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Abstract

Evermore end-to-end digital services in several domains (e-health, smart cities, etc.) depend on the
proper interoperation of multiple products, forming a distributed system, often subject to timing
requirements. To ensure interoperability and the timely behavior of such systems, it is important to
conduct integration tests that verify the interactions with the environment and between the system
components in key scenarios. The automation of such integration tests requires that test compo-
nents are also distributed, with local testers deployed close to the system components, coordinated
by a central tester. However, test automation in this type of systems is a huge challenge, namely
due to the difficulty to test the system as a whole due to the number and diversity of individual
components; the difficulty to coordinate and synchronize the test participants and interactions, due
to the distributed nature of the system (particularly, in integration testing); the difficulty to test the
components individually, because of the dependencies on other components.

In this research work, we tackle the challenge of automating the scenario-based integration
testing of time-constrained distributed systems showing that is possible to solve the coordination
problems by performing a pre-processing of the test scenarios to determine if they can be executed
in a purely distributed way or, if that is not possible, determining the minimum number of co-
ordination messages or time constraints to be inserted, minimizing the communication overhead
whilst maximizing the fault detection capability and the test harness responsiveness.

To achieve this goal, we perform a state of the art analysis on time-constrained distributed
systems testing and a state of the practice analysis on testing distributed and heterogeneous systems
by collecting the opinion of more than 140 professionals.

In response to the identified needs, we propose a novel testing approach and architecture for
the integration testing of time-constrained distributed systems that provides a higher level of au-
tomation of the testing process because all phases of the test process are supported in an integrated
fashion. To determine if a test scenario can be executed in a purely distributed way, we analyze
two properties: local observability, defined as the ability of the local testers to detect conformance
errors, without the need for exchanging coordination messages between them during test execu-
tion; and local controllability, defined as the ability of the local testers to decide test inputs locally,
without the need for exchanging coordination messages between them during test execution. If
such properties do not hold, we determine coordination messages and/or coordination time con-
straints that can be inserted to refine the given scenario and enforce local observability and/or local
controllability. Even if the given scenario is not refined, the results of the analysis are helpful to
influence the test execution strategy. Local observability and controllability analysis and enforce-
ment algorithms are implemented in the DCO Analyzer tool, for test scenarios described by means
of UML sequence diagrams. Since many local observability and controllability problems may be
caused by design flaws or incomplete specifications, and multiple ways may exist to enforce local
observability and controllability, the tool was designed as a static analysis assistant to be used
before test execution.

The DCO Analyzer tool was validated in an industry case study and proved to be useful for

i



ii

professionals who daily perform the modeling and testing of this type of systems. DCO Analyzer
was able to detect local observability and controllability problems in different scenarios, as well
as provide the user with corresponding solutions to overcome them, either through coordination
messages, time constraints, or, in some cases, presenting the two alternatives.



Resumo

Cada vez mais os serviços digitais ponta-a-ponta em diversos domínios (e-saúde, cidades in-
teligentes, etc.) dependem da correta interoperação de múltiplos produtos, formando um sistema
distribuído, muitas vezes sujeito a requisitos temporais. Para garantir a interoperabilidade e o cor-
reto comportamento destes sistemas, é importante realizar testes de integração que verifiquem as
interações com o ambiente e entre os componentes do sistema em cenários chave. No entanto,
a automatização de testes neste tipo de sistemas é um grande desafio, nomeadamente devido à
dificuldade em testar o sistema como um todo devido ao número e diversidade de componentes
envolvidos; a dificuldade de coordenar e sincronizar os participantes do teste e as suas interações,
devido à natureza distribuída do sistema; e a dificuldade de testar os componentes individualmente,
devido à dependência de outros componentes.

Neste trabalho, abordamos o desafio de automatizar o teste de integração de sistemas distribuí-
dos baseado em cenários com restrições temporais, mostrando que é possível resolver os proble-
mas de coordenação no teste deste tipo de sistemas através da realização de um pré-processamento
dos cenários de teste para determinar se podem ser executados de forma puramente distribuída ou,
caso não seja possível, determinar o número mínimo de mensagens de coordenação ou restrições
temporais a inserir, minimizando a sobrecarga de comunicação enquanto se maximiza a capaci-
dade de detecção de falhas e a responsividade do ambiente de teste.

Para atingir esse objetivo, realizamos uma análise do estado da arte em testes de sistemas
distribuídos com restrições temporais e uma análise do estado da prática em testes de sistemas
distribuídos e heterogéneos, recolhendo a opinião de mais de 140 profissionais.

Em resposta às necessidades identificadas, propomos nesta tese uma nova abordagem de teste e
arquitetura para o teste de integração de sistemas distribuídos com restrições temporais que fornece
um maior nível de automação do processo de teste uma vez que todas as fases do processo de teste
são suportadas por um inovador sistema integrado. Para determinar se um cenário de teste pode ser
executado de forma puramente distribuída, analisamos duas propriedades: observabilidade local,
definida como a capacidade dos componentes de teste locais detetarem erros de conformidade,
sem a necessidade de trocarem mensagens de coordenação entre eles durante a execução do teste;
e controlabilidade local, definida como a capacidade dos componentes de teste locais decidirem os
próximos dados de entrada localmente, sem a necessidade de trocarem mensagens de coordenação
entre eles durante a execução do teste. Se tais propriedades não forem válidas, determinamos o
conjunto de mensagens de coordenação e/ou restrições temporais que podem ser inseridas para
refinar o cenário de forma a garantir a observabilidade local e/ou controlabilidade local. Mesmo
que o cenário não seja refinado, os resultados da análise são úteis para selecionar a estratégia de
execução dos testes. Os algoritmos para análise e garantia de observabilidade e controlabilidade
local, para cenários de teste descritos por diagramas de sequência UML, foram implementados
na ferramenta DCO Analyzer. Uma vez que muitos dos problemas de observabilidade e con-
trolabilidade local podem ser causados por falhas de conceção ou especificações incompletas, e
podem existir várias formas para impor a observabilidade e controlabilidade local, a ferramenta
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foi projetada como um assistente de análise estática para ser usado antes da execução dos testes.
A ferramenta DCO Analyzer foi validada em um estudo de caso industrial, mostrando-se útil

para profissionais que modelam e testam este tipo de sistemas. A DCO Analyzer foi capaz de
detetar problemas de observabilidade e controlabilidade local em diferentes cenários, bem como
fornecer ao utilizador as soluções correspondentes para corrigir os problemas encontrados, recor-
rendo a mensagens de coordenação, restrições temporais ou, em alguns casos, apresentando as
duas alternativas.
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Chapter 1

Introduction

1.1 Motivation

Due to the increasing ubiquity, complexity, criticality and need for assurance of software based

systems (Boehm, 2011), testing is a fundamental lifecycle activity, with a huge economic impact

if not performed adequately (Tassey, 2002). Such trends, combined with the needs for shorter

delivery times and reduced costs, demand for the continuous improvement of software testing

methods and tools, in order to make testing activities more effective and efficient. At the same

time, the systems under test (SUT) are increasingly complex and interconnected, posing additional

testing challenges.

As the recent Mind Commerce report (Commerce, 2020) shows, the number of interconnected

devices will not stop growing considerably in the coming years, both at the industrial level and

in solutions for the final consumer. It is also expected that the areas of application of these inter-

connected systems will be very comprehensive and that such systems are expected to be created

in markets such as agriculture, advertising and media, automobiles, security management, energy

management, healthcare, manufacturing, oil & gas, public safety, and telecommunication.

These new systems created from the interconnection of various devices are not more like

simple applications but systems that have evolved to large and complex system of systems (DoD,

2008). A system of systems consists of a set of small independent systems that together form

a new system. It can be a combination of hardware components (sensors, actuators, etc.) and

software systems used to create big systems or ecosystems that can offer multiple services to their

users. As the number of systems of systems has been growing, they have captured the interest of

the software engineering research community (Ali et al., 2012).

This is particularly true for the end-to-end services that are being proposed in several domains

(e-health, smart cities, etc.), taking advantage of recent advances in cloud computing, mobile com-

puting, and Internet of Things (IoT) (Moutai et al., 2019; Kim et al., 2018; Hwang et al., 2020).

Such services depend on the proper interoperation of multiple devices and applications, from dif-

ferent vendors, forming a distributed and heterogeneous system or system of systems, often subject

to timing requirements. To ensure interoperability and the correct, secure and timely behavior of
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such systems, it is important to conduct integration tests that verify not only the interactions with

the environment but also between the system components in key scenarios. Integration test scenar-

ios for that purpose may be conveniently specified by means of UML Sequence Diagrams OMG

(2017) (SDs), because they are an industry standard well suited for describing and visualizing the

interactions that occur between the components and actors of a distributed system, and may be

enriched with control flow variants and time constraints.

However, test automation in this type of systems is a huge challenge (Bures et al., 2018),

namely due to the difficulty to test the system as a whole due to the number and diversity of indi-

vidual components; the difficulty to coordinate and synchronize the test participants and interac-

tions, due to the distributed nature of the system; the difficulty to test the components individually,

because of the dependencies on other components.

We experienced such challenges during our participation in the nationwide AAL4ALL project

(AAL4ALL, 2015). During the ALL4ALL project it was prototyped an Ambient Assisted Living

(AAL) ecosystem, comprising a set of interoperable AAL products and services (sensors, actu-

ators, mobile and web based applications and services, middleware components, etc.), produced

by different manufacturers using different technologies and communication protocols (web ser-

vices, message queues, etc.). To ensure interoperability and the integrity of the ecosystem, it was

developed and piloted a testing and certification methodology (Faria et al., 2014), encompassing

the specification of ‘standard’ interfaces and component categories, the specification of unit (com-

ponent) and integration test scenarios, and the test implementation and execution on candidate

components by independent test laboratories. A major problem faced during test implementation

and execution was related with test automation, due to the diversity of component types and com-

munication interfaces, the distributed nature of the system, and the lack of support tools. Similar

difficulties have been reported in other domains, such as the railway domain (Torens and Ebrecht,

2010). In fact, we found in the literature limited tool support for automating the whole process of

specification-based (or model-based) testing of distributed and heterogeneous systems, as will be

explained in Chapters 2 and 3.

1.2 Research Goals

In order to address the challenges and problems previously described, in this research work we

tackle the challenge of automating the scenario-based integration testing of time-constrained dis-

tributed systems, using UML SDs as input models. Those diagrams describe the expected behavior

of the SUT, with support for control flow variants, time constraints, and non-determinism.

To better target our research, we start by addressing the following research question.

RQ1 - What are the main difficulties and needs in the integration testing of distributed

systems listed in the state of the art and state of practice?

The research study conducted confirmed the importance of automating the integration testing

of distributed systems, with support for multiple platforms, time constraints, non-determinism,
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UML SDs (as input models), among other features, as well as the limited tool support for that

purpose.

In the state of the art, we found proposals of test architectures and associated conformance re-

lations for testing distributed systems, with varying fault detection capabilities, but mostly focused

on system testing and not integration testing.

This led us to the second research question.

