
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Memristor based logic circuits

Luís Diogo de Almeida Outeiro

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Vítor Manuel Grade Tavares

Second Supervisor: Guilherme Luís Leitão Teixeira Guia de Carvalho

April 9, 2021

Resumo

A lei de Moore está a chegar ao fim. Por causa disto, novas arquiteturas computacionais estão a
ser desenvolvidas. Um crossbar de memristors é uma memória no formato de matriz composta por
memristors, sendo que cada memristor armazena pelo menos um bit. Um memristor pode ser vis-
tor como uma resistência programável. No modo normal de funcionamento, o memristor mantém
o seu valor de resistência e quando está a ser programado este permite que a sua resistência seja
alterada, dentro de certos limites. O objetivo desta dissertação é a implementação de um crossbar
4 x 4 com a lógica de controlo integrada no mesmo substrato que o crossbar. É apresentada uma
breve revisão de modelos de memristors e lógica com memristors, levando à escolha de uma ar-
quitetura IMPLY. O circuito de controlo permite o endereçamento das linhas e colunas do crossbar
de modo a que possam ser escolhidos os memristors que vão fazer parte da computação. Como
este circuito de controlo é digital, este foi descrito como um modelo verilog e posteriormente sinte-
tizado para uma tecnologia customizada composta pelas portas lógicas inversor, NAND e NOR. O
circuito resultante foi simulado com uma operação nand, de modo a demonstrar o funcionamento
do crossbar.

i

ii

Abstract

Moore’s law is reaching its end. Because of this, new computational architectures are being devel-
oped. A memristor crossbar is a matrix-arranged memory device made of memristors, each storing
at least one bit. A memristor can be seen as a programmable resistor. In the normal operation it
hold its resistance value and when being programmed its value can be changed between certain
limits. The goal of this dissertation is the implementation of a 4 x 4 memristor crossbar with the
control logic being integrated in the same substrate as the crossbar. A brief review of memristor
models and logic with memristors is presented, leading to the choice of the IMPLY architecture.
The control circuit allows the addressing of the crossbar rows and columns so that we can choose
which memristors will be part of the computation. Because the control circuit is a digital circuit
(combinational), it was described as a verilog module and then synthesized to a custom target
technology made of inverters, NAND and NOR gates. The resulting circuit was simulated and a
nand operation was performed to demonstrate the functionality of the crossbar.

iii

iv

Acknowledgments

I would like to express my sincere gratitude to both my supervisor and co-supervisor for their
patience and motivation that was needed when writing the dissertation.

Also, I would like to thank Bilal Hussain for making the layout of the chip and the team at
CENIMAT for the support.

I would like to thank the author of SciencePlots [1], which was used to plot the graphs of
this dissertation and the creator of LTspice [2], which was used to perform some of the circuit
simulations.

Finally, I would like to thank my family and friends.

Luís

v

vi

“An idiot admires complexity. A genius admires simplicity.”

Terry Davis

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Problem Statement . 1
1.3 Solution . 2
1.4 Contributions . 2
1.5 Document Structure . 2

2 Background 3
2.1 Memristor . 3
2.2 Memristor models . 4

2.2.1 HP memristor . 4
2.2.2 VTEAM . 4
2.2.3 Window functions . 5

2.3 Logic with memristors . 6
2.3.1 IMPLY . 7
2.3.2 Memristor crossbar . 7

2.4 TFTs . 8

3 Related work 11
3.1 IMPLY Logic . 11

3.1.1 Making a NAND with IMPLY . 13
3.2 MAGIC . 13

4 Fully integrated IMPLY logic 15
4.1 Memristor modeling . 15
4.2 Memristor Simulation . 16
4.3 Thin-Film-Transistor (TFT)s models . 17
4.4 TFTs simulation . 17
4.5 Logic synthesis and schematic generation . 18
4.6 Crossbar design . 18
4.7 Layout . 19
4.8 Crossbar simulation . 22

5 Conclusion 25
5.1 Future work . 25

ix

x CONTENTS

A Simulation Models 27
A.1 Simple Memristor Model - Spice . 27
A.2 Linear Ion Drift Memristor Model - Spice . 27
A.3 Memmristor with antiparallel diodes in series - Memristor Model 28

B Design Files and scripts 31
B.1 Yosys synthesis commands . 31
B.2 4x4 crossbar control logic - Verilog . 31
B.3 8x8 crossbar control logic - Verilog . 33
B.4 .lib technology file . 35
B.5 Output of the digital synthesis of control block for 4x4 crossbar 36
B.6 Output of the digital synthesis of control block for 8x8 crossbar 37

References 41

List of Figures

2.1 Basic circuit elements and physical units . 4
2.2 Memristor schematic symbol . 5
2.3 Doped and undoped regions of HP memristor 6
2.4 Two commonly used window functions. These ensure that the memristor internal

state variable is bounded . 7
2.5 IMPLY logic gate with 2 memristors and 1 resistor 8
2.6 Triangular areas representing allowed VSET and VCOND for RG = 1kΩ and RG =

9kΩ (yellow) . 9
2.7 IMPLY logic gate uses 2 memristors and 1 resistor 10
2.8 3D representation of a memristor crossbar . 10
2.9 Bottom gate Thin-Film-Transistor . 10

3.1 Switching times of a memristor vs and the ones in the sneak path with and without
adding the antiparallel diodes in series with each memristor 12

3.2 Linear ion drift IV plots . 13
3.3 N input MAGIC NOR gate . 14

4.1 Memristor simple model . 16
4.2 Memristor response to square input voltage . 16
4.3 Current-Voltage curve of the memristor . 17
4.4 TFT characteristic curve . 18
4.5 Non-bootstrap TFT NAND gate simulated voltage output response to 2 kHz and

1 kHz voltage inputs . 19
4.6 Diode load logic gates . 20
4.7 Bootstrap logic gates that make up the target technology of the digital synthesis . 20
4.8 The main components of the crossbar . 21
4.9 Layout of the logic gates with bootstrap load . 22
4.10 Layout of the control circuit . 23
4.11 NAND operation within crossbar. The input memristors are memristor 0 and 1

from the first row and the output memristor is memristor 2 from the same row.
s means set, cl means clear, cn means cond, g means grnd, o means out and ad
means addr. The memristor state is the last signal and it is inverted, which means
that a low signal represents a 1 and vice versa. All omitted signals are zero. Initial
state values of all memristors are 0. 24

xi

xii LIST OF FIGURES

List of Tables

2.1 Truth table of the material conditional/implication 7

3.1 Sequence of imply operations to perform a NAND operation 13

4.1 Size area and transistor count of the control circuit 20

xiii

xiv LIST OF TABLES

Abbreviations and Symbols

ASIC Application Specific Integrated Circuit. 18

CMOS Complementary Metal Oxide Semiconductor. 8, 9

CPU Central Processing Unit. 8

FET Field Effect Transistor. 9

MAGIC Memristor-Aided Logic. 13

MOSFET Metal Oxide Field Effect Transistor. 8

MSE Mean Square Error. 5

TEAM ThrEshold Adaptive Memristor. 4

TFT Thin-Film-Transistor. ix, xi, 2, 3, 8, 9, 15, 17–19, 25

TN Twisted Neumatic. 8

VTEAM Voltage ThrEshold Adaptive Memristor. 4, 5

xv

Chapter 1

Introduction

1.1 Context and Motivation

The memristor (memory resistor) is a passive two-terminal electronic component that behaves like

a programmable resistor. Applying a certain voltage to its terminals allows the resistance value

to change. In 1971, Leon Chua predicted the existence of the memristor by assuming that there

is a passive electronic component per each pairwise relation of voltage (V), current (I), charge

(Q) and flux linkage (Φ) [3]. Later in 2008, with the production of the first integrated circuit

with memristors by HP, many researchers were encouraged to continue the developments in this

field. The study of the physical conduction mechanisms, modeling, integration with CMOS, and

novel architectures are some of the research topics that need further investigation. This electronic

component has different applications in electronics such as memories, logic elements, oscillators,

trimming [4] and neuromorphic circuits. With the Moore’s law approaching its limit, there is a ris-

ing need of new computation architectures so that the computational performance keeps growing

at the Moore’s law growth rate. Also, the integration of transistors and memristors in the same in-

tegrated circuit opens the door to non Von-Neumann architectures such as dataflow and reduction

machines, that are a natural solution to problems that can be parallelized. As Stanley Williams

said,

“Putting non-volatile memory on top of the logic chip will buy us twenty years of

Moore’s Law.”

