the lowest coefficient, among the significant coefficients, age (P1), is the indicator that has one of the 

highest weights in the GPC conceptual model. Relative accessibility (A4), which has one of the lowest 

coefficients after occupation diversity (A6), is identified as one of the indicators of the greatest weight 

in the GPC and has inversely proportional variation in the model developed. 

The model (III.11) with the total number of bicycle trips (𝑞𝑡𝑦𝑡1) has the best explanatory power among 

the models developed with all GPC indicators as the independent variable and cycling demand data as 

the dependent variable. However, it has only two indicators significant at 10%, being Occupation 

diversity (A6) and population density (P2). The population density indicator (P2) has the highest 

coefficient explanation, similar to the GPC conceptual model. However, occupation diversity (A6) has 

the lowest coefficient among the significant coefficients, inversely to the GPC conceptual model. 

The model (IV.11) that presents the number of trips per capita by bicycle (𝑞𝑡𝑦𝑡2) as the dependent 

variable has the second best explanatory power among the forced models. Among the indicators, relative 

accessibility (A4), accessibility to centralities (A2), connectivity (A5), and accessibility to educational 

facilities do not have significant coefficients. Motorization rate (P4) has the highest coefficient among 

the significant ones and has medium weight in the GPC conceptual model. The indicators potential 

demand (P2) and occupation diversity (A6) have coefficients that tend to be more similar than the 

motorization rate (P4). Accessibility to transport interfaces (A3) has the lowest coefficient among the 

significant ones, which in the GPC conceptual model has a medium value. Age (P1) seems to be a 

medium weight coefficient and is inversely proportional. 

Occupancy diversity (A6) is the only indicator that is present among the four models as significant. It 

has coefficients of different weights among the models, from the indicator with the highest coefficient 

among the significant ones to the lowest. This indicator only has the lowest weight among the significant 

coefficients in the model measuring 𝑞𝑡𝑦𝑡1, however, the model only has two significant variables. The 

weight of the occupancy diversity coefficient in the 𝑞𝑡𝑦𝑡1 model is similar to that of the 𝑘𝑚𝑡1 model, as 

both, evaluate cycling demand coefficients relative to total values. The occupation diversity coefficient 

also tends to have similar coefficient values among the cycling demand data per capita, however in the 

case of the 𝑘𝑚𝑡2 model this has the highest coefficient among all indicators. In the GPC conceptual 

model, it has the lowest weight, which differs from the trend observed in the application of these models. 
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The indicator of population density (P2) is the one with the highest significant coefficient among the 

models that contain total quantities, being 𝑘𝑚𝑡1 and 𝑞𝑡𝑦𝑡1, which is in line with what is established by 

the conceptual model of the GPC. In the analysis of travel distance, both total and per capita, the age 

indicator (P1) shows the lowest significant coefficient and an inversely proportional coefficient. This 

differs from the conceptual model established for the GPC which identifies age as having weight three. 

The age indicator is more relevant in the number of trips made than in the number of kilometers traveled. 

The relative accessibility indicator, determined by the GPC conceptual model as weight three, has 

significant coefficients only within the travel distance model and is inversely proportional. Its 

coefficients in the travel distance models tend to be above average.  

 

4.2.3. ADDITIONAL OPTIMIZATION TESTS 

In order to optimize the four models presented in a multivariate analysis, the concept of stepwise 

regression in the models was performed manually by the author. Several other models were developed 

through the concept of linear regression until a statistically and theoretically significant model was 

reached. With this, it was possible to verify that the explanatory power of the indicators related to cycling 

demand tends to increase. 

Using the variable total kilometers traveled by bicycle (𝑘𝑚𝑡1) as the dependent variable, a model (I.13.a) 

with significance at 5% was obtained with the variables accessibility to centralities (A2), relative 

accessibility (A4) and age (P1) with inversely proportional coefficients, as well as with occupation 

diversity (A6) and population density (P2) with proportional coefficients. In this model (I.13.a), the 

independent variables explain 26.7 % of the value of 𝑘𝑚𝑡1. However, by further refining this model, the 

explanatory power of age (P1) and population density (P2) in 𝑘𝑚𝑡1 turns out to be 21.7% (model I.13.d). 

Only two indicators have an explanatory power almost similar to that of the five indicators together. 

When using kilometers traveled per capita by bicycle (𝑘𝑚𝑡2) as a dependent variable, the optimized 

model that best shows explanatory power is the one that contains relative accessibility (A4), connectivity 

(A5), age (P1) and population density (P2). These indicators explain 11.7% of 𝑘𝑚𝑡2 (model II.12.a). 

