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Abstract

The growing deployment of Internet of Things (IoT) technologies and the different ways sensors are
connected, acquire and use personal data highlight the need for transparency, control, and tools to en-
sure that users’ privacy is met in increasingly complex configurations. Due to the great heterogeneity
of devices and communications in these systems, users’ data becomes vulnerable and exposed. The
IoT brings us a reality from a ubiquitous computational perspective, where data is shared on the
Internet without users’ control. Most of the time, the information exchanged contains confidential
and private data about consumers or companies. The current assurances of IoT manufacturers do not
meet current and potential consumers’ growth expectations. Recent literature has highlighted some
significant barriers to the growth of IoT, such as identity management, data protection technologies,
data ownership, and privacy-preserving frameworks.

This thesis focuses on a solution to give users control over their data. We present an architectural
design and implementation of two main modules: (a) a middleware layer to control all data shared
with the Internet and (b) a secure provisioning module integrated with the middleware for end-to-end
authentication between devices. This thesis innovates by positioning the users as active players in
their data’s control and market, behaving as data brokers for potential end-users data.

We started by identifying and reviewing privacy-preserving technologies, identity management, and
end-to-end solutions, focusing mainly on IoT. Unlike existing provisioning methods, this thesis
proposes a solution that gives the devices an identity, eliminating the risk of impersonating attacks
and allowing devices to authenticate with each other. Finally, we integrate this solution with a
middleware layer that gives the users the ability to control the privacy of all their data and is
independent of the device’s SDK, which can be deployed both on the home router and on the devices
themselves so that it can be easily integrated into multiple use-case scenarios.
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Resumo

Com o crescimento do conceito ”Internet of Things”, há cada vez mais dispositivos ligados à Internet
a trocar informações entre si, com serviços online e com a cloud. Com este aumento da comunicação
e transmissão de dados, aumenta também a necessidade de transparência, controlo e ferramentas que
assegurem privacidade aos utilizadores, em relação aos seus dados. Devido à heterogeneidade dos
dispositivos e comunicações, os dados dos utilizadores ficam mais expostos e vulneráveis.

Muitas vezes, a informação partilhada contém dados confidenciais e privados acerca dos próprios
utilizadores ou empresas, e geralmente os utilizadores nem sabem que estão a partilhar esses dados.
Por essa razão, é importante garantir que os fabricantes e fornecedores de produtos e serviços de IoT
protejam os consumidores e a privacidade dos seus dados. As medidas atuais não correspondem ao
grau de necessidade de privacidade que os utilizadores dos dispositivos IoT devem ter.

Os recentes avanços da literatura destacam algumas barreiras significativas para o crescimento da
IoT, como a falta de serviços de descentralização, gestão de identidade, propriedade de dados e
tecnologias de proteção de dados. Esta tese, foca-se na apresentação de uma solução que dá ao uti-
lizador o controlo dos seus dados no IoT. Apresentamos um desenho de arquitetura e implementação
com dois módulos principais: (a) uma camada de middleware que controla a partilha dos dados
com a Internet e (b) um módulo de aprovisionamento de dispositivos, integrado com o middleware,
que garante identidade e, consequentemente, comunicações autenticadas ponto-a-ponto entre os
dispositivos. Esta tese inova porque posiciona o utilizador como um ativo no controlo dos seus
dados e na comercialização, comportando-se como um broker dos seus próprios dados.

Nesta tese, começamos por rever o estado da arte das tecnologias de privacy-preserving, gestão de
identidade e autenticação ponto-a-ponto, com foco no conceito de IoT. Ao contrário dos métodos de
aprovisionamento existentes, esta tese apresenta uma solução que dá uma identidade aos dispositivos,
eliminando a possibilidade de ataques de impersonating (onde o atacante faz-se passar por um
utilizador fidedigno, de forma a aceder a informação priviligiada). Com esta solução, os dispositivos
também conseguem autenticar-se mutuamente. Por fim, integramos esta solução com a camada de
middleware que dá aos utilizadores a capacidade de controlar a privacidade de todos os seus dados
e é independente do SDK do dispositivo, o que significa que pode ser implementado tanto no router
doméstico como nos próprios dispositivos, para que possa ser facilmente integrado em casos de uso
diferentes.
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Chapter 1

Introduction

”Arguing that you do not care about the right to privacy
because you have nothing to hide is no different than

saying you do not care about free speech because you
have nothing to say.”

— Edward Snowden

IoT is a technological concept where all the devices of our daily lives are connected to the Internet,

such as clocks, appliances, or even clothes, acting in an intelligent and sensorial manner [1]. When

we refer to ”things” in IoT, we describe any objects, sensors, software, and other technologies to con-

nect and exchange data with other devices and systems, not necessarily using Internet connections.

These information exchanges can occur through many communication protocols, such as Radio-

Frequency IDenti�cation (RFID), WiFi, Ethernet, and Bluetooth, among other forms of connection.

IoT technology has several applications, from the simplest ones, such as turning a lamp on and off

through the smartphone, to larger and more complex systems, such as smart cities and end-to-end

industrial processes. In addition to generating more comfort and reducing day-to-day obstacles, IoT

can optimize tasks and reduce costs, such as house automation. Users can automate their houses with

doors that automatically open when the owners' car is arriving home, washing machines controlled

by smartphones, touchscreen mirrors that show news and videos, air conditioners that adjusts the

house's temperature even before the owner arrives, curtains that open and close according to the

sunlight, and many other items 100% connected between them. In brief, smart homes consist of

a set of equipment connected to the network, often remotely controlled by smartphones or voice

assistants.

Authenticated users can securely control these devices via their smartphone and receive information

and alerts from them. Anecdotally, a fridge can warn its owner when the food is close to the due

date and search for the best prices of the items (or users' preferences). Another possible example

is a thermostat that can adjust the temperature according to environmental conditions and send

7
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information to the owner's smartphone. It is also possible to make homes more secure with wireless

security cameras, sensors, and smoke alarms.

Besides, smart devices can help older people be more independent because these types of smart

homes may include audible warnings or voice-activated alert systems that can help automate some

tasks.

Despite so much ease and bene�ts brought by the connection of the objects surrounding us, IoT

is in constant improvements and growth. This increasing pervasiveness can directly lead to privacy

invasion, data leakage, and eventual viruses that can cause digital systems problems. What is the cost

of having all these smart devices connected to the Internet when considering fundamental human

rights, e.g., privacy? Also, these devices can communicate with their owner and other devices while

potentially harvesting data. In turn, this data can be monitored by routers/switches that can relay it

as telemetry to their manufactures. This opens the issue addressed in this thesis: with the increase

in privacy and security issues in IoT, this thesis aims to create a middleware solution that provides

mechanisms to handle device identity management and authentication and allows users to control

their data.

In this �rst chapter, the main problem is contextualized and de�ned, and the main motivation for this

work and its contributions are described.

1.1 Context and Problem De�nition

The adoption of IoT is growing exponentially, and, according toNational Public Radio & Edison

Research[2], homes in the United States have an average of 2.6 smart speakers, explaining why

the number of smart speakers is much larger than the number of its owners.Jingjing Ren et al.[3]

conducted a study with 81 different smart devices to examine data sharing activities. The authors

found 72 of the 81 IoT devices share sensitive data, such as external Internet Protocol (IP) addresses,

device speci�cations and settings, usage habits, and location data, with third parties utterly unrelated

to the original manufacturer, such as advertisers. This type of sharing can violate the users' privacy

because, for example, according to the General Data Protection Regulation (GDPR), external IP

addresses must be considered personal data as it falls within the scope ofonline identi�ersor, more

precisely,Personal Identi�able Informationwhich is data that can identify a user [4]. This lack of

consumer awareness is rapidly raising concerns about data privacy [5] as, for example, people who

buy a Smart TV have no idea if their data is being shared or sold with technology providers from

third parties. Worse, the authors found that 30 out of 81 devices shared data as an unencrypted text

�le. These examples raise signi�cant privacy concerns, as those who collect these data streams can

infer sensitive information, such as users' identity, location, or behavior.

The highly paced technological development surrounding it is exposing several novel challenges,

namely on privacy and security. Lack of privacy protection mechanisms mainly refers to weak
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authentication and con�dentiality [6], which leads to problems related to user data privacy. It is

essential to improve data transparency for users and detection of potential attacks [7]. Also, there are

other challenges related to resource limitations, heterogeneous devices, interoperability of security

protocols, single points of failure, hardware/�rmware vulnerabilities, and reliable management and

updates [8]. In particular, there is a need to adopt security solutions for IoT devices characteristics

due to their intrinsic limitations [9] (e.g., battery life and memory space). Recent literature [10–12]

highlighted that privacy concerns could be a signi�cant barrier to the growth of IoT, highlighting

security and privacy as a signi�cant IoT research challenge.

The rapid adoption of these devices connected to the Internet raises concerns about their ability to

pry, meaning an increasing variety of IoT applications also creates new security challenges. There

are several scenarios of IoT application domains, namely Transportation and Logistics, Healthcare,

Smart Environment, and Personal/Social [13]. The health domain is one of the most motivational

application �elds because patients expect certain private information to remain con�dential, but there

is a lack of adequate mechanisms to ensure personal and con�dential information [14]. In terms of

security, if these types of systems are hacked or fail, it can lead to catastrophic consequences [15].

1.2 Motivation and Main Contributions

Today's smart home environments do not allow users to see the data sharing life cycle. Many data are

shared without the users' knowledge, especially data collected by the device manufacturers during

their regular operation, such as smartwatches sharing heart rate data or fridges sharing the number of

items available to the supermarket or manufacturer. This type of data sharing should start to worry

users, as much of the information must remain private or, at least, give the user the possibility to

decide that. It often happens and is entirely invisible to the user, and there are no con�gurable users'

preferences.

The control of permissions and user feedback needs to be improved by IoT devices. For example,

in smartphones, the permission mechanisms are already known to users. There have been improve-

ments at the feedback level, namely in the iPhone, which has a new feature and a green indicator

that appears at the top of the users' screen whenever an app is using the microphone or camera. If

users �nd an application that connects the camera but do not need it, they can revoke the camera's

permissions for that speci�c application [16].

However, there are no known settings for a regular user on IoT, and it is not always easy to con�gure

the basics, and there is often no transparency about privacy policies or possible settings at that level.

IoT presents a signi�cantly broader set of scenarios where it needs to be more transparent to users.

For example, in most personal assistants, microphones are always on, and users do not know this,

nor can they con�gure these permissions.

Data owners must understand the complete picture of what will happen behind the scenes with
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their data. This thesis focuses on developing a new middleware platform that addresses identity

management and authentication mechanisms to ensure secure communication and deployment of a

secure IoT environment and provides users with ways to control their data sharing.

To the development of the �nal solution, we focused mainly on two components. The �rst component

focuses on the provisioning of devices because devices must authenticate with each other to ensure

that there are no impersonation attacks, which allow, for example, a hacker to impersonate a trusted

device and access privileged information. For this, we designed a solution that guarantees an

identity for each ”thing” enabling end-to-end communications. We achieve several bene�ts: device

identity, scalability, of�ine cryptographic assets, and resistance to Man-in-the-Middle (MiTM). This

provisioning solution innovate by having device islands, which in addition to authenticating multiple

devices, can authenticate with other device islands (for example, different entities or departments,

and even in different cities).

The other component consists of a middleware layer for the router or the device itself to block data

transmissions to the Internet. This component allows all visualization and interaction with the data,

allowing the de�nition of privacy policies. The architecture integrates the implementation of the

provisioning solution with the middleware layer.

We aimed for a decentralized solution that gives users the possibility to con�gure their privacy

preferences. The platform places the user as an active player in the data market, behaving as its

own data broker for the potential data end-users.

The work carried out during the thesis led to the following main contributions:

i overview of existing techniques for privacy-preserving in edge computing/fog computing with-

out a trusted third-party, namely Multi-Party Computation (MPC) and Blockchain, discussing

current unsolved problems and possible future research directions;

ii describe the most relevant IdM systems focusing on privacy-preserving with or without Blockchain

and evaluates them against ten selected features grouped into three categories: privacy, usability,

and IoT;

iii explore some research questions that include the requirements to build a privacy-preserving

IdM system for IoT, analyzing current solutions' features and their applicability to healthcare

scenarios;

iv design and implementation of a novel approach for provisioning of IoT devices, giving an

identity to a ”thing”, reducing the risks of impersonating attacks and enabling the devices to

authenticate;

v combination of One Time Password (OTP) with cryptographic algorithms for providing a secure

provisioning protocol;

vi a prototype with Yubikeys used to provision devices with cryptographic assets of�ine;
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vii a middleware to improve the privacy of users' data on the IoT, with implementation and eval-

uation, enabling users to store data to be controlled of�ine and to analyze current connections,

discarding them according to the user's preferences, without delay, extensible to network com-

munications;

viii present and evaluate all the implementations of each component that composes the middleware;

ix an integration of the middleware solution with a marketplace, providing users the way to mone-

tize their data;

x present and discuss the main open challenges.

1.3 Bibliographic Note

Some of the work described in this thesis has already been published. The following list provides a

reference to such publications and the chapter to which the contribution is related.

� Patŕ�cia R. Sousa, et al. ”The present and future of privacy-preserving computation in fog

computing.” Fog Computing in the Internet of Things. Springer, Cham, 2018. 51-69.(Chap-

ter 2)

� Patŕ�cia R. Sousa, et al. ”pTASC: trustable autonomous secure communications.” Proceed-

ings of the 20th International Conference on Distributed Computing and Networking. 2019.

(Chapter 3)

� Patŕ�cia R. Sousa, et al. ”Secure Provisioning for Achieving End-to-End Secure Communica-

tions.” International Conference on Ad-Hoc Networks and Wireless. Springer, Cham, 2019.

(Chapter 4)

� Patŕ�cia R. Sousa, et al. ”Internet of things security with multi-party computation (mpc)”

EP3570575A1 - European Patent Of�ce.(Chapter 3)

� Patŕ�cia R. Sousa, et al. ”The case for blockchain in IoT identity management.” Journal of

Enterprise Information Management (2020).(Chapter 2 and 6)

� Patŕ�cia R. Sousa, et al. ”Empowering Users Through a Privacy Middleware Watchdog.”

International Conference on Trust and Privacy in Digital Business. Springer, Cham, 2020.

(Chapter 5)

1.4 Thesis Outline

The next chapters of the thesis are organized as follows:
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Introduction

This chapter presents the context and de�nition of this thesis's problem, together with this work's

motivations and contributions.

Literature Review

The second chapter presents a review of previous work. A discussion is provided about the present

and future of privacy-preserving computing in Fog Computing, reviewing some of the most used

concepts and application scenarios. Then, we present the literature review of the different concepts

that we covered during this thesis, mainly identity management, device provisioning, and end-to-end

communications. Finally, we present an overview of some middleware solutions developed for IoT,

which help point out our approach's main differences.

The Case for Blockchain in IoT Identity Management

The third chapter addresses Blockchain as a solution for IoT Identity Management, answering three

fundamental research questions concerning the requirements for building an IoT privacy-preserving

IdM system, Blockchain's use to meet these requirements, and the critical aspects applying blockchain-

based IdM systems to healthcare settings. We provide a full discussion and several ideas as chal-

lenges for future research.

End-to-End Secure Communications

Some solutions to address end-to-end communications are covered in chapter four, namely, with the

use Z and Real-time Transport Protocol (ZRTP) as an end-to-end protocol for data communication.

We use mechanisms, such as MPC and infrared to compare a Short Authentication Strings (SAS)

automatically privately. We present an evaluation of the proposals and discussions for future research

challenges.

Secure Provisioning for Achieving End-to-End Communications

The �fth chapter addresses the secure provisioning of devices by combining a public-key cryptog-

raphy algorithm with an OTP inside a secure token - the secure token acts as an of�ine storage for

the private keys. Device identity is guaranteed by physical access to the physical token. Our �nal

goal was to provide a solution to achieve device identity, scalability, of�ine cryptographic assets, and

resistance to the impersonation, replay, and MitM attacks.

Empowering Users Through a Privacy Middleware Watchdog

The sixth chapter provides the central core of this thesis, presenting an initial design and implemen-

tation to integrate different components to address privacy-preserving in the IoT, focusing on users

and their data. We present solutions for data sharing network control, as well as data control locally.

Then, an integration with the authentication component provided in Chapter 5 is covered. Also, we
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provide some insights into future research directions on the topic.

Conclusions

The seventh and �nal chapter concludes the thesis. It summarizes the motivations and contributions

provided by this work and future directions for research on the topic of IoT privacy-preserving

middleware solutions.
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Chapter 2

Literature Review

”Every success story is a tale of constant adaptation,
revision and change.”

— Richard Branson

In this chapter, the work described in this thesis is framed, presenting a review of the work related

to privacy preservation techniques, identity management, authentication and secure communica-

tions, network traf�c security solutions, and data privacy middleware systems. Such topics were

extensively studied and analyzed, presenting the approaches most similar to our thesis's goal and

comparing each one's bene�ts and disadvantages.

2.1 Privacy-Preserving Computation for IoT and Fog/Edge Comput-

ing

IoT represents a remarkable transformation in how our world has interacted over the years. The

growing increase in data traf�c and real-time processing has overloaded networks and cloud systems.

Fog computing leverages to ”push” data processing and storage services close to the devices that

generate them. Fog computing [17] is one of the supreme examples of edge systems and is one facet

of the overarching concept - the IoT. A relocation of computing, preferably closer to devices near

the end-user, can describe this concept of fog/edge computing.

The ever-increasing pervasiveness of edge computing is creating challenges for users' privacy. The

need to reduce time-to-market has lead companies to deploy edge computing systems without secu-

rity and privacy by design. The exponential growth of the IoT data generated and communications

by this type of system is chronically exacerbating the problem. Mechanisms are needed to ensure

the data's privacy, especially in IoT communications.

MPC [18–20] poses a suitable option to offer the basic building block for the construction of decen-

15
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tralized privacy-preserving computational frameworks. MPC is a sub-�eld of cryptography to create

methods for parties to jointly calculate a function on their inputs, keeping them private. In 2015, the

Enigma [21] technology was created, focused on decentralized computing with privacy guarantee

based on secure MPC, eliminating the need for a reliable third party. This model works parallel with

blockchain technology that controls the network, manages access control, identities and functions as

a tamper-proof event log.

This section focuses on exploring blockchain, and MPC approaches (and the combination of both)

to create solutions to enhance privacy-preserving approaches for IoT. We explored current literature

and discussed the integration of several different approaches. We �rst describe three signi�cant

concepts: blockchain, IoT/fog computing, and MPC. These concepts provide the necessary context

and background for developing possible research paths and ideas.

The remainder section is structured as follows: Section 2.1.1 describes blockchain with some prac-

tical frameworks and applications and then describes which ones can impact IoT. We then move

to investigate and describe current approaches that combine blockchain, IoT, and fog computing.

Lastly, we explore MPC in the Section 2.1.2. As it is a concept that promotes privacy without a third

party, Section 2.1.3 presents both MPC and blockchain and the applications of the concepts together.

Furthermore, we offer an overview of MPC potential frameworks and assess the feasibility of their

integration with other privacy concepts. We conclude by discussing current unsolved problems and

possible future research directions. Lastly, we summarize the �nding in the Section 2.1.4.

2.1.1 Blockchain

Blockchain is a distributed database that maintains a list of sorted records in an increasing sequence,

where different transactions are recorded as a block data structure. Each block is linked to the

previous with a cryptographic hash function, thereby forming a blockchain [22, 23]. Each block has

unique, immutable, and irreversible data values, ensuring that they are not changed.

There are currently two types of blockchain technologies: permissionless (public chains) and permis-

sioned (private chains). Anyone can become part of the network without requiring an identity (and

associated trust model) in a permissionless blockchain. In contrast, in a permissioned blockchain,

only trusted agents could write and possibly read those records [24], thus requiring a well-established

identity and trust among the cooperating nodes.

Previous work has studied and evaluated private and public blockchain for a joint venture [25].

The authors claim that private blockchain improves scalability in terms of large numbers of clients

and transactions. In a permissioned blockchain, it is unnecessary to compute intricate consensus

mechanisms, such as Proof of Work (PoW), because participants are known and white-listed, and

a trusted authority must initially authorize them. To improve throughput, the ordering of blocks

requires a broadcast protocol that offers total order. Depending on the type of faults targeted, these

protocols can protect against crash faults (such as Kafka [26] does) or more reliable assurances by
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providing fault-tolerance against byzantine (arbitrary) faults [27], making private blockchain more

ef�cient.

Public blockchains are decentralized and independent of a central authority. It needs consensus

mechanisms that refer to reaching a cooperative agreement (consensus) on the current state of the

distributed ledger [28]. It facilitates the veri�cation and validation of the information added, ensuring

that only authentic transactions are written to the blockchain, achieving reliability, and establishing

trust between unknown peers in a distributed computing environment.

In Bitcoin * , for example, the mining process in PoW systems involves an immense use of energy

and computational resources. Therefore, a miner's performance is calculated by the amount of

computational power it has, usually called the hash power or hash rate. There are several mining

nodes in different locations, and they compete to �nd the next valid block hash, and if successful,

they are rewarded with new Bitcoins units.

In this context, mining power is distributed among several nodes worldwide, which means that a

single entity does not control the hash rate. However, the hash rate may not be distributed evenly,

and, therefore, when a single entity or organization manages to obtain more than 50% of all hash

power, it means that it controls most of the network. This is known as the 51% attack. A 51% attack

refers to an attack on a blockchain when a person or group of miners controls more than 50% of

the network's computing power because it would have the same mining capacity as all other mining

groups. Public blockchain protocols are vulnerable to attacks that can take advantage of the need

for consensus. If miners can control 51% of nodes operating on the network, they can manipulate

core rules and take control of the system, being able to attack the network and rewrite the recent

blockchain history, sensor transactions, e.g., for name registrations, and steal cryptocurrency using

double-spend attacks [32].

This attack's success is generally associated with the failure of other associated security mechanisms,

namely the lack of robust identity management. A Sybil attack allows an attacker to subvert a

network service's reputation system by creating many pseudonym identities and using them to gain

disproportionately large in�uence. In the case of blockchain, Sybil attack can cause severe impact

public/permissionless blockchain, in which an attacker can subvert the blockchain by creating a large

number of fake user accounts and push legitimate entities in the minority [33].

2.1.1.1 Motivation for using Blockchain with IoT

Blockchain has some recommended characteristics for resource-limited devices in IoT environ-

ments [34]. It ensures decentralization, which means sensors can exchange data directly with each

other rather than use a third-party system to establish digital trust, reducing implementation and op-

* Bitcoin is a digital currency and online payment system, also called digital cash. It works in a decentralized way that

uses peer-to-peer to enable payments between parties without mutual trust. Bitcoins are digital coins issued and transferred

by the Bitcoin network [29–31].
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eration costs by eliminating intermediaries. The IoT sharing is enhanced with reliable and traceable

information, where the data source can be identi�ed [35]. Besides, through an immutable ledger,

blockchain also guarantees non-manipulation, which means that, in the case of identity and access

management systems, it guarantees that the device information is genuine and that its software and

settings have not been tampered with or breached.

For this reason, blockchain-based identity and access management systems can be leveraged to

strengthen IoT security [36] by storing identity, credentials, and digital rights. As described byAli

Dorri et al. [37], blockchain can keep private user's identities and offers scalability and robustness

by using the resources from all participating nodes, and in the case of IoT, from all devices.

Blockchain also gives devices autonomy through smart contracts. It provides self-suf�cient programs

stored in a decentralized manner and executed autonomously when certain conditions of a business

process are met [38, 39].

2.1.1.2 Limitations of integrating Blockchain with IoT

Although there are some advantages of integrating blockchain with IoT environments (see the sec-

tion 2.1.1.1), its integration into IoT still requires further research. In this section, we want to analyze

the bene�ts and disadvantages of this integration, describing some optimization solutions that have

been proposed over the years.

