
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Rust-based SOME/IP implementation
for robust automotive software

João Francisco Barreiros de Almeida

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Luís Miguel Pinho de Almeida

Co-supervisor: Michael Breitung

2nd co-supervisor: Stefan Boiciuc

March 7, 2021

Rust-based SOME/IP implementation for robust
automotive software

João Francisco Barreiros de Almeida

Mestrado Integrado em Engenharia Informática e Computação

March 7, 2021

Resumo

Os veículos modernos contêm um número de subsistemas electrónicos e informáticos que está
constantemente a crescer. Esta situação resulta num aumento significativo da complexidade do
sistema para a integração de todos esses sub-sistemas com requisitos crescentes quer computa-
cionais quer de largura de banda e de proteção contra interferências mûtuas e externas. Deste
modo, a indústria automóvel está a adoptar comunicações com base em Ethernet e os protoco-
los de comunicação TCP/IP. Esta transição promoveu a adoção de uma Arquitetura Orientada a
Serviços, permitindo uma maior flexibilidade, escalabilidade e reusabilidade dos componentes de
hardware e de software do veículo. Seguindo esta tendência, a BMW criou o Scalable service-
Oriented Middleware over IP (SOME/IP), um middleware apto para vários tipos de dispositivos
e sistemas operativos, usando como base os protocolos TCP/IP, havendo portanto uma sinergia
com Ethernet. Por sua vez, a aliança GENIVI que fornece soluções open-source para os use cases
automóveis, incorporou o SOME/IP na sua CommonAPI, uma API em C++ de abstração do mid-
dleware. O C++ em conjunto com C dominam a indústria de sistemas embarcados, contudo, para
desenvolver código seguro é necessário seguir um conjunto de regras de desenvolvimento. Quando
a Mozilla introduziu o Rust no mundo da programação gerou interesse dos programadores por ter
características similares a C/C++ mas providenciando um robusto analizador estático de código no
compilador que deteta várias classes de erros permitindo assim uma segurança de código mais el-
evada. O objectivo é implementar as ferramentas GENIVI que são usadas no desenvolvimento de
um sistema com base no SOME/IP, oferecendo ao programador a opção de utilizar um ambiente
Rust mantendo a interoperabilidade com as implementações existentes. Este projeto começará
com a análise do protocolo básico, estrutura das mensagens e Service Discovery, subindo para as
abstrações da CommonAPI e finalmente a geração de código Rust com base na Franca Interface
Definition Language (Franca IDL). No fim, com a comparação entre a nossa implementação e
a da GENIVI mostramos como o principal objectivo deste trabalho, a interoperabilidade, foi al-
cançado. O resultado é uma implementação que cumpre o que foi previsto neste trabalho mas
que ainda necessita de refinamentos adicionais para ser tão completa como a implementação de
referência.

i

ii

Abstract

Modern vehicles possess an ever growing number of electronics and software components to sup-
port functions that range from vehicle confort system, such as interior climate, ventillation and
seat adjustment, to Advanced Driving Assistance Systems or for information and entertainment
functions. This situation results in a significant increase of the system complexity to integrate all
those sub-systems with increasing computing and communication requirements, as well as protec-
tion against mutual and external interference. Thus the automotive industry is moving towards the
virtualization of the vehicle hardware and software platform, relying on Ethernet connectivity and
TCP/IP communication protocols. This transition promoted the adoption of a Service-oriented
Architecture, allowing higher flexibility, scalability and reusability of the vehicle components.
Existing Service Oriented Architecture solutions could not be used in the automotive domain as
they did not meet the real-time requirements of a vehicle. Consequently, BMW designed Scalable
service-Oriented Middleware over IP (SOME/IP), a middleware fit for all kinds of devices and
operating systems, built on top of the TCP/IP protocols, matching well with Ethernet. In turn, the
GENIVI Alliance, who provides open-sourced solutions for the automotive use cases, incorpo-
rated it in its CommonAPI, a C++ abstraction API independent of the middleware. C++ alongside
C dominate the embedded system industry, however, to develop safe code it is necessary to fol-
low a set of development guidelines. When Mozilla introduced Rust in the programming world
it sparked developers interest for having similar characteristics to C/C++ but offering a robust
built-in code analysis in the compiler that detects several classes of errors thus providing a much
higher code safety level. The objective is to implement the GENIVI tools for the development
of a SOME/IP system using the Rust language, allowing a developer to fully utilize a Rust en-
vironment while maintaining interoperability with existing implementations. The work will start
from the SOME/IP protocol and its Service Discovery module, building up to the CommonAPI
SOME/IP bindings and finally generate Rust code based on the Franca Interface Definition Lan-
guage (Franca IDL). In the end we will compare our implementation and the one from GENIVI,
showing that the main aspect, interoperability, was achieved. The result is an implementation that
matches what was proposed in this work but still requires additional effort to make it as complete
as the reference implementation.

iii

iv

Glossary

API Application Interface

AUTOSAR Automotive Open System Architecture

AVB Audio Video Bridging

CAN Controller Area Network

ECU Electronic Control Unit

Franca IDL Franca Interface Definition Language

GPU Graphics Processing Unit

IEEE Institute of Electrical and Electronics Engineers

IVI In-Vehicle Infotainment

IVN In-Vehicle Network

JSON JavaScript Object Notation

OS Operating System

RPC Remote Procedure Call

SOA Service-oriented Architecture

SOME/IP Scalable service-Oriented Middleware over IP

SOME/IP-SD Service Oriented Middleware over IP Service Discovery

TCP Tranmission Control Protocol

TSN Time-Sensitive Networking

UDP User Datagram Protocol

v

vi GLOSSARY

Acknowledgements

First and foremost, I would like to express my gratitude to the supervisors that directly assisted me
in this work, Luís Almeida, Michael Breitung and Stefan Boiciuc. Even during an unprecedented
year where everyone was relearning how to efficiently do their jobs they supported me throughout
the year. Without their help this document would be in a much worse state.

A special thanks also goes out to Elektrobit Automotive GmbH for taking me in and accom-
panying me in my final months as a student. Praise also needs to be given to all of the nameless
colleagues that handled the bureaucratic headache that was required in order for this work to be
executed. Lastly, a more affectionate thanks to my family and friends that supported me in many
ways throughout this journey.

João Francisco Barreiros de Almeida

vii

viii GLOSSARY

Chapter 1

Introduction

Ever since their conception phase, in the 19th century, automobiles have had a unique set of re-

quirements. As a technology that can put citizens in danger, it needs to be safe, reliable and robust

while operating under a wide range of conditions. The first cars to be built used purely mechanical

components with no need for software. After the first programmable electronic component was

used inside a car it inaugurated the introduction of software as an intrinsic element of an auto-

mobile. As more functionalities were added to the vehicle, with their corresponding software, a

single ECU did not have enough memory or computing power to control all of the system and

subsystems of a single vehicle, it became necessary to have multiple ECUs communicate with one

another, thus an internal communications network had to be used.

Before any protocol was standardized between the different suppliers, each had their own

specific network protocol and topology. These protocols, alongside the functionality of ECUs,

was all initially developed using only Assembly. As the set of software development tools kept

improving, several programming languages would surface with varying degrees of adoption. One

of the programming languages that appeared was C. It stood out for its versatility and portability

while still providing the developer with low-level access to the system memory. As a language

that effectively abstracted the development of software from the target system, it quickly became

the language of choice in the embedded software development industry and, to this date, is still

the most used language for embedded software [38].

Alongside this adoption of C, a standardization of the automobile internal network was also

taking place. Seeing that these types of networks had a unique set of requirements, the designation

vehicle bus was given. One of the first developed, and the one that became ubiquitous in the

automotive industry was CAN, a message based protocol designed for multiplex electrical wiring

within automobiles.

Incorporating the portability of C and the standardization of CAN, the pillars were built for the

expansion of the automotive software industry. This meant an increasing amount of ECUs was be-

ing inserted in a single automobile. Since different ECUs have different architectures, even when

produced by the same supplier, too much effort was spent dealing with each component intrica-

cies instead of the actual design of the system. Hence, in 2003, the automotive industry decided

1

2 Introduction

to create a standardization initiative named Automotive Open System Architecture (AUTOSAR)

with the goal of abstracting the hardware layer and facilitating programming and interoperability

between different ECUs.

In more recent years, additional vehicle buses were introduced, such as FlexRay, MOST and

LIN, each with their own set of characteristics. All of these protocols provided even greater flex-

ibility for the developers, so more functionalities kept getting introduced in an automobile, trans-

lating into an unmanageable code base. To cope with this growth, most of the non-safety-critical

components have moved to more recent technologies, commonly C++, which allows seamless

integration with existing C code while maintaining software efficiency. By providing an Object-

Oriented Architecture, code with related purposes can be encapsulated in a class which provides

higher modularity and lower interdependencies, effectively encouraging cleaner and reusable soft-

ware. As such, complex components are now present in a car, such as LIDAR sensors and High-

Resolution cameras, that by far surpass the maximum data throughput of traditional vehicle buses.

To meet these new transmission rates, the industry showed interest in the already established

and widespread Ethernet technology that allows rates of up to 100Gb/s. Using Ethernet in-

side an automobile also presents the opportunity for the automotive software to match with the

ubiquitous TCP/IP protocol and follow a Service-oriented Architecture (SOA) design. In 2011,

BMW introduced the first SOA automotive protocol, Scalable service-Oriented Middleware over

IP (SOME/IP) supporting many of the concepts that were already familiar to SOA developers. A

few years later, in 2016, SOA was also introduced in AUTOSAR as the Adaptive Platform using

SOME/IP as its first supported communication protocol. Nowadays, SOME/IP is mostly used as

the protocol for the infotainment systems and other non-safety-critical functionalities.

1.1 Motivation

Most of the embedded software world is developed using a combination of C and C++. The

amount of control that is given to the developer in these languages is a double-edged sword. This

control allows the developers to perfectly fine-tune the system to meet its requirements. However,

there are numerous errors and unintended behavior that may happen if the developer is not careful

enough. Some of these errors may even only be discovered once the software is in production,

which can pose a severe safety threat.

To avoid this, programming guidelines have been designed for both C and C++ that when

followed facilitate the development of safe, secure and reliable code. The one adopted even by

AUTOSAR is MISRA, that contains both a C and a C++ version. Its rules range from simple

coding styles to the total prohibition of undefined behavior. While these rules certainly help and

are of utmost interest, there is no simple way to follow them. Undefined behavior is omnipresent

in both C/C++ as a misuse of even a simple statement can cause it. The specification of C, which

is considered a simple language without many of the features of C++, contains over 800 pages as

of C11. It is not reasonable to expect a developer to be fully aware of that specification, so errors

in development are to be expected.

1.2 Objectives 3

Mozilla has tackled this issue with the development of the Rust programming language. Ever

since its appearance in 2010, it has been gaining developers interest. It has peaked in more recent

years, being the most loved programming language since 2016 according to Stack Overflow De-

veloper Surveys. Rust allows a control that is similar to C and C++ but enforces various memory

safety rules at compile time. This drastically reduces the number of errors that are caused due to

mishandling of memory, which is often the reason for undefined behavior.

1.2 Objectives

The aim of this work is to provide a Rust environment when developing software using SOME/IP

as the underlying middleware. Our implementation will be based on the tools provided by the

GENIVI alliance, which is also hosting the original SOME/IP done by BMW named vsomeip.

Apart from the actual protocol, GENIVI uses the CommonAPI to provide further abstraction from

the underlying protocol. Currently, CommonAPI provides support for D-Bus and SOME/IP. In

this project, D-Bus will be ignored, and the sole focus will be the SOME/IP part. A usual work-

flow would be to first design the service interfaces of the system. CommonAPI uses the Franca

Interface Definition Language (Franca IDL) for this specification. Afterwards, code is generated

based on the service interfaces, which is already linked with the CommonAPI library and the un-

derlying middleware. A developer would then start building its application based on the developed

code. As such, our implementation will start with the base SOME/IP protocol, including the Ser-

vice Discovery module (SOME/IP-SD), followed by the CommonAPI library and finally the code

generator. These three tools should allow a developer to fully develop an application using Rust

while still maintaining interoperability with the original implementations.

1.3 Structure

The structure of the chapters of this document is as follows:

2. Background

Provides insight into the different technologies and standards that have shaped the auto-

motive software industry. The analysis starts with the more hardware related Institute of

Electrical and Electronics Engineers (IEEE) standards and then into the automotive soft-

ware platforms and standards that build on top of the IEEE standards. At the end of the

chapter, an overview of the state of the art automotive software technologies and the soft-

ware industry initial adoption of Rust for a broad set of scopes.

3. Reference toolchain analysis

Gives an overview of the whole CommonAPI library and how it is used to develop appli-

cations that are abstracted from the underlying middleware. It starts by analyzing the code

generators, then moves to the CommonAPI Runtime and finally GENIVI SOME/IP imple-

mentation, vsomeip.

4 Introduction

4. Rust implementation

Contains a description of each of the components implemented in this work and how they

differ from the reference implementation. We follow a top-down analysis, beginning at the

code generator, then our CommonAPI Runtime implementation and finally the SOME/IP

implementation. For each of those components, an initial comparison between the reference

implementation and the Rust implementation is also given, alongside with the shortcomings

of the Rust implementation at the end of each section.

5. Implementation validation

Highlights the final validation of the project done in this work. Initially, a demonstration

of a developed system is shown which can also integrate with a C++ application. Then

an overview of the integration tests that were used to validate the behavior of the Rust

SOME/IP implementation. Lastly, a comparison of the performance between the Rust and

the reference implementation is made in the last section using different scenarios, alongside

an explanation of the differing results.

6. Conclusion

As the last chapter, it gives some final remarks about the work done, an overview of the

results achieved, and what future work could be done on top of what was achieved here.

Chapter 2

Background

State of the art automobiles are now using the Ethernet protocol for connectivity between com-

ponents that require it. Nonetheless, this adoption did not happen overnight, an adaptation of the

existing protocol had to be done for it to be applied to the automotive domain. This chapter will

provide insight into the adoption of Ethernet as a backbone automotive ECU communication pro-

tocol, from the reason as to why it was not used earlier to the automotive technologies that build

on top of the Ethernet protocol to provide a robust and reliable automotive network.

2.1 Automotive Ethernet

Ethernet is a technology that is widely used throughout the world. Standardized in 1983, it has

continuously been evolving to support higher bit rates and longer link distances. While it has

existed for a long time, only recently has the automotive industry shown interest in Ethernet to

replace traditional vehicle buses. The reason for this is that it could not meet the hard-timing

requirements of an automotive network, namely latencies in the low microsecond range could

not be guaranteed, which is needed for very fast reactors, for example the Anti-lock Braking

System. Protection from Electromagnetic Interference and Radio Frequency Interference was also

insufficient, resulting in too much noise in the data being transmitted. Furthermore, Ethernet did

not provide a way to synchronize time between different devices, leaving that responsibility to the

application.

One of the initial markets that drove the need for Ethernet networks with improved reliability,

synchronization and very low latencies was the analog audio and video equipment. These devices

have softer time constraints when compared to the automotive environment, but failure to meet

them results in degraded user experience. To resolve these issues, the Audio Video Bridging

(AVB) task group was formed by the IEEE. It aimed to develop a set of technologies and standards

to allow time-sensitive communications over Ethernet. Shortly after its appearance it was renamed

as Time-Sensitive Networking (TSN), as a broader range of industries showed interest in such

standards, including the automotive industry.

5

6 Background

2.1.1 Time-Sensitive Networking

Maintaining the original goal of the AVB task group but now with a much wider scope, TSN

mainly defines extensions and enhancements to the IEEE 802.1Q - Bridges and Bridged Networks

standard, that describes Local Area Networks (LAN) on an Ethernet network but allowing deter-

ministic services. Moreover, it also contains profiles for different industries, encompassing a set

of standards that meet the specific use cases of that industry. One of the profiles that is being

developed is for automotive in-vehicle communications.

2.1.1.1 TSN for Automotive In-Vehicle Ethernet Communications

Given the range of conditions under which an automobile is expected to be fully functional, it

made sense to create a profile of TSN specific for the automotive In-Vehicle Networks (IVN).

This profile represents the state of the art specifications for IVN, and currently, there is not a final

proposal, merely drafts. Considering that the suite of TSN standards is broad and intended for use

in multiple environments that require bounded latency, high reliability and security, this profile

specifies the features that are directly applicable to the automotive sector. Automotive IVN are

unlike many other networks in the sense that every device is known when the network is being

designed. Not only this but also the topology of the network is known and can only be modified

in ways that were planned by the designers. Both of these facts allow network designers to narrow

the selection of TSN standards [13].

As an industry that has a wide set of technologies that can be used, interoperability between

them is required, so it comes naturally that Ethernet needs to interface with non-Ethernet net-

working technologies. Likewise, Ethernet technologies must be at least as robust as previous

networking technologies throughout the whole life cycle of the vehicle. Thus it is necessary to

support various kinds of failures in the network and still be able to provide the same quality of

service. Should these failures persist, as in the case of a damaged wire, then the vehicle needs to

be repaired. The existence of a maintenance mode greatly simplifies this process as it provides

insight into the components of the network, allowing a quicker diagnosis of the exact problem in

the vehicle.

2.1.1.2 IEEE 802.1CB: Frame Replication and Elimination for Reliability (FRER)

This standard describes techniques to configure redundancy through at least two network paths

to ensure network reliability. By replicating packets, sending them through different paths on the

network and then using the sequence number to eliminate duplicates, the probability of packet

loss is reduced. There are mainly 5 functions provided, separated in layers, although only a subset

might be needed depending on the application.

The first function, located at the top of the FRER layer is the sequencing function. Its respon-

sibility is both to assign a sequence number to packets passed down the stack towards the physical

layer and to use the sequence number from packets passed up the stack from multiple sources to

decide whether to keep or discard them. The stream splitting function replicates the packets passed

2.1 Automotive Ethernet 7

down the stack assigning each a different path on the network, packets passed up the stack remain

unchanged. The individual recovery function is similar to the sequencing function, only that it is

only applied to a single source. This is to avoid congestion when a failure in one of the paths leads

to a full or partial merging of different paths. The sequence decode/encode function inserts the

sequence number into the actual packet passed down the stack and extracts the sequence number

from packets passed up the stack. Finally, the stream identification function that is only applied to

packets passed up the stack in order to identify through which path was the packet received [24].

These layers combined form a key component of the TSN automotive profile. IEEE 802.1CB

gives the confidence that once a packet starts being transmitted that the receiving end will indeed

receive it without the need for retransmission. The amount of redundancy that FRER uses can be

configured. Therefore functionalities that require a packet to arrive with little margin for failure

can use multiple redundant paths at the expense of having a more congested network [13]. Fur-

thermore, through this standard, the manufacturers already have an intrinsic fail-safe mechanism

since even if there is a problem with a certain wiring, the network can automatically detect this

and readjust its redundant paths to not use the broken wire.

2.1.1.3 IEEE 802.1AS: Timing and Synchronization for Time-Sensitive Applications

IEEE 802.1AS provides protocols to ensure that the time is synchronized between the different

nodes of the network. There will be a single node assigned as Grandmaster, which will serve as

the whole network timing reference. However, as a fail-safe mechanism, the network is aware

of other potential Grandmasters to minimize downtime on failure, although on normal operation

these act as any non-Grandmaster nodes. Non-Grandmaster nodes can be further divided into two

types, either a time-aware end node or a time-aware bridge node. End nodes serve merely as

a recipient of the time information, bridge nodes receive time information directly or indirectly,

through other bridge nodes, from the grandmaster and apply corrections to compensate for the

transmission delays [19].

Applying this protocol to the automotive domain is made simpler when considering the as-

sumption that the network topology and devices is known and will only change in ways already

predicted. Thus it is possible to disable the Grandmaster selection process and manually assign

it. Additionally, it might be necessary to have predefined fail scenarios where the Grandmaster

switch is much faster than the process used in 802.1AS. Calculation of the delays between nodes

is an aspect that can be calculated at design time and could be pre-configured in all devices. How-

ever, due to the possibility of a repair shop using a different component than the one specified by

the manufacturer, the calculation of delays still needs to happen [13]. Finally, car manufacturers

are also free to change the rate at which synchronization messages are sent through the network.

The default value is 8 per second but can be modified to faster rates for quicker synchronization

or slower rates that reduce network traffic and processing overhead.

8 Background

2.1.1.4 IEEE 802.1Qci-2017: Per-Stream Filtering and Policing

IEEE 8021.Qci standard filters and policies individual traffic based on a set of rules. It prevents

the overload and congestion of the network that can be caused either by erroneous packets due

to a malfunction of some component or by a deliberate attack to the network. The rules for

this filtering and policing are applied to individual streams and may overwrite the filtering and

policing parameters of a packet, so even if a packet has the highest priority, it can be given the

lowest priority once the policing is done. Furthermore, a restraint on the amount of bandwidth a

single source is allowed to generate can be placed, further impairing the source of congesting the

network [20].

By applying this standard to the automotive industry errors such as the blabbing idiot, where a

component is generating more high priority traffic than it should be due to an error, are completely

mitigated, and the network can continue operating normally. External attacks, such as Denial of

Service attacks, are also mitigated. Since the topology of the network is known, the entry point

for these attacks is also known. Thus the manufacturer can configure IEEE802.1Qci to assign a

limited bandwidth and low priority to that entry point [13].

2.1.1.5 IEEE 802.1Qbv-2016: Scheduled Traffic

Until the introduction of this protocol, it was implausible to guarantee bounded end-to-end latency

of time-sensitive data traffic, IEEE 802.1Qbv marked a significant step towards that goal. A packet

with a low priority that is already transmitting could delay the transmission of a higher priority

packet. IEEE802.1Qbv concept is to have specific time slots assigned to the transmission of time-

sensitive data. During these time slots, it is guaranteed that no other packets or underlying Ethernet

traffic will interfere with the transmission. This is of utmost importance for any kind of component

that is safety-critical. The remaining will still be assigned a time slot for regular transmissions that

may be interrupted, resulting in a much less deterministic behavior. Designers of the network need

to do an analysis to know which functionalities require non-preemptable traffic [26].

2.2 AUTomotive Open System ARchitecture - AUTOSAR

AUTOSAR emerged as an open standardized architecture for automotive software agreed upon by

the different OEM. It serves as a software layer to abstract from the underlying hardware and ef-

fectively transitioning from the system behavior and functionalities specified in the different IEEE

standards to an actual programming interface. Following a layered software approach, starting

from the highest abstraction level three different layers can be distinguished, the application layer

as a composition of software components (SWCs), runtime environment (RTE) and basic software

(BSW) [9] that can be seen in Figure 2.1.

2.2 AUTomotive Open System ARchitecture - AUTOSAR 9

Figure 2.1: Overview of the 3 AUTOSAR layers (reproduced from [6])

2.2.1 Software Components

SWCs stand at the top layer and represent the different components of an application. These can

be further divided into application SWC and sensor-actuator components. The difference being

that the latter is ECU hardware dependent and is able to communicate directly with the ECU

abstraction layer, the former is ECU independent and can be even further divided into different

component types according to the needed functionality. Components can have private memory

sections that provide private states to each. Additionally, components can belong to a partition,

which represents a single functional unit of the system. Each component contains smaller units

called Runnable that represent the smallest chunks of code that can be executed. The execution

of a Runnable can only be triggered by the RTE, which is also responsible for the communication

between them and accesses to the BSW modules.

2.2.2 Runtime Environment

This layer is at the heart of the abstraction that AUTOSAR provides. RTE is ECU and project-

specific and is generated individually for each ECU. It consists of the realization for a specific

ECU of the interfaces of the AUTOSAR Virtual Function Bus (VFB), the name of the mechanism

that allows communication between SWCs, with the hardware of the system and standardized

services such as reading or writing from non-volatile RAM. Virtual in the sense that it represents

a connection between SWCs, regardless of whether the components are in the same ECU or in

separate ECUs, therefore requiring transmission through vehicle buses. The other logical function

of RTE is triggering the execution of Runnables. An event is at the base of this trigger. The

most basic of the events is a Timing event that is periodically triggered. The remaining events are

triggered as a result of a communication activity or operation mode switches [9].

Through the VFB, RTE supports two basic communications paradigms, Client-Server, pro-

viding function invocations, and Sender-Receiver, providing message passing. SWCs configure

10 Background

their ports to provide one of the two paradigms. Each paradigm can be applied to intra-Partition,

inter-Partition and inter-ECU. Intra-Partition further encompasses intra-task and inter-task, the

former for components mapped to the same Operating System task whereas in the latter they are

mapped to different tasks. Inter-Partition communication occurs between components belong-

ing to different Partitions but located in the same ECU and therefore cross the memory isolation

boundaries. Finally, inter-ECU communication occurs between different ECUs and involves trans-

mission through vehicle buses, thus being inherently concurrent and unreliable.

2.2.2.1 Client-Server Communication

In client-server communication, the client initiates the communication, sending a request to the

server that may contain a set of parameters. The server continuously waits for incoming requests

from a client, once it gets one, it performs the requested service and then dispatches the response

to the requesting client. A single component can be both a client and a server depending on the

application. As the RTE serves as the middleman between this communication, the invocation

of a server request is performed by the RTE. From a client perspective, this invocation can be

synchronous, waiting for the server to complete, or asynchronous. It is not allowed for a client to

initiate direct communication with the server, thus bypassing the RTE.

2.2.2.2 Sender-Receiver Communication

Sender-receiver communication consists of a single message sent from the sender to the receiver.

Any reply that may originate from the receiver is then considered an entirely different sender-

receiver communication, independent of the first one, where the sender and receiver roles are then

inverted. There are four possible receive modes a receiver can be set to. "Implicit data read

access", that gives the receiver runnable access to a copy of the data that will remain unchanged

throughout the execution of the receiver. This copy is not necessarily a unique copy for each

receiver. "Explicit data read access", allows the receiver runnable to execute a non-blocking API

call that enables polling behavior. In this mode, the receiver needs to explicitly request the data

in order to receive it. "Wake up of wait point", where similarly to the explicit access it allows the

receiver runnable to explicitly request the data. However, instead of a non-blocking API call, a

blocking call is used and once the data is available, the call returns. It is possible to set a timeout

to this blocking call in order to prevent infinite wait time. Lastly, "activation of runnable entity"

where the receiver runnable is invoked automatically by the RTE upon arrival of new data. To

then access the newly arrived data, the receiver needs to use either an implicit or explicit data read

access.

2.2.3 Basic Software

Basic Software is the lowest AUTOSAR layer that provides services to the SWCs, it does not

perform any functional requirement, but contains standardized services and components that can

be used by the SWC through the RTE. In itself, BSW is separated in different layers, the Services,

2.3 Service Oriented Architecture 11

Figure 2.2: Components of the Basic Software layer, Services layer in blue, ECU Abstraction layer
in green, Microcontroller Abstraction layer in red and the Complex Drivers also green (reproduced
from [6])

ECU Abstraction, Microcontroller Abstraction and the Complex Drivers. In turn, these are also

subdivided as can be seen in 2.2.

The Services layer is the highest layer of the BSW as it is also the most relevant for the appli-

cation software. It provides, among other functionalities, operating system functionality, network

communications, management services and memory services. While the rest of the Basic Software

is hardware dependent, this layer is mostly hardware independent [6]. The ECU Abstraction layer,

located above the Microcontroller Abstraction layer, abstracts from the specific ECU schematics.

As such it is implemented for a specific ECU and is hardware dependent, it offers access to the dif-

ferent devices on the network regardless of their connection to the microcontroller, thus abstracting

the layout of the hardware. Inside this layer, is located the Communication Abstraction that allows

interfacing with different communication protocols, including CAN, Ethernet and FlexRay. The

lowest layer of the BSW is the Microcontroller Abstraction layer where it is no longer the ECU

that is abstracted, but the actual microcontroller that is present in the ECU. Hence it is microcon-

troller dependent and consists of drivers that map the access of on-chip peripherals devices of a

microcontroller and off-chip memory-mapped peripheral devices to a defined API [45].

2.3 Service Oriented Architecture

Service-Oriented Architecture is a different paradigm from the older architectures where the sys-

tem is divided in sub-systems and that were interdependent from one another. In a SOA, the

different system resources are packaged into a single "service" that provides a specific system

functionality while keeping their own internal state. The functionality of a service is specified in

a standard definition language that will be shared among every element of the system. A compo-

nent that implements a service represents a single instance of the service, and will then become a

service provider, identified by a service instance. When a client wants to use a service instance,

it simply needs to follow the definition language specifications to request the service. Once that

happens, the service provider is now responsible for receiving the data and possibly reply to the

12 Background

client. In the meantime, the client is free to continue its execution or wait for the reply. Note that

it is possible for multiple instances of the same service to exist in a single system. In those cases,

there will need to be a service discovery and instance selection process. While it would be possible

to have the client handle this process, it would add complexity to the system. Hence, technologies

that are developed with SOA in mind already provide this "service aggregator". The aggregator

performs a dual role. It acts as a service provider to the service client and also acts as a service

client to the actual different service providers [34]. The selection of which service instance to use

falls to the requester.

This type of architecture is of great interest to any system with several components for a

number of reasons. It ensures loosely coupled software modules as every service holds just the

information required to execute its logic and regardless of the state of the system as a whole it will

keep executing its functionality as long as the requests follow the definition language specification.

Due to this fact, a SOA is platform and language agnostic. As long as the request or response

follow the specification, it is unnecessary for either the client or the service to have insight into the

implementation details of one another. Thus, the integration of heterogeneous components that

may have been designed by different vendors is made seamless. Additionally, a SOA does not

require a static system configuration. Through the use of service discovery, service providers can

be discovered at runtime. This effectively means that it is possible to ’hot-plug’ components into

the system. No longer does the whole system need to go down in order to update or add a new

component.

An already widespread application domain for SOA are Web services. The whole World Wide

Web in itself is a SOA, users make requests to remote servers, with the specific HTTP format, and

then the servers send the responses back to the requester. The automotive industry has also started

incorporating a SOA in their products. With the vision of autonomous driving and enhanced

driver assistance systems, not only do the existing automotive requirements apply such as func-

tional safety and security, but also the ability to support High-Performance Computing, updates

over the air and dynamic deployment of applications. An evaluation by AUTOSAR concluded

that these requirements cannot be met by the classic architectures where nearly all internal vehicle

communication is handled by a deeply embedded controller [15]. Hence the industry started look-

ing into the applicability of existing SOA technologies in the automotive sector for these newest

functionalities, while still maintaining the traditional system architecture for the most critical com-

ponents.

2.4 GENIVI Alliance

In a vehicle, one of the most complex components, software-wise, is the head-unit, approximately

70% of the total code in a vehicle will in be in that single device [37]. It is no longer simply a

radio and has evolved into a hub where passengers have control over the several systems of a car

and has been named In-Vehicle Infotainment (IVI). The GENIVI Alliance, founded in 2009 by a

group of automakers [46], is an alliance specifically formed to create a standardized development

2.4 GENIVI Alliance 13

platform to design IVI systems using Ethernet as its backbone. Unlike AUTOSAR, which sim-

ply provides standards, leaving the actual implementation of these to the automakers, resulting in

each having their own AUTOSAR compliant product, GENIVI aims to introduce the concept of

open-source development to the automotive software industry. All of its solutions are available for

commercial use and open for everyone to use and make modifications. With this approach, that

results in automakers cooperation, it also desires to increase the product innovation rate. GENIVI,

however, did not intend to be a wholly separate alliance with no ties to other successful automotive

alliances, for example, AUTOSAR. It was still relevant for its solutions to be AUTOSAR compli-

ant, which was already widely used in the automotive industry. Consequently, one of its founding

partners, BMW, that belongs to both the GENIVI and AUTOSAR alliances and thus already has

AUTOSAR compliant modules, was able and willing to make these modules available to the re-

maining members of the GENIVI alliance. Then these members would be able to integrate the

modules into their GENIVI solutions. The aggregation of these solutions is called the GENIVI

Platform, and only around 20% of its software was created or adapted by GENIVI, the remaining

80% are adopted from existing open source technologies [37] that are needed for each particular

system.

A necessity that arose was the need for a middleware solution able to provide a hardware

and software abstraction to meet the automotive requirements whilst providing the services upon

which the applications depend, and still be compatible with AUTOSAR and other alliances. The

middleware would allow for a standardized way to not only communicate between applications

in the GENIVI platform, but also applications in other platforms. These specifications fit a SOA

perfectly, and thus GENIVI searched for a fitting existing middleware that could be deployed on

the automotive market. The results were that although several middlewares already existed, out of

them, only a few are suitable for an embedded environment, and none of these was compatible with

Ethernet and AUTOSAR compliant [42]. As a result, the GENIVI alliance took up the challenge

of developing a new middleware fit for the automotive market, and thus SOME/IP appeared.