However, in the same way, as in 𝑘𝑚𝑡1, the indicators age (P1) and population density (P2) together 

explain most of the model. The two indicators together explain 9.3% of 𝑘𝑚𝑡2 (model II.13.d).  

Optimizing the model that has the total number of bicycle trips (𝑞𝑡𝑦𝑡1) as the dependent variable 

achieves an explanatory value of 34.9% (model IV.12.b), a value in which 𝑘𝑚𝑡1 is explained by 

accessibility to transport interfaces (A3), occupation diversity (A6), age (P1), population density (P2) 

and motorization rate (P4). By removing the indicator related to occupation diversity (A6) from the 

model, the explanatory power of the model is 33.2% (model III.13.b), a value very similar to the model 

with all nine indicators (model III.11). The optimized model of the number of trips per capita bicycle 

(𝑞𝑡𝑦𝑡2) reaches similar explanatory power as the model with 𝑞𝑡𝑦𝑡1. The indicators accessibility to 

transport interfaces (A3), age (P1), population density (P2) and motorization rate (P4) explain 33.9 of 

𝑞𝑡𝑦𝑡2. 

Even though the modes do not present multicollinearity when checked through the Variance Ignition 

Factor (VIF)18, one of the prerequisites of linear regression analysis, some indicators when correlated 

among themselves tend to have high similarity, as is the case of the indicators of relative accessibility 

 

 

18 For this thesis, none of the models have VIF values above five; values equal to or above five are 

indicated by Daoud (2018) as biased towards multicollinearity. 
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(A4) and occupation diversity (A6), as well as the indicator of population density (P2) and connectivity 

(A5). Among the factor analysis, the indicators of relative accessibility (A4) and occupation diversity 

(A6) tend to be also clustered; the clustering has an acceptable Cronbach’s alpha of 0.895.  

 

4.3. DISCUSSION 

The Gross Potential for Cycling, when compared with cycling demand data, in the descriptive analysis, 

presented greater similarities with the total number of bicycle trips model (𝑞𝑡𝑦
𝑡1

), a greater similarity 

that was confirmed among the statistical analyses. The analysis using the number of trips per capita by 

bicycle (𝑞𝑡𝑦
𝑡2

) also showed significant values. Thus, it appears that the GPC tends to have greater 

validity with trip quantity data than with trip length. The GPC conceptual model appears to have 

significant explanatory power; up to 32.4% in the case of 𝑞𝑡𝑦
𝑡1

. However, when analyzing the conceptual 

model from which the GPC originates, a different trend was found among the weights of some indicators 

as well as their significance concerning the models developed in this thesis.  

The accessibility to education facilities (A1), tends to be a more relevant indicator when evaluated 

individually in the analysis regarding the amount of travel, whether total or per capita (model III.1 and 

model IV.1). This tends to suggest that as more schools exist, more bicycle trips are made. However, 

this indicator, when evaluated along with the other GPC indicators, does not seem to have a statistically 

significant coefficient in any of the cycling demand models evaluated (model I.11, II.11, III.11 and 

IV.11). This tends to indicate that such indicator is not relevant when analyzed with other indicators and 

that it has a behavior inversely proportional to the distance (𝑘𝑚𝑡1 and 𝑘𝑚𝑡2) when evaluated as 

multivariate analysis (model I.11 and model II.11). Thus, it can be related to the context in which it is 

inserted. It is verified in the descriptive analysis that there is a wide distribution of educational 

establishments in the study area, which can generate this inverse proportion of travel distance. The 

indicator of accessibility to schools (A1) was inserted into the GPC conceptual model due to empirical 

evidence showing that areas with a higher number of young people greatly impact cycling levels, with 

students being one of the target groups for cycling. However, what may have led this study to a less 

relevant behavior of this indicator within the proposed conceptual model is because the study area has 

a wide distribution of educational facilities.  

Another consideration is that the area in which this thesis was applied is a “champion” area, and in these 

areas, the behavior of age tends to be different than in starter cycling cities. Research shows that children 

to the elderly use the bicycle in similar quantities in the Netherlands (Pucher & Buehler, 2008; City of 

Amsterdam 2003b, as cited in Cavenett, 2010), a trend that has been confirmed in this thesis.  In the 

research area, there is a similar trend of bicycle use among the different age groups. This trend also tends 

to answer the question of the age indicator (P1), which is based on the concept of several authors who 

claim that the most cycling-friendly groups are younger ages. In the Dutch context, the groups seem to 

have a similar tendency, which is why the indicator, when analyzed, seems to have a coefficient with an 

inversely proportional relationship. However, even if inversely proportional, it is identified as 

statistically significant in the most of cycling demand models (I.11, II.11, IV.11), expect for the model 

(III.11) with total number of bicycle trips (𝑞𝑡𝑦
𝑡1

). 