Blockchain is computationally heavy and costly in terms of power consumption [40]. It must be

adapted to be suitable for resource-limited IoT devices, and, due to the massive amount of data on

IoT, blockchain must handle billions of transactions between IoT devices.

To ensure that network utilization is within a prescribed operating range, throughput management

can provide self-scalability, and as the network grows, there is availability for more transactions

on the public blockchain. Besides that, lightweight consensus and distributed trust [41] are also

essential enhancements. The design of a new distributed trust method improves processing time to

validate new blocks as it gradually decreases as they build trust with each other. It is also possible

to enhance these optimizations with a tiered architecture that uses a private, centralized immutable

ledger to reduce overhead and a decentralized public with high-end devices for greater con�dence

that does not lead to further transaction delays processing [42].

In blockchain, the resolution of complex mathematical puzzles requires a substantial amount of

computational power. It is possible to eliminate the need to solve any puzzle before attaching a

block to the blockchain (PoW). Recently, a decentralized privacy-preserving healthcare blockchain

system for IoT [43] eliminates PoW to make it suitable for IoT. Blockchain transactions are public,

and there is additional information about senders and recipients on the blockchain network. Thus,

this work uses a ring signature scheme that preserves privacy to provide anonymity to users.

Another optimization for the computational power is through fog and edge computing. The idea is
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to relocate part of the computing power in the data center to network boundaries. In the blockchain

concept, computing can be transferred to edge servers near miners [44] to overcome substantial CPU

time and power consumption issues.

The combination of smart contracts with blockchain automates time-consuming work�ows, achiev-

ing veri�able encryption and high cost and time savings in the process [45]. Blockchain offers a

resilient distributed peer-to-peer system and the ability to interact with peers reliably and audibly.

Smart contracts allow to automate complex multi-step processes.

Blockchain's current approaches focus on process optimization based on Byzantine Fault Tolerant

(BFT) and proposeBitcoin NG[46] to support billions of devices without the need for additional

features. However, BFT protocols often have problems with node scalability [47], which is signif-

icant for blockchain over IoT applications. In terms of scalability, for example, BFT is worse than

Bitcoin because Bitcoin scales well for thousands of nodes, while BFT scales only for a few dozen

nodes [48]. They have the opposite behavior in terms of complexity, as BFT has less complexity

than Bitcoin. However, it is also impractical to integrate Bitcoin directly into IoT. Previous work

integrates Bitcoin with IoT to provide a multi-layered blockchain-based method for sharing IoT user

data with organizations and people [49]. The authors assume that IoT devices do not have enough

resources to solve PoW because it requires very sophisticated hardware, and we cannot consider

direct integration as it requires facing some resource, latency, bandwidth, and scalability challenges.

The same work from the authors analyzed the Practical BFT performance as a consensus algorithm;

however, they conclude that it can be a bottleneck in networks with many peers [50].

There are some proposals for rede�ning consensus algorithms to be more suitable for IoT integration,

such as Proof of Luck (PoL) [51] which is a consensus mechanism that relies on Trusted Execution

Environments (TEE) capabilities with a blockchain design Proof of Concept (PoC) to offer low

latency transaction validation, reduced power consumption, and evenly distributed mining. There

is also ongoing research on consensus protocols to achieve scalability [52], such as Proof of Trust

(PoT) [53], for example, which attempts to address scalability problems, particularly associated with

BFT-based algorithms, and avoids the low throughput and resource-intensive associated with PoW

mining.

In brief, a standard solution to the limitations of the integration between blockchain and IoT does

not yet exist. For example, there are no effective solutions to the 51% attack or a standard de�nition

of a lightweight blockchain, yet [54].

There are some unsolved critical challenges to successfully integrate blockchain with IoT, namely:

� Mining is computationally intensive;

� Mining of blocks (PoW) is time-consuming and energy-consuming;

� Blockchain scales poorly as the number of nodes in the network increases;

� The underlying blockchain protocols create signi�cant overhead traf�c. [37]
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Future research directions are related to these limitations, namely security and privacy, connectivity

and scaling, energy consumption, resource allocation, blockchain standardization, and model opti-

mization.

2.1.1.3 The Internet of Things, Fog Computing and Blockchain

New solutions are needed to address the limitations of the integration between IoT and blockchain,

and fog computing is a prime candidate to be employed in this scenario. One of fog computing's main

goals is to deal with the current limitations of public cloud computing when dealing with services

and applications that require very low latency, local awareness, and mobility (including vehicular

mobility).

Follows the presentation of approaches that explore the integration of between IoT, blockchain, and

fog computing. We will describe their applications and how they address the challenges above.

IOTA

IOTA [55] is a new transactional settlement and data transfer layer for IoT, and part of the name

”IOTA” emphasizes the importance conceded to the IoT. With the growth of the number of devices

in the IoT, which can reach tens of billions of connected devices in the next decade, one of the

primary needs is interoperability and resource sharing. For this, IOTA lets companies explore new

business-to-business models by making every technological resource a possible service to be traded

on an open market in real-time and without fees.

IOTA combines both fog and mist computing* into a new distributed computing solution. This

technology combines smart sensors with built-in computational capabilities (mist computing) with

nearby processing stations (fog computing). These new paradigms' main goal is to decrease the

network latency to cloud servers that can be located far away from end-devices. Hence, the industry

must rely on a free real-time, low-latency, and decentralized settlement system [57].

IOTA micro-transactions enable party A's sensor data to be processed by party B's processors in

real-time. In return, Party B can use the iotas it gets compensated with to buy data from Party A or

any other technological resource from another party in this symbiotic ecosystem.

In this new autonomous machine economy, IOTA works as its backbone. The main innovation

behind IOTA is the Tangle, a novel new block-less distributed ledger that promises to be more

scalable, lightweight, and, for the �rst time, makes it possible to transfer value without any fees,

contrarily to blockchain. Also, consensus is no-longer decoupled but instead an intrinsic part of the

system, leading to decentralized and self-regulating peer-to-peer networks [55]. The Tangle ledger

can settle transactions with zero fees, contrarily to the traditional blockchain, so devices can trade

exact amounts of resources on-demand and store data from sensors and data loggers securely and

* Mist computing decreases latency and increases subsystems' autonomy. [56]
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veri�ed on the ledger [55].

The relationship between IOTA and Tangle is similar to the relationship between Bitcoin and blockchain.

One main differentiating factor is that IOTA does not use sequential blocks as the blockchain, but

instead, it uses Tangle [58], a Directed Acyclic Graph (DAG) where each node graph is a transaction.

Instead of having miners for validating transactions, the network participants must con�rm two

transactions already submitted to the network for every one transaction that they issue, being jointly

responsible for transaction validation. As there is no miner, the transaction initiator does not need

to pay the transaction service fee. This zero-service fee design is especially suitable for the data

exchange in the future IoT era. However, although the transaction is free of charge, PoW is still

required to prevent spamming, similar in spirit to the PoW used in blockchain. However, it is a

straightforward computational operation because it is only used as a protection mechanism, having

almost no impact on consensus.

In theory, Tangle supports micro-payments with a special focus on data integrity and precision.

IOTA claims [59] that it is faster and more ef�cient than typical blockchains used in cryptocurrencies.

ADEPT

The exponential growth that IoT is experiencing is making it increasingly essential to have decen-

tralized networks as a mean to eliminate Single Point of Failure (SPOF) that are associated with

traditional centralized networks, as a way to increase its robustness and reduce the infrastructure

and maintenance costs to manufacturers and vendors. Using the devices themselves as computa-

tional, storage, and communication nodes, it is possible to construct ”hybrid” IoT systems where the

”edge” complements centralized systems. IBM and Samsung have developed the ADEPT PoC to

establish a foundation on which to demonstrate several capabilities that are fundamental to building

a decentralized IoT [60]. The authors demonstrated a distributed system capable of sustaining a

fully decentralized framework for IoT. As its backbone, ADEPT uses the blockchain to build a

decentralized and distributed network of things [61, 62], using a combination of PoW [63] and Proof

of Stake (PoS) [64] to secure transactions. This work was supported by using three distinct protocols:

� BitTorrent - BitTorrent is used to the �le-sharing.

� Ethereum - Ethereum is necessary to understand smart contracts and capabilities. At this

point, the blockchain comes into the process.

� TeleHash- TeleHash is used to make the peer-to-peer messaging because it is decentralized

and secure. [65]

As PoC for ADEPT, researchers have deployed these three protocols into a commercial washing

machine (Samsung W9000) that was programmed to work with the ADEPT system, making an

”Autonomous Washing Machine Orders Detergent” [66]. The goal is to automate the process of

ordering supplies. This process makes use of smart contracts to de�ne the commands to receive a
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new batch of supplies. This way, the device can order and pay by itself when the detergent capacity

is low (blockchain manages the payments). Later, the retailer receives the notice that the detergent

has been paid for and ships it. Moreover, the washer owner can also receive noti�cations of its

smartphone's purchase details via its home network.

Another use case consists of a decentralized advertising marketplace using Large Format Displays

(LFD) to share and publish content without a centralized controller. The concept consists of an LFD,

or, more commonly, a conventional display, where users can share the screen with anybody. Users

have to choose the LFD where the advertising will be published and choose the advertisements (video

�les served by BitTorrent). Then, the advertiser receives the request through peer-to-peer messaging

by TeleHash. After this, the content is shared and published. Finally, the advertiser receives the

analytics, con�rms the approval, and �nalizes the payment.

2.1.2 Multiparty Computation

MPC is a sub-�eld of cryptography, which was formally introduced as a form of secure two-party

computing in 1982 and generalized in 1986 byAndrew Yao's[67] [68] [69].

The idea behind MPC is to perform computations privately. In this case, suppose thatN parties want

to compute a function

f (t1, ...,tN) = S

where the partyi is responsible for inputti .

The goal is that neither party can obtain more information beyond the pair(ti ,s), which means that

no one will know the parties' inputs. Each party knows only the output of the function, which is the

answer to the requested problem. For example, imagine an auction where the only bid revealed is

the highest. In this situation, it is possible to derive that all other bids were lower than the winning

bid. However, this should be the only information revealed about the losing bids. MPC must have

correctness - each party receives the correct output, which implies that the party with the highest bid

is guaranteed to win, and no party, including the auctioneer, can change this [70].

We can see an image that illustrates MPC in the Figure 2.1.

Most MPC protocols are based on secret sharing or Garbled Circuits (GC) [71]. MPC based on secret

sharing refers to methods for distributing a secret to a group of participants, where each participant

has a piece (share) of the secret. The only way to reconstruct the secret is with a suf�cient number

of shares combined: a threshold cryptosystem(t + 1,n), wheren is the number of parties andt + 1

is the minimal number of parties to decrypt a secret encrypted with threshold encryption.

Regarding GC, it is a technique to do MPC for two parties. Anecdotally, we will call Alice the

generator, which means that she will make the circuit, and we can call Bob the evaluator, which

means he will evaluate the circuit. At the beginning of the protocol, both parties agreed on the same

circuit. Alice generates a garble table for each of the logic gates in the circuit and sends the garbled
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Figure 2.1: MPC without a trusted third-party

circuit to Bob, along with her input values, also encrypted in a compatible way with the encrypted

circuit. Bob evaluates the circuit using the garbled circuit protocol decrypting one entry from each

of these. Bob uses a technique called ”1-of-2 Oblivious Transfer (OT)” to learn the encrypted form

of his inputs without letting Alice know which inputs he obtained. Bob runs the encrypted circuit on

the encrypted data, gets the answer, and passes it along to Alice.

2.1.2.1 MPC's applicability

There are many real-world examples for MPC, including the millionaire problem, one of the most

well-known real-world application cases. It was �rst introduced in 1982 by Andrew Yao [67] and

consisted of two millionaires who intended to discover the richest among them without revealing

their wealth or any other type of additional information to the other party or third parties. The MPC

protocol solves this problem without the need for a third party involved.

Assuming that we have three parties: Alice, Bob, and Charlie. Each party uses respective inputs x,

y, and z, denoting their salaries. The goal is to �nd the highest salary of the three, without revealing

their respective salaries. Mathematically, this can is achieved by computing:

f (x,y,z) = max(x,y,z)

Each party will share his input without revealing it to anyone. At the end of the protocol, each

participant will get only the functionf , without getting anything else about the other party's input,

i.e., there are no secret inputs revealed. The security of such protocols concerns the ideal model

where f is computed by a trusted partyTf . During the execution of a protocol, the parties cannot
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get information about the other parties' inputs. A third-partyTf computes a functionf receiving the

parties' inputs and then computesf , and �nally sends the output back to the parties.

Suppose we have Alice and Bob, and both want to know who is richer without revealing to each other

or a trusted third party the amount of money they have or any additional information. The function

f (x1,x2) : i f x1 > x2 = Alice elsex1 < x2 = Bobcomputes the inputs and returns the name of the

richest (we can see the example in the Figure 2.2. Alice knows that he is richer than Bob but does

not know how much money he has, and Bob also knows that Alice is richer but does not know how

much money she has. Therefore, in this protocol, the data's privacy is preserved as they never reveal

their salary.

Figure 2.2: MPC - Millionaire's problem

In addition to the millionaire's problem, there are other potential applications of the MPC, such as

secret voting, oblivious negotiation, and database queries [67].

Secret voting consists of severalm members having globally to decide on a yes-no action. Each

member has to choose an optionxi and the result is computed by the functionf (x1,x2,x3, ...,xm).
In turn, this function gives the �nal result without disclosing any other members' opinions and thus

preserving privacy.

Regarding oblivious negotiation, anecdotally, Alice tries to sell Bob a house, each with a nego-

tiation strategy. Alice has possible strategies numbered asA1,A2, ...,At and the same for Bob as

B1,B2, ...,Bu. The result (no deal or sell atx dollars, for example) is once the basic strategiesAi,B j

used are determined. The result is wrote asf ( i, j). This way, it is possible to complete the negotiation

obliviously, as Alice will not gain any information on Bob's negotiation tactics, expecting that it is

consistent with the outcome, and vice-versa.

The last problem focuses on privately querying a database. Suppose that Alice wants to compute a

function f ( i, j) and Bobg( i, j) = constant. Bob does not know anything abouti in the end. If we

assume Bob as a database query system, withj being the state associated with the database, Alice
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can perform a query with the numberi, and then, she can get an answer without getting any other

information besides the data strictly required by her query. Conversely, the database system does not

know which element was queried by Alice, allowing users to preserve their privacy while avoiding

data leakage from the database system.

Patients may want to access their clinical records, and they can use their secret DNA code to make

a query to a medical database of DNA-related diseases. However, patients do not want the hospital,

and potential others, to know their DNA and health status. Simultaneously, the hospital does not

want to disclose its entire DNA database to the patient because it must preserve privacy. In the same

path, social scientists and researchers need to do data analysis, often being sensitive and private leads

to legal restrictions and privacy issues. Techniques like Homomorphic Encryption (HE) and MPC

can solve this for extensive scienti�c analysis [72], as both techniques offer private computing.

2.1.2.2 MPC Frameworks Analysis

Several frameworks implement MPC with different protocols, programming languages, number of

participants, and security levels. Follows the description of some of the most known MPC libraries:

Sharemind

Sharemind is a framework for privacy-preserving computations that allows to process an input

without compromise their privacy. It works as a secure MPC system divided into three parts: input

parties, computing parties, and result parties. The input parties apply secret sharing to their data and

send a share to each of the three computing parties through the established secure communication

channels. Each secret is divided into three shares using additively homomorphic secret sharing

techniques and does not reveal any information. After all the data has been sent to the computing

parties, the result parties can request these data computations. Each result party can invoke, on

the stored data, the execution of algorithms previously inserted in the Sharemind platform. Each

computing party runs the algorithms on its shares and sends the results obtained to each result party

that requested the computation. Finally, each result party joins the shares it received from each

computing party to build the �nal result.

It consists of a computation runtime and associated programming library to create applications that

process personal data, enabling users to develop and test their custom privacy-preserving algorithms.

As a result, users can develop secure MPC protocols without the explicit knowledge of all implemen-

tation details and allow developers to test and add their protocols to the library, as Sharemind is an

open-source project [73]. The experimental Sharemind Software Development Kit (SDK) contains

the SecreC 2programming language that separates public data and secrets on a system type level

and an emulator that developers can use to estimate the running time of their applications in a fully

secured environment.SecreCprograms are fully compatible with the Sharemind Application Server,

which provides full cryptographic protection and supports enterprise applications [74].
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SPDZ

SPDZ implements a general MPC protocol, secure against an active adversary corrupting up to n-1

of the n players [75].

The processing model implemented by SPDZ is as follows: a) an of�ine phase that generates pre-

computed values that can be used during the online phase, and; b) an online phase that performs the

secure computation, executing the designated functions.

SPDZ-2 [76] library was introduced in 2016, and the framework includes some examples available

for users to test, such as the millionaires problem. In 2020, the authors claimed that this software is

not under active development anymore and that there are two successor projects, namely SCALE-

MAMBA that aims to provide an integrated framework for computation in prime order �elds with

both dishonest and honest majority and MP-SPDZ [77, 78] that aims to provide benchmarking of

various protocols, while preserving all the functionality of SPDZ-2.

FairplayMP

Fairplay [79] is a full-�edged system that implements generic Secure Function Evaluation (SFE).

SFE allows two parties to compute data without any trusted party jointly. However, the Fairplay

system uses Yao's GC and only supports secure communication between two parties. FairplayMP is

an extension that appears to counter this limitation and introduce multi parties because cryptographic

protocols for the multiparty scenario are entirely different than protocols for the two-party case [80].

It implements secure computation using Yao's circuits and secret sharing techniques.

ABY

ABY [81] combines secure computation schemes providing three different secret sharing schemes:

Arithmetic sharing, Boolean sharing, and Yao's GC, allowing two-party computation to be secure.

It allows the pre-computation of almost all cryptographic operations, and the authors claim that it

has highly ef�cient conversions between secure computation schemes based on pre-computed OT

extensions.

This library only considers semi-honest (passive) adversaries. It assumes a computationally-bounded

adversary who tries to learn additional information from the messages seen during the protocol

execution. The adversary cannot deviate from the protocol, so the authors consider that ABY is

secure against passive insider attacks by administrators or government agencies or when the parties

can be trusted not actively to misbehave.

The implementation of ABY [82] includes some sample tests for users, such as the millionaire's

problem, secure-computation Advanced Encryption Standard (AES) and euclidean distance.

TinyLEGO & DUPLO
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TinyLEGO [83, 84] focuses on general secure two-party computation based on GC. The authors

claim that it provides privacy-preserving even if one of the two parties acted maliciously during

garbling. TinyLEGO belongs to the LEGO family but has optimizations, such as getting different

outputs to both parties with minimal overhead, using an XOR-homomorphic commitment scheme, an

authentic, private, and oblivious garbling scheme, and a 2-correlation-robust and collision-resistant

hash function.

DUPLO [85] is based on TinyLEGO but with more stable code and faster. It supports the same

circuit format as TinyLEGO, as well as an enhanced version for more �exible computation [86].

2.1.2.3 Comparison between MPC frameworks

Framework Programming

Language

Techniques Security Number of

participants

Year of

creation

Sharemind [73, 74] SecreC

(C++)

Secret

Sharing

Semi-

Honest

3 2006

SPDZ-2 [87, 88] Java, C++,

Python

Secret

Sharing

Malicious

adversaries

> 2 2016

MP-SPDZ [77, 78] C++/Python GC or Secret

Sharing

Malicious,

Semi-

Honest, with

Dishonest or

honest

majority

> 2 2020

FairPlayMP [80] SFDL (Java) GC and

Secret

Sharing

Semi-

Honest

> 3 2006

ABY [81, 82] C++ Arithmetic

sharing,

Boolean

sharing, and

Yao's GC

Semi-

Honest

2 2014

DUPLO [85] C++ GC Malicious

adversaries

2 2016

Table 2.1: Comparison between MPC frameworks

We decide to overview different frameworks with different languages and protocols. Table 2.1

represents a comparison between MPC frameworks, and we can see that FairplayMP, DUPLO, and

MP-SPDZ use GC, whereas Sharemind and SPDZ use additive secret sharing over a ring. Finally,
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FairplayMP uses Shamir's secret sharing* [89, 90]. Lastly, ABY uses a combination of Arithmetic

sharing, Boolean sharing, and Yao's GC.

The main application for GC seems to be secure two-party computation. For more than two parties,

frameworks are using secret-sharing schemes [91]. All these frameworks support a similar set

of primitives, including multiplication, comparisons, and equality testing. Programming on these

platforms either uses a specialized language or a standard programming language and library calls,

depending on the platform [90].

Regarding the security levels,João S. Resende et al.[92] evaluate some of these frameworks, namely

ABY, DUPLO, SPDZ-2 and TinyLEGO (that is one previous version of DUPLO). The authors

conclude that ABY, DUPLO, and TinyLEGO are secure for some input size (from 0 to 9). For this

reason, we will use ABY on the implementations that use MPC in this thesis because it is considered

secure and still has maintenance at the time of this thesis.

2.1.2.4 Future Research Directions on MPC

This section discusses the main research questions and summarizes the identi�ed challenges in the

MPC area.

Most of these frameworks are stated as academic testing prototypes, not ready for deployment

in real-world scenarios. Many authors state that the code is not fully secure because security-

related issues are not fully implemented and do not have security reviews. There is still a need

to combine the best (safe) MPC solutions and optimize them for production and real use cases.

Moreover, we can easily launch a MiTM attack on the libraries as there is no authentication. For

now, establishing authentication using these libraries requires using something like Virtual Private

Network (VPN) connections or authenticated channels between the hosts, then the traf�c is encrypted

and authenticated.

A new research path consists of improving the MPC implementations to enable novel scienti�c data

methods by creating new tools that will make these techniques accessible to social scientists. This

pathway points to the need for a closer examination of automatic data-matching between separate

datasets with a private set intersection, improving �xed-point integer conversion for decimal data

values used in computation and other privacy-preserving applications. To summarize, the ultimate

goal is to achieve this without disclosing private information, i.e., each party's inputs. Along with

this, the number of devices and data in IoT is growing, so it would be essential to have a �lter to

identify non-sensitive data, making tools that detect sensitive versus non-sensitive data. Research

work already exists in this direction, namelySecureML[93], which uses MPC and focuses on

* Shamir's Secret Sharing is a form of secret sharing, where a secret is divided into parts, giving each participant a

random part of the secret, where some of the parts or all of them are needed to reconstruct the secret. Sometimes, it uses

a threshold scheme to de�nek parts that are suf�cient to reconstruct the original secret, as it can be impractical to have all

participants together. [89]
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privacy-preserving machine learning for linear regression, logistic regression, and neural network

training using the stochastic gradient descent method.

Marcin Andrychowicz et al.[94] propose an exciting research direction forMPC on Bitcoinwhere

Alice and Bob can determine who is the wealthiest one based on who has more coins. However,

this is only possible if each party is interested in proving that it is the wealthiest one because every

participant can easily pretend to be weaker than it is and ”hide” its real wealth by transferring it

to another address under its control. This method helps to obtain fairness in speci�c multiparty

protocols. For example, Bitcoin uses an attractive way to build ”timed commitments”, where the

committer has to reveal his secret within a speci�c time frame or pay a �ne. In our opinion, this can

be a possible research direction not only in the millionaire's problem but in other problems that are

isomorphic, just with varying underlying contexts. Also, there are other open problems in the MPC,

such as constructing protocols that are secure against ”malleability” and ”eavesdropping” attacks.

2.1.3 Multiparty Computation and Blockchain

With the increasing spread of IoT, there is a need to create decentralized and private platforms.

Combining MPC with blockchain technology can be a signi�cant advance in this area, as it may be

possible to create platforms that allow privacy preservation (data remains encrypted, even in use) and

resilience. However, some questions remain unanswered: if it is possible to design a decentralized

platform without relying entirely on a trusted third party or building a fully decentralized protocol to

sell secret information without allowing sellers and buyers to cheat.