RQ2 - What is an adequate architecture and approach to conduct integration tests in

these types of systems?

The state of the art analysis showed that a hybrid test architecture (combining the characteris-

tics of purely distributed and purely centralized architectures), is the one that maximizes the fault

detection capability, in the context of system testing of distributed systems. Such a hybrid ar-

chitecture comprises a central test component (central tester), that interacts asynchronously with

local test components (local testers) located close to the ports of the distributed system (points of

interaction with the environment).

In the context of integration testing, besides the need to check the interactions with the en-

vironment (users, other systems, or even the physical environment) and simulate inputs from the

environment at multiple locations, there is also the need to check the interactions between the sys-

tem components. This implies that test execution needs also to be distributed, with local testers

deployed close to the system components (and not only the system ports), coordinated by a central

tester.

To cope with non-determinism and response time constraints, test inputs may have to be se-

lected at runtime in an adaptive and responsive way, based on the observed execution events and

the behavioral specification, suggesting an adaptive and distributed test input selection approach.

To facilitate fault localization, conformance errors should be detected as early as possible and as

close as possible to the offending components, suggesting an incremental and distributed confor-

mance checking approach.

However, depending on the test scenario under consideration, a purely distributed test execu-

tion (with purely distributed test input selection and conformance checking), without exchanging

coordination messages between the test components during test execution, may not be possible or

safe, which raises our next research question.

RQ3 - How do we determine if a test scenario described by a UML SD can be exe-

cuted safely in a purely distributed manner, without overlooking conformance faults

(false negatives) or injecting conformance faults (false positives) by the test harness?

In other words, how do we determine if a test scenario described by a UML SD is

locally observable and locally controllable?

Based on the state of the art analysis, we frame the problem in terms of observability and

controllability. To determine if a test scenario can be executed in a purely distributed way, we

analyze two properties: local observability, which we define as the ability of the local testers to
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detect conformance errors, without the need for exchanging coordination messages between the

test components during test execution; and local controllability, which we define as the ability

of the local testers to decide test inputs locally, without the need for exchanging coordination

messages between the test components during test execution.

The next question that arises is: what to do if those properties do not hold. Based on the

state of the art analysis and several case studies, we conclude that, in many cases, violations

to those properties are due to design flaws or incomplete specifications. So, having means to

automatically recommend refinements to those scenarios, in order to enforce local observability

and local controllability, would be helpful. In the state of the art, it are proposed refinements based

on the addition of coordination messages to overcome some violations (such as race conditions),

but refinements based on the addition of coordination time constraints can also be explored.

In other cases, violations of local observability and local controllability may be due to inherent

characteristics of the SUT. In that case, the identification of minimal sets of coordination messages

and coordination time constraints to be added to the given scenario to enforce local observability

and local controllability is also of primary importance, as a means to solve the test coordination

problem, in a way that minimizes the communication overhead and maximizes the fault detection

capability and test responsiveness. Such coordination messages would be exchanged between the

local testers, without affecting the SUT. Similarly, the coordination time constraints would affect

the behavior of the local testers, and not the SUT.

This raises our last research question.

RQ4 - Given a test scenario not locally controllable or locally observable, how can

we automatically identify a minimal set of coordination messages and/or coordination

time constraints to refine the test scenario and enforce local observability and/or local

controllability?

It also worth noting that, even if the given scenario is not refined, the results of the local

observability and controllability analysis are helpful to influence the test execution strategy.

We can now state our main research hypothesis:

It is possible to solve the coordination problems in the scenario-based integration

testing of distributed systems with time constraints by performing a preprocessing of

the test scenarios to determine if they can be executed in a purely distributed way or,

if that is not possible, determining the minimum number of coordination messages or

time constraints to be inserted.

1.3 Research Contributions

The contributions of this research are:

• A state of the art on time-constrained distributed systems testing. More details in Chap-

ter 2.
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• A state of the practice on testing distributed and heterogeneous systems. More details

in Chapter 3.

• A testing approach and architecture for the integration testing of time-constrained dis-

tributed systems, requiring as only manual activity the creation of the input behavioral mod-

els (test scenarios). More details in Chapter 4.

• Local observability and controllability analysis and enforcement algorithms, for inte-

gration test scenarios described by means of UML SDs with time constraints and control

flow variants (problem not solved before, to our knowledge). More details in Chapter 5.

• DCO Analyzer, the first tool to analyze and enforce local observability and controllability

of integration test scenarios for time-constrained distributed systems described by UML

SDs. More details in Chapter 6.

• Industry case study validation in the transportation domain. More details in Chapter 7.

During this research, the author contributed to 14 peer-reviewed publications directly related

to this thesis:

• Lima, Bruno, and João Pascoal Faria. "An Approach for Automated Scenario-based Testing

of Distributed and Heterogeneous Systems.” In 10th International Conference on Software

Engineering and Applications (ICSOFT-EA) 2015.

This paper is about an initial approach and toolset architecture for automating the testing

of end-to-end services in distributed and heterogeneous systems, comprising a visual mod-

eling environment, a test execution engine, and a distributed test monitoring and control

infrastructure. Part of Chapter 4 of the thesis is based on this paper.

• Lima, Bruno, and João Pascoal Faria. "Automated testing of distributed and heterogeneous

systems based on UML sequence diagrams.” In: Lorenz P., Cardoso J., Maciaszek L., van

Sinderen M. (eds) Software Technologies. ICSOFT 2015. Communications in Computer

and Information Science, vol 586. Springer, Cham, 2016.

This paper is a extended version of ICSOF-EA 2015 paper. Part of Chapter 4 of the thesis

is based on this paper.

• Lima, Bruno, and João Pascoal Faria. "Testing distributed and heterogeneous systems:

State of the practice.”, In 11th International Joint Conference on Software Technologies

(ICSOFT), 2016.

This paper is about an exploratory survey (responded by 147 software testing profession-

als that attended industry-oriented software testing conferences) on the current state of the

practice concerning the testing of distributed and heterogeneous systems. Opportunities and

priorities for research and innovation initiatives are also identified. Part of 3 of the thesis is

based on this paper.
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• Lima, Bruno. "Automated Scenario-based Testing of Distributed and Heterogeneous Sys-

tems.”, In IEEE 9th International Conference on Software Testing, Verification and Valida-

tion (ICST), 2016

This paper is about the outline of a Ph.D. research plan and a summary of preliminary results

on test automation for distributed and heterogeneous systems.

• Lima, Bruno, and João Pascoal Faria. "Towards the Online Testing of Distributed and Het-

erogeneous Systems with Extended Petri Nets.” In 2016 10th International Conference

on the Quality of Information and Communications Technology (QUATIC), pp. 230-235.

IEEE, 2016.

This paper is about a preliminary approach for the online model-based testing of end-to-

end services in distributed and heterogeneous systems. The focus of this paper is on the

test execution phase, in which sequence diagrams are converted to another more suitable

formalism for execution. Part of Chapter 4 of the thesis is based on this paper.

• Lima, Bruno Carvalhido, and João Faria. "Conformance checking in integration testing of

time-constrained distributed systems based on UML sequence diagrams.” In 12th Interna-

tional Joint Conference on Software Technologies (ICSOFT), 2017.

This paper is about decision procedures and criteria to check the conformance of observed

execution traces against a specification set by a UML SD enriched with time constraints.

Part of Chapter 5 of the thesis is based on this paper.

• Lima, Bruno Miguel Carvalhido, and João Carlos Pascoal Faria. "Towards decentralized

conformance checking in model-based testing of distributed systems.” In 2017 IEEE Inter-

national Conference on Software Testing, Verification and Validation Workshops (ICSTW),

pp. 356-365. IEEE, 2017.

This paper is about conditions upon which conformance errors can be detected locally (lo-

cal observability) and test inputs can be decided locally (local controllability) by the local

testers, without the need for exchanging coordination messages between the test components

during the test execution. Part of Chapter 5 of the thesis is based on this paper.

• Lima, Bruno, and João Pascoal Faria. "A survey on testing distributed and heterogeneous

systems: The state of the practice.” In International Conference on Software Technologies,

pp. 88-107. Springer, Cham, 2016.

This paper is an extended version of ICSOF 2016 paper. Some follow up interviews allowed

us to further investigate drivers and barriers for distributed and heterogeneous systems test

automation. Part of 3 of the thesis is based on this paper.

• Soares, Joao António Custódio, Bruno Lima, and Joao Pascoal Faria. "Automatic Model

Transformation from UML Sequence Diagrams to Coloured Petri Nets.” In MODELSWARD,

pp. 668-679. 2018.
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This paper is about an approach to automatically translate Sequence Diagrams to CPN ready

for execution with CPN Tools, taking advantage of model-to-model transformation tech-

niques provided by the Eclipse Modelling Framework (EMF).

• Lima, Bruno. "Automated scenario-based integration testing of distributed systems.” In

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering, pp. 956-958. 2018.

As part of the participation in the Microsoft student research competition that took place

during the ESEC/FSE 2018 this paper is about algorithms for decentralized conformance

checking and test input generation and for checking and enforcing the conditions (local

observability and controllability) that allow decentralized test execution. Part of Chapter 5

of the thesis is based on this paper.

• Lima, Bruno. "Automated Scenario-Based Integration Testing of Time-Constrained Dis-

tributed Systems.” In 2019 12th IEEE Conference on Software Testing, Validation and

Verification (ICST), pp. 486-488. IEEE, 2019.

As part of the participation on the doctoral symposium of the ICST 2019, this paper is

about algorithms for decentralized conformance checking and test input generation, and for

checking and enforcing the conditions (local observability and controllability) that allow

decentralized test execution. Part of Chapter 5 of the thesis is based on this paper.

• Lima, Bruno, João Pascoal Faria, and Robert Hierons. "Local Observability and Control-

lability Enforcement in Distributed Testing.” In International Conference on the Quality of

Information and Communications Technology, pp. 327-338. Springer, Cham, 2019.

This paper is about an approach with tool support to automatically find coordination mes-

sages that, added to test scenarios, make it locally controllable and locally observable. Parts

of the Chapters 5 and 6 of the thesis are based on this paper.

• Lima, Bruno, and João Pascoal Faria. 2020. DCO Analyzer: Local Controllability and Ob-

servability Analysis and Enforcement of Distributed Test Scenarios. In 42nd International

Conference on Software Engineering Companion (ICSE ’20 Companion), 2020.

This paper is about DCO Analyzer, the first tool that checks if distributed test scenarios spec-

ified by means of UML sequence diagrams are locally observable and locally controllable,

and automatically determines a minimum number of coordination messages to enforce these

properties. Part of Chapter 6 of the thesis is based on this paper.

• Lima B, Faria JP, Hierons R. Local observability and controllability analysis and enforce-

ment in distributed testing with time constraints. IEEE Access. 2020 Aug 17.