2.4.1 Service Oriented MiddlewarE over IP (SOME/IP)

Service-Oriented Middleware over IP is a message based middleware designed in 2011 specifi-

cally for the automotive industry. It can fit on devices of different sizes and operating systems,

like cameras, head units and AUTOSAR devices. The original use cases for SOME/IP were related

to infotainment systems, although it is fit for other vehicle domains allowing it to replace some

of the traditional vehicle buses [43]. As a middleware designed with SOA in mind, it is based

on the creation of applications that implement a service definition and then offer it to the net-

work, this is made easy by the range of features that SOME/IP provides. The middleware handles

the serialization and deserialization of messages, and the message on-wire format is compatible

with AUTOSAR control messages. A request-response communication is supported through the

invocation of Remote Procedure Calls (RPC) as well as a publish-subscribe paradigm with the

possibility to subscribe to remote events. Fields are also a possibility, having features of both

request-response and subscribe-publish. They are a combination of one or more of the following.

14 Background

Figure 2.3: Overview of SOME/IP communication mechanisms (reproduced from [16])

A notifier that sends data to the subscribers when it deems appropriate, a getter function called by

the client to fetch the current value of the field, and a setter function called by the client to change

the value of the field. This is different from the events behavior that are only sent on change.

At the core of SOME/IP design is the Internet Protocol suite, also known as TCP/IP, a con-

ceptual model and set of communications protocols used in computer networks. It is an already

proven model for computer networks and is specially useful for Ethernet networks, one of the aims

of SOME/IP. TCP/IP offers different transport protocols, the ones used by SOME/IP are Transmis-

sion Control Protocol (TCP) and User Datagram Protocol (UDP). UDP is a very simple protocol,

offering only the base guarantees of multiplexing and error detection using a checksum, it does

not guarantee that a message is received. As such, it is used for features that have a very short

deadline and need to react quickly, as UDP lack of guarantees means messages arrive faster than

TCP and with a predictable delay. On the other hand, TCP adds additional features for achieving

reliable communication, not only does it handle bit errors, but also segmentation, loss, duplication,

reordering and network congestion [7] at the expense of unpredictable delays. All of SOME/IP

concepts allow the designer to select whether to use TCP or UDP, either statically or at runtime.

The discovery module of SOME/IP used to discover other available services on the network

is called Service Discovery (SOME/IP-SD). It is optional and can be turned-off in case a static

configuration of the network exists. If it is turned on, then every application will announce its

existence to the network through the use of multicast messages. These are UDP messages that

adhere to a different routing scheme. A one-to-one scheme, where a sender sends a message to

the receiver, is called a unicast message. A multicast message consists of the sender sending a

message to a multicast group that will be received by all subscribers of that group. This is opposed

to broadcast messages that reach every device of the network. An application offering a service

will keep sending these multicast messages, and a client application will then be aware of the

service existence and can then proceed to make use of the offered services.

2.4 GENIVI Alliance 15

Apart from the standard SOME/IP messages, as this middleware is to be deployed as a com-

plement to other existing vehicle buses, it can also serve as a tunnel for these vehicle buses frames.

Support for CAN and FlexRay frames is possible, allowing SOME/IP to propagate these frames

through the usage of a special identifier to distinguish from the regular SOME/IP messages. With

this, the groundwork for the integration of SOME/IP with existing technologies was laid out.

GENIVI aim, however, is to be as receptive as possible to newest technology trends and not be-

ing tied down to a single middleware or technology. Consequently, the CommonAPI was then

developed.

2.4.2 CommonAPI

CommonAPI is a C++ framework developed by GENIVI for interprocess and network commu-

nication that follows a SOA. Its objective is to provide a uniform Application Interface (API) to

different communication frameworks or protocols. The basis for a project using CommonAPI is

the existence of a service definition, shared across the developers. To this end, the CommonAPI

uses the Franca Interface Definition Language (Franca IDL). This language allows the definition of

services with methods, events and fields, and also the specification of project-specific data types,

such as structs or enums that will then have a specific on-wire representation. This is analogous

to the specification of the message formats present in a SOA as it contains all the information

a service or client need to encode and decipher messages. From this Franca file, CommonAPI

provides code generators, the base one called core-tools, to generate code for both the service

providers, called Skeletons, and consumers, called Proxies. The former contains the de-

fault implementation of the specified methods, while the latter has methods that internally handle

the call to the service provider and the whole networking process. A developer will then extend

the generated code, through C++ inheritance, without actually modifying the code files that were

generated. This generated code uses methods from the CommonAPI Runtime, which is the ac-

tual abstraction layer from the underlying communications protocol. The base runtime is called

core-runtime and has the higher-level concepts of a SOA such as remote methods, events and

fields. Both of these core projects represent the API with which a programmer will have to interact

when developing using this framework. A representation of this interaction is shown in Figure 2.4.

To then specify an actual middleware, additional steps need to be taken on the compiling pro-

cess. The communication protocols that are supported until now are SOME/IP, D-Bus, a protocol

for inter-process communication within the same system, and also Web Application Messaging

Protocol (WAMP) which is still being developed [1]. For each of these protocols, there is a

binding of the respective core project for that protocol, for example, the generator for code us-

ing SOME/IP is called someip-tools, and the runtime is called someip-runtime, the same

logic applies for D-Bus and WAMP. In order to use one of these protocols, code for the respective

protocol needs to be generated as well as the linkage, at compile-time, of the respective runtime to

the application. Each of the protocol runtimes contains macros to dynamically link at runtime the

respective binding to the core runtime, effectively providing networking capacity to it. Through

this process, the developer is abstracted of the inner workings of the different communications

16 Background

Figure 2.4: Overview of CommonAPI functional modules and relative abstraction level (repro-
duced from [17])

protocol and can only focus on the familiar services that they provide. This shift in the developer

focus also makes it very easy to adopt new technologies. Once a project has been developed using

CommonAPI, changing to another technology simply involves recompilation without even having

to change the project. Also, as this follows the SOA and each Franca file will result in the genera-

tion of the messaging scheme and services provided, it is simple to have concurrent development,

where a team is responsible for the service provider system and another for the service clients. As

the generated code will be equal for the same Franca file, then focus is shifted from the networking

part of the project to its actual functional requirements.

2.5 AUTOSAR Adaptive Platform

Soon after the appearance of other more specialized automotive standards and technology, AU-

TOSAR realized that while it does cover several domains, it is not reasonable to expect it to cover

every single one. It seemed more reasonable to open AUTOSAR for an integration with these

different platforms. Hence, in 2014, the AUTOSAR Classic Platform (CP) introduced support for

SOME/IP [10] and also a Franca connector for supporting the integration of GENIVI and AU-

TOSAR at an application level and thus making it possible to interconnect the development and

generation processes of the AUTOSAR and the GENIVI parts of the system [5].

However, as the CP could no longer meet the computing requirements of the newest automo-

tive systems, in 2017 AUTOSAR introduced the Adaptive Platform (AP) as an additional compli-

2.5 AUTOSAR Adaptive Platform 17

Figure 2.5: Overview of AUTOSAR Adaptive Platform functional clusters (reproduced from [3])

mentary standard providing more flexibility to the development of automotive software. Unlike the

CP, which was developed for deeply embedded ECUs where their functionality does not change

during the vehicle lifetime, the AP was designed with the dynamic nature of the state-of-the-art

technologies in mind and their ever-increasing performance and bandwidth requirements. Not

only multicore processors need to be supported, which was already the case with the CP, but also

manycore processors and General Purpose use of Graphical Processing Units (GPU) that offer

orders of magnitude higher performance than conventional processing units and overwhelms the

CP. To tackle these requirements, AP employs technologies that were not used by the CP, while

maintaining a degree of freedom in the implementation to allow the integration of innovative tech-

nologies. It can fully utilize the capabilities of Ethernet, allowing for much higher transmission

rates than other vehicle buses. The CP already had support for Ethernet but primarily for the com-

munication with legacy systems and was optimized for such, making it difficult to fully utilize its

potential. C++ became the programming language of choice when tackling these issues, instead

of the traditional C, which should provide faster adaptations of the newest algorithms while im-

proving application development productivity if employed correctly. AP was designed following

a SOA to allow the dynamic configuration of a system, achieving maximum flexibility and scal-

ability. Thus, with a SOA, the system inherently fits the distributed computing paradigm where,

through message passing, a network does computations towards the same goal. This message-

based communication also greatly benefits from the Ethernet speeds. Lastly, to ensure the safety

and security of the systems using AP, it employs dedicated functionalities and C++ guidelines that

facilitates the safe and secure usage of such a complex language. Ultimately this translated into

a platform that was not meant to be a replacement of existing ones but as a complement that will

interact with other platforms, including non-AUTOSAR platforms [3].

Similarly to the CP, AP is divided into several functional clusters, presented in Figure 2.5. The

whole set of functionalities is called the AUTOSAR Runtime for Adaptive Applications (ARA).

18 Background

Each cluster belongs either to the Adaptive Platform Foundation, shown with a blue line, or the

Adaptive Platform Services, shown with a grey line. The former provides fundamental function-

alities of AP, while the latter provides standard services. In addition, any adaptive application can

provide services to other applications, illustrated as Non-PF Services. Of these clusters, the one

responsible for the communication between user applications is the Communication Management

(ara::com) that provides abstractions comparable to GENIVI CommonAPI.

2.5.1 Communication Management

Similarly to the CommonAPI, the ara::com purpose is to abstract the developer from the mecha-

nisms to find and connect applications. It also follows a SOA allowing the offering and consump-

tion of services between applications that can be either in the same device or in different devices.

These services consist of methods, events and fields, and its discovery can be established statically

or dynamically through the use of Service Discovery. Correspondingly, code generation based on a

service specification file is also standardized. Based on the AUTOSAR meta models, code is gen-

erated for both the service providers Skeletons and the service consumers Proxies that can then be

extended by the developer. The actual communication protocol is abstracted. An application only

interacts with ara::com API, which will then handle the interaction with the actual protocol. This

approach is similar to GENIVI CommonAPI approach, but AUTOSAR also wanted additional

capabilities not provided by CommonAPI or any other existing platform. Namely, receiver-side

caches, already present in the CP, a zero-copy capable API with the possibility to shift memory

management to the middleware and data reception filtering [4]. Therefore AUTOSAR designed a

communication middleware API, based on existing ones, in order to meet its requirements.

The main protocol on which ara::com built on is SOME/IP. As it had already been designed

for automotive purposes, it fitted the AUTOSAR requirements. It became the first protocol to

be supported by ara::com, and it is an AUTOSAR requirement that any developed AUTOSAR

AP compliant solution has to support SOME/IP, although the actual choice of the underlying

middleware falls on the application developer. Another studied protocol was the Data Distribution

Service (DDS), an Object Management Group middleware standard that builds on the concept of a

"global data space" accessible to all interested applications [28]. DDS has been applied in different

safety-critical systems, such as air-traffic control, transportation, and medical systems [21]. At

the time of the creation of ara::com, DDS strictly followed a publish-subscribe communication

mechanism, with no support for request-response. Hence it did not meet the required criteria to

become a part of ara::com possible middlewares. Shortly after ara::com release, DDS introduced

the possibility of RPC in its model [27] and some months later AUTOSAR added DDS binding to

ara::com [8] adding DDS to the possible middlewares through which applications communicate.

In the end, the AP ended up with a workflow that is similar to GENIVI. As such, when using

the same communications protocol, interoperability between AUTOSAR and GENIVI or other

platforms comes naturally. The platform context switch is done one layer above the middleware,

in AUTOSAR AP case with the ara::com and in GENIVI case with the CommonAPI. This opens

up the possibility of integrating even more platforms in a vehicle or even using AUTOSAR for

2.6 Rust Language 19

non-automotive purposes, such as the Robot Operating System which is a widely used platform to

develop robots, drones and other cyber-physical systems [35]. In this case, the protocol that allows

the interoperability is DDS.

2.6 Rust Language

Rust is a programming language originally designed at Mozilla Research while developing Mozilla

Firefox newest browser engine Servo. It then became an open-sourced language, thus encourag-

ing contributions from throughout the world. Ever since it first appeared in 2010, its popular-

ity and adoption have been growing tremendously, and it has been the "most loved program-

ming language", according to the Stack Overflow Developer Survey, for five consecutive years

[29, 30, 31, 32, 33]. What makes Rust so unique is its focus on providing a code safety level

whilst maintaining a speed on par with C and C++ [39].

The solutions and platforms explored before, GENIVI and AUTOSAR, were developed in

either C or C++. The issue with these languages is that the programmer is given complete freedom.

They assume that as long as the code is syntactically correct, that it is valid, even in cases where it

evidently is not and will result in an error. This approach would be perfect in case the developers

had absolute knowledge over which approaches are the correct ones and the inner workings of the

languages. However, it is not feasible to assume this as the amount of effort and time it would take

to become fully proficient in these languages is massive. Solutions and standards to mitigate this

have been proposed and currently exist. One of such standards is the MISRA-C and MISRA-C++

guidelines, a set of coding rules that, when followed, mitigate to a certain extent the likelihood of

errors related to misuse of C/C++. These are simply guidelines, actually checking code against

these guidelines is left to the developer side. To facilitate this process, there exist tools, some free

to use others sold as a product, to programmatically check the code. As one can imagine, the

workflow of developing against these various guidelines is immense and takes away time from the

actual development.

On the other hand, Rust provides all of the analysis explained above at compile-time, effec-

tively merging the workflow into a single step. At the heart of Rust analysis is a strongly typed

language and its ownership model that is able to guarantee memory and thread-safety. The main

ownership model rules are that every variable or value has an owner, owners can be blocks of code,

such as a function, or data structures. There can only exist a single owner to every variable, and

once the owner goes out of scope, the variable value will be dropped. Ownership can additionally

be transferred throughout the code, for example, a setter function will first take ownership of the

value and then move the ownership to the variable we are trying to set. By having these three sim-

ple rules, Rust is able to avoid having a garbage collector and makes it predictable when memory

will be freed.

Complementing the ownership rules are the borrowing rules. These allow another piece of

code to borrow the ownership of the variable. The borrows obey lexical scope that ensures there

will not be any outstanding borrowed references to the object, also known as "dangling pointers"

20 Background

[25]. Borrows can be immutable, where the borrower can only read memory, or mutable, where

the borrower can read and write to memory. Mutable borrows have a uniqueness property. There

can only exist a single mutable borrow and no immutable borrows to a variable in that scope. The

owner of the variable is also forbidden from modifying the value while it is mutably borrowed. On

the other hand, there is no restriction to the number of immutable borrows of a variable, but again,

there can exist none once a mutable borrow is desired. When these borrows traverse the variable

code scope, such as borrowing a variable to a function, then additional lifetime parameters need

to be specified which allow the Rust compiler to verify if the borrow will remain valid throughout

the execution of the function. Rust does provide a convention where these lifetimes can be elided

on a general basis, thus remaining transparent for the developer [44], but the concept still remains.

To extend these concepts to a multithreaded context, Rust has two additional markers that rep-

resent when a type is thread-safe. The Send marker is used to represent that a type is safe to send to

another thread. By sending a type to another thread, ownership is effectively being changed from

the current thread to another thread. Sync marker builds on top of the Send and represents that a

type can be safely shared between threads, usually a Sync type is also Send. This commonly in-

volves the use of inner locking mechanisms, such as Resource Acquisition Is Initialization (RAII)

guards or atomic variables. These markers are inherently given by the compiler to types that fit the

criteria. A data type that is user-built, for example, a struct, will only be Send if all of its members

are also Send, the same applies for Sync.

While these concepts are great and most projects will have no issue with following these rules,

it is possible that a subset of features requires the violation of these rules. In such cases, Rust

provides unsafe code blocks, where these strict ownership and mutability rules are relaxed. Inside

unsafe blocks, Rust effectively becomes similar to C/C++ where it trusts that what the developer

is doing is safe. As can be expected, most of the Rust compiler itself is unsafe and provides safe

abstractions to the developer. The use of unsafe in Rust is not discouraged in itself but is the

last resort concept that only after exploring all the safe alternatives should be considered. Since

the compiler rules are relaxed in unsafe code, if there is any kind of memory safety error in the

program, it is very likely for it to be in these blocks, making it much easier to actually find and

correct the error.

Ultimately, these rules enforced by the Rust compiler ensure that a program will have no

aliasing, data races or double frees. In [36] it was shown that several of MISRA-C rules are already

enforced at compile time by Rust compiler, thus making such guidelines irrelevant. Most of the

errors associated with memory safety are effectively eliminated as the compiler will catch them and

fail to compile the code due to it, allowing the developer to fix these errors. Many errors present in

a C/C++ project are precisely memory safety errors, with Microsoft estimating around 70% of its

Common Vulnerabilities and Exposures are memory-related [40]. Due to this, it is looking to use

safer languages and concepts and is exploring the possibility to implement Rust components in

the Microsoft environment [41]. This follows the trend of other enterprises and projects that have

begun to slowly adopt Rust. Discord, a proprietary Voice over IP application, has recently made a

full transition from Go to Rust in order to meet their performance targets [18]. Facebook, one of the

2.7 Existing SOME/IP implementations 21

biggest social platforms with a huge code base will integrate components written in Rust in their

product [14]. Amazon also added support for Rust in its Amazon Web Services Lambda platform,

which allows developers to run code for virtually any type of application or backend service [11].

There is clearly an industry trend to explore the possibility of using Rust in its products with clear

advantages of doing so. Further efforts on developing kernels fully in Rust have been made, such

as Redox, a Unix-like Operating System (OS) [12]. Using Rust for embedded purposes is also

being explored, with Tock OS providing a very exciting full Rust implementation of an embedded

kernel [22] [23].

2.7 Existing SOME/IP implementations

Apart from the publicly available GENIVI SOME/IP implementation, to the best of the author’s

knowledge, there is no other SOME/IP implementation nearly as complete. It is, however, possible

that car manufacturers or their suppliers have their own implementations of the protocol only used

internally and not shared with the industry. Only 2 other implementations could be found. The

first one, 1 is also a C++ implementation of SOME/IP. However, this implementation no longer

seems to be maintained as the last change to the protocol logic was made in June of 2015. As

such, it is likely that the implementation has fallen behind the SOME/IP specification and is no

longer compliant to it. The other implementation was made in Python 2 and appears to be a more

complete implementation. It only covers the SOME/IP layer and not the CommonAPI, so the

serialization and deserialization of data types is left up to the user application. Regardless, there

appear to be some features missing when compared to GENIVI implementation as can be seen

in the README.md of the repository. Namely, SubscribeAck and SubscribeNack messages are

ignored, which means that user applications cannot react to their remote event subscription being

either accepted or rejected. Additionally, it is not possible to subscribe to events that are offered

in TCP among some other features. While this project is in active development, and its certainly

interesting to have an implementation in Python, it seems it is not yet possible to develop a fully

fledged user application with it.

2.8 Summary

In this chapter, an analysis of the process of the adoption of Ethernet connectivity within an au-

tomobile was given. At the base of this adoption was the IEEE effort to establish an aggregation

of standards and respective configurations that fit the automotive industry profile. This served as

the groundwork for the development of technologies based on Ethernet. As a worldwide accepted

standard, AUTOSAR added support for it, initially in its Classic Platform. With the usage of

Ethernet for connectivity, the additional usage of the TCP/IP protocols was made simpler. Other

software industries, already using Ethernet and TCP/IP and with a substantial code base, began

1jacky309 someip repository
2afflux pysomeip repository

https://github.com/jacky309/someip
https://github.com/afflux/pysomeip

22 Background

moving to a Service Oriented Architecture as an answer to the increasing complexity in the de-

velopment of software. The automotive industry soon started following this type of architecture.

As such, BMW, as part of the GENIVI Alliance, introduced a new protocol, SOME/IP, based on

a SOA, specifically designed for automotive use cases. Later, AUTOSAR also adopted SOME/IP

first in its Classic Platform and then, once it emerged, in its Adaptive Platform that was devised

with a SOA in mind. By having this common communications protocol, both of these platforms

are easily interoperable as well as any other platforms using a shared communication protocol.

Most of these protocols and standards target either C or C++. However, these are, by nature, un-

safe languages that rely on the programmer making proper usage of their concepts. Mozilla created

an additional programming language, named Rust, that provides concepts similar to C and C++

but offering a much higher code safety level by having a powerful compile-time code analysis.

Due to this, parts of the software industry have already started exploring the possibility of using

Rust in its products. Additionally, there is some research and development into using Rust for the

embedded software world. The automotive software industry, being a technology that needs to be

safe and robust could benefit from the usage of Rust, hence the proposition of this thesis.

Chapter 3

Reference toolchain analysis

To better analyze the capabilities of the presented technologies, a simple system example will be

used. Naturally, it is not a system representing an actual use case, but one that utilizes the major

SOME/IP and CommonAPI functionalities. It will be composed of 4 different services that could

hypothetically be present in a car, as shown in Figure 3.1.

Figure 3.1: Overview of the example system with its services and how they communicate between
each other

The first is the Infotainment Hub representing the head unit component, which is regularly

used both to display vehicle information to the driver and also allow the driver to change the

behavior of other vehicle components. The second service is the Seats, responsible for all vehicle

seats related information. Similar to actual automobiles, it gathers the status of whether the various

seat belts are locked and manages the heating of the different seats that will be further subdivided

in bottom heating and back heating. The third service is the Camera component that would be

located at the back of the vehicle. Its functionality is equivalent to that of a parking camera, and

it is only activated once the vehicle goes into reverse mode, otherwise being turned off. Lastly,

the Wheels service corresponds to a component responsible for each wheel axle of the vehicle.

As such, there will be 2 instances of this service, one for the front wheels and another one for

23

24 Reference toolchain analysis

the back wheels. Each of them will oversee their respective pair of wheels, gathering information

about their status, such as their pressure and whether there has been any kind of damage to the

wheels. The control of the vehicle’s speed is left to an external component not presented in this

system, the Wheels service only reads the actual speed as measured by the sensors on the wheels.

As opposed to the more complex network structure of an actual vehicle, all of the services in this

example system will be connected to the same network. However, only the Infotainment Hub will

communicate with every other component. The remaining only need to be aware of its existence.

To simulate the automobile’s movement and thus trigger certain events, a formula will be used

to calculate the vehicle’s speed throughout the simulation. Each of the Wheels services will use

the following formula in order to generate speed variations.

7cos(0.3t)+5

Figure 3.2: Plotted graph of the vehicle’s speed variation through time

3.1 Project development workflow

The modeling of this example system in the CommonAPI toolchain needs to follow a particu-

lar workflow. After having the conceptual architecture of the system, it needs to be realized in

the necessary format. With the CommonAPI, the initial-step is to define the system services in

Franca Interface Definition Language (Franca IDL) files. These will have a description of ser-

vices, alongside their methods and events, independent of the technologies that will be used to

develop the system, thus effectively following a Service Oriented Architecture. The first type of

files, and the ones that contain the descriptions of the services, are the .fidl files. These will

have all the necessary information to describe the services, including the methods and events data

types. The data types can either be the ubiquitous primitive types, such as numbers or strings,

complex types like arrays or maps, or user-defined types, such as enumerations or structures. For

the latter, they also need to be defined in the .fidl file, alongside the service methods and events.

With the .fidl files, we get a technology stack independent service description. However, each

specific technology has different ways of handling the services instances and how their inter-

communication works. To then bind these service instances to a specific technology, additional

deployment files, named .fdepl, need to be created, these will be technology-dependent. In the

3.1 Project development workflow 25

Figure 3.3: Transformation of the Franca files by the code generators to their C++ representation

case of a SOME/IP deployment file, a unique service identifier has to be manually assigned to

each service and an identifier for each intended service instance. As per SOME/IP rules, the pair

service identifier and instance identifier needs to be unique. Then, additional identifiers have to be

defined and assigned to the methods and events of the service, as well as the ability to choose the

reliability of the method, which translates to either using TCP or UDP as the underlying transport

protocol. Several other adjustments are possible, such as using little or big-endian and multiple

customizations of the on-wire representation of the several data types. The files that were used for

this example are present in Appendix B.1 and B.2.

3.1.1 Code generation

Once the desired .fidl and .fdepl files are finished, the code generation takes place. This step

will generate code that matches the service specification in the Franca IDL files. Since this code

is very similar between services and thus prone to repetition, instead of having the users write

this code by themselves, the code generator does it. GENIVI CommonAPI provides multiple

code generators with all of them generating C++ code but with different purposes. The primary

code generator, named capicxx-core-tool (core-tools), accepts .fidl files as input and

outputs code which is technology independent. It can also accept .fdepl files, but it will only

process the associated .fidl files. The output consists of C++ abstract classes with unimple-

mented methods that have to be implemented partly by the user and partly by the code generated

from the rest of the CommonAPI generators. Any user-defined type will also be translated into

C++ code in the core-tools generator as its definition is also technology independent. The

remainder of the code generators outputs a technology-dependent implementation of previously

generated abstract classes. For each technology supported by CommonAPI there is an associated

code generator, the SOME/IP one is named capicxx-someip-tools (someip-tools) and

will be the sole focus of this work. An overview of the pipeline each Franca file goes through to

be transformed into their respective C++ code is shown in Figure 3.3.

26 Reference toolchain analysis

As can be seen, the core-tools generated files are all header files that only contain abstract

classes. The Wheels.hpp contains some public basic general data access methods with no logic.

The Proxy.hpp files represent the interface that will be used by the clients of the service. As

such, it contains the definitions of the service methods and provides the means to access the ser-

vice events. The Stub.hpp interface file has the skeleton that serves as the base for the service

implementation. To provide this implementation, the user needs to extend the Stub interface in this

file and write implementations for each of the methods there present. In the someip-tools side,

the generated files will be providing a transformer between the high-level Franca IDL concepts

and their SOME/IP equivalents. The SomeIPProxy files are responsible for the client part of the

service and thus, initially serializes the user’s parameters, sends them to the service instance and

then deserializes the response from the service into the respective type. The StubAdapter does

the opposite, initially deserializing the bytes sent by some client, sending the result to the user’s

Stub implementation and afterwards serializing the response and sending it back to the client.

There can be additional files generated, named the Deployment files, that are generated ac-

cording to the .fdepl files specification, where the user can control how the on-wire representa-

tion of the data types is handled. However, these Deployment files do not have any logic in them,

but only store this on-wire specification which will then be used by the logic in the remaining files.

3.1.2 CommonAPI Runtime

An essential part of the CommonAPI toolchain are the Runtimes. These are where the actual logic

for the transformation between the high-level Franca concepts and their middleware equivalent

takes place. The generated code serves as a mean to abstract the underlying calls to the Run-

time from the user. Similar to the code generators, there are several CommonAPI Runtimes. The

common one, named capicxx-core-runtime (core-runtime), is technology independent

and mostly consists of abstract classes to be implemented by the remaining Runtimes. The re-

maining Runtimes are the technology-dependent implementations. The SOME/IP one is called

capicxx-someip-runtime (someip-runtime).

All of the generated code will be built on top of the core-runtime, as it provides a mid-

dleware independent abstraction over the high-level Franca concepts, making switching between

technologies straightforward. The core-tools generated code files will then only use the

core-runtime types and the someip-tools files will internally contain someip-runtime

which, since they are an implementation of the core abstract classes, allows for the application to

remain technology independent. This is possible due to the polymorphic capabilities of C++ both

at runtime, through dynamic dispatch, and at compile time using static dispatch.

3.1.3 User Application

Once the previous steps have been taken, the user is now ready to develop its application. The

base for this is the implementation of the Stub classes for each service. The user is free to decide

how this should be done, for example, the same C++ class can implement 2 different Stubs. In the

3.2 Service definition with Franca IDL 27

Figure 3.4: Overview of all the CommonAPI tools and how the user application uses its libraries

code generator, a flag can be used to generate default implementations of the service that the user

can then reuse so that it is simpler to develop the application. As for the client part of the code,

the user simply needs to instantiate Proxy class for the respective service and then it will be able

to do remote method calls and access its events. How these Stubs and Proxies are handled by the

CommonAPI will be detailed further in the document. From the user application point of view,

it is only using a single library, core-runtime, although internally the library can dynamically

choose which middleware implementation to use. An overview of all the CommonAPI tools and

how each is used to allow the user to develop applications that are abstracted from the middleware

is shown in Figure 3.4.

3.2 Service definition with Franca IDL

The Franca IDL allows for the definition of service interfaces using a variety of concepts. In the

provided example, the most common and relevant aspects were covered. The most basilar aspect

of a service specification is the definition of data types that will then be used on the remainder

28 Reference toolchain analysis

of the concepts. Primitive data types are readily available and can be used without any further

description, while the complex data types require the user to define them. The complex types

encompass vectors, maps, enumerations, unions and structures. These can be associated with a

specific interface or with a typeCollection and then be available for use in all interfaces. This

visibility of data types only exists while creating the Franca files, naturally, this is not present in

the resulting generated code.

A typeCollection, named AutomotiveTypes, was defined for the system to hold particular

service independent data types. One such type is the Pixel structure, which stores the information

of a single pixel of the images that will be sent from the Camera service to the Infotainment

Hub. The standard Red Green Blue (RGB) representation was followed, with the additional alpha

parameter used for mixing data types in the same structure. A single image from the Camera is

called a Frame, which is a vector of Pixels, also defined in the AutomotiveTypes collection.

For the data types associated with a specific service, they should be defined within an interface,

an example of this is shown on the right side of Figure 3.5. In the Seats service, each car seat

has dedicated heating. These have 2 different actuators, on the back of the seat and the bottom,

so the SeatHeating enumeration stores which of these actuators should be turned on or off.

Then, as the Seats service is responsible for the 5 seats in the vehicle, it additionally contains the

SeatInformation map, where each of the 5 seats has an associated name, stored in the String,

that then maps to the Seat structure which contains the heating and seatbelt information.

typeCollection AutomotiveTypes { interface Seats {
version { major 1 minor 0 } version { major 1 minor 0 }

array Frame of Pixel map SeatInformation {
struct Pixel { String to Seat

UInt8 r }
UInt8 g
UInt8 b enumeration SeatHeating {
Float a OFF

} BOTTOM
... BACK

} BOTH
}
...

}

Figure 3.5: Extract of a definition of data types. Left with types declared in a typeCollection
and right with types declared in an interface

All of the Franca data types are then to be used in the remainder of concepts. For the specifica-

tion of services, a ubiquitous approach is to define methods. In Franca, their definition follows the

common standards to specify the input parameters, to be sent by the service clients, and the output

parameters sent from the service provider back to the client as a response to the initial request,

as seen in Figure 3.6. Theoretically, an arbitrary number of input and output parameters can be

specified, however, programming language specific restrictions may limit this number. For exam-

3.2 Service definition with Franca IDL 29

interface Seats {
version { major 1 minor 0 }

method set_heating {
in {
String seat
AutomotiveTypes.SeatHeating heating

}
}
...

}

Figure 3.6: Franca IDL definition of methods without any output or error arguments

ple, for the developed Rust implementation of these tools, a maximum of 12 output arguments

can be specified, although grouping arguments in a separate structure can easily circumvent this

limitation. Additionally, Franca provides the possibility to define a third type of parameter, the

error parameter. This is a single parameter that is defined similarly to the input and output but is

necessarily an enumeration. It will always be sent by the server, thus acting as an additional output

argument that can provide additional information about the method call status.

For the developed system, not many methods are required as it is mostly a system that re-

acts to events without the need for more advanced querying. One of the few methods defined,

set_heating() in the Seats service, allows the Infotainment Hub to update a single seat heat-

ing status. In it, the name of the specific seat is passed alongside the heating instruction. No output

parameters were specified, but their definition follows the same principle as the input parameters,

just using the out keyword instead of in. Although no output or error arguments where specified,

the default Franca behavior is to send a reply with an empty payload that serves as an acknowl-

edgment that the server has received and processed the request. This behavior can be turned off

by adding the fireAndForget keyword in front of the method name, in which case, there is no

reply sent by the service provider.

Lastly, one core concept of a SOA, which Franca follows, is the definition of events, shown in

Figure 3.7. There are different types of events that can be used with Franca. The most basic ones

are called attributes, and they represent a public service variable that service clients can access.

This remote access can be restricted through a mixture of up to 3 keywords. To have a read-only

attribute the keyword readonly should be used, for write-only noRead and no subscriptions

noSubscriptions. These permission flags may be mixed, so it is possible to define an attribute

that can only be read from with readonly noSubscriptions. Each attribute has an associ-

ated data type, though it is always possible to define a structure that holds different data types and

then have a struct attribute.