2.1.3.1 Enigma

Enigma [21] combines the use of MPC and blockchain technologies. This section describes the

Enigma technology and the associated use cases with real-world applications.

Enigma is a peer-to-peer network that enables different parties to store and run computations on data

while keeping the data completely private. This model works in parallel with an external blockchain

technology. Similar to Bitcoin, Enigma removes the need for a trusted third-party.

Enigma's primary motivation focuses on avoiding centralized architectures that might lead to catas-

trophic data leakage that would result in the loss of privacy. It connects to an existing blockchain and

off-load private and intensive computations to an off-chain network. The blockchain (public tasks)

and Enigma (private and computationally intensive tasks) execute the code.

Opposing blockchain, which only ensures correctness, Enigma's execution provides privacy and

correctness simultaneously. One of its main features is its privacy-enforcing computation, as Enigma

can execute code without data leakage while still ensuring correctness. As heavy-duty computations

are a known issue for blockchains, Enigma only allows the broadcast of running computations

throughout the blockchain to avoid heavy processing.
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Although blockchains are not general-purpose databases, they can be used to store information strate-

gically. Enigma has a hash table distributed outside the decentralized chain that uses blockchains to

store data references (not for real data). However, the client-side must encrypt private data before

programming the blockchain's storage and access-control protocol, which will act as public proof of

the authorization scheme.

Enigma Application Cases

There are multiple �elds of application for MPC, where privacy-preserving is a concern. In this

section, we describe some of the most relevant domains we envision can be applied.

Applicability in IoT seems straightforward, as we can store, manage, and use highly sensitive data

collected by IoT devices in a decentralized, trust-less cloud. The Crypto Bank is also a �eld where

the intimate details have to be anonymous, so we can run a full-service crypto bank without exposing

its internal design and implementation. The blockchain's autonomous control allows users to take

loans, deposit cryptocurrencies, or buy investment products without publicly revealing their �nancial

situation.

In line with the millionaire's problem, wheren-parties want to know if they are wealthier than the

others, without exposing their �nancial status to each one, there is blind e-voting. The latter case

maintains each voter's privacy, and the actual vote count can potentially remain private.

Another Enigma application is then-factor authentication, where voice, face, and �ngerprint recog-

nition are all stored and computed on Enigma. As private contracts support the access-control, only

the user can access its data.

Furthermore, private contracts allow us to share some data with a third-party securely. It is possible

to de�ne some contracts restricting access to data, maintaining and enforcing control and ownership.

The shared data on MPC is always reversible, as third parties do not have access to actual raw data

and can only run secure computation. Private contracts also support identity management. When

users want to log in, the system executes an authenticating private contract to validate the users and

link to their real identity with a public pseudo-identity, making this process wholly trust-less and

privacy-preserving. This way, the authentication and identity storage are fully anonymous, and users

on Enigma only have to secret-share their personal information required for authentication.

For data protection, privacy-preserving approaches should be paramount to companies, as they hold

large volumes of potentially sensitive user data that is a potential target for criminals. With Enigma,

companies can use data to provide personalized services and match individual preferences without

storing or processing the data on their servers, thus removing the security and privacy risks. By

doing so, Enigma can protect companies against corporate espionage and rogue employees. Note

that employees can still use and analyze data for the user's bene�t while enforcing agreed consents.

With these solutions, companies can potentially provide access to the data while preserving security

and privacy.
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A data marketplace can be a potentially compelling case because, for example, a pharmaceutical

company looking for patients for clinical trials can search genomics databases for candidates. In

this process, consumers can sell access to their data with guaranteed privacy, autonomous control,

and greater security. The marketplace would eliminate tremendous friction between companies and

individuals, reduce customer acquisition costs, and offer a new income stream.

2.1.3.2 Future Research Directions

Computation on encrypted data has been slow in practice, and it remains an active research path [95].

Additionally, Enigma entails processing transactions without knowing their contents that might

provide an alternative way to achieve similar accountability bene�ts while supporting transactions.

However, this approach does not preclude the possibility of a validator favoring transactions based on

a bias because it can identify the transactions with help from colluding peers, even if the transactions

are encrypted [96].

Enigma's combine three paradigms: secret-sharing, MPC, and Peer-to-Peer (P2P), which opens

new possibilities to address current open issues on data privacy and the growing liabilities faced

by organizations that store or work on large amounts of personal data.

2.1.4 Summary

This chapter has provided a summary of the multiple concepts of secure computation in different

approaches. The �rst sections (2.1.1 and 2.1.2) presented some concepts of secure computation

such as secure MPC that consists of exchange data anonymously without a trusted third-party,

or blockchain that is a secure way of online transaction. We described some concepts and their

applications and combined both (if any) and with the IoT. In the secure MPC section, we overview

some MPC frameworks and analyze each functionality.

We discovered some interesting applications which show that there are some attempts developments

based on the combination of some of these concepts. The main �nding applications were:

� Blockchain for IoT: IOTA and ADEPT (described in the section 2.1.1.3);

� Blockchain with secure MPC: Enigma MIT's (described in the section 2.1.3.1).

As we describe in Section 2.1.1.2, there are several limitations to integrate the blockchain technology

with IoT. Section 2.1.1.3 describes a solution that consists of using fog computing as a way of

decreasing latency, having ”local awareness” and mobility (including vehicular mobility). As cloud

computing limitations are undesirable for IoT, it is essential to do the integration between IoT and

blockchain using the fog computing with IoT.
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However, there are unsolved problems and open issues that we described as future research directions

in the sections 2.1.2.4 and 2.1.3.2.

2.2 IoT Identity Management

There is no direct integration between traditional human-centered IdM systems and IoT environ-

ments [97]. Humans are distinguished by their physical characteristics, nationality, and personality,

to name a few, and have an identi�cation document to prove their identity. The human identity can

be composed by the combination of the identi�cation document, which has personal information

(name, nationality, or birth date) and other characteristics that de�ne the identity of a person, such

as preferences (food, clothes, books) or reputation among the community (honest or reliable) [98].

Digital identity is equivalent to a human's physical identity when used for identi�cation and transac-

tions. However, some services and applications do not require all the information associated with the

users. For example, e-bay only needs to know if the seller's reputation is good, and the seller only

needs to prove that it controls his digital identity. In this case, attributes like date of birth, gender,

or nationality are not required (less important). Once the link establishment between the private

entities and their online interactions, digital identity involves authentication. Subsequently, human

authentication methods can be classi�ed into three categories [99]:something you have, something

you knowandsomething you are.

However, for devices, it is required to de�ne a digital identity. Therefore, device identi�cation,

authentication mechanisms, and relevant forms of authorization are required to address privacy and

security issues in IoT. With a unique and strong identity, sensors and devices can be authenticated

online, promoting safer communication between devices, services, and users, thus proving their

integrity.

Theft, tampering, and disguise are some of the issues that challenge IoT identity protection. Also,

there is a lack of clear de�nitions of how sensors or devices are identi�ed, represented, searched, and

accessed in IoT. This gap makes IoT vulnerable to multiple identity attacks, such as a Sybil attack,

when a sensor or device illegally uses multiple identities. Thus, there is a need to review the different

traditional security solutions to determine their feasibility and applicability in IoT.

2.2.1 Traditional IdM

IdM is a set of processes and technologies used to protect the identity of an entity (user or device),

ensure the quality of identity information (identi�ers, credentials, and attributes), and provide au-

thentication and access privileges to information systems within limits de�ned by an organization.

An entity can have multiple identities, and each identity can have different attributes; each attribute

can be unique or non-unique. We call this sectionTraditional IdM as it is not focused on IoT but on

generally solutions for IdM.
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Multiple services integrate the IdM concept, such as: Active Directory Management; Service Providers;

Identity Providers; Web Services; Access Control; Digital Identities; Password Management; Single-

Sign On (SSO); Security Tokens Security (STS); OpenID; WS-Security; WS-Trust; Security Asser-

tion Markup Language (SAML) 2.0; OAuth and Role-Based Access Control (RBAC).

An IdM system consists of a three-tier architecture: User or Device, Identity Provider (IdP) and

Service Provider (SP) [98, 100, 101].

One of the most common ways to manage authentication and authorization of individuals and devices

is by usingFederated IdM[102].

SAMLandOAuthrepresent the two most widespread approaches.

SAMLis an XML-based standard developed by the OASIS Security Services Technical Committee

to exchange authentication and authorization data between security domains [103].SAMLspeci�es

the issuance of a token signed by an IdP, where the SP needs to maintain the public key of the issuer

to check the validity of the signed token and its timestamp. However, users that own the signed token

can impersonate the real owner, so this token should have a short expiration time.

OAuth 2.0andOpenID Connect 1.0are two standardized authentication and authorization frame-

works used by most services. TheOAuth 2.0framework delegates conditional authorization. That

is, resource owners authorize temporary access to a predetermined set of resources without revealing

their credentials. Access tokens are provided to third-party clients by an authorization server with

the resource owner's approval. Then, clients use their access tokens to access protected resources

hosted on the resource server. Users commonly use this service to access third-party websites using

their Facebook, Google, and Twitter accounts, without exposing their credentials [104].

OpenID Connectadds an identity layer to theOAuth 2.0[105]. This implementation ofOAuth is

based on the use of bearer tokens, which have a limited validity in time and are veri�ed by the

signature made by the IdP.

These solutions do not provide security and privacy entirely to the federated online scenarios because

the IdP acts as a SPOF, as it can impersonate the users because it is involved in all authentication

processes and can track its users.

Some research works focus on solving identity management problems.Caroline Chibelushi et

al. [106] propose a healthcare IdM framework built into Mobile Ad-hoc Network (MANET), assum-

ing the devices are connected wirelessly and allowing users and devices to be distinguished based

on personal identi�ers and device pro�les, respectively. The structure also considers bandwidth

limitations, ensuring the exchange of the minimum amount of information. A sandboxing* technique

is employed to protect user content when sharing a device. Most IdM systems focus on PKI's, which

links public keys to entities' identity (like people and organizations). As DigiCert claimed, a PKI

* Sandbox can be an essential layer to the protection system. A system can concentrate its operations in a restricted

area where all unreliable programs, records, and activities can run completely isolated from the computer's operating

system. [107]
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security solution, when properly implemented, provides strong device identity and encryption for

in-transit data and protects devices and networks from exploits.

Nowadays, theOAuthandSAMLfor example, are often the basis for building an IdM system, such

asShibbolethor Keycloak.

Shibboleth[108] is an open-source project that provides federated SSO and attribute exchange

systems implementing widely used federated identity standards (as described in the Section 2.2.1)

by exploitingSAML. As far as we know, this is the second most cited and used system, preceded

only by OpenID[109]. To use a SP connected to a federation, users must authenticate using their

organizational credentials (Shibboleth Identity). This way, an organization (IdP) will pass the least

amount of information to the SP manager, whether allowing user access. As a result, authenticated

users will have access to any SP connected to this federation. This tool focuses on user authentication

based on attribute exchange [110].Shibbolethconsists of several individual components: an IdP, SP,

and Discovery Service. Users may choose to deploy one or more of these components depending

on their needs. Currently,Shibbolethis not being considered as an IdM for IoT scenarios because,

although SSO may be useful as users only need to authenticate once to interact with various devices,

the traditional Web 2.0 SSO does not meet certain IoT requirements [111].

Keycloak[112] is an open-source Identity and Access Management (IAM) solution focused on

modern applications and services. It supports User Federation, Identity Brokering, SSO, and Social

Login. SSO allows a user to log in only once and then access all systems con�gured inKeycloak.

Keycloakis based on standard protocols and provides support forOpenID Connect, OAuth 2.0, and

SAML.

PRIME [113] is a system that focuses on effectively managing and protecting users' private data.

This system usesIdemix [114], which allows the creation of anonymous credentials that can be

deactivated.

Even with the existence of SSO, such asOpenIDor Shibboleth, security and privacy still need to be

fully addressed in IoT [115]. These problems lead to the need to analyze IdM systems for IoT and

de�ne an identity forthings.

2.2.2 Identity of Things

There is an area of endeavor in IoT that includes assigning a Unique IDenti�er (UID) with metadata

associated with devices and objects (items) that allows them to connect and communicate with other

entities on the Internet effectively. Unlike the three categories of human multi-factor authentication

(Something you have, Something you knowandSomething you are), the approach in IoT is more

complex. [116] present an idea for Identity of Things based on four categories:inheritance, associ-

ation, knowledgeandcontext.

Inheritancecategory is equivalent to biometrics in humans, so it is necessary to �nd an identical
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mechanism that identi�es devices. The suggested mechanism is the Physically Unclonable Function

(PUF) [117–119]. However, this mechanism has some known attacks, such as those described in

previous works [120–123]. It is also not as �exible as the other categories, as it depends on the

chip/hardware manufacturers.

The associationandknowledgecategories do not have as many hardware requirements asinher-

itance. Associationis equivalent to the”something you have”category of human multi-factor

authentication, but it is not easy for an IoT device to process something external (such as a hardware

token). Similar to the”something you know”category, the authors present theknowledgecategory

where there is, for example, the phone's International Mobile Equipment Identity (IMEI).

However, what attracts more attention in IoT is the”context” category, which the authors also refer

to as the fourth category of authentication methods.Contextrefers to the device's environment, such

as real-time device location.

2.2.3 Ongoing research on privacy-preserving IdM for IoT

The power and bandwidth limitations of IoT devices make the integration of IdM and IoT much

more complex and challenging [116].

There are many IdM systems for IoT, and we have reviewed some of the most cited projects.

Researchers have been working on IdM solutions but are not entirely focused on solving privacy

issues. Although there are new frameworks [110] that guarantee speci�c de�ned security goals, more

implementation and evaluation details are lacking for analyzing the privacy properties it contains.

Another approach focuses on the user-centric IdM framework consisting of user identity, device

identity, and the relationship between them [124]. It correlates a user's identity with a device's

identity but does not address privacy issues.

In this thesis, our focus is primarily on properties that can help preserve data privacy, especially con�-

dential data, by addressing the data minimization principle, a central aspect of the recent GDPR [125].

Partial identity is a fundamental principle of privacy adopted by previous works [126, 127]. However,

these works do not preserve anonymity because a fully disclosed certi�cate identi�es entities to other

parties. For example, most works use X.509 certi�cates as credentials to real model identities and

SAMLsecurity tokens to encode partial identities to prove ownership of speci�c attributes [128].

As privacy is a focus of our research, we have decided to highlight systems and projects based on

the Anonymous Credential concept [129], where we can display credentials without compromising

privacy. The idea behind the concept is that users can obtain credentials and display some of their

properties without revealing additional information or tracking. Each token, as well as credentials, is

designed to be used only once. There are several examples, such as subway tokens, electronic money

(e-cash), movie tickets, and access passes for online services. Repeated use of the token reveals the

user's identity, but several tokens used by the same users are unlinkable.



36 CHAPTER 2. LITERATURE REVIEW

For example, in a movie theater, there are age restrictions on buying tickets for certain movies. If the

clients want to prove that their age is over 18 years old, the movie theater does not need to access

more information, such as an identi�cation card with all personal information, including a full birth

date. Instead, it only needs to obtain a proof that the clients' age is over 18.

There are two implementations that address privacy issues through the concept of anonymous cre-

dentials: Idemix [114] andUProve[130]. Through protocols and cryptographic mechanisms, the

schemes implemented by each model allow the presentation of credential authentication through

credentials and proofs of attributes, preserving anonymity.

Recent works [128, 131] useIdemixin their implementations. There is a holistic IdM system [128]

that handles different IoT scenarios that require traditional online access control and authentication,

along with a claims-based approach to privacy-preserving P2P interactions. The system follows

a claims-based approach with attribute-based credentials. This project has been tested and imple-

mented within the European research projectSocIoTal. The IdM system features the IBM's cryp-

tographic libraryIdemix[114], providing a privacy-preserving solution that addresses IoT scenarios

in which consumers and vendors should not be only traditional computers, but also smart objects

(e.g., smartphones). In addition,SocIoTal IdMhas been integrated withFIWARE Keyrock IdM[132]

to support traditional IdM management operations in scenarios where claims-based access is not

required. The implementation is in Java, and, as described in the of�cial implementation of this

project [133], �ve main components make up the IdM. However, theSocIoTal[128] system is not

suitable for resource-limited devices because, despite being a real redeployment to integrateIdemix

into IoT, it is intended for Android devices and uses Java programming language, which requires

high computational and memory resources to run.

On the other hand,Jose Luis Canovas et al.[131] proposes a solution for authentication and au-

thorization with privacy-preserving that uses the concept of anonymous credentials. This concept

aims to have the IdM inside a device, avoiding consulting external trusted third parties, and even

check attributes; it has zero-knowledge proofs, and, for example, vehicles could authenticate their

owner by verifying a proof from their wearable, such as a smartwatch. The authors give an example

that focuses on the veri�cation of whether someone inquiring is entitled to get some information,

e.g., an accredited person, such as a policeman, can issue information about the vehicle's, and in

that case, the vehicle would disclose its owner's relevant information, such as proof of passing

technical inspections. Otherwise, if the device requiring information is not an accredited person,

some sensitive information is restricted. In brief, a device may or may not restrict the sharing of

certain information (minimum disclosure).

2.2.4 Blockchain

The Section 2.1.1 describes the blockchain concept and the limitations of integration with IoT. This

section presents the motivations of using blockchain with IoT, and an overview of blockchain-based
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IdM systems.

2.2.4.1 Motivation for using Blockchain for IdM in IoT

Most previous works related to IdM, authentication, and authorization focus on heavy and complex

communication protocols in terms of computation and memory requirements and have SPOF prob-

lems that can compromise the entire system. PKI-based solutions are complex, expensive, and not

easy to manage, which con�icts with IoT integration due to resource constraint issues on devices.

PKI also relies on a Certi�cation Authority (CA) that represents a SPOF problem. If an attacker

could create a fake CA, it would provide digital certi�cates that would be accepted as true by many

browsers. A browser can then claim that a site is legitimate when it is a fraud. By using fake CAs

and exploiting the MD5 algorithm �aw, hackers can use the well-known Domain Name System

(DNS) �aw to create unidenti�able phishing attacks. It is essential to eliminate the SPOF problems

inherent in trusted third parties and create a decentralized solution. Adopting a standardized peer-to-

peer communication model for processing hundreds of billions of device-to-device transactions will

signi�cantly reduce the costs of installing and maintaining large centralized data centers. It will also

distribute computing and storage needs among billions of devices that form IoT networks, preventing

the SPOF problems [134].

Blockchain enables creating more secure network meshes in which IoT devices are securely inter-

connected, avoiding threats like spoo�ng and device impersonation. As blockchain registers each

legitimate node, devices will be able to identify and authenticate themselves. This block-based

approach is more agile than other approaches, and each registered identity can be associated with the

device's public key, allowing for a more secure communication scenario. However, it is possible to

suffer a Sybil attack with blockchain, so it is essential to know that the nodes are secure. When there

is no central authority, a reputation system is required. User accounts created on blockchain-based

reputation systems do not have their real identity revealed. Attackers may leave the system after

attempting to inject fraudulent subjective information but will not rejoin and create a new account

to launder their previous rating history [135]. Leveraging blockchain's capabilities, each device

with an identity has an immutable reputation and history when its certi�cation agency audits the

device and registers its identity with blockchain from birth. Otherwise, centralized systems have a

hierarchical context addressed (device @ host, with the host gaining its identity by assigning an IP

address or registering a DNS) [136]. As already described, blockchain also provides capabilities

such as traceability, reliability, autonomic interactions, and interoperability between devices [137].

2.2.4.2 Blockchain-based IdM systems

In this section, we systematically review blockchain-based IdM systems. Past works critically

analyze and compare the different blockchain-based IdM and authentication systems from 2014 to

2018 [138].
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These solutions can be categorized intopermissionedand permissionlessblockchain [139]. The

authors highlight two systems in each of the categories:uPort [140] andSovrin[141].

Another categorization [142] for IdM solutions can be done between:Self-Sovereign identityand

Decentralized Trusted Identity. The authors highlight three Distributed Ledger Technology (DLT)-

based IdM schemes, namely,ShoCard, uPort andSovrin, and evaluates their bene�ts and shortcom-

ings by providing a detailed description of the three systems.

While ShoCardfocuses on digital identity for humans,UniquID [143] is similar but attempts to �ll

the gap between human and digital entities [144]. For this reason, we also include this system in this

description.

A recent paper proposes a decentralized privacy-preserving healthcare blockchain in IoT [43]. It

is of utmost importance to describe this system because it also focuses on the privacy-preserving

properties and healthcare use cases.

Therefore, a detailed description of �ve blockchain-based IdM systems will be provided in this sec-

tion: Sovrin, uPort, ShoCard, UniquID, A Decentralized Privacy-Preserving Healthcare Blockchain

for IoT.

Sovrin

Sovrin[141] is a public permissioned distributed ledger dedicated to self-sovereign identity.

The consensus protocol used inSovrin is calledPlenumand is an improvement over Redundant

BFT [145] based on the BFT protocol.

The choice for a permissioned blockchain and applying different consensus protocols are possible

enhancements for low-cost computation, thus reducing the energy cost of running a node and im-

proving transaction throughput. All of these choices are bene�cial for the integration betweenSovrin

with IoT, speci�cally for resource-limited IoT devices.

In Sovrin, a user can generate any number of required identities. This way, it can guarantee privacy

because identities are separate, unlinkable, and controlled by a different asymmetric key pair. These

identities follow the Decentralized Identities (DID) speci�cation, a set of features that uniquely

de�ne objects. There is no central register to give to an entity a ”positive signal” in the data's

validity. DID is entirely under the authority of the user.

Sovrin integrates unforgeability, performance, unlinkability, and a distributed ledger, adopting the

best practices of bothEthereum[146] and BFT protocols. However, one of blockchain's problems

is that it is easy to violate privacy in a public ledger by correlating transactions to make inferences

about users. To mitigate this risk, the system includes the concept of anonymous credentials [147],

which gives users full control over all aspects of their identity.

uPort
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Unlike Sovrin, uPort [140] does not provide a full stack for managing distributed ledger identities

for devices. It is based on an Ethereum smart contract to design a digital identity model and is

a public permissionless blockchain where anyone can be a validator node.uPort allows users

to register their own identity on Ethereum, submit and request credentials, sign transactions, and

manage keys and data securely. The system aims to abstract end-user public key cryptography to

make the user experience intuitive. It provides self-sovereign identity, meaning that users can store

their identity data on their own devices and ef�ciently provide it to those who need to validate it

without relying on identity data's central repository. A mobile app holds the user's private key, and a

smart contract address acts as its identi�er [148]. It ensures identity reliability and usability through

a set of operations (key and identity recovery) [139].

ShoCard

ShoCard[149] is a different approach, more focused on user identity and helping individuals and

businesses quickly validate identities without using passports or other physical identi�cation docu-

ments. It allows it to work as a mobile identi�cation that can be veri�ed in real-time while using a

combination of encryption and Bitcoin ledger immutability. Perhaps most importantly, the company

claims that identifying information can be veri�able without requiring users to relinquish their data.

Users create their identities on the blockchain using their details, and a known and trusted orga-

nization with the ability to verify identities must validate them. Users can use their own identity

to travel, and their travel agency can search blockchain and verify that a trusted organization has

validated their identity.

In terms of privacy, the authors claim that user data is not stored in blockchain but has its crypto-

graphic proofs to show that it is correct. It also provides selective disclosure to create a key pair for

each of the �elds that the user is storing inShoCard, so that the user has a private master key and

private keys for individual data �elds. A private key protects the �ngerprint of data on blockchain;

therefore, only the user who owns the private key can modify it.

UniquID

Another work calledUniquid [143] is building a technology that identi�es devices themselves while

of�ine through the use of blockchain technology and smart contracts.