Accessibility to centralities (A2), when analyzed separately from the conceptual model, does not appear 

to be relevant (model I.2 and model II.2) for the distance of trips (𝑘𝑚𝑡1 and 𝑘𝑚𝑡2). The easier the 

accessibility to centralities, the greater the number of trips (model III.2 and model IV.2). However, this 

indicator has higher coefficients among total cycling demand (model I.11 and model III.11) than per 

capita (model II.11 and model IV.11), and these coefficients are inversely proportional. This indicator 

is based on the concept that denser urban areas host more bicycle trips, although this only appears to be 
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statistically relevant for total kilometers traveled by bicycle (𝑘𝑚𝑡1). The inverse influence for the study 

area of indicator A2 can be explained because most of the study area has relatively high bicycle demand 

rates even though it is not within a centrality. Yet, it should be added that in the study area, there is easy 

access to centralities, which may tend to explain the inverse proportion and the statistical non-

significance in some models. 

Table 23 – Model Overview 

Source: Elaborated by the author from the data provided by BooST (2021) 

 A1 A2 A3 A4 A5 A6 P1 P2 P4 GPC 

Model I.1 to model I.10 
+ 
** 

 
+ 
** 

 
+ 
** 

+ 
* 

 
+ 
** 

 
+ 
** 

Model I.11  
- 
 

- 
. 

+ 
 

- 
** 

+ 
 

+ 
* 

- 
. 

+ 
** 

- 
 

 

Model I.13.a  
- 
* 

 
- 
** 

 
+ 
* 

- 
* 

+ 
** 

  

Model I.13.d       
- 
** 

+ 
** 

  

Model II.1 to model II.10      
+ 
* 

- 
* 

+ 
* 

+ 
* 

+ 
** 

Model II.11  
- 
 

- 
 

+ 
 

- 
* 

+ 
 

+ 
* 

- 
. 

+ 
 

+ 
 

 

Model II.12.a    
- 
. 

 
+ 
* 

- 
. 

+ 
** 

  

Model II.13.d       
- 
** 

+ 
** 

  

Model III.1 to model III.10 
+ 
** 

+ 
** 

+ 
** 

+ 
* 

+ 
** 

+ 
** 

 
+ 
** 

+ 
** 

+ 
** 

Model III.11  
+ 
 

- 
 

+ 
 

- 
 

- 
 

+ 
. 

- 
 

+ 
** 

- 
 

 

Model III.13.b   
- 
* 

 
- 
* 

 
+ 
* 

 
+ 
** 

  

Model IV.1 to model IV.10 
+ 
** 

+ 
** 

+ 
** 

+ 
** 

+ 
* 

+ 
** 

 
+ 
** 

+ 
** 

+ 
** 

Model IV.11  
+ 
 

- 
 

+ 
* 

- 
 

+ 
 

+ 
. 

- 
* 

+ 
. 

+ 
* 

 

Model IV.12.b   
+ 
* 

  
+ 
. 

- 
** 

+ 
** 

+ 
* 

 

Model IV.13.c   
+ 
** 

   
- 
** 

+ 
** 

+ 
* 

 

(1) The negative (-) symbol represents an inversely proportional relationship. The positive symbol (+) represents a 

positive proportional relationship. The “*” symbolizes significance at 0.05. The “**” symbolizes significance at 

0.01. The “.” symbolizes significance at 0.10. 

 

The accessibility to transportation interfaces (A3) tends to be statistically significant when analyzed 

separately from the data on the number of trips (𝑞𝑡𝑦
𝑡1

 and 𝑞𝑡𝑦
𝑡2

) (model III.3 and model IV.3), but within 

the multivariate models applied, it has low coefficient values and is only statistically significant among 

the number of trips per capita by bicycle (𝑞𝑡𝑦
𝑡2

) (model IV.11). This indicator is based on the concept 

that bicycling integrated with public transportation tends to be as competitive as the car and has average 

weight within the GPC conceptual model. This analysis tends to show that access to transportation 

interfaces is not as relevant as other indicators within the conceptual model. With some caution, this 

may suggest that in the study area, since there is a low reach to public transportation interfaces, the 

presence of these interfaces influences the use of bicycles but not as much as other indicators due to this 

lack of easy access to interfaces.  
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Relative accessibility (A4), which defines the car’s competitiveness with the bicycle, and the occupation 

diversity indicator (A6), which is based on the concept that high diversity of use and density increase 

active mobility, tend to be statistically related. The occupation diversity indicator (A6) tends to be 

statistically significant in all the forced models (I.11, II.11, III.11, IV.11). The descriptive analysis of 

this indicator is in line with the conceptual reason it was included in the GPC model, diversity of use 

increases when population density also increases, which increases active mobility, especially cycling 

demand. However, the relative accessibility indicator (A4) has inversely proportional coefficients 