This journal paper summarizes the work developed in this thesis and presents the main

results. Parts of the Chapters 5, 6 and 7 of the thesis are based on this paper.
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1.4 Document Structure

In addition to this chapter, this document is divided into seven more chapters:

• Chapter 2 presents the state of the art on distributed systems testing. This state of the art

analysis was carried out according to five different topics, namely:

– Model-based testing for distributed systems

– Testing architectures for distributed systems

– Observability and controllability in distributed systems testing

– Time constraints in distributed systems testing

– Testing infrastructures for distributed systems testing

This allowed us to identify existing gaps and focus our work on areas of research that were

less explored.

• Chapter 3 describes the analysis of the state of practice in distributed and heterogeneous

systems testing from the perspective of practitioners in order to understand what the real

difficulties and needs of companies that are testing these types of systems.

• Chapter 4 presents our proposed hybrid architecture and overall approach for testing dis-

tributed systems.

• Chapter 5 proposes novel local observability and controllability analysis and enforcement

algorithms.

• Chapter 6 describes DCO Analyzer, a novel controllability and observability analysis and

enforcement tool for time-constrained distributed systems testing.

• Chapter 7 presents the validation carried out not only through a set of test cases produced

to cover various situations, as well as a business case.

• Chapter 8 concludes this research work.



Chapter 2

Background and State of the Art

This chapter introduces the concepts and terminologies used in this thesis and presents a survey of

the state of the art on time-constrained distributed systems testing. The research carried out was

based on a systematic research seeking not only to find answers to the RQ1 and RQ2 presented in

Chapter 1, but also to find principles and foundations that could be applied in the development of

the work described in this thesis.

This chapter is organized as follows. Section 2.1 presents some software testing concepts;

Model-based testing is described in section 2.2. Testing frameworks for distributed systems are

presenting in Section 2.3; Section 2.4 presents the test architectures for distributed systems test-

ing; The observability and controllability problems in distributed systems testing are described in

Section 2.5; Other testability issues in distributed systems testing are presented in Section 2.6;

Section 2.7 analyses the time constraints problems in distributed systems testing; Section 2.8 sum-

marizes the main characteristics and features covered by the related work analyzed in this chapter

and answers the RQ1 and RQ2 presented in Chapter 1.

2.1 Software Testing Concepts

Software testing is a process, or a series of processes, designed to make sure computer code does

what it was designed to do and that it does not do anything unintended. Software should be

predictable and consistent, offering no surprises to users (Myers et al., 2004). In this section it is

presented some background on software testing concepts and terminology used in this chapter and

throughout the thesis.

2.1.1 Test Levels

There are different levels during the software testing process (Beizer, 2003). Typically the levels

considered are: unit testing, integration testing, system testing and acceptance testing.

Unit testing is the testing of individual hardware or software units or groups of related units

(IEEE, 1990). The goal of unit testing is to isolate each part of the program and show that individ-

ual parts are correct in terms of requirements and functionality.

9
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In the case of a distributed and heterogeneous system, comprising a set of interconnected

components running on different machines or execution environments, unit testing usually refers

to the testing of individual components. In automated testing, if a component under test calls other

components, such components need to be simulated by test stubs (see definition of test stub in the

next section).

Integration testing is the testing in which software and/or hardware components are combined

and tested to evaluate the interaction between them (IEEE, 1990).

In the case of integration testing of a distributed and heterogeneous system, besides checking

the interactions of system components with the environment (users or external systems), it is also

useful to check the interactions between components of the system, to improve fault detection and

localization. Checking such interactions may be challenging, because of observability limitations.

System testing is the testing conducted on a complete, integrated system to evaluate the sys-

tem’s compliance with specified requirements (IEEE, 1990). System testing is concerned mainly

with testing the interactions of the system with the environment (users or external systems), and

evaluating extra-functional properties.

In the case of a distributed and heterogeneous system, interactions with the environment (users

or external systems) typically occur at multiple locations. In automated testing, coordinating the

test components that simulate those users or external systems is specially challenging, because of

their distributed nature.

Acceptance testing is the formal testing conducted to determine whether or not a system

satisfies its acceptance criteria and to enable a customer, a user, or other authorized entity to

determine whether or not to accept the system (IEEE, 1990). The challenges of acceptance testing

in the context of distributed and heterogeneous systems are similar to those applied to system

testing.

2.1.2 Test Case Design Strategies

Software testing methods are traditionally divided into white-box testing (Ostrand, 2002), gray-

box testing (Linzhang et al., 2004) and black-box testing (Edwards, 2001).

In white-box testing, the internals of the system under test (SUT) are all visible. As a con-

sequence, the knowledge about these internal matters can be used to create tests. Furthermore,

white-box testing is not restricted to the detection of failures, but is also able to detect errors.

Failures occur when there exist discrepancies between the specification and the behavior of the

system (Mills et al., 1987). Errors are an incorrect internal state that is the manifestation of some

fault that occur while running the test (Ammann and Offutt, 2016). Advantages are tests of higher

quality because of the knowledge about system internals; however, there is also a big disadvantage,

because looking into all aspects of a program requires a high effort.

In black-box testing, the SUT internal content is hidden from the tester. The tester only has

knowledge about possible input and output values. The black-box testing only allows to test

input-output functionality (functional testing). As an advantage, this technique is close to realistic

conditions. One important disadvantage is the lack of internal information, which could be useful
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to generate tests, because sometimes it is necessary to know the content to test boundary values,

that are normally responsible for failures.

In gray-box testing the advantages of both previous techniques are combined. The test design

is realized at white-box level but the tests are executed at black-box level. For the tester, this has

the advantage of having access to the SUT internal information while designing tests; however,

the tests are executed under realistic conditions, where only failures are detected. Gray-box testing

techniques are used for commercial model-based testing (MBT), where, e.g., the test model con-

tains information about the internal structure of the SUT, but the SUT internal matters themselves

are not accessible (e.g. for reasons of non-disclosure).

2.1.3 Test Automation

Several testing activities can be automated, with varying costs and benefits (Ramler and Wolf-

maier, 2006).

The testing activity that is most commonly automated is test execution. This requires that test

cases are implemented as executable test scripts, test classes, etc.

To support the automation of the test activities the test harness may also have to be developed.

In software testing, a test harness is a collection of software and test data configured to test a

program unit by running it under varying conditions and monitoring its behavior and outputs.

Figure 2.1: Test harness

As shown in the Figure 2.1, there are typically three main types of test components in a test

harness: test driver, test stub and test monitor. The test drivers are responsible for calling the

target code, simulating calling units or a user. In automatic testing they are also responsible for the

implementation of test cases and procedures. The test stubs simulate modules, units or systems

called by the target code; normally mock objects are used for this purpose. The test monitor is

responsible to collect all the informations (or messages) sent and received by the component under

test. This information is important for fault detection and diagnosis.
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Automatic test execution is important to reduce the cost of regression testing, support iterative

development approaches, enable load and performance testing, and avoid human errors that are

common in manual test execution, among other reasons.

In the case of distributed and heterogeneous systems, automated test execution is specially

challenging, because of the need to support multiple platforms and the need to coordinate the

injection of test inputs and the monitoring of test outputs at distributed points, and very few testing

frameworks exist for such systems (Lima and Faria, 2016).

Test coverage analysis is another testing activity that is commonly automated, usually in con-

nection with automated test execution. Test coverage analysis is specially important in white-box

testing, to determine parts of the code that are not being properly exercised, and help identifying

additional test cases for increasing coverage.

Test case generation is usually performed manually. However, model-based testing (MBT)

methods and tools have attracted increasing attention from industry, because of the ability to au-

tomatically generate test cases from system models. Based on behavioral models of the SUT,

MBT tools are able to generate abstract test cases, which can be subsequently translated into con-

crete test cases ready for execution, based on mapping information between the model and the

implementation.

In the case of distributed and heterogeneous systems, automated test case generation is spe-

cially challenging, because of the difficulty of modeling several characteristics inherent to such

systems, such as timing aspects, concurrency aspects, and non-determinism, among other features,

with very limited support provided by current MBT tools.

2.2 Model-based Testing

2.2.1 Model-based Testing Process

Model-based testing (MBT) usually means functional testing for which the test specification is

given as a test model. The test model is derived from the system requirements. In model-based

testing, test cases can be derived (semi-)automatically from the test model. Coverage criteria are

often considered at the test model level. After we have the test cases definition, with some extra

mapping information it is possible implement the test cases to obtain executable tests. With the

executable tests we are prepared to run the test cases on the SUT. In the end of this process we

obtain not only the errors but also the coverage (which part or interactions of the SUT was tested

in each test). Figure 2.2 represents a typical MBT test process.

2.2.2 Test Levels

MBT can be applied to all levels from unit to system. Acceptance tests are usually not covered

because user acceptance often also depends on many imprecise expectations. Figure 2.3 shows the

application fields of model-based testing.



2.2 Model-based Testing 13

Figure 2.2: Typical MBT test process (UML activity diagram)

Figure 2.3: Application fields of model-based testing (Weißleder, 2010)

2.2.3 Test Generation

One of the most important characteristic of the MBT is automation. Given the test model and

some test case specifications, test cases can be derived stochastically, or by using dedicated graph

search algorithms and search-based techniques, model checking, symbolic execution, deductive

theorem proving, or constraint solving (Utting et al., 2012).

Random generation of tests is performed by sampling the input space of a system. It is
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straightforward to implement, but it takes an undefined period of time to reach a certain satisfying

level of model coverage (Zander et al., 2017).

Search-based algorithms for model-based test generation include graph search algorithms

such as node or arc coverage algorithms (e.g. the Chinese Postman algorithm, which covers each

arc at least once), as well as other search-based algorithms such as metaheuristic search, evolu-

tionary algorithms (e.g. genetic algorithms), and simulated annealing (Utting et al., 2012).

(Bounded) model checking is a technology for verifying or falsifying properties of a system.

For certain classes of properties, model checkers can yield counter examples when a property is not

satisfied. The general idea of the test case generation with model checkers is to first formulate test

case specification as reachability properties, for instance, eventually, a certain state is reached, or a

certain ’transition fires’. A model checker then, by searching for counter examples for the negation

of the property, yields traces that reach the given state or that eventually make the transition fire.

Other variants use mutations of models or properties to generate test suites (Utting et al., 2012).

Symbolic execution runs an (executable) model not with single input values but with sets of

input values. These are represented as constraints. In this way, symbolic traces are generated:

one symbolic trace represents many fully instantiated traces. The instantiation to concrete values

must obviously be performed in order to get test cases for a SUT. Symbolic execution is guided

by test case specifications. Often enough, these boil down to reachability statements as in the case

of model checking. In other cases, test case specifications are given as explicit constraints, and the

symbolic execution is guided by having to respect these constraints (Utting et al., 2012).

Deductive theorem proving can also be used for the generation of tests, particularly with

provers that support the generation of witness traces or counterexamples. One variant is similar

to the use of model checkers where a theorem prover replaces the model checker. Most often,

however, theorem provers are used to check the satisfiability of formulas that directly occur as

guards of transitions in state-based models. A theorem prover can compute assignments for the

variables that occur in the guards and that, in turn, give rise to values of the respective input and

output signals. A sequence of such sets of signals then becomes the test case (Utting et al., 2012).