1.2 Problem Statement

This thesis is dedicated to the study and implementation of memristor circuits that are able to

compute logic functions. The control sub-circuit is implemented with thin-film transistors. This

circuit is responsible for driving both bit and word lines of a matrix arrangement of memristors,

know as crossbar.

1

2 Introduction

1.3 Solution

An 4 x 4 memristor crossbar was implemented and integrated with a thin-film-transistor based

control circuit. The crossbar can work as a typical memory and also allows within-memory com-

putations using a sequence of implication logic operations.

1.4 Contributions

This dissertations presents the different challenges faced when developing logic circuits with mem-

ristors. The contributions of the dissertation are:

• Implementation in Verilog-A of a memristor model based on a voltage threshold.

• Design and test of an integrated crossbar architecture and control circuit using a 5 µm TFT

technology that works as both memory and computation unit, marking a new step in the

state of the art of memristor and TFT integration using similar materials.

1.5 Document Structure

This dissertation starts with a brief introduction 1 that exposes the motivation behind the need of

new computational architectures and the presented solution to the given problem. Then follows a

background chapter 2 that sets the base concepts required for the comprehension of the following

chapters. In chapter 3 we dive into the state of the art of logic circuits with memristors that has

been developed over the years up to the date of writing of this dissertation. In chapter 4 the used

models, libraries and tools required for the simulation and design of the crossbar components are

explained, following the discussion of the architecture of the proposed solution and finally, the

schematic and layout implementation.

Chapter 2

Background

In this chapter one can learn more about what a memristor is, its physical implementation, circuit

models, crossbars, memristor logic and TFTs.

2.1 Memristor

The memristor, as the name suggests, is a resistor that has memory. This means that the resistance

value of the device at the time t depends on the values of voltage/current at its terminals at times

before t. The memory property is often modeled as a differential equation. What is this differential

equation like and how can one arrive to its mathematical form? This is a question that can only

be answered rigorously after the development of a physical model of the memristor. This model

can then be used to create simplified models that are adequate for simulation. Let’s first discuss

how the memristor first appeared. Leon Chua, in 1971, postulated that a passive, fundamental

device that relates the flux linkage Φ and charge q should exist. In figure 2.1 we can see the 4

fundamental passive electronic components interconnected by the respective equations. However,

and according to different authors, the memristor is not considered a fundamental passive device

[5]. If we consider that the memristance M is constant, one can say that the memristor is exactly

similar to a resistor, as a result of equations (2.1), (2.2) and (2.3).

∫
Φdt =V (2.1)

∫
qdt = I (2.2)

dΦ = M ·dq (2.3)

In this dissertation we will consider the memristor to be a device with hysteresis that can

alternate between different values of memristance. Being a fundamental component or not, the

physical memristor exists and its importance in electronics is not reduced by this categorization.

The symbol to be used for the memristor is pictured in figure 2.2.

3

4 Background

v

i

φ

q
dv=Rdi

dφ=Ldi dφ=Mdq

dq=Cdv

Figure 2.1: Basic circuit elements and physical units

2.2 Memristor models

2.2.1 HP memristor

In 2008, HP Labs produced the first crossbar array with memristors. The simplified model of

the memristor 2.3 translates the ionic motion into a variable resistance that is dependent on an

internal state variable w. Equation 2.4 is similar to Ohm’s law and 2.5 describes how the internal

state variable changes depending on the current that passes through the device. This simplified

model considers two different regions in space sandwiched in between two metal contacts, show

in figure2.3. The width of the TiO2−x represents the spatial distribution of the oxygen vacancies

so that an increment of this width increases the conductance. The resistance varies between Rmin

and Rmax. as w varies between L and 0.

V (t) =
[

Ro f f
w(t)

L
+Ron

(
1− w(t)

L

)]
· I(t) (2.4)

dw
dt

=
µvRon

L
· I(t) (2.5)

2.2.2 VTEAM

Voltage ThrEshold Adaptive Memristor (VTEAM) [6] is a memristor model that takes into consid-

eration a voltage threshold. This model is based on the ThrEshold Adaptive Memristor (TEAM)

[7] model, that describes a current-threshold memristor. The internal state of the memristor is

2.2 Memristor models 5

Figure 2.2: Memristor schematic symbol

described by equation 2.6.

dw(t)
dt

=

ko f f · (v(t)

vo f f
−1)αo f f 0 < vo f f < v

0, von < v < vo f f

kon · (v(t)
von
−1)αon v < von < 0

(2.6)

All of the unknown variables of equation 2.6 can be determined using experimental data.

Gradient descent is one of the methods that can make the model fit the given data, by minimizing

a metric of error, for instance, the Mean Square Error (MSE).

The current-voltage relationship in VTEAM can be defined in many different ways; equation

2.7 is one example, as suggested in [6].

v(t) =
[

RON +
ROFF −RON

wo f f −won
· (w−won)

]
· i(t) (2.7)

2.2.3 Window functions

Window functions are mathematical functions that ensure that the internal state variable that mod-

els the memristor stays within certain bounds. The working principle of these functions is to limit

the derivative of the internal state variable to small values when the internal state variable is close

to one of the boundaries. Depending on the implementation, the window function might introduce

some problems to the model, for instance, slow changing near the boundaries.

A. Biolek
The Biolek window function depends on x (the normalized internal state variable) and I (current

passing through the memristor) and is defined in equation (2.8).

fB(x, I) = 1− (x− step(−I))2p (2.8)

B. Joglekar
The Joglekar window function depends on x (the internal state variable) and is defined in equation

2.9.

fJ(x) = 1− (2x−1)2p (2.9)

As a conclusion, the Biolek window function has the advantage of not limiting the derivative

of the internal state variable at the boundaries if the current applied to the memristor terminals

6 Background

Pt

TiO2
TiO2-x

D w

Pt

Figure 2.3: Doped and undoped regions of HP memristor

makes the internal state variable move towards the other boundary. This prevents the internal state

variable to get ’stuck’ near its boundaries.

2.3 Logic with memristors

Logic gates can be seen as abstract entities that perform logic operations. There are many ways

to implement devices that perform these operations. A well known case is the transistor imple-

mentation, where the logic values 0/1 are mapped to voltages (0 V/5 V, for example). However,

this is not the only way of performing these operations. Even though they are not very practical, it

is possible to build an hydraulic computer [8] or even build the same circuit using dominoes [9]!

The requirement is that one can consistently map a logic 0/1 to a physical quantity and ensure that

the mapped output of the physical implementation of the gate is according to the truth table of the

gate we want to build. With this, we can start to think about a way of implementing logic gates

with memristors. We know that the memristance can have any value between Rmin and Rmax. Each

bit of information can be mapped to a range of high/low conductances, rather than being mapped

to voltages. We will consider 1 as high conductance (Rmin) and 0 as low conductance (Rmax). De-

pending on the behavior of the memristor, the implementation of the logic gates is different. This

is why a good model of the memristor is required for circuit design. Let’s consider the case of a

memristor with the following behavior:

• The internal state of the memristor changes if the applied voltage to its terminals is greater

than Vclear_min

• The internal state of the memristor changes in the other direction if the applied voltage to

it’s terminals is less than Vset_max

• If none of the above conditions are met, the internal state of the memristor remains un-

changed.

This is a generic threshold model of a memristor.