(model I.11, II.11, III.11, IV.11) and significant coefficients only in the multivariate models 

corresponding to the travel distance (model I.11 and model II.11). This indicates that the car’s 

competitiveness with the bicycle is only relevant when analyzing the distance traveled, but this has no 

statistically significant influence when evaluated in the multivariate model that tends to be related to the 

amount of travel (model III.11 and model IV.11). Even if the relative accessibility indicator and 

occupation diversity are related, it suggests conducting further research on the reason for this 

relationship since they do not seem to have a theoretical concept easily explained when put together. 

The indicators population density (P2) and connectivity (A5) also tend to be related.  The indicator of 

population density (P2) is the one that seems to have the most relevant coefficient when applied in 

multivariate models (I.11 and III.11) to explain the total number of bicycle trips (𝑞𝑡𝑦
𝑡1

) and total 

kilometers traveled by bicycle (𝑘𝑚𝑡1), this follows the trend of the weight proposed for the indicator in 

the conceptual model, which has the highest value. The population density (P2) also confirms the 

assumption established by the GPC that higher population densities tend to have higher cycling demand. 

The connectivity (A5) indicator, which considers that smaller blocks facilitate active mobility, does not 

appear to be statistically significant for the multivariate models (I.11, II.11, III.11, IV.11). However, the 

assumption of the GPC that these sites are generally located near densely populated centers tends to be 

confirmed. With some caution, the population density (P2) and connectivity (A5) indicators are 

statistically linked because connectivity is greater in densely populated areas.  

The motorization rate (P4) tends to be statistically significant only in the multivariate model (IV.11) that 

has number of trips per capita by bicycle (𝑞𝑡𝑦
𝑡2

), which with above average coefficients shows that 

higher rates of car ownership tend to influence the amount of travel. However, the non-significance of 

this statistic test may, with some caution, be because countries like the Netherlands have a very 

diversified modal shift, i.e. there are high amounts of motor vehicle travel and high amounts of travel 

by active modes, especially by bicycle.  

There is a tendency for the target population indicators to have higher explanatory power than the target 

area indicators. The indicators referring to the target area tend to have coefficients not so statistically 

relevant when applied together with all GPC indicators. Attention is drawn to the indicator referring to 

occupation diversity (A6), which is the only indicator with a statistically significant coefficient among 

all the multivariate models with cycling demand data as the dependent variable. In summary, the 

indicators in the multivariate model tend in some cases to follow the trend of being stronger or weaker 

as they do in the conceptual model. However, the weights established for the analyses, in general, are 

varied and do not present a similar trend as that presented in the conceptual model, for example, which 

has only weights one, two and three. In the models developed in this thesis, these weights tend to be 

continuous. 
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5 

FINAL CONSIDERATIONS 

 

 

The objective of this thesis was to trial the conceptual model validity of the Gross Potential for Cycling. 

This was done through descriptive, multivariate, and bivariate analyses. The Gross Potential for Cycling 

tends to be explained up to 32.4% when related to cycling demand data. This 32.4% explanation is the 

amount that GPC explains the total number of bicycle trips (𝑞𝑡𝑦
𝑡1

) (model III.10). This explanation value 

changes as the cycling demand variables are changed to number of trips per capita by bicycle (𝑞𝑡𝑦
𝑡2

), 

total kilometers traveled by bicycle (𝑘𝑚𝑡1), and kilometers traveled per capita by bicycle (𝑘𝑚𝑡2). These 

are explained by GPC respectively by 22.8%, (model IV.10), 10.5% (model I.10), and 4.5% (model 

II.10). The explanatory power of the GPC, together with the correlation tests (model III.10 and model 

IV.10) set as high effect for the cycling demand coefficients, especially for the number of trips (𝑞𝑡𝑦
𝑡1

 

and 𝑞𝑡𝑦
𝑡2

), reveal that the GPC has a good tendency to indicate the potential number of bicycle use in 

starter cycling cities, as shown by a high correlation (𝑝 = ± 0.500).  However, even with the high 

correlation, the models tend to explain less than half of the number of bicycle use concepts. This lack of 

explanation shows that there are still other indicators that can be considered to increase the explanatory 

power of the models.  