Instead of using PKI,UniquID applies PGP and Web of Trust [150] principles. The identi�cation

of each device is generated using pseudo-random functions, following the same principle as Pretty

Good Privacy (PGP). However, as there are no third parties in this process,UniquID devices must

rely on asecure element[151] to generate their own identity and maintain integrity. Finally,UniquID,

following the Web of Trust principles, requires a decentralized mutual recognition process using

cryptographic signatures.UniquID devices must �rst complete an Imprinting Ceremony [152] with

other previously enabled devices, closer to the time of manufacture, to exchange public keys in a

secure environment and reduce the risk associated with MiTM attacks.
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This system focuses on IoT, and the authentication process is performed between devices without

the need for third-party intermediaries, allowing devices to be independent [138].

A Decentralized Privacy-Preserving Healthcare Blockchain for IoT

Ashutosh Dhar Dwivedi et al.[43] feature a decentralized privacy-preserving healthcare blockchain

system for IoT. By eliminating PoW, the authors made some adaptations to blockchain to make it

suitable for IoT. The authors implement some techniques to preserve privacy in identity, such as a

ring signature scheme to anonymize user data. There is still no evaluation or implementation of this

system to analyze the system's functionality and if the blockchain adaptation worked, i.e., if it is

lightweight enough for IoT.

2.3 Authentication and Secure Communications

Many applications provide identity, authentication, and authorization across multiple contexts. Au-

thentication schemes have been studied in the literature [153–162] and different authors present many

taxonomies.Shubham Agrawal et al.[163] claim that there are different authentication schemes,

named: OTP, Zero-Knowledge proof, Mutual Authentication, Public Key Cryptography, and Digital

Signature. On the other hand,VL Shivraj et al.[164] refer to a different categorization: mutual

authentication schemes, two-party authentication through a trusted party with key exchange, session

key-based authentication, group authentication, directed path-based authentication scheme, OTP and

SecureID authentication schemes.Nidal Aboudagga et al.[165] has presented a document with a

taxonomy and research issues in the authentication protocols for ad-hoc networks.

PKI provides important core authentication technologies for IoT. PKI creates digital certi�cates that

map public keys to entities that securely store these certi�cates in a central repository and revokes

them if needed. Any device can verify the integrity and ownership of a public key in this type

of infrastructure. Previous studies [166] show that 42% of devices will continue to use digital

certi�cates for authentication and identi�cation in the next two years. TheSecure Sockets Layer

(SSL)/Transport Layer Security (TLS)[167] is an example of an authentication system based on a

PKI.

This chapter will cover the authentication methods related to the solutions that we developed through-

out this thesis. Therefore, we will separate the authentication types into three different sections: main

agreement protocols, one-time password schemes, and proximity-based solutions. We analyze the

most relevant solutions in these groups, highlighting those that most interest us for our research.

2.3.1 Key agreement protocols

The ZRTP is a key agreement protocol used on Voice Over Internet Protocol (VoIP). This protocol

does not use digital certi�cates; instead, it uses Dif�e-Hellman (DH) keys (also called shared secret
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keys). The DH method is a speci�c encryption algorithm for key exchange based on discrete

logarithms. At the end of this key agreement, it is possible to generate, through shared secrets,

a master key to create a Secure Real-time Transport Protocol (SRTP) Cryptographic Context and

so, establish an SRTP stream [168][169]. The DH algorithm alone does not protect against MiTM

attacks. During key exchange, to authenticate both peers, the protocol uses a SAS generated during

the key negotiation from the DH shared secrets. In the case of a MiTM attack, the devices will end up

with different shared secrets and, thus, different SAS. If the SAS is the same, the communication is

secure. However, the SAS needs to be con�rmed on both users' devices. When the communication

is validated, the shared secrets are used to produce new secure sessions in the future, decreasing

the computational effort and skipping the user intervention to compare the SAS on the subsequent

communications between the same peers [169].

The Password-Authenticated Key Agreement (PAKE) is another method for key agreement but based

on pre-shared passwords. It consists of two or more parties establish cryptographic keys based on one

or more party's knowledge of a password.Jean Lancrenon et al.[170] discusses the three main state-

of-the-art PAKE protocols. Password Authenticated Key Exchange by Juggling (J-PAKE) [171, 172]

is the most recent PAKE protocol that uses an elliptic curve DH for key agreement and a Schnorr

Non-Interactive Zero-Knowledge (NIZK) signatures* proof mechanism to authenticate two peers

and establish a shared secret between them based on a pre-shared password. Some services still use

J-PAKE, such as the Pale Moon Web-Browser, the lightweight Application Programming Interface

(API) in Bouncycastle (1.48 and onwards), and Thread (IoT wireless network protocol). There are

several known J-PAKE issues, already published byMohsen Toorani[174]. J-PAKE is vulnerable

to a password compromise impersonation attack and has other shortcomings concerning replay and

Unknown Key-Share attacks. According to the same authors, OpenSSL and OpenSSH integrated

J-PAKE, but there were some problems reported during implementation [175], and they no longer

use it.

Device Pairing Using Short Authentication Strings [176] is a two-device pairing mechanism based

on the agreement and checking of a secret's authenticity using a SAS. This protocol consists of

three phases: discovery, agreement, and authentication. When the pairing service starts, the server

starts publishing the chosen instance name. The client will discover the name and the corresponding

connection parameters [176]. The client and server then use a TLS session to agree on a shared

secret using a cryptographic protocol producing a SAS. After this, an authentication phase is used to

validate the pairing through a SAS. In this phase, users have to make the SAS comparison through

a manual veri�cation (verify that both devices display the same string). If, instead, the server and

client support Quick Response (QR) codes, the server displays a QR code with the SAS's encoding,

and the client is capable of scanning the value of the SAS and comparing it to the locally computed

value.

* The Schnorr NIZK proof allows one to prove the knowledge of a discrete logarithm without leaking any information

about its value. It can serve as a useful building block for many cryptographic protocols to ensure that participants follow

the protocol speci�cation honestly. [173]
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2.3.2 Proximity-Based Approaches

Additionally, there is a vast literature related to Location-Limited Channel (LLC).Dirk Balfanz et

al. [177] presents new schemes for peer-to-peer authentication in ad-hoc wireless networks based on

LLC. The authors also describe how to use demonstrative identi�cation to perform pre-authentication

over LLC.

Amir Spahíc [178] presents an authentication mechanism (pre-authentication phase) which uses

context information through LLC using Infrared.Serge Vaudenay[179] presents a concept that

authenticates a short string, the SAS, through an extra insecure channel. This concept is similar to

our proposal; however, it uses a narrow-band authentication channel.

Another proposal [180] is based on a new LLC using biometrics. The protocol ef�ciently calculates

a shared secret key from biometric data using quantization and crypt-analysis. The authors use grip

pattern-based biometrics as an LLC channel to achieve pre-authentication in a protocol that sets up

a secure channel between two handheld devices.

N Asokan and Philip Ginzboorg[181] presented a key agreement protocol in ad-hoc networks based

on PAKE and a location-based key agreement to authenticate through a location-limited channel,

such as Bluetooth. However, such a protocol does not seem focused on IoT. It does not have the

key continuity feature that is a proper application in this context, as key continuity allows devices

to move away after the �rst pairing and continuously have secure communications on the following

connections.

2.3.3 One-Time Password

There are several end-to-end solutions more related to OTP solutions. Some of them, are based

on temporary passwords and/or unique numbers using OTP-based solutions [182–184], as well

as PUF-based solutions [185, 186].Daniel Kelly et al.[182] claim that IoT devices with single-

factor authentication are not suf�cient for secure communication. A solution presented byShivraj

et al. [183] creates a lightweight, robust, and scalable OTP technique developed by using the prin-

ciples of Identity Based Encryption (IBE)-Elliptic Curves Cryptography (ECC) allowing two-factor

authentication. The work done in [184] also has an authentication through OTP to the application

level information security.

2.4 Network Traf�c Security Solutions

This section overviews some techniques for network traf�c control, including the selection of rules

for blocking traf�c.

Most �rewalls have blocking rules that deal primarily with IP addresses. The relationship between a
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domain and its IP addresses is slightly loose because a domain can have multiple IP addresses that

can change frequently. For example, in theiptablestool, it is more complex to block any connection

from a full domain name, including all subdomains, because it requires a reverse lookup to see the

mapping of an IP in the domain. If it is HTTP(s), the request must be analyzed and the sub-domain

determined. Besides this complexity, the tool creates a rule with the �rst IP address, and if the

address changes, theiptablesrules will be out of date.

Another problem is that an IP address can host many domains and, if users block or allow one of

these IP addresses, all domains hosted on it will also be allowed/denied. Likewise, when we allow

an IP that hosts many domains, we allow multiple services and create a security problem due to

exposure to other types of services. An example isCloud�are [187], which provides a large amount

of services to websites and sits between the public Internet and a server.Cloud�are users do not point

their DNS to their server; instead, the users point their DNS toCloud�are and then pointCloud�are

to their server. Therefore, the same IP address is associated with millions of servers (Cloud�are's IP

addresses). Therefore, when one of these IP addresses is blocked/allowed, all sites pointed to them

are also blocked/allowed.

Proxy servers are another widely used method of blocking access to websites. However, without

an SSL introspection mechanism, a proxy generally can not decrypt HyperText Transfer Protocol

Secure (HTTPS) and, therefore, can not know the IP address and content. To drop the connection,

we would need at least information about the IP address/URL. For this setup, we tested Squid [188],

which has an option to decrypt requests transmitted using the HTTPS protocol called SSL Bump.

The solutions based on a proxy remains one of the most effective to solve the problem. However,

SSL bump requires a man-in-the-middle to intercept communications to get the encrypted data and

the IP address/URL information we need to drop the connection, which would make us susceptible to

MiTM. Along with this, decryption of HTTPS tunnels without consent may violate ethical standards

and be illegal, depending on the jurisdiction [189]. From a practical point of view, in this scenario,

we have data similar to an Internet Service Provider (ISP); if we use the proxy, no communication

will be secret, with all messages exchanged inWhatsAppor Google, for example, exposed on the

local and remote machine.

With Autonomous System Number (ASN), we can block speci�c domains per network operator, but

the opposite is also true. For example, if we only allow Google, we are also allowing all advertising

domains associated with it and entities controlled by that network.

Another method to block speci�c traf�c can be based on the Server Name Indication (SNI) [190].

By default, TLS [191] connections do not provide a client's mechanism to discover the server it is

contacting. The header containing the Fully Quali�ed Domain Name (FQDN) [192] is encrypted, so

we cannot access that name. To overcome this problem, it is possible to use the SNI extension for

TLS, where a client indicates which hostname it is attempting to connect to at the beginning of the

handshaking process. This �eld is part of theClientHello message of the TLS negotiation (before

encrypted communications) so that we can access the unencrypted hostname. The main advantage
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of choosing a �rewall solution based on the SNI is that we can allow/block a speci�c hostname

connection by solving the problems mentioned by the other solutions we tested.

For the implementation of this concept, we use an extension foriptablesto �lter TLS traf�c based

on the SNI [193]. In addition, we use a combination ofSNIdump(similar to TCPdump) and

whois, to provide the user with real-time information. SNI also constitutes some impersonation

problems [194]. However, a device will not accept the connection with itself if the certi�cate does

not match the desired one, so it is not a problem. Also, withiptables, the user can de�ne a permission

that takes effect only during a speci�c time window so that there are no unwanted communications

outside the period de�ned by the user. For an attacker, it would be challenging to impersonate the

certi�cate precisely during the period in which the user allows communication, in addition to needing

to know which devices the user has.

However, with the introduction of TLS 1.3, DNS over HTTPS (DoH) and DNS over TLS (DoT) can

encrypt DNS queries, and when combined, TLS 1.3 and Encrypted Server Name Indication (ESNI)

can also prevent SNI leaks. Despite the advantages of blockchain traf�c with SNI, this technology

leads to a privacy gap because, on establishing an encrypted connection with the correct credentials,

SNI transmits the website's domain name in plain text, which means that a passive attacker can

gather the server's name and track the visits. According to the Internet Engineering Task Force

(IEFT) draft [195], there is a solution to this security issues, which is called ESNI, which consists

of a methodology to sent the SNI �eld encrypted in the �rst HTTPS packet. The idea behind ESNI

is to prevent TLS from leaking any data by encrypting all messages while maintaining connection

privacy. ESNI implies TLS 1.3, so that the certi�cate and embedded hostnames are encrypted. With

ESNI enabled, and using secure DNS transport, such as DoH or DoT, the server name will not be

visible on the connection. ESNI helps preventing this by masking the server's name during SNI,

which means that although the ISP can view the connection, it cannot see which domain the user

is trying to access. Therefore, it is very likely that SNI will stop working, and we have to keep up

with this transition of TLS 1.3. So, this is a great limitation for theiptablessolution. Also, in its

traditional form, the DNS protocol allows the interception of domain names that the user browses,

as it lacks any encryption since its initial de�nition. One of the steps to be taken to protect privacy

on the Internet is to switch to a new version of DNS servers that allow encrypted access via TLS 1.3

or HTTPS. In this way, it will be possible to hide domain resolutions and cover this �rst breach of

privacy.

In addition to these mechanisms, we also analyzed some academic and business works that imple-

ment traf�c control, focusing on IoT solutions.

FANE [196] is a �rewall between the device and the network to generate and enforce traf�c rules

autonomously. It tries to block what is not essential for operations. The system uses �rewall rules to

drop all packets that are not allowed by generated rules. The authors claim that IoT network segments

must be segregated from the home network where there are sensitive tasks (e.g., bank accounts).

FANE learns the rules during operation (network traf�c) generated while it is not compromised.
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From the evaluations done by the authors, only one device was not working properly afterFANEhas

activated its �rewall rules due to a speci�c load balancer. However, this problem could be solved by

accepting IP addresses close to addresses thatFANEalready knows. For us, this last part is already a

limitation. Daniel Amkær Sørensen et al.[197] also propose a system that generates rules based on

the real-time traf�c analysis.

Security and Privacy for In-home Networks (SPIN)[198] is an anomaly detection module imple-

mented in SIDN Labs. The authors promise to do traf�c inspection and make automatic and person-

alized blocks by the user. In their work, the authors promise to block Distributed Denial of Service

(DDoS) derived from malicious devices on the network and allow the user to block traf�c. Blocking

is done based on patterns (unusual behavior), lists, e.g.,Snort [199], or customized by the user.

Another technique for semi-automation blocking is based on the purpose ofAnna Maria Mandalari

et al. [200] that automatically detects if such destinations are critical, i.e., required for proper device

functionality, and iterative �ltering the non-critical ones. The technique used is DNS override.

Pi-hole [201] acts as a DNS sinkhole, providing a fake IP address when there is an IP request for

known ad-trackers. The difference between this system and DNS-based blacklist providers, such

asOpenDNS[202], is that the DNS server runs locally on the RP3, which inherently gives greater

control and therefore privacy.

2.5 Data Privacy Systems for IoT

This thesis focuses on data privacy techniques. This section overviews some data privacy systems

for IoT, especially focus on data sharing control through con�gurations or privacy policies.

There are already some practical proposals for limiting data sharing, but more focused on other plat-

forms like Android. An example of this isipShield[203], where the authors propose an ”inference

�rewall” that basically what it does is to allow �tness data to be shared, but sensitive data, such as

location, password, media, and psychological habits, are not shared.

Anupam Das et al.[204] want to create an IoT standard that supports the discovery of nearby IoT

resources and how the resources collect and use data. It also allows con�gurations of what these

resources can expose to users, such as opt-out con�gurations/opt-in. They assume that it is unrealistic

to think that we will overnight make an Alexa device turn off when the children arrive, but that with

the introduction of GDPR, research and work should begin.

More recently,Olha Drozd and Sabrina Kirrane[205] contribute with a Consent Request User

Interface (UI), giving users the ability to make a complete customization to control their consent

speci�cally to their wishes. This system offers users the possibility to grant permission to process

only speci�c data categories for chosen purposes. Users can grant permission to process their heart

rate and store it on their device without sharing it with anyone else. However, this paper only

proposes the UI for the idea.
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Abduljaleel Al-Hasnawi and Leszek Lilien[206] provide a solution that enforces privacy policies

anywhere in the IoT. Hence, it is related to the data itself and identi�es privacy threats, such as link-

ability, re-identi�cation, non-repudiation, traceability, information disclosure, content unawareness,

and non-compliance. This solution can be a complement to our solution, helping to detect sensitive

information to be blocked.

Anupam Das et al.[207] propose a system that discovers the IoT devices nearby users and see the

data privacy policies associated with these resources. It also allows users to discover con�gurable

parameters (opt-in, opt-out, data erasure) to help users manage the IoT from privacy. As future

challenges, authors are exploring machine learning models to build and re�ne user policies and

preferences so that it is possible to con�gure data privacy according to policies and help users de�ne

those policies.

Vijay Sivaraman et al.[208] propose an architecture with three components: ISP, Security Man-

agement Provider (SMP) and Home Network. The SMP component is responsible for the security

management of access controls. The authors build a prototype evaluation with some devices, in-

cluding a Nest smoke alarm; in this case, when privacy protection is enabled, the system requests the

SMP to make an API call to prevent the device from accessing the log servers (where it sends 250KB

per day). Compared to our approach, the concept is different, and there is a limitation in the choice

of permissions, as only developers can de�ne what to block for each category (security or privacy),

with no options for the regular user.

2.6 Summary

This chapter's goal was to search for a suitable solution to address our target system's requirements.

The features include a device identity scheme that guarantees end-to-end communications included

as a middleware solution component. The network controls should include traf�c monitoring and

local data (of�ine), and devices must have different ”personas” with different behaviors depending

on the device's real-time environment. The middleware should be adapted to integrate on ”closed”

devices (that it is impossible to modify the �rmware) and devices such as Raspberry PIs.

As no solution integrates all of this, we focused on systems that belong to the intersecting domains,

namely, authentication and secure communications, network traf�c security solution (that controls

data sharing), and data privacy middleware systems, to see if we could extend one of them and avoid

designing and implementing new solutions from scratch.

Using the insights learned from several inspirational middleware systems and authentication schemes,

we have designed a middleware that includes the following features:

� Device identity based on a hardware solution that stores a PKI of�ine;

� Implementing authentication to provide secure end-to-end communications;
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� Users' privacy based on �rewall-like solutions that provide full control of network data and

con�gurable privacy settings for internal and external traf�c data;

Also, the middleware is the basis for new features that we want to include in the future.
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Chapter 3

End-to-End Secure Communications

”We cannot solve problems by using the same kind of
thinking we used when we created them.”

— Albert Einstein

One of this thesis's objectives is to ensure secure communications with end-to-end solutions so that

devices can communicate and authenticate securely. Securely exchanging data and information is not

new in the literature. PKI is one of the most used solutions for authentication on IoT [209]. However,

many of them are unsuitable for IoT, and they depend on a centralized online entity representing a

SPOF. Human error or hacking can compromise a PKI and require permanent connectivity even with

fault tolerance and resilience.

To address the constraints as mentioned earlier in the description of the current solutions (sec-

tion 2.3), we have developed a new decentralized solution [210] based on the ZRTP [169] protocol,

which is a key agreement protocol used in setting up a secure call in VoIP. We present two new

proposals, namely KEAV [211] and pTASC [212], that allow end-to-end secret key negotiation

without requiring the participation of any other device or human interaction after the �rst com-

munication/iteration. We evaluated these protocols to see the feasibility and security regarding IoT,

and compared them with PKI.

3.1 KEAV Overview

The purpose of KEAV focus on achieving secure end-to-end communications, enabling devices to

exchange data privately. It uses a key exchange DH to overcome the complexity of PKI systems or

any trusted third party. However, DH alone cannot guarantee authentication, and has a MiTM prob-

lem [213].Zimmermann P. et al.[169] proposed a solution that allows the detection of MiTM attacks

by displaying a SAS for users to read and compare verbally over the phone at VoIP communications.

49
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The authentication of users is intrinsically linked to users' voice on the comparison of the SAS. The

�rst obstacle in adapting ZRTP for data is due to the impossibility of comparing SAS by voice.

For the IoT, we decided to create an extra layer that automatically compares the SAS. KEAV uses

MPC to compare the SAS automatically, privately, and without human intervention. Even for VoIP

communications, this layer is important because this double-check is critical for some users who, by

mistake, forget to validate the key.

Figure 3.1: KEAV overview

Figure 3.1 shows the communication scheme between two devices (A and B) through KEAV. This

scheme improves the Request For Comments (RFC) [169], thereby eliminating the need to verbally

compare a SAS through human manual veri�cation. The protocol starts with both terminals exchang-

ing messagesHello andHelloACK. Both devices' IDs are revealed and validated (Pseudo-Random

Number Generator (PRNG)) on these messages. After this exchange, the key agreement's exchange

can begin with the messageCommit. The endpoint that sends theCommitmessage is considered the

KEAV session's initiator and drives the key agreement exchange. Our approach inherits two main

modes of agreement:

� DH mode: The DH public values are exchanged in theDHPart1 andDHPart2 messages. So,

in this mode, KEAV endpoints exchange a new shared secret through the DH exchange;

� Preshared mode: In this mode, the DH calculation is omitted by the endpoints, as it assumes

that there is a known shared secret from a previous session.
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After this phase, the MPC component is available, which automatically validates the SAS. It is then

possible to send aCon�rm message from both the devices indicating that they have accepted and

veri�ed the SAS. Finally, the protocol is ready to start sending data in this secure session.

KEAV takes advantage of some security and privacy properties, such as forward secrecy, to ensure

con�dential communication in the future, which means that when a user makes multiple connections

to a client, the protocol turns the keys. In this way, all communication keys are different. At that

point, an identi�er �le caches the symmetric key material used to calculate the session's secret keys,

and these values change with each session. If an attacker gains access to the local seed to derive

future and current keys, he will not reproduce any previous information exchange. In other words,

if a single communication is compromised (the session key ”was leaked”), it does not compromise

the con�dentiality of all previous communications. In this way, KEAV can guarantee additional

communication protection because, even if users do not care about SAS, there is still reasonably

decent authentication against a MiTM attack, based on a form of key continuity.

A key negotiation generates a sequence of letters and numbers whose size can be de�ned and equal

at both ends. In the case of ZRTP, any attempt to capture and decipher the voice will cause the

strings to be different (a string is a mathematical function derived from the primary key at both ends,

so any difference in the key will generate different values). The key continuity is often confused

with forward secrecy. However, the idea of key continuity focuses on using a key that is limited to

one use. ZRTP uses the old key to generate the new one, which also means that the key increases

complexity with each use.

For now, this solution assumes that there is a secure end-to-end authenticated channel to work

securely.

3.1.1 Operation Modes

We have created three different possible modes for this system (Table 3.1) so that users can choose

the one that best suits the situation in question. There are ”paranoid” ways to check security when

necessary for each iteration, for example, on anonymous or sensitive data issues, and these modes

will be more complex to ensure an extra security check. We will have other equally safe modes

that do not have extra security checks but generate SAS for some iterations and rely on the key's

continuity.

Without Key Continuity Mode

The �rst mode of use is entitled the ”Without Key Continuity Mode.” This mode takes advantage of

the existing mechanism of the ZRTP, presented in section 4.9.1 of the ZRTP draft [214], where the

authors suggest cache-less implementation. This feature will always allow the KEAV to be executed

in DH mode (also based on the ZRTP DH mode [214]). Nevertheless, it requires to compare the SAS

with the MPC.
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Modes MPC Key Continuity (KC)

Without KC Mode  #

KEAV Normal Mode Every 10 it.  

KEAV Paranoid Mode   

 Included;

# Not Included.

Table 3.1: KEAV - Execution modes properties

This method presents itself in a safe state with some security issues solved, including the impossi-

bility of an opponent being able to obtain the local shared secret.

In brief, users must validate the keys in all sessions because they never agree on a key beforehand.

There is no need for extra storage on this operation mode, which decreases the overhead on the

network and on the device itself.