2.3 Logic with memristors 7

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0
fJ

(x
)

p

1

2

3

4

(a) Joglekar window function

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

fB
(x

)

p and current

p = 1; I > 0

p = 2; I > 0

p = 3; I > 0

p = 4; I > 0

p = 1; I < 0

p = 2; I < 0

p = 3; I < 0

p = 4; I < 0

(b) Biolek window function

Figure 2.4: Two commonly used window functions. These ensure that the memristor internal state
variable is bounded

2.3.1 IMPLY

The behavior described in section 2.3 allows us to implement an IMPLY logic operation having

the truth table represented in table 2.1.

The inputs of the logic operation are the conductance of memristors P and Q, (1 for high con-

ductance and 0 for low conductance) and the output of the operation is stored as the conductance

of memristor Q. To perform the logic operation we must apply voltages VCOND and VSET to the

respective memristor, as pictured in 2.7. To understand how this operation works, lets consider a

particular case where the memristor state does not change if the voltages applied to its terminals

is between −1 V and 1 V. Also, Rmin = 10kΩ, Rmax = 100kΩ and RG = 9kΩ.

In this case, we can apply a voltage of−0.85 V to the memristor P and−1.3 V to the memristor

Q. The result of this operation is stored as the memristor state Q. This should only change in the

case where both P and Q are in a high resistive state. For the state to change, the voltage across

memristor Q should be below -1V, so it drives this same memristor to a low resistive state. The

allowed VSET and VCOND voltages for RG = 1kΩ and RG = 9kΩ are displayed in figure 2.6.

2.3.2 Memristor crossbar

A crossbar is a matrix arrangement of memristors forming a 2D memory. Each memristor can be

addressed as a 1 bit memory element by selecting the respective row and column of the crossbar,

pictured in figure 2.8.

Table 2.1: Truth table of the material conditional/implication

p q (p → q)
F F T
F T T
T F F
T T T

8 Background

VCOND VSET

P Q

RG

Figure 2.5: IMPLY logic gate with 2 memristors and 1 resistor

However, the use of the memristor crossbar is not limited to read and write operations of mem-

ory elements. It is also possible to make in-place logic operations with the information present in

the crossbar memory elements. This means that the memristor crossbar extends the operation of

a typical memory. This means that in a typical Central Processing Unit (CPU) architecture, the

CPU can still copy memory content to its registers, perform logic/arithmetic operations on the data

and copy the results back into memory. The operations can also be performed in-place, exploiting

the benefits of the memristor crossbar architecture: By applying adequate voltage stimuli to the

row/column lines of certain memory elements it is possible to perform any logic operation. This

is done by decomposing the operation we want to perform in simpler ones, in this case, reset and

imply operations.

2.4 TFTs

TFT is a type of field effect transistor whose substrate is an insulator instead of the typical Metal

Oxide Field Effect Transistor (MOSFET) that have a semiconductor bulk. They are built by de-

positing thin layers of different materials to give shape to the metal contacts, active semiconductor

areas and dielectric layers. The main application of these in the production of liquid crystal dis-

plays (LCDs). In the case of Twisted Neumatic (TN) panels, each transistor controls the orienta-

tion of liquid crystals through the application of an electric field. The orientation of these crystals

defines the polarization of the light that reaches the topmost polarizing filter, allowing light to pass

or blocking it. Over the last 10 years there has been a growth of the number of electronic circuits

implemented entirely using thin-film technology, including 13.56 MHz RFID smart labels [10]

used in many applications, as in transport systems. The performance of these type of transistors

is much lower than typical Complementary Metal Oxide Semiconductor (CMOS) transistors. The

low charge carrier mobility is one of the limiting factors that are translated to a low unity gain cut-

off frequency and low intrinsic gain. Despite being slow, these transistor circuits are very cheap

2.4 TFTs 9

Figure 2.6: Triangular areas representing allowed VSET and VCOND for RG = 1kΩ and RG = 9kΩ

(yellow)

to manufacture compared to standard CMOS implementations [10], allowing the mass production

of low cost, disposable technology.

TFT transistors can be manufactured in bottom-gate or top-gate, staggered or coplanar topolo-

gies. The topology to be used in the implementation of the crossbar circuit is bottom-gate, as

shown in figure 2.9.

This type of transistor, like a typical Field Effect Transistor (FET), has three operating regions,

cut-off, triode and saturation. In cut-off, the transistor does not conduct (there is only a small

leakage current). In triode it behaves like a small-value resistor and in saturation it behaves as a

voltage-controlled current source.

10 Background

VCOND VSET

P Q

RG

Figure 2.7: IMPLY logic gate uses 2 memristors and 1 resistor

Figure 2.8: 3D representation of a memristor crossbar

Source/Drain Semiconductor

Gate

Gate dielectric

Substrate

Figure 2.9: Bottom gate Thin-Film-Transistor

Chapter 3

Related work

This chapter serves as a base reference of the work that has been developed over the years about

implication logic with memristors.

3.1 IMPLY Logic

Memristor-based implication logic circuits enable in-memory computation of any logic function.

There are several important topics that need to be discussed in order to define circuit design con-

straints. The success of the proposed task depends not only on the choice of an appropriate circuit

architecture but also on the characteristics of the chosen memristor, and intra-chip variability of

the memristor/transistor parameters. Speed, power consumption, size and durability of the circuit

is also an important topic, however, we will not focus on optimizing these to a great extent as the

main goal is the logic correctness of the fabricated chip. As stated in [11] and [12], a linear ion

drift memristor is not suitable for the implementation of IMPLY logic gates due to the drift of

the internal state variable when parasitic voltages are applied. This is explained by the fact that

this memristor does not have a voltage threshold and, as a consequence, small voltages applied

to the memristor can change its state over time, destroying the stored data. Nevertheless, it is

possible to mitigate this by increasing the non-linearity of the memristor. This can be done by

including a pair of antiparallel diodes in series with the memristor, for instance. If the crossbar is

properly designed, sneak-path currents through memristors will be very low because the voltage

through the respective antiparallel diode pair will be bellow the diode built-in potential (0.7 V for

silicon diodes). The addition of this non-linearity is not needed if the memristor is a memdiode,

as it already presents this desired non-linearity. For memristors that are connected in a crossbar

arrangement, the shortest sneak paths include 3 memristors in series. If we add one or more set of

antiparallel diodes in series with each memristor, it is possible to increase the undesired switching

time of the memristors that are in that sneak path without increasing the switching time of the

memristor we want to change state too much. Figure 3.1 shows the switching time for 4 different

scenarios:

• Memristor we want to change the state, without addition of antiparallel diodes in series

11

12 Related work

• Memristors belonging to the sneak path, without addition of antiparallel diodes in series

• Memristor we want to change the state, with antiparallel diodes added in series with each

memristor

• Memristors belonging to the sneak path, with antiparallel diodes added in series with each

memristor

From this we can conclude that the added non-linearity increases the time it takes to flip a

memristor state that belongs to a sneak path, compared to the corresponding time of a memristor

that does not have these diodes in series.

0 s 2 s 4 s 6 s 8 s 10 s

Time

0.0

0.2

0.4

0.6

0.8

1.0

In
te

rn
al

S
ta

te
V

ar
ia

b
le

Switching time and leakage switching with and without added nonlinearities

Leakage drift - only memristors

Changing state - only memristors

Changing state - memristors + antiparallel diodes in series

Leakage drift - memristors + antiparallel diodes in series

Figure 3.1: Switching times of a memristor vs and the ones in the sneak path with and without
adding the antiparallel diodes in series with each memristor

Let’s consider a memristor that is well modeled by linear ion drift. The equations that describe

this model are (3.1) and (3.2).

v(t) =
(

RON
w(t)

D
+ROFF

(
1− w(t)

D

))
i(t) (3.1)

dw(t)
dt

= µv
RON

D
i(t) (3.2)

This model can be implemented in SPICE. The differential equation (3.2) can be solved by

considering an auxiliary circuit node L. We will choose the voltage in this node to be equal to

the normalized internal state variable x(t) = w(t)
D of the memristor. The state variable is bound

between 0 and 1, implementing a window function with the same behaviour as a Biolek window

function with very large p. The SPICE code is in appendix A.2. The I-V curve for a square-wave

current source input is presented in figure 3.2a. It is composed of two almost straight lines, the

steepest corresponding to Rmin and the other to Rmax. The transition between memristive states is

3.2 MAGIC 13

Table 3.1: Sequence of imply operations to perform a NAND operation

Operation Voltage stimuli
Step 1: S = 0 VS =VCLEAR

Step 2: p =⇒ s VP =VCOND VS =VSET

Step 3: q =⇒ q VQ =VCOND VS =VSET

much faster than the input signal. For sinusoidal inputs, the I-V curve is a pinched hysteresis loop.