Constraint solving is useful for selecting data values from complex data domains, e.g. in

combinatorial n-wise testing. It is also often used in conjunction with other methods such as

symbolic execution, graph search algorithms, model-checking or theorem proving where specific

relationships between variables in guards or conditions are expressed as constraints and efficiently

solved by dedicated constraint solvers (Utting et al., 2012).

In most cases the test tools use a combination of the previous technologies to generate test

cases.

2.2.4 Test Execution

Regarding test execution, MBT approaches can be done offline or online (adaptive).

In offline testing, test generation and execution occur as separate phases, test cases are first

generated and can then be executed (Schulz et al., 2007). The advantages of offline testing, when

applicable, are directly connected to the generation of test repository. The tests repository can be
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managed and executed using existing test management tools (e.g. TestLink (TestLink Develop-

ment Team, 2020), MBTSuite (sepp.med gmbh, 2020)), which means that fewer changes to the

test process are required. Tests can be generated and then executed multiple times on the SUT.

The test generation and execution can be performed on different machines or environments and at

different times (Utting et al., 2012).

In online testing, test generation and execution are intermixed, so that the test generation algo-

rithms can react to how the SUT behaves (Mikucionis et al., 2004). This is sometimes necessary

if the SUT is non-deterministic, because the test generator can see which path the SUT has taken,

and follow the same path in the model (Utting et al., 2012).

2.2.5 Input Models

Regarding the input models there are two distinct approaches, state-based and scenario-based.

Figure 2.4: UML behavioral state machine diagram (Fakhroutdinov, 2013)

In state-based approaches UML state machines (Lilius and Paltor, 1999) or similar models

(Veanes et al., 2008; Tani and Petrenko, 2013) are used for describing all possible behaviors of the

SUT or its components.

When testing from a state-based model, there are several test strategies such as state coverage,

transition coverage and path coverage that require the generation of a set of feasible test paths and

associated constraints in order to produce a test suite. However, the automatic generation of test

data is not simple due to the presence of infeasible paths. A given transition path can be infeasible

due to the variable interdependencies among the actions and conditions. If an infeasible path is
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chosen to exercise certain transitions, these transitions are not exercised. Problems arising from

the existence of infeasible paths are generally undecidable. In addition, feasible transition paths

are subject to different levels of traversal complexities; it can be hard to find a set of test data that

can trigger a given feasible test path (Kalaji et al., 2009; Derderian et al., 2010; Rao et al., 2016).

Figure 2.4 presents a UML behavioral state machine diagram showing the top-level state ma-

chine for a Bank Automated Teller Machine (ATM). This diagram represents the states that the

ATM can remain in as well as the valid transitions between those states.

In scenario-based approaches, UML SDs (Javed et al., 2007), message sequence charts (MSC)

(Damm and Harel, 2001) or similar models (Grieskamp, 2006b) are used for describing interac-

tions between the system components or with the environment in key scenarios, minimizing test

case explosion (Grieskamp, 2006a).

When testing from scenario-based models the generation of test data is simpler, since the

scenario can, in the end, represent a single test path simplifying the process of exercising certain

actions. However, to test the entire system we will have to test all test scenarios, which implies

an increase in the number of models or the creation of more complex models, with control flow

variants.

Figure 2.5 presents a UML SD of an ATM usage scenario. In this scenario, interactions be-

tween the ATM, the user and the card issuing bank are represented in the cash withdrawal scenario.

Figure 2.5: UML SD diagram of a cash withdrawal scenario at an ATM.
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If we compare the two models present in Figures 2.4 and 2.5, we can see that the scenario rep-

resented in Figure 2.5 is just one of the possible operations that can be performed in the "Serving

Customer" state represented at the bottom of Figure 2.4.

2.2.6 MBT Approaches for Integration Testing

Taking advantage of the systematic review prepared by (Dias Neto et al., 2007), we analyzed more

than 100 MBT approaches. As some of the principles used in MBT approaches for integration

testing can be applied in testing distributed systems, we have identified 25 whose scope is the

integration testing, which are presented in Table 2.1.

To analyze which principles of these approaches could be applicable in our context, we an-

alyzed each of them according to four different criteria. First, if the approach uses an industry

standard input model, second if the entry model is a behavioral model, third, if they support the

characteristics of distributed systems (time constraints, concurrency, no global clock) and, finally,

if the approaches have support tools. The result of this analysis can be seen in Table 2.2.

Another limitation that we found is the lack of tool support; most MBT approaches don’t have

tools to support the whole test process. Even when there are tools to support the whole test process,

several tools are needed with different input/output data formats which require the use of manual

conversion steps that limit the usage of the MBT approaches.

2.3 Testing Frameworks for Distributed Systems

Regarding test concretization and execution for distributed systems, we found in the literature sev-

eral frameworks that can be adapted and integrated for building a comprehensive test automation

solution.

The Software Testing Automation Framework (STAF) (STAF, 2014) is an open source, multi-

platform, multi-language framework designed around the idea of reusable components, called

services (such as process invocation, resource management, logging, and monitoring). STAF

removes the tedium of building an automation infrastructure, thus enabling the tester to focus on

building an automation solution. The STAF framework provides the foundation upon which to

build higher level solutions, and provides a pluggable approach supported across a large variety of

platforms and languages.

Torens and Ebrecht (Torens and Ebrecht, 2010) proposed the RemoteTest framework as a

solution for the testing of distributed systems and their interfaces. In this framework, the individual

system components are integrated into a virtual environment that emulates the adjacent modules of

the system. The interface details are thereby abstracted by the framework and there is no special

interface knowledge necessary by the tester. In addition to the decoupling of components and

interface abstraction, the RemoteTest framework facilitates the testing of distributed systems with

flexible mechanisms to write test scripts and an architecture that can be easily adapted to different

systems.
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Table 2.1: MBT approaches supporting integration testing

Authors Input Models Testing Level

Ali et al. (2007)
UML State Diagram, Collaboration
Diagram and SCOTEM

Integration Testing

Babić (2014) Simulink models Integration Testing
Basanieri and Bertolino (2000) Use Case, Sequence and Class Diagrams Integration Testing
Benz (2007) Concurtasktrees (CTT) Integration Testing
Bertolino et al. (2003) Use Case, Sequence and Class Diagrams Integration Testing
Bertolino et al. (2005) UML Sequence and State Diagrams Integration Testing

Beyer et al. (2003)
Annotated Sequence Diagram
and MCUM

Integration Testing

Briand et al. (2001) Class Diagram and Graph Integration Testing
Chen et al. (2005) Condition Data Flow Diagram Integration Testing

Dai et al. (2004)
UML Interaction, Activity and
State Diagrams

Integration Testing

Efkemann (2014) ITML-B and ITML-A
Integration and
System Testing

Gross et al. (2005) U2TP and TTCN-3 Integration Testing

Hartmann et al. (2000) Statechart Diagram and Graph
Integration and
Unit Testing

Helle and Schamai (2014) UML Testing Profile
Integration and
System Testing

Nieminen and Raty (2015) UML and state machine models
Integration and
System Testing

Polgár et al. (2009) Platform-specific models, workflow Integration Testing
Reis et al. (2007) UML Activity diagrams Integration Testing
Richardson and Wolf (1996) CHAM Integration Testing
Scheetz et al. (1999) UML Class and State Diagram Integration Testing
Sinha and Smidts (2006) WSDL-S, EFSM Integration Testing

Sokenou et al. (2006) UML Sequence and State Diagram
Integration and
Unit Testing

Tretmans (2008) Input/Output Automata
Integration and
System Testing

Wieczorek et al. (2009) Event-B models Integration Testing

Wu et al. (2003)
UML Collaboration/Sequence or
Statechart Diagram

Integration Testing

Xu and Xu (2006) State Model (AOP) Integration Testing

Zhang et al. (Zhang et al., 2009) developed a runtime monitoring tool called FiLM that can

monitor the execution of distributed applications against labelled transition systems (LTL) spec-

ifications on finite traces. Implemented within the online predicate checking infrastructure D3S

(Liu et al., 2008), FiLM models the execution of distributed applications as a trace of consistent

global snapshots with global timestamps, and it employs finite automata constructed from LTL

specifications to evaluate the traces of distributed systems.
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Table 2.2: Comparison of MBT approaches

Authors
Industry
standard

input model

Behavioral
input
model

Time constraints,
concurrency,

no global clock

Tool
Support

Ali et al. (2007)

Babić (2014)

Basanieri and Bertolino (2000)

Benz (2007)

Bertolino et al. (2003)

Bertolino et al. (2005)

Beyer et al. (2003)

Briand et al. (2001)

Chen et al. (2005)

Dai et al. (2004)

Efkemann (2014)

Gross et al. (2005)

Hartmann et al. (2000)

Helle and Schamai (2014)

Nieminen and Raty (2015)

Polgár et al. (2009)

Reis et al. (2007)

Richardson and Wolf (1996)

Scheetz et al. (1999)

Sinha and Smidts (2006)

Sokenou et al. (2006)

Tretmans (2008)

Wieczorek et al. (2009)

Wu et al. (2003)

Xu and Xu (2006)

- Yes, - No, - Partially

Camini et al. (Canini et al., 2011) proposed DiCE, an approach that continuously and au-

tomatically explores the system behavior, to check whether the system deviates from its desired

behavior. At a highlevel DiCE (i) creates a snapshot consisting of lightweight node checkpoints,

(ii) orchestrates the exploration of relevant system behaviors across the snapshot by subjecting
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system nodes to many possible inputs that exercise node actions, and (iii) checks for violations

of properties that capture the desired system behavior. DiCE starts exploring from current system

state, and operates alongside the deployed system but in isolation from it. In this way, testing can

account for the current code, state and configuration of the system. DiCE reuses existing protocol

messages to the extent possible for interoperability and ease of deployment.

2.4 Test Architectures for Distributed Systems Testing

In order to test distributed systems three test architectures have been proposed, with different

conformance relations and fault detection capabilities:

• a purely distributed test architecture with independent local testers communicating synchro-

nously with the SUT components (Ulrich and König, 1999);

• a purely centralized test architecture, in which a single central tester interacts asynchronously

with the SUT components (Hierons, 2014);

• a hybrid test architecture that combines local testers and a central tester (Hierons, 2014).

Figure 2.6: A purely distributed test architecture.

A purely distributed test architecture with independent local testers communicating synchro-

nously with the SUT components is shown in Figure 2.6. In this case the system consists of 4
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components that communicate with each other. In this type of architecture, a local tester is placed

next to each component. The problem with this approach is the lack of coordination between local

testers, which limits the ability to detect failures.

Figure 2.7: A purely centralized test architecture.

A purely centralized test architecture, in which a single central tester interacts asynchronously

with the SUT components is shown in Figure 2.7. In this type of architecture and for the same

system described above, there is only one central tester. The drawback of this approach is the

communication overhead generated and the delays that this can cause since all the next inputs have

to be validated by the central tester that is monitoring the messages exchanged by all components.

If the system to be tested has time constraints, some errors can occur simply due to the delay

caused by the central tester.