KEAV normal mode

The KEAV normal mode is based on the existing mechanism of the ZRTP, presented in section 4.4.2

of the ZRTP RFC [214] and denote the pre-shared mode.

When the normal mode uses a key continuity feature, it is unnecessary to compare the SAS in all

iterations with MPC. However, this check happens everyN connection (the user can de�neN - the

default is 10) to verify that the protocol is working as expected.

This mode preserves the forward secrecy and key continuity properties.

KEAV paranoid mode

This mode also uses key continuity as the normal mode. However, this protocol is ”paranoid” as it

requires extra veri�cation in all iterations to ensure no errors in the KEAV protocol. In this mode,

the MPC is used on all connections to compare the SAS.

This mode requires a more signi�cant overhead to ensure an extra safety check. It is ideal for

more sensitive data because it is possible to guarantee that the protocol is working correctly in all

connections and that the SAS is equal in the two connected devices.

3.1.2 Evaluation

This section presents the results of the proposed system in terms of network latency. We performed

experiments in all implemented modes (described in Section 3.1.1): without key continuity mode,

KEAV normal mode, and �nally, in KEAV paranoid mode. These modes differ in usage and com-

plexity. With key continuity, KEAV not requires to use MPC in all iterations, but on the other hand,
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in some cases, it may be essential to validate the SAS at every iteration to ensure that the protocol is

always secure. Therefore, it is crucial to analyze whether there are signi�cant differences in latency.

We also compare the runtime of KEAV versus the OpenSSL PKI system. In PKI systems, the trust

is built based on public-key certi�cates* . So, trust depends only on the CA that digitally signs the

certi�cate.

We are interested in measuring latency over the network in both systems. We useclock or chrono

timers to measure the time that it takes to complete a particular action, in this case, the communi-

cation between the server (receiver) and the client (sender). If the client sends data to the server

and waits for a reply, then the overall duration can be measured, which should roughly estimate the

Round Trip Time (RTT)† between the client and server. We are mainly interested in measuring the

provision time of the KEAV system vs. the PKI-based system. We also compare the running time of

KEAV with and without MPC to assess the whole order of magnitude of MPC and its contribution

to the overall latency.

This section is divided into four sections. The �rst section consists of the description of the setup

and con�guration of the system for the experiments. Then, we present the implementation details,

followed by evaluating the different modes that we implement. Finally, we present a discussion on

the different results between PKI-based systems and KEAV.

3.1.2.1 Setup

KEAV aims to integrate into an IoT environment. The experiments used two common off-the-shelf

Raspberry PI 3 (RP3) Model B running the Canonical's Ubuntu Core, a specialized operating system

for the IoT, to measure the results of this system's usage in a realistic environment (low-resource

devices).

As, in its essence, IoT emerges from the interconnection of devices, we decided to create an environ-

ment as shown in Figure 3.2, where two RP3 connect over the Internet, with one end connected using

a wireless link through a wireless router (ASUS RT-AC3200), and the other end connected using a

wired Ethernet link. We decided to route the traf�c through the Internet to measure execution time

with network latency in a realistic scenario.

3.1.2.2 Implementation

The implementation of this system is based on two libraries:ZRTPCPP[215], which is a C++

implementation of the ZRTP protocol, andABY [82] library, which is an MPC framework (in this

* A public key certi�cate is a data structure that associates a public key with a given agent (a representation of its

identity).
†In the context of these types of systems, this is the time it takes for a data packet to travel from a speci�c source to a

speci�c destination and back again.
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Figure 3.2: KEAV - Setup for performance experiments

case, focused on secure two-party computation) [216].

ZRTPCPP

We decided to construct the new protocol based on theZRTPfor end-to-end communication be-

cause of the support given by the development community and the existence of a complete ZRTP

implementation with well-known libraries as dependencies. For this reason, we choose the library

ZRTPCPP.

ABY

ABY combines secure computation schemes based on Arithmetic sharing, Boolean sharing, and

Yao's garbled circuits.

The ABY library includes some sample applications, such as the millionaire's problem, secure-

computation AES and euclidean distances [82]. We create a module that obtains the local �le's input

and implements the equality problem (similar to the millionaire's problem).

For this adaptation, we build an equality problem circuit with the functionout = bc� >

PutEQGate(s alice,s bob);, and we add a new parameter to the functiontest equality prob circuit

to pass the SAS to the function by parameter within theshowSASfunction of the ZRTP.

In this system, MPC has only the function of comparing the SAS and guaranteeing that the exchanged

SAS by the protocol is correct.

Integration

In terms of both libraries' implementation and setup, we start by match both users (sender and

receiver). Thus, we perform the integration between the two libraries; namely, the receiver of the

ZRTPCPP became party 0 of the MPC, and the sender became party 1.

We did the integration of both libraries usingcmake. In terms of execution, when ZRTP makes the

SAS display, we add a new layer of veri�cation of this SAS. On the other hand, we call the ABY

framework up to verify the equality of the SAS.

In this implementation, there are two schemes: when the SAS is equal (veri�ed by MPC), then the

data can be exchanged securely and privately, otherwise if the SAS is different (also veri�ed by



3.1. KEAV OVERVIEW 55

MPC), the protocol aborts without any exchange of data between the two parties. When the SAS is

different, there is probably a MiTM attack in the communication.

3.1.2.3 Results

In order to evaluate KEAV, we measured the provisioning times in all three modes. Figure 3.3 depicts

the scenario to be evaluated, representing the provisioning phrase of KEAV.

Figure 3.3: Provisioning of KEAV

To perform these measurements, we used thegettimeofday()system call, using the setup described

in Section 3.1.2.1. For each mode represented in Table 3.2, and the corresponding iteration from one

up to ten, these values are the average values after ten repetitions and the corresponding standard

deviation of the average.

Modes Iter. Without

MPC (ms)

With MPC

(ms)

KEAV (ms)

Without KC [1-10] 290� 2.27 9553� 49.36 9843� 50.49

1 288� 2.27 9457� 49.36 9745� 50.49

KEAV Normal [2-9] 283� 1.78 - 283� 46.92

10 287� 1.78 9495� 45.28 9783� 46.92

KEAV Paranoid [1-10] 291� 2.27 9506� 49.36 9798� 50.49

Table 3.2: KEAV - Latency of all the three modes presented in the section 3.1.1

Although the ”Without Key Continuity” mode does not require extra storage because it is unneces-

sary to store the previously exchanged keys, this mode always takes an average time of approximately

9843ms� 50.49 in all iterations. This mode has some advantages regarding security (it never relies

on previously exchanged keys and has key continuity) and storage. However, the running time is the

highest of the three modes.

The ”KEAV normal” mode, unlike the previous model, uses key continuity and, as such, requires

extra storage for the key. However, KEAV uses MPC every ten iterations. In this case, the running

time is 283ms� 46.92 after the �rst iteration. In the �rst iteration, given the overhead of MPC, the

latency is 9745ms� 50.49. As we use MPC at every ten iterations, it originates from a latency spike.
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The ”KEAV paranoid” mode is similar to the ”normal” mode, as it also uses key continuity. However,

this protocol is ”paranoid” to verify the SAS through MPC in all iterations, thus not relying only on

key continuity.

There is no difference between the ”Without Key Continuity” and ”KEAV paranoid” modes in

latency. Only the KEAV ”normal” mode has a signi�cantly lower latency than the other two modes;

notice that it runs MPC every ten iterations. All the other iterations have a similar behavior. On the

upside, the average running time for the remaining iterations is 283� 46.92.

In this mode, the main drawback is the additional required storage. The implicit trade-off is between

storage and latency.

The choice between the operation modes depends on the type of devices used, the communication

links between them, and, ultimately, the user's functional requirements.

As an authenticated channel is assumed, we added ad to the runtime to represent the overhead

associated with it. However, we assume that thisd will represent more than 20% of the runtime.

3.1.2.4 PKI vs. KEAV

Figure 3.4 shows the PKI scenario to be evaluated. Here, we have a client, represented by a local RP3,

and a server hosted in a remote RP3 (illustrated in Figure 3.2) provisioned with DigiCert certi�cates.

The remote certi�cates support the Online Certi�cate Status Protocol (OCSP) stapling that removes

customers' complexity communicating with the CA. The TLS server periodically requests the OCSP

responder about the validity of its certi�cate and caches the response. The OCSP responder returns

an OCSP response, which is (directly or indirectly) signed by the CA that issued the certi�cates. The

TLS client can treat this stapled OCSP response in the same way, i.e., the certi�cate needs to have a

valid timestamp and signature to be used.

Figure 3.4: Provisioning with PKI
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During the TLS handshake, the client announces support for OCSP stapling to the server. In turn, the

server activates the Certi�cate Status �ag if it has supports for it. Figure 3.4 shows this process in step

1. During step 2, Alice and Bob establish an SSL connection. The goal is to measure the certi�cate's

OCSP (state) check latency on top of the latency added by the SSL connection handshake.

To measure the latency of this scenario, we useds client ands serverbinaries from the OpenSSL

library. We rans serverservice on the server machine and made thes client run on the local machine

so that we could obtain both the OCSP information and server/client handshake results. We obtained

an average running time of 380ms� 11.60 across the ten iterations.

Our system running the ”normal” mode achieves a latency reduction of 26% compared to the results

using PKI-based systems.

3.2 pTASC Overview

However, on KEAV, we found a security problem. During the security analysis, we found that the

MPC does not provide authentication. Thus, without any Session Initiation Protocol (SIP) channel

that authenticates the two parties, KEAV is subject to a MiTM during the exchange of the SAS. Along

with this, the current implementations of MPC are not secure implemented, as stated byResende et

al. [92].

To overcome this issue, we decided not to change the MPC layer, for now, until there is an authenti-

cation solution for MPC and secure implementations.

Thus, we use an adaptation of the LLC concept, already described in the section 2.3.2. This concept

aims to create an extra channel (secure and authenticated channel) to securely exchange the SAS

without being vulnerable to a MiTM attack. Then, the SAS is compared locally on both client sides.

For the exchange, we use infrared as a LLC. As infrared is more limited in terms of range, we can

ensure that devices wanting to exchange information have to be nearby. This paradigm is valid in

two scenarios: all participants are in the same room, and all the participants trust each othera priori.

The difference between KEAV and pTASC is the comparison component as we switched from MPC

to the infrared component. pTASC uses infrared to exchange SAS privately, and the comparison

is made locally on both sides. It is then possible to send a messageCon�rm from both devices,

indicating that both have accepted and veri�ed the SAS. Finally, the protocol is ready to start sending

data in this secure session.

3.2.1 Evaluation

This section shows the performance tests regarding the SAS comparison. The provisioning time eval-

uation is provided in the section 3.1.2.3 and the section 3.1.2.4. These results are equal because the

ZRTP implementation is the same, and the provisioning phase is independent of the SAS comparison
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method.

3.2.1.1 Setup

To test the operation of the protocol in the real world, we create an IoT environment, as shown in

Figure 3.6, where two RP3 Model B, runningRaspbian Stretch[217], are connected over an ad hoc

network. An Infrared (IR) Transmitter (KY-005) and an IR Receiver (KY-022) are used as infrared

sensors to exchange the SAS key.

3.2.1.2 Implementation

In this section, we describe the implementation of DTP (Data Transport Packet) which is an adapta-

tion that we made for ZRTPCPP.

Regarding the comparison layer, we implement the Infrared withpigpio * .

ZRTPCPP

The ZRTPCPPimplementation is deeply connected toGNU ccRTPwhich is the software respon-

sible for accept connections, differentiate messages from different protocols, and pass them to the

respective handler. The Real-time Transport Protocol (RTP) protocol uses User Datagram Protocol

(UDP) protocol, so, at the application level, there are mechanisms to ensure the reliability and �lter

out-of-order packets. To separate these two packages, we create a package calledDTP, that emulates

theGNU ccRTPto facilitate the connection with theZrtpQueue.

In comparison withGNU ccRTP, theDTPdiffers in the transport protocol, because it uses Transmis-

sion Control Protocol (TCP) instead of UDP. We choose TCP because the protocol we are developing

is to data, so if a packet is lost, it must be re-transmitted. As we use TCP, we do not need to

implement a reliability mechanism at the application level (as it happens on the RTP) because TCP

already provides reliability mechanisms implemented [219].

TheDTPpackage needs to be able to receive and manage many connections simultaneously. Without

this capability, the protocol would communicate with only one device, which negatively impacted

performance when a device needs to talk with several peers. This type of necessity is common

to servers, where there are two main architecture types of servers: multiplex [220] and multi-

thread [221] servers. The multiplex server [220] is an event-driven approach that uses asynchronous

I/O, and a unique process is responsible for multiple connections. The server changes between

the connections when an event exists to process. The multithread [221] approach associates each

incoming connection with a separate thread, where synchronous blocking I/O is the natural way of

dealing with I/O. Given these two options, we opted for the multiplex server because of the low

memory capacity of an IoT device, which is not compatible with a multithread server. As we needed

* pigpio[218] is a library for the Raspberry, which allows control of the General Purpose Input Outputs (GPIO) library
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to implement a multiplex server, it was necessary to �nd a way to implement the non-blocking I/O.

We use the native functionselectto implement the necessary asynchronous mechanisms, allowing a

program to monitor multiple �le descriptors, waiting until one or more of the �le descriptors become

”ready” for some class of I/O operation.

The DTP package is organized in four classes:DTPServer, DTPHandler, DTPConnectionand

Worker(Figure 3.7).

TheDTPServerhas the role of Facade class, allowing the programmer to de�ne user callbacks, han-

dlers for packets, and connections with other peers. TheDTPHandlermanages the connections and

workers. This class contains a list of all connections and locks to manage the multiplex architecture.

Furthermore, this class has theget next socketfunction, that monitors the different connections using

theselect. TheWorkerclass is the base for the multiplex server; it has his thread and will process

which of the events identi�ed by theDTPHandler.

Each one of the connections has an instance of theDTPConnectionassociated. This instance keeps

the context of the connection. This context has different pools of packages, from the cryptographic

context to the communication channels. This type of structure is equivalent to theGNU ccRTP. The

DTPConnectionis the class responsible for the connection with theZrtpQueueand eachDTPCon-

nectionhas one instance of aZrtpQueue.

To structure the packages of theDTP, we decided to use a ZRTP packet as a starting point. The ZRTP

packet has �eld constant on all ZRTP packets, calledZRTP magic number, which simply serves to

identify the protocol. We use this approach to structure theDTP packets. We kept the same header

structure of aZRTP packet, and changedZRTP magic numbervalue to differentiate protocols. With

this type of structure, we can add more protocols sharing the same connection channel.

After the implementation of theDTPpackage and after trying to join theGNU ZRTP COREwith the

DTP, we realized that, on theGNU ZRTP CORE, there were dependencies related toGNU ccRTP, on

functions involved on threads and thread concurrent synchronization. These dependencies problems

were possible to solve usingCommoncpp[222], a small library which is a dependent ofGNU ccRTP.

Beyond theDTP implementation, we need to create a system that uses the SRTP keys generated on

the ZRTP to transmit information safely on the same channel. Similar toGNU ccRTP, we associate

a crypto context to each communication channel and cipher the packets on the channel using AES-

Cipher Block Chaining (CBC). This algorithm's use was due to an implementation on theGNU

ZRTPCORE and so, do not increase redundant code.

Our protocol can be expanded by a programmer and integrated into an application. We allowed the

developer to override the functions that process and receive data packages and all user callbacks

hooked to the ZRTP protocol.

With all of the above components, we were able to build a new protocol to the IoT world that offers

a tangible form to share information securely in a peer-to-peer way, without the participation of any

other device besides the sender and the receiver.
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3.2.1.3 Results

With the previous setup, we made a test to evaluate the secure session establishment runtime.

We measure the runtime during a SAS exchange. As we have an IR Receiver and an IR Transmitter,

we make two exchanges from Alice to Bob and simultaneously, from Bob to Alice. We collected

ten-time samples of one of the communications, with an average of time exchanging 0.19ms� 0.04.

Finally, to establish the secure session, we measure the runtime from the start of the protocol until

creating a secure channel, using the functiongettimeofdayfrom the native librarysys/time.h. We

collected ten-time samples, with an average time to connect of 1050ms� 58.5.

In all, we have a mean runtime of 1050.2mson the �rst connection.

3.2.1.4 Discussion

The runtime of our system increases 64% compared to PKI systems (we evaluate a PKI scenario in

the Section 3.1.2.4). The use of an infrared channel behaving as LLC does not add much overhead

to the overall runtime, meaning that the time of 1050ms� 58.5 is the approximate base time. If we

change infrared channel to another method, such as Near Field Communication (NFC), we have a

time of 1050ms� 58.5 +d, thed being the execution time of the NFC.

This inef�cient scenario is related to the change for TCP connections and the packet loss from the ad

hoc network. Also, the use of PKI was tested based on a high-density certi�cate network, meaning

that the runtime is essential, and everything is optimized to perform in the shortest time possible,

compared to our implementations that are deployed in a local scenario and does not use optimized

solutions.
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Figure 3.5: pTASC overview
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Figure 3.6: Ad-hoc network setup for pTASC evaluation

Figure 3.7: Relationship diagram of the DTP protocol implementation.
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3.3 Security Analysis

This section de�nes a Threat Model, and we de�ne some claims and the respective theoretical proofs

for the claims.

3.3.1 Threat Model

It is possible for a collision of the SAS to occur, enabling a MiTM, i.e., an honest user can have

a four-character size SAS key, and the attacker can get the same key and thus intercept the call

through a MiTM [223]. However, increasing the SAS size can prevent this, as shown in the RFC

of ZRTP [214], by increasing the cipher key size (the AES key), producing a new SAS with a more

signi�cant size. The increase in size adds security regarding the communication cipher and makes

the SAS collision harder for an attacker.

Replay attack obtains information from one communication and tries to set the information in the

next round. For example, if an entity A is exchanging a �le with an entity B, an attacker called

Mallory can send a piece of the previous �le exchanged to try to corrupt the protocol. To solve this

problem, KEAV and pTASC use the properties key continuity and forward secrecy to generate a

new session key and make obsolete packets and ciphered information exchanged previously. These

characteristics make the protocol secure against replay attacks because if an attacker performs this

type of attack, A and B will ignore the information sent and continue the ongoing transfer.

João S. Resende et al.[224] presents traceability problems, where the attacker leaks information from

VoIP metadata during the communication with the peers. Traceability issues are relevant in VoIP

scenarios because there is no need to use this type of metadata when we trust a third-party server.

In our scenario, we need to index the local cache information because we do not have information

for other sources (peer-to-peer solution). This way, an attacker can obtain metadata information, but

there is no solution to mitigate this metadata leakage while maintaining a scenario without a trusted

third party, to the best of our knowledge.

To address the MiTM problem, pTASC was created with a LLC. However, attackers can try to

intercept the communication and exchange a key with one of the devices. As we use infrared, it

limits the attacker's distance to exchange data with the ”trustable” devices. This scenario assumes

that all participants are in the same room, and all the participants trust each othera priori. Otherwise,

KEAV cannot handle the �rst communication with MiTM attack because it needs an authenticated

channel.

3.3.2 Attack Scenarios

In this subsection, we measure the security of the proposed solution against different scenarios of

attack.



64 CHAPTER 3. END-TO-END SECURE COMMUNICATIONS

De-synchronization attacks.

The key to avoiding de-synchronization attacks is represented in the Figure 3.5, in which there is a

unique identi�er used to store information related to this client in a database. When the user sends

the message F7, there is an update to the local cache, rotating the keys, i.e., when both parties have

exchanged the information correctly, they update it. If, for example, the disk corrupts the information

or another type of problem occurs, both devices, when performing the pre-shared mode, will not be

capable of negotiating a session key and will drop to the �rst stage, where pTASC performs a new

DH key exchange.

Tag impersonation attacks

The proposed protocol is secure against tag impersonation attacks based on the security provided by

combining PRNG's and locally stored secret keys. Each device has one unique identi�er (as stated

in the �gure 3.5 in F1 and F3) that each device uses for communication with any other device. If an

attacker obtains device A's ID, he may attempt to send A's ID to a device B, impersonating device A,

but he will not do it. As explained previously, we have an identi�er �le that caches symmetric key

material used to compute secret session keys, and these values change with each session. Therefore,

when the attacker tries to impersonate device A, he cannot go unnoticed by device B because, when

he tries to generate a new key with the victim, the secret keys are not the same as his and, therefore,

the device B interrupts the communication. It will have an authenticated channel in the �rst iteration,

so it cannot complete the attack, regardless.

Replay attacks

A replay attack is an attack that obtains information from one communication and tries to set the

information in the next round of the communication. For example, if A is exchanging a �le with

B, Mallory can send a piece of the previous �le exchanged to try to corrupt the protocol. To solve

this problem, KEAV and pTASC use the properties key continuity and forward secrecy to generate a

new session key and make obsolete packets and ciphered information exchanged previously. These

features make the protocol secure against replay attacks because if an attacker performs this type of

attack, A and B will ignore the information sent and continue the ongoing transfer.

Resistant to Single Point of Failure.

In the case of PKI implementations, there is a CA that checks the certi�cates' validity. The CA

establishes a link between public keys and identities of people or organizations. Therefore, customers

have to rely on a third party.

The certi�cation authority represents a SPOF, as once one is compromised, all peers are compro-

mised as well. For example,Let's Encrypthas issued 15,270 ”PayPal” certi�cates [225] to sites used

for phishing. A failure in this type of system compromises several entities.
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Regarding both protocols, while facing an attack, it can only compromise at most one of the partici-

pants, not both, because it is a decentralized solution.

MiTM exploit SAS Attack

Martin Petraschek et al.[226] describe the MiTM attack on the DH alone and state that, in ZRTP, the

authentication can be made by comparing the SAS with voice recognition, which is mandatory for

the �rst connection and optional otherwise (as it guarantees forward secrecy). However, an attacker

can try to imitate the voice of one party, deceiving the other party. As described in the document

”If the protocol does not use media encryption, Mallory simply forwards the RTP packets between

Alice and Bob and can listen in to the conversation.”Also, recent studies [227] show that this is

possible; for example,Lyrebird has a set of algorithms that clone anyone's voice by listening to just

one minute of audio.

pTASC addresses the MiTM problem using Infrared as an additional layer of security. Contrarily,

without identities, a MiTM attack cannot be prevented in KEAV because MPC cannot handle MiTM

attacks [228]. However, the users' identities do not even need to be valid because of the probability

of an attacker intercepting an MPC communication and, at the same time, being able to generate the

information exchanged (SAS) equal to that of the other peer is very low.

Let a be the alphabeta = f a,b,c, ...,zg with size 26 andb be the numbersb = f 0,1, ...,9g with size

10.

g = a [ b

The permutations calculate the probability of generating the same SAS of the other peer with repeti-

tions with the formula:nr . Assuming the default length of SAS (4) and the total number of characters

(g=36), we haven = g andr = 4, so, we haveg4 possible cases.

Calculating the probability, we have only one possible cause for the attacker to generate the same

SAS of the other peer. So, We have a probability of almost zero.

Probability=
FavorableOutcomes
PossibleOutcomes

=
1
g4 = 5.95e� 7 � 0

If we increase the size of the SAS, the probability is even lower.

3.4 Summary

In this chapter, we start by proposing a combination with ZRTP and MPC to solve the secure end-to-

end communications with MPC, making the SAS comparison private. However, the MPC still has

authentication problems when using in IoT scenarios because it requires an authenticated channel

that identi�es the two parties.
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So, to be able to test the security of the protocol, we use the concept of LLC to create an extra

channel (secure and authenticated) to exchange SAS securely, without being vulnerable to a MiTM.

Thus, SAS is compared locally on each side. As infrared is a more limited technology in terms of

range, we have to guarantee that the devices that want to exchange information are close to each

other, which is a safe paradigm that is valid in two scenarios: all participants are in the same room,

and all participants trust each othera priori.