For high frequencies (in this case, 1 kHz) the memristor behaves like a resistor.

−15 V −10 V −5 V 0 V 5 V 10 V 15 V

Voltage

−1 mA

−750 µA

−500 µA

−250 µA

0 A

250 µA

500 µA

750 µA

1 mA

C
u

rr
en

t

(a) Linear ion drift memristor I-V curve
RON = 100Ω, ROFF = 16kΩ, µv = 100Ω, D =
10nm, ISOURCE =±1µA, T = 2s.

−10 V −7.5 V −5 V −2.5 V 0 V 2.5 V 5 V 7.5 V 10 V

Voltage

−1 mA

−750 µA

−500 µA

−250 µA

0 A

250 µA

500 µA

750 µA

1 mA

C
u

rr
en

t

Input frequency

10Hz

20Hz

1kHz

(b) Linear ion drift memristor IV curve with sinusoidal
current input (1mA peak current) at 10Hz,20Hz and
1kHz.

Figure 3.2: Linear ion drift IV plots

3.1.1 Making a NAND with IMPLY

Lets consider the NAND logic operation. It is important to note that the operation P =⇒ Q is

logically equivalent to ¬P OR Q, as well as P NAND ¬Q. Also, P =⇒ 0 is equivalent to ¬P.

Similarly, it is possible to describe a NAND operation as a composition of IMPLY operations:

p NAND q = p =⇒ ¬q (3.3)

A NAND operation between memristor P and Q requires an auxiliary memristor S. The se-

quence of operations is the one in table 3.1. The result of the operation is stored as the memristance

of memristor S.

3.2 MAGIC

Memristor-Aided Logic (MAGIC) [13] is an alternative to IMPLY logic. This logic family does

not use resistors, instead, logic operations are performed only using memristors. Both inputs and

14 Related work

outputs of the performed logic operations are stored as memristor states.

in1

out

out_init V1 V2 VN

in2 inN

Figure 3.3: N input MAGIC NOR gate

The initial step consists in writing a 1 (low resistance) to the output memristor, by applying

VCLEAR. This is the same VCLEAR that is used in IMPLY gates. Memristors in1 and in2 are also

initialized, if needed. The second step consists in applying V0 to both V1 and V2. If at least one

of the memristors in1 or in2 is in a low memristive state, then the voltage at the middle node will

be approximately V0, changing the state of the output memristor. The choice of V0, the write 1

(VSET) voltage and the write 0 (VCLEAR) voltage must follow certain rules, so the logic operation is

correctly implemented and also that the input memristors does not change state.

Chapter 4

Fully integrated IMPLY logic

In this chapter we present the setup that was used to design the memristor crossbar and the required

control logic, from the memristors and TFTs models to the layout of the chip.

4.1 Memristor modeling

After testing several different memristor model implementations, one concluded that most of the

implementations have convergence problems even when used in very simple circuits [14]. Ini-

tially, a verilogA model for the memristor was implemented and can be found in appendix A.3.

With this, a simple model was implemented in SPICE that takes into account two threshold

voltages, one for the on and another for off states. The internal state is represented as a circuit

voltage of the node L. The voltage of this node can vary from 1 V to 10 V. The memristor resistance

is 10 kΩ × V(L) which means that Rmin = 10kω and Rmax = 100kΩ. Note that the internal state

is dimensionless, even though it is represented as a voltage for the simulation program. If the

voltage across the memristor is over 1 V (positive threshold voltage) then the internal state will

start to change at a constant rate until node L reaches 10 V. If the voltage across the memristor is

less than −1 V then the internal state will start to decrease at a constant rate until node L reaches

1 V. The state node voltage increases/decreases by charging a capacitor connected to that node

by one of the two current sources connected to it. The equivalent circuit is presented in figure

4.1 and the respective SPICE code can be found in appendix A.1. This model does not take into

account that the change of rate of the internal state depends on the applied voltage to the terminals

of the memristor as well as the state itself. Also, it does not model the drift of the internal variable

when small voltages are applied to its terminals (below positive and above negative thresholds).

However, the model is good enough so that it allows the design of memristor circuits including

crossbar circuits. The model also behaves satisfactorily when it comes to represent the sneak path

currents. Most importantly, the current that goes through it is 0 A when the potential difference

at its terminals is 0 V. It also models the low-pass filter behaviour of a memristor, this is, when

very small pulses of voltage are applied to its terminals so that it changes its state (above positive

threshold or below negative threshold) the state will only vary a small quantity that is proportional

15

16 Fully integrated IMPLY logic

to the pulse duration. Because of the chosen capacitor size (10 µF) and the current sources that

charge/discharge node L (−1 A / 1 A), the time that takes the internal state to vary from the minimal

value to its maximum value is given by the charge time of a capacitor by a constant current source

∆t =C ·∆V/I, which gives t = 10µ ·(10−1)/1≈ 1µs. This transition is much faster than the speed

of the thin-film-transistors that make the control circuit, which allows us to say that the memristor

speed is not the bottleneck of the circuit. This time of 1 µs is rather conservative, as physical

implementations of memristors with switching times of 50 ns have already been achieved.

10kΩ
R1

10uF
C1

L PLUS

MINUS

G
M

E
M

1

G
M

E
M

2

Figure 4.1: Memristor simple model

4.2 Memristor Simulation

A square wave input voltage from −2 V to 2 V was used to test the memristor. The results are

according to the simulation model, as show in figure 4.2. The I-V curve is shown in figure 4.3,

where both Rmin and Rmax can be extracted by taking the inverse of the slopes of the 2 straight

lines. A large slope corresponds to a large conductance.

−2 V

−1 V

0 V

1 V

2 V

In
p

u
t

vo
lt

ag
e

2

4

6

8

10

In
te

rn
a
l

st
at

e
of

th
e

m
em

ri
st

or

0 s 20 ms 40 ms 60 ms 80 ms

Time

−200 µA

−100 µA

0 A

100 µA

200 µA

M
em

ri
st

or
cu

rr
en

t

Figure 4.2: Memristor response to square input voltage

4.3 TFTs models 17

−2 V −1.5 V −1 V −500 mV 0 V 500 mV 1 V 1.5 V 2 V

Memristor voltage

−200 µA

−150 µA

−100 µA

−50 µA

0 A

50 µA

100 µA

150 µA

200 µA

M
em

ri
st

o
r

cu
rr

en
t

Figure 4.3: Current-Voltage curve of the memristor

4.3 TFTs models

The TFT model is based in a neural network whose weights are fitted with measurements taken

from a real transistor. It is composed of an input layer with 3 inputs (VG VD VS), 1 hidden layer with

105 hidden weights and 35 hidden biases, and one output (IDS). The capacitor is approximated by

a Meyers model. Due to convergence problems, an ideal switch transistor model was used instead

of the TFT model, when simulating the crossbar.

4.4 TFTs simulation

A TFT with size W/L = 20µ/20µ was used to trace the characteristic curves. The result can be

seen in figure 4.4. Other sizes were also tested to confirm that the current scales linearly with

W . One of the problems of this model is that it does not work well when small currents are

involved. This can be seen in figure 4.4. This is due to the fact that the transistor is modeled by a

neural network that does not enforce a zero current when all of the transistor terminals are at zero

potential. For a transistor of size W/L = 20µ/20µ , when all of its terminals are at 0 V, the drain-

source current is 5.5 µA, which is not physically possible. This could be solved by implementing

a square-law transistor model.