A hybrid test architecture that combines local testers and a central tester to achieve a higher

fault detection capability is shown in Figure 2.8. In this hybrid approach, the central tester is

responsible for deciding and sending test inputs to the SUT components, and local testers are

responsible for observing the events (inputs and outputs) at each location; the SUT outputs are

observed by the local testers and sent to the central tester. This way, the local testers are able to

detect conformance faults associated with an incorrect combination or an incorrect ordering of

events occurring in the same location, whilst the central tester is able to detect conformance faults

associated with an incorrect combination of events or an incorrect ordering of pairs of input and

output events occurring at different locations (e.g., an SUT output that is prematurely produced at

one location before an input is injected at another location).

In our approach, we further decentralize test input generation and injection, minimizing the

messages exchanged between the test components during test execution and increasing the respon-

siveness of the test harness, whilst keeping the same fault detection capability. Another difference
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Figure 2.8: A hybrid test architecture.

in our work is that we check not only the interactions with the environment (system testing per-

spective), as in those works, but also the interactions between the system components (integration

testing perspective), as well as timing constraints.

2.5 Observability and Controllability in Distributed Systems Testing

One difficulty in distributed systems testing is observability, because communication delays and

the lack of a global clock limit the conformance faults detectable. Another difficulty is controlla-

bility, i.e., the difficulty for the local testers to decide when and what test inputs to inject, without

causing global conformance faults (e.g., in the presence of race conditions or non-local choices).

Solutions proposed in the literature are based on the insertion of coordination messages between

test components (Mitchell, 2005; Hierons, 2012; Boroday et al., 2009), but they do not handle

timing constraints and, in most of the cases, they address only the “when” and not the “what”

aspect (i.e., they don’t consider control flow variants).

In (Mitchell, 2005), the author discusses the problems related to race conditions in scenarios

described through MSCs or UML SDs, and presents solutions to these problems. The focus of

their work is on analyzing scenario-based requirements specifications, but such scenarios can also

be used for testing purposes. However, only basic scenarios are considered, without control flow

variants and timing constraints.
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In (Hierons, 2012), the author investigates the use of coordination messages to overcome con-

trollability problems when testing from an input/output transition system (IOTS) and give an al-

gorithm for introducing sufficient messages. The algorithm operates by identifying all of the

controllability problems, and then resolving these one at a time. The author also characterizes

the types of controllability problems that cannot be solved this way, and introduces the notion

of strongly uncontrollable test cases. The author also proves that the problem of minimizing the

number of coordination messages used is NP-hard. However, the approach is focused on system

testing only and not integration testing, i.e., the messages exchanged between the system compo-

nents are not considered (the observation of these messages by the local testers may reduce the

need for introducing coordination messages). Other differences with our work are that they do

not consider timing constraints, and assume that test inputs are deterministic (which we do not

require).

In (Boroday et al., 2009), the authors propose algorithms to extend test scenarios for distributed

systems represented by MSCs or UML SDs, in order to obtain race-free scenarios suitable for

test implementation, by inserting coordination messages between test components and quiescence

observation events (based on timeout events) in each test component. However, in their work, only

the interactions with the environment are modeled, and they do not consider control flow variants

and time constraints.

A common limitation of the above works (except (Mitchell, 2005)) is that they only con-

sider the messages exchanged with the environment (system testing perspective), represented by

a single input or output event, and not the messages exchanged between the system components

(integration testing perspective), that need to be represented by pairs of send and receive events.

2.6 Other Testability Issues in Distributed Systems Testing

When testing a distributed system, it is sometimes necessary to test a running/deployed system

(runtime validation), the additional challenge being that testing should not interfere with system

use. In runtime validation, a component of a system is said to be testable if it has a separate test in-

terface whose use reduces the potential for interference. Isolation methods have been proposed for

components that are not testable. There is a line of work in which approaches to runtime validation

have been developed using Testing and Test Control Notation Language Version 3 (TTCN-3) in

order to enhance applicability (Lahami et al., 2012a). The proposed approach (TT4RT) includes

a test management layer and a test isolation layer. A further development aimed to optimise the

placement of test components that interact with system components, with this taking into account

resource availability and network connectivity (Lahami et al., 2012b). It has also been noted that

a system might have some components that are testable and some that are not, with a procedure

being proposed to choose the appropriate test isolation approaches (Lahami and Krichen, 2013).

The focus of this line of work is on the execution of abstract test cases that have already been

provided, and it does not address coordination issues. However, there is potential for runtime
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validation approaches to be integrated with techniques, such as those described in this thesis, that

analyse test case and address coordination problems where they exist.

2.7 Time Constraints in Distributed Systems Testing

The temporal dimension is addressed in several works, but very few refer to distributed systems

testing.

In (Zheng et al., 2002), the authors derive the valid traces for Timed Message Sequence Charts

(T-MSCs), similar to UML SDs, but do not address the problem of conformance checking based

on distributed observations. Timed traces are represented by incorporating special time events

between normal events.

In (Akshay et al., 2007), the authors present a timed model of communicating finite-state

machines, which communicate by exchanging messages through channels and use event clocks to

generate collections of T-MSCs. In a more recent work (Akshay et al., 2015), the authors address

model checking message-passing systems with real-time requirements. As behavioral specifica-

tions, they use TC-MSCs (time-constrained MSCs), in which lower and upper bounds on the time

interval between certain pairs of events are added to plain MSCs. As system model, they use a

network of communicating finite state machines with local clocks, whose global behavior can be

regarded as a timed automaton. Their goal is to verify (by model checking) that all timed behav-

iors exhibited by the system model conform to the timing constraints imposed by the specification,

and not to check the conformity of the implementation with the specification or system model.

In (Hierons et al., 2012), the authors derive conformance relations taking into account the

event timestamps obtained with the local clocks present at each system port (point of interaction

with the environment), assumed to differ up to a maximum clock skew, but only for system testing.

In (Gaston et al., 2013), the authors show that conformance checking in the presence of time

constraints, within a distributed test architecture without a global clock, can be done in two phases:

in the first phase, each local tester checks local conformance according to the tioco conformance

relation; in the second phase, the local traces are brought together and it is checked if events are

exchanged following some communication rules. Their results do not apply directly to UML SDs

(OMG, 2017), since they assume internal multicast communications, among other differences.

However, none of the above works address the observability and controllability properties, as

we do in this thesis.

The only previous work we found that relates the issue of observability and controllability

to time constraints is (Khoumsi, 2002). In this article, the author demonstrates how to solve the

problems of observability and controllability using coordination messages and time constraints.

However, they do not support timing constraints or non-determinism in the input models, only

consider interactions with the environment, and restrict their attention to SUT behaviors consisting

of alternating sequences of inputs from the environment and outputs to the environment. In a more

recent work (Azzouzi et al., 2020), the authors propose to solve controllability problems using so
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called synchronization messages, for the same type of input models, but do not support timing

constraints either in the input model.

2.8 Summary

Table 2.3 summarizes the main characteristics and features covered by the related work previously

analyzed. Although some works address observability and controllability problems in distributed

systems testing and design, none addresses the problem of observability and controllability analy-

sis and enforcement for time-constrained distributed systems.

Regarding the research questions presented in Chapter 1, we can partially answer RQ1 and

RQ2 as follows:

RQ1 - What are the main difficulties and needs in the integration testing of distributed systems

listed in the state of the art and state of practice?

Looking at the state of the art, we can say that there is a lack of studies that solve the prob-

lem of observability and controllability analysis and enforcement for time-constrained distributed

systems. This is a critical problem in this type of systems. However, the principles adopted by

the approaches present in Table 2.3, namely at the level of solutions to the observability and con-

trollability problems in distributed systems testing and design are a good starting point for this

thesis.

RQ2 - What is an adequate architecture and approach to conduct integration tests in these

types of systems?

Looking at the analysis performed, the hybrid test architecture that combines local testers and

the central tester is one that appears to be the architecture that best suits this type of system, namely

due to its failure detection capacity. For this reason it will be our starting point in the proposed

solution for the integration testing in this type of systems.
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Chapter 3

State of the Practice on Testing
Distributed and Heterogeneous Systems

To explore the testing of distributed and heterogeneous systems (DHS) from the point of view of

industry practitioners, in order to assess the current state of the practice and identify opportuni-

ties and priorities for research and innovation initiatives we conducted an survey and follow-up

interviews with some survey respondents. The method, results and conclusions of this survey are

presented in this chapter. Section 3.1 describe the research method and scope. Results are pre-

sented in Section 3.2. Section 3.3 presents a discussion of the results obtained from the survey. In

order to analyze the drivers and barriers for DHS test automation in companies, some follow-up

interviews with some survey respondents are present in Section 3.4. Section 3.5 point out other

related surveys in this subject. Section 3.6 summarizes the main conclusions and answers the RQ1

presented in Chapter 1.

3.1 Research Method and Scope

The research method used in this work is the explanatory survey. Explanatory surveys aim at

making explanatory claims about the population. For example, when studying how developers use

a certain inspection technique (Wohlin et al., 2003).

3.1.1 Goal

The main goal of this survey is to explore the testing of DHS from the point of view of industry

practitioners, in order to assess the current state of the practice and identify opportunities and

priorities for research and innovation initiatives.

More precisely, we aim at responding to the following research questions:

• SRQ1: How relevant are DHS in the software testing practice?

• SRQ2: What are the most important features to be tested in DHS?
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• SRQ3: What is the current status of test automation and tool sourcing for testing DHS?

• SRQ4: What are the most desired features in test automation solutions for DHS?

3.1.2 Survey Distribution and Sampling

Since our main goal was to collect the point of view of industry practitioners that were involved in

the testing of DHS, we shared the survey to the participants of two industry-oriented conferences

in the software testing area: TESTING Portugal 20151 and User Conference on Advanced Auto-

mated Testing (UCAAT) 20152. In total we distributed 250 surveys and we obtained 167 answers.

From these 167 answers, only 147 were complete and valid. Most of the invalid answers were

related with respondents that did not complete the survey.

3.1.3 Survey Organization

The survey was composed of two main parts. The first part was an introduction, where we ex-

plained the goal of the survey and define the term "Distributed and Heterogeneous Systems". In

the context of this survey we define a Distributed and Heterogeneous System as a set of small in-

dependent systems that together form a new distributed system, combining hardware components

and software systems, possibly involving mobile and cloud-based platforms.

The second part of the questions is divided in three different groups. The first group is related

with the professional characterization of the participants. The second group contains questions

about the company characterization. The last group contains the questions related with the testing

of DHS and the main research questions underlying the survey. The survey questionary can be

found in Appendix A.

3.2 Results

3.2.1 Participants Characterization

Before drawing conclusions on the main questions of this survey it is important to realize the

profile of the survey participants. The results show that most of the people (70%) that responded

this survey work in software testing, verification & validation and 41% are in the current position

for more than five years (see Figure 3.1).

Regarding the experience in software testing, the results show (see Figure 3.2) that the majority

of the survey participants have more than 5 years of experience in software testing in general and

40% have more than 5 years of experience with DHS.