However, pTASC has the following limitations:

� Does not scale to the context of smart cities, or larger smart home environments;

� Requires a controlled environment;

� Nearby devices required during the provisioning process.



Chapter 4

Secure Provisioning for Achieving

End-to-End Secure Communications

”If you put a key under the mat for the cops, a burglar
can �nd it, too. Criminals are using every technology

tool at their disposal to hack into people's accounts. If
they know there is a key hidden somewhere, they will not

stop until they �nd it”

— Tim Cook

The provisioning process is usually an arduous task that encompasses device con�guration, including

identity and key provisioning. Given the potential pool of devices, this process must be scalable.

Furthermore, this task should be semi-autonomous to minimize erroneous con�gurations during this

process. Human con�guration errors are often the source of many security and privacy issues [229],

and, to solve them, we need systems with better interfaces and tooling to help provision new devices.

One of this thesis's goals is to develop a provisioning solution that achieves: device identity, scala-

bility, of�ine cryptographic assets, and resistance to MiTM. This chapter presents a novel approach

for provisioning IoT devices that combines public-key cryptography algorithms with OTP inside

a secure token. The secure token acts as an of�ine storage for private keys, allowing access to

cryptographic operations to be kept of�ine without access to the network. Our solution uses a

manager device that acts as an OTP Server that can be switch off to reduce the SPOF problem.

This way, device identity is guaranteed by physical access to this physical token.

4.1 System Overview

This section describes all the architectural components to achieve decentralized, secure end-to-end

communications. This description includes the provisioning phase, authentication mechanisms, and

67
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scalability extension.

4.1.1 Manager Setup Phase

A CA sub-system is represented by combining a secure token and a manager device. The secure

token plays an essential role in a certi�cation system, supporting the combination of OTP with Public

Key Cryptography Standards (PKCS)#11 to create and manipulate cryptographic tokens* . In our

system, we used a secure token to perform all the cryptographic operations inside it, ensuring that the

private key never leaves the device to avoid the possibility of private key theft in a possible network

intrusion. This device must be reliable and controlled only by trusted people, such as the network

owner. All certi�cates signed by the device will be implicitly trusted. Currently, the systems that

manage PKI require a high-security degree and are on an isolated machine.

As the secure token stores all the cryptographic keys, it eliminates the hassle of having all of the

cryptographic assets on the managing device, which would lead to a SPOF. On the other hand, the

manager device has an OTP Server that allows authentication through the use of a secure token, that

is, ”something you have”, proving that the device that is attempting to authenticate owns the secure

token. For this reason, anyone who has access to this secure token can authenticate with the manager.

The OTP Server can be turned off when not in use, avoiding possible SPOF.

4.1.2 Device authentication

The authentication between a new device and the manager is needed to add new devices to the trusted

device pool. We use a combination of public-key cryptography algorithms with OTP to authenticate

a new device. In practical terms, the network owner inserts the secure token into the target device to

add it to the trusted device pool. The Figure 4.1 shows the whole process.

This section will describe the cryptographic algorithm used in this proposal and then provide a

detailed description of the entire process when provisioning new devices.

Cryptographic Algorithms

As cryptographic algorithms, we choose Elliptic Curve Digital Signature Algorithm (ECDSA) for

signing and veri�cation, and Elliptic-Curve Dif�e-Hellman (ECDH) for encryption.

We choose ECC because it is better for low resource devices as ECC requires fewer resources and

provides the same security level as Rivest-Shamir-Adleman (RSA) cryptography with a smaller

key [230]. In brief, it is possible to use RSA, but as the focus of the approach is IoT, we choose

* The PKCS#11 standard/protocol is widely used by applications that use cryptographic operations with non-

exportable keys, as the protocol de�nes a standardized speci�cation for interaction with cryptographic hardware

(Smartcards, Tokens and Hardware Security Module (HSM)s). It is an abstract layer to perform the separation of the

keys from the operations, allowing them to perform operations on cryptographic objects, such as private keys, without

requiring access to the objects.
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Figure 4.1: Device provisioning processes

ECC.

ECDH is a shared-secret derivation protocol that uses the elliptic curve form of the DH protocol. In

this protocol, two parties can agree on a shared secret over an insecure channel using the knowledge

of their own ”private key” and their partner's ”public key” to generate a shared secret. Generally,

the private keys are random numbers used for the key negotiation and then discarded (ephemeral).

According to theNIST SP 800-56A[231], there are three key agreement categories: static-static,

static-ephemeral and ephemeral-ephemeral. On static-static, there are no ephemeral keys on usage;

on static-ephemeral, it only generates one ephemeral key pair for one of the parties; and �nally, on

ephemeral-ephemeral, each party generates an ephemeral key.

In general, a static key stays the same over a long period. However, an ephemeral key has a very

short lifetime and is re-created for each session. The scheme ”static-static” does not provide forward

secrecy, which means that if an adversary �nds either one of the private keys, then the shared secret

can be calculated (using the other party's public key), and all security is lost. The ephemeral-

ephemeral scheme provides forward secrecy, which means that past sessions are still secure even

if an attacker �nds one or both private keys, as this scheme generates a new key-pair for each

key agreement. It is not accurate stating the ECDH does not provide authentication while using

ephemeral keys, although it is required to authenticate the public key's exchange. However, the

protocol can use ECDSA, which is the elliptic curve form of Digital Signature Algorithm (DSA), to

solve the lack of authentication. DSA authenticates digital content because a valid digital signature
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gives a recipient reason to believe that the message was created by a known sender, such that

the sender cannot deny having sent the message (authentication and non-repudiation) and that the

message is the same - without changes (integrity). This authentication includes the key agreement

parameters used to derive the master secret and includes the session key's correctness. In brief, it can

authenticate the handshake of the TLS protocol so that it can provide authentication for ECDH [232].

Finally, the scheme ephemeral-static does not provide forward secrecy because if an adversary �nds

the static private key, then the shared secret can still be calculated. However, we choose this scheme

with the static key pair stored on the manager because there is no hardware token with support to

ephemeral keys, to the best of our knowledge. As the secure token stores the private key of�ine,

an attacker needs to have physical access to the physical token and know the Personal Identi�cation

Number (PIN) of the secure token to access the private key.

Middleware's Authentication Process

The authentication process is depicted in Figure 4.1 and shows its four distinct phases.

After the manager sets up the OTP Server, the manager is ready to receive new authentications

from IoT devices. A new device can send its ephemeral public key to the manager to initiate the

conversation. As the key is ephemeral, the device needs to authenticate itself with the manager. To

achieve this goal, it uses the manager's public key (stored on the secure token) and its ephemeral

private key (correspondent to the ephemeral public key sent on the �rst step) to derive the ECDH

shared key. Then, the device sends to the manager a Certi�cate Signing Request (CSR) generated

with the ECDSA private key and an OTP generated with the secure token, both encrypted with the

derived shared key. The server also derives an ECDH shared key with its private key and the device's

ephemeral public key received on the previous step. The manager can then decrypt the device's

communication that contains the OTP and CSR. If the OTP is considered valid by the OTP Server,

he knows that the client is in the physical presence of the physical token. If this is the case, the

manager signs the CSR, generating a signed x509 certi�cate, and sends it back to the client. It attests

that the new device is now on the device's trusted pool. These certi�cates establish trust among the

client devices (without the intervention of the manager device).

Note that the secure token has a PIN to protect the signing action to ensure that no one, except the

owner, uses that token to sign.

After this process, the shared key must be discarded (deleted) from the devices.

4.1.3 Discovery Process

After a successful authentication, the device now belongs to a new domain. We need a way to ensure

that other services or entities can discover the new device inside the network.

We chose to useZeroconf [233] to support the entire discovery process within our solution. It is a
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commonly used technology with a wide commercial adoption by companies, such as Apple, which

usesmDNSto locate any connected speakers, Apple TV, and others.

So, on this con�guration, the domain of devices is changed fromIoTDevice1 (for example) toIoT-

Device1.pool1(Example on the Figure 4.1). When advertised on the network, the additional nodes

can recognize them from the same domain. In the beginning, only the manager has his hostname

along with the domain (pool1, chosen for this paper). However, all the trusted authentication devices

must have the same domain when there are more authenticated devices. At this stage, devices can

make a peer discovery to �nd devices with the same domain.

4.1.4 Decentralized Secure End-to-End Communications

After the discovery process, devices need to authenticate among themselves without the intervention

from the manager. For mutual trust, both devices must exchange the manager's signed certi�cates.

When the deviceIoTDevice1.pool1wants to communicate with others, such asIoTDevice2.pool1,

they need to exchange their certi�cates to prove to each other that they are trusted.

As all the clients keep the manager's public keys, their certi�cates' signatures can be veri�ed mutu-

ally. Then, both clients exchange ephemeral keys, signed with ECDSA. With access to the certi�cate

signed by the manager, they can extract the public key and verify the signature of the ephemeral

public keys to prove that it is the same person who has them (and, therefore, is authenticated). After

exchanging their public keys, each customer can derive an ECDH shared secret to communicate

(with their private key and the other's public key).

The security of the transmission of the.crt is implicit given from the possession of the private key

that only the owner has access, so the authentication is guaranteed (even if someone eavesdrop on

the channel and stole the.crt, does not have the private key associated to it).

4.1.5 Merge Two Trusted Devices Pools

Both identity and authenticate systems must be �exible and highly scalable enough to handle billions

of device infrastructures in multiple environments such as smart homes and smart cities in general.

These systems must support different environments, given the heterogeneity of applicability in IoT

scenarios.

For greater scalability, there should be a proper way to integrate different device pools to make the

system more practical as it would not be feasible to re-provision devices already provisioned with

another manager so that devices from different pools can communicate with each other.

The system addresses scalability issues by replicating the traditional mechanisms of having multiple

CAs supported by a client. It is essential to ensure two requirements to deploy this in a real-world

con�guration: use a secure token authentication scheme to enable enrollment and trust between

different managers; and information dissemination on new pools among all new devices.
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Figure 4.2: Trust between two device pools

It is necessary to have authentication between managers to allow two pools to connect (Figure 4.2 in

1), and the process is the same as explained in Section 4.1.2. After both managers perform mutual

authentication, the next step is to spread the information across devices among different pools.

To do this, the manager must send the signed and encrypted information to the device, allowing

other devices to read the information and verify the manager's signature. Figure 4.2 represents the

agreement between both managers and the corresponding spread of information from managers to

their peers when they begin to trust each other and announce on the network that others should move

to include these new trusted peers in their trusted network.

Now, when a peer from the new trusted pool communicates with them, they know they can trust

them.

4.1.6 Certi�cates management and Information Dissemination

Certi�cate revocation is a process that needs to be quickly propagated to all devices. For example,

revoking the certi�cate when there is a private key leakage is essential to guarantee the system's

security. In this case, this process is essential to protect it from attackers who can gain access by

identity theft.

We can revoke these types of certi�cates by removing certi�ed copies from an allowed list. When

there is an update on revoked certi�cates or an existing pool adds a new device, all other nodes

belonging to the network (or the set of authenticated devices) must receive the updated information.

Given the high dynamism of almost any IoT scenario with highly intermittent connectivity and

constant changes in density, data dissemination becomes a challenging service. The dissemination

of information is not directly addressed in this thesis as it is related only to the devices' provisioning.
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However, we need to describe this issue because we have the revocation and addition of new devices

on this thesis's goal. We will assume a mobile device that disseminates information or �xed points

to disseminate the information at the end of the day (or at a de�ned �xed time).

4.2 Evaluation

To analyze the impact of this proposed solution, both in terms of latency and resource consumption,

this section analyses the performance of device provisioning by describing the entire con�guration

phase, implementation details, and an evaluation with execution times and energy consumption.

4.2.1 Setup

For implementing a PoC of our solution, we use three RP3 Model B+ and a Yubikey NEO. The

devices connect to a UniFi AC Pro AP to mimic a common WiFi deployment. The Yubikey NEO

represents the secure token. One RP3 works as the manager (that acts as a router) and the other two

as clients, with all the RP3 having the Raspbian operating system.

As the OTP Server can represent a SPOF, we created it as a service that can be turned off, when not

used, to avoid the possibility of centralized attacks.

We assume that the RP3 connect by power and do not use extra batteries, such as power banks. For

measuring the energy consumption, we use a direct plug-in power meter fromefergy.

4.2.2 Implementation

In this section, we describe the implementation details regarding the Yubikey cryptographic algo-

rithms con�guration, the local certi�cate authority, and �nally, the OTP Server.

Yubikey Cryptographic Algorithms Con�guration

For authentication, we choose to use a Yubikey that allows to generate OTP and supports Personal

Identity Veri�cation (PIV) [234] card interface. PIV enables RSA or ECC sign/decrypt operations

using a private key stored on a secure token, such as smart cards, through thePKCS#11engine.

PKCS#11bridges the gap between OpenSSL and Yubikey. A PIV-enabled YubiKey contains differ-

ent slots capable of holding an X.509 certi�cate and the accompanying private key.

For the authentication process, we use Python 3.2, OpenSSL, the OpenSSLPKCS#11engine from

OpenSC, thep11toolfrom GnuTLS, and the Yubico PIV tool for interacting with the PIV application

on a YubiKey. With these tools, we can build a CA generated inside the Yubikey through the

PKCS#11support.
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This work uses a Yubikey for the OTP generation and store the private keys for signing and encryp-

tion processes. We focus on two Yubikeys' slots, mainly: 9c (for digital signatures) and 9d (key

management). In a nutshell, we will use slot 9c for certi�cate signing purposes, and we are going to

use slot 9d for encryption for con�dentiality purposes, therefore, to decrypt content using the private

key stored on Yubikey. Both slots require a PIN to perform operations with the private key. On the

9c slot, we create a 256-bit ECC key pair to use a 256-bit ECDSA. On the 9d slot, we also create a

256-bit ECC key pair for encryption and decryption. If the slot holds the Elliptic Curve (EC) key,

we will perform ECDH and return the shared secret.

Local Certi�cate Authority

For setting up the certi�cate authority, it is necessary to have some �les located in a folder to store

the certi�cates generated, and there are some main �les and folders for that. The certi�cates are

stored in acerts/ directory and are listed in theindex.txt�le. The �rst �eld describes the certi�cate

status, i.e., V for valid certi�cates and R for revoked certi�cates, the second is the issuing date, the

third has the certi�cate serial, and �nally, the last one contains the certi�cate name (Organization

and Common Name). The manager device stores all this information.

OTP Server

The OTP Server is implemented usingprivacyIDEA[235] that is a modular authentication system.

It is possible to useprivacyIDEAto enroll the secure token by using a test account and the”Enroll

Token”in the”Yubico AES mode: One Time Passwords with Yubikey”option. This system allows the

administrator to revoke or disable registered tokens. After the enrollment of the manager's Yubikey,

it is possible to authenticate against the manager with the Yubikey.

Devices attempting to authenticate run a standby service to read a public key from thestdinof the

Yubikey (to encrypt the communications) and to perform the communication with the manager.

4.2.3 Results

The exchange of data between the manager and the device is the main process during device provi-

sioning (Figure 4.1).

This section presents different results regarding the sending and encryption execution time of the

OTP veri�cation and public key. We do not measure the time required to create the sockets, but rather

the time of sending the encrypted and decrypted data and, respectively, the process of encryption and

decryption. Also, by sending an HTTP request toprivacyIDEA, we measure the execution time for

validation of OTP. We use thehttpiecommand to call the/validate/checkendpoint.

We collected ten-time samples from the provisioning phase for the manager and the device.
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From the manager interactions, we have a mean runtime 615.1ms� 9.01, while in the client interac-

tions, we have a mean runtime 522.7ms� 56.1. The overall provisioning has an average runtime

of 1137.8ms� 65.11+ d, whered is the time required to insert the PIN when performing the

cryptographic operations.

We calculate the veri�cation's runtime withtime.time()on the authentication's Python implementa-

tion, which returns the system date and time.

In terms of energy consumed, the RP3 spends 2.2Whonly on without running services. When we

did encryption and decryption, the energy spent was not signi�cant, having just varied 0.4Whup and

down.

The energy consumed by the device manager when theprivacyIDEAservice is running and on the

OTP validation process was 2.2Wh, not varying more than 0.1Whup.

4.3 Use Case Discussion

Smart Homes

This concept of authentication works in smart homes, in which there is a manager (which can be

represented by the router) that authenticates home devices. These devices, once authenticated, can

communicate with each other. The domain of these devices is associated with the pool to which they

belong.

In a healthcare context, we can change the manager to be, for example, a smartphone that belongs

to the manager of each department, and each manager authenticates the devices belonging to each

department. Two different departments can communicate with each other if their managers authen-

ticate and add each other's pools as mutual trust.

Smart Cities

This work applies to the sensors scattered around the city for authentication between them, making

islands of devices connected.

We can imagine a certi�cation chain where the city is the root CA, and each manager can authenticate

with the city manager, becoming a sub-CA, which means that when devices authenticate with the

manager, they are also automatically authenticated with the city. This way, we managed to have

different independent pools, in which these devices only rely on devices that have certi�cates in

which the city is part of the certi�cation chain.

Before connecting to the city, the manager is a root CA for his devices, but he becomes an interme-

diate CA when he connects to the city. With this, the user's devices' certi�cates will have the city in

the certi�cation chain, which means that the devices can communicate with each other.

With the use of Yubikey, we guarantee that the city cannot accept provisions for non-manager
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devices.

What if there is a case of certi�cate revocation and adding a new device while on the move?As

we said in subsection 4.1.6, one way of disseminating information is through a mobile device. In a

smart city scenario, the dissemination of information, in addition to being done only at certain times

of the day, can be done, for example, by a taxi or city bus (to try to be more ef�cient and faster to

propagate).

4.4 Security Analysis

This section is de�ned as a threat and an attack model with a security analysis of the proposal,

exploring the vulnerabilities from the defender's and attacker's point of view.

4.4.1 Threat Model

This section identi�es system (assets) and potential threats against the proposed system from the

defender's perspective.

Physical devices

The only SPOF in the manager is the OTP Server. However, this service can be turned off whenever

it is not necessary to provision new devices.

If an attacker stoles the security token, it is possible to revoke the OTP Server's secure token. Also,

it is possible to set an expiration time.

Cloning a device is a problem for current IoT devices. When there is physical access to any device,

security can be compromised. Current research challenges focus on deploying trust zones, such as

Intel Software Guard Extensions (SGX) [236], where parts of the code can safely compute secrets

and store authentication keys and device identity. Future work will focus on mitigate and ensure

device integrity.

On the other hand, using a secure token helps protect against hacking as physical access to the secure

token is required to generate OTP.

Con�gurations for mitigation of attacks

There is an option withinprivacyIDEA, the Maximum Fail Counter, to avoid brute force attacks when

an authentication request occurs. If the fail-counter exceeds this number, Yubikey's user cannot use

the token unless it resets the fail-counter. This system has a fail counter of 5 attempts, and this option

must be manually reset to prevent this type of Brute Force attack.
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The private key never leaves the Yubikey and can only be used by the owner that knows the PIN.

Even if the Yubikey is lost or stolen, the PIN has three attempts, and, if failed, it requests Personal

Unblocking Key (PUK) that also has three attempts. If all fails, the user must reset the Yubikey,

which erases all the content from the Yubikey. For this reason, owners' should also make a backup

of the information contained on the Yubikey.

4.4.2 Attack scenarios

This section identi�es attack modeling from an attacker's perspective to analyze the possible vulner-

abilities on this system.

The secure token generates OTPs and stores the manager's public key to transmit to the trusted

devices, which prevents the manager from being impersonated even if the attacker could change his

name. For this reason, the tag impersonation attacks are safe because an attacker must have their

data (authenticated OTP and its public key) in the secure physical token, which is impractical.

The system is also safe from replay attacks because the secure token uses a set of volatile and non-

volatile counters that ensures that an OTP can no longer be used after validating once [237].

For man-in-the-middle attacks, there are two attack vectors: unknown peers and authentication

peers. This approach uses a secure token with the receiver's public key, so it is transmitted only

over Universal Serial Bus (USB), mitigating the unknown attacker's access to the public key and

the OTP that authenticates with the OTP Server. For authenticated peers, as already described in

the replay attack, the problem is solved using an OTP that can no longer be used after validating

once [237].

4.5 Summary

This work presents a design and implementation of a new approach to IoT device provisioning, giv-

ing an identity to athing and authentication between devices, eliminating the risk of impersonating

attacks.

Often, the reluctance to use these types of solutions is based on smart cards, which require external

readers on the computer. However, this work uses a secure token that only requires a USB port, and

given the study by authorsKiran Jot Singh and Divneet Singh Kapoor[238], there are USB ports on

most devices used in IoT. However, it is possible to adapt this system to other technologies, such as

RFID.

This work proves the solution's feasibility by presenting a wide range of options to be deployed in

real-world scenarios.

This solution loses in the provisioning time with an average of 1138ms� 65.1 against the pTASC

runtime, which is 1050ms� 58.2. However, the difference is not signi�cant, and this solution
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guarantees the authentication of devices, providing more scalability than pTASC. Besides, with

KEAV and pTASC solutions, we could not guarantee an identity to the device, so that it was easy to

manage revocation and dissemination of information between authenticated and trusted devices.

With this solution, we have several bene�ts: device identity, scalability, of�ine cryptographic assets,

revocation and dissemination, and resistance to MiTM. It is possible to have device islands, which

in addition to authenticating multiple devices, can authenticate with other device islands (for exam-

ple, different entities or departments), allowing to scale the solution to provision and authenticate

multiple devices.



Chapter 5

Empowering Users Through a Privacy

Middleware Watchdog

”Privacy is not something that I am merely entitled to, it
is an absolute prerequisite.”

— Marlon Brando

The amount of information that a IoT device can collect is substantial. Webcams can see everything,

smart TVs and personal assistants can hear everything, and smart cars can give clues as to whether a

person is at home or not. The amount of data that an IoT device can send back to its manufacturers

and how they are stored depends solely on them. Most of the time, users are unaware that this

information is being sent and shared with external sources. These data can still be intercepted

or forwarded to a malicious server if not properly protected. In addition to sound and image,

depending on the device, data sent to external sources may include sensitive information, such as the

IP addresses, other devices connected to the network, and location. Some manufacturers may collect

con�dential users' information and gather patterns about their lives (whether they are at home, the

content of their conversations, and others).

Several articles explore the use of voice assistants and feature emerging privacy issues from them [239].

In most cases, users cannot control their data, nor are they aware of data sharing to external entities.

Lau et al.[240] claim that, despite this and even with the possibility of devices' privacy settings,

users do not have enough knowledge to access and edit these privacy settings and often prefer to turn

off the voice when they are talking about more private things in the same room, because they do not

trust that the assistant is not even listening.

There are numerous devices from brands, such as the Amazon Echo [241], Google Home [242],

Apple HomePod [243] or Amazon Echo Dot [244] smart speakers. Millions of smart speakers (from

Google in this case) have been sold [245], and worldwide spending on these wireless smart speaker

79
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devices reached the $2 billion on 2020 [246]. A vast portion of the population is using these types of

devices in their homes, but what are the privacy implications to them? Of course, we are not saying

that all these devices disregard privacy policies, but the truth is that with a microphone on, there is

always an intrinsic fear.

Josephine Lau et al.[240] shows that many users who have voice assistants say they do not care

about privacy, but when faced with the possibility of hearing everything they are saying, they prefer

to hang up and not use it. Many users who do not have a voice assistant guarantee that they do not

trust these devices regarding privacy.

The biggest overall concern is the lack of information about the user's privacy and that there are no

appropriate settings for, for example, turning off the microphone without disconnecting the entire

device from the Internet. There is no transparency of the communications made by the device to

the Internet, and, therefore, there is no information about information shared. A subset of the users

inquired in this study referred to the possibility of having detailed information about when and with

whom the data is being shared [247] and being able to do the local processing without the data being

sent for public clouds.

Focusing on smart-home contexts, how can we build a solution that allows users to control their data

and deal with privacy? This is one of this thesis's goals, which aims to provide users with ways to

control it.