A non-bootstrap TFT NAND gate was simulated in Cadence Virtuoso with a supply voltage

of 8 V peak-to-peak. The result of the simulation is in figure 4.5.

18 Fully integrated IMPLY logic

500 mV 1 V 1.5 V 2 V 2.5 V 3 V 3.5 V 4 V

Drain-Source Voltage

0 A

2 µA

4 µA

6 µA

8 µA

D
ra

in
-S

ou
rc

e
C

u
rr

en
t

Gate-Source Voltage

0 V

1 V

2 V

3 V

4 V

Figure 4.4: TFT characteristic curve

4.5 Logic synthesis and schematic generation

The first step in implementing the control circuit logic was to design a structural Verilog block that

allows the addressing of one row and one column of the memristor crossbar. This Verilog code

is available in appendix B.2. According to the control circuit and figure 4.8 the Voltage VSET is

applied to the column i if the [3 : 0]set_addr is set to the correct address and signal set is 1. The

same applies for voltages VCLEAR and VCOND. A row also has to be selected, by setting the signal

grnd to 1 and [3 : 0]grnd_addr to the address we want to connect to ground through RG.

Next, this code had to be synthesized to a target technology, and the open source tool Yosys

was chosen. The software allows the target technology to be an FPGA or an Application Specific

Integrated Circuit (ASIC). In this case we want an ASIC so we must first specify the .lib (Liberty)

files that describe the standard cells technology. In this case we only provide the synthesis tool

with 3 basic logic gates (INVERTER, NAND and NOR), presented as a Verilog logic function.

The .lib file is presented in appendix B.

4.6 Crossbar design

The design of the crossbar started with the simulation and development of memristor models.

Using the Cadence Virtuoso simulation environment it was shown that the transistor can only

operate up to a few kHz before it started to lose gain. Taking into consideration that this circuit is

a proof of concept and that the memristors do not impose an upper bound on the switching time, we

4.7 Layout 19

−4 V

−2 V

0 V

2 V

4 V

In
p

u
t

A

−4 V

−2 V

0 V

2 V

4 V

In
p

u
t

B

0 s 2 ms 4 ms 6 ms 8 ms 10 ms

Time

−2 V

0 V

2 V

4 V

O
u

tp
u

t

Figure 4.5: Non-bootstrap TFT NAND gate simulated voltage output response to 2 kHz and 1 kHz
voltage inputs

can work at lower clock frequencies without impact on the functionality of the circuit. A voltage

threshold memristor model was chosen for simulations, being this model described in section 4.1.

Three logic gates were implemented using NMOS TFTs, as pictured in figures 4.6a, 4.6c and

4.6b. These NMOS-only logic gates have the problem that the output voltage can not go above

VDD−VT H . To fix this issue, a new set of logic gates was implemented where a bootstrap load is

used in place of a diode connected transistor. The bootstrap load is a dynamic circuit that allows

its diode connected transistor gate voltage to go above VDD, so that the output can reach VDD. The

schematic of these gates is pictured in figures 4.7a, 4.7c and 4.7b. The DC operating point of node

GL is VDD−VT H . When the output of the logic gate is at 0 V and starts rising, the node GD also

starts to rise through capacitor C. The ∆VGL/∆Vo ≈ 1 if we do not consider the voltage divider with

capacitor Cd. This positive feedback circuit allows almost rail to rail operation. A logic 0 would

ideally be represented by a voltage equal to VSS (we chose to work with VDD and VSS instead of

VDD and GND). However, because of the voltage divider consisting of the transistor resistances,

the output node cannot go to VSS but close to it. How close we get to VSS is a matter of making the

bottom transistor wider, at the expense of consuming more static power.

4.7 Layout

The layout was done hierarchically, being the logic gates implemented first and later more complex

parts of the circuit.

The layout of the logic gates are presented in figure 4.9. The size and area of each of the

building blocks is presented in table 4.1. As seen in figure 4.9, the major contributor to the logic

gates area is the 10 pF capacitor used in the bootstrap load.

20 Fully integrated IMPLY logic

W=20u

L =20u

M2

nfet

W=40u

L =20u

M1

nfet

Vdd

in

out

(a) INVERTER logic
gate

W=20u

L =20u

M2

nfet

W=40u

L =20u

M1

nfet

Vdd

inA

out

W=40u

L =20u

M3

nfetinB

(b) NOR logic gate

W=20u

L =20u

M3

nfet

W=80u

L =20u

M1

nfet

Vdd

inA

out

W=80u

L =20u

M2

nfet

inB

(c) NAND logic gate

Figure 4.6: Diode load logic gates

M3
nfet
W=20u
L =20u

M1
nfet
W=40u
L =20u

Vdd

in

out

M2
nfet
W=20u
L =20u

Vdd

10pF

C1

(a) INVERTER logic
gate

M3
nfet
W=20u
L =20u

M1
nfet
W=40u
L =20u

Vdd

inA

out
M2
nfet
W=40u
L =20u

inB

M4
nfet
W=20u
L =20u

10pF

C1

Vdd

(b) NOR logic gate

W=20u
L =20u

M3
nfet

W=80u
L =20u

M1
nfet

inA

out

W=80u
L =20u

M2
nfet

inB

W=20u
L =20u

M4
nfet

Vdd Vdd

10
pF

C
1

(c) NAND logic gate

Figure 4.7: Bootstrap logic gates that make up the target technology of the digital synthesis

Table 4.1: Size area and transistor count of the control circuit

Size (µm×µm) Area (mm2) Transistor Count
Inverter 383×219 0.084 3
Nand 222×392 0.087 4
Nor 402×219 0.088 4
Control Circuit 5000×2500 12.5 120

4.7 Layout 21

co
l0

co
l1

co
l2

co
l3

row0

row1

row2

row3

(a) Schematic of the implemented memristor cross-
bar

vcond vset vclear

col i

co
n
d
_
o
u
t
i

se
t_

o
u
t
i

cl
e
a
r_

o
u

t
i

(b) Each column is addressed by condout , setout and
clearout signals that are generated by the synthe-
sized digital block

Rg

row i

gnd_out i

(c) Each row is addressed by gndout that is gener-
ated by the synthesized digital block

set

set_addr i

cond

cond_addr i

clear

clear_addr i

gnd_sig

gnd_sig_addr i

cond_out i

set_out i

clear_out i

gnd_out i

C
o
n
tr

o
l
ci

rc
u
it

(d) Input Output block diagram of the synthesized
digital control circuit

Figure 4.8: The main components of the crossbar

22 Fully integrated IMPLY logic

(a) INVERTER logic gate (b) NOR logic gate (c) NAND logic gate

Figure 4.9: Layout of the logic gates with bootstrap load

4.8 Crossbar simulation

An in-memory NAND operation was performed between 2 crossbar elements. The addressing of

the elements is performed with the the addr.x and the respective enable signal. The results of the

simulation is in figure 4.11. All of the memristors start with a state of 0. The NAND operation

starts with a clear of the third memristor, which is equivalent to writing a 0 to that same memristor.

Because its initial state was zero, its state remains the same. Then an implication from the first to

the third memristor is performed, being the result stored in the third memristor. The result of the

operation is 1, resulting in the third changing its state. Finally an implication from the second to

the third memristor is performed, resulting in a final value of the computation of 0 NAND 0 = 1.

4.8 Crossbar simulation 23

Figure 4.10: Layout of the control circuit

24 Fully integrated IMPLY logic

cl
cn

s
g

cl
-a

d
1

cn
-a

d
0

cn
-a

d
1

s-
ad

1
cl

-o
2

cn
-o

0
cn

-o
1

cn
-o

2
s-

o2
g
-o

0

1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms

Time

Figure 4.11: NAND operation within crossbar. The input memristors are memristor 0 and 1 from
the first row and the output memristor is memristor 2 from the same row. s means set, cl means
clear, cn means cond, g means grnd, o means out and ad means addr. The memristor state is the
last signal and it is inverted, which means that a low signal represents a 1 and vice versa. All
omitted signals are zero. Initial state values of all memristors are 0.