Considering the bivariate analyses performed, in which the GPC indicators were individually analyzed 

as independent variables and the cycling demand data as dependent variables, it was possible to observe 

some indicators that were not statistically significant for the explanatory power of cycling demand. 

These, in some cases, were confirmed when performing multivariate analysis, modeled with all the GPC 

indicators as independent variables, and cycling demand data as dependent variables. In these 

multivariate models, the GPC conceptual model has been tested. Though, when all indicators are 

forcibly inserted into the model, not all are statistically significant. This lack of significance indicates 

that some indicators could be removed from the model without reducing its explanatory power. This 

could make the model simpler to be applied in starting cities since it would decrease the amount of data 

needed to calculate the conceptual model of the GPC. This trend can be observed in the model 

optimization tests, in which when travel distance data are added as dependent variables (model I.13.d 

and model II.13.d), the indicators age (P1) and population density (P2) tend to have together an 

explanatory power of almost 80% relative to a model with up to five variables (model II.12.a and model 

IV.12.b). 

Furthermore, some indicators tend to have a high tendency to statistical similarity when related. For 

example, the indicator of relative accessibility (A4) and occupation diversity (A6), which present a 

correlation with high effect and that in the factor analysis show indicators with clustering potential. A 

correlation with high effect also occurs between population density (P2) and connectivity (A5). Such 

indicators appear to be statistically similar, and in the case of population density (P2) and connectivity 

(A5) that, in addition to statistical, with caution, appear to have spatial similarities too, could be further 

analyzed to become single indicators.  
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Among the conceptual model presented by the GPC, some indicators tend to have the same tendency 

applied in the GPC weights, as is the case of population density (P2), which in most models appears to 

be the indicator with the highest weight. This indicator weights three in the GPC conceptual model, 

defined as the weight with the highest value. Other indicators, however, tend to have in the multivariate 

analysis performed in this work weights tending to be from lower to higher among the models (I.11, 

II.11, III.11, IV.11), while in the GPC conceptual model, these have lower values. As is the case of the 

indicator referring to occupation diversity (A6) which has statistical significance among the models 

tested in the multivariate analysis. The weights of the indicators also, differently from the GPC 

conceptual model that has weights with discrete values; in the models tested in this thesis, these tend to 

have continuous values. Thus, using discrete weights can lead to a tendency to obtain less similar values 

with cycling demand than continuous weights. 

Attention should be drawn to indicators such as age (P1), which has an inversely proportional 

relationship when applied to the context of the study area, so the higher its value, the more negatively it 

influences the dependent variable. The inversely proportional variation of the age indicator is mainly 

since there is a high similarity between the cycling demand rates of the different age groups, which does 

not meet the assumptions established among the choice of age (P1) for the conceptual model of the GPC. 

Among this study, other indicators also tend to have inversely proportional coefficients that mostly tend 

not to match the assumptions established by the GPC. This mostly happens because the conceptual 

model of the GPC is being tested in a “champion” area.  

In summary, applying the GPC tool in a “champion” context can provide enough cycling demand 

information to trial the conceptual model validity of the Gross Potential for Cycling. This analysis would 

not be possible in a starter city, as it does not have enough cycling demand data to perform statistical 

tests with sufficient effective samples to validate the GPC conceptual model. However, from the analysis 

performed in this study, it is also possible to highlight the resilience of the tool to be applied in other 

cycling contexts beyond starter cycling cities. Nevertheless, it is observed that the behavior of some 

indicators for the context in which this was applied proved to be irrelevant or even inversely 

proportional, but it does not mean that these are not appropriate for the starter context. Indicators may 

behave differently when applied to different concepts. In this case, this research serves as a guideline 

for validating the Gross Potential for Cycling tool.   

 

5.1. FUTURE RESEARCH 

For future work, it is suggested to apply this methodology in a “champion” city with more disaggregated 

bicycle commuting data. Also, if applied in the Dutch context, it is suggested to use other forms of 

mobility data collection besides the annually applied mobility surveys. For example, travel data could 

be collected through smartphone applications, such as the SMART19 project, which is applied in the 

municipality of Enschede. It is also suggested to apply the tool in a city with all the available data related 

to the Gross Potential for Cycling indicators so that an analysis can be done with all the indicators 

without the need to adapt them. It is also recommended, if one day one of the starters cycling cities 

where the Gross Potential for Cycling tool was applied becomes a “champion” city, to apply the method 

again, to compare the two evaluation contexts. 