1https://testingportugal.pstqb.pt/2015/
2https://ucaat.etsi.org/2015/

https://testingportugal.pstqb.pt/2015/
https://ucaat.etsi.org/2015/
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Figure 3.1: Current Position and Time in Current Position.

Figure 3.2: Time in Software Testing.

3.2.2 Company Characterization

The companies surveyed worked in a large range of industry sectors. The results represented in

Figure 3.3 identify more than 10 different industry sectors.

We also analyzed the size of the companies according to their number of collaborators. Most

of the companies are large companies, 37% have between 100 and 1,000 collaborators and 45%

have more than 1,000 collaborators (Figure 3.4).

The answers to ’In what role(s) does your company conducts software test, if any?’ show that

half of the companies performs tests to the software developed by themselves (Figure 3.5).

Regarding the types of test levels performed, we realize from the answers (Figure 3.6) that

the unit testing level is the less performed and the other three levels (integration, system and

acceptance) are performed with the same frequency.

3.2.3 Distributed and Heterogeneous Systems Testing

Focusing now on the main questions of this survey, specifically related to the testing of DHS, the

answers to ’In what role(s) does your company conducts software test (for DHS), if any?’ show

that a vast majority of 90% of the companies (all but 10%) conducts tests for DHS in at least one

role, with 42% of the companies performing tests for DHS developed by themselves (Figure 3.7).

We also tried to understand what kinds of levels are most commonly used in the testing of

such systems. Regarding the responses obtained (Figure 3.8), there is a higher emphasis on system
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Figure 3.3: Industry Sectors.

Figure 3.4: Company Size.

testing (71%) followed by integration testing (65%). Only 8% of the respondents did not mention

any test level for DHS.

Regarding the most important features that need to be tested in DHS, the results in Figure 3.9

show that the feature that was considered the most important to be tested was ’Interactions between

components of the system’ (with 76% of responses high or very high), followed by ’Interactions

between the system and the environment’ (71%) and ’Multiple platforms’ (66%). All the features

have been considered of ’very high’ or ’high’ importance by a majority of respondents (50% or

more).
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Figure 3.5: Company Roles.

Figure 3.6: Test Levels.

Regarding the level of test automation for DHS, the results presented in Figure 3.10 show that

75% of the tests follow some automated process, however only 16% are fully automatic, which is

lower than the 25% who claim to perform only manual testing.

For people who responded that there is at least some automatic process, we asked what kind

of tool they use. With this question we can understand the level of effort required to automate the

testing process. Looking at the results (Figure 3.11) we realize that only 31% use a commercial

tool to automate the process, and the majority, 69%, use a tool developed in-house, reusable or not

in different SUTs.

Regarding the desired features of a test automation solution for DHS, the results presented in
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Figure 3.7: Test Roles DHS.

Figure 3.8: Test Levels DHS.

Figure 3.12 show that the most important features (based in the percentage of responses high or

very high) in an automated testing tool for DHS are ’Support for automatic test case execution’

(75%) and ’Support for multiple platforms’ (71%).

As a possible solution to test DHS, we asked the participants in this survey if they would find

useful a tool to test these systems that use only a model of interactions (UML sequence diagram)

as an entry model. The results (Figure 3.13) show that 86% consider useful a tool with these

characteristics.
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Figure 3.9: Features.

Figure 3.10: Automation Level.
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Figure 3.11: Automation Tool.

Figure 3.12: Tool Features.

3.2.4 Multivariate Analysis

For questions specifically related to the opinion of the participants, a multivariate analysis was held

with the aim to determine whether the participants’ responses depend on their current function

(Software testing, verification & validation versus all the others).
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Figure 3.13: New Tool.

The results of the chi-square test for independence show that there is no statistically significant

association (for a 95% significance level) between the current function (Software testing, verifica-

tion & validation versus all others) and the answers to the questions shown in Figures 3.9, 3.12 or

3.13.

3.3 Discussion

3.3.1 Relevance of respondents

The results presented in the previous section show that this survey met the original purpose with

regard to their target audience, since 70% of respondents’ primary responsibility is related to ’Soft-

ware testing, verification & validation’. With regard to their experience, the results showed that

they are not only people who are mostly in their current position for several years, as work with

software testing in general and specifically with DHS. With respect to the type of companies, the

results show that this survey covers companies with diverse activity sectors and also large compa-

nies (45% have more than 1000 collaborators) which provides a great support to the conclusions

reached.

Concerning the main conclusions we can draw from the results, they are next organized ac-

cording to the initial research questions.

3.3.2 SRQ1: How relevant are DHS in the software testing practice?

The results (Figure 3.7) show that a vast majority of approximately 90% of the companies surveyed

(all with software testing activities in general) conducts tests for DHS, in at least one role and at

least one test level, hence confirming the high relevance of DHS in software testing practice.
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3.3.3 SRQ2: What are the most important features to be tested in DHS?

Regarding the most important features that need to be tested in DHS, the results in Figure 3.9 show

that the feature that was considered the most important to be tested was ’Interactions between

components of the system’ (with 76% of responses high or very high), followed by ’Interactions

between the system and the environment’ (71%) and ’Multiple platforms’ (66%).

Nevertheless, all the features inquired were considered of high or very high importance by a

majority of respondents (50% or more).

3.3.4 SRQ3: What is the current status of test automation and tool sourcing for
testing DHS?

The results show that the current level of test automation for DHS is still very low, and there is

large room for improvement, since 25% of companies in the survey claim that they only perform

manual tests, against only 16% who claim to test DHS with a full automatic process.

If we look for companies that have some type of automation in its testing process, we realize

that the automation process is requiring a high effort in the creation / adaptation of own tools,

because only 31% of companies claim to use a commercial tool to test these types of systems.

3.3.5 SRQ4: What are the most desired features in test automation solutions for
DHS?

Regarding the conclusions that can be drawn for future work, particularly at the level of creating

tools that can reduce the effort required to test DHS, looking at Figure 3.12, we realize that com-

panies identify as key aspects of a tool to test such systems the ability to automate test execution

(75% of responses with high or very high importancte) and the support for multiple platforms

(71%).

Nevertheless, all the features inquired were considered of medium, high or very high impor-

tance by a large majority of respondents (83% or more).

The comparison of the degree of importance attributed to automatic test case execution (96% of

the responses mentioning a medium, high or very high importance in Figure 3.12) with the current

status (78% of companies applying automatic text execution in Figure 3.10), show that there is a

significant gap yet to be filled between the current status and the desired status of automatic test

case execution.

The gap is even bigger regarding automatic test case generation, with 83% of the responses

mentioning a medium, high or very high importance in Figure 3.12, and only 23% of the compa-

nies currently applying automatic text generation in Figure 3.10.

We realized even by the Figure 3.13, that companies are highly receptive to a test tool that has

only a model of interactions as an input model for automatic test case generation and execution.
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3.4 Case Based Analysis of Test Automation Obstacles

In order to analyze the drivers and barriers for DHS test automation in companies, we conducted

follow-up interviews with some survey respondents. For the interviews we selected a sample of

survey respondents from companies with different sizes (in terms of number of employees) and

different test automation strategies.

3.4.1 Case A

Company A is a small company that develops software for external customers. The company

performs manual tests on the software they develop. The justifications given by this company for

only performing manual testing are:

• the low economic capacity to purchase commercial testing tools. Small companies and

startups have limited budgets that have to be managed with many limitations and focusing

on the rapid development of their products, leaving aside investments on test tools;

• the lack of human resources (in terms of availability and expertise) to allocate to test au-

tomation tasks. This type of company usually has a small number of employees, so all end

up taking on various tasks. As the main focus is the rapid development of products, the use

of any testing tool that requires additional learning time is immediately discarded;

• if they adopted a test automation solution, it would be costly to maintain automated test

cases because of constant changes of product requirements and features, implying frequent

changes in the test cases and test harness.

3.4.2 Case B

Company B is a large company that develops software for government and military areas. This

company uses automation for test execution but still uses a manual process for test case generation

(i.e., the creation of test scripts). For test automation, the company uses tools developed in-house,

based on open-source frameworks. The justification given for not resorting to commercial tools is

mainly due to the high costs charged by suppliers of these tools, often requiring the purchase of

extra plug-ins for any additional feature needed.

Besides that reason, the following justifications were given for using tools developed in-house:

• to maintain knowledge within the company. Large companies prefer to develop their own

tools because they are often unwilling to share information about their products with com-

mercial tool vendors. For this reason they make use of open source tools that can be easily

modified by the experts of the test area of the company itself;

• to be able to make adjustments to the tools more quickly, not being dependent on any ven-

dor. Commercial tools leave companies dependent on their manufacturer, so large compa-

nies prefer to develop their own testing tools, since in the current market conditions it is

increasingly important to have a quick reaction capability to modify the software.
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With regard to manual test generation, the following justifications were given by the represen-

tative of the company for not using any automation process:

• the software developed by the company has very specific features that might be difficult to

address with existing test generation tools;

• the lack of knowledge of company staff with regard to the creation of models needed as

input for test case generation and the subsequent generation of test cases (this is one aspect

that the company intends to improve in the near future).

3.4.3 Case C

Company C is a small to medium company that provides consulting services in the area of software

testing. Most automation solutions that the company proposes and implements for its customers

are related with test execution (and not test generation).

The reasons given for this have to do mainly with:

• the difficulty to automatically generate test cases;

• customers have no system model;

• the creation of system models requires a great effort;

• the system being tested is in a state of constant evolution and therefore not worth the effort

in automatic test generating (or event automatic test execution).

As regards the tools that this company suggests to their customers for test execution automa-

tion, in most cases they recommend commercial testing tools. According to the representative of

this company, this choice happens due to the following reasons:

• commercial tools are "ready to use";

• commercial tools do not require that the company has specialized human resources to adapt

the test tool.

However, when the client has know-how in the test area, this company also indicates open source

solutions that, in spite of requiring more maintenance, end up giving more flexibility and of course

greater freedom to their users.

3.4.4 Synthesis

Analyzing the answers we have come to the conclusion that there are still several barriers and

obstacles that prevent companies from adopting a fully automated test process.

Regarding the reasons for not adopting an automated test execution approach, we conclude

that the main reasons are:
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• cost of commercial testing tools (A);

• lack of human resources (availability and expertise) (A);

• frequent changes in the software under test (A, C).

For companies that have some level of automation in the testing tasks, the choice between

commercial tools and in-house tools (usually based on open source tools) depends essentially on

the type of company, since although the commercial tools are referred in the interviews as "ready

to use" facilitating in this way the test automation process, they have several drawbacks, namely:

• are expensive, especially if extra functionalities and/or platforms are required (B);

• create too much dependence from vendors, and reduce flexibility for extensions and adap-

tations (B, C);

• know-how related with test automation is kept outside the company (B).

Regarding the reasons for choosing between a manual versus an automated test generation

approach (with automatic test generation from models), we found:

• lack of human resources (availability and/or expertise) (A,B);

• frequent changes in the software under test (A,B,C);

• lack of system models (B,C);

• effort required for the creation of system models (B,C).