Chapter 5

Conclusion

Creating new architectures that enable in-memory computation is an important step to take if we

want to extend Moore’s law validity for a few more years. This dissertation presented one of these

architectures, integrating TFTs and memristors in a single chip.

5.1 Future work

As future work it is important to perform adequate post-fabrication tests to make sure the chip

is working according to the design specifications. A bigger crossbar also might be implemented,

with an upgraded architecture that allows the operation between any two arbitrary memristors as

the current architecture only allows performing logic operations between memristors belonging to

the same row.

25

26 Conclusion

Appendix A

Simulation Models

Note: The character \ is used as a new line.

A.1 Simple Memristor Model - Spice

SIMPLE MEMRISTOR MODEL **LUIS OUTEIRO**

.subckt memristor PLUS MINUS L

R1 PLUS MINUS R={V(L) * 10000}

GMEM1 L 0 value = {(V(PLUS,MINUS) < -1) * (V(L) > 1)}

GMEM2 0 L value = {(V(PLUS,MINUS) > 1) * (V(L) < 10)}

C1 L 0 10u

.ic V(L) = 10

.ends memristor

A.2 Linear Ion Drift Memristor Model - Spice

LINEAR ION DRIFT MEMRISTOR MODEL **LUIS OUTEIRO**

.subckt memristor_linear_ion_drift PLUS MINUS X

.param RON = {100} ROFF = {16k} L = {10n} mu = {10f}

R1 PLUS MINUS R= {RON} * V(X) + (1 - V(X))*{ROFF}

GMEM1 0 X value = {(V(X) > 0) * (V(X) < 1)*I(R1)*(MU * RON / (L^2))}

GMEM2 0 X value = {(V(X) >= 1) * (I(R1) <= 0)*I(R1)*(MU * RON / (L^2))}

GMEM3 0 X value = {(V(X) <= 0) * (I(R1) >= 0)*I(R1)*(MU * RON / (L^2))}

C X 0 1

.ic V(X) = 0.5

.ends memristor_linear_ion_drift

27

28 Simulation Models

A.3 Memmristor with antiparallel diodes in series - Memristor Model

// VerilogA for memristor_lib, memristor, veriloga

‘include "constants.vams"

‘include "disciplines.vams"

module memristor (a, b, l);

inout a,b;

output l;

electrical a, b, l, foff, fon, c1, c2, is1, is2, r1, r2;

parameter koff=61.49, kon=-3.4*10**6, voff=1, von=-1.1, \

aon=0.76, aoff=0.28, alfaon=0.36, alfaoff=0.21, is1on=0.68, \

is1off=0.39, c1on=26*10**-3*5.02*10**-4, c1off=26*10**-3*53.82, \

r1on=13.41, r1off=1.03*10**-2, is2on=3.56*10**-2, is2off=0.33, \

c2on=26*10**-3*1.63, c2off=26*10**-3*11.73, r2on=13.35, r2off=17.2, \

wc=0.29, L0=-0.086952;

analog begin

I(l) <+ 1 * ddt(V(l)); // C = 1

if(V(a,b) > voff)

I(l) <+ - pow(koff*(V(a,b)/voff-1) , alfaoff * exp(-exp((V(l)-aoff)/wc)));

else if(V(a,b) < von)

I(l) <+ - pow(kon*(V(a,b)/von-1) , alfaon * exp(-exp(-(V(l)-aon)/wc)));

else

I(l) <+ 0;

I(a,b) <+ -V(is1) + V(c1)/V(r1) * log(1+(V(is1) * V(r1)/V(c1) *\

exp((V(a,b)+ V(r1) * V(is1))/ V(c1))))*(1-(log(1+log(1+(V(is1) * \

V(r1)/V(c1) *exp((V(a,b)+ V(r1) * V(is1))/ V(c1))))))/(2+log(1+(V(is1) \

* V(r1)/V(c1) *exp((V(a,b)+ V(r1) * V(is1))/ V(c1))))));

I(a,b) <+ V(is2) - V(c2)/V(r2) * log(1+(V(is2) * V(r2)/V(c2) *exp((V(r2) \

* V(is2) - V(a,b))/ V(c2))))*(1-(log(1+log(1+(V(is2) * V(r2)/V(c2) \

*exp((V(r2) * V(is2) - V(a,b))/ V(c2))))))/(2+log(1+(V(is2) \

* V(r2)/V(c2) *exp((V(r2) * V(is2) - V(a,b))/ V(c2))))));

V(foff) <+ exp(-exp((V(l)-aoff)/wc));

V(fon) <+ exp(-exp(-(V(l)-aon)/wc));

V(c1) <+ c1on + (c1off-c1on)*V(l);

V(c2) <+ c2on + (c2off-c2on)*V(l);

A.3 Memmristor with antiparallel diodes in series - Memristor Model 29

V(is1) <+ is1on + (is1off-is1on)*V(l);

V(is2) <+ is2on + (is2off-is2on)*V(l);

V(r1) <+ r1on + (r1off-r1on)*V(l);

V(r2) <+ r2on + (r2off-r2on)*V(l);

end

endmodule

30 Simulation Models

Appendix B

Design Files and scripts

B.1 Yosys synthesis commands

read_verilog driver_crossbar_4x4.v

read_verilog -lib black.v

proc; opt; memory; opt; fsm; opt

techmap; opt

dfflibmap -liberty mycells.lib

abc -liberty mycells.lib

clean

write_spice driver_crossbar_4x4_netlist.sp

show

B.2 4x4 crossbar control logic - Verilog

module driver(set, set_addr, cond, cond_addr, clr, \

clr_addr, grnd, grnd_addr, set_out, cond_out, clr_out, grnd_out);

input set;

input [1:0] set_addr;

input cond;

input [1:0] cond_addr;

input clr;

input [1:0] clr_addr;

input grnd;

input [1:0] grnd_addr;

output reg [3:0] set_out;

output reg [3:0] cond_out;

output reg [3:0] clr_out;

31

32 Design Files and scripts

output reg [3:0] grnd_out;

always @(*)

begin

set_out = 0;

case (set_addr)

2’b00: set_out[0] = set;

2’b01: set_out[1] = set;

2’b10: set_out[2] = set;

2’b11: set_out[3] = set;

endcase

end

always @(*)

begin

cond_out = 0;

case (cond_addr)

2’b00: cond_out[0] = cond;

2’b01: cond_out[1] = cond;

2’b10: cond_out[2] = cond;

2’b11: cond_out[3] = cond;

endcase

end

always @(*)

begin

clr_out = 0;

case (clr_addr)

2’b00: clr_out[0] = clr;

2’b01: clr_out[1] = clr;

2’b10: clr_out[2] = clr;

2’b11: clr_out[3] = clr;

endcase

end

always @(*)

begin

B.3 8x8 crossbar control logic - Verilog 33

grnd_out = 0;

case (grnd_addr)

2’b00: grnd_out[0] = grnd;

2’b01: grnd_out[1] = grnd;

2’b10: grnd_out[2] = grnd;

2’b11: grnd_out[3] = grnd;

endcase

end

endmodule

B.3 8x8 crossbar control logic - Verilog

module driver(set, set_addr, cond, cond_addr, clr, \

clr_addr, grnd, grnd_addr, set_out, cond_out, clr_out, grnd_out);

input set;

input [3:0] set_addr;

input cond;

input [3:0] cond_addr;

input clr;

input [3:0] clr_addr;

input grnd;

input [3:0] grnd_addr;

output reg [7:0] set_out;

output reg [7:0] cond_out;

output reg [7:0] clr_out;

output reg [7:0] grnd_out;

always @(*)

begin

set_out = 0;

case (set_addr)

3’b000: set_out[0] = set;

3’b001: set_out[1] = set;