 

 

 

19 Available on: https://smartenschede.nl/diensten/smart-app/. 
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APPENDIX I 

GROSS POTENTIAL FOR CYCLING INDICATORS 
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APPENDIX II 

BIVARIATE STATISTICAL ANALYSIS 

 

Model I.1 

 B Std. Err. t sig 

A1 1.810        0.631         2.877     0.005 

Constant -0.411 0.187        -2.120      0.030 

Summary statistics N 136   

 𝑟 0.241 (𝑝 = 0.005) 

 Adjusted 𝑟2 0.051   

 

Model I.3 

 B Std. Err. t sig 

A3 0.161 0.062 2.616 0.010 

Constant 0.299 0.025 11.811 < 0.001 

Summary statistics N 134   

 𝑟 0.222 (𝑝 = 0.010) 

 Adjusted 𝑟2 0.042   

 

Model I.5 

 B Std. Err. t sig 

A5 0.415 0.112 3.715 < 0.001 

Constant 0.097 0.069 1.408 0.161 

Summary statistics N 134   

 𝑟 0.308 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.088   

 

Model I.6 

 B Std. Err. t sig 

A6 0.266 0.104 2.560 0.012 

Constant 0.236 0.050 4.760 < 0.001 

Summary statistics N 133   

 𝑟 0.218 (𝑝 = 0.012) 

 Adjusted 𝑟2 0.040   

 

Model I.8 

 B Std. Err. t sig 

P2 0.350 0.076 4.614 < 0.001 

Constant 0.146 0.046 3.194 0.002 

Summary statistics N 133   

 𝑟 0,374 (𝑝 < 0.010) 

 Adjusted 𝑟2 0.133   
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Model I.10 

 B Std. Err. t sig 

GPC 0.579 0.142 4.061 < 0.001 

Constant 0.003 0.086 0.039 0.969 

Summary statistics N 133   

 𝑟 0.334 (𝑝 <  0.001) 

 Adjusted 𝑟2 0.105   

 

Model II.6 

 B Std. Err. t sig 

A6 0.157 0.070 2.255 0.026 

Constant 0.173 0.034 5.128 < 0.001 

Summary statistics N 135   

 𝑟 0.192 (𝑝 = 0.026) 

 Adjusted 𝑟2 0.030   

 

Model II.7 

 B Std. Err. t sig 

P1 -0.169 0.071 -2.368 0.019 

Constant 0.371 0.56 6.610 < 0.001 

Summary statistics N 136   

 𝑟 -0.200 (𝑝 = 0.109) 

 Adjusted 𝑟2 0.033   

 

Model II.8 

 B Std. Err. t sig 

P2 0.111 0.048 2.310 0.022 

Constant 0.169 0.029 5.880 < 0.001 

Summary statistics N 134   

 𝑟 0.197 (𝑝 = 0.022) 

 Adjusted 𝑟2 0.032   

 

Model II.9 

 B Std. Err. t sig 

P4 0.183 0.092 1.991 0.049 

Constant 0.220 0.014 15.607 < 0.001 

Summary statistics N 135   

 𝑟 0.170 (𝑝 = 0.049) 

 Adjusted 𝑟2 0.022   

 

Model II.10 

 B Std. Err. t sig 

GPC 0.103 0.047 2.176 0.031 

Constant 0.208 0.077 2.686 0.008 

Summary statistics N 134   

 𝑟 0.228 (𝑝 = 0.008) 

 Adjusted 𝑟2 0.045   
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Model III.1 

 B Std. Err. t sig 

A1 3.334 0.619 5.382 < 0.001 

Constant -0.851 0.183 -4.643 < 0.001 

Summary statistics N 131   

 𝑟 0.428 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.177   

 

Model III.2 

 B Std. Err. t sig 

A2 0.905 0.228 3.974 < 0.001 

Constant -0.412 0.216 -2.184 0.031 

Summary statistics N 134   

 𝑟 0.327 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.100   

 

Model III.3 

 B Std. Err. t sig 

A3 0.270 0.068 3.974 < 0.001 

Constant 0.312 0.027 11.225 < 0.001 

Summary statistics N 134   

 𝑟 0.325 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.099   

 

Model III.4 

 B Std. Err. t sig 

A4 0.261 0.108 2.410 0.017 

Constant 0.283 0.049 5.771 < 0.001 

Summary statistics N 135   

 𝑟 0.205 (𝑝 = 0.017) 

 Adjusted 𝑟2 0.035   

 