The other types of events are called broadcasts, which get sent to every subscribed user. Un-

like regular events, broadcasts cannot be read or written by the service clients. These can only

subscribe to its notifications, and then the service provider is responsible for triggering it. Not

only that, but a single broadcast notification can send multiple data types. From a user perspec-

30 Reference toolchain analysis

interface Wheels { interface InfotainmentHub {
version { major 1 minor 0 } version { major 1 minor 0 }

attribute Float speed readonly broadcast shutdown {
attribute Boolean sport_mode out {

}
... }

} ...
}

Figure 3.7: Extract of the definition of service events. Left with the declaration of attributes and
right with a regular broadcast declaration

tive, broadcasts are used in a similar way to methods as it is simply a function call with no reply.

There is a more restrictive type of broadcasts, called the selective broadcasts that can be defined

by adding the selective keyword in front of the broadcast declaration. Unlike in the regular

broadcasts where the notification will be sent to all connected clients, selective broadcasts may

not be sent to all clients. The server is given the responsibility of selecting which of the clients to

send the notification.

Most of the communication between services in the example system is through events. As

an example, the Wheels service is only composed of attributes. Its attributes are either regular

attributes or readonly attributes. The regular attributes are values that can be modified exter-

nally, the vehicle’s sport mode can be activated in the cockpit, which will then write the value

to the Wheels services. The other attributes represent values that are not dependent on the user’s

interaction with the system. Since we are assuming the car speed is determined by an external

component, it is a readonly attribute for our example system. As the central hub for user inter-

actions, the Infotainment Hub service has the shutdown broadcast. Every service of the system

should subscribe to the broadcast on startup, and once the vehicle is turned off, a notification is

sent to them in order to have a graceful shutdown. No output parameters where specified as there

is no need, but as can be seen its specification follows the same principle as the definition of a

method output parameters.

3.3 Mapping Franca concepts to the CommonAPI

The Franca IDL specifies several high-level concepts that need to be materialized into their con-

crete representation for the middleware being used. The code generator is part of this materializa-

tion. While it would be possible to generate code to match a specific middleware directly, GENIVI

approach was to have an additional abstraction layer, the CommonAPI, to further abstract this gen-

erated code from the underlying middleware. For that, the base library core-runtime provides

mostly interfaces that directly correlate to the Franca concepts, that need to be implemented sepa-

rately for each middleware supported by the CommonAPI.

Figure 3.8 provides an overview of the main interfaces and abstract classes present in core-

runtime, which are used to translate the Franca concepts or as helpers for a SOA. On the left,

3.3 Mapping Franca concepts to the CommonAPI 31

Figure 3.8: Diagram of the major classes and interfaces of the capicxx-core-runtime library

there are only event-related elements. There is an interface for each supported combination of

the Franca attributes access modifiers, with the most restrictive attribute being the Readonly-

Attribute that corresponds to the keywords readonly noSubscriptions. Attributes that

can be subscribed to, are required to have access to an Event due to having the method get

ChangedEvent(), which needs to return an event as shown in Figure 3.9. This Event access

is required to manage the subscription and notification procedures of the attribute. The service

broadcasts are mapped directly to an Event object as these cannot be written to or read from,

only subscribed by remote clients. All of the event-related interfaces are generic over a number of

template arguments that correspond to the respective data types of the Franca attribute or broad-

cast. As such, and as can be seen in Figure 3.9, the attribute interfaces take only a single template

argument, while the Event is generic over an abstract number of template arguments, matching

the broadcast capabilities of specifying an abstract number of output parameters.

On the other side of Figure 3.8, there is the Proxy and stub related abstract classes. This is the

base for the code that will be used by the service clients and the service providers, respectively.

The StubAdapter instance, to which the Stub object has access to, provides the translation

from the underlying middleware bytes into the respective data types used by Stub methods and

template<typename... Arguments_>
class Event {

...
}

template<typename ValueType_>
class ReadonlyAttribute {

virtual Event<ValueType>& getChangedEvent() = 0;
...

}

Figure 3.9: Extract of capicxx-core-runtime of the definition of the templated abstract
classes for the Event and ReadonlyAttribute

32 Reference toolchain analysis

events. Creation of the Proxies and registration of Stubs is done by the Factory component and

each supported middleware will implement a Factory for this purpose. The only object that is

used as is without any functionality extension by supported middlewares is the Runtime. It is

a singleton class accessible everywhere and is used as the entry point for the CommonAPI. User

applications will initially fetch the Runtime instance and then use it to create the Proxies and

register Stubs. The Runtime will then dispatch this creation request to the respective Factory

depending on which middleware the user wants to use. This is the core component that enables

the CommonAPI to support multiple middlewares both at compile time and at runtime with the

dynamic decision of which Factory to use.

3.3.1 Mapping to the SOME/IP Runtime

As the core-runtime mostly consists of interfaces and abstract classes with a high degree of

modularity, it does not assume anything about how the Franca concepts are mapped onto the mid-

dleware. This approach allows the CommonAPI to, in theory, support many different communica-

tion protocols, as long as they follow a SOA, while remaining unchanged from a user perspective.

Thus, each specific middleware will have its own implementation of the CommonAPI. We will

only be looking at the SOME/IP implementation as that is the focus of this work.

An initial aspect that may seem odd is that the someip-runtime attributes do not have the

inheritance in Figure 3.10. This is not entirely true, in fact, they do have an inheritance, however, it

is not a straightforward inheritance. The someip-runtime attributes are generic over a template

argument, that is required to be a core-runtime attribute, then they inherit from this templated

argument as seen in Figure 3.11. There are indeed further template constraints inside the class,

meaning that a SOME/IP ObservableAttribute can only accept a templated argument that

contains either the core ObservableAttribute or the ObservableReadonlyAttribute.

What this means is that in order to have a regular attribute with no access restrictions the type

declaration would be

SomeIP::ObservableAttribute<SomeIP::Attribute<ObservableAttribute<...>>>

where the attributes prefixed by SomeIP are part of the someip-runtime and the attribute with

no prefix part of core-runtime. In the someip-runtime there is now the extension of the

Event abstract class, which is a member of the SOME/IP ObservableAttribute and is the

object returned when the getChangedEvent() method, from core-runtime, is called. Note

that in the SOME/IP implementation, an Event instance is never used by the service provider

part of the generated code, so neither by Stub or StubAdapter. Its purpose is to serve as the

entry point for the accesses of remote events, which it does so by owning an instance of Proxy

and registering event handlers in it. This is because the remote accesses to a service event are,

from a service provider point of view, mapped into methods. When a client wants to fetch an

attribute value, it translates into a SOME/IP method call to the service getter method, with the same

procedure happening for the update of an attribute value. The broadcasting of event notifications

3.3 Mapping Franca concepts to the CommonAPI 33

Figure 3.10: Diagram of the major classes of the capicxx-someip-runtime library and its
relationship with capicxx-core-runtime

is also, from a user perspective, mapped into methods that will then use the vsomeip notifications

API to send a notification message. In the end, this means that all of the event related classes and

objects of the CommonAPI are only used by the Proxies.

On the right side of Figure 3.10, as expected, there is the SOME/IP implementation of Proxy

and StubAdapter. The implementation of Stub is not made by each of the middlewares, but

initially by the code generator that adds the declaration of the service methods, then ultimately by

the user by providing the implementation of these methods. A new class that has been created is

the StubManager. It stores all of the StubAdapters and associates them with their respective

SOME/IP service instance pair. Once a SOME/IP message has been received, and in case it needs

to be delivered to a Stub, it will be redirected to StubManager which will subsequently dispatch

it to the respective StubAdapter. Then, the last implementation of core-runtime, Factory,

34 Reference toolchain analysis

template <typename AttributeType_>
class ReadonlyAttribute: public AttributeType_ {

...
}

Figure 3.11: Extract of capicxx-core-runtime of the definition of the templated abstract
class ReadonlyAttribute

which, as previously explained, is responsible for creating the Proxies and the registration of

Stubs. While the Proxies creation is direct and involves no intermediate steps, the registration

of Stubs is not. It firstly involves creating the StubAdapter, which itself receives and stores

an instance of the Stub, then it sends an instance of itself to the Stub, so they both end up

with a shared instance of one another. Once that process is completed, the Factory fetches the

StubManager from Connection and registers the newly created StubAdapter, now with the

respective Stub instance in it.

The final component, Connection, is where most of the someip-runtime logic is imple-

mented and is the sole component that communicates directly with the SOME/IP implementation

API. Its creation is done precisely by Factory during the creation of Proxies and registration

of Stubs, and each may be associated with multiple Proxies or Stubs. Connection stores

all the relevant information needed to manage all incoming SOME/IP messages directed to the

service instances associated with its Proxies and Stubs. In the case of an incoming service

request that needs to be redirected to a Stub, the Connection will send it to the StubManager

which will then dispatch it to the respective Stub. Messages directed at Proxies can only hap-

pen as a response to a proxy request or as a notification for a subscribed event. In the former case,

Connection can either do a blocking request, where the call blocks until a response has been

received, up to a certain timeout, or a non-blocking request, in which case the Proxy registers a

handler that will then be called once the request response has been received. When the message is

a notification, it will be redirected to the respective Event object which will, in turn, execute all

the subscription and notification handlers registered by the Proxy.

As mentioned, the fetching and updating of attributes is mapped into a SOME/IP method call

so it is treated as a request response. Then, Connection also provides the possibility to register

some reaction handlers, such as an availability handler, that gets called when the respective remote

service of a Proxy becomes either available or unavailable, and also a subscription handler, called

whenever there is a subscription state change to any of the subscribed events. These have a direct

equivalent in the SOME/IP implementation API, and as such, they are simply redirected to it. The

entry point for the SOME/IP implementation is the greyed out component Application, which

is the component used for interacting with vsomeip and that will be analyzed in Section 3.4.

3.3.2 Control flow of a CommonAPI application

As could be seen, the CommonAPI library contains numerous components with plenty of as-

sociations between one another, making it easy to get overwhelmed. To better consolidate the

3.3 Mapping Franca concepts to the CommonAPI 35

Figure 3.12: Flow of the creation of a Proxy throughout the CommonAPI components

information presented beforehand, a couple of diagrams were created that show the control flow

of an application using CommonAPI. As an example, the Camera service application of the sys-

tem example is used. This service needs to subscribe to Infotainment Hub shutdown broadcast,

and thus it must create a proxy to its service. This same proxy will be used later on every time the

Camera needs to send a new frame to be rendered by the Infotainment Hub by calling its method

new_frame(). These 2 aspects are the ones that will be analyzed in further detail. Starting with

the creation of the proxy to the Infotainment Hub application, an overview of the control flow is

shown in Figure 3.12.

Naturally, the creation of a proxy to the Infotainment Hub service begins when calling Run-

time build_proxy()method. This method receives a template argument, T, that represents the

type of Proxy to be built. Additionally, it takes some identifiers as input to allow the Runtime

to decide the exact service instance to connect the proxy to. Immediately after this method is exe-

cuted, it will initialize all of the Factories that have registered themselves at the Runtime. The

initialization consists of executing all the Proxy and Stub setup functions that each registered at

the Factory singleton instance. This function registration happened when the application was

first executed, before even the application entry point was executed. Once all of the Factories

have been initialized, the Runtime will select the one that matches the identifiers passed to the

build_proxy() function and execute the create_proxy() method. This step decides which

CommonAPI middleware binding to use, as each binding will have their own Factory imple-

mentation registered at the Runtime. The create_proxy() function will then either create a

36 Reference toolchain analysis

new Connection instance or fetch an existing one that will be then be passed to the construc-

tor of InfotainmentHubSomeIPProxy. The constructor was generated by the code generator

and will instantiate all of the services broadcasts and attributes, stored as an Event and one of the

Attributes respectively. In this instantiation, the identifiers assigned to these Franca concepts

in the .fdepl files are used. In the Stubs case, the method, broadcast and attributes identifiers

would also be registered in their constructor. After having finished constructing its broadcasts and

attributes, a newly created instance of InfotainmentHubSomeIPProxy will be returned to

Factory. However, as Factory has no knowledge of the existence of the proxy class, an upcast

will be made to abstract the object over its someip-runtime::Proxy behavior. The Factory

will then execute the init() method, whose implementation resides in the someip-runtime

library. Inside it, the Proxy will register itself at the Connection and the Connection will

use the SOME/IP library to request the service instance the Proxy should be connected to. As

soon as this is finished, the init() method returns and the create_proxy() as well. All the

same, another upcast needs to be made, as the Runtime has no knowledge of which CommonAPI

middleware bindings will be present at runtime and, as such, the object is upcast into the common-

-runtime::Proxy. To finalize the whole process, the instance now needs to be downcasted into

the type the user has requested. To keep the user’s application middleware independent, the type

that the user should use is InfotainmentHubProxy which contains all the necessary methods

for the user to access all the remote service resources as specified in the .fidl files.

With the proxy to the Infotainment Hub service created, the user’s application can now execute

remote procedure calls and access the service attributes. A remote method that the Camera service

will be executing several times is new_frame() in the Infotainment Hub. The procedure fol-

lowed to do that is shown in Figure 3.13, which also includes the path until the remote application

offering the Infotainment Hub receives the call. The dotted arrow between the 2 Connections

represents the transportation of the message by SOME/IP. It is irrelevant whether the 2 applications

are executing in the same device or different devices, the same path will be taken regardless. Once

again, the path starts at the user application level with the call to InfotainmentHubProxy

Figure 3.13: Flow of the execution of the remote new_frame() method

3.4 GENIVI SOME/IP implementation 37

new_frame() method. Note that, the user’s proxy object type is the generated Infotainment

Hub common Proxy interface and not its someip counterpart as explained previously. However,

the serialization of the method arguments is made by InfotainmentHubSomeIPProxy object

(Figure 3.13). Having serialized the method arguments into an array of bytes, they are passed to

the proxy associated Connection which will then pass them onto the SOME/IP implementation,

via its Application instance, to be sent to the network. The Infotainment Hub application will

then receive this SOME/IP message. Once it reaches Connection, if the message is a request,

it is immediately passed to StubManager for further processing. There, the message service

instance identifier will be read and passed to the InfotainmentHubSomeIPStubAdapter,

which is responsible for that service instance. That object will then read the method/event iden-

tifier of the message and choose its corresponding method dispatcher. The method dispatcher

is then responsible for deserializing the array of bytes received in the SOME/IP message pay-

load into the new_frame() method arguments. This dispatcher selection and deserialization

procedures are all procedures inherited from the someip StubAdapter. The Infotainment-

HubSomeIPStubAdapter only needs to specify the order of the methods arguments through

templated arguments, as will be shown in the next chapter. The response of the method call would

then follow the same path backwards. Even when there is no return parameters, as is the case

with new_frame(), by default, an empty response will always be sent to ensure the request was

received successfully.

3.4 GENIVI SOME/IP implementation

The last piece of software required to complete the CommonAPI middleware toolchain is the ac-

tual middleware implementation. The GENIVI SOME/IP implementation, done in C++, is called

vsomeip and was the original implementation of the protocol and, as such, follows the AU-

TOSAR specification [7] closely. Regarding remote communication, it is entirely compliant with

the specification. However, the specification makes no mention of local communication and how

it should be handled, so the GENIVI implementation has its own approach for this. The approach

is centered around which application is configured to be the main application of the device. In

vsomeip, for each device executing SOME/IP applications, only a single one of these applica-

tions will be able to communicate with external devices through the network, as seen in Figure

3.14. For simpler denomination, an application with this role will be called Host application.

The remainder of the applications that are executing in that same device will have to proxy their

requests and responses through the Host application. Likewise, any incoming message will also

be dispatched by the Host application to the respective internal SOME/IP application offering the

target service instance of the message. The decision of which application gets to be the Host can

either the explicit, where, through a configuration file, it is specified exactly which application will

be the Host, or it can be implicit, where the first vsomeip application to execute in the device will

declare itself as the Host. The reason for this architecture is unknown to the author and will not be

38 Reference toolchain analysis

Figure 3.14: Overview of the messages exchanged between the different SOME/IP applications
running in the same device

explored, as the Rust implementation needs to be interoperable with the GENIVI implementation,

it will naturally follow a similar architecture.

3.4.1 Overview of vsomeip components

As is to be expected, the SOME/IP implementation is the most complex piece of software. Hence,

an initial high-level analysis will be made here, while a more profound analysis can be found

further in the document. For this initial breakdown, Figure 3.15 provides an overview of the main

components of vsomeip and their relationships with one another.

Similar to the core-runtime, the Runtime remains the base component that serves as

the entry point for a user application to create an Application object and then actually start the

vsomeip procedures. That is its main purpose. It also contains methods to easily create SOME/IP

messages, such as requests, responses or notifications. Although these methods are associated with

a Runtime object, they are totally independent of it. The Application object seen in Figure

3.10, which someip-runtime Connection has access to, is the same Application that can

be seen here in Figure 3.15. This is the entry point for any interaction with vsomeip, its public

API is nearly all in Application. The public procedures that are available are mainly divided

into 3 types, first the methods relevant for the offer and request of services as well as then sending

of SOME/IP messages. Then, the offer and request of events which also includes the subscription

and notification procedures. Lastly, the registration of handlers that are executed in reaction to

certain vsomeip events, this includes the message handlers, the subscription status handlers and

the service availability handlers, among others. For this latter type of methods, the Application

is the component that stores these handlers and subsequently responsible for executing them when

required. In contrast, the 2 former methods are immediately redirected to the RoutingManager.

More than a third of the SOME/IP related code is located in the RoutingManager components.

It is the central component that ultimately processes all the SOME/IP messages received.

There are 2 possible managers, the RoutingManagerImpl, which is the one that is used

by the Host application with access to the external network, and the RoutingManagerProxy,

only capable of communicating directly with the Host application. They both inherit from the

3.4 GENIVI SOME/IP implementation 39

Figure 3.15: Diagram of the major classes of vsomeip, the GENIVI SOME/IP implementation

RoutingManager, which is where the reference to Application and EndpointManagerBase

is stored. The application own events are also stored there, as well as its own offered services and

remote services information. Methods for accessing and updating this information are also imple-

mented in RoutingManager, thus being shared by both the Proxy and Host application.

The RoutingManagerImpl is the manager that is used by the Host application and hence

needs more logic to handle both local and external communication. As previously mentioned, all

of the SOME/IP messages received by the application eventually end up being processed by this

component. It will then decide where to send the message, either upstream to the Application,

downstream to Service Discovery or directly to an Endpoint i.e., vsomeip closest com-

ponent to the network level. For the local communication, the first point of entry is the Routing-

ManagerStub, while external communication ends up directly at the RoutingManagerImpl.

Interestingly, in this architecture, the component will end up with 2 redundant references

to EndpointManagerImpl, one through its data inheritance of RoutingManager and one

present in the RoutingManagerImpl itself. The manager itself does not possess all of the data

relevant to the routing decisions that need to be made, but it can access the necessary data through

the other components. All of the data that pertains to local communication is present in both the

RoutingManagerStub and the EndpointManagerBase. It does not follow the SOME/IP

protocol but a protocol created by GENIVI for this specific use case that serves as a wrapper for the

40 Reference toolchain analysis

actual SOME/IP protocol and also for the exchange of some additional information between ap-

plications in the same device. RoutingManagerStub only holds the so-called local server end-

points, serving as the receivers of local communication while EndpointManagerBase holds the

local client endpoints for sending local messages. The latter only creates, deletes and stores these

local client endpoints on demand, which is the only functionality of this component. The former

initially creates 2 endpoints. One endpoint acts as the receiver for these communication protocol

messages that do not contain any wrapped SOME/IP message. Instead, these are used for mim-

icking SOME/IP concepts, such as the registration of applications, service and event offering and

many others. Some of these types of messages do not pass through the RoutingManagerImpl

and are instead directly processed by the RoutingManagerStub. The other endpoint only re-

ceives the messages that actually wrap a SOME/IP message. These are usually method calls,

responses or event notifications that the RoutingManagerImpl can then redirect to external

SOME/IP applications.

For communication with external devices, the EndpointManagerImpl stores under which

IP addresses and ports can the remote services be found and also creates, deletes and stores both

the client and server endpoints to these remote services. The discovery of these external devices

is made through the ServiceDiscovery component, responsible for processing the SOME/IP

Service Discovery related communication. It has a dedicated Endpoint, used for both unicast

and multicast Service Discovery messages, only. Once a Host application has been started, it will

begin announcing its presence in the network by sending multicast messages that are received by

all of the devices in the network. Through these, an external application becomes aware of this

newly created application appearance and can start interacting with it.

Finally, all of the network functionality is provided by the Endpoints, whose implemen-

tation is behind several interfaces and abstract classes. There are the endpoints used for local

communication and for remote communication, both can use either UDP or TCP, while the local

endpoints additionally support Unix Domain Sockets (UDS) when the device uses a Unix system,

for even faster communication between processes.

3.4.2 SOME/IP Service Discovery protocol

There is a whole separate AUTOSAR specification just for the SOME/IP Service Discovery pro-

tocol. It describes the on-wire representation of a Service Discovery message and the behavior

of the protocol itself. In terms of the number of messages and their content, the protocol is not

very complex. However, due to the way vsomeip is architecturally structured, with only the Host

application receiving SOME/IP messages, including the Service Discovery ones, there needs to be

plenty of additional logic to cope with this. The exchange of messages between applications and

their respective reactions are shown in Figure 3.16. The Figure contains a sequence diagram be-

tween a SOME/IP service provider and a service requester with different kinds of communication

protocols shown. Just the service requester reaction in different situations is shown, in practice

there would be more messages also being sent by the requester into the network. All of the italic

messages are sent to the SOME/IP Service Discovery multicast address while the others are sent

3.4 GENIVI SOME/IP implementation 41

Figure 3.16: Sequence diagram of the main communication sequences of the SOME/IP Service
Discovery protocol

via unicast directly to the application. While the multicast messages are always through UDP,

the remainder can be either TCP or UDP according to the user specification. It is important to

note that the OFFER messages contain additional information that pinpoints precisely in which IP

address and port the service can be reached.

The first group of messages represents the startup behavior for the services it is offering. If

the service requester is not currently requesting any of the message offered services, then it will

not respond to these OFFER messages, and the provider will endlessly keep sending them. In the

second group, the service requester is the one that initializes the communication procedure with a

FIND message broadcasted through the network. An application that is offering the requested ser-

vice will respond with an OFFER message. This OFFER message can either be sent via multicast

or via unicast depending on the situation. According to PRS_00422 and PRS_00423 of [2], the

basic implementation is just sending via unicast, while an optimized implementation may respond

via either of them depending on how long the last OFFER messages from the Main phase were

sent. Both Rust and C++ implementations of SOME/IP follow the optimized version.

In the third group, the SOME/IP subscribe-notify communication mechanism is shown. In

SOME/IP, a client does not directly subscribe to an event but instead to what is called event-

groups. Each eventgroup can contain multiple events or only a single event. Nonetheless, the

42 Reference toolchain analysis

vsomeip API allows a user to subscribe to a single event of an eventgroup, however, this is

merely masked by the library. What truly happens is that the application will be on the lookout for

OFFER messages that contain the service instance with the eventgroup of the desired event. Once

it receives one, it sends a SUBSCRIBE message to the address specified in the OFFER message.

In the SUBSCRIBE message, the information about the eventgroup, only, is passed to the remote

application. As such, the remote application will answer with a SUBSCRIBE_ACK message and

start sending notifications for all of the events that belong to the eventgroup. The application that

subscribed is then responsible for filtering these notifications and alerting the user about the events

it has subscribed to, only, which is what the RoutingManager components of vsomeip do.

Additionally, the SOME/IP specification distinguishes between two types of events, the Events

and the Fields, both following the subscription mechanism explained. Conceptually, an Event is

meant to be used for periodic or on change notifications, while the Field is meant to be used along-

side method calls representing the getter and setter of the Field. If another client would trigger a

change of value in the Field, then a notification would be sent to all subscribed clients, much like

an Event. In practice, both of them are implemented very similarly, except for the possibility of

requesting an "Initial Event" when using a Field, where the service sends a notification with the

Field value immediately after the SUBSCRIBE_ACK message.

The last group shows SOME/IP request-response communication mechanism for remote ser-

vice found using Service Discovery. After the OFFER message is received and the service is

offered in that message, the client starts sending requests to which the provider responds. If a

static IP address and port of the remote service is specified in the vsomeip JSON configura-

tion files, it is possible to initialize the request procedure without having to wait for an OFFER

message. When using TCP, as it is a reliable end-to-end protocol, it is ensured that the remote

application will receive the messages as it first needs to wait for it to be available and listening on

the remote address.

3.4.3 Configuration of the SOME/IP protocol

Always accompanying a vsomeip application are the configuration files. These hold information

crucial to the execution of a vsomeip application. Without one, it is only possible to have local

communication. These files follow the ubiquitous JavaScript Object Notation (JSON) and can be

composed of several elements. It is possible to specify either a single file or a folder containing

several files and vsomeip will then merge the configurations. They will all get parsed into an

additional component not shown in Figure 3.15 named Configuration. All of the components

shown in that Figure have access to a shared Configuration instance, allowing fast access to

its parameters. Due to the sheer amount of possible configuration possibilities, only those required

for communication with external devices will be analyzed here and shown in Figure 3.17.

The most basic parameter is unicast, containing the IP address of the network interface

the application will be bound to. This is mainly relevant for systems where multiple network

interfaces may be available to ensure that they bind to the desired one. Below that, there is the

applications JSON array element that holds an arbitrary number of JSON maps corresponding

3.4 GENIVI SOME/IP implementation 43

{
"unicast": "192.168.1.1",
"applications": [

{
"name": "Infotainment Hub",
"id": "0x1000"

}
],
"services": [

{
"service": "0x1234",
"instance": "0x5678",
"unreliable": "30509"

}
],
"routing": "Infotainment Hub",
"service-discovery": {

"enable": "false"
}

}

Figure 3.17: Extract of a vsomeip configuration file with the main configuration parameters

to the specification of a single SOME/IP application. For each of these maps, the mandatory keys

are name and id, the former holding the name of the vsomeip application mainly relevant for

logging purposes while the latter is crucial for the communication with external devices. Each

SOME/IP application in a system needs to have a unique identifier, specified by this id. If this

is not specified, then each application will be automatically assigned an identifier and report it to

the device Host application. This is perfectly fine for local communication, as this assignment and

registration with the Host application ensures that each application will be assigned a different

identifier. However, remote applications have no way of knowing the identifiers of all applications

in the network. As such, unless specified in a configuration file, 2 applications may be assigned

the same identifier and thus causing the protocol to misbehave.

Next, there is the services key, that follows a similar approach to applications, con-

taining an array whose elements are maps corresponding to a single service instance. Each of

them needs to have the service and the instance keys in order to distinguish to which ser-

vice instance the element is referring to. Then, there are several additional possible keys present,

but the most crucial ones being either the unreliable, seen in Figure 3.17, or the reliable.

The information both of these hold corresponds to the network port through which the service

can be accessed externally, and without it, the service will not be reported to external devices.

A not so crucial but relevant to mention parameter is the routing. This key holds the name of

the vsomeip application, as specified in the applications array, that will become the Host

application and thus be able to interact with the network. While this key is not necessary for either

local or external communication, since without specifying it the first application that executes will

become the Host application, it is often specified.

44 Reference toolchain analysis

Finally, there is the configuration section of SOME/IP Service Discovery protocol service-

-discovery. In this example, the Service Discovery is turned off. However, several possible

parameters can be used here to customize the behavior of Service Discovery that will be analyzed

further in the document as part of the Service Discovery description. Do keep in mind that without

Service Discovery enabled, it is impossible to have a subscribe-notify type of communication

between remote services. Nonetheless, it is possible to have request-response, but it requires the

specification of additional parameters in the configuration file to pinpoint exactly to which remote

IP to send the request, but this defeats the purpose of having a SOA.

3.5 Summary

This chapter introduced a high-level analysis of the CommonAPI toolchain and how all of these

tools interact together. The chapter included the description of an example system, that portraits

a simple use case for a SOME/IP powered vehicle with devices subscribing to each other events

and then reacting accordingly, either with an update of the local information or with the trig-

gering of remote procedures from a third device. Then, we walked through the steps required

to transform the abstract system description into an actual implementation of the system. This

started initially with the definition of the system through the system definition language Franca

IDL. Afterwards, a breakdown of exactly how each of the example system concepts are mapped

into Franca was shown and also some additional capabilities not used in this system. Having fully

defined our system in Franca, we then moved into how the CommonAPI code generator parses

these files and maps them into their respective code implementation already with the separation

of the service clients and the service providers. This mapping is supported by the CommonAPI

Runtime, which provides an abstraction of the Franca concepts over the underlying middleware to

be used. As such, we made an initial analysis of the CommonAPI components, including both the

core Runtime that merely serves as the abstraction layer, and the CommonAPI SOME/IP Runtime

that provides the underlying implementation of the CommonAPI and Franca concepts and their

respective translation to SOME/IP concepts. Beneath all of these abstractions, the chapter ended

with a high-level look at the GENIVI SOME/IP implementation, vsomeip, with a dissection of

its components, how they interact with each other and also an explanation of how to properly

configure a vsomeip application.

Chapter 4

Rust implementation

Having already taken a higher-level view of the CommonAPI toolchain, its workflow and inner

workings of each tool, this chapter presents an implementation perspective of each of these, using

the Rust language, as well as a comparison between the original reference implementations and the

implementations done in this work. Similarly to the previous chapter, the analysis will focus first

on the code generator, then the CommonAPI Runtime and finally, the SOME/IP implementation.

4.1 CommonAPI Rust code generator

Very early in the planning of this work, the question arose of whether to do a fully separated Rust

code generator, or to adapt the existing ones to produce Rust code instead of C++. We opted for

the latter approach as it seemed the one that would be more time-effective, as by building on top

of an already existing project, there were already certain aspects that could be taken for granted.

A good example of this is the parsing of the Franca files, the existing generators already handled

this, so by building on top of them, that is no longer a feature that needs to be implemented.

The basis for the Rust generator was version 3.1.12.4 of core-tools and 3.1.12.2 of

someip-tools. In the meantime, version 3.2.0 of both tools was released, only partial support

for this release was added to the Rust generator, namely the support for version 0.13.1 of Franca

and the upgrade to the newest version of the CommonAPI runtime. The generators were built

using a mixture of Java and Xtend, a language developed by the Eclipse Foundation, based on Java,

which provides additional concepts that make it simpler to develop code generators and ultimately

ends up compiled into Java, thus integrating seamlessly with other Java code or libraries.

An immediate difference that can be noticed between the Rust code generator and the C++

ones is that there is only a single executable, as shown in Figure 4.1. While the C++ implemen-

tation initially uses the core-tools generator to generate middleware independent code, which

is then complemented by the middleware specific generators, the Rust generator is a merge of

both core-tools and someip-tools which uniquely generates code that uses the Common-

API SOME/IP Runtime. The reason for this is that the original planning of the work did not

include implementing the CommonAPI capability of supporting multiple middlewares and so a

45

46 Rust implementation

Figure 4.1: Overview of the rust code generator inputs and outputs

single generator would have been required. Due to this, the Rust generator input is the same as

someip-tools, it only accepts .fdepl files. Despite this, the generator can still access the

respective .fidl file, since the .fdepl files have a reference to it, hence the dotted arrow in the

Figure. Both of these files initially go through both the core-tools file validator, for the .fidl

files, and the someip-tools validator for the .fdepl files, guaranteeing that the error report-

ing matches the reference implementation. If this verification finds no errors, it starts the actual

code generation by traversing the .fidl file and translating the abstract concepts into concrete

code. Using the Franca files from the example system presented in Chapter 3, passing the option

to generate the skeleton, thus executing the command

> ./commonapi-generator-linux-x86_64 -sk CompleteCar.fdepl

a folder named rust-gen will be created in the directory where the generator was executed.

That folder will contain the code generated for the passed .fdepl file, present in Appendix B.2.

Inside it, the generated code and folder structure will be present and can be seen in Figure 4.2.

The structure follows the traditional Rust workspace, where at the root of the workspace there

is a Cargo.toml file that contains different kinds of metadata of the project, like the author of

the project, its version and its dependencies. All of the code is located in a src folder, where

usually a main.rs file marks the entry point for the binary. However, it is also possible to define

several binaries for a single workspace as long as their names and entry points are specified in the

Cargo.toml file. As the generator has no information on the whereabouts of the Rust SOME/IP

implementation and the Rust CommonAPI Runtime, it uses default values for their dependency

declaration that then need to be updated by the user. Some additional dependencies are present

that should not be removed and, of course, if the user requires any additional dependency for its

project, it needs to be added in the Cargo.toml file. The full generated Cargo.toml file can

be found in Appendix B.3.