This chapter proposes a middleware layer that allows users to control the data generated by their IoT

devices. Depending on the manufacturer's �rmware, users can store speci�c data of�ine and control

data sharing while preserving their privacy. The middleware should also behave as a data broker,

implementing semi-autonomous and autonomous strategies to control IoT device's traf�c, probably

considering factors such as the data owner's preferences.

We perform this middleware integration on a testbed with a RP3, and a more realistic scenario

with a Google Home and a Phillips Hue for demonstration purposes. This implementation uses

the Google Smart Home actions to allow users to control their devices through the Google Home

app and voice commands with the assistant. We used this implementation to deploy a real-world

usage scenario with the Google Home device and Google Assistant API with some sensors on the

same home network. We present the middleware structure integrated with this application scenario,

implementing all features related to the security of communications, namely at the authentication

and identity of each device (included in Chapter 4) to guarantee secure and private communications

between them.

5.1 Conceptual Design Overview

Secure and privacy-oriented data sharing remains an unsolved problem in IoT, especially for users'

data. Users are generally unaware of how their data is being handled in the IoT environment, as
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they assume that the manufacturer implements the appropriate privacy and security mechanisms.

However, this is not the case, mainly from the examples described in the introduction section 1.

In our approach, users can decide the data and traf�c exchanged according to their preferences.

Users have the option to block all traf�c by default and to make exceptions for some speci�c

domains. Therefore, users can block marketing/advertising sites and only communicate with the

manufacturer's domains. If users choose to block all communications from their devices to the

Internet, some of the features may stop working, as some of these devices will not work in of�ine

mode. In this case, users will have to choose between usability and privacy.

Existing routers have a set of rules to block speci�c traf�c. However, the difference to the middleware

data sharing control is that there is no easy way for users to consult privacy settings that show

connections made by default by the device (con�gured by the manufacturer) and a way to block

these connections ”in real-time”.

Along with this network traf�c monitoring and, depending on the manufacturer's device �rmware,

users can store data of�ine on their home router for future reference. As users can connect to

multiple routers (at home or work, for example), they can choose different permissions for their

data depending on the device's context, managing the data life cycle. Users can also monetize data

by selling it to external entities.

5.2 Architecture

From an architectural point of view, the system includes IoT devices, the owner's smartphone that

acts asPermissions Controller, and a router that acts as a manager and controls data sharing for

external entities.

Figure 5.1 shows the different components of each device, as well as the interconnections between

them and the Internet.

There are two types of IoT devices: white-box and black-box devices. White-box devices represent

devices on which it is possible to install software, modify and access the �rmware. On the other

hand, black-box devices represent devices on which developers can not control the stack and do

not have access to the software/�rmware, so it is impossible to install applications with the level of

granularity necessary to install and run the middleware.

5.2.1 White-Box Devices

This type of device has two main components: amiddlewareand aSensors API.

Sensors APIhas the necessary interface for IoT devices. Some manufacturers allow developers to

interact with device data in their applications, products, and services. In such cases, theMiddleware

component integrates with theSensors APIto get access to the data. Then, theDatabasereceives
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Figure 5.1: Data Sharing Middleware

the input from the API and can store the data locally (this component stores data for seven days

maximum by default, but users can modify this con�guration).

Sharing Decision Controlconsists of a �rewall-based solution to control data sharing. The compo-

nent uses context-aware access control and owner rules provided by theRulescomponent to control

data sharing. TheSharing Decision Controlmust be deployed locally on the device to provide the

owner with the security of their data under their control.

5.2.2 Black-Box Devices

When the manufacturer's �rmware is closed/proprietary, it usually uses encrypted channels to sup-

port all communications, creating an opaque layer where it is impossible to distinguish between the
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transferred data. Thus, it is impossible to implement the middleware on the device, so the router

must perform all the traf�c control (the router also has the middleware).

5.2.3 Permissions Controller

Our choice to use smartphones as a con�guration controller to de�ne rules and permissions aims to

promote usability, as screens or keyboards are generally not used/available in IoT scenarios.

For black-box devices, the smartphone sends rules to the router, as it is impossible to control data

sharing locally. For this reason, the only option available is third-party sharing for external sharing.

External Sharingis related to the traf�c that the device generates by default, which may include

communications with the manufacturer and entities unrelated to the manufacturer. In the case of

black-box devices, the traf�c is encrypted, and most of the times, devices communicate directly with

an external server, and so, transferred data are not distinguished, but with this option, users can

select the entities they want to share with (for example,Googleis allowed, butFacebook Adsis not

allowed).

Users can choose between two modes:primary or advanced mode. Theprimary modehas traf�c

data aggregated by the entity. In a use case based onGoogle Assistant, device connections include

multiple subdomains ofgoogleapis.com, but only theGoogleentity appears to users inprimary

mode. In this way, all connections to or fromGoogleare blocked or allowed, according to the

users' preferences. This mode is more accessible fornon-technicalusers to control the entities with

which devices communicate. Thus, users can also know which connections are related to the device

manufacturer.

In advanced mode, all traf�c is shown by domain. According to the same use case, instead of showing

only the Googleentity with aggregated traf�c, it shows detailed traf�c in real-time (2020-09-30

11:13:09 - www.google.com - raspberrypi-home.lan; 2020-09-30 11:13:16 - play.googleapis.com

- raspberrypi-home.lan; 2020-09-30 11:13:16 - clients4.google.com - raspberrypi-home.lan), and

users can block or allow speci�c connections.

As mentioned in Section 5.1, devices that do not work of�ine and depend on communication with the

manufacturer may not work after some traf�c block. If only a few features stop working, users can

choose between usability and privacy. In summary, in this component, the smartphone can display

all traf�c in real-time, and it is possible to choose the entities to share the data and specify the expiry

time of these permissions.

For white-box devices, each owner has four main permissions to control the data sharing:Personal

Use, Third-party sharing, Sell DataandPrivacy Policies. In this case, both the IoT devices and the

router implement all the smartphone rules.

On the web app, users can access these controls on any network device with display capabilities.
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Personal Use

Personal Usehas two options:yesor no. ThePersonal Useoptions allow users to store their data

(produced by the IoT devices) on the router's database. When users set the permission toyes, the

router's database can store the data produced by the device. This option allows owners to control

their data locally without an Internet connection, creating their API and services.

The Web App allows users to query this data to be consulted for further analysis. This option is

only available for White-Box IoT devices because we cannot get data encrypted in both ends on the

Black-Box IoT devices.

Third-party Sharing

Third-party Sharinghas two different components:Internal SharingandExternal Sharing.

Internal Sharingrepresents the data transmission between the IoT device and the router to which

it is connected. Owners can set different permissions according to the IoT device. For example,

if the device is in thehomecontext, owners may want to store all data on their router but deny

this permission in other contexts blocking the transmission of some con�dential data. The owner's

smartphone shows all sensors available for data sharing and allows users to set permissions for their

data according to their preferences, enabling selective disclosure of information to ensure anonymity

according to their preferences. Such selective disclosure should consider the appropriate, relevant,

and limited data to what is necessary for the purposes by providing minimal disclosure of personally

identi�able information or other sensitive data types. This concept can be called data minimization

by the new GDPR [248]. This option of Internal Sharing is only available for White-Box IoT devices.

External Sharingis explained in Section 5.2.3 and is also available for these white-box devices. In

summary,External Sharingis related to the traf�c that the device generates by default (communica-

tions con�gured by the manufacturer) so that users can manage these communication permissions.

With this option, users can manage (allow or block) those connections made during normal device

operation but cannot choose other entities to share data.

Sell Data

Unlike External Sharing, which controls only standard device communications, the sell data option

allows users to sell speci�c data to interested third parties. The sensors can gather additional data

that may be of interest to marketers to reinforce marketing strategies in a region, creating accurate

and personalized ads contextualized to a person or region's interests. Our structure allows users to

choose a set of data collected by the IoT sensors and stored in the router's database to be shared

with external entities (also selected by the data owner) in exchange for monetary compensation,

offering users the possibility to monetize their data. For example, users can choose to sell data about

temperature but not about lighting and air conditioning because they know that a machine learning

algorithm can combine data to determine the presence in a given household. Note that this sell data

option is valid for white-box devices or devices with data APIs.
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Privacy Policies

Each home or workplace has an owner con�gured on boot time as admin. The owner then has a set

of con�gurations to control rules and permissions on the webserver application. An owner can set

other users' permissions connected on the same network.

Users can have different permissions according to their hierarchy. First, users can authenticate both

as household or guest. Guest users are the less privileged user because it can only consult the devices'

privacy policies. For ease of use, it is possible to quickly set up a guest, as he can read a QR-code

(which can be on the person's home wall), and these users can see information about the IoT devices

on the house (name, type) and the data they are collecting. The information about the privacy policies

is inserted manually by the owner when it sets up the house, and it includes an opting in or out for

data collection, to the guest choose if they agree or not with the data collected.

This platform also guarantees the privacy of different household members, allowing personal privacy

settings for each member, which must be preserved by the system, and provide settings that prevent

private information leaks for non-household members, e.g. guests or neighbors.

New users can be home residents that the owner must approve. The owner can delegate or share

administration capabilities associated with delegation of permissions or others to someresponsible

users by setting them with according permissions. Each home can haveseveral responsibleusers

that can manage the administration settings and data privacy settings of that home devices. These

responsibleusers cannot modify the permissions set by the guest clients or owners.

By default, all the users can only de�ne policies related to their data (e.g., users may not want to

have their voice recorded by devices at the network owners' house.).

The network owner or authenticated users can set their data privacy policies for their devices. Along-

side with the guest settings, it is essential to have more automation in some of these processes. Guest

users can then deny microphone permissions for other IoT devices. For example, guests can opt-out

of this permission, and the house's middleware blocks all communications from the microphone (if it

is not possible to specify individual permissions for each resource, all communications from selected

smart home devices to the Internet are blocked.).

If multiple people are on the same network and have different permissions, the deny permission will

always have a higher priority order.

5.2.4 Router

The router has two different components: aSharing Decision Controland aDatabase. TheSharing

Decision Controlcomponent acts as a �rewall between external entities on the Internet and local

devices. This component receives the rules provided by the mobile application and controls data

sharing.
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When the device'sPersonal Useand the data's permission on theInternal Sharingcomponent have

the answer ”yes”, this data can be transmitted to thedatabase, allowing data owners to query them

of�ine. In the router, it is possible to connect the mobile application and thedatabase, allowing

users to query their data on the smartphone. For devices that continue to operate of�ine without

connections to the manufacturer, this can be a way for users to view their data without interacting

with the manufacturer's online application that stores the data in their proprietary database. In

addition to this, the router also has a web interface that shows the data available for sale.

We choose to place data sharing control on both devices (IoT devices and router) to ensure that users

have their data under control, independently of device that are they are interacting. As we have

black-box devices where we do not control both endpoints of the encrypted data channel, we need

to ensure that users can control their data. The only way to do this, is to have the middleware on the

router so that users can allow or deny communications. Besides, this control allows router owners

to have their internal permission policies. For example, when a new device connects to a router and

does not block any traf�c, the router owner can have internal default permissions to override this

behavior and block such traf�c.

5.3 Evaluation

In this section, we present the setup and details about the implementation of the prototype and the

results related to energy consumption.

5.3.1 Setup

In order to provide a PoC, we build two separate setups. The �rst setup has four RP3, one Yubikey

NEO, and a USB pen drive. The four RP3 represent two IoT client devices with four sensor modules:

Temperature and Humidity (DHT-11), Luminosity (KY-018), LED (KY-016), and Heart-Rate (SEN-

11574); one that represents a router and the last that represent the manager. All RP3 have the

Raspbian operating system. The second setup is equal but includes a Google Home and a Phillips

Hue light.

On the RP3 that represents the router, we build an access point. In this operation mode, the WiFi

serves as a connection point for other devices (clients/stations), similarly to a conventional home

router's operation. The most common purpose for WiFi to operate as an Access Point is to connect

to other WiFi devices, share connectivity to the Internet and create a dedicated network for some

con�guration purposes (as in some home routers, for example). This device serves as a network

scanner to keep track of the hosts connecting to our local network and to be able to make network

�lters, allowing the control of incoming and outgoing traf�c.

The router also acts as the manager device with the OTP Server. This way, when the owner is

not provisioning new devices, the OTP Server should be turned off to prevent the possibility of an
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attacker stole the private key.

To represent the secure token referred to in Section 4, we used a Yubikey NEO. We use power to

connect the RP3 instead of extra batteries (power banks). To measure energy consumption, we used

a direct plug-in energy meter [249].

5.3.2 Implementation

This section presents details of the implementation of the proposed system. We describe the technical

details about the sharing decision control component, including internal sharing with context-aware

and authentication mechanisms and integrating the sell data component and marketplaces.

Sharing Decision Control

Our proposed solution focus on DNS �ltering by implementing a system based onPiHole. It aims

to block ads and tracking mechanisms on the Internet by resolving domain names to IP addresses,

and if these domains belong to a blacklist of domains used for advertising or tracking will be barred.

In this way, all devices work withPiHole, which controls each device individually, allowing them to

have different permissions and �lters for each.

One advantage is that we can select different permissions according to the Media Access Control

(MAC) address (each device). When dealing with White-Box devices, it is possible to install a

middleware in each device, and this way, the control is inside the device and for each device.

However, on a solution with black-box devices, it is necessary to make all the control on the router.

This way, we need to �lter speci�c permissions for each device, with their MAC addresses.

PiHole does not have a native DoH capability. However, it is possible to con�gure a DoH proxy,

such asclour�ared or DNSCryptand point that at a DoH resolver. ThePiHolewould then query the

proxy, which would query the DoH upstream resolver. With this properly con�gured, it is possible

to block some traf�c according to the users' rules.

We will not deal with TLS1.3 in this thesis, but we decided to adopt a solution that already has a

basis for the adaptation.

Context-aware Internal Sharing

Context consists of information that can characterize a physical or situational environment (set of

circumstances). It is also considered any information that can characterize an entity (for example,

a person, place, or computing device) [250]. IoT predicts an era when billions of sensors connect

to the Internet, which means that it is not possible to process all the data collected by these sen-

sors. However, there must be a way to decide what data to process (context awareness) and store

information of context linked to the sensor data to make interpretations of each situation more easily.

Many sensors increase every day, which generates a large amount of data. These data are often of
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no value unless they are analyzed, interpreted, and understood. Understanding the context facilitates

communication between machines, as it is a central element of the IoT vision [251].

Context-aware systems can dynamically and automatically adapt to changes in the environment and

users' current needs without requiring their attention. There are several de�nitions of context, such as

ambiance, attitude, circumstance, dependence, environment, location, occasion, perspective, phase,

place, position, posture, situation, status, standing, surroundings, and terms. There is much research

on context-aware computing over the years [251–253], especially related to self-learning techniques

in IoT and decision making.

In this work, we introduce an approach with different identities and access control policies for a

device. The initial goal is to understand the device's context and what types of context we want to

address. As an example, users can set different permissions for their smartwatches, depending on the

context (for example, location: athomeor work). In this example, users can decide not to share their

heart rate in theworkcontext but do not mind sharing the number of steps per day; on the other hand,

in the homecontext, users can decide to allow the storage of all data. In summary, context-based

techniques are essential to automate some privacy settings in decision making.

However, there is a drawback to this approach, as it can be attractive for attackers, trying to set the

user location tohomewhen the user is actually atwork or mall for opening the user's home window,

for example [254]. To mitigate some of these risks associated only with the context, in addition

to the authentication process, we use a set of sensors with some extra information, namely WiFi,

Bluetooth, and GPS, instead of using only one sensor.

In addition to these conditions, it is essential to detect some possible abnormal patterns autonomously.

For this, the middleware creates a database with a history of usage patterns on each device. Thus,

if the middleware receives a request for permission to open a window due to the user's presence at

home, at a time when the user is never at home according to historical usage patterns, the middleware

should notify and request the user intervention manually to decide whether the window will open or

not. In this example, this feature is vital to ensure that we are not facing a geolocation attack or other

types of attacks based on changes to sensor data that in�uence context-based decisions. Therefore, if

any of the prede�ned conditions fail (in terms of sensor data and usage patterns), the user will need

to intervene and grant speci�c permissions for those speci�c cases manually.

Sell Data

This concept focuses on controlling data sharing on the user side, not necessarily on the market itself.

The idea focuses on linking the middleware to an external third-party marketplace that does all sales

management. For demonstration purposes, we integrate with the implementation of a market created

by Xiangchen Zhao et al.[255]. With this implementation, user registration is manual, and users

need to provide the data to the market for sale. For this, the middleware is ready and provides users

with a well-de�ned API with the data they choose to sell.
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5.3.3 Results

Regarding the performance and energy consumption results associated with the authentication pro-

cess, we should refer to the Section 4.2.3.

In terms of energy consumed, the RP3 spends 2.2Whwithout services running on the system. With

the middleware running on devices and a database, the energy consumption remains almost the same.

When the middleware performs encryption and decryption, the energy spent is not signi�cantly

different, varying only 0.4Whup and down.

Regarding the network performance, withPiHole, we did not have a latency increase. AsPiHole

only handles DNS, it does not process every bit of data that users exchange on the Internet. The

traf�c still �ows between the client and his router to the Internet, and nothing goes through the

PiHole. As DNS traf�c has very low bandwidth (a few hundred bytes per request), theRP3will be

able to handle them easily, whether on the wired or wireless interface.

5.4 Testbed Evaluation

The study of scenarios and the integration of implementations allows us to have the necessary

experience to identify the common denominator at various abstraction levels, aiming to develop a

middleware that factors these standard functionalities and provides a productive tool.

In this section, we present an overview of the Google Smart Home APIs.

Google smart home lets users control their connected devices through the Google Home app and

theGoogle Assistant, which is available for smart devices, like smart speakers, phones, cars, TVs,

headphones, watches, and more. TheGoogle AssistantSDK allows developers to incorporateGoogle

Assistant's features into their products, such as hot word detection, voice control, natural language

understanding, and Google's smarts.

More recently, Google also created the Local Home SDK that enables the ful�llment of smart home

actions directly on Google Home or Google Nest devices and enables communication with smart

devices over the local network to ful�ll user requests. This creation was due to latency and reliability

when engaging the user's action. Users can write and deploy a local ful�llment app in Typescript or

JavaScript to identify and execute commands on any Google Home or Google Nest smart displays,

deleting the developer cloud's dependency.

Google Home is a smart speaker with a microphone that has Google Assistant installed on it. It

cannot work without Google Assistant. However, Google Assistant can work without Google Home.

Google Assistant works both on Android phones and on RP3. Google Assistant capabilities depend

on the devices where it is running.

Throughout this section, we also describe the integration between Google Home, the middleware,

and IoT devices and the integration of the Google API on a RP3. These two testbeds allow us to
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show that it is possible to use the middleware either with black or white box devices, with different

functionality. Also, we use these testbeds to validate the solution of the sharing decision control and

the integration between components, namely the authentication itself for white-box and black-box

devices.

We use a combination of tools for the network monitoring, namely thetcpdumpandmoloch. tcpdump

is a tool that allows ”snif�ng” all traf�c that passes through the data network. We useMoloch, a full

open-source packet capturing, indexing, and database system, to analyze network packet capture

�les. It works as a viewer to parse and view the full packet capture done bytcpdump.

5.4.1 Google Home and Phillips Hue

This integration focus on exploring a Black Box device architecture because we are dealing with the

Google Home that is closed/proprietary, so it uses encrypted channels to support all communications,

creating an opaque layer where it is impossible to distinguish between the transferred data. Thus, it

is impossible to implement the middleware on the device, so the router must perform all the traf�c

control (the router also has the middleware).

Middleware's primary goal is to protect the user's privacy in the context of IoT. This middleware

works as an emulator of a device that controls the smart home devices of users. With this, it is

not Google that has control over our device (that is, Google Home does not give the executions

directly), but instead, the middleware receives the action and controls whether the action affects the

IoT device (Figure 5.2). Basically, instead of having the users' IoT devices on theGoogle Assistant

app (controlled by Google), the middleware is the device that emulates the IoT attached device, i.e.,

the middleware receives the order and gives it to the IoT device (users have the control of the devices

locally through the middleware).

We create a complete integration to evaluate the practical impact of privacy. Also, we show how the

authentication scheme integrates into this setup. This testbed was integrated from scratch using the

respective API's available from the manufacturers. The devices were not rooted or any operation that

might render them useless for general use.

5.4.1.1 Setup

We set up a Google Home to make a testbed with a real device, along with a Phillips Hue.

We use a RP3 that builds an access point for the router. In this operation mode, the WiFi serves as

a connection point for other devices (clients/stations), similarly to a conventional home router's op-

eration. The most common objectives of WiFi operating as an Access Point are to offer connectivity

to other WiFi devices, share connectivity to the Internet and create an exclusive network for some

con�guration purposes (as in some home routers, for example). This device serves as a network
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Figure 5.2: Controlled Smart Home Environment

scanner to keep track of the hosts connecting to our local network and to be able to make network

�lters, allowing the control of incoming and outgoing traf�c.

5.4.1.2 Network Traf�c Monitor

We install the sharing decision control only on the RP3 that acts as an access point. It is not possible

to install on each device because the Google Home and Phillips Hue devices are considered black-

box devices, and it is not possible to install it there. For this reason, on the access point, we de�ne

speci�c rules for each device by MAC address.

We de�ne a DNS regex .� for block all the connections and we add to the white-list the regex:

(\.|ˆ)google\.com$

We tested the Google Home functionality together with the Phillips Hue, with that de�nition.

First, we said, ”Hey Google” and the Google Home replies, ”Sorry, I cannot reach the Internet right

now!”. Then, we analyze the connections that the device made, and the device tried to connect

with www.gstatic.comandconnectivitycheck.gstatic.com. For this reason, we add two more regex:

connectivitycheck.gstatic.com and(\.|ˆ)gstatic\.com$ .

After adding these rules, Google Home already answer to our requests. For that reason, we made
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several interactions:

� Turn the Phillips Hue lights on and off;

� Ask for information about the current and next day's temperature;

� Ask for the day's information news and try to turn on Spotify service.

These communications led to multiple connections that we can track on thePiHole. To turn

the Phillips Hue on and off, Google Home sends the following DNS requests:www.google.com,

clients4.google.comand play.googleapis.com. The light turned on and off, even with the

play.googleapis.comblocked. Also, it adjusts the light brightness according to what the voice asked

for.

Then, we tried to get information about the weather, and the only DNS request waswww.google.com,

and so, it works correctly. We tried two more requests, namely for Spotify and news.

For Spotify, we had to unblock some services related with*.scdn.coand *.spotify.com. The

googleapisstayed blocked and works well, but we had to unblock the others completely. The DNS re-

quests made were:audio-fa.scdn.co, seektables.scdn.co, clients4.google.com, play.googleapis.com,

gew-spclient.spotify.com, clients3.google.comandapi-partner.spotify.com.

Lastly, for the news request, the Google Home only presents the sources from the news, but

does not gives the content of information, because all the external sources were blocked,

namely: radiodownloaddw-a.akamaihd.net, bbgvod-azure-us-east1-zenko.global.ssl.fastly.net,

lh3.googleusercontent.com, pdl-iphone-cnbc-com.akamaized.net, lh4.googleusercontent.com,

dts.podtrac.comandgoogleassist-cdn.prod.reuters.tv.

5.4.1.3 Authentication

In this type of black-box device, where we cannot have local control of the device (due to the

impossibility of modifying the �rmware), it is necessary to protect the device's internal and external

access in another way. Our proposal aims to segregate the devices in multiple Virtual Local Area

Network (VLAN) other than the regular network, and only the middleware accesses these devices.

In other words, the middleware controls the traf�c that leaves and enters these devices.