3.5 Other Surveys

We only found in literature one survey (Ghazi et al., 2015) that discuss some aspects related to

the testing of heterogeneous systems. The survey conducted by Ghazi et al. (2015) explored the

testing of heterogeneous systems with respect to the usage and perceived usefulness of testing

techniques used for heterogeneous systems from the point of view of industry practitioners in the

context of practitioners involved in heterogeneous system development reporting their experience

on heterogeneous system testing. For achieving this goal the authors tried to answer two research

questions:

• Which testing techniques are used to evaluate heterogeneous systems?

• How do practitioners perceive the identified techniques with respect to a set of outcome

variables?
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The authors concluded that the most frequently used technique is exploratory manual test-

ing, followed by combinatorial and search-based testing, and that the most positively perceived

technique for testing heterogeneous systems was manual exploratory testing. Our work has a dif-

ferent objective of the survey conducted by Ghazi. The Ghazi main goal was to identify testing

techniques, our aim is to understand how distributed systems and heterogeneous are tested in com-

panies realizing which test levels are performed and which are the automation levels for testing

these systems. The Ghazi survey also involved a much smaller number of participants (27).

As regards the general software testing in the literature there are many surveys, however as

the main aim of our work is to analyze the state of practice, we analyze surveys carried out in the

industry by recognized standardization bodies as ISTQB (ISTQB, 2020). The most recent surveys

of this organization (ISTQB, 2016) (conducted over more than 3,000 people from 89 countries)

and (ISTQB, 2018) (conducted over more than 2,000 people from 91 countries), although it has

a different purpose of our work because is related to the software test in general, provides results

that meet the results presented in this article, namely that there are still significant improvement

opportunities in test automation (was considered in this studies the area with highest improvement

potential).

3.6 Conclusions

In order to assess the current state of the practice regarding the testing of DHS and identify oppor-

tunities and priorities for research and innovation initiatives, we conducted an exploratory survey

that was responded by 147 software testing professionals that attended industry-oriented software

testing conferences.

The survey allowed us to confirm the high relevance of DHS in software testing practice, con-

firm and prioritize the relevance of testing features characteristics of DHS, confirm the existence

of a significant gap between the current and the desired status of test automation for DHS, and con-

firm and prioritize the relevance of test automation features for DHS. The survey results indicated

a limited adoption of complete test automation processes by companies.

For better understanding what are the obstacles that companies face for not adopting complete

test automation approaches, we conducted follow-up interviews with companies of different sizes

and testing approaches. The conclusions drawn from the interviews allowed us to identify some

common obstacles, such as the cost of acquisition and difficulty of adaptation of test automation

tools, the cost of test suite maintenance (namely with frequent changes in the software under

test), and the effort and expertise required for the creation of system models needed as input for

automatic test suite generation.

Relatively to the research questions presented in Chapter 1, we can partially answer RQ1 as

follows:

RQ1 - What are the main difficulties and needs in the integration testing of distributed systems

listed in the state of the art and state of practice?
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Looking at the conclusions of this survey, we can say that main difficulties and needs in the

integration testing of distributed systems with time-constraints in the state of practice are expensive

testing tools, so more open source solutions are needed in order to allow smaller companies to also

be able to automate the testing process for these types of systems.

The results also highlights important needs in the context of DHS testing, namely: the need

for checking interactions between the system components (Figure 3.9); the need for automated

test execution (Figure 3.12); the need to support multiple platforms, among others.
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Chapter 4

Proposed Testing Approach and
Architecture

Taking into account the limitations identified in the analysis of the state of the art (see Chapter 2)

and state of the practice (see Chapter 3), this chapter presents our proposal of an approach and

a toolset to automate the whole process of model-based testing of distributed and heterogeneous

systems in a seamless way, with a focus on integration testing, but supporting also unit (compo-

nent) and system testing. The only manual activity (to be performed with tool support) should be

the creation of the input model of the SUT.

This chapter is organized as follows. Section 4.1 presents the proposed architecture. The test

process is explained in Section 4.2. Section 4.3 presents the toolset architecture. The chapter is

concluded with a synthesis of novelties and benefits in Section 4.4.

4.1 Test Architecture

Our main goal is to support the scenario-based integration testing of distributed and heterogeneous

systems, from the perspective of system integrators.

In integration testing, it is important to test not only the interactions with the environment

(users, external systems, or the physical environment) but also the interactions between the system

components.

In order to be able to check the interactions with the environment and between the system

components, and simulate inputs from the environment at multiple locations, local testers have to

be deployed close to the system components, coordinated by a central tester, as depicted in Figure

4.1. This test architecture is based on the hybrid test architecture presented in Chapter 2 that best

suits this type of system, namely due to its fault detection capacity.

In this type of architecture the local testers may act as test monitors (observing the messages

sent and received by each component), test drivers (simulating inputs from the environment), or

even test stubs (simulating responses from emulated system components).

43
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Figure 4.1: Test architecture for the model-based integration testing of distributed systems.

For the description of the test scenarios we advocate the usage of industry-standard UML

sequence diagrams because they provide a convenient means to describe the interactions that occur

between between the components and actors (environment) of a distributed system, with support

for control flow variants, time constraints, and non-determinism.

To cope with non-determinism and response time constraints, test inputs may have to be se-

lected at runtime in an adaptive and responsive way, based on the observed execution events and

the behavioral specification, suggesting an adaptive and distributed test input selection approach.

To facilitate fault localization, conformance errors should be detected as early as possible and as

close as possible to the offending components, suggesting an incremental and distributed confor-

mance checking approach.

Test coordination in such a test architecture is a big challenge.

To address this, we first check if conformance errors can be detected locally (local observabil-

ity) and test inputs can be decided locally (local controllability) by the local testers for the test

scenario under consideration, without the need for exchanging coordination messages between

the test components during test execution (which could delay test input selection and confor-

mance checking and impose a communication overhead). In that case, a purely distributed testing

approach can be followed: after the central tester initiates the local testers, no communication

between test components occurs during test execution; the central tester only needs to receive a

verdict from each local tester at the end of successful execution or as soon as an error is detected.

If the properties of local (distributed) observability and controllability do not hold for the test

scenario under consideration, we next try to determine a minimum set of coordination messages or

coordination time constraints to be attached to the given test scenario to enforce those properties,

whilst preserving the semantics of the test scenario. Then the refined test scenario is executed

as in the purely distributed approach. If only coordination time constraints are added, the whole
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testing approach is still purely distributed. But if coordination messages are added, the whole

testing approach becomes a hybrid one (with some coordination messages exchanged during test

execution, with minimal overhead and delays).

4.2 Test Process

Figure 4.2 depicts the main activities and artifacts of the proposed test process based on the test

architecture described in Section 4.1. The main activities are described in the next subsections and

illustrated with a running example.

4.2.1 Visual Modeling

The behavioral model is created using an appropriate UML profile (OMG, 2017; Gross, 2005)

and an existing modeling tool. We advocate the usage of UML 2 SDs, with a few restrictions and

extensions, because they are well suited for describing and visualizing the interactions that occur

between the components and actors of a distributed system. UML deployment diagrams can also

be used to describe the distributed structure of the SUT. Mapping information between the model

and the implementation, needed for test execution (such as the actual location of each component

under test), may also be attached to the model with tagged values.

To illustrate the approach, we used a real world example from the AAL4ALL project, related

with a fall detection and alert service. As illustrated in Figure 4.3, this service involves the interac-

tion between different heterogeneous components running in different hardware nodes in different

physical locations, as well as three users.

A behavioral model for a typical fall detection scenario is shown in Figure 4.4. In this scenario,

a care receiver has a smartphone that has installed a fall detection application. When this person

falls, the application detects the fall using the smartphone’s accelerometer and provides the user a

message which indicates that it has detected a drop giving the possibility for the user to confirm

whether he/she needs help. If the user responds that he/she does not need help (the fall was slight,

or it was just the smartphone that fell to the ground), the application does not perform any action;

however, if the user confirms that needs help or does not respond within 5 seconds (useful if the

person became unconscious due to the fall), the application raises two actions in parallel. On the

one hand, it makes a call to a previously clearcut number to contact a health care provider (in this

case can be a formal or informal caregiver); on the other hand, it sends the fall occurrence for a

Personal Assistance Record database and sends a message to a portal that is used by a caregiver

(e.g. a doctor or nurse) that is responsible for monitoring this care receiver. The last two actions

are performed through a central component of the ecosystem called AALMQ (AAL Message

Queue), which allows incoming messages to be forwarded to multiple subscribers, according to

the publish-subscribe pattern (Gamma et al., 1994).
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Figure 4.2: Dataflow view of the proposed test process.

4.2.2 Local Observability and Controllability Analysis and Enforcement

Implemented in the DCO Analyzer tool (described in Chapter 6) using the algorithms and pro-

cedures described in Chapter 5, this activity is responsible to check if conformance errors can be

detected locally (local observability) and test inputs can be decided locally (local controllability)

by the local testers for the test scenario under consideration, without the need for exchanging co-
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Figure 4.3: UML deployment diagram of a fall detection scenario.

ordination messages between the test components during test execution. If these two properties

are not met a set of coordination messages or coordination time constraints are recommended.

Assuming that messages may be lost by the transmission channels, a common cause of local

observability problems are optional messages without corresponding acknowledgment messages

(to be detailed in Chapter 5). If we look at the running example (Figure 4.4), it is possible to realize

that this scenario is not locally observable, as the local testers placed next to the CUTs, "AALMQ",

"Personal Assistante Record", "AAL4ALL Portal", "Care Provider 1" and "Care Provider 2" are

not able to detect the loss of messages, since receiving nothing is a valid behavior.

Regarding local controllability, a common cause of local controllability problems are mutually

exclusive emission and reception events simultaneously enabled. In the running example, in the

absence of time constraints, the local tester located next to the CUT "Fall Detection Mobile APP"

would not know from which moment it could send the messages emergency_call_on_possible_ f ail

and possible_ f all_in f o, which would make the scenario not locally controllable. A common so-

lution is the insertion of appropriate timing constraints so that those events are not simultaneously

enabled.
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Figure 4.4: UML sequence diagram representing the interactions of the fall detection scenario.
The diagram is already painted after a failed test execution in which the fall detection application
didn’t send an emergency call.

In cases where it is not possible to make the scenarios locally observable and locally control-

lable (or the modeler does not want to do so), it will be necessary to attach this information to

the model, so that when starting the tests, the test strategy to be followed keeps in mind these

characteristics of the model.

4.2.3 Translation to Runtime Model

Although the visual model is the most suitable for the user (modeler or tester), a more formal

representation (runtime model) is necessary to be processed incrementally at run time. Different

types of state-based models can be used for this function.

One possible option is to use the Timed Event-Driven Colored Petri Nets, or TEDCPN for

short, proposed in (Lima and Faria, 2015), combining the characteristics of Event-Driven Colored

Petri Nets proposed in (Faria and Paiva, 2014) for testing object-oriented systems, and Timed Petri

Nets (Wang, 2012).
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Petri Nets are well suited for describing in a rigorous and machine processable way the be-

havior of distributed and concurrent systems, usually requiring fewer places than the number of

states of equivalent finite state machines. Translation rules from UML 2 SDs to Event-Driven Col-

ored Petri Nets have been defined in (Faria and Paiva, 2014) and implemented in (Custódio Soares

et al., 2018) using the Eclipse Modeling Framework (EMF).