3’b010: set_out[2] = set;

3’b011: set_out[3] = set;

3’b100: set_out[4] = set;

3’b101: set_out[5] = set;

34 Design Files and scripts

3’b110: set_out[6] = set;

3’b111: set_out[7] = set;

endcase

end

always @(*)

begin

cond_out = 0;

case (cond_addr)

3’b000: cond_out[0] = cond;

3’b001: cond_out[1] = cond;

3’b010: cond_out[2] = cond;

3’b011: cond_out[3] = cond;

3’b100: cond_out[4] = cond;

3’b101: cond_out[5] = cond;

3’b110: cond_out[6] = cond;

3’b111: cond_out[7] = cond;

endcase

end

always @(*)

begin

clr_out = 0;

case (clr_addr)

3’b000: clr_out[0] = clr;

3’b001: clr_out[1] = clr;

3’b010: clr_out[2] = clr;

3’b011: clr_out[3] = clr;

3’b100: clr_out[4] = clr;

3’b101: clr_out[5] = clr;

3’b110: clr_out[6] = clr;

3’b111: clr_out[7] = clr;

endcase

end

always @(*)

begin

grnd_out = 0;

case (grnd_addr)

3’b000: grnd_out[0] = grnd;

B.4 .lib technology file 35

3’b001: grnd_out[1] = grnd;

3’b010: grnd_out[2] = grnd;

3’b011: grnd_out[3] = grnd;

3’b100: grnd_out[4] = grnd;

3’b101: grnd_out[5] = grnd;

3’b110: grnd_out[6] = grnd;

3’b111: grnd_out[7] = grnd;

endcase

end

endmodule

B.4 .lib technology file

library(memristortft){

comment:"Ttf memristor crossbar - Luis Outeiro - FEUP";

cell(BUF) {

pin(A) {direction: input;}

pin(Y) {direction: output;

function: "A"; }

}

cell(NOT) {

pin(A) {direction: input;}

pin(Y) {direction: output;

function: "A’"; }

}

cell(NAND){

pin(A) {direction: input;}

pin(B) {direction: input;}

pin(Y) {direction: output;

function: "(A*B)’";}

}

cell(NOR){

pin(A) {direction: input;}

pin(B) {direction: input;}

pin(Y) {direction: output;

function: "(A+B)’";}

}

cell(DFF){

ff(IQ, IQN) {clocked_on: C;

36 Design Files and scripts

next_state: D;}

pin(C) {direction: input;

clock: true;}

pin(D) {direction: input;}

pin(Q) {direction: output;

function: "IQ";}

}

}

B.5 Output of the digital synthesis of control block for 4x4 crossbar

* SPICE netlist generated by Yosys 0.9 (git sha1 UNKNOWN,\

gcc 10.2.0 -march=x86-64 -mtune=generic -O2 -fno-plt -fPIC -Os)

.SUBCKT driver set set_addr.0 set_addr.1 cond cond_addr.0 \

cond_addr.1 clr clr_addr.0 clr_addr.1 grnd grnd_addr.0 \

grnd_addr.1 set_out.0 set_out.1 set_out.2 set_out.3 \

cond_out.0 cond_out.1 cond_out.2 cond_out.3 clr_out.0 \

clr_out.1 clr_out.2 clr_out.3 grnd_out.0 grnd_out.1 grnd_out.2 grnd_out.3

X0 grnd_addr.0 1 NOT

X1 grnd_addr.1 2 NOT

X2 clr_addr.0 3 NOT

X3 clr_addr.1 4 NOT

X4 cond_addr.0 5 NOT

X5 cond_addr.1 6 NOT

X6 set_addr.0 7 NOT

X7 set_addr.1 8 NOT

X8 grnd_addr.1 grnd 9 NAND

X9 grnd_addr.0 9 grnd_out.2 NOR

X10 2 grnd 10 NAND

X11 1 10 grnd_out.1 NOR

X12 1 9 grnd_out.3 NOR

X13 grnd_addr.0 10 grnd_out.0 NOR

X14 clr_addr.1 clr 11 NAND

X15 clr_addr.0 11 clr_out.2 NOR

X16 4 clr 12 NAND

X17 3 12 clr_out.1 NOR

X18 3 11 clr_out.3 NOR

X19 clr_addr.0 12 clr_out.0 NOR

X20 cond_addr.1 cond 13 NAND

B.6 Output of the digital synthesis of control block for 8x8 crossbar 37

X21 cond_addr.0 13 cond_out.2 NOR

X22 6 cond 14 NAND

X23 5 14 cond_out.1 NOR

X24 5 13 cond_out.3 NOR

X25 cond_addr.0 14 cond_out.0 NOR

X26 set_addr.1 set 15 NAND

X27 set_addr.0 15 set_out.2 NOR

X28 8 set 16 NAND

X29 7 16 set_out.1 NOR

X30 7 15 set_out.3 NOR

X31 set_addr.0 16 set_out.0 NOR

.ENDS driver

* end of SPICE netlist *

B.6 Output of the digital synthesis of control block for 8x8 crossbar

* SPICE netlist generated by Yosys 0.9 (git sha1 UNKNOWN, \

gcc 10.1.0 -march=x86-64 -mtune=generic -O2 -fno-plt -fPIC -Os)