Since the generated code assumes nothing about what the user is trying to achieve, it just

presents code as a library that the user’s application can use. The generated code is stored under

the lib folder and is declared as a library in a [lib] section in the Cargo.toml file, thus

making it available to all of the binaries in the workspace. At the root of each folder that contains

Rust code, a mod.rs file needs to be present, as shown in Figure 4.2. Rust uses these to declare

4.1 CommonAPI Rust code generator 47

rust-gen
| Cargo.toml
+-- src

+-- lib
| mod.rs
+-- CompleteCar

| mod.rs
+-- common
| +-- v1/elektrobit/rust
| | mod.rs
| | AutomotiveTypes.rs
| | Camera.rs
| | Camera_someip_deployment.rs
| | ...
+-- client
| +-- v1/elektrobit/rust
| | mod.rs
| | Camera_proxy.rs
| | Camera_someip_proxy.rs
| | ...
+-- service

+-- v1/elektrobit/rust
| mod.rs
| Camera_stub.rs
| Camera_someip_stub_adapter.rs
| ...

Figure 4.2: Resulting generated files and directory structure using the Rust generator on
the example system showing only the files for the Camera service and the type collection
AutomotiveTypes

a code module and child modules to provide code modularity. Then, for each interface present

in the .fidl file, a folder is created where the code for that respective interface can be found.

In the CompleteCar.fidl, only a single interface CompleteCar was declared, and thus only

that folder is present. Inside it, again the mod.rs file, then the service folder, containing code

related to the service provider part of the interface, a client folder for the service client part

of the interface and then a common folder with code shared by both the service and client code.

Each of these has several inner directories where the first is the version number of the interface,

and the subsequent directories are the declared package of the interface. As the example system

uses package elektrobit.rust and version 1.0 it produces the v1/elektrobit/rust

folder structure. Each of these inner folders has a mod.rs folder at its root, not shown in Figure

4.2 for simplicity purposes. At the end of all of the inner folders, the actual Rust generated files

are present. These follow the same structure as the C++ code generators, with a non-middleware

dependent file, and an equivalent SOME/IP specific file, all with the same responsibility as their

C++ counterparts. An additional file, AutomotiveTypes.rs, in the common code folder is

also shown here to show how a Franca typeCollection declaration translates into concrete

code. Seeing that a type collection contains types that can be accessed by all of the interfaces, it

naturally goes into the common code folder. This follows the same principle as C++ where a file

48 Rust implementation

is generated for each type collection.

Similarly to the C++ code generator, the Rust code generator allows the user to specify a

number of optional flags to the executable. For example, in Figure 4.2, the "skeleton" flag (-sk,

-skel) was activated. This is likely the most relevant flag as it causes the generation of additional

helper code. Another interesting flag is the "search path" flag (-sp, -searchpath) that allows

the user to specify a directory that contains Franca files. The generator will then parse all of the

Franca files of the directory and generate the respective code, thus allowing multiple .fidl and

.fdepl files to be used as input. The remaining of the flags are either related to changing the

output directory of the generated code or disabling sections of the generation altogether, such as

disabling the generation of the common code.

4.1.1 Differences to the reference implementation

Although the Rust code generator tries to follow the reference implementation as closely as possi-

ble, since the target language is different there are some differences between the generators. The

most basic one is in the behavior of the generator when using the "skeleton" flag. When it is turned

on in the core-tools code generator, it generates additional StubDefault classes, which are

a default implementation of the services Stubs. The user’s own implementation will then inherit

from this default implementation, which allows the user to only override the specific methods it

wants to implement. The remainder will use the default implementation provided by the generator.

This default implementation ensures that the getters and setters of the attributes simply fetch and

update the attributes, only, without any additional logic, whereas the method calls immediately

return, passing default values as output parameters, for example, 0 when an output parameter is a

number.

In the Rust code generator, since Rust approach is composition over inheritance it does not

have the same inheriting possibilities offered by C++, meaning that even if the Rust generator

would generate default implementations for the service methods, the user would still have to im-

plement the Stub methods manually. One possible approach here would be to still provide a default

implementation, and if the user wants to use it, it would have to store an instance of the default

classes and then redirect the method calls to this instance. While this approach is feasible, and

a similar mechanism is used in the Rust implementation of the CommonAPI Runtime, that was

not the approach taken here. The reason for this is that even if the user would actually store an

instance of this default implementation in its own stub implementation, it would still have to de-

clare and provide an implementation, albeit just a redirection, for all of the methods in its own

implementation. Thus the approach taken was to simply not provide any default implementation.

The Rust code generator still generates these default stub implementations, but the method

calls are filled with the Rust todo!() macro, that causes the program to exit when called. They

are simply there to provide the user with a correct example of exactly which interfaces and meth-

ods the user needs to implement in order to provide a stub implementation to the CommonAPI

Runtime.

4.1 CommonAPI Rust code generator 49

C++ generator Rust generator

FooStub

• fireXAttributeChanged()*

• lockXAttribute()*

• getXAttribute()

FooStubAdapter

• fireXAttributeChanged()*

• lockXAttribute()*

FooStubRemoteEvent

• onRemoteSetXAttribute()

• onRemoteXAttributeChanged()

IFooStub

• fire_X_changed()*

• get_X_lock()

IFooStubRemoteEvent

• remote_get_X()

• remote_set_X()

• on_remote_X_changed()

Table 4.1: Comparison of generated function calls between the C++ and the Rust code generator
for the Foo service with an attribute X with no access restrictions. Marked with an * are the
methods already implemented by the generator.

Additionally, in the Rust generator, the "skeleton" flag also generates the default Cargo.toml

file, a crucial part for any Rust project. It does this in order to provide the user with an example

of how should the Cargo file be built. The user is later free to modify it. Accordingly, it is only

expected that the user executes the generator with the "skeleton" flag once. Otherwise the Rust

generator will overwrite the Cargo.toml file and, if the user did any change to it, they would be

lost.

Of course, these methods that the user needs to implement are generated for either a specific

method present in the service description, an attribute or a broadcast. While the method and

broadcast generated methods are the same between the C++ generator and the Rust one, this is

not the case for the attribute related methods. A comparison of these generated methods between

both generators, based on a service named Foo with an attribute X without any access restrictions,

can be seen in Table 4.1. In it, not only are the generated methods shown but also the language

concept to which they are associated, in the C++ case a class and in Rust an interface, and also

which of the methods are already implemented by the code generator, marked with an *.

As can be seen, the C++ generator generates an additional class, FooStubAdapter, that

contains methods that the middleware specific stub adapters have to implement. This is not for

the end-user to worry about as it will only be used by the remaining generators. Hence, the two

classes that the user needs to consider are the RemoteEvent and the Stub classes. The user will

have to implement the methods in those two classes if correct Stub implementation of its own is to

be provided. Since the Rust generator merges both the core generator and the SOME/IP generator,

50 Rust implementation

it does not need this additional StubAdapter interface as it is all generated in one execution.

Other than that, the Rust interfaces match their C++ equivalent, but the methods inner logic may

vary. The Rust methods naming convention is different from the C++ ones to match Rust official

naming conventions.

The most glaring difference is that in the C++ generated code, the attribute fire and lock

exist in both the StubAdapter and the Stub. For the fire method, the one in the former class

is the one that will actually call the respective CommonAPI Runtime procedure to then send the

event notification to the subscribers, while the one in the latter class is simply a redirect to the

StubAdapter equivalent method. Whereas in the Rust generator, this indirection is removed since

the Stub has an instance of the StubAdapter and through it access to the CommonAPI Runtime

procedure, so it does the call directly. From a compilation point of view, under optimized builds,

this will probably make no difference as it is likely that the compiler will inline the C++ indirec-

tion, thus removing any runtime cost. However, the indirection can become confusing for a user

that seeks to understand how the generated code works.

The other method, lock is quite interesting and fairly different between the C++ and the Rust

version. It exists to synchronize accesses to the attribute and, in C++, it receives a boolean as

input that signals whether to lock access or unlock it. Similarly to the fire method, the Stub

lock method is simply a redirect to the one in StubAdapter, where the actual mutex primitive is

stored under the member std::recursive_mutex xMutex_ for the attribute X. Before the

StubAdapter calls either the getter or the setter methods of the Stub for the attribute, it locks the

mutex, thus ensuring that even if the same request is received, only one will be processed at the

same time and no data races happen.

This approach is perfectly fine for the code that has been generated as it guarantees mem-

ory safety. However, once we consider the user application space, it becomes problematic. The

user’s own implementation of the Stub is where the actual member with the attribute value will be

stored, so we end up with the attributes mutex in the StubAdapter and the actual attribute in the

user’s own Stub implementation. Already this aspect is strange, as commonly the mutex for a vari-

able resides in the same place as the variable itself so the user can easily identify where exactly the

synchronization mechanism is taking place. Nonetheless, the more crucial aspect is that because

the attribute value resides within the user’s own class, the user has no restriction over when or

how it can access this value. As such, the user could be writing to the value while another thread

spawned, in response to a request, would also be writing to the same value, effectively causing

a data race. In order to mitigate this, the C++ code generator default Stub implementation, gen-

erated when the "skeleton" flag is passed, provides an additional setter method for each attribute.

The proper synchronization mechanisms are used inside that method, initially locking the mutex

with the lock method, then actually changing the attribute value, executing the fire function

and finally unlocking the mutex again. As long as the user remembers this detail and takes the

time to understand how the synchronization takes place, there should not be a problem. However,

it is undeniably an approach that may confuse some users and cause issues for a more distracted

user that did not take the time to properly read the documentation and how to develop applications

4.1 CommonAPI Rust code generator 51

fn main() {
let foo: Arc<usize> = Arc::new(10);
let bar: Arc<Mutex<usize>> = Arc::new(Mutex::new(10));

*foo = 0; // Operation does not compile, cannot mutate Arc directly

*bar.lock().unwrap() = 0; // Allowed since inside the Arc we use a Mutex
}

Figure 4.3: Snippet of Rust code demonstrating inability to directly mutate a shared pointer.

using the CommonAPI toolchain.

Due to Rust memory constraints and how it handles synchronization primitives, this issue is

entirely eliminated, and the user cannot unintendedly cause any data races. Since the user’s Stub

implementation will be shared between different threads, both the C++ and the Rust implementa-

tion need to encapsulate it in a shared pointer. In C++ this translates into a std::shared_ptr,

while in Rust its called an Arc. The main difference between the two is that the Rust version

restricts mutable access to the shared pointer data. Under safe Rust, a user cannot mutate the

data in an Arc directly. This is demonstrated through a simple example in Figure 4.3,1 where the

compilation of the code fails due to the inability to mutate an Arc directly.

Taking this into account, in the Rust implementation, we naturally cannot directly mutate the

attributes of this Stub implementation. In order to provide mutable access to the data inside the

Arc, additional synchronization mechanisms need to be used, either mutual exclusion primitives

such as a mutex, or, in the case of integers, through atomic variables. Since we want the exclusion

mechanism, even for an integer, mutexes are used for all attributes. Unlike C++ mutexes, Rust

mutexes need to have an associated object which will be the only object that can be mutated while

holding the mutex lock. For example, the declaration of a mutex holding a boolean would be

Mutex<bool>. Naturally, a mutex can hold much more complex types such as structures or

maps. Considering this and applying it to the code generated by the Rust generator, we can see

how it becomes impossible for a user to cause a data race, even unwillingly, as the user is forced to

lock the mutex in case it wants to change an attributes value. However, unlike C++, there is no data

inheritance in Rust, only method inheritance, so the generator cannot simply create this mutexed

attribute and is dependent on the user’s Stub implementation to do it, so a different approach had

to be taken.

Unlike C++ std::recursive_mutex that returns nothing when it is locked, when Rust

Mutex<T> is locked it returns a MutexGuard<T> that provides access to the associated object

and will unlock the mutex once the guard falls out of scope and is thus destroyed. Taking advantage

of this functionality, we can force the user to actually store the attribute value inside a mutex by

requiring the Stub method get_lock method to return a MutexGuard. Since there is no other

way to acquire it other than to lock the mutex, the user needs to encapsulate the attribute value

1A compilation attempt can be made here

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=0e8a1c4587490aaa3e4310ee2e4a2366

52 Rust implementation

in one. This method is then, similar to the C++ implementation, used throughout the getters and

setters for that attribute to ensure mutual exclusion. The user is free to either call the get_lock

method or directly lock the mutex since it has direct access to it.

The other methods and their functionality are similar between C++ and Rust. As for the setter

logic, in C++, they initially call the respective set method, which will return a boolean represent-

ing whether the attribute was actually changed or not, the decision is left up to the user’s imple-

mentation. A response is immediately sent back to the client that initiated the setter procedure,

containing the attribute value, whether updated or not and then the attribute mutex is unlocked. In

case the attribute was changed, the lock for the attribute is reacquired, and a notification to all of

the remaining clients subscribed to the attribute is sent. Afterwards, the mutex is unlocked, and

the Stub changed method is called so that the Stub can do any local work after the attribute value

has been changed. Rust approach changes the order of events, instead of initially sending the at-

tribute value back to the client that triggered the setter procedure, it first sends a notification to all

of the subscribed clients, calls the changed method and then finally sends the response back to

the requesting client. The reason for this change is related to the split serialization logic between

the Rust code generated and the Rust CommonAPI Runtime and will also be explained further on.

Nonetheless, no practical difference should arise due to this change in order.

In the getter procedure, the logic changes a bit. As seen in Figure 4.4, in the reference im-

plementation, the attribute mutex is initially locked, then the Stub get function is called which

returns a reference to the attributes value, then the attribute mutex is unlocked, and the attribute

value obtained through that reference is serialized and sent back to the requesting client. An issue

can already be found with this approach, even assuming that the user always follows the mutex

locking/unlocking procedure to modify the attribute value. The fact that the mutex is unlocked be-

fore the reference returned from the get method is used, means that there is a race condition here.

It is possible for the user to change the value or even destroy it, in the case of an allocated data

type as a vector or map. The first case is not so problematic, as the value that is serialized merely

is different from the value initially returned by the get method. However, the second case is much

more severe and can either cause a segmentation fault or be undefined behavior. Of course, this

is a type of error that will only happen once every millionth execution or even less. Regardless it

could easily be avoided. These memory issues are precisely where Rust shines with its very strict

compiler checks that ensure memory safety. In the Rust version, the attribute value serialization

needs to be done while the lock is held, the Rust compiler would not allow a reference to the value

otherwise.

An additional feature was added as an optional response. Whereas in C++ the get method

necessarily returns the attributes value, in Rust this was made optional. In case no value is returned

then the server replies with an error message which the client can recognize. To aid the server in

this decision, the message client identifier is passed to the getter, much like how it is done in the

setter.

4.1 CommonAPI Rust code generator 53

procedure get_foo(message, stub):
client = message.client
stub.lock_foo(true)
value = stub.get_foo(client) // Reference to actual value
stub.lock_foo(false)
reply = value.serialize()
send_reply(reply)

Figure 4.4: Pseudocode with the logic for fetching the value of an attribute as seen in C++
StubAdapters

4.1.2 Rust code generator limitations

Not only does the Rust code generator have differences from the reference generator, but also

has certain limitations, some inherited by the reference generator and some exclusive to the Rust

generator. Starting by the inherited limitations, since the reference generator version that was

used as the base for developing the Rust generator was 3.1.12, of both the core generator and

the SOME/IP generator, and in this version support for Franca constants was still not fully added

it also did not make it into the Rust generator. Although their declaration is being parsed and

validated, there is no resulting code whatsoever to match it. In the more recent version of the

reference generators, 3.2.0, this appears to have been fixed. As previously mentioned, the Rust

generator only has partial support for version 3.2.0 of the reference generators. This is due to

this version only having been released late in 2020 and also not compiling at that time, due to

a missing folder, src-gen, the author had forgotten to upload. 2 Despite this being an easy

fix, it was only added over a month later, further invalidating the possibility of that version being

included in this work.

The other Franca concept not supported by the C++ code generators are Franca contracts.

These establish a Protocol State Machine that each client connected to the service needs to follow.

It creates several states and state transitions that restrict the client access to the service function-

alities only to the ones allowed by the current state that the client is in. This could be used, for

example, to force a client in an "idle" state to call the method "wakeUp" to change its state. Right

as the planning of this work was being made, it was already decided that we would not be support-

ing these Franca contracts as they seemed to be a very specific feature that is logically completely

different from what the Franca IDL tries to achieve. Only later, once the development actually

began was it realized that the GENIVI code generators also do not support this Franca feature and

so it posed no problem.

A single Franca concept has not been implemented in the Rust code generator that exists in the

C++ one, the "Interfaces managing interfaces". As the name implies, this establishes a main inter-

face responsible for the interfaces it is declared to manage in the Franca specification. The Franca

specification does not specify exactly what this relationship means, and whether there should be

any additional restrictions for the communication between external services and these managed

2According to issue #25 and #26

https://github.com/GENIVI/capicxx-core-tools/issues/25
https://github.com/GENIVI/capicxx-core-tools/issues/26

54 Rust implementation

interfaces, it merely conveys a relationship between interfaces. Additionally, in the Franca speci-

fication, it is mentioned that this concept has been extracted from some IPC mechanisms, namely

D-Bus, the other middleware supported by the GENIVI CommonAPI. Knowing this, and also

considering that this thesis work is only focused on the SOME/IP part of the CommonAPI, it did

not seem much of a relevant feature, and as such, it was dropped.

4.2 Rust CommonAPI Runtime (capi_runtime)

The CommonAPI Runtime serves as the translator from the Franca concepts to their respective

concrete middleware representation. Any program using the CommonAPI toolchain inherently

uses the Runtime. This means that, unlike the code generators, this tool has a direct impact on the

non-functional requirements of a project and, as such, it should be as lightweight and easy to use as

possible. That is precisely the case with the C++ CommonAPI Runtime, where indeed there is only

elemental logic in the tool, but nonetheless, it is still a complex tool from an architectural point

of view, as it needs to be able to support multiple abstraction levels. From its heavily templated

functions and classes to the multiple inheritance levels, one must go through several indirections

until the piece of code implementing a functionality can be found. Already from the beginning of

the Rust implementation, it was evident that the limits of the Rust typing system would have to

be explored and workarounds would have to be taken to translate the concepts possible in C++ to

Rust.

For an initial high-level overview of the Rust CommonAPI Runtime components, a class dia-

gram comparable to the one shown in the previous chapter in Figure 3.10 can be seen in Figure 4.5.

Similarly to the reference implementation, the project is separated into the common code, shared

by all middlewares mostly composed of interfaces, and the someip code which is the implemen-

tation of the common code for the SOME/IP protocol. There is only a single Rust CommonAPI

Runtime library, named capi_runtime, where each code section is separated into a different

module, so the common code is in the common module, whereas the SOME/IP code is in the

someip module.

In the diagram, the relationships and elements in bold represent a new or different concept to

what could be found in the reference implementation shown before. Some relations that are not

shown for simplicity purposes are the someip attribute objects implementation of their respective

common interfaces, so the someip ReadonlyAttribute implements IReadonlyAttribute,

Attribute the IAttribute and so forth. This is a much simpler and straightforward approach

than the one taken by its C++ counterpart where their templated inheritance can lead to some quite

complex types. The remainder of the changes are related to the Rust paradigm of "composition

over inheritance". Languages that opt for the inheritance approach, like C++, allow the definition

of an abstract base class. In it, both shared behavior and shared data can be defined that are

subsequently inherited by objects extending it. The base class can then be used throughout the

code to abstract over the concrete implementation by dynamically dispatching it. This type of

abstraction is also possible within Rust, albeit more limited. It is impossible to define abstract

4.2 Rust CommonAPI Runtime (capi_runtime) 55

Figure 4.5: Diagram of the major classes of the Rust CommonAPI Runtime implementation,
named capi_runtime, which also includes the SOME/IP Runtime under the someip module

56 Rust implementation

classes, only interfaces, named traits, that specify shared behavior without any associated data

member. The storage of any data needs to be within a concrete object that can be instantiated. If

an object wants to "inherit", in the C++ sense, both data and behavior from another object it needs

to store an instance of it.

This approach is exactly what can be observed in multiple relationships. For example, the

common and someip modules Events have a regular object, instead of an Event abstract class

in the common module. Then, the someip Event only needs to store an instance of this object.

The same concept was used for the someip attributes, the base object with the common behavior

and data shared by all attributes is the ReadonlyAttribute. Then, with each composition,

more functionality is added on top of the already present, so the ObservableAttribute stores

an instance of Attribute, which in turn stores an instance of ReadonlyAttribute.

Another glaring difference is how the common StubAdapter interface has been removed.

While the interface has indeed been removed, the IStub interface is still required to store an

instance of a StubAdapter. The reason for this removal is that the interface only had a single

getter method and was not used anywhere else in the code with the use of Any replacing it.

The same type of composition is also applied to the Proxies and StubAdapters objects, but

it needs an additional twist when compared to the attributes. Unlike those, it is known that a

user will be providing their own implementations of Proxies, StubAdapters and Stubs. In

practice, the end-user needs, only, to implement Stubs. The remainders are implemented by

the code generated through the Rust code generator. Nonetheless, from this library perspective,

both implementations belong to the user’s application. In this aspect, the possibility of defining

and extending an abstract class in C++ is a great aid, as the user simply extends the class and

will inherit both its behavior and data, whereas composition still implies that the user needs to

implement methods with the stored object instance behavior. That is why it is required for the

C++ abstract classes Proxy and StubAdapter to be split into 2 in the Rust version: 1) the

interfaces, IProxy and IStubAdapter, that specify the shared behavior, and 2) the object with

the implementation of these interfaces, ProxyBase and StubAdapterHelper. Then, the user’s

implementations of the Proxies and StubAdapters just needs to store an instance of these

objects and redirect all of IProxy and IStubAdapter calls to it.

While this design of splitting an abstract class into 2 certainly works, it poses another minor

problem. The user is still required to manually write an implementation of the interfaces for its

object that simply redirects to the instance of the capi_runtime someip objects. This is not

a problem in the case of the Proxies and StubAdapters as their implementations will be

created through the Rust code generator and as such, the actual end-user needs not worry about

it. However, the same is not true for the implementation of Stub. As the end-user is the one that

actually provides the Stub implementation, the IStub methods would have to be implemented

manually. Although there are 2 simple methods, only, that need to be implemented, 1 getter and

1 setter, it is still non-transparent to the end-user, and it would be better to just abstract the user

from it.

To mitigate this and make it simpler for the end-user a couple of procedural macros were

4.2 Rust CommonAPI Runtime (capi_runtime) 57

#[derive(Capi_IStub)]
pub struct WheelsService {

adapter: Mutex<Option<Arc<dyn Any + Send + Sync>>>, // StubAdapter
...

}

Figure 4.6: Snippet of a user implemented Stub using derive macros to automatically implement
IStub

developed that automatically implement the interface for the object to which they apply to. These

are called derive macros, and they are a powerful tool used throughout the Rust ecosystem. Its

usage applied to an implementation of the Wheels service in the example system can be seen

in Figure 4.6. It follows the same principle as Rust feature flags and only applies to the element

directly after it. The compiler will then expand the macro and automatically generate the code that

implements IStub. The member adapter that can be seen is where the object actual instance

that implements IStubAdapter will be stored.

4.2.1 Middleware independence

A crucial part of the CommonAPI is the ability to abstract the end-user of the middleware that will

be used by the application, thus allowing the user to swap middlewares easily. In that sense, the

CommonAPI follows an approach reminiscent of a SOA, making it even more suitable for these

kinds of systems. Consequently, the Rust implementation also aimed to provide this abstraction,

although it was a secondary goal and priority being given to both implementations interoperability

and that Rust implementation has at least the same runtime characteristics as the reference imple-

mentation. Nonetheless, full middleware independence was achieved in the Rust implementation.

To do this, some modifications had to be made, as workarounds for the differences in the languages

type system.

As shown in Figure 4.6, the user’s Stub implementation stores an instance to the Stub-

Adapter. However, the object that can be seen in the Figure is dyn Any. The dyn is just

a Rust prefix used to identify places where dynamic dispatch will be used easily. Any is Rust

sole construct that enables runtime reflection and thus allowing testing whether the instance is

of a specific type or not. It is through it that it is also possible to downcast from an Any to the

concrete object that initially got upcasted into an Any. Most of Rust types and user-defined types

implement Any and are a candidate to be upcast. The class diagram in Figure 4.5, shows precisely

which library types have the Any trait activated and are thus eligible for upcasting and downcasting

from it. These are the types that need to be implemented in the user application space, either by the

code generator, for the IProxy and IStubAdapter, or by the user itself in the case of IStub.

Therefore, multiple levels of abstraction are required. First, the someip module needs to re-

ceive someip IProxy objects to properly process them, where we are still bound to a middleware

but abstracted from the user’s implementation. Then, pass them onto the common module as com-

mon IProxy where the middleware information is lost as we are now abstracted from it. This

58 Rust implementation

same process could be used for either of the 3 interfaces. In practice, this object passing through

multiple abstraction layers is seldom needed, only in the actual construction of these objects do

they go through these multiple layers. This is because they are built through an implementor

of IFactory which specifies the methods to both create proxies and register the user’s IStub

implementations.

The creation of Proxies is the simplest procedure. Through a templated build_proxy

method, the user can create instances of a Proxy associated with a specific middleware, but the

user is abstracted from the concrete implementation. This method receives some identifiers that

allow the CommonAPI to pinpoint which middleware to use for this specific Proxy instance and

will find the Factory capable of building it. Once that is found, then a new Connection is

created and passed to the Proxy constructor, at which point the proxy is now built and initialized.

The newly created instance goes back into the initial build_proxy function, fully abstracted

from the middleware, and then it attempts to downcast it to the type that the function received as a

template argument.

This approach follows very closely with the reference implementation. The difference lies

in where the Proxy instance is initialized. In C++ this happens immediately after it has been

constructed, inside Factory create_proxy() function, whereas in Rust it still happens inside

the constructor, hence why it was renamed to a setup function instead of constructor. This was

made in order to circumvent Rust typing system, as the init() method is a someip IProxy

method, so in order for the Factory to execute it, it would need a dyn someip::IProxy ob-

ject, which would then have to additionally be upcasted to dyn Any in order to be passed to the

initial build_proxy function. There is more liberty in C++ for upcasting and downcasting, so

that was the approach taken in that implementation. However, in Rust if we were to do the same

methodology, when we would then try and downcast dyn Any into its specific type we would

receive a dyn someip::IProxy object as it was the type that was upcast to an Any. Therefore

we would lose all information about the user’s application typing. By moving the init() func-

tion call to the Proxy constructor, we can immediately return the dyn Any object obtained by

upcasting the generated Proxy instance. This can be observed in Figure 4.7.

The ProxyBase is constructed to provide InfotainmentHubSomeIPProxy access to

the Proxy methods from the capi_runtime. After the InfotainmentHubSomeIPProxy

has been constructed, it is initialized, if the initialization succeeds then it is initially upcast to

IInfotainmentHubProxy, the Proxy interface generated by the code generator, and only after

that is it finally upcast to Any. Note that these upcasts are done implicitly by Rust. This slight

variation ends up making no difference as in both versions if the initialization fails then nothing is

returned to the user, and an error message is printed out, this just happens in different places and

some additional responsibility is passed to the code generator.

The other part, registration of Stubs and creation of StubAdapters is slightly more com-

plex. The user is the one responsible for actually creating the instance of its implementation of

the Stub and then calls the register_stub method of the Runtime with additional parame-

ters that allow the specification of which middleware to use. The Runtime will then find the

4.2 Rust CommonAPI Runtime (capi_runtime) 59

fn setup_InfotainmentHubSomeIPProxy(...) -> Option<Box<dyn Any>> {
let base = ProxyBase::new(...);
let someip_proxy = InfotainmentHubSomeIPProxy { base, ... };

if someip_proxy.init() {
// Upcast to IInfotainmentHubProxy
let proxy: Arc<dyn IInfotainmentHubProxy> = Arc::new(someip_proxy);
// Upcast to Box<Any>
Some(Box::new(proxy))

} else {
None

}
}

Figure 4.7: Snippet of Rust proxy setup method for the InfotainmentHub service proxy, details
have been omitted for simplification

corresponding middleware implementation of IFactory and pass the instance to it. At that

point, we are already in middleware dependent code. Then, the respective StubAdapter is

built with an instance of both the Stub and the Connection sent to it. The StubAdapter

then downcasts the Stub instance to the Stub interface created by the code generator, for ex-

ample IInfotainmentHubStub, that contains all of the service specifications. With this, the

StubAdapter is fully built. To finalize the process, the Stub receives an instance of this newly

built StubAdapter, and an instance is also sent to Connection. In turn, Connection will

signal the SOME/IP implementation that the service instance offered by the Stub is now avail-

able and also registers a message handler for this same specific service instance, thus finalizing

the Stub registration.

Therefore, from a capi_runtime perspective, the Stub travels from the higher abstraction

level to the lower abstraction level, meaning that in the initial register_service method in

the Runtime, we would already have to receive a common IStub to then eventually downcast it

again into the specific Stub implementation. This is the approach we have in C++ since through

dynamic_cast it is possible to do this downcast.

In Rust, since the only construct that can downcast to an arbitrary type is Any, the register-

_service call already needs to receive an Any object. Since this conversion is not direct,

some responsibility is moved to the user. However, the code generator provides a helper method

into_box() that can be used to simplify this process, as can be seen in Figure 4.8. The method

will initially upcast the concrete Stub implementation into the interface the code generator cre-

ated, in this case IInfotainmentHub. Afterwards, it will upcast the object once again into Any,

which is how when the StubAdapter downcasts it, the result will be the IInfotainmentHub

and not the specific user’s Stub implementation. The remainder of the parameters are the ones

used to decide which middleware will be associated with this specific service. Naturally, since this

implementation only covers SOME/IP, these are redundant but already establish the groundwork

for further extensions.

60 Rust implementation

let service = hub::Hub::new();
Runtime::get().register_service(

"local",
base::InfotainmentHub::get_interface(),
"hub",
service.into_box(),
"Infotainment Hub",

);

Figure 4.8: Rust creation of its Stub implementation and subsequent registration in the Runtime

4.2.2 Data types (de)serialization

A crucial section of the CommonAPI Runtime is the translation between the bytes received from

the middleware into their actual data representation, known as serialization and deserialization. It

is expected for these procedures to be used several times throughout an application execution, so

it should be as performant as possible. After examining the logic of these operations, no flagrant

error, redundancy or improvement could be found without resorting to the benchmark of differ-

ent implementations for multiple inputs, which was not the focus of this work. Hence, there is

barely a difference between the Rust and the C++ version other than language-specific constructs

or operations. What had to be changed is the location in the full CommonAPI toolchain architec-

ture where these procedures are executed and the code generators role in them. In the reference

implementation, the (de)serialization logic relies on very heavily templated code that can accept

an arbitrary number of arguments and then process them in order. This makes it possible to have

these procedures execute inside the CommonAPI Runtime, and the generators only need to worry

about setting the correct template arguments for the methods. Such an approach is currently not

possible in Rust as it does not yet support an arbitrary number of template arguments, only a spe-

cific number, although the intention to support it exists3 but it does not seem like it will be anytime

soon.

Therefore, it is not possible to have a generic procedure that can support all kinds of input from

the generators, which is the approach we see in C++. One of those kinds of generic constructs that

can support multiple inputs and outputs can be seen in Figure 4.9. It accepts the user’s Stub

implementation and then receives an arbitrary number of input arguments, output arguments, and

their respective deployments. As previously mentioned, deployments configuration parameters

that can be defined in the Franca .fdepl files that allow the user to customize how the serializa-

tion of a type is made. From a developer point of view, these types of constructs are impressive

and shows that the author has a deep knowledge of C++ concepts and its limits. However, this

is unarguably a nightmare to anyone that seeks to fully comprehend the inner workings of this

library, whether out of curiosity or out of necessity.