Model III.5 

 B Std. Err. t sig 

A5 0.578 0.110 5.250 < 0.001 

Constant 0.015 0.067 0.230 0.819 

Summary statistics N 128   

 𝑟 0.424 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.173   

 

Model III.6 

 B Std. Err. t sig 

A6 0.595 0.122 4.874 < 0.001 

Constant 0.141 0.057 2.506 0.010 

Summary statistics N 131   

 𝑟 0.394 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.149   
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Model III.8 

 B Std. Err. t sig 

P2 0.495 0.077 6.411 < 0.001 

Constant 0.089 0.045 1.978 0.050 

Summary statistics N 128   

 𝑟 0.496 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.240   

 

Model III.9 

 B Std. Err. t sig 

P4 0.478 0.176 2.715 0.007 

Constant 0.356 0.026 14.293 < 0.001 

Summary statistics N 134   

 𝑟 0.230 (𝑝 = 0.008) 

 Adjusted 𝑟2 0.046   

 

Model III.10 

 B Std. Err. t sig 

GPC 1.260 0.159 7.930 < 0.001 

Constant -0.117 0.032 7.930 < 0.001 

Summary statistics N 130   

 𝑟 0.574 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.324   

 

Model IV.1 

 B Std. Err. t sig 

A1 2.116 0.430 4.930 < 0.001 

Constant -0.523 0.127 -4.126 < 0.001 

Summary statistics N 135   

 𝑟 0.393 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.148   

 

Model IV.2 

 B Std. Err. t sig 

A2 1.022 0.250 4.099 < 0.001 

Constant -0.194 0.072 -2.683 0.008 

Summary statistics N 132   

 𝑟 0.338 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.108   

 

Model IV.3 

 B Std. Err. t sig 

A3 0.196 0.038 5.180 < 0.001 

Constant 0.209 0.015 13.614 < 0.001 

Summary statistics N 131   

 𝑟 0.415 (𝑝 <  0.001) 

 Adjusted 𝑟2 0.166   
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Model IV.4 

 B Std. Err. t sig 

A4 0.180 0.067 2.700 0.008 

Constant 0.203 0.031 6.545 < 0.001 

Summary statistics N 136   

 𝑟 0.227 (𝑝 = 0.008) 

 Adjusted 𝑟2 0.045   

 

Model IV.5 

 B Std. Err. t sig 

A5 0.367 0.075 4.863 < 0.001 

Constant 0.051 0.047 1.088 0.279 

Summary statistics N 134   

 𝑟 0.390 (𝑝 = 0.049) 

 Adjusted 𝑟2 0.145   

 

Model IV.6 

 B Std. Err. t sig 

A6 0.426 0.072 5.871 < 0.001 

Constant 0.097 0.033 2.963 0.003 

Summary statistics N 128   

 𝑟 0.463 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.209   

 

Model IV.8 

 B Std. Err. t sig 

P2 0.293 0.054 5.438 < 0.001 

Constant 0.111 0.032 3.445 < 0.001 

Summary statistics N 135   

 𝑟 0.426 (𝑝 <  0.001) 

 Adjusted 𝑟2 0.176   

 

Model IV.9 

 B Std. Err. t sig 

P4 0.419 0.107 3.899 < 0.001 

Constant 0.245 0.016 15.360 < 0.001 

Summary statistics N 135   

 𝑟 0.320 (𝑝 <  0.001) 

 Adjusted 𝑟2 0.096   

 

Model IV.10 

 B Std. Err. t sig 

GPC 0.698 0.112 6.217 < 0.001 

Constant -0.040 0.023 -1.760 0.081 

Summary statistics N 129   

 𝑟 0.483 (𝑝 < 0.001) 

 Adjusted 𝑟2 0.228   
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APPENDIX III 

MULTIVARIATE STATISTICAL ANALYSIS 

 

Model I.11 

 B Std. Err. t sig 

A1 -0.386 0.590 -0.654 0.514 

A2 -0.394 0.223 -1.770 0.079  

A3 0.021 0.055 0.382 0.703 

A4 -0.413 0.148 -2.795 0.006 

A5 0.012 0.187 0.065 0.948 

A6 0.341 0.159 2.138 0.035 

P1 -0.197 0.104 -1.899 0.060  

P2 0.616 0.148 4.176 < 0.001 

P4 -0.200 0.130 -1,538 0.127 

Constant 0.903 0.489 1.845 0.068 

Summary statistics N 127   

 
Adjusted  

0.260   

 