This way, it acts as a local control to the devices, where only the traf�c controlled by the user leaves

and enters. Using the Google API, the middleware acts as the authenticated device and communicates

with the Phillips Hue (that is inside the VLAN). Thus, users make all the control and have the last

word to say about the access to their data.
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5.4.2 Google Assistant on Raspberry PI

Another way to use the Google's virtual assistant, without the need to purchase Google Home, is

through the Google Assistant. The most used form of this service is through smartphones. However,

to simulate a Google Home, it is possible to transform a RP3 into a kind of Google Home ”hands-

free”. More advanced users may prefer this type of solution because they can turn off the micro-

phone, for example, in a physical way (making sure that the device not shares the sound that users

make at home to the Internet). As software settings can easily be changed, only physical switches

to turn on and off components can be wholly trusted to prevent data collection. For example, by

removing a microphone from a device through the USB connection will act as a kill switch. The

hardware kill switch is one option that devices must add, especially devices such as Google Home,

Amazon Echo, and all those IoT devices with access to a microphone, camera, or another type of

sensors that allow the collection of sensitive data. Of course, adding physical switches can impose

extra costs and adds extra engineering, and, in some cases, the ability to cut the electrical circuits to

components will signi�cantly change the weight, size, and ergonomics of devices. However, it is a

moral imperative to protect people's privacy and respect their digital rights.

For this reason, this may be a more privacy-friendly solution.

5.4.2.1 Setup

In this environment, we built a Google Assistant using the Google Assistant SDK to control by voice

the LED connected to the RP3 GPIO pins. For this setup, we also plug a USB microphone and a set

of speakers to the RP3.

5.4.2.2 Network Traf�c Monitor

Google Assistant on RP3 is much more limited than Google Home. For example, Google Assistant

not integrates Spotify, so to turn on Spotify, users must have to con�gure options such as the web

browser, but the RP3 blocks the Digital Rights Management content. Therefore, it is not possible

to start Spotify. It also does not support obtaining news through voice commands, such as ”Hey

Google, tell me the news”, but it does support, for example, obtaining weather with ”Hey Google,

tell me the weather for today”. For interconnection with other devices (black-box or white-box), it

is possible to pair them by adding the middleware to the Google account (and, therefore, the actions

are given to the other devices through the middleware). It would also be possible to place the devices

directly in the Google Assistant application, but we have deployed with the middleware for privacy

reasons.

We did the traf�c analysis for the interactions of turning on the Phillips Hue lights, turning on a light

on a RP3, and obtaining information about the weather on the current day.
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With this, we obtained different DNS queries, all related to Google. That is, for the con-

nection, as in Google Home, the query is made toconnectivitycheck.gstatic.com, and the

other queries, practically all linked togoogleapis, were as follows: oauth2.googleapis.com,

embeddedassistant.googleapis.com, mtalk.google.comand android.googleapis.com. Therefore,

in this situation, the simple white-list with regex:connectivitycheck.gstatic.com ,

(\.|ˆ)gstatic\.com$ , (\.|ˆ)google\.com$ and (\.|ˆ)googleapis\.com$ al-

lowed these interactions between home devices.

5.4.2.3 Authentication

The white-box devices, which can be sensors scattered around the home or a set of smart homes,

can deploy the authentication method presented on the Chapter 4, which allows the authentication

between them, making an island of devices.

In the context of smart homes, the island of devices can potentiate a business case in which we have

an of�ce with several different units in operation. Each of them can have its speci�c manager/router,

but it may be possible to interconnect the different device islands by interconnecting their managers.

There is a manager for each department to authenticate its devices. Different departments can later

create a trust alliance between them and can join together to communicate between them safely.

In brief, we can deploy an authentication mechanism for supporting different units inside smart

homes, ensuring secure communications end-to-end for all devices authenticated between them.

5.4.3 Summary

Both tests show that it is possible to do a general block and allow only DNS requests trusted by the

user.

To improve the implementation and allow users to know the entity belonging to the connection

more ef�ciently, it is sometimes necessary to allow DNS requests that belong to Google but do

not have the*.google.comsuf�x. For this reason, we implemented an improvement that allows

users to understand who a certain domain belongs to (Google, Facebook, or other entities). We add

information from ASN that displays much information about IP's but mainly the owner, which users

need to understand if it belongs to trusted entities.

5.5 Security Analysis

This section presents an overview of a threat model and some attack scenarios that help to perform a

security analysis of our proposed middleware.
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Regarding the authentication component, we describe the security analysis and the respective threat

model in Section 4.4.

5.5.1 Threat Model

The owner distributes the certi�cates to trusted devices; therefore, the owner is responsible for that

safety component. Assuming that the CA is trusted, all keys signed by the CA will be implicitly

trusted. The role of CAs is to ensure that a key belongs to a trusted device after authentication

between them. When the IoT device communicates with the router, it knows that it is the real

router (as it belongs to the same certi�cation authority) and not an attacker who impersonates it. All

communications use HTTPS, and, therefore, all content transmitted between devices is encrypted.

Regarding context-aware access control, and to detect some possible abnormal patterns autonomously,

we use the database with a history of usage patterns on each device to reinforce the security param-

eters by having the user in the loop if there is any unusual behavior. Along with that, if an attacker

successfully attacks the system, the user-de�ned assumptions will take action, and a new HTTPS

server that behaves as a router will not be accepted. In brief, a traditional MiTM will not work

because the HTTPS certi�cates will not match. Besides, as already described in Section 5.3.2, the

user has to manually intervene when there is a coordination failure in the ambient sensors or based

on historical usage patterns.

5.5.2 Attack Scenarios

In this section, we present and evaluate some attack scenarios regarding the system implementation.

Section 4.4 already evaluates the tag impersonation and replay attacks regarding the authentication

system.

Single Point of Failure

Users can choose the data to be saved on the router or their white-box devices, using a distributed

model, rather than stored in a central database or cloud. The advantage of this model, unlike a

central database, is that a central database server represents a single point of failure, in which, once

compromised, it compromises the security of all users.

We know that we also have a single point of failure on the router, but we have reduced the attack

surface because it only compromises one user in an attack. Besides, users can choose not to save

data on the router, leaving it only on each of their devices (for a limited time, also de�ned by the

user). With that, we have a distributed model, even inside the user's homes.
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5.6 Summary and Future Work

We offer a novel middleware to improve the privacy of users' data on the IoT. The middleware

gives users the ability to control the privacy of their data. Users can also store data to be controlled

of�ine and analyze current connections, discarding them according to their preferences, without

delay, extensible to network communications.

Unlike previous work, the developed middleware is independent of the device's SDK, as control is

placed at the device and router layers, allowing users to control the shared data fully.

We have a real implementation with an RP3 emulating a Google Home with a Google Assistant and

sensors attached to it, with the middleware integrated.

As future work, it should be created a real environment with a router withOpenWRTrunning the

middleware that we created and with black-box devices together with the RP3s. It is also essential to

enhance the current marketplace implementations with aggregated data and anonymization selected

by each user, maintaining privacy properties and compliance with TLS.



Chapter 6

The Case for Blockchain in IoT Identity

Management

”Thus, the task is not so much to see what no one yet has
seen, but to think what nobody yet has thought about

that which everybody sees.”

— Arthur Schopenhauer

The IoT has numerous healthcare applications, from remote monitoring to smart sensors and inte-

gration of medical devices. The bene�ts of their adoption can be understood not only in keeping

patients safe and healthy, but also in improving care delivery and increasing patient engagement and

satisfaction, ensuring that they spend more time interacting with their doctors and responsible.

With the growth of IoT, there is an opportunity to integrate better patient care through home mon-

itoring devices. In addition to being more convenient, home care allows treatment in a family

environment, in addition to avoiding the risks of cross-infection that accompany hospital care. Thus,

the user would have supervision connected to a central of doctors on duty 24 hours a day, avoiding

the aggravation of diseases and reducing the trips to the emergency room. These devices can be

integrated with the smart home environment, making it possible to create automatic alerts for falls.

For this care to be carried out safely, the devices need to be authenticated and have a well-de�ned

identity. In these continuous monitoring cases, a lack of proper device identity management can lead

an attacker to falsify data, which can lead to patient injury or misdiagnosis.

Current IdM issues that were presented in Section 2.2 can potentially be solved by leveraging

blockchain decentralization and resilience [256]. Several works [257–259] claim that the integration

between blockchain and IoT should exist to achieve safer and more ef�cient systems. Blockchain

technology can present itself as an alternative to traditional centralized shortcomings by providing a

secure solution without a trusted central authority.

97
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This chapter aims to evaluate blockchain's use for IdM in the context of the IoT while focusing on

privacy-preserving approaches and their applications to healthcare scenarios. It makes an effort to

make a comprehensive description of the most relevant IdM systems focusing on privacy-preserving

with or without blockchain and evaluates them against ten selected features grouped into three

categories: privacy, availability, and IoT. It is then essential to analyze whether blockchain's use

�ts all scenarios, according to each feature's importance for different use cases.

In brief, this chapter attempts to explore the following Research Questions:

RQ1: What are the requirements to build a privacy-preserving IdM system for IoT?

RQ2: Can blockchain help us to meet these requirements?

RQ3: What are the impacts of applying blockchain-based IdM systems to healthcare scenarios?

6.1 Related Work

Xiaoyang Zhu and Youakim Badr[139] analyzed traditional IdM systems and investigated new

emerging blockchain-based sovereign identity solutions as a way to uncover open challenges in

building IdM systems for IoT. The authors argue that privacy remains an open challenge for blockchain

because even with the integration of privacy technologies on the public blockchain, these schemes

still have an associated complexity. Some examples of these technologies are multiparty computation

and zero-knowledge proofs that could bring the selective disclosure and perfect online identity pri-

vacy into reality. However, it still needs much effort from academia and industry for their integration

with blockchain smart contracts. Another previous work analyzed traditional IdM systems together

with privacy-focused IdM systems [128], whereas our approach also focuses on examine whether

using blockchain can help satisfying security and privacy, IoT, and usability issues. As such, we

analyze blockchain systems and their practical applicability in healthcare scenarios. Healthcare

is one of the most dynamically developing and demanding application areas. This application

area's exponential growth will affect the medical world, starting from remote health and monitoring

services, assisted living, and elderly care to identifying and managing chronic diseases and providing

personalized medication [260]. Managing these sensitive and personal data requires preventive

measures in data sharing, both privacy and security.

6.2 Building a Privacy-Preserving IdM System

This section will present a comparative table of IdM systems for some features selected according to

a selection methodology. We also present a methodology for systems selection.
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6.2.1 Methodology for feature selection

This section describes the feature selection criteria that help to evaluate IdM systems.

We chose several features divided among three categories:

� Privacy features:Self-Sovereign, Unlinkability , Revocation, Selective Disclosure, Untrace-

ability andUnforgeability;

� Availability features:Of�ine ;

� IoT features:Device IdentityandDesigned for IoT.

The main feature what we chose to consider to evaluate their suitability towards supporting IoT

wasDevice Identity. Section 2.2 already describes the differences between user and device identity.

Device identity will evolve over the next few years with the growth in IoT devices' use. We can see

how many people around us carry an activity bracelet, periodically synchronized to a cloud.

Each device in an IoT ecosystem needs a unique device identity as part of an integral part of IoT

security. With a unique and strongDevice Identity, things can authenticate when they come online

and ensure secure and encrypted communication between other devices, services, and users, avoiding

possible attacks, such as impersonation attacks. With MiTM, attackers can intercept communications

between multiple IoT devices, leading to critical malfunction. For example, a MiTM attack on

medical sensors can allow an attacker to change the vital signal's values, leading to misdiagnosis of

the patient and wrong treatment.

IoT devices should be able to perform mutual authentication with users or other devices, preferably

without the need for central coordination, avoiding SPOF. Devices should perform end-to-end com-

munications in a healthcare context, authenticated with multiple entities, such as other devices or

medical assistants, without allowing malicious/unauthorized parties to attack the sensors. With this

feature, we will consider that systems that manage a device's identity do not require a user-managed

application, allowing devices to communicate independently of the owner.

In addition to the device's identity, it is crucial to understand if the system wasDesigned for IoT.

This concept is paramount as entities must apply technical and organizational measures to ensure

correct compliance with IoT requirements throughout the construction process.

Another feature set is focused on privacy-preserving to ensure minimal disclosure of information,

inspired by the concept of anonymous credentials [129] (see section 2.2.3).

One of the most critical features for privacy-preserving isUnlinkability , as the adversary should not

be able to determine if two blinded credentials belong to the same self-blindable credential [261].

Therefore, this property ensures that different presentations of the same credential cannot be linked [141].

Another important feature inspired by the concept of anonymous credentials isSelective Disclosure.

This feature allows users to select only a few attributes necessary to complete authentication in
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order to protect con�dential information fromveri�ers [262]. This method is calledpartial identity.

An interesting example is the identi�cation of a person (prover) in a movie theater (veri�er ) (see

section 2.2.3).

Inspired by the same concept, we selected three more properties:Revocation, Untraceability and

Unforgeability.

Untraceabilityensures that a user can display a credential for averi�er , without theveri�er being

able to reconstruct the credential back [263].

The concept of anonymous credentials has a solution to protect user's privacy [264]. In case of

certi�cate theft, it is necessary to haveRevocationmechanisms to the suspend or revoke the certi�-

cates/identities. Also, users or anyveri�ers may know, within a reasonable time, the revocation state

of their credentials [141] to ensure accountability.

The last inspired feature from the concept of anonymous credentials is theUnforgeability that

protects from the forging of certi�cates [265]. Certi�cate forging consists of another entity's imper-

sonation; for example, in 2011, an attempted MiTM attack against Google users has been reported.

The attacker used a spoofed SSL certi�cate that impersonated Google's certi�cate and then received

the data between users and Google's encrypted SSL services, such asGmail, Gdocs, and others.

DigiNotar [266, 267] issued more than 500 fraudulent certi�cates, and 300,000 addresses were

compromised. These Google certi�cates were also issued by this company, which is a legitimate

Dutch certi�cation authority that should not issue Google certi�cates [268]. As a result, a hacker

may impersonate someone else to gain access to sensitive information. With theUnforgeability

feature, a malicious user cannot forge certi�cates.

Inspired by blockchain systems, we also addedSelf-Sovereignto the privacy feature set. Individuals

no longer depend on a third entity to issue anidenti�er with a self-sovereign identity, as they will

create theiridenti�ers, maintaining their control and ownership, and the information they wish to

share, with whom and under what conditions. The path to a digital identi�cation model without

the dependence on an intermediary third party currently translates into the construction of trusted

distributed networks, which can validate individuals' information in physical and digital media.

In terms of system availability, one of the most important properties in de�ning and verifying an

identity is theOf�ine . An example can be unlocking a car with a smartphone where if there is

no Internet connection, owners need to take their cars to a location with an Internet connection to

download the certi�cate and establish a connection between the owner's car and phone. Therefore,

it is necessary to implement a mechanism to unlock a car even if there is no Internet connection.

Researching the concept, we found a paper stating that blockchain can solve this problem [269].

Statistically, we want to compare theCommercial/Open Source useor number ofCitationsof the

projects, that also enhance the interest of analysis.Commercial/Open Source useis based on the

number ofGitHubforks and the number ofCitationsis based on Google Scholar (as of 2019-10-16).



6.2. BUILDING A PRIVACY-PRESERVING IDM SYSTEM 101

6.2.2 Methodology for system selection

This section describes the system selection criteria. First, we need at least two traditional IdM

systems to compare with others because it is important to know what kind of resources they can

handle, even without focusing on IoT and privacy.

In addition to the traditional IdM systems, we chose two more system sets to compare. The choice of

blockchain systems focus on our research questions, and the idea is to analyze whether these systems

should be used in IoT towards helping meeting the selected privacy features. For a comparison term,

and as there are modern systems that useIdemix, it is essential to include the concept of anonymous

credentials in the comparison.

The three system groups can be named: Traditional IdM systems, Anonymous credentials-based

IdM systems and Blockchain-based IdM systems.

� Traditional IdM systems:OpenID [270] andShibboleth[108, 109];

� Anonymous credentials-based IdM systems:SocIoTal Identity Manager[128] andAnony-

mous Credential Systems in IoT[131];

� Blockchain-based IdM systems:UniquID [143], uPort [140], Sovrin [141] [147],Decentral-

ized Privacy-Preserving Healthcare Blockchain for IoT[43].

Traditional IdM systems

OpenIDis the most widely used [271] and one of the most cited IdM system [270].Shibboleth[109]

is also one of the most cited among many existing traditional IdM systems. For this reason, we

decided to analyze the features of these two systems. Commercial use is not available because the

system is closed, and there is no information on how many users or companies are using it.

Anonymous credentials based IdM systems

Due to the features we selected based on the concept of anonymous credentials, that contribute to

solving privacy-preserving issues, we discovered two academic research projects (SocIoTal Identity

Manager and Anonymous Credential Systems in IoT) using Idemix technology and focused on

privacy issues and IoT.Anonymous Credential Systems in IoThas a few citations, but it does

include an advantage overSocIoTal Identity Manageras it is lightweight for IoT, so we think it is

essential to include it.

Blockchain-based IdM systems

Finally, we selected four blockchain-based IdM systems. From all the systems analyzed in the

section 2.2.4.2, we select those that are more focused on device identity than user identity.ShoCard's
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bootstrap uses a trusted identi�cation document (passport or government identi�cation, for example).

In these systems, users must manually assign the devices (a user links to a device). Therefore, this

system is more focused on user identity than device identity, being farther from an IoT integration

than others, so it is not as interesting for our comparison.

UniquID has been selected based on theOf�ine feature and because it is attempting to integrate with

IoT technology. We are not only interested in systems designed for IoT, but when we have several

blockchain systems to choose from, we preferred those closest to possible integration.UniquID can

solve theOf�ine problem (see section 6.2.1) and focus in IoT, more speci�cally, IAM of connected

things.

uPort andSovrin are two interesting systems in the comparison table because both are in the liter-

ature about IdM in blockchain. We overview how the current state of integration between IoT and

blockchain and its applicability to privacy issues.

Decentralized Privacy-Preserving Healthcare Blockchain for IoTcovers three fascinating con-

cepts: healthcare, identity management, and blockchain for IoT. We �nd it interesting to include in

the comparison because, in addition to encompassing the three concepts we are addressing, it also

addresses privacy issues and attempts to take a new approach to try to loosen up the blockchain to

achieve the desired lightweight for resource-constrained devices.

6.2.3 IdM systems comparison

In this section, we will present a comparison table with the systems we have selected (see sec-

tion 6.2.2):

1. OpenID;

2. Shibboleth;

3. SocIoTal Identity Manager;

4. Anonymous Credential Systems in IoT;

5. UniquID;

6. uPort;

7. Sovrin;

8. Decentralized Privacy-Preserving Healthcare Blockchain for IoT.

The �rst two features of the Table 6.1 show the impact of systems on the community. The �rst

feature is related to commercial usage, while the second is most related to the scienti�c community.

OpenIDis the most widely used and cited system, according to statistics, but it is also the oldest.
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1 2 3 4 5 6 7 8

Commercial

usage (forks)

940 [271]* N.A. 5[272] 0 [131] N.A. 56 [273] 184 [274] N.A.

Citations 596 [270] 225 [109] 11 [128] N.A. N.A. 14 [140] 1 [141] 0 [43]

Unlinkability # #   # #  #

Revocation     #    

Selective Dis-

closure

# #   # #  #

Unforgeability # #   # #   

Untraceability     # #  #

Self-

Sovereign

# # # # #    

Of�ine # # # #  # # #

Device Iden-

tity

# #    #  #

Designed for

IoT

# #    #   

 Included;

# Not Included.

* The sum of number of forks of different implementations of OpenID. [271]

Table 6.1: IdM systems features comparison
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There is no commercial use information in systems 2), 5), and 8) because it is closed source or not

yet implemented. All systems have many references and usage, which helped in systems selection

because of their relevance. However, systems 4) and 5) do not have much useful information, and

citations are scarce. However, the importance of these works is related to their characteristics.

Traditional IdM systems do not cover any of the feature sets.

In terms of IoT features, the authors ofAnonymous Credential Systems in IoTensure that the system

can satisfy device identity and has the essential features for the integration with IoT. The authors

of this paper compare it toSocIoTal Identity Managerand create a different lightweight solution

because they claim thatSocIoTal Identity Manageris implemented in Java and has no enhancement

to be lightweight. The authors describe that this system is an improvement ofSocIoTal Identity

Manager. Besides, both systems can integrate with IoT.

UniquID andSovrinhave device identity, however, we consider thatuPort does not. The authors

state in aConsensys[275] presentation that device identity can easily work without a typical user-

name/password combination, but it does not provide a detailed description of how to do it and how

advanced it is.uPort is not designed for IoT, but the focus of user identity.

In the case ofA Decentralized Privacy-Preserving Healthcare Blockchain for IoT, we also consider

that device identity is not present. Although the system is designed for IoT and is concerned

with being lightweight and simplifying multiple protocols to �t few resources, we consider that

device identity is not present because the users are responsible for the device management and have

healthcare devices attached to them. As far as we know, integrating devices between them requires

much effort.

In terms of privacy, anonymous credential-based systems cover much the same and do not cover more

blockchain-speci�c features, such as self-sovereign.Sovrincovers almost all the privacy features

presented in the table.

6.2.4 Summary of Findings

This section presents a set of features that we need to build a complete privacy-preserving IdM

system for IoT (see section 6.2.1), which is the answer toRQ1. Then we also present a methodology

for selecting systems (see section 6.2.2).

With the results from Table 6.1 (see section 6.2.3),Sovrinis the closest production system for IoT

with privacy concerns.Of�ine is the only featureSovrinlacks, however this can be adapted because

the system is based on blockchain.

With these conclusions, the answer toRQ2 is yes becauseSovrinis based on blockchain and address

more features than others.
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6.3 Discussion on application scenarios

According to the conclusions of the Section 6.2,Sovrinis the system that covers the most features

presented in the Table 6.1.

There is a research area on IdM for IoT that is not focused on blockchain. Thus, we want to apply

an order of importance to the selected features to analyze whether using blockchain is necessary,

depending on a speci�c application case. Therefore, instead of de�ning whether blockchain can help

meet all features, we �nd it more relevant to de�ne if we should use blockchain in two different IoT

scenarios. For this reason, we decided to do a comparative study of two use cases in the healthcare

area.

Healthcare is adapting to the IoT paradigm, i.e., a hospital can have IoT sensors and actuators spread

across some rooms and patients. Several solutions give patients the ability to have more control

over their health, educating them about the importance of maintaining a healthy diet and frequent

exercise. An example of a wearable device is theFitbit, which monitors signals, such as heart rate

and sleep quality. Also, there are simple health apps on smartphones that measure the number of

steps, for example. By continually receiving medical data, patients become more aware of their

physical condition and better prepared to take care of themselves.

It is not the �rst time we have seen the news from activity trackers that have made a difference in

health and disease detection, such as Apple Watch, which warned an 18-year-old girl that her resting

heart rate was 190 beats per minute and that she must seek immediate help [276].

From pacemakers to blood pressure cuffs, IoT health services can also help doctors better manage

disease, monitor patients, and improve treatment outcomes – but the security of health data is a

substantial risk.

Identity theft can be one of IoT's most signi�cant issues, as one device can impersonate another to

receive privileged information or bypass access controls. Addressing this situation is critical as it

endangers the health and privacy of patients.

We choose different healthcare scenarios to de�ne different identity and security needs. We will

de�ne a scenario that �ts intensive care (where treatment should be urgent and instantaneous) and

continuous care (treatment is continuous and not instantaneous. Patients' health data is shared with

doctors to let them know their health overtime for additional assertive treatment based on more data).

6.3.1 Intensive Care Medicine

Generally, patients in an Intensive Care Unit (ICU) need careful observation and need intense and

constant concern. As patients in this situation have suffered severe injuries or have recently under-

gone surgery, it is critical to monitor patients with sensors attached to their bodies to detect their

vital signs. If there is a problem, alarms should be issued to inform a doctor that a patient needs
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