In contrast, Rust implementation approach follows closely to what is already used throughout

the ecosystem. Rust allows the extension of functionality for its standard types through the imple-

mentation of user-created interfaces. This is exactly what is used in one of the most widely used

3See Issue #376 for the discussion

https://github.com/rust-lang/rfcs/issues/376

4.2 Rust CommonAPI Runtime (capi_runtime) 61

template <
typename StubClass_,
template <class...> class In_, class... InArgs_,
template <class...> class Out_, class... OutArgs_,
template <class...> class DeplIn_, class... DeplInArgs_,
template <class...> class DeplOut_, class... DeplOutArgs_>

class MethodWithReplyStubDispatcher<
StubClass_,
In_<InArgs_...>,
Out_<OutArgs_...>,
DeplIn_<DeplInArgs_...>,
DeplOut_<DeplOutArgs_...>> : public StubDispatcher<StubClass_> {

...
}

Figure 4.9: Snippet of one of the C++ classes used to serialize and then deserialize a method call
from a remote client

Rust libraries,4 serde, where the interfaces Serialize and Deserialize are defined, that as

the name implies, allow the user to provide a (de)serialization procedure to any type that imple-

ments them. Format dependent libraries will then provide the actual implementation for each type,

for example, the serde_json implements the (de)serialization from and into JSON. For Rust

standard types this is enough, but it does not cover user-defined types such as structs or enumer-

ations as the library has no knowledge of these. Once again, the issue can be solved by resorting

to Rust powerful macro system. Using derive macros, the user can easily make its data type

implement the Serialize and Deserialize interfaces by resorting to the #[derive(...)]

attribute. This technique is precisely what was also employed in Rust CommonAPI Runtime im-

plementation. For the data types that directly map to Franca data types, the implementation is

already present in the library, whereas for the rest of them through the use of these macros an im-

plementation can be provided. How this actually translates into code can be seen in Figure 4.10,

unlike in serde, only a single derive macro Serialization was defined, which implements

both the serialization and the deserialization methods.

An addition that had to be made was the specification of the types Franca deployment infor-

mation, while the deployment information for the user-defined type is passed by the code gen-

erators to the (de)serialize functions when they are invoked, it is possible that an inner type also

has a specific deployment specification that needs to be used. For this, derive macro attributes

were used, that allow the specification of additional information to which the macro has access

to. The attribute that can be seen in Figure 4.10, Deployment associated with the member

inner_struct is used precisely to specify its deployment. Its value points to the object that

contains this information and will then be used by the derive macro accordingly. For members

that did not have deployment information specified, such as instance_n there is no attribute and

the (de)serialization uses default values for its type.

4According to number of downloads in crates.io

https://crates.io/crates?sort=downloads

62 Rust implementation

#[derive(Serialization)]
pub struct TestStruct {

#[Deployment = "super::InnerTestStruct_Deployment"]
pub inner_struct: crate::InnerTestStruct,
pub instance_n: u8,
...

}

Figure 4.10: Example Rust struct that gets its (de)serialization implementation from the derive
macro.

C++ approach to user-defined data types is totally different. As it is impossible to have a tem-

plate that both accepts an arbitrary struct and can traverse its elements in order, they resorted to

creating a generic class for each user data type and using these to actually do the (de)serialization.

So the capicxx-core-runtime has 3 additional objects, not shown in the initial analysis in

Chapter 3, Struct, Enumeration and Variant. The first is simply a struct whose only mem-

ber is a tuple that contains all the members of the user’s struct. The second is also just a struct

with the value of the enumeration. Lastly, the Variant is a class whose purpose is to provide a

type-safe union which appears to be similar to what C++17 std::variant can provide, which

was only introduced at the end of 2017. Any user-defined data type specified in the Franca .fidl

files will end up being translated into one of these 3 types, forcing the end-user to use these types

and ultimately steepening the learning curve of the CommonAPI toolchain. In this aspect, Rust

CommonAPI implementation shines as all user-defined types are translated into Rust standard

types, making it much easier for a user to use them.

All of these typing and templating differences between C++ and Rust translate into a different

architectural approach for the (de)serialization of data types. In both toolchains the implementa-

tion resides in the CommonAPI Runtime library, however, in the Rust toolchain, the code generator

has a more direct influence on the correct (de)serialization of types, as opposed to the reference

where it is more indirect. The difference resides on where the execution of the (de)serialization

procedures is started. For the reference implementation, it is in the CommonAPI Runtime, while

in Rust it is in the generated code, as can be observed in Figure 4.11. The method shown in that

Figure, new_frame, has a single input argument, only, a vector, and no output arguments.

C++ approach is for the code generator to define the serialization ordering through the complex

templating of the function callMethodWithReply and the order in which the input arguments

are passed to the function. The templated arguments are wrapped in a Deployable object along-

side their deployment specification, which is none in this case, and then handed to the function.

If multiple input arguments are required, then the number of arguments of the method grows ac-

cordingly. No output argument was specified in this case, but if there were any, the function

would receive additional arguments after the _internalCallStatus variable which would be

overwritten by the function to contain the service response.

Since this variadic number of function arguments is not possible in Rust, it leaves the op-

tion to move the (de)serialization outside of the call_method_with_reply function, which

4.2 Rust CommonAPI Runtime (capi_runtime) 63

// C++ implementation
void InfotainmentHubSomeIPProxy::new_frame(

const AutomotiveTypes::Frame &_frame,
CommonAPI::CallStatus &_internalCallStatus,
const CommonAPI::CallInfo *_info)

{
CommonAPI::Deployable<AutomotiveTypes::Frame,

AutomotiveTypes_::FrameDeployment_t> deploy_frame(
_frame,
static_cast<AutomotiveTypes_::FrameDeployment_t *>(nullptr));

CommonAPI::SomeIP::ProxyHelper<
CommonAPI::SomeIP::SerializableArguments<
CommonAPI::Deployable<
AutomotiveTypes::Frame,
AutomotiveTypes_::FrameDeployment_t>>,

CommonAPI::SomeIP::SerializableArguments<>>::callMethodWithReply(

*this,
CommonAPI::SomeIP::method_id_t(0x3e8),
false,
false,
(_info ? _info : &CommonAPI::SomeIP::defaultCallInfo),
deploy_frame,
_internalCallStatus);

}

// Rust implementation
fn new_frame(

&self,
frame: &crate::Frame,
info: Option<capi_runtime::CallInfo>

) -> Result<(), capi_runtime::CallStatus_E> {
let mut bytes = Vec::new();
ok = frame.serialize(&mut bytes, None, false);
if ok {

capi_runtime::someip::call_method_with_reply(
&self.base,
0x3e8,
false,
info,
bytes,

).map(|_| ())
} else {

eprintln!("Failed to serialize ’new_frame’ arguments!");
Err(capi_runtime::common::utils::CallStatus_E::InvalidValue)

}
}

Figure 4.11: Comparison between the C++ and Rust implementation of the proxy for the
InfotainmentHub service new_frame method

64 Rust implementation

is precisely what can be seen in the Figure. It initially creates a new vector and then calls the

serialize method for each of the input arguments in succession. This is the same method that

is provided through the Serialization derive macro shown above. Only when all arguments

have been successfully serialized does it then call the same call_method_with_reply pro-

cedure, passing the vector used as the output for the serialization which now contains the types

respective on-wire representation. When the server replies, the method returns the SOME/IP mes-

sage, and then the deserialization of its payload will take place, this would be present in the

.map() section, since there are no output arguments, it is empty.

The semantics through which the service methods output arguments are returned to the user

also differs, in C++, function output arguments were preferred, where the function receives ref-

erences to external variables and then overwrites their value with the response from the service

provider, whereas in Rust the preferred approach is the actual declaration of a return type using

Result, allowing the user to distinguish between the non-error return and the erroneous one

through the CallStatus_E. Multiple output arguments are grouped into a tuple in the Rust ver-

sion, in this function the empty tuple () is returned on success. Due to a limitation in Rusts type

system, Rust only allows the definition of tuples with a maximum of 12 elements, which should

be more than enough for the majority of use cases.

4.2.3 Rust CommonAPI limitations and minor differences

There are some additional differences from the Rust version to the reference implementations.

These are much minor differences that have little to no impact in the actual logic in the library

and are instead corrections to what are probably mistakes, lack of review or planning for features

that never came to fruition. A basic one is a necessary dynamic dispatch in someip Proxy and

StubAdapter implementations. Instead of directly storing an instance of Connection, this

instance is hidden behind an interface named ProxyConnection, which Connection imple-

ments but is not directly used anywhere else. As the exact same functionality could be achieved

by removing this indirection, Rust equivalent objects directly store an instance of Connection,

effectively decrementing the number of dynamic dispatches needed by the library. Then, a less

relevant difference, which is a consequence of Rust preference to use static linking instead of dy-

namic linking, is the single check that the Runtime does when trying to find a suitable Factory

to create Proxies or register Stubs. In the reference implementation, Factories can be dynami-

cally linked at that point to provide for a specific required middleware. Since in Rust the preferred

approach is to link everything statically, if no suitable Factory is found, then we are sure that

we cannot use that specific middleware and can just fail without trying to link the appropriate

Factory dynamically.

In terms of limitations of the Rust implementation, the main one is the unsupported asyn-

chronous calls to the various methods and event fetching capabilities. Finally, since this imple-

mentation is only focused on the SOME/IP part of the CommonAPI, the parsing and processing of

the CommonAPI .ini files is not implemented. It was through these that the reference implemen-

tation parsed the information to be able to choose dynamically, which CommonAPI middleware

4.3 Rust SOME/IP implementation 65

implementation to use. Nonetheless, its format is straightforward, and it should not be difficult to

add this if more middlewares need to be supported.

The last limitation is the inability to use the asynchronous counterparts of the methods cre-

ated by the code generator. In the reference implementation, a client could call a remote method

and pass a callback for when the response is received instead of blocking while waiting for this

response. The same is possible in the event access methods. This is something that could cer-

tainly be implemented in the Rust version, but ultimately fell into oblivion and ended up not being

implemented, although the constructs to have this features are mostly present in the final work.

4.3 Rust SOME/IP implementation

The SOME/IP protocol implementation, named vsomeip, is at the heart of the whole Rust Com-

monAPI toolchain. As the actual middleware used by the applications, nearly all of the useful

processing is done inside this implementation. Consequently, it stands to reason that this was the

part of the work where the most effort was put, so as to achieve an equivalent or better implemen-

tation compared to the reference.

Throughout the development of this work, multiple vsomeip versions were released. When

planning and beginning the work, version 2.14.16 was the most recent one. Shortly after version

3.1.7.1 was released, with a major version upgrade that signaled some breaking changes. Since

it was only the beginning and an up to date implementation was desired, vsomeip3 was the

version that was followed. In the end, the version that ended up fully making it into the Rust

implementation was 3.1.16.1. The high-level architecture remained the same as the reference

implementation, previously seen in Figure 3.15. The changes can only be observed in a lower-

level view of the individual components, which is what this section will be focused on and, unlike

in Chapter 3, a bottom-up analysis will be made.

4.3.1 Endpoints

The lowest vsomeip components, the Endpoints, are also where the most changes have been

made. This is partly due to the same differences between C++ and Rust shown in the previous

section, and also due to a different approach to asynchronous operations. In the reference imple-

mentation, we once again have several layers of inheritance that can be observed in Figure 4.12.

However, unlike in the CommonAPI implementation, only the upmost interface Endpoint is

used to actually abstracting which endpoint is being used. The remainder of the abstract classes

are simply providing the derived classes with shared behavior between them.

VirtualServerEndpoint is an endpoint that does nothing. In the reference vsomeip im-

plementation, it is explained that it is used, only, for when the user intends to have the "Service Dis-

covery announce a service that is externally implemented"5. Since no use case for such a system

could be found, it has simply been left out in Rust implementation, whose architecture can be seen

5Present in the User Guide

https://github.com/GENIVI/vsomeip/blob/710a8613ee5bd9eb490addecd7f2ee8049c4fd0c/documentation/vsomeipUserGuide#L578

66 Rust implementation

Figure 4.12: Diagram of the C++ vsomeip Endpoint objects and their relationships

in Figure 4.13. Unlike what could be expected, the multi-layered inheritance has not disappeared,

with 2 middle interfaces still remaining. This is partly true, only. The IServerEndpoint and

IClientEndpoint interfaces are used internally by the Endpoints module, only, to provide

the ServerEndpointBase and ClientEndpointBase with the possibility to abstract over

which endpoint it belongs to. However, this is a cost-free abstraction as the base endpoint ob-

jects are generic over precisely those two middle interfaces, which means that the functions and

function calls get monomorphized at compile time with no additional cost at runtime.

The remaining of the vsomeip modules either abstract over the IEndpoint or, when pos-

sible, directly use an Endpoint object. Rust IEndpoint interface contains the same methods

as C++ Endpoint as well as some additional methods that had to be added as a result of some

dynamic_cast that the reference implementation resorts to to obtain a specific endpoint im-

plementation and use methods unique to it. As previously explained, that is not possible in

Rust, so the solution was to add these methods to IEndpoint and have an implementation that

throws an error in the endpoint objects that are not supposed to have these. All of the imple-

mentations that were present in the C++ middle abstract classes have been moved into either the

ServerEndpointBase or the ClientEndpointBase objects. Then, each of the respective

endpoints stores an instance of these objects. This approach has the downside that the implemen-

tations present in the Endpoint_Impl abstract class are now duplicated in the endpoint base

objects, but since it is just a few simple getter and setter methods it seemed pointless to create a

whole new object just to share these.

While the architecture is certainly different from the reference implementation approach, it is

not the most distinct aspect of Rust implementation. Both the implementations use event-driven,

4.3 Rust SOME/IP implementation 67

Figure 4.13: Diagram of the Rust vsomeip Endpoint objects and its relationships

non-blocking IO operations to write asynchronous applications. Without the use of asynchronous

operations, other strategies such as a thread per socket connection would have to be used, which

can degrade system performance due to the increased number of context switches required. For

the C++ implementation, the Boost.Asio library was used whereas in Rust tokio was adopted.

Despite providing similar capabilities, the API for these libraries and how they are meant to be used

by a developer naturally differ. This difference can be quite clearly seen in these components. The

reference implementation Endpoints use a design similar to infinite recursion. Their receive()

method, which reads a frame from the socket, will register a handler for when the frame is suc-

cessfully read and then exit the function. The Boost library will then internally poll the socket

waiting for data to become available. Once that is the case, it will then execute the handler on one

of its internal threads, managed by the library. These are threads that run in the user space, on

top of a kernel thread, and entirely managed in the user space without resorting to system calls.

Multiple internal threads can be executed in a single kernel thread. This means that the cost of

context switching, creating and destroying one of these internal threads is much lower than an

actual kernel thread, as such these types of threads are named lightweight-threads. The low-cost

of management and switching between these types of threads makes them ideal for asynchronous

applications. Once the socket handler function is executed in one of these threads, it will then

process the frame that was just received, and right before it exits, execute the receive() method

again, effectively creating a loop. Unlike regular loops, this one will potentially span across mul-

tiple threads, both lightweight and kernel threads. As such, although conceptually recursion is

used, it is a different kind of recursion that does not entail the increase of the method call stack.

To ensure that no synchronization problems occur, it is necessary to use a mutex to synchronize

access to the socket and access to the receive and write buffers.

Rust tokio approach is similar from a library perspective, where the use of lightweight-

threads also prevails but differs in the API and how it is supposed to be used by the developers.

Contrary to Boost, tokio gives the developer the ability to create and delete these lightweight-

threads that then get executed by the tokio Runtime. These threads can communicate with each

68 Rust implementation

fn start_socket_loop(
self: Arc<Self>,
mut socket: TcpStream,
mut data_rx: mpsc::Receiver<Arc<[u8]>>,
mut stop_rx: watch::Receiver<Service_T>,

) {
tokio::task::spawn(async move {

loop {
tokio::select! {

data = data_rx.recv() => { ... }, // Send message
msg = socket.recv() => { ... }, // Process message
_ = stop_rx.recv() => { ... }, // Stop loop

}
}

});
}

Figure 4.14: Rust-based pseudocode of an Endpoint socket loop

other either via synchronization primitives, or, the preferred approach, through message passing

using a queue where a thread can write to it, and another read from it. This is exactly the design

that was chosen for the Rust implementation, as shown in Figure 4.14. Instead of having the type

of "recursion" seen in the reference implementation, for each socket a single lightweight-thread is

spawned which is responsible for both reading and writing to the socket, done by the tokio::-

task::spawn() method. Inside this thread, there is no need for any synchronization primitive

as it is the sole thread with access to the socket and its read and write buffers. For communication

with the remaining code, a queue is used. In this case, only a single queue is required to send the

messages. The thread will read the message from the queue and then send it to the socket. When a

message is received, it simply starts executing the respective frame processing procedures, which

means that it will not be sending or receiving messages in the meantime. The procedure can wait

concurrently for different events due to the tokio::select() method, which has a similar

behavior to the Linux poll() and epoll() methods.

With this type of approach, the amount of synchronization primitives needed for each endpoint

is significantly reduced, which, in turn, also removes the overhead from their operations. As an

example, the LocalClientEndpoint_Impl from the C++ implementation has up to 5 mutexes

that it needs to use throughout its different procedures, although one of them is only seldom used.

Whereas Rust equivalent LocalClientEndpoint needs to use 1 mutex, only, for exactly the

same operations. This sharp difference is only possible due to the message passing architecture

used in Rust which allows the threads to execute independently from one another and synchronize

with one another through message passing, effectively avoiding shared state and thus the need

for synchronization primitives. The same design is seen throughout all the different kinds of

Endpoints shown in Figure 4.13, meaning that ultimately quite some synchronization primitives

have been made redundant and consequently their runtime cost eliminated.

Another relevant yet simple contrasting aspect that the Rust Endpoints have compared to the

reference Endpoints is their monomorphization. The Endpoints need to store an instance to both

4.3 Rust SOME/IP implementation 69

its EndpointManager and the RoutingManager. In the reference implementation, these in-

stances are stored through interfaces, endpoint_host and routing_host, respectively. This

means that each time a method from them needs to be called dynamic dispatching is required, ef-

fectively adding to the total latency of the library. While it is true that only a few method calls are

made it undeniably adds additional overhead. The same situation is handled differently in Rust,

by making all the Endpoints have a templated argument for both the EndpointManager and

the RoutingManager, the compiler can then monomorphize these function calls and remove the

cost of dynamically dispatching these at runtime, further contributing to the latency reduction.

A feature present in the reference implementation that did not make it into the Rust implemen-

tation is the buffering of outgoing messages. The C++ version implements what is named "train

buffers" or the nPDU feature. These are buffers that have a departure time and will only be sent

through the socket after a certain period of time. Until then, when the library intends to send a

message, it will simply be copied to the trains buffer and only be sent, alongside other messages,

once the departure time has been reached. There is no AUTOSAR requirement for the buffering

of messages in either the SOME/IP or the SOME/IP-SD specification. In fact, there is even the

mention in section 4.2.1.2 of [7], that "in order to reduce latency and reaction time", when using

TCP, Nagle’s algorithm should be turned off. So clearly a lower latency should be something to

strive for. According to the documentation of the GENIVI SOME/IP implementation, this was

implemented in order to lower the network load in exchange for latency. The exact timings for this

can be configured. However, even when setting no retention time and having the trains depart im-

mediately, it already causes additional latency simply because it still will copy the whole message

into the train buffer. This feature was completely removed in the Rust implementation. The library

makes no kind of buffering, as soon as messages are received via the queue, the socket thread will

immediately write it to the socket. Using this approach, the latency is significantly reduced, first

due to the fact much less code is executed between the message reaches the Endpoints until it

is actually sent to the socket, but, most importantly, no copy of the outgoing messages is made.

The copy overhead may be negligible for small messages, but it can quickly add up to a significant

amount.

4.3.1.1 Endpoint Managers

The EndpointManagers, responsible for creating and managing Endpoints, have a fairly

simple role in the overall architecture. As such, both implementations are very similar, if not

equal, in terms of its algorithms. Architecture wise, as already observed in other locations, it

needs to be slightly changed to the familiar approach of moving the shared implementations to

an object and have an instance of it where this implementation is required as seen in Figure 4.15.

Other than that, an additional manager was created, ProxyEndpointManager. This manager

functions simply as a wrapper around the EndpointManagerBase and redirects all of the func-

tion calls to it. The reason it was created was, once again, to allow the monomorphization of the

EndpointManager instances in the RoutingManagers. Even more monomorphizations were

made in the IEndpointManager methods that create and manage local endpoints. For these

70 Rust implementation

Figure 4.15: Diagram of the Rust vsomeip EndpointManager objects and its relationships

methods, we know that by design, they will be returning either a LocalClientEndpoint or a

LocalServerEndpoint. As such, instead of abstracting them behind the IEndpoint inter-

face, we can use them directly both here and in the other vsomeip components that execute these

methods. The remaining of the client and server endpoints need to be abstracted by IEndpoint

as they can either be the TCP or UDP implementation.

4.3.2 Routing Managers

The Routing Managers represent the central component that manages most of the SOME/IP im-

plementation logic. As explained before, there are 2 types of Routing Managers, the Host and

the Proxy, the former is used with the Host vsomeip applications and the latter with the re-

maining applications in that system. At runtime we cannot know which of those 2 types the

application is going to be, hence why the Routing Managers need to be abstracted through the

RoutingManager interface in the same manner seen in Figure 3.15. This of course still holds

true in the Rust implementation with the interface IRoutingManager being used to dynamically

dispatch these.

After that necessary abstraction, by design no further, abstraction should be required apart

from the Endpoints. So all of the helper objects of the Routing Managers will belong to

either the HostRoutingManager or the ProxyRoutingManager. This makes these ob-

jects the perfect candidates for being templated objects generic over a IRoutingManager and

as such subjected to the compiler monomorphization. Despite this, in the C++ implementa-

tion, dynamic dispatch is still used in many different places. In Figure 4.16, an overview of

Rust implementation objects, their relationships and, in bold, locations where static dispatch

was used instead of dynamic dispatch is shown. The numbers represent the storing of an in-

stance of the object, for example, the LocalServerEndpoints shown contain an instance of

RoutingManagerHost, but the RoutingManagerHost does not have direct access to this

instance of LocalServerEndpoint, although it could still access it through the Endpoint-

Manager.

4.3 Rust SOME/IP implementation 71

Figure 4.16: Diagram of the Rust vsomeip RoutingManager objects and its relationships, bold
represents relationships that use static dispatch instead of dynamic dispatch

Again, the Routing Managers follow the already explored approach of storing the shared im-

plementation of IRoutingManager in RoutingManagerBase and then redirecting calls to

it. Note that the relationship between Event and IRoutingManager is not implying dynamic

dispatch. As represented by the template argument in Event, since each event can only be associ-

ated with a single RoutingManager and each RoutingManager only stores events associated

with it, this relationship will be monomorphized at compile time. This RoutingManager in-

stance will be used by Event each time that it needs to send a notification to a remote client, so

only applications that rely on event-based communication are subjected to the dynamic dispatch

overhead. The component responsible for the SOME/IP-SD protocol also does not require any

kind of dynamic dispatch. By design, the RoutingManagerHost is the only Routing Manager

that can have Service Discovery enabled, and so ServiceDiscovery necessarily is owned by

RoutingManagerHost. Hence, in this case, monomorphization is not even required, it simply

stores an instance of RoutingManagerHost.

The same situation applies to the RoutingManagerStub where by design, it belongs to

the Host, only, and can also directly store an instance of it. Both of these objects rely heav-

ily upon accessing this RoutingManagerHost instance. In the RoutingManagerStub case,

the instance is used once per message that needs to be sent to local clients and, depending on

the type of response received, at least once for each response from local applications. The ex-

change of these local messages is more frequent in the setup of the system, where all of the

local applications are required to register themselves with the Host application which, in turn,

informs the remaining applications of the newly registered application. After this initial setup,

during the regular execution of the application, any local communication is composed mostly of

messages sent by the RoutingManagerHost as a mean to propagate some change in status,

72 Rust implementation

methods or events received from remote applications and possible subsequent responses from the

local applications. In the RoutingManagerStub, the fact that it directly stores instances of

LocalServerEndpoints instead of the dynamically dispatched IRoutingManager makes

no difference as it never needs to access these members, they are only used to receive messages

from the local applications. When a new local message is received, these Endpoints then send it

to the RoutingManagerStub to be processed. It is in this direction that the deletion of the dy-

namically dispatched types can be felt, as the Endpoints are templated over the IRoutingHost

interface, instead of dynamically dispatching its implementation. This interface also exists in C++,

it was simply not shown in previous diagrams for simplicity purposes. This templating applies to

every single endpoint of the program, and so its consequences can be felt everywhere in vsomeip.

Finally, on the other side of the Figure, the ProxyRoutingManager is located. Here a situ-

ation identical to RoutingManagerStub can be seen, with the storage of the specific endpoint

instances instead of an abstraction over the IEndpoint interface and the endpoints having direct

access to ProxyRoutingManager through their template argument. In this object, owned by all

the local applications which are not a Host application, the other side of local communication is

present. Through its instance of LocalClientEndpoint it sends all of the local messages to

the Host application.

4.3.3 Service Discovery

The ServiceDiscovery component is where most of the SOME/IP Service Discovery protocol

is implemented. As was shown, it stores an instance to the RoutingManagerHost that it uses

to aid the protocol implementation. Once more, this is a specific instance with no need to be

dynamically dispatched, unlike the reference implementation. The Service Discovery protocol,

at its core, is relatively simple, services announce their existence by sending OFFER messages

and attempt to find other services in the network by sending FIND messages. These are sent

through multicast, so every device in the network receives them, OFFER messages keep being

sent throughout the application execution, while FIND messages are only sent at startup to find

services quickly.

The Service Discovery implementation needs to follow a state machine, as defined in the

AUTOSAR specification [2], that can be seen in Figure 4.17. In it, two different branches are

shown, first, the one related to the OFFER messages and the one for the FIND. Both of these

follow the same behavior at startup. The Initial Wait phase will last for a random delay within an

interval specified by the user, while gathering all of the services that the application is offering, in

OFFER messages, and the ones that the application is requesting, in FIND messages. After this

initial delay, it will send these messages for the first time, thus exiting the Initial Wait phase and

moving onto the Repetition Phase. For this phase, the user specifies a base delay (BASE_DELAY)

and a maximum number of repetitions. Immediately after entering it, the application shall wait

for 20 ∗BASE_DELAY milliseconds, before sending resending the messages gathered in the initial

phase. Afterwards, it waits for 21 ∗ BASE_DELAY and sends these messages again, with this

process repeating until the maximum number of repetitions has been reached, marking the end of

4.3 Rust SOME/IP implementation 73

Figure 4.17: State machine of the SOME/IP Service Discovery protocol startup behavior

the Repetition phase. This also marks the end of the state machine FIND branch, and no more

FIND messages will be sent throughout the application execution. On the other hand, the OFFER

messages enter the Main phase where they wait a specified amount of type and then get sent again.

This process repeats endlessly throughout all of the application execution, so OFFER messages

keep being sent into the network. For requests or offers that are made after the Initial Wait phase

has finished, an additional Debounce exists, where, similarly to the Initial Wait phase, it gathers

requests and offers for a certain amount of time (DEBOUNCE_PERIOD), if any is received within

that time frame it sends the messages and then moves them into the Repetition phase.

Rust implementation of this state machine utilizes lightweight-threads and message passing

between them. The grayed out states in Figure 4.17 represent the threads that are spawned imme-

diately on application startup. However, note that the Initial Wait phase and the Debounce phase

are executed in the same thread. Both of these phases gather the services in a collection, and after

the first messages are sent, a new Repetitions phase thread is created with this collection of ser-

vices being passed to it. This is made without copying all of the collected services as the whole

collection is passed to the Repetitions thread while a new empty collection is left in its place in the

Debounce thread. That Repetitions phase thread will only be responsible for the services passed to

it and once that phase is over will terminate. Thus, an arbitrary number of Repetition phase threads

may exist, so Figure 4.17 represents that state as a stack of states. The Main phase thread will be

constantly fetching from the RoutingManagerHost the application offered services, creating

the OFFER messages with them and finally sending them to the network.

All of the threads from a branch, except that of the Main phase, share the receiving end of

a queue used to signal when to stop offering or requesting a specific service. The Main phase

thread does not require one as it is directly reading from the Routing Manager storage from which

the services are deleted when they stop being offered. This approach followed in the Rust im-

74 Rust implementation

void debounce_timer_expired() {
collected_offers_mutex.lock();
new_offers = collected_offers;
collected_offers.clear();
collected_offers_mutex.unlock();

send_offers(new_offers); // Sends the offers for the first time

new_timer = std::make_shared<steady_timer>();
timers_mutex.lock();
timers[new_timer] = new_offers;
timers_mutex.unlock();

// Sets timer to wait and call handler afterwards in different thread
new_timer.setup(500, |new_timer| {

timers_mutex.lock();
offers = timers[new_timer];
send_offers(offers);
new_timer.setup(...);
timers_mutex.unlock();

});
}

Figure 4.18: Pseudocode based on C++ collection of offers during the offer debounce state

plementation is different from the one in the reference implementation, where boost timers are

used instead of lightweight-threads. An overview of this process in the reference implementation

is shown in Figure 4.18.

For the gathering of services, a shared collection, collected_offers, is used that needs to

be synchronized via a designated mutex. Once the gathering phase is over, a new boost timer is

created, which will be handling the Repetition phase. The association between this new timer and

the gathered services is made through another shared map that links a timer to the services gathered

in collected_offers. Unlike Rust implementation, the services in collected_offers are

all copied into that shared map and afterwards the collected_offers is cleared. As is usual,

this map is also synchronized via a mutex. When the timer expires, it locks the map mutex and only

releases it after having sent the messages. Since all timers share this map, they are dependent in

one another as only a single timer expiration handlers can be executed at any given time. Whereas

in the Rust implementation, they are independent from one another and can run concurrently

without any issues. Once the Repetition phase is over, C++ follows the same procedure as Rust,

setting a flag in the services that signals that they are now in the Main phase.

The procedure described above marks the mandatory behavior that a SOME/IP application

offering and requesting services needs to follow and is the base for the remaining exchanges

between applications. Applications receiving these messages will then react accordingly, as was

explained in Section 3.4.2.

4.3 Rust SOME/IP implementation 75

{
...
"service-discovery" : {

"enable" : "true",
"multicast" : "224.244.224.245",
"port" : "30490",
"protocol" : "udp",
"initial_delay_min" : "10",
"initial_delay_max" : "100",
"repetitions_base_delay" : "200",
"repetitions_max" : "3",
"ttl" : "3",
"cyclic_offer_delay" : "2000"

}
}

Figure 4.19: Service Discovery related options of a standard vsomeip configuration file

4.3.3.1 Service Discovery configuration

The Service Discovery protocol behavior regarding its various states and respective timeouts is

expected to be configured to the user’s preference. This can be done via the vsomeip JSON

configuration files, already shown in Chapter 3. The specification for these files includes a section

for the Service Discovery that allows the user to enable Service Discovery and configure some of

its options. Without enabling it, it is impossible to have any kind of event-related communication

between applications, even if they are being executed in the same system. The most common

options are shown in Figure 4.19. At the least, it is important that the multicast, port and

protocol options match between SOME/IP applications. Otherwise, they will not be able to

discover each other as the SOME/IP Service Discovery multicast communication will be associ-

ated with that specific address and protocol. The remaining of the options could, in theory, be

different between applications as they affect mainly the timeouts of the offering and request state

machine. initial_delay_min and initial_delay_max correspond to the minimum and

maximum range used to generate the INITIAL_DELAY value for the Initial Wait phase. ttl,

is a value represented in seconds representing the lifetime of the application offered services, it

is used to detect abrupt remote application termination. The remainder of the timeout values are

represented in milliseconds.

4.3.4 Runtime and Application

The Runtime and the Application represent the uppermost layer of vsomeip, meaning that

they are the objects available to be used by external applications. The former is stored as a single-

ton class in the C++ implementation, accessible anywhere in both the user code and the vsomeip

library. In practice, it is used in the setup of the user application, only, and nowhere else. Inside

vsomeip it simply is not used, except for some static methods it provides which do not require

an instance of Runtime. As such, it felt unnecessary to make it a singleton object. Instead, it is a

76 Rust implementation

regular object that can be created and then used to create the Applications, since these are not

dependent on the existence of a Runtime instance it can be deleted afterwards. The only practical

use case for the existence of the Runtime is for when multiple Applications are assigned the

same name, where the Runtime will then append a unique identifier to the applications name to

make it unique within the system. Such a situation should be extremely unlikely to happen, except

by user mistake, and the consequences that either approach may have are fairly similar and related

to the SOME/IP identifier that gets assigned to the application.

In any case, since it barely makes a difference the Runtime was kept in Rust SOME/IP

implementation, also to maintain the API similarity between the Rust and C++ implementations.

Precisely for this reason, Rust Application public API is also kept exactly the same as the

reference implementation. There had to be some slight adaptations since default arguments and

overloaded methods are used in the reference, and neither of these is possible in Rust. For the

former case, Rust version simply forces the user to explicitly specify all parameters, while on the

latter the name of the overloaded method was adjusted to be unique and better match its behavior.