.SUBCKT driver set set_addr.0 set_addr.1 set_addr.2 set_addr.3 \

cond cond_addr.0 cond_addr.1 cond_addr.2 cond_addr.3 clr clr_addr.0 \

clr_addr.1 clr_addr.2 clr_addr.3 grnd grnd_addr.0 grnd_addr.1 \

grnd_addr.2 grnd_addr.3 set_out.0 set_out.1 set_out.2 set_out.3 \

set_out.4 set_out.5 set_out.6 set_out.7 cond_out.0 cond_out.1 cond_out.2 \

cond_out.3 cond_out.4 cond_out.5 cond_out.6 cond_out.7 clr_out.0 clr_out.1 \

clr_out.2 clr_out.3 clr_out.4 clr_out.5 clr_out.6 clr_out.7 grnd_out.0 \

grnd_out.1 grnd_out.2 grnd_out.3 grnd_out.4 grnd_out.5 grnd_out.6 grnd_out.7

X0 set_addr.0 1 NOT

X1 set_addr.2 2 NOT

X2 set_addr.3 3 NOT

X3 set_addr.1 4 NOT

X4 cond_addr.0 5 NOT

X5 cond_addr.3 6 NOT

X6 cond_addr.2 7 NOT

X7 cond_addr.1 8 NOT

X8 clr_addr.3 9 NOT

38 Design Files and scripts

X9 clr_addr.0 10 NOT

X10 clr_addr.1 11 NOT

X11 clr_addr.2 12 NOT

X12 grnd_addr.0 13 NOT

X13 grnd_addr.1 14 NOT

X14 grnd_addr.3 15 NOT

X15 grnd_addr.2 16 NOT

X16 2 set_addr.3 17 NOR

X17 set_addr.2 3 18 NAND

X18 set_addr.0 set_addr.1 19 NAND

X19 19 20 NOT

X20 set 20 21 NAND

X21 18 21 set_out.7 NOR

X22 1 4 22 NAND

X23 set 17 23 NAND

X24 22 23 set_out.4 NOR

X25 1 set_addr.1 24 NAND

X26 set_addr.2 set_addr.3 25 NOR

X27 25 26 NOT

X28 set 25 27 NAND

X29 24 27 set_out.2 NOR

X30 22 27 set_out.0 NOR

X31 23 24 set_out.6 NOR

X32 set_addr.0 4 28 NAND

X33 27 28 set_out.1 NOR

X34 21 26 set_out.3 NOR

X35 23 28 set_out.5 NOR

X36 cond_addr.3 7 29 NOR

X37 6 cond_addr.2 30 NAND

X38 cond_addr.0 cond_addr.1 31 NAND

X39 31 32 NOT

X40 cond 32 33 NAND

X41 30 33 cond_out.7 NOR

X42 5 8 34 NAND

X43 cond 29 35 NAND

X44 34 35 cond_out.4 NOR

X45 5 cond_addr.1 36 NAND

X46 cond_addr.3 cond_addr.2 37 NOR

X47 37 38 NOT

X48 cond 37 39 NAND

B.6 Output of the digital synthesis of control block for 8x8 crossbar 39

X49 36 39 cond_out.2 NOR

X50 34 39 cond_out.0 NOR

X51 35 36 cond_out.6 NOR

X52 cond_addr.0 8 40 NAND

X53 39 40 cond_out.1 NOR

X54 33 38 cond_out.3 NOR

X55 35 40 cond_out.5 NOR

X56 clr_addr.3 12 41 NOR

X57 9 clr_addr.2 42 NAND

X58 clr_addr.0 clr_addr.1 43 NAND

X59 43 44 NOT

X60 clr 44 45 NAND

X61 42 45 clr_out.7 NOR

X62 10 11 46 NAND

X63 clr 41 47 NAND

X64 46 47 clr_out.4 NOR

X65 10 clr_addr.1 48 NAND

X66 clr_addr.3 clr_addr.2 49 NOR

X67 49 50 NOT

X68 clr 49 51 NAND

X69 48 51 clr_out.2 NOR

X70 46 51 clr_out.0 NOR

X71 47 48 clr_out.6 NOR

X72 clr_addr.0 11 52 NAND

X73 51 52 clr_out.1 NOR

X74 45 50 clr_out.3 NOR

X75 47 52 clr_out.5 NOR

X76 grnd_addr.3 16 53 NOR

X77 15 grnd_addr.2 54 NAND

X78 grnd_addr.0 grnd_addr.1 55 NAND

X79 55 56 NOT

X80 grnd 56 57 NAND

X81 54 57 grnd_out.7 NOR

X82 13 14 58 NAND

X83 grnd 53 59 NAND

X84 58 59 grnd_out.4 NOR

X85 13 grnd_addr.1 60 NAND

X86 grnd_addr.3 grnd_addr.2 61 NOR

X87 61 62 NOT

X88 grnd 61 63 NAND

40 Design Files and scripts

X89 60 63 grnd_out.2 NOR

X90 58 63 grnd_out.0 NOR

X91 59 60 grnd_out.6 NOR

X92 grnd_addr.0 14 64 NAND

X93 63 64 grnd_out.1 NOR

X94 57 62 grnd_out.3 NOR

X95 59 64 grnd_out.5 NOR

.ENDS driver

* end of SPICE netlist *

References

[1] J. D. Garrett. SciencePlots (v1.0.6). October 2020. URL: http://doi.org/10.5281/
zenodo.4106650, doi:10.5281/zenodo.4106650.

[2] Mike Engelhardt, Linear Technology, Analog Devices. Ltspice. URL: https:
//www.analog.com/en/design-center/design-tools-and-calculators/
ltspice-simulator.html.

[3] L. Chua. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory,
18(5):507–519, 1971. doi:10.1109/TCT.1971.1083337.

[4] O. A. Olumodeji and M. Gottardi. Behavioural modelling of memristive devices targeted
to sensor interfaces. In 2015 XVIII AISEM Annual Conference, pages 1–4, 2015. doi:
10.1109/AISEM.2015.7066780.

[5] Isaac Abraham. The case for rejecting the memristor as a fundamental circuit ele-
ment. Scientific Reports, 8(1):10972, Jul 2018. URL: https://doi.org/10.1038/
s41598-018-29394-7, doi:10.1038/s41598-018-29394-7.

[6] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny. Vteam: A general model
for voltage-controlled memristors. IEEE Transactions on Circuits and Systems II: Express
Briefs, 62(8):786–790, 2015. doi:10.1109/TCSII.2015.2433536.

[7] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser. Team: Threshold adaptive
memristor model. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1):211–
221, 2013. doi:10.1109/TCSI.2012.2215714.

[8] Nicolas Taberlet, Quentin MARSAL, Ferrand Jérémy, and Nicolas Plihon. Hydraulic logic
gates: Building a digital water computer. European Journal of Physics, 39, 11 2017. doi:
10.1088/1361-6404/aa97fc.

[9] Domino computer. URL: https://www.youtube.com/watch?v=OpLU__bhu2w.

[10] Tsung-Ching Huang, Kenjiro Fukuda, Chun-Ming Lo, Yung-Hui Yeh, Tsuyoshi Sekitani,
Takao Someya, and K.-T. Tim Cheng. Pseudo-cmos: A novel design style for flexible elec-
tronics. pages 154–159, 03 2010. doi:10.1109/DATE.2010.5457220.

[11] Shahar Kvatinsky, Avinoam Kolodny, Uri Weiser, and E.G. Friedman. Memristor-based
imply logic design procedure. pages 142–147, 10 2011. doi:10.1109/ICCD.2011.
6081389.

[12] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser. Memristor-
based material implication (imply) logic: Design principles and methodologies. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 22(10):2054–2066, 2014.
doi:10.1109/TVLSI.2013.2282132.

41

http://doi.org/10.5281/zenodo.4106650
http://doi.org/10.5281/zenodo.4106650
http://dx.doi.org/10.5281/zenodo.4106650
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1109/AISEM.2015.7066780
http://dx.doi.org/10.1109/AISEM.2015.7066780
https://doi.org/10.1038/s41598-018-29394-7
https://doi.org/10.1038/s41598-018-29394-7
http://dx.doi.org/10.1038/s41598-018-29394-7
http://dx.doi.org/10.1109/TCSII.2015.2433536
http://dx.doi.org/10.1109/TCSI.2012.2215714
http://dx.doi.org/10.1088/1361-6404/aa97fc
http://dx.doi.org/10.1088/1361-6404/aa97fc
https://www.youtube.com/watch?v=OpLU__bhu2w
http://dx.doi.org/10.1109/DATE.2010.5457220
http://dx.doi.org/10.1109/ICCD.2011.6081389
http://dx.doi.org/10.1109/ICCD.2011.6081389
http://dx.doi.org/10.1109/TVLSI.2013.2282132

42 REFERENCES

[13] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and
U. C. Weiser. Magic—memristor-aided logic. IEEE Transactions on Circuits and Systems
II: Express Briefs, 61(11):895–899, 2014. doi:10.1109/TCSII.2014.2357292.

[14] Tianshi Wang and Jaijeet Roychowdhury. Well-posed models of memristive devices. arXiv
preprint arXiv:1605.04897, 2016.

http://dx.doi.org/10.1109/TCSII.2014.2357292

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Problem Statement
	1.3 Solution
	1.4 Contributions
	1.5 Document Structure

	2 Background
	2.1 Memristor
	2.2 Memristor models
	2.2.1 HP memristor
	2.2.2 VTEAM
	2.2.3 Window functions

	2.3 Logic with memristors
	2.3.1 IMPLY
	2.3.2 Memristor crossbar

	2.4 TFTs

	3 Related work
	3.1 IMPLY Logic
	3.1.1 Making a NAND with IMPLY

	3.2 MAGIC

	4 Fully integrated IMPLY logic
	4.1 Memristor modeling
	4.2 Memristor Simulation
	4.3 *tfts models
	4.4 *tfts simulation
	4.5 Logic synthesis and schematic generation
	4.6 Crossbar design
	4.7 Layout
	4.8 Crossbar simulation

	5 Conclusion
	5.1 Future work

	A Simulation Models
	A.1 Simple Memristor Model - Spice
	A.2 Linear Ion Drift Memristor Model - Spice
	A.3 Memmristor with antiparallel diodes in series - Memristor Model

	B Design Files and scripts
	B.1 Yosys synthesis commands
	B.2 4x4 crossbar control logic - Verilog
	B.3 8x8 crossbar control logic - Verilog
	B.4 .lib technology file
	B.5 Output of the digital synthesis of control block for 4x4 crossbar
	B.6 Output of the digital synthesis of control block for 8x8 crossbar

	References