Model II.11 

 B Std. Err. t sig 

A1 -0.206 0.344 -0.599 0.550 

A2 -0.106 0.130 -0.818 0.415 

A3 0.020 0.032 0.614 0.540 

A4 -0.160 0.080 -1.993 0.049  

A5 0.070 0.109 0.643 0.521 

A6 0.203 0.090 2.261 0.026  

P1 -0.116 0.061 -1.917 0.058 

P2 0.127 0.086 1.479 0.142 

P4 0.112 0.075 1.491 0.139 

Constant 0.460 0.284 1.620 0.108 

Summary statistics N 130   

 Adjusted 𝑟2 0.116   

 

Model III.11 

 B Std. Err. t sig 

A1 0.396 0.689 0.057 0.808 

A2 -0.537 0.260 -2.064 0.567 

A3 0.087 0.062 1.387 0.168 

A4 -0.247 0.160 -1.539 0.126 

A5 -0.086 0.213 -0.404 0.687 

A6 0.322 0.174 1.850 0.067 

P1 -0.066 0.112 -0.550 0.583 

P2 0.745 0.168 4.423 < 0.001 ** 

P4 -0.210 0.151 -1.387 0.168 

Constant 0.138 0.568 0.243 0.809 

Summary statistics N 134   

 Adjusted 𝑟2 0.333   
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Model IV.11 

 B Std. Err. t sig 

A1 0.257 0.409 0.627 0.532 

A2 -0.057 0.154 -0.371 0.711 

A3 0.083 0.038 2.220 0.028 

A4 -0.109 0.095 -1.149 0.253 

A5 0.097 0.128 0.754 0.452 

A6 0.198 0.106 1.870 0.064 

P1 -0.160 0.071 -2.271 0.025 

P2 0.190 0.101 1.882 0.062 

P4 0.211 0.089 2.365 0.020 

Constant -0.054 0.338 -0.160 0.873 

Summary statistics N 132   

 Adjusted 𝑟2 0.328   
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APPENDIX IV 

OPTIMIZATION TESTS 

 

Model II.12.a 

 B Std. Err. t sig 

A4 -0.150 0.078 -1.924 0.057 

A6 0.199 0.086 2.230 0.022 

P1 -0.114 0.059 -1.937 0.055 

P2 0.141 0.048 2.974 0.004 

Constant 0.205 0.045 4.610 < 0.001 

Summary statistics N 130   

 Adjusted 𝑟2 0.117   

 

Model IV.12.b 

 B Std. Err. t sig 

A3 0.092 0.037 2.517 0.013 

A6 0.124 0.072 1.719 0.088 

P1 -0.257 0.085 -3.031 0.003 

P2 0.320 0.068 4.740 < 0.001 

P4 0.165 0.076 2.172 0.032 

Constant 0.070 0.021 3.338 0.001 

Summary statistics N 132   

 Adjusted 𝑟2 0.349   

 

Model I.13.a 

 B Std. Err. t sig 

A2 -0.418 0.196 -2.131 0.035 

A4 -0.408 0.144 -2.835 0.005 

A6 0.327 0.155 2.107 0.037 

P1 -0.217 0.100 -2.162 0.033 

P2 0.562 0.092 6.094 < 0.001 

Constant 0.593 0.167 3.556 < 0.001 

Summary statistics N 127   

 Adjusted 𝑟2 0.267   

 

Model III.13.b 

 B Std. Err. t sig 

A2 -0.496 0.229 -2.167 0.032 

A4 -0.302 0.149 -2.025 0.045 

A6 0.375 0.161 2.333 0.021 

P2 0.711 0.096 7.417 < 0.001 

Constant 0.409 0.186 2.198 0.030 

Summary statistics N 134   

 Adjusted 𝑟2 0.332   
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Model IV.13.c 

 B Std. Err. t sig 

A3 0.096 0.037 2.604 0.010 

P1 -0.279 0.085 -3.291 0.001 

P2 0.358 0.064 5.567 < 0.001 

P4 0.180 0.076 2.366 0.020 

Constant 0.086 0.019 4.165 < 0.001 

Summary statistics N 132   

 Adjusted 𝑟2 0.339   

 

Model I.13.d 

 B Std. Err. t sig 

P1 -0.311 0.097 -3.219 0.002 

P2 0.470 0.077 6.070 < 0.001 

Constant 0.304 0.067 4.510 < 0.001 

Summary statistics N 127   

 Adjusted 𝑟2 0.217   

 

Model II.13.d 

 B Std. Err. t sig 

P1 -0.156 0.057 -2.741 0.007 

P2 0.169 0.045 3.777 < 0.001 

Constant 0.248 0.039 6.291 < 0.001 

Summary statistics N 130   

 
Adjusted  

0.093   
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