Arguably doing so is a better approach as it is clearer exactly what is being passed and executed

in both cases.

As vsomeip resorts to asynchronous operations, it also stands to reason that the interaction

between the library and the user is also done asynchronously. Apart from the setting up of the

application where the registration of services and events is made, all of the interactions are made

through the execution of handlers that the user-defined. With this in mind, it makes sense that the

main focus of Application, aside from relaying calls to the Routing Managers, is precisely the

processing and dispatching of all of these handlers. In both implementations, this is done through

a loop entered once the Application start() method is called, which will only return once

this loop has finished. In it, the function keeps waiting for new handlers to be available to execute

them.

For the reference implementation, this is again done through shared state and synchroniza-

tion primitives, as seen in Figure 4.20, where a simplified version of this handler dispatcher

is shown. Handlers are received through a double-ended queue, accessed through the get-

_next_handler() call in the Figure, and, once again, a mutex that synchronizes its access

(handlers_mutex). Through the use of a condition variable (dispatcher_condition) the

loop blocks until it is notified that it has received a new handler to process. Once this happens

it will enter the else branch of main_dispatch() where it first checks if this dispatcher is

allowed to dispatch handlers and then fetches the newly received handler. Before beginning the

execution of the handler, it unlocks the handlers mutex and creates a new timeout. The timeout

is created to identify when the dispatching has blocked while executing the user’s registered han-

dler. This will only happen if the user’s handler takes too long to execute, the default maximum

allowed dispatch time is 100 milliseconds.

If the handler finishes the execution within the time window, then the timeout is canceled

and this thread resumes dispatching as usual. If the handler does not finish within the time win-

dow, then the dispatcher thread identifier is inserted in running_dispatchers collection, just

4.3 Rust SOME/IP implementation 77

void main_dispatch() {
(its_id, its_lock) = (this_thread::get_id(), handlers_mutex.lock());
while (is_dispatching) {

if (!is_active_dispatcher(its_id) || handlers.empty()) {
dispatcher_condition.wait(its_lock);

} else {
sync_handler its_handler;
while (is_dispatching && is_active_dispatcher(its_id)

&& its_handler = get_next_handler()) {
its_lock.unlock();
steady_timer new_timer(100, timeout_callback);

// Busy waits ‘dispatcher_mutex‘ then insert
running_dispatchers.insert(its_id);

(its_handler)(); // Invoke handler

new_timer.cancel();

// Busy waits ‘dispatcher_mutex‘ then erase
running_dispatchers.erase(its_id);

its_lock.lock();

...
}

Figure 4.20: C++ based pseudocode representation of Application handler dispatch method
from the reference implementation. Parts of the code have been omitted for simplicity sake.

before it executes the handler. Once again, this collection is protected by a mutex, dispatcher-

_mutex, which the dispatcher will busy loop until it is able to lock the mutex to then access the

running_dispatchers collection. Since the handler did not return, the thread identifier will

remain in that collection when the timeout_callback is executed. This callback will then use

the running_dispatchers collection to check if the original dispatcher has blocked. If that is

the case, it will create a new dispatcher thread that will take over as the Application handler

dispatcher. This secondary dispatcher will remain the handler dispatcher for as long as the origi-

nal dispatcher does not return and thus does not remove its thread identifier from the running-

_dispatchers collection. When that happens, the secondary dispatcher will exit, and notify

the original dispatcher that it can resume dispatching through the dispatcher_condition

variable.

For the Rust implementation, these dispatcher threads are also present, but how they coordi-

nate between one another is very different. The main function for the dispatching can be seen in

Figure 4.21, which also has some omitted parts for simplicity sake. As usual, locking mechanisms

are replaced by message passing and also atomic variables. The pillar of the Rust implementation

are the so called batons, that represent whether a dispatcher thread is allowed to dispatch. A baton

is represented by an atomic boolean, as seen by variable baton that starts with the BATON_MINE

78 Rust implementation

fn main_dispatch(&self) {
let baton = Arc::new(AtomicBool::new(BATON_MINE));
let (baton_tx, baton_rx) = crossbeam_channel::bounded(0);
let (wait_tx, wait_rx) = mpsc::channel(1);
spawn(wait_dispatch(baton_tx, baton, wait_rx));

while let Ok(its_handler) = self.handlers_rx.recv() {
if use_handler(&its_handler) {

baton.store(BATON_PASS);
wait_tx.try_send(());
(its_handler.handler.as_ref())(); // Invoke handler
let i_own_baton = baton.compare_exchange(BATON_PASS, BATON_MINE);

if i_own_baton {
wait_tx.try_send(()); // Try to cancel timeout

} else if !baton_rx.recv() { // Wait until baton is transmitted back
break; // Dispatching was stopped, exit

}
}

}
}

Figure 4.21: Rust based pseudocode of the implemented Application handler dispatch. Parts
of the code have been omitted for simplicity sake.

state, which represents that the thread is allowed to dispatch. There are 2 message passing compo-

nents created, the baton message queues and the wait message queues. The former is a 0 sized

channel that functions as a rendezvous channel, where a message can only be sent if the sender

and receiver are accessing the channel at the same time, otherwise the sending or receiving fails

or is blocking until the other party arrives. The latter is a regular 1 sized channel that is not used

to actually send any data, only to notify the other end of some event.

Then, the blocked dispatcher detection thread wait_dispatch is spawned, which will have

access to baton, the sending end of the baton channel and the receiving end of the wait chan-

nel. The dispatcher then enters the dispatching loop, where it will continuously read from the

handlers_rx channel, which is where the rest of Application components will be sending

handlers to be executed. After checking if the handler is valid, it will initiate the handler dispatch-

ing section of the function. The first operation to do is change the baton state to BATON_PASS,

that represents the thread will start dispatch and so, if it takes too long, another thread should get

the baton and take over the dispatching. A notification is sent to the wait channel, to signal the

timeout detector thread it should initiate a timeout, and then finally the handler is executed. Im-

mediately after the handler finishes execution, it atomically fetches, tests and updated the atomic

boolean value. It tests if the current value is BATON_PASS and if that is the case it replaces the

current value by BATON_MINE atomically. The i_own_baton boolean will only be true if this

exchange was successful, thus if the previous value was BATON_PASS. On success, it signals

again the timeout detector thread to cancel the timeout and then resumes dispatching. If it fails,

4.3 Rust SOME/IP implementation 79

meaning another thread has stored BATON_MINE already and thus is dispatching, the main dis-

patcher will then wait for the baton to be sent back via baton_rx. The value that is sent in this

baton channel is a boolean, but it is independent of the actual baton value, it only serves to signal

if the dispatching should continue or not.

fn wait_dispatch(&self, baton_tx, baton, wait_rx) {
use tokio::time::timeout;

while wait_rx.recv().is_some() {
if baton.load() == BATON_PASS {
match timeout(100, wait_rx.recv()) {
Err(_) if baton.compare_exchange(BATON_PASS, BATON_MINE) => {

spawn(secondary_dispatch(baton_tx));
},
_ => (), // Dispatch finished before timeout

}
}

}
}

Figure 4.22: Rust based pseudocode of the implemented Application dispatch timeout detec-
tion. Parts of the code have been omitted for simplicity sake.

The dispatch timeout thread is very simple with only a few lines of code, as shown in Figure

4.22. It continuously reads from the wait channel, until it receives a new value, meaning it should

initiate the timeout measurement. Immediately after, it checks if a dispatching is indeed occurring

by testing if the baton value is BATON_PASS. If that is the case, it will create a new timeout

object, which will timeout if the operation wait_rx.recv() does not complete within the 100

milliseconds. Should that operation complete, nothing else is required and it will begin waiting for

another wait notification. When the operation does timeout, it enters the Err(_) branch where it

will immediately do another atomic fetch and update, trying to store the BATON_MINE state if the

previous state was still BATON_PASS. If that succeeds then it means the main dispatcher is still

executing a handler and thus should be considered blocked.

A new secondary dispatcher will then be spawned, that will receive the sender part of the baton

channel. The secondary_dispatcher() function is mostly equal to the main_dispatch(),

and will also create his own baton atomic boolean and use the same wait_dispatch() for

blocking detection. Its only difference is that after every successful handler dispatch, it will at-

tempt to hand control back to the main_dispatch() by trying to send a value to baton_tx. If

it succeeds, it means the main dispatcher has now finished executing the handler and is ready to

continue dispatching, so this secondary dispatch will exit afterwards. When it fails, the secondary

dispatcher will keep dispatching and repeating the same behavior. Through this approach, there

is no need to use mutexes or conditional variables. Also, there is barely any code before or after

the handler is executed. In the reference implementation, for each handler, a new timer needs

to be created and setup, alongside the locking of the dispatcher_mutex and accesses to the

running_dispatchers. All of these operations have a cost much higher than modifying an

80 Rust implementation

atomic variable and attempting to send a value to a channel. For the Rust implementation, in the

majority of the cases, where the handler will not take very long to execute, there may even not be

a need for wait_dispatch() to create a new timeout.

4.3.5 Implementation limitations

GENIVI SOME/IP implementation is a ful-fledged implementation compliant with all of AU-

TOSAR SOME/IP specification and also adds implementation-specific features. Since it has been

in development for years now, it is already a very mature project tried and tested several times.

That is the reason why the Rust implementation followed closely with the GENIVI implemen-

tation. Nonetheless, not every single feature of GENIVI vsomeip transpired into the Rust im-

plementation. The most relevant feature that was left out was the SOME/IP Transport Protocol

(SOME/IP-TP). This is another SOME/IP protocol, that contains a dedicated AUTOSAR specifi-

cation document, for transportation of payloads larger than the maximum allowed by the network

transport protocol used. These will get segmented into different packets and sent to the service.

The service will then handle the reassembly of these packets. Since the implementation of this

protocol was not within the scope of this work, it was left out. Another feature that has not been

implemented is vsomeip "Security" module, responsible for ensuring that the local messages

received from unknown devices are not processed. As this is not part of AUTOSAR SOME/IP

specification, it was also left out of this implementation. Even so, this feature does not drastically

change the logic already present in the Rust implementation and the places where this module

would be executed are already present in the code, they simply do nothing. Lastly, another feature

of vsomeip not present in the Rust implementation is the possibility to restart an application. In

vsomeip it is possible to start an application, stop it, and then start it again, effectively restarting

it. Implementing this in the Rust implementation would require some non-trivial changes to the

source code with, arguably, little return. Also, since most use cases for a SOME/IP application do

not require it to be able to restart at runtime, this capability was left out.

4.4 Summary

This chapter focused on the architectural aspect of the Rust CommonAPI toolchain implementa-

tion and its differences compared to GENIVI reference implementation. The toolchain entry point,

the code generators, is where an adaptation of the reference generators was made to produce Rust

code instead of C++. In there, we presented a comparison between the implementations with some

criticisms of the original implementation, how these were approached in the Rust implementation

and the reasoning behind these changes. Moving down the abstraction layer, the actual Common-

API library was explored. Focus was given to how the Rust implementation managed to remain

middleware independent, much like the reference implementation, in spite of Rust less flexible

typing system. Rust approach to the (de)serialization of Franca data types was also compared to

the C++ procedures with the logic remaining the same, but the methodology having arguably be-

come much simpler to understand. Lastly, at the lowest level of the toolchain, light was also shed

4.4 Summary 81

into the design of Rust implementation of the SOME/IP and SOME/IP Service Discovery proto-

col, building on top of what was shown in the previous chapter. A closer look at its components

was taken, for each of these how they were designed and the implications that Rust modifications

have when compared to the reference implementation was studied, including the Service Discov-

ery section. In the next chapter, the verification of Rust implementation and further analytical

analysis will be made between both implementations.

82 Rust implementation

Chapter 5

Implementation validation

In pursuance of ensuring that the Rust implementation of this work is correct and adheres to its

requirements, a series of integration tests were developed. Considering that the SOME/IP imple-

mentation is the main focus of this work, it stands to reason that it is the most tested component.

The remainder of the tools, the code generator, and the CommonAPI implementation, only contain

more rudimentary tests not worthy of mention. Nonetheless, some of the tests that will be explored

in this chapter make use of such tools and thus indirectly assert their correctness.

5.1 Toolchain integration and interoperability

To put all of the tools together and actually verify that they integrate with one another, the example

system presented in Chapter 3 was developed. This naturally started with the .fidl and .fdepl

files shown in Appendix B.1 and B.2, followed by the code generation based on these files. On

top of the Infotainment Hub service application, a simple command-line interface was developed

to mimic an actual head unit, allowing the user to view and interact with the vehicle status, shown

in Figure 5.1.

The interface contains a top bar that shows the availability of each of the remainder of the

network services, the Front Wheels, Back Wheels, Seats and Camera respectively. When the

service is available, a green square is shown next to it otherwise, it turns red. At the left of the top

bar, the process identifier is shown to allow shutting down the application abnormally. In the main

display area, below the top bar, the vehicle’s overall status is shown. On the left, the vehicle’s

current speed is shown and in the middle a diagram of the car, where the front wheels are located

on the top and the back wheels on the bottom. Under normal circumstances, all of the wheels are

white, like in Figure 5.1. However, if the tyre pressure drops below 1.9 psi, the wheel would begin

to blink, and if there is any damage to the tyre, it will turn red. Inside this diagram, 5 squares

represent the 5 seats of the vehicle. If the seatbelts are on, then the squares are green, and if they

are off, they are red. To the right of the vehicle diagram, there is a 5x5 square of pixels representing

the current image feed from the camera. Finally, at the bottom of the interface, there is the menu

which the user can browse using the directional keys. The currently selected option is underlined,

83

84 Implementation validation

Figure 5.1: Screenshot of the main screen of the Infotainment Hub command-line interface

both the "Sport Mode" and the "Camera" option are simply toggles to turn either the Wheels sport

mode or the Camera feed on or off, making the text green and red respectively. Selecting the first

option, "Heating", changes the menu and then the user can update the heating settings of each

seat individually, as seen in Figure 5.2. In front of the name of each seat, the current status of

the heating is shown. When the user is changing the status, the colors are inverted, and the user

can scroll through the different options until he finishes the selection, as seen in the Figure in the

"Middle" option.

The system will be simulating actions throughout its execution that will be reported back to the

Infotainment Hub and shown to the user. As previously explained, the 2 Wheels services emulate

changes in speed by following a mathematical function causing the speed to fluctuate between

positive and negative values regularly. Both Wheel services are sending their own simulated speed

back to Infotainment Hub. Since they follow the same formula and timings, the speed that is

shown to the user is only the one from the front Wheels. No user action can influence the speed

value as it is a readonly attribute of the service. The pressure of the tyres initially starts at

2.1 psi and decreases by 0.1 every 5 seconds. Starting from 15 seconds after the Wheels service

application has started, every 30 seconds, a random tyre in each Wheel service will puncture. All

of the damage to the tyres and pressure is reset to the initial values every 30 seconds of execution.

The Wheels "Sport Mode" is a flag that can only be toggled by the user. The Seats service will

remain unchanged for the first 5 seconds of its execution. After that initial statis, the status of the

seatbelt of a random seat will be toggled after an interval ranging from 2 to 5 seconds. By default,

Figure 5.2: Screenshot of the heating selection menu of the command-line interface while the user
is changing the heating of the back middle seat

5.2 SOME/IP implementation validation 85

the Camera service is not transmitting its frames to the Infotainment Hub, and will only do so

when the vehicle’s speed is negative. At this point, the Infotainment Hub activates the Camera,

which starts sending frames each half a second. Even without user interaction, the Camera will be

turned on and off in reaction to the Wheels speed value. Nonetheless, the user can turn the Camera

on or off manually.

To shutdown the system and allow all services to exit gracefully, when in the main menu,

if the user presses the Escape key, the application will broadcast its shutdown notification.

The broadcast will be received by all other applications that will initiate the vsomeip shutdown

procedure. At the same time, the Infotainment Hub waits some milliseconds before shutting down

after sending the notification.

The process identifier of the Infotainment Hub is shown to allow us to abnormally terminate

the process, for example, through a KILL signal. Due to the abnormal shutdown, the application

will not send the broadcast to the other applications, and they would continue execution and keep

the vehicle’s state stored. After restarting the Infotainment Hub application, it will re-establish

the connection to all the other services. Then, the services send back their stored states and the

Infotainment Hub service updates the information shown to the user. This procedure proves that

the vehicle’s system is genuinely being updated in reaction to the user’s interaction.

In this system, it is also possible to change an application to their C++ equivalent. An example

would be to terminate the Rust Wheels service application and replace it with its C++ equivalent.

The Infotainment Hub would recognize that a new provider of the Wheels service is available and

would initiate communication with it just as if it were a Rust program. This is a testament to the

Rust implementation interoperability with the reference implementation. Of course, this fact is

greatly aided by the SOA that the SOME/IP protocol follows.

5.2 SOME/IP implementation validation

The truly crucial component both for the example system and any other automotive system is

the communication protocol. Its correctness is central to enabling a user to develop applications

with it confidently. Hence, several tests were created to verify this correctness. These are based

on the tests also used in the reference implementation. The tests were all executed in Virtual

Machines connected to the same internal network. We will first start by looking at the tests that

were developed and with which our implementation was tested. Afterwards, a summary of the

tests that are missing or were left out will be given.

5.2.1 Tests and results

For the implemented tests, a vsomeip application, called the daemon, was developed to widen

the test scope. Even in existing automotive system, this application is often used as the central

vsomeip routing component, here called the Host application. It is an application that does

not offer or request any service and is merely mediating the communication between the local

applications and the remote applications. Most of the tests can use this to force applications

86 Implementation validation

to either use the HostRoutingManager or the RoutingManagerProxy component. In the

former case, no daemon is needed while the latter requires a daemon. With this approach, a

single test can be used to verify the behavior of different implementation paths, depending on the

system configuration. Further logical branches can be tested by changing the applications network

configuration, such as the usage of different transport protocols.

5.2.1.1 Application tests

These simple tests merely check the correct behavior of implementation-specific components. No

AUTOSAR SOME/IP requirement is tested. The startup and stop mechanisms of a vsomeip

application are tested, and the setup and execution of a user-defined watchdog to be called at a

fixed interval. As the Rust implementation is more limited in these start and stop mechanisms, not

all reference implementation tests were used.

• Start and stopping an application

Starting an application once and then stopping it is the standard operating procedure and should not

cause any issue.

• Start application twice

Trying to start an application twice is not allowed and should print an error message.

• Stop application twice

Stopping the application twice should do nothing and not raise any error.

• Watchdog setup and execution

The user can register a single watchdog handler, only. Subsequent registrations override previous

ones. The handler should be executed periodically at an approximately fixed interval defined by the

user at registration. Using 0 as the interval should deregister an existing handler.

5.2.1.2 Service visibility tests

These 2 simple tests test that external applications cannot see a service instance configured to only

be visible internally by applications in the same device. The other tests that a service instance

configured to be visible externally can be discovered internally and externally.

• Locally visible service instance

Create an application offering the local-only service instance and verify that an external application

in a different device cannot find it

• Externally visible service instance

Create an application offering the service instance and verify that an external application in a different

device can find it

5.2 SOME/IP implementation validation 87

5.2.1.3 Service offer tests

This group of tests verifies the offering of services and error recovery for different kinds of ap-

plication states. Most of the tests start with an application offering a service instance and a client

application exchanging messages with the service. Then, the reaction of the system when different

kinds of errors occur is tested. Except for the last test, all tests are only executed locally in the

same device.

• Rejecting a local offer of a service still alive

Offering the same service instance twice should not be accepted and an error message should be

printed. Starting the second service application should not interrupt the client message exchange

with the initial service application.

• Accept local offer after an application crash

This test requires the daemon to be used as the system cannot renegotiate a Host application. So the

central routing component would be lost, making it impossible for new local applications to be aware

of each other existence. The test starts by initializing an offering application and a client that will be

exchanging messages with the service offerer. The offering application will be forcefully terminated

through a KILL signal, and both the Host application (daemon) and the client will recognize this

crash. Once another application begins offering the same service instance, it should be accepted, and

both the original client and any subsequent clients should initiate communication with this newly

started application.

• Accept local offer on unresponsive application

This test requires the daemon to be used as only the Host application can recognize unresponsive

services. After the initial service application has become unresponsive, emulated through a STOP

signal, a second application is started offering the same service instance. The second offer will be

marked as pending and the daemon will ping the initial service application and expect a response

within a specific time-frame. If it does not arrive, the initial service application is rejected, and the

second offer is accepted, at which point all subsequent service clients will communicate with this

new offerer.

• Reject local offer on already pending offer

Like the previous test, we use the daemon, making the initial service application unresponsive

through STOP and starting the second application offering the service, which will be marked as

pending. Before the ping times out, start a third application offering the same service. This third

offer should be rejected as there is already a pending offer from the second application. Subsequent

service clients should communicate with the second service application, once the ping times out.

• Reject remote offer of already existing service

Similar to the previous rejection test, but now involving remote applications offering the same ser-

vice. Only one application should offer a service instance in the whole network, if a local application

88 Implementation validation

already offers that service instance, then a remote offer should be rejected. Likewise, if a remote ser-

vice instance already exists, then a new local offer of the same service should be rejected.

Note that the rejection of a service instance offer has a different meaning depending on the

network topology. When multiple applications offer the same service instance, and both are run-

ning in the same device, there will be a device-wide consensus over which is the "correct" service

instance. The first application that registers itself as the offerer of the service instance in the Host

application will be the only one allowed to offer it in that device. Subsequent applications trying to

offer the same service instance will be rejected, as long as the original offering application retains

normal behavior. When we move to the external communication space, the rejecting behavior is

different. Consider the hypothetical scenario, where 3 different devices are connected to the same

network, 2 of them are executing applications offering the same service instance while the third

one contains an application that intends to request that service instance. There is no network-wide

consensus over which service instance is the "correct" one in such a situation. The rejection of

offers in this situation can only be observed in both service offering applications through error

messages that the user can read. The client application will keep alternating between using one

service application and the other, according to which of them sent the most recent Service Dis-

covery OFFER message. This behavior can also be observed by the user, as the client application

will print warning messages each time the location (IP address and port) where the remote service

instance can be reached is changed. Otherwise, it should continue to function correctly.

5.2.1.4 Requests test

The requests test certifies the correct request-response communication using SOME/IP. In it, 2

different devices are used, connected to the same network. Each device will contain 3 vsomeip

applications, each offering a different service both through TCP and UDP. Once each application

has discovered all the others, it starts sending 10 requests to each of them. Upon receiving a

request, an application immediately sends back a response to the client. Neither the requests sent

or the responses received have any payload. The test is a success when all applications have

received a total of 50 responses, 10 per each other application.

There is no need to use the daemon in this test, as 3 applications per device mean that 2 of

those applications will be using the RoutingManagerProxy component. However, different

port configurations in a device are used. The default configuration is the use of different ports for

each service. However, this can be mixed, and ports can be shared between service instances, so

another configuration uses the same ports for UDP communication and the other using the same

ports for both UDP and TCP communication.

5.2.1.5 Event notification test

The event test is aimed at testing the event behavior of SOME/IP. It only tests the SOME/IP Events

and not the SOME/IP Fields. This test will start 2 applications, where one is the service provider

with the event and the other the client that will subscribe to the event. The client registers the

5.2 SOME/IP implementation validation 89

appropriate handlers to react to different state changes in the network. Initially, the client waits

for the service to become available, then it subscribes to the event and waits for the subscription

to be accepted. Once that happens, it sends a request to the service that will serve as a signal to

start sending the event notifications. This request will have as payload the number of notifications

the server should send. This number could be made dynamic by reading it from the command-line

when executing the client, but that is of little value, so the client always sends 50 as the payload.

As such, the service will send exactly 50 notifications with the event value without any interval

between them. The test is a success when the client receives those 50 notifications, at which point

it sends another request to the server as a shutdown procedure.

The test is executed on different system configurations. It can be executed either locally on

a single device or remotely on 2 different devices connected to the same network. The remote

version can use the daemon to test the same behavior but using the RoutingManagerProxy

component. For the local version there is no need as one of the applications will already be

using the Proxy component. Furthermore, there exist 2 versions of this test, apart from using

different transport protocols for communication. The Fixed Payload version, where the service

notifications all have the same size, and the client tests whether the value received is the same size.

In the Dynamic Payload version, the size of the payload of the notification sent by the service

increases with each notification. The first notification will have 1 byte, the second 2 bytes and so

forth. In this version, the client does not check the exact payload size, but only whether the size of

the payload received is bigger than the size of the previously received payload. With this version,

the ordering of not only the messages received but also the execution of the message handlers

registered by the client is tested.

5.2.1.6 Initial field notification test

The other kind of events in the SOME/IP AUTOSAR specification are the Fields. As the main

difference between them is the possibility of sending the Field initial value immediately after the

subscription has been accepted, that is what is tested here. Once again, 2 different devices con-

nected to the same network are used, each with 3 applications offering different service instances

with one event each. These 3 service provider applications will startup and initially set the value

of their respective Field. Afterwards, 10 client applications are started in each node that will sub-

scribe to all of the Fields, including those in the same device. Each client will exit once it receives

a notification from all of the Fields it has subscribed to, at which point the test is complete.

There are 2 tweaks possible to this test that change the behavior of the applications. The

first is using multiple events per eventgroup as opposed to only a single one. A notification for

all the events of the eventgroup shall then be sent to the client. The other is the timing of the

subscription. By default, the client applications will only attempt to subscribe to the eventgroups

once their respective service instances have become available. However, it is also possible to try

to subscribe before that. In such a case, the subscription attempt will be registered at the Host

application, which will then subscribe to the eventgroup as soon as possible. This allows the

subscription to be sent amid the initial Service Discovery phase of the remote services.

90 Implementation validation

5.2.1.7 Field notification test

To test the actual notifications of a Field event, these tests were made. Like the previous one, it uses

2 devices with 3 service applications, each offering a field event. Then, each service application

subscribes to the other service applications fields and registers a subscription status handler, which

will be executed each time the subscription is either accepted or rejected. Afterwards, all of

the applications trigger 10 notifications that should be sent to each other. The test is a success

if a service received the expected number of notifications for each subscribed field and if the

subscription status handler was executed 5 times, representing the number of subscriptions it has

made to the other 5 services.

The exact number of notifications received is dependent on which transport protocols are used

for the notifications. For local communication, this is irrelevant as it will only receive a single

notification regardless. For external services, if the eventgroup is offered in both UDP and TCP, it

will send duplicate notifications, one through UDP and one through TCP, effectively doubling the

expected notifications.

There is another different test for these notifications that uses more than one event per event-

group. In this test, there is only a single application in each of the 2 devices. One application

will be the service provider, offering 2 eventgroups and 3 events where one of the events belongs

to both eventgroups. The other application will be subscribing to both eventgroups and receiving

the notifications. After subscribing, the client will initially receive the "Initial Data" from the 3

events and then continuously set the fields value, which will trigger a notification in the service

application side. The client is expected to only receive 1 notification per event, except for the

"Initial Data" notification where it will receive 2 notifications from the event that belong to both

eventgroups.

5.2.1.8 Selective event notification test

Selective events are not part of the AUTOSAR SOME/IP specification. They are specific to the

GENIVI SOME/IP implementation to match the Franca selective broadcasts behavior. Nonethe-

less, as they are part of the suite of features offered by this implementation, they were also imple-

mented in this work and as such have dedicated tests. Their test matches the Field notifications test

and uses 2 devices with 3 service applications each offering a selective event. Each application

will register 4 subscription status handler, testing all the possible combinations between service

instance identifiers. All of the status handlers are valid for the subscriptions it will do, and as such,

all 4 should be executed on a change of status. Afterwards, all applications will subscribe to the

eventgroups of the remainder applications and send 10 notifications to each of the subscribers in-

dividually. The test is successful once the correct number of notifications has been received by all

applications and when all of the handlers have been called. The number of notifications received,

like the previous test, is also dependent on the transport protocol used.

5.2 SOME/IP implementation validation 91

5.2.1.9 Test results

Offer tests

Reject local offer OK

Accept offer on crash OK

Accept offer on unresponsive OK

Reject offer on already pending OK

Reject remote offer OK

Requests tests

Different ports
TCP OK

UDP OK

Partial same ports
TCP OK

UDP OK

Same ports
TCP OK

UDP OK

Event notification

Local without daemon

Fixed payload
TCP OK

UDP OK

Dynamic payload
TCP OK

UDP OK

Remote

Using daemon

Fixed payload
TCP OK

UDP OK

Dynamic payload
TCP OK

UDP OK

Without daemon

Fixed payload
TCP OK

UDP OK

Dynamic payload
TCP OK

UDP OK

Application tests

Start and stop OK

Start twice OK

Stop twice OK

Watchdog setup OK

92 Implementation validation

Field notification

1 Eventgroup per Event

TCP OK

UDP OK

TCP+UDP OK

2 Eventgroups for 1 Event

TCP OK

UDP OK

TCP+UDP OK

Visibility tests
Locally visible OK

Externally visible OK

Initial field
notification

1 Event per
Eventgroup

Subscribe on start

TCP OK

UDP OK

TCP+UDP OK

Subscribe on availability

TCP OK

UDP OK

TCP+UDP OK

5 Events per
Eventgroup

Subscribe on start

TCP OK

UDP OK

TCP+UDP OK

Subscribe on availability

TCP OK

UDP OK

TCP+UDP OK

Selective event
notification

TCP OK*

UDP OK*

TCP+UDP OK*

In the last test of the table, the result column has an asterisk in every row. The reason for this is

that the test did indeed pass, however, not in every execution. This occasional failure led to the

belief that a race condition existed somewhere in the selective events code, hence the seemingly

arbitrary results of the test. After probing the code in question, a race condition was indeed found.

A sequence diagram of how this is triggered is shown in Figure 5.3. The scenario in question is

similar to the selective events test, where there are 2 devices in the network, each with 2 SOME/IP

5.2 SOME/IP implementation validation 93

Figure 5.3: Sequence diagram of the detected race condition scenario. Bold messages are
SOME/IP messages and italic messages are local messages. Inside the squares, vsomeip sub-
scription status storage is shown.

applications running in them. Application 1 is offering a selective event, and vsomeipd is the

Host application of device 1. This means that for every SUBSCRIBE message that vsomeipd

receives from the network, it needs to notify Application 1 who will then decide whether to accept

the subscription or not. The vsomeipd will only send back a SUBSCRIBE_(N)ACK message

when it receives a response for this acceptance or rejection from Application 1. Now, assuming

that both Application 2 and Application 3 want to subscribe to this remote selective event, the

subscription happens in two steps. Since Application 2 is the Host application of Device 2, it will

receive the OFFER message of the service instance that contains the event. It will then initially

notify Application 3 of this new offer and send its own subscription to the event first. As this is a

selective event, the information of which client has subscribed is sent in the SUBSCRIBE message,

which, in the first one, is only Application 2, hence the [2]. For Application 3 to subscribe, it first

needs to notify Application 2 of this, who will then add the client to the already subscribed clients

of the remote event and then send another SUBSCRIBE message, now with both clients [2, 3].

Upon receiving the first SUBSCRIBE message, the vsomeipd will create a new subscription

object, used to store remote subscriptions. Each of these objects is assigned a unique identifier,

in this case, 1. As the first message only has client 2, it will only store client 2 in its remote

clients, in a Pending state. It will then proceed to send the local SUBSCRIBE message to Appli-

cation 1 with the new clients that subscribed and also the identifier of the remote subscription.

The Pending state will only change to Acknowledged once Application 1 replies with a local

94 Implementation validation

SUBSCRIBE_ACK message, as shown in the Figure. At that point, if all of the clients referenced

in that subscription are Acknowledged, the SUBSCRIBE_ACK is propagated to Application 2. The

second local SUBSCRIBE will only contain client 3, as it is the only new client from the newly

received remote subscription. When this new remote subscription arrives, the original subscrip-

tion will be updated with the new clients from the new subscription, and a reference to the original

subscription is stored in the new subscription, as shown in the second memory state in the Figure.

At the same time, the new subscription inherits the states of the clients of the original subscription.

This procedure poses no problem if the original subscription is processed by Application

1 before the arrival and processing of the second remote SUBSCRIBE message. However, if

vsomeipd starts processing this second message before Application 1 processes the first one,

then it will ultimately end in a state where no SUBSCRIBE_ACK is sent back to Application 2,

due to the fact that no subscription would be fully acknowledged. Despite the subscription object

1 stored in memory, shown in the fourth memory state in the Figure, having all clients Acknowl-

edged, it will not trigger the sending of the SUBSCRIBE_ACK message, since only the object

referenced by the local SUBSCRIBE_ACK message is checked, and the subscription object 2 is

not fully acknowledged and will never be. Having reached this state, subsequent SUBSCRIBE

messages sent by Application 2 may or may not be answered. It depends on from which of the

existing subscription objects, 1 or 2, the new message will inherit the states. Since both exist-

ing subscription objects are stored in a map that links the subscription identifier to the respective

object, whether the new subscription will inherit the correct states depends on the order through

which the map is iterated. Therefore, as maps are collections that give no guarantee to the user as

to the ordering through which elements are traversed, we end up in an undetermined scenario.

This issue has already been reported back to the author of the library, 1 alongside a more

detailed explanation linked with the code excerpts where this issue stems from. The author has

acknowledged the error and a solution has already been found, so in the next release of vsomeip

the issue should be resolved.

5.2.2 Missing tests

The tests mentioned above represent all the tests that were developed and with which our imple-

mentation was tested. These are mostly related to the correctness of the SOME/IP protocol itself.

However, the reference implementation contains additional features mostly unrelated to SOME/IP

that did not make it into this implementation. For each of those features there is a dedicated

validation tests that was not implemented in this work.

5.2.2.1 Npdu feature test

The Npdu feature was added in GENIVI SOME/IP implementation as a means to trade lower

network congestion for higher network latency. It serves as a caching buffer for outgoing messages

so that they are not immediately sent. They are first cached and then at a fixed interval all the

1Issue #208 in the vsomeip repository

https://github.com/GENIVI/vsomeip/issues/208

5.3 Implementation comparison 95

cached messages are sent. The test consists of a client sending messages to a service, and the

service will be measuring if the client sends messages faster than it should be sending. As this

feature was not implemented in this work, its corresponding test was also not developed.

5.2.2.2 Security test

The security features of GENIVI SOME/IP implementation allow the user to restrict which ser-

vices can interact with each other. The user can specify that only a specific service instance is

allowed to interact with another service instance. Every other client trying to interact with it will

be rejected by the service. It is also possible to further restrict which clients are allowed to execute

remote procedures or subscribe to events. This feature makes it much harder for an attacker to

penetrate the system, but it does impose a need to have a more complete JSON configuration file

with all these security specifications.

5.2.2.3 SOME/IP Transport Protocol test

The SOME/IP Transport Protocol is an additional SOME/IP protocol, like the Service Discovery,

that is used to transport bigger payloads through UDP. If the payload does not fit in a single UDP

packet then it will be fragmented into multiple messages on the sender side and then the receiver

will reconstruct the message. The test is based on sending big messages to a remote service and

that service ensuring that the reassembling of the message was done successfully. Although this

protocol is part of the SOME/IP protocol it was not within the scope of this work and as such it

was not implemented.

5.3 Implementation comparison

To further validate the correctness and feasibility of the Rust implementation, its performance

should be at least similar to the reference implementation. Given the characteristics of Rust, this

is possible, even if we would have done a one-to-one translation of C++ to Rust, which was not

the case. As such, this chapter will focus on analyzing some of the runtime characteristics of both

implementations. Although the implementations are different, their API is very similar, so a one-

to-one translation of the test programs was made. Naturally, all of the tests were executed in the

same environment using a high-end automotive System-on-Chip for In-vehicle Infotainment. To

obtain the results of each test, 3 different executions were made. Between each execution, both the

sender and the receiver applications were shutdown and then restarted. For each of the executions,

we made a total of 12 repetitions. In each repetition, 10000 messages are sent from the client to the

server, and the server will measure the time it took to receive and process all of those messages.

Then, to rule out outliers, we removed the highest and the lowest value for each execution, ending

up with a total of 30 values for each test parameter. All of the tests used TCP as the transport

protocol to ensure all messages are received. An attempt at using UDP was made, but due to the

nature of the protocol and the sheer number of messages being sent in a small time-frame, several

96 Implementation validation

messages would be lost. This meant that the measurements would not be accurate and, as such,

UDP measurement was not done. The full details of the system and the steps taken to build each

of the applications are shown in Appendix A.

5.3.1 Request-response comparison

The first test made was related to the remote request-response communication paradigm in SOME/

IP. A service application offers a certain service instance, which a second client application in a

remote device will request. When the service becomes available, the client will first do a request

to the start() method, which will signal the start time of the test. Immediately after, the client

starts spamming the service with requests to the spam() method. In this method, the service only

increments an atomic integer. All of the messages sent by the client are of RequestNoReturn

type, so the service does not need to answer the request. As soon as the client finishes sending all

of the spam messages, it ends with a request to the end() method. The service proceeds to read

the duration that elapsed since the initial call to the start() method and prints out the results.

This marks the end of a single repetition. The results of this test are shown in Figure 5.4 alongside

the standard deviation.

An odd aspect of the Figure is that the table contains 3 rows of data, but the graph only contains

2 data sets. The data that is not shown is the "C++ (Sender)" data, as it would obscure the closer

observation of the other 2 data sets. The values of this third data set were obtained by using a C++

client application and a C++ service application. The reason the results are so disparate to the other

2 data sets is the usage of the C++ client application. As previously mentioned in Section 4.3.1, the

C++ SOME/IP implementation buffers outgoing messages, trading lower network congestion by

higher network latency. The disparate results are precisely due to this feature. In the configuration

file of this test, all of the npdu-default-timings were set to 0. This should cause the C++

client to buffer a message for 0 milliseconds, so it should be sent as soon as possible. However, as

seen by the test results, that is not the case. Taking this into consideration, all of the tests involving

remote communication used a Rust client to spam the messages. This reduces the amount of code

that is actually compared between the implementations, but the results are fairer and easier to

analyze. That is precisely the approach that was taken in the other 2 data sets, where we test the

Rust sender with a Rust receiver and then a C++ receiver.

Between those 2 data sets, the results are more akin to one another, which, by itself, is a testa-

ment that it was a fair process. We see that the Rust implementation is consistently faster across

all of the payload sizes, with the difference getting even bigger for the biggest payload size 1024

Bytes. This difference is likely due to 2 factors. The first is related to how each implementation

handles the dispatching of its handlers, already detailed in Section 4.3.4. The application will

register the spam() method as the handler for the spam messages the client sends. Since this

method only increments an atomic integer variable, it will finish its execution very quickly. By

barely spending any time executing the handler, the wait_dispatch() task, responsible for

detecting a dispatching timeout, will likely not even have the chance to execute. When it does,

the handler will already have finished its execution, so the main dispatcher already reacquired the

5.3 Implementation comparison 97

0 Bytes 128 Bytes 256 Bytes 512 Bytes 1024 Bytes

C++
387

±4,04%

492
±3,18%

531
±2,90%

611
±3,47%

870
±2,49%

Rust
291

±2,11%

423
±2,65%

476
±2,70%

563
±3,22%

693
±3,91%

C++ (sender)
3816

±3,06%

3878
±2,22%

4045
±1,54%

4048
±2,02%

4111
±1,46%

Figure 5.4: Comparison of the request-response communication between a Rust receiver and a
C++ receiver

baton and wait_dispatch() will simply jump to the next loop iteration, without creating the

new timeout object. On the other hand, the C++ implementation will always create a new timeout

object regardless of how quickly the handler executes. This creation will undoubtedly have a cost

that will be a constant value added to each message received.

The second differentiating aspect is also related to the sudden increase in the C++ timings from

the 512 Bytes measurements to the 1024 Bytes. The service side of the SOME/IP implementations

needs to deserialize the on-wire byte representation into a data type that the user can easily access.

The key difference between the implementations is how this deserialization is made. For starters,

in the C++ implementation, the deserialization is made through the aid of deserializer ob-

jects. At the startup of the program, a pool of these objects is created and stored behind a mutex.

The deserialization is made at the beginning of the deliver_message() function, which will

98 Implementation validation

bool deliver_message(const byte_t *data, length_t size, ...) {
deserializer_mutex.lock();
deserializer = deserializers.pop();
deserializer_mutex.unlock();

deserializer->set_data(data, size);
its_message = deserializer->deserialize_message();

deserializer_mutex.lock();
deserializers.push(deserializer);
deserializer_mutex.unlock();

...
}

Figure 5.5: C++ based pseudocode of the deserialization of a SOME/IP message prior to being
delivered to the user’s application

then trigger the execution of the message handlers. The initial lines of code of this function can

be seen in Figure 5.5. As can be seen, the function will have to lock the mutex twice just to do

the deserialization. In the scenario of the test, this does not pose much of a problem as the mu-

tex will be uncontended. For each Endpoint, which is linked to a specific IP and port, only a

single message is processed at a time. Since we are using only a single service instance linked to

one IP and port pair, there will be no parallel processing of messages, so the mutex will remain

uncontended throughout the test execution. For cases with multiple service instances and several

messages arriving at the same time, this will not be the case, and the overhead of doing this will

be much more significant. Regardless, in this test, the impact should be minor.

The main differentiating aspect of the deserialization is the need for a separate object to handle

the deserialization. In the C++ implementation, it is handled by the deserializer data type

that internally contains a vector used as a buffer for the deserialization. That is why the call to

its set_data() method is required prior to the actual deserialization of the message. Inside

this method, the object will copy all of the bytes received into its internal buffer through the

call buffer.assign(data, data + length). Only after this will the deserialization take

place, where another copy of the message payload is made to the SOME/IP message object. In

the Rust implementation, this initial copy of the buffer does not exist. In fact, there is not even a

separate deserializer object. The deserialization is made through a static method that can be

called anywhere in the code. The method directly takes as input the on-wire bytes received on the

SOME/IP message and processes them without needing to first copy them. A copy to the separate

SOME/IP message object is also required. With this approach, we are effectively cutting down

1 whole copy of the received message bytes and also the necessity to have any synchronization

mechanisms. Since no other message from the same IP and port is processed at the same time,

we are sure that the bytes received by the SOME/IP message will not change and thus can safely

access them.

This explains the first sharp increase in timings that is felt from the 0 Bytes payload to 128

5.3 Implementation comparison 99

Bytes. Both languages will not allocate to the heap when the number of bytes in a collection is

0. Hence, when the SOME/IP message payload is copied to the message object, no allocation is

required. However, as soon as at least 1 Byte is written, the collection will have to allocate, which

has its impact in the application performance. Afterwards, from 128 Bytes to 512 Bytes, the

increase in the timings is somewhat constant between both languages. The biggest spike is from

the 512 Bytes to 1024 Bytes, where the cost of that additional copy in the C++ implementation is

more significant. In contrast, the increase in timings in Rust remains similar from the 128 Bytes

to the 1024 Bytes, so it is expected that for even higher payload sizes, the C++ implementation

would suffer an even bigger increase in timings.

5.3.1.1 Local communication

By using the same test procedure as before, but using local communication instead of remote com-

munication, we can test more components. Since the nPDU feature of the C++ implementation

does not apply for local communication, no buffering of messages is done, and we can measure

results for an all C++ network. This is what was done in this test, so the sender part of both

implementations can be included in the testing. The results are shown in Figure 5.6..

In this test, we see that the Rust implementation and C++ are much closer in terms of perfor-

mance. In fact, the base Rust implementation is consistently slower than the C++ implementation,

as shown by the green color in the Figure. Taking into consideration the previous results of remote

request-response, and knowing that the receiver applications use nearly the exact same code for

local and remote communication, it stands to reason that the Rust slowdown is due to the sender

application. However, exactly why this massive slowdown happens is unclear. One possible can-

didate was the way that the Rust implementation created the local messages. These need to start

with a specific set of bytes and end with another specific set of bytes. In the Rust base implemen-

tation, the local message is first created and only afterwards framed with these bytes. Inserting the

end frame is no problem as it does not cause any change in the message, it simply appends a few

bytes at the end. The insertion of the start frame at the beginning of the message is more costly.

Inserting anything at the beginning of an array causes the whole contents of the array to be shifted,

resulting in a costly operation.

After obtaining the initial test results and noticing this performance disparity, a quick hotfix

was made to the Rust implementation. It consisted of changing the creation of the VSOMEIP_SEND

local messages to also include the framing, thus avoiding the shift. It was only applied to those

messages as they are the ones used to transport the SOME/IP message between local applications.

In this specific test, no other type of local message is sent. The timing results after this hotfix are

what can be seen in the third row of data. This change did affect positively the timings, which

are now on par with the C++ performance. Regardless, it still is a significant slowdown from the

remote request-response communication results. To pinpoint exactly why that is the case would

require a more thorough analysis of the Rust implementation, which could not be made. One as-

pect that would be worth studying that might be related to this slowdown is how demanding the

100 Implementation validation

0 Bytes 128 Bytes 256 Bytes 512 Bytes 1024 Bytes

C++
651

±2,22%

815
±3,38%

841
±4,48%

918
±4,89%

1125
±2,66%

Rust
686

±3,09%

822
±2,27%

895
±3,60%

993
±2,49%

1147
±2,67%

Rust (hotfix)
656

±3,75%

786
±2,56%

852
±2,89%

927
±4,05%

1085
±2,22%

Figure 5.6: Comparison of the local request-response communication between the Rust sender-
receiver and the C++ sender-receiver

Rust implementation is in terms of system resources. It might be the case that the Rust implemen-

tation is more demanding when compared to the C++, and so having 2 Rust applications executing

in the same device hinders the performance of one another. If that is indeed the case, it needs to

be fixed as that poses a major setback.

5.3.2 Subscribe-notify comparison

For the next test, the communication paradigm is different. Instead of request-response, subscribe-

notify will be used. This also changes in which application the measurement is made. It will

now be the service application that will be spamming the client with notifications. Similar to the

previous tests, the service will be offering 3 events, one for starting the test measurements, another

for the actual notification spamming and then the one to stop the measurements. The same 10000

5.3 Implementation comparison 101

notifications will be sent with an increasing number of Bytes in its payload. The results of the test

are shown in Figure 5.7.

0 Bytes 128 Bytes 256 Bytes 512 Bytes 1024 Bytes

C++
859

±4,90%

1047
±3,27%

1094
±2,87%

1131
±3,16%

1357
±6,14%

Rust
557

±2,36%

718
±2,12%

749
±3,48%

827
±2,59%

875
±4,90%

Figure 5.7: Comparison of the remote subscribe-notify communication between a Rust receiver
and a C++ receiver

As can be observed, in this communication paradigm, the processing of notifications is nearly

twice as slow as methods. Also, the Rust implementation is much faster at processing the noti-

fications when compared to the reference implementation. Even with a 1024 Bytes payload, the

Rust implementation is only slightly slower than C++ with 0 Bytes. One aspect that contributes

to this is the different deserialization mechanisms which were previously explained. Another as-

pect that influences the results is the preference of the C++ implementation to copy a mutexed

collection instead of holding the mutex for a while longer. Throughout both implementations, nu-

merous objects have an internal state which stores some collection, for example, the Event object

stores a collection of the eventgroups it belongs to. Access to these collections is protected by a

mutex in both implementations. What differs is that most of the times, the C++ implementation

prefers to lock the mutex, copy the whole collection, unlock the mutex and then iterate the newly

created copy of the collection. In contrast, Rust implementation favors holding the mutex for a

while longer and thus directly iterating the collection without having to copy it. Naturally, this

102 Implementation validation

cannot be done everywhere as there are locations where, while iterating the collection, we also

have to mutate it. In those cases, both implementations first copy the collection and then mutate it.

While developing the Rust implementation, some comments were left in places where this copy

was replaced by holding the mutex a while longer. In total, there are at least 43 places where

a heap allocation is saved just by holding the mutex for a longer time. Most of these cases are

in the Service Discovery logic and its impossible to measure their impact from a user application

level. However, one of those cases is precisely in the processing of incoming notification messages

where an allocation to the heap is saved. This certainly contributes to the speedup seen in the Rust

implementation, but it should not be significant enough to the point of causing such a difference.

What is likely causing such a major disparity, as it is the other main difference between imple-

mentations, is the C++ collection of event statistics, which was only added in version 3.1.20.12

It is unclear to the author exactly what these statistics are since they were added after the Rust

implementation had been mostly finished. Nonetheless, in the newly added insert_event-

_statistics() function, regardless of whether statistics are activated or not in the configura-

tion file, they keep being collected. This, as usual, involves a locking of a mutex, followed by

several operations in the statistics collection. No doubt that these operations cause a major lag

for the C++ implementation, despite them not being used for anything unless statistics are active

in the configuration file. Unfortunately, the addition of this method, cast disbelief in the results

obtained in this test as it is unclear exactly how much it affects the overall performance of the C++

implementation. In any case, it is made clear that in both implementations, the subscribe-notify

communication paradigm is much slower than the usage of methods. Thus, we can at least draw

the conclusion that for time-sensitive procedures, methods should be the preferred approach as

opposed to notifications. This is something that seemed logical, so these results only confirmed

existing suspicions.

5.3.3 Data types deserialization

Having taken a look at the base SOME/IP protocol performance without using any remaining

CommonAPI tools, some focus will now be given to the CommonAPI Runtime implementations.

Specifically, what can be compared is the deserialization of the different data types. The tests

follow the same procedure as the previous ones, 3 executions with 12 repetitions, in each repetition

10000 messages are sent. Only the request-response communication will be used. The messages

are, once again, RequestNoReturn, and a Rust sender is always used. Hence, we already have

the base timings for the SOME/IP protocol, as shown in Section 5.3.1 and can take them into

consideration in the following tests.

5.3.3.1 Vector of structs deserialization

The first test uses a method that takes as input a vector of structs. An increasing number of

elements is inserted in the vector that was chosen to be identical in their on-wire size, to the

2As seen in the routing_manager_impl.cpp file of that.commit

https://github.com/GENIVI/vsomeip/commit/710a8613ee5bd9eb490addecd7f2ee8049c4fd0c#diff-3e4094658bd461940d2d32c4d3081a770de9ec97e6faf5d556a5d22f7d79c565R1922

5.3 Implementation comparison 103

previous payload sizes explored. The declaration in the .fidl file of the method is shown in

Figure 5.9 and the results in Figure 5.8.

0 (4 Bytes) 10 (164 Bytes) 20 (324 Bytes) 40 (644 Bytes) 80 (1284 Bytes)

C++
480

±4,90%

692
±3,27%

787
±2,87%

945
±3,16%

1235
±6,14%

Rust
362

±2,36%

642
±2,12%

690
±3,48%

761
±2,59%

934
±4,90%

Figure 5.8: Comparison of the deserialization of a vector of structs between the Rust implementa-
tion and the C++

As can be seen, the results follow closely to what was seen previously in the remote request-

response measurements in Section 5.3.1. For a vector with 0 elements, the timings are lower, due

to the saved heap allocation. Then, with the increasing number of bytes, the disparity between

implementations grows bigger. Up to the 20 elements in the vector, the difference in performance

between the implementations remains similar to the reference remote request-response measure-

ments. For the 40 element test, the difference grows, as we are now passing more than 100

additional Bytes when compared to the reference measurements. Also, as the number of Bytes

increases, so does the amount of time the application spends executing the message handler and

processing the Bytes of the message. This also means that there is a higher chance for the handler

to be preempted by the kernel. Taking this into consideration, it would seem that both implemen-

tations are similar in their deserialization procedure. As previously mentioned, this is what was

expected as the Rust CommonAPI (de)serialization procedures are roughly the same as the C++

ones. In the last test with 80 elements, the difference grows larger, however, so does the associated

104 Implementation validation

struct Numbers {
UInt32 u_32
UInt64 u_64
Float f_32

}
array NumbersVec of Numbers
method vec_serialization {

in {
NumbersVec arg

}
}

Figure 5.9: Excerpt of the .fidl file section with the declaration of the method used to test vector
deserialization

error in both implementations. Again, this is likely due to preemption from the kernel. When

considering this, the difference seems to remain similar to the reference measurements.

5.3.3.2 Map of string to enumeration deserialization

map StatusMap {
String to Status

}

method map_serialization {
in {

NumbersVec arg
}

}

Figure 5.10: Excerpt of the .fidl file section with the declaration of the method used to test map
and string deserialization. The enumeration Status is omitted for simplicity sake.

The last test that was made now tests the deserialization procedure of a map. Similar to the

previous test, a method was declared that takes a single input argument, as shown in Figure 5.10.

The map will be associating a string to an enumeration. The enumeration declaration is not shown

in the Figure to save space and because it is not very relevant to this test as it will simply be

treated as a number when deserializing. All the strings that are inserted in the map have a total of

5 randomly generated alphabet letters. The default serialization arguments are used, so the string

will be serialized as UTF-8 bytes, so each letter will be serialized into a single Byte. The results

of the test are shown in Figure 5.11.

The results obtained are definitely astonishing and hard to believe. Several additional execu-

tions of the test were made to ensure that the result was not a mistake, but similar values were

measured regardless. Once again, the 0 Bytes case is very similar between implementations and

corresponds to the reference remote request-response results. However, as we increase the number

of elements in the map, the disparity grows much quicker than what was expected. The 80 element

5.3 Implementation comparison 105

0 (4 Bytes) 10 (144 Bytes) 20 (284 Bytes) 40 (564 Bytes) 80 (1124 Bytes)

C++
483

±4,70%

1240
±4,87%

1548
±3,34%

2370
±2,47%

4100
±2,59%

Rust
364

±2,84%

919
±4,87%

1023
±3,34%

1465
±2,47%

2506
±2,59%

Figure 5.11: Comparison of the deserialization of a map of strings to enumeration between the
Rust implementation and the C++

106 Implementation validation

test results of Rust implementation are nearly as fast as the C++ 40 element results. After double-

checking the map and string deserialization procedures of both implementations, no distinction

was found between them that could cause such a huge gap in performance as both use roughly the

same procedure.

Since both implementations follow the same procedure and the timings of a request-response

communication have already been measured and are nowhere near the values measured in this

test. The other possible explanation for this disparity of performance must be in the programming

languages themselves. The 3 types of data that are used in this test are the map, string and an

enumeration. In both languages, an enumeration is simply stored as an integer, so its performance

impact should be minimal. For a string, both store it using a UTF-8 encoding and the creation and

insertion in a string are likely the same between languages as it is backed by an array which does

not require any additional logic for creation or insertion. The last option is the map implementa-

tion. In the C++ CommonAPI implementation, they are represented as a std::unordered_map

while in Rust as a HashMap. The map collection is much more complex than the vector that was

analyzed before, an enumeration or a string. There are several algorithms that can be used to

handle the insertion, each with their own advantages and disadvantages. As such, a conclusion

that can be drawn is that the Rust and C++ implementations of a map collection are different. For

the Rust implementation, as of this date, the algorithm used is a Rust port of Google’s SwissTable

algorithm.3 According to the conference talk, linked in the Rust documentation, Google’s C++

implementation of this algorithm yields 2 to 3 times better performance with significant memory

reductions when compared to std::unordered_map. Thus, this is likely what is causing the

big difference between the performance of the two implementations. It was an unintended im-

provement, but, nonetheless, it is there. In a sense, this reinforces the idea that when using the

C++ standard library, only the std::vector collection should be used, as the others are not as

optimized as they could be.

5.4 Summary

This chapter was dedicated to the validation of the SOME/IP implementation done in this work.

For that, we demonstrated the implementation of the example system shown in Chapter 3. Through

it, it was shown how the different developed CommonAPI components interact with each other

and how interoperability with the reference C++ implementation is aided by them. Afterwards,

a series of validation tests were analyzed, first covering the tests that were implemented in this

work and then the ones that were not. Each of them with a detailed explanation of exactly what

are they testing and why it is relevant. As a result of one of these tests, a race condition was

detected that affected both the Rust implementation and the C++, which has been subsequently

reported to the author of the library. In the last section of the chapter, we presented an objective

comparison between both implementations through the means of stress testing them. It was shown

that the Rust implementation performs at least as well as the reference implementation, with some

3As explained in the Rust documentation

https://doc.rust-lang.org/std/collections/struct.HashMap.html

5.4 Summary 107

scenarios where it even outperforms it. An explanation was made for each of these scenarios to

clarify these differences in performances.

108 Implementation validation

Chapter 6

Conclusion

Throughout this document, we have taken a look at the automotive software development world.

It started as a relatively simple area with a low impact in the automotive industry. Throughout the

years, this has changed, and it has now become a major area of a vehicle. To cope with this devel-

opment, a new architecture of automotive software is now being used across the whole industry.

By using a Service-Oriented Architecture, the developed software has a higher modularity, making

the integration with existing software and also software that will be developed in the future very

straightforward. One of the communication protocols that was created precisely for this dynamic

nature and type of architecture was SOME/IP. This work focused on that protocol and how a Rust

implementation of it can be used to develop robust automotive software.

This started with the analysis and exploration of the already existing approaches to developing

software using SOME/IP. The reference for this work is the GENIVI CommonAPI, the standard

open-source library used in the industry to develop applications using SOME/IP. Through it, an

application can be abstracted not only from how the remaining applications in the system are

developed, as a consequence of a Service-Oriented Architecture, but also from which communica-

tions protocol to use. The process of developing an application using CommonAPI begins by the

specification of the services interfaces through Franca files. These files are then used as the stan-

dard that applications of the system need to follow to be able to communicate with one another.

The CommonAPI provides a couple of code generators that read these Franca files and outputs the

respective skeleton components that the user can then use to start developing its application. The

resulting code is aided by the CommonAPI Runtime library, which provides an implementation

of the Franca concepts for each supported communication protocol. The application will then use

the CommonAPI Runtime abstraction layer so the user can develop the application without worry-

ing about which communication protocol is being used. Beneath the CommonAPI Runtime layer,

there are the actual communication protocols, with SOME/IP being the spotlight of this work.

The study of the results of this work followed a top-down approach, starting from the devel-

oped Rust code generator and ending with the Rust SOME/IP implementation. The resulting Rust

code generator was a merge between the 2 CommonAPI code generators and was heavily based on

the reference generators. In the Rust CommonAPI implementation, we explored how the various

109

110 Conclusion

abstraction layers provided by the CommonAPI were translated to Rust despite the less flexible

typing system when compared to C++. Additionally, there was a simplification of several parts of

the CommonAPI logic that make it much simpler to understand without incurring in any runtime

cost for the Rust implementation. Lastly, the Rust SOME/IP implementation, as the core of this

work, was analyzed in more detail. There, the architectural changes that occurred due to language

differences were exposed and discussed. Furthermore, we delved into Rust paradigm regarding

sharing of data by means of message passing, as opposed to the C++ approach of using mutual

exclusion primitives.

Finally, the validation of the results of this work was made. It started by the development of an

example system presented early in the document. This system showcased the whole CommonAPI

workflow and how it can effectively be used to develop Rust code that can interoperate with the

reference C++ implementation. Then, we showed the more extensive validation tests that were

used to certify the developed Rust SOME/IP implementation does what is expected. Through this

process, an error in both implementations was found which has been fixed in the Rust implementa-

tion and reported in the reference implementation. The validation ended with a more quantitative

comparison of both implementations, where their performance was put to the test. We observed

that the Rust implementation is at least as performant as the reference C++ implementation, even

surpassing it under certain scenarios.

6.1 Summary of the results

Overall the results obtained in this work met all of the objectives set when planning it. During

the planning phase, the original intention was not to develop a CommonAPI library that, like the

reference implementation, was able to fully abstract over the underlying middleware. Nonethe-

less, that was able to be achieved, and all of the bedrock for any additional middleware is built.

Regarding the SOME/IP implementation, originally the implementation of the Service Discovery

protocol was also not planned. However, once we realized that a subscribe-notify communication

paradigm was not possible without implementing the Service Discovery module, the original plan

was updated. This happened fairly early in the development process, about 1 month after it began.

So while it ultimately did not pose much of a problem, it still added to the total amount of work

that had to be done.

One of the initial requirements, and perhaps the most crucial one, was the interoperability

with the reference implementation. As undoubtedly the reference SOME/IP implementation is

still used and will likely remain in use for a long time, it was of the utmost importance that the

Rust implementation could smoothly integrate with existing systems. The other requirement was

that the Rust implementation have similar runtime characteristics to the reference C++ implemen-

tation. From a performance point of view, this does seem to be the case, and it even surpasses the

reference implementation under certain scenarios. Nonetheless, it might be the case that the Rust

implementation is more resource-heavy when compared to the C++ implementation as seems to

6.2 Future work 111

be suggested by the results in Section 5.3.1.1 with the comparison of the local communication

between the two implementations.

An unexpected, but very much welcome result of this work is the discovery of an otherwise

elusive race condition in the SOME/IP implementation. With this discovery, we can at least say

that we have given something back to the vsomeip community. As our work builds on top of

the already existing projects from GENIVI, it stands to reason that we also help it as much as we

can. Hence, this discovery is a very much welcomed result as it allowed us to contribute to the

reference implementation, which is nowadays used throughout the automotive software industry.

6.2 Future work

The work developed in this project shows good promise and the author is of the firm belief that it

is a step in the right direction for the automotive industry. Nevertheless, there are still some rough

edges that need to be worked on. First and foremost, more extensive testing of the implemented

CommonAPI libraries needs to be made, specially the code generators that, indirectly, also test

the CommonAPI Runtime. As was explained, the main focus of this work was the SOME/IP

implementation, so those 2 upper libraries were left in a minimum viable product state. While they

certainly work for the most common scenarios, it is likely that there are some errors or mistakes

that were made and not caught. Specifically, in the CommonAPI Runtime, the implementation

of the asynchronous operations still needs to be finished. The architecture is already there, so it

should be fairly simple, but it still needs to be done.

In the Rust SOME/IP implementation, the development status of the protocol itself is good and

seems to work smoothly. However, there are certain vsomeip features, not related to the protocol

that could be integrated into the Rust implementation to provide a more complete library. Namely,

the possibility of stopping an application and then starting it once again, to effectively reboot

the library. This will likely involve some non-trivial changes to the Rust code as it originally

was not developed with this feature in mind. Then, the vsomeip nPDU feature that buffers

the outgoing messages could also be integrated. Unlike the C++ implementation, though, this

feature should be a compile-time option that can either be turned on or off. This would allow

the user to decide whether to trade higher network latency by lower network congestion, like the

reference implementation, or the opposite as is done with the Rust implementation. Having this

as a compile option would mean that whichever option is chosen, the other one will have no effect

on the runtime characteristics of the application.

Lastly, more testing and analysis of precisely the runtime characteristics of the SOME/IP im-

plementation need to be made. This would first start with comparing how resource-heavy each im-

plementation is, as the testing of the local communication suggests a significant difference might

exist. Another type of testing that would be of interest is throughput testing, where an increasing

number of requests are sent to a service application until its maximum capability to answer these

requests is reached. The places that are causing this bottleneck can then be analyzed and further

improved. This type of information gathering, followed by correcting mistakes or sub-optimal

112 Conclusion

solutions is reasonably lengthy and would require several trials and errors. Taking these aspects

into consideration, additional future works could use the initial analysis made in this work as the

stepping stone for a more profound analysis.

Appendix A

Setup procedure and details for
Chapter 5 tests

All of the tests of Section 5.3 were made in a Renesas R-Car-H3 1. 2 Virtual Machines were

flashed in it with TCP/IP communication between one another. Both VMs were using the same

Linux version:

$> uname -a

Linux ebcore-vm 4.19.72-eb-corbos-standard #1 SMP PREEMPT aarch64 GNU/Linux

A.1 C++ test binaries compilation

In order to use the reference vsomeip and CommonAPI libraries, they had to be recompiled from

scratch. This included the boost library used by vsomeip. A compiler and linker of Elektrobit

GmbH (EB) were used that is based on version 8.3.0 of gcc for ARM. This compiler is used both

to compile the C++ programs and as a linker for the Rust compiler. The following steps were

taken to compile boost version 1.74.0, fetched from the official website 2:

1. Bootstrap the boost compiler:

$> sh bootstrap.sh

2. Change environment to use target platform libraries (part of the provided EB compiler

toolchain)

$> source environment-setup-aarch64-poky-linux

3. Update the project-config.jam file in the root boost directory

Replace the line

using gcc ;

1Full R-Car H3 details and specifications
2Taken from here

113

https://www.renesas.com/us/en/products/automotive-products/automotive-system-chips-socs/r-car-h3-high-end-automotive-system-chip-soc-vehicle-infotainment-and-driving-safety-support
https://www.boost.org/users/history/version_1_74_0.html

114 Setup procedure and details for Chapter 5 tests

With

using gcc : arm : aarch64-poky-linux-g++ -mcpu=cortex-a57.cortex-a53+crc --sysroot

=/opt/corbos-linux/2.14.0/sysroots/aarch64-poky-linux

So that compiling boost to the toolset gcc-arm will use the specified compiler

4. In the root directory execute

$> ./b2 toolset=gcc-arm variant=release

5. The resulting shared object files will be put in the stage/lib directory

The vsomeip version used was 3.1.20.3, the latest version as of this writing and fetched from

the official repository 3. Inside the root directory of the vsomeip library:

1. Change environment to use target platform libraries (part of the provided EB compiler

toolchain)

$> source environment-setup-aarch64-poky-linux

2. Create directory to hold compilation files

$> mkdir arm_build

3. Change current directory to the newly created

$> cd arm_build

4. Generate the build system

$> cmake -DCMAKE_BUILD_TYPE=Release ..

5. Compile vsomeip

$> make

6. The resulting shared object files will be in the same directory, arm_build.

For the CommonAPI Runtime, version 3.2.0 of capicxx-core-runtimewas used, fetched

from the official repository 4. Inside the root directory of the capicxx-core-runtime library:

1. Change environment to use target platform libraries (part of the provided EB compiler

toolchain)

$> source environment-setup-aarch64-poky-linux

2. Create directory to hold compilation files

$> mkdir arm_build

3Taken from here
4Taken from here

https://github.com/GENIVI/vsomeip/releases
https://github.com/GENIVI/capicxx-core-runtime/releases

A.1 C++ test binaries compilation 115

3. Change current directory to the newly created

$> cd arm_build

4. Generate the build system

$> cmake -DCMAKE_BUILD_TYPE=Release ..

5. Compile capicxx-core-runtime

$> make

6. The resulting shared object files will be in the same directory, arm_build.

For the CommonAPI SOME/IP Runtime, version 3.2.0 of capicxx-someip-runtime was

used, fetched from the official repository 5. Inside the root directory of the capicxx-someip-runtime

library:

1. Change environment to use target platform libraries (part of the provided EB compiler

toolchain)

$> source environment-setup-aarch64-poky-linux

2. Create directory to hold compilation files

$> mkdir arm_build

3. Change current directory to the newly created

$> cd arm_build

4. Generate the build system

$> cmake -DCMAKE_BUILD_TYPE=Release ..

CMake options pointing to the arm_build folders of the previously compiled vsomeip

and capicxx-core-runtime also need to be provided. This is not shown in the com-

mand above for simplicity sake.

5. Compile capicxx-someip-runtime

$> make

6. The resulting shared object files will be in the same directory, arm_build.

With these 4 libraries, we now have everything we need to start compiling the test programs.

For the tests shown in Section 5.3.1 and 5.3.2 the CommonAPI Runtime libraries are not required.

Whereas for the tests in Section 5.3.3 all of the compiled libraries are required. For the former

type of tests, the following command was used to compile them:

5Taken from here

https://github.com/GENIVI/capicxx-someip-runtime/releases

116 Setup procedure and details for Chapter 5 tests

capicxx-core-tools capicxx-someip-tools

Version 3.2.0 3.2.0

Build ID 20200114 20200114

Architecture 64bit 64bit

Franca version 0.13.1 0.13.1

CommonAPI version 3.2.0

Table A.1: Details of the CommonAPI code generators used

$> $CXX -O3 <name> -o arm_<name> -lvsomeip3

We use $CXX here instead of writing the full compiler options as shown in the 3rd step of

compiling the boost library. This command assumes that all of the previously compiled libraries

can be found in the system path. An additional compiler flag, -lpthread was required for some

of the tests.

For the latter tests that use the CommonAPI Runtime, code generation had to be used. For

that, the following versions of the code generators were used:

To generate the code, the files in B.4 and B.5 were used. Then, to compile them, the CMake

file seen in B.6 was used with the following commands:

1. Change environment to use target platform libraries (part of the provided EB compiler

toolchain)

$> source environment-setup-aarch64-poky-linux

2. Create directory to hold compilation files

$> mkdir arm_build

3. Change current directory to the newly created

$> cd arm_build

4. Generate the build system

$> cmake -DCMAKE_BUILD_TYPE=Release ..

5. Compile the test binaries

$> make

6. The resulting shared object files will be in the same directory, arm_build.

A.2 Rust test binaries compilation 117

A.2 Rust test binaries compilation

For the compilation of the Rust binaries, version 1.51.0-nightly (7a9b552cb) was used. To do the

compilation, the following steps were taken:

1. Install the toolchain of the R-Car H3 platform

$> rustup target install aarch64-unknown-linux-gnu

2. Create a config file in the /.cargo directory with the following lines

[target.aarch64-unknown-linux-gnu]

linker="aarch64-poky-linux-gcc"

rustflags = [

"-C", "link-arg=-mcpu=cortex-a57.cortex-a53+crc",

"-C", "link-arg=--sysroot=/opt/corbos-linux/2.14.0/sysroots/aarch64-poky-linux"

]

Used to tell the Rust compiler to use the linker provided by EB when compiling for the

aarch64-unknown-linux-gnu target platform.

3. Change environment to use target platform libraries (part of the provided EB compiler

toolchain)

$> source environment-setup-aarch64-poky-linux

4. In the root of the Rust project run:

$> cargo build --release --all --target=aarch64-unknown-linux-gnu

5. The resulting binary files will be in the target/aarch64-unknown-linux-gnu/release

directory.

This process applies to all of the Rust binaries used for the tests. All of them used the following

release profile, specified in their respective Cargo.toml files:

[profile.release]

lto = "true"

panic = "abort"

codegen-units = 1

Each of the developed Rust libraries use additional packages, a full list of the packages used

by each of the developed Rust libraries and their respective version is shown below:

• Rust vsomeip library

– arc-swap v1.2.0

– async-trait v0.1.42

– crossbeam-channel v0.5.0

– crossbeam-utils v0.8.1

118 Setup procedure and details for Chapter 5 tests

– env_logger v0.8.2

– fastrand v1.4.0

– fs2 v0.4.3

– log v0.4.13

– parking_lot v0.11.1

– serde_json v1.0.61

– socket2 v0.3.19

– tokio 0.3.6

• Rust CommonAPI library (capi_runtime)

– arc-swap v1.2.0

– crossbeam-utils v0.8.1

– ctor v0.1.18

– env_logger v0.8.2

– lazy_static v1.4.0

– log v0.4.13

– num-derive v0.3.3

– num-traits v0.2.14

– parking_lot v0.11.1

– vsomeip (Rust SOME/IP implementation)

For all the release builds, the feature flag max_level_off was passed to the log package,

to disable all logs at compile-time.

Appendix B

Files used throughout the work

package elektrobit.rust

interface InfotainmentHub {

version { major 1 minor 0 }

/* Receives a new frame to render on the screen */

method new_frame {

in {

AutomotiveTypes.Frame frame

}

}

broadcast shutdown {

out {

}

}

}

interface Seats {

version { major 1 minor 0 }

/* Has all the information regarding the seats, including seatbelts */

attribute AutomotiveTypes.SeatInformation seats readonly

/* Updates heating information of a seat */

method set_heating {

in {

String seat

AutomotiveTypes.SeatHeating heating

}

}

}

interface Camera {

version { major 1 minor 0 }

/* (De)Activates the camera, triggering it to call InfotainmentHub::new_frame()

repeatedly */

method activate {

in {

119

120 Files used throughout the work

Boolean to_on

}

}

}

interface Wheels {

version { major 1 minor 0 }

attribute AutomotiveTypes.AllWheels status readonly

attribute Float speed readonly

attribute Boolean sport_mode

}

typeCollection AutomotiveTypes {

version { major 1 minor 0 }

array Frame of Pixel

array AllWheels of WheelStatus

struct Pixel {

UInt8 r

UInt8 g

UInt8 b

Float a

}

enumeration SeatHeating {

OFF

BOTTOM

BACK

BOTH

}

map SeatInformation {

String to Seat

}

struct Seat {

Boolean seatbelt

SeatHeating heating

}

union WheelStatus {

Double pressure

String damage

}

}

Listing B.1: CompleteCar example .fidl file

import "platform:/plugin/org.genivi.commonapi.someip/deployment/CommonAPI-

SOMEIP_deployment_spec.fdepl"

import "CompleteCar.fidl"

define org.genivi.commonapi.someip.deployment for interface elektrobit.rust.InfotainmentHub {

SomeIpServiceID = 4660

Files used throughout the work 121

method new_frame {

SomeIpMethodID = 1000

SomeIpReliable = false

}

broadcast shutdown {

SomeIpEventID = 59999

SomeIpReliable = false

SomeIpEventGroups = { 6999 }

}

}

define org.genivi.commonapi.someip.deployment for interface elektrobit.rust.Seats {

SomeIpServiceID = 4665

attribute seats {

SomeIpGetterID = 1005

SomeIpNotifierID = 60000

SomeIpEventGroups = { 7000 }

}

method set_heating {

SomeIpMethodID = 1006

SomeIpReliable = true

}

}

define org.genivi.commonapi.someip.deployment for interface elektrobit.rust.Camera {

SomeIpServiceID = 4670

method activate {

SomeIpMethodID = 1010

SomeIpReliable = true

}

}

define org.genivi.commonapi.someip.deployment for interface elektrobit.rust.Wheels {

SomeIpServiceID = 4675

attribute status {

SomeIpGetterID = 1015

SomeIpNotifierID = 60005

SomeIpEventGroups = { 7005 }

}

attribute speed {

SomeIpGetterID = 1016

SomeIpNotifierID = 60006

SomeIpEventGroups = { 7006 }

}

attribute sport_mode {

SomeIpGetterID = 1017

SomeIpSetterID = 1018

SomeIpNotifierID = 60007

SomeIpEventGroups = { 7007 }

}

122 Files used throughout the work

}

define org.genivi.commonapi.someip.deployment for typeCollection elektrobit.rust.

AutomotiveTypes {

array AllWheels {

SomeIpArrayLengthWidth = 0

SomeIpArrayMaxLength = 2

SomeIpArrayMinLength = 2

}

}

define org.genivi.commonapi.someip.deployment for provider Service {

instance elektrobit.rust.InfotainmentHub {

InstanceId = "hub"

SomeIpInstanceID = 22136

}

instance elektrobit.rust.Seats {

InstanceId = "seats"

SomeIpInstanceID = 22137

}

instance elektrobit.rust.Camera {

InstanceId = "camera"

SomeIpInstanceID = 22138

}

instance elektrobit.rust.Wheels {

InstanceId = "front_wheels"

SomeIpInstanceID = 22139

}

instance elektrobit.rust.Wheels {

InstanceId = "back_wheels"

SomeIpInstanceID = 22140

}

}

Listing B.2: CompleteCar example .fdepl file

[package]

name = "CompleteCar"

version = "0.1.0"

authors = ["joal272320"]

edition = "2018"

[features]

default = ["someip"]

someip = ["vsomeip", "capi_runtime/someip", "capi_macros/someip"]

[lib]

name = "base"

path = "src/lib/mod.rs"

[[bin]]

name = "hub"

Files used throughout the work 123

path = "src/hub/main.rs"

[[bin]]

name = "wheels"

path = "src/wheels/main.rs"

[[bin]]

name = "camera"

path = "src/camera/main.rs"

[dependencies]

capi_runtime = {path = "../capi_runtime"}

capi_macros = {path = "../capi_runtime/capi_macros" }

vsomeip = {optional = true, path = "../vsomeip"}

ctor = "^0.1"

num-traits = "*"

num-derive = "*"

Listing B.3: CompleteCar example generated Cargo.toml file

package elektrobit.rust

interface StressTest {

version { major 1 minor 0 }

method start_test fireAndForget {

in {

UInt64 payload_size

}

}

method end_test fireAndForget {

in {}

}

method map_serialization fireAndForget {

in {

StressTypes.StatusMap arg

}

}

method vec_serialization fireAndForget {

in {

StressTypes.NumbersVec arg

}

}

}

typeCollection StressTypes {

version { major 1 minor 0 }

enumeration Status {

ZERO = 0

ONE = 1

TWO = 2

THREE = 3

124 Files used throughout the work

FOUR = 4

}

struct Numbers {

UInt32 u_32

UInt64 u_64

Float f_32

}

array NumbersVec of Numbers

map StatusMap {

String to Status

}

}

Listing B.4: .fidl file used for the serialization tests

import "platform:/plugin/org.genivi.commonapi.someip/deployment/CommonAPI-

SOMEIP_deployment_spec.fdepl"

import "StressTest.fidl"

define org.genivi.commonapi.someip.deployment for interface elektrobit.rust.StressTest {

SomeIpServiceID = 4660

method map_serialization {

SomeIpMethodID = 1000

SomeIpReliable = true

}

method vec_serialization {

SomeIpMethodID = 1001

SomeIpReliable = true

}

method start_test {

SomeIpMethodID = 1002

SomeIpReliable = true

}

method end_test {

SomeIpMethodID = 1003

SomeIpReliable = true

}

}

define org.genivi.commonapi.someip.deployment for provider as Service {

instance elektrobit.rust.StressTest {

InstanceId = "Test"

SomeIpInstanceID = 22136

}

}

Listing B.5: .fdepl file used for the serialization tests

cmake_minimum_required(VERSION 2.8)

Files used throughout the work 125

set(CMAKE_VERBOSE_MAKEFILE on)

OPTION(USE_FILE "Set to OFF to disable file logging" OFF)

message(STATUS "USE_FILE is set to value: ${USE_FILE}")

OPTION(USE_CONSOLE "Set to OFF to disable console logging" OFF)

message(STATUS "USE_CONSOLE is set to value: ${USE_CONSOLE}")

IF(USE_FILE)

add_definitions(-DUSE_FILE)

ENDIF(USE_FILE)

IF(USE_CONSOLE)

add_definitions(-DUSE_CONSOLE)

ENDIF(USE_CONSOLE)

SET(MAX_LOG_LEVEL "ERROR" CACHE STRING "maximum log level")

message(STATUS "MAX_LOG_LEVEL is set to value: ${MAX_LOG_LEVEL}")

add_definitions(-DCOMMONAPI_LOGLEVEL=COMMONAPI_LOGLEVEL_${MAX_LOG_LEVEL})

if (MSVC)

Visual C++ is not always sure whether he is really C++

set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -D_CRT_SECURE_NO_WARNINGS /EHsc /wd\\\"4503\\\"")

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -D_CRT_SECURE_NO_WARNINGS /wd\\\"4503\\\"")

else()

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -O3 -pthread -std=c++0x -

D_GLIBCXX_USE_NANOSLEEP")

endif()

message(STATUS "Compiler options: ${CMAKE_CXX_FLAGS}")

if(NOT CMAKE_BUILD_TYPE)

set(CMAKE_BUILD_TYPE "Release" CACHE STRING

"Choose the type of build, options are: Debug Release." FORCE)

endif(NOT CMAKE_BUILD_TYPE)

message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")

OPTION(USE_INSTALLED_COMMONAPI "Set to OFF to use the local (build tree) version of CommonAPI

" ON)

message(STATUS "USE_INSTALLED_COMMONAPI is set to value: ${USE_INSTALLED_COMMONAPI}")

if ("${USE_INSTALLED_COMMONAPI}" STREQUAL "ON")

FIND_PACKAGE(CommonAPI 3.2 REQUIRED CONFIG NO_CMAKE_PACKAGE_REGISTRY)

else()

FIND_PACKAGE(CommonAPI 3.2 REQUIRED CONFIG NO_SYSTEM_ENVIRONMENT_PATH

NO_CMAKE_SYSTEM_PATH)

endif()

message(STATUS "CommonAPI_CONSIDERED_CONFIGS: ${CommonAPI_CONSIDERED_CONFIGS}")

message(STATUS "COMMONAPI_INCLUDE_DIRS: ${COMMONAPI_INCLUDE_DIRS}")

CommonAPI

include(FindPkgConfig)

SOME/IP

find_package (CommonAPI-SomeIP 3.2 REQUIRED)

find_package (vsomeip3 3 REQUIRED)

126 Files used throughout the work

Source files

set(SRC_PATH src)

set(SRC_GEN_PATH src-gen/v1/elektrobit/rust)

Service Sources

FILE(GLOB STRESS_PROXY_GEN_SRCS ${SRC_GEN_PATH}/StressTest*Proxy.cpp ${SRC_GEN_PATH}/*

Deployment.cpp)

FILE(GLOB STRESS_STUB_GEN_SRCS ${SRC_GEN_PATH}/StressTest*Stub*.cpp ${SRC_GEN_PATH}/*

Deployment.cpp)

Boost

find_package(Boost 1.74 COMPONENTS system thread log REQUIRED)

include_directories(${Boost_INCLUDE_DIR})

DBus library

FILE(GLOB PRJ_DBUS_LIB_SRCS ${PRJ_SRC_GEN_COMMONAPI_DBUS_PATH}/*cpp ${PRJ_TYPES_GEN_SRCS})

SOME/IP library

FILE(GLOB PRJ_SOMEIP_LIB_SRCS ${PRJ_SRC_GEN_COMMONAPI_SOMEIP_PATH}/*cpp ${PRJ_TYPES_GEN_SRCS

})

Paths

OPTION(USE_INSTALLED_DBUS "Set to OFF to use the local (patched) version of dbus" ON)

message(STATUS "USE_INSTALLED_DBUS is set to value: ${USE_INSTALLED_DBUS}")

include_directories(

src-gen

${COMMONAPI_INCLUDE_DIRS}

${COMMONAPI_SOMEIP_INCLUDE_DIRS}

${VSOMEIP3_INCLUDE_DIRS}

)

link_directories(

${COMMONAPI_LIBDIR}

${COMMONAPI_SOMEIP_CMAKE_DIR}/build

${Boost_LIBRARY_DIR}

)

set(LINK_LIBRARIES CommonAPI CommonAPI-SomeIP vsomeip3)

Build StressTest Service

add_executable(service ${SRC_PATH}/service.cpp ${SRC_PATH}/SpammerService.cpp ${

STRESS_STUB_GEN_SRCS})

target_link_libraries(service ${LINK_LIBRARIES})

Listing B.6: CMake file used to generate the build system of the serialization tests

References

[1] Gunnar Andersson. Commonapi overview. https://at.projects.genivi.org/
wiki/display/DIRO/CommonAPI+overview, 2018. [Online; accessed 21-June-2020].

[2] AUTOSAR. SOME/IP Service Discovery Protocol Specification. https:
//www.autosar.org/fileadmin/user_upload/standards/foundation/
19-11/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf, year = 2019,
month = November, note = "[Online; accessed 21-June-2020]".

[3] AUTOSAR. Explanation of Adaptive Platform Design. pages 1–84, November 2019. [On-
line; accessed 19-June-2020].

[4] AUTOSAR. Explanation of ara::com API. https://www.autosar.
org/fileadmin/user{_}upload/standards/adaptive/19-11/
AUTOSAR{_}EXP{_}ARAComAPI.pdf, 2019. [Online; accessed 22-June-2020].

[5] AUTOSAR. Integration of Franca IDL Software Component Descriptions.
https://www.autosar.org/fileadmin/user{_}upload/standards/
classic/19-11/AUTOSAR{_}TR{_}FrancaIntegration.pdf, November 2019.
[Online; accessed 22-June-2020].

[6] AUTOSAR. Layered Software Architecture. pages 1–166, November 2019. [Online; ac-
cessed 16-June-2020].

[7] AUTOSAR. SOME/IP Protocol Specification. https://www.autosar.
org/fileadmin/user{_}upload/standards/foundation/19-11/
AUTOSAR{_}PRS{_}SOMEIPProtocol.pdf, November 2019. [Online; accessed
21-June-2020].

[8] AUTOSAR. Specification of Communication Management. https://www.
autosar.org/fileadmin/user{_}upload/standards/adaptive/19-11/
AUTOSAR{_}SWS{_}CommunicationManagement.pdf, 2019. [Online; accessed
22-June-2020].

[9] AUTOSAR. Specification of RTE Software. pages 1–1313, November 2019. [Online;
accessed 16-June-2020].

[10] AUTOSAR. Specification of SOME / IP Transformer. https://www.
autosar.org/fileadmin/user{_}upload/standards/classic/19-11/
AUTOSAR{_}SWS{_}SOMEIPTransformer.pdf, November 2019. [Online; accessed
21-June-2020].

127

https://at.projects.genivi.org/wiki/display/DIRO/CommonAPI+overview
https://at.projects.genivi.org/wiki/display/DIRO/CommonAPI+overview
https://www.autosar.org/fileadmin/user_upload/standards/foundation/19-11/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/19-11/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/19-11/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/adaptive/19-11/AUTOSAR{_}EXP{_}ARAComAPI.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/adaptive/19-11/AUTOSAR{_}EXP{_}ARAComAPI.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/adaptive/19-11/AUTOSAR{_}EXP{_}ARAComAPI.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/classic/19-11/AUTOSAR{_}TR{_}FrancaIntegration.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/classic/19-11/AUTOSAR{_}TR{_}FrancaIntegration.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/foundation/19-11/AUTOSAR{_}PRS{_}SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/foundation/19-11/AUTOSAR{_}PRS{_}SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/foundation/19-11/AUTOSAR{_}PRS{_}SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/adaptive/19-11/AUTOSAR{_}SWS{_}CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/adaptive/19-11/AUTOSAR{_}SWS{_}CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/adaptive/19-11/AUTOSAR{_}SWS{_}CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/classic/19-11/AUTOSAR{_}SWS{_}SOMEIPTransformer.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/classic/19-11/AUTOSAR{_}SWS{_}SOMEIPTransformer.pdf
https://www.autosar.org/fileadmin/user{_}upload/standards/classic/19-11/AUTOSAR{_}SWS{_}SOMEIPTransformer.pdf

128 REFERENCES

[11] Stefano Buliani. Rust runtime for aws lambda. https://aws.amazon.com/blogs/
opensource/rust-runtime-for-aws-lambda/, November 2018. [Online; accessed
24-June-2020].

[12] Redox Developers. https://www.redox-os.org/, 2020. [Online; accessed 24-June-
2020].

[13] Electronics Engineers and Three Park Avenue. Draft Standard for 9 Local and metropolitan
area networks — Time-Sensitive Networking Profile for 11 Automotive In-Vehicle Ethernet
12 Communications. pages 1–67, 2020.

[14] Jeremy Fitzhardinge. Bringing rust home to meet the parents. https://www.youtube.
com/watch?v=kylqq8pEgRs, September 2019. [Online; accessed 24-June-2020].

[15] Simon Furst and Markus Bechter. AUTOSAR for Connected and Autonomous Vehicles:
The AUTOSAR Adaptive Platform. Proceedings - 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN-W 2016, pages 215–217, 2016.

[16] GENIVI. vsomeip in 10 minutes. https://github.com/GENIVI/vsomeip/wiki/
vsomeip-in-10-minutes, March 2018. [Online; accessed 3-July-2020].

[17] GENIVI. Commonapi c++ user guide. https://docs.projects.genivi.org/ipc.
common-api-tools/3.1.3/html/CommonAPICppUserGuide.html, July 2019.
[Online; accessed 3-July-2020].

[18] Jesse Howarth. Why discord is switching from go to rust. https://blog.discord.
com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f, Febru-
ary 2020. [Online; accessed 24-June-2020].

[19] IEEE Computer Society. IEEE Standard for Local and metropolitan area networks–Time and
Synchronization for Time-Sensitive Applications in Bridged Local Area Networks. Number
March 30. 2011.

[20] IEEE Standards Association. IEEE Standard for Local and metropolitan area networks–
Bridges and Bridged Networks–Amendment 28: Per-Stream Filtering and Policing. 2017.

[21] Alexandru Kampmann, Andreas Wustenberg, Bassam Alrifaee, and Stefan Kowalewski. A
Portable Implementation of the Real-Time Publish-Subscribe Protocol for Microcontrollers
in Distributed Robotic Applications. 2019 IEEE Intelligent Transportation Systems Confer-
ence, ITSC 2019, pages 443–448, 2019.

[22] Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal Dutta, and Philip Levis.
The case for writing a kernel in rust. Proceedings of the 8th Asia-Pacific Workshop on
Systems, APSys 2017, 2017.

[23] Amit Levy, Daniel B. Giffin, Bradford Campbell, Pat Pannuto, Philip Levis, Branden Ghena,
and Prabal Dutta. Multiprogramming a 64 kB Computer Safely and Efficiently. SOSP 2017 -
Proceedings of the 26th ACM Symposium on Operating Systems Principles, pages 234–251,
2017.

[24] L A N Man, Standards Committee, and Ieee Computer. IEEE Standard for Local and
metropolitan area networks–Frame Replication and Elimination for Reliability. 2017.

https://aws.amazon.com/blogs/opensource/rust-runtime-for-aws-lambda/
https://aws.amazon.com/blogs/opensource/rust-runtime-for-aws-lambda/
https://www.redox-os.org/
https://www.youtube.com/watch?v=kylqq8pEgRs
https://www.youtube.com/watch?v=kylqq8pEgRs
https://github.com/GENIVI/vsomeip/wiki/vsomeip-in-10-minutes
https://github.com/GENIVI/vsomeip/wiki/vsomeip-in-10-minutes
https://docs.projects.genivi.org/ipc.common-api-tools/3.1.3/html/CommonAPICppUserGuide.html
https://docs.projects.genivi.org/ipc.common-api-tools/3.1.3/html/CommonAPICppUserGuide.html
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f

REFERENCES 129

[25] Nicholas Matsakis and Felix S. Klock. The rust language. HILT 2014 - Proceedings of the
ACM Conference on High Integrity Language Technology, page 103, 2014.

[26] Ahmed Nasrallah, Akhilesh S. Thyagaturu, Ziyad Alharbi, Cuixiang Wang, Xing Shao, Mar-
tin Reisslein, and Hesham ElBakoury. Ultra-low latency (ULL) networks: The IEEE TSN
and IETF DetNet standards and related 5G Ull research. IEEE Communications Surveys and
Tutorials, 21(1):88–145, 2019.

[27] Object Management Group. Remote Procedure Call over DDS. pages 1–173, 2017. [Online;
accessed 22-June-2020].

[28] OMG. Data Distribution Service. (April):1–180, 2015. [Online; accessed 22-June-2020].

[29] Stack Overflow. Stack overflow developer survey.
https://insights.stackoverflow.com/survey/2016#
technology-most-loved-dreaded-and-wanted, 2016. [Online; accessed
23-June-2020].

[30] Stack Overflow. Stack overflow developer survey. https://insights.
stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted,
2017. [Online; accessed 23-June-2020].

[31] Stack Overflow. Stack overflow developer survey. https://insights.
stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted,
2018. [Online; accessed 23-June-2020].

[32] Stack Overflow. Stack overflow developer survey. https://
insights.stackoverflow.com/survey/2019#technology-_
-most-loved-dreaded-and-wanted-languages, 2019. [Online; accessed
23-June-2020].

[33] Stack Overflow. Stack overflow developer survey.
https://insights.stackoverflow.com/survey/2020#
technology-most-loved-dreaded-and-wanted-languages-loved, 2020.
[Online; accessed 23-June-2020].

[34] Mike P. Papazoglou and Willem Jan Van Den Heuvel. Service oriented architectures: Ap-
proaches, technologies and research issues. VLDB Journal, 16(3):389–415, 2007.

[35] Navrattan Parmar, Virender Ranga, and B Simhachalam Naidu. Syntactic Interoperability in
Real-Time Systems, ROS 2, and Adaptive AUTOSAR Using Data Distribution Services: An
Approach. In G Ranganathan, Joy Chen, and Álvaro Rocha, editors, Inventive Communica-
tion and Computational Technologies, pages 257–274, Singapore, 2020. Springer Singapore.

[36] Andre Pinho, Luis Couto, and Jose Oliveira. Towards rust for critical systems. Proceedings
- 2019 IEEE 30th International Symposium on Software Reliability Engineering Workshops,
ISSREW 2019, pages 19–24, 2019.

[37] Graham Smethurst. GENIVI: Changing the In-Vehicle Infotainment Landscape. page 14,
2010. [Online; accessed 20-June-2020].

[38] IEEE Spectrum. Interactive: The top programming languages 2016. https://spectrum.
ieee.org/static/interactive-the-top-programming-languages-2016,
2016. [Online; accessed 24-June-2020].

https://insights.stackoverflow.com/survey/2016#technology-most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2016#technology-most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016

130 REFERENCES

[39] Bechmarksgame Team. Which programming language is fastest? https://
benchmarksgame-team.pages.debian.net/benchmarksgame/, 2020. [Online;
accessed 24-June-2020].

[40] MSRC Team. A proactive approach to more secure
code. https://msrc-blog.microsoft.com/2019/07/16/
a-proactive-approach-to-more-secure-code/, July 2019. [Online; accessed
23-June-2020].

[41] MSRC Team. Why rust for safe systems programming. https://msrc-blog.
microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/,
July 2019. [Online; accessed 23-June-2020].

[42] Lars Völker. Interoperability from AUTOSAR to GENIVI. 2011. [Online; accessed 20-
June-2020].

[43] Lars Völker. Scalable service-oriented middleware over ip (some/ip). some-ip.com, 2020.
[Online; accessed 21-June-2020].

[44] Feng Wang, Fu Song, Min Zhang, Xiaoran Zhu, and Jun Zhang. KRust: A formal executable
semantics of rust. Proceedings - 2018 12th International Symposium on Theoretical Aspects
of Software Engineering, TASE 2018, 2018-January:44–51, 2018.

[45] Automotive Wiki. Basic software module — automotive wiki,. https://automotive.
wiki/index.php?title=Basic_Software_Module&oldid=2094, 2017. [Online;
accessed 16-June-2020].

[46] Britta Wuelfing. CeBIT 2009: BMW and Partners Found GENIVI Open
Source Platform. https://www.linuxpromagazine.com/Online/News/
CeBIT-2009-BMW-and-Partners-Found-GENIVI-Open-Source-Platform,
2009. [Online; accessed 20-June-2020].

https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
some-ip.com
https://automotive.wiki/index.php?title=Basic_Software_Module&oldid=2094
https://automotive.wiki/index.php?title=Basic_Software_Module&oldid=2094
https://www.linuxpromagazine.com/Online/News/CeBIT-2009-BMW-and-Partners-Found-GENIVI-Open-Source-Platform
https://www.linuxpromagazine.com/Online/News/CeBIT-2009-BMW-and-Partners-Found-GENIVI-Open-Source-Platform

	Front Page
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure

	2 Background
	2.1 Automotive Ethernet
	2.1.1 Time-Sensitive Networking

	2.2 AUTomotive Open System ARchitecture - AUTOSAR
	2.2.1 Software Components
	2.2.2 Runtime Environment
	2.2.3 Basic Software

	2.3 Service Oriented Architecture
	2.4 GENIVI Alliance
	2.4.1 Service Oriented MiddlewarE over IP (SOME/IP)
	2.4.2 CommonAPI

	2.5 AUTOSAR Adaptive Platform
	2.5.1 Communication Management

	2.6 Rust Language
	2.7 Existing SOME/IP implementations
	2.8 Summary

	3 Reference toolchain analysis
	3.1 Project development workflow
	3.1.1 Code generation
	3.1.2 CommonAPI Runtime
	3.1.3 User Application

	3.2 Service definition with Franca IDL
	3.3 Mapping Franca concepts to the CommonAPI
	3.3.1 Mapping to the SOME/IP Runtime
	3.3.2 Control flow of a CommonAPI application

	3.4 GENIVI SOME/IP implementation
	3.4.1 Overview of vsomeip components
	3.4.2 SOME/IP Service Discovery protocol
	3.4.3 Configuration of the SOME/IP protocol

	3.5 Summary

	4 Rust implementation
	4.1 CommonAPI Rust code generator
	4.1.1 Differences to the reference implementation
	4.1.2 Rust code generator limitations

	4.2 Rust CommonAPI Runtime (capi_runtime)
	4.2.1 Middleware independence
	4.2.2 Data types (de)serialization
	4.2.3 Rust CommonAPI limitations and minor differences

	4.3 Rust SOME/IP implementation
	4.3.1 Endpoints
	4.3.2 Routing Managers
	4.3.3 Service Discovery
	4.3.4 Runtime and Application
	4.3.5 Implementation limitations

	4.4 Summary

	5 Implementation validation
	5.1 Toolchain integration and interoperability
	5.2 SOME/IP implementation validation
	5.2.1 Tests and results
	5.2.2 Missing tests

	5.3 Implementation comparison
	5.3.1 Request-response comparison
	5.3.2 Subscribe-notify comparison
	5.3.3 Data types deserialization

	5.4 Summary

	6 Conclusion
	6.1 Summary of the results
	6.2 Future work

	A Setup procedure and details for Chapter 5 tests
	A.1 C++ test binaries compilation
	A.2 Rust test binaries compilation

	B Files used throughout the work
	References