4.2.4 Test Initiation

As previously explained in Section 4.1 we prefer an online, adaptive, strategy, in which the next

test action is decided based on the current execution state. Whenever multiple alternatives can be

taken by the test harness in an execution state, the test harness must choose one of the alternatives

and keep track of unexplored alternatives (i.e., model coverage information) to be exercised in

subsequent test repetitions.

Figure 4.5: Location of the Local testers for the example represented in Figure 4.4.
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To enable distributed test input generation and conformance checking, the central tester has to

derive from the global runtime model local runtime models to be used by the local testers. Each

local runtime model specifies the local traces valid at the location under consideration, in a format

suitable for incremental processing. At the begin of test execution, the central tester has to deploy

appropriate local testers to the different locations of the distributed SUT (if not done before), pass

the local runtime models to the local testers, and initiate both the SUT and the local testers. In the

test initiation stage, the central testers should also synchronize the clocks of the local testers. The

same test scenario may be executed multiple times to improve coverage.

In the case of the running example, and as can be seen in Figure 4.5, the central tester needs to

deploy six local testers, the first with the CUT "Fall Detection Mobile APP" that will be respon-

sible for observing/generate the inputs of the "Care Reveiver ", as well as observing the messages

sending by the application "Fall Detection Mobile APP". The second local tester will be placed in

the CUT "AALMQ", the third next to the CUT "Personal Assistance Record", the fourth next to

"AAL4ALL Portal", the fifth next to "Care Provider 1" and the sixth next to CUT "Care Provider

2".

4.2.5 Local Test Input Selection

Using the UML 2 interaction operators, a single SD, and hence the runtime model derived from

it, may describe multiple control flow variants, that require multiple test cases for being properly

exercised.

In the running example, from the reading of the set of interactions represented in Figure 4.4,

one easily realizes that there are three test paths to be exercised (with at least one test case for

each test path). The first test path (TP1) is the case where the care receiver responds negatively

to the application and the application doesn’t trigger any action. The second test path (TP2)

is the situation where the user confirms to the application that he/she needs help and after that

the application triggers the actions. The last test path (TP3) corresponds to the situation where

the user doesn’t answer within the defined time limit and the application triggers the remaining

actions automatically. If one wants also to exercise the boundary values of allowed response time

(close to 0 and close to 5 seconds), then two test cases can be considered for each of the test paths

TP1 and TP2, resulting in a total of 5 test cases.

In automated test execution, the test harness (the local testers, in our case) has to simulate

inputs from the environment, according to the test scenario.

In case multiple alternative inputs are possible at a given point of test execution (multiple

input messages and/or timings), the test harness has to decide (select) the next input from the set

of possible inputs.

In the running example, the local tester 1 deployed close to the Fall Detection App, has to sim-

ulate the inputs from the Care Receiver, namely the fall detection signal (to be read by the device’s

accelerometer) and the inputs through the application’s GUI. After observing the confirmation

request message in the GUI, the local tester may follow three courses of action, as previously

explained.
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4.2.6 Local Test Driving

This activity is responsible for translating the abstract (platform independent) test inputs decided

by the test input selection activity into concrete test inputs, using model-to-implementation map-

ping information, and injecting those inputs on the corresponding CUT in a platform-dependent

way. The idea is to produce a toolkit of test drivers for different platforms, and reuse them by

multiple local testers.

If a CUT is to be emulated by a local tester acting as a test stub, the test harness has to inject

the responses (outgoing messages) from the emulated CUT to the environment or other CUTs.

4.2.7 Local Test Monitoring

This activity is responsible for assuming the function of a test monitor, that is, it is responsible for

observing all the iterations (messages exchanged) of a given CUT, with other CUTs or with the

environment, thus producing the local execution trace.

The messages are observed in a platform dependent way and are mapped to an abstract (platform-

independent) representation, using model-to-implementation mapping information whenever needed.

This allows the local execution trace to be represented in a platform-independent way, that can be

consumed for conformance checking purposes and for updating the execution status of the local

runtime model.

4.2.8 Local Conformance Checking

Using the local runtime model (including the execution and coverage information) and the local

execution trace, this activity is responsible for verifying locally if the local execution trace ob-

served so far is a valid execution trace. If it detects that the execution trace is not valid or that it

has reached the end of its execution, it reports that information to the central tester.

4.2.9 Test Finalization

This activity is responsible for aggregating the local testers’ information and producing the tests’

results, namely about coverage and possible errors detected, reporting this information to the "Test

results mapping" activity.

Test execution terminates when a local testers sends a fail verdict to the central tester (because

an error was encountered), or all local testers send a pass verdict (because they reached the end

of execution) or a quiescence notification (with an associated pass or fail verdict). In practice

quiescence may be detected using timeouts.

The central tester should then aggregate the verdicts and execution traces provided by the local

testers to arrive at a final test verdict.

A fail verdict from one local tester implies a global fail verdict. If the test scenario is locally

observable, a pass verdict from all local testers implies a global pass verdict. However, if the

test scenario is not locally observable, a final conformance checking of the global execution trace
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against the global runtime model has to be performed by the central tester to arrive at a final verdict.

Because of the impossibility to ensure perfect clock synchronization in a distributed system, the

resulting test verdict may be inconclusive (see Section 5.3.6).

In case the test scenario is not locally controllable, local testers may be the components to

blame for failed test executions, because of injecting inputs that are locally valid but are not glob-

ally valid. Such executions need to be identified and discarded by the central tester, before report-

ing test results.

For each failed test execution (global execution trace with a fail verdict), it is also important to

report where the global trace deviates from the valid traces and characterize the conformance error.

This involves determining the valid trace(s) that best matches the observed execution trace (with

the longest common prefix), to subsequently locate the missing or erroneous event in the observed

trace. An event in this context is the emission or reception of a message by a scenario participant

(component or actor). The participant to blame (component, actor or transmission medium) may

also be identified.

In the running example, as the scenario is not locally observable, it is necessary for the central

tester to perform a final conformance checking of the global execution trace against the global

runtime model. Since, for example, if the message emergency_call_on_ f all is sent by the CUT

"Fall Detection Mobile APP" but is lost and never reaches the CUT "Care Provider 2", all CUTs

will report the PASS verdict despite an error. This error will then be detected by the Central Tester.

4.2.10 Test Results Mapping

At the end of test execution it is important to reflect the test results back in the visual behavioral

model created by the user. With the help of a tool, this activity is responsible for mapping the

test results (coverage and errors) in the visual behavioral model, thus ensuring that the results are

easily perceived by the modeler/tester.

As an example, if during the test the Fall Detection App didn’t send an emergency call (or that

message was lost), a simple analysis of the final state of the formal model point out to the tester

which messages in the source SD were covered and what was the cause of test failure (missing

emergency_call_on_ f all message), as shown (in red) in Figure 4.4.

4.3 Toolset Architecture

Figure 4.6 depicts a layered architecture of a toolset for supporting the test process described in

the previous section, promoting reuse and extensibility.

At the bottom layer in Figure 4.6, the SUT is composed by a set of components under test

(CUT), executing potentially in different nodes (OMG, 2017). The CUTs interact with each other

(usually asynchronously) and with the environment (users, external systems or physical environ-

ment) through well defined interfaces at defined interaction points or ports (Hierons, 2014; Gross,

2005).

The three layers of the toolset are described in the following sections.
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Figure 4.6: Toolset architecture.
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4.3.1 Visual Modeling, Analysis and Execution Environment

At the top layer, we have a visual modeling environment, where the modeler/tester can create a

visual behavioral model of the SUT, analyze observability and controllability properties, invoke

test generation and execution, and visualize test results and coverage information back in the

model.

This layer also includes a translation plug-in to automatically translate the visual behavioral

models created by the user into the runtime format accepted by the test execution manager in the

next layer, and a mapping plug-in to translate back the test results (coverage and error information)

to annotations in the visual model.

The analyze of the observability and controllability proprieties of the visual behavioral model

is performed by the DCO Analyzer tool (described in Chapter 6), the results of this analysis are

presented to the model/test and include information of how to change the model to achieve this

proprieties.

The model transformations can be implemented using existing MDA technologies and tools

(Völter et al., 2013).

4.3.2 Distributed Test Input Selection and Conformance Checking Engine

At the next layer, the test execution engine is the core runtime engine of the toolset. It comprises

a model execution & conformance checking engine, responsible for incrementally checking the

conformance of observed execution traces in the SUT against the runtime model derived from

the previous layer, and a test execution manager, responsible for initiating test execution (using

the services of the next layer), decide next actions to be performed by the local test driving and

monitoring components in the next layer of the system, and produce test results and diagnosis

information for the layer above.

The model execution & conformance checking engine can be implemented by adapting exist-

ing Petri net engines, such as CPN Tools (Jensen et al., 2007).

4.3.3 Distributed Test Monitoring and Control Infrastructure

Existent software components and libraries can be reused or adapted for performing the test driving

and test monitoring activities assigned to the local testers in a distributed manner.

Hence, the Distributed Test Monitoring and Control Infrastructure comprises a set of local test

driving and monitoring (LTDM) components, each communicating (possibly synchronously) with

a component under test (CUT), performing the roles of test monitor, driver and stub.

This infrastructure may be implemented by adapting and extending existing test frameworks

for distributed systems, such as the ones described in Section 2.3.

Different LTDM components have to be implemented for different platforms and technologies

under test, such as WCF (Windows Communication Foundation), Java EE (Java Platform, Enter-

prise Edition), Android, etc. However, a LTDM component implemented for a given technology
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may be reused without change to monitor and control any CUT that uses that technology. For ex-

ample, in our previous work for automating the scenario-based testing of standalone applications

written in Java, we developed a runtime test library able to trace and manipulate the execution

of any Java application, using AOP (aspect-oriented programming) instrumentation techniques

with load-time weaving. In the case of a distributed Java application, we would need to deploy

a copy of that library (or, more precisely, a modified library, to handle communication) together

with each Java component under test. In the case of a distributed system implemented using other

technologies (with different technologies for different components in case of heterogeneous sys-

tems), similar test monitoring components suitable for the technologies involved will have to be

deployed.

4.4 Conclusions

In this chapter we presented our proposal of an approach and a toolset to automate the whole

process of model-based testing of distributed systems, partially answering RQ2:

RQ2 - What is an adequate architecture and approach to conduct integration tests in these

types of systems?

Our proposed approach is based on a process supported by tools that follow the following main

ideas:

• the adoption of different ‘frontend’ and ‘backend’ modeling notations, with an automatic

translation of the input behavioral models created by the user in an accessible ‘frontend’ no-

tation (using industry standards such as UML (OMG, 2017)), to a formal ‘backend’ notation

amenable for incremental execution at runtime;

• the adoption of an online and adaptive test strategy, where the next test input depends on

the sequence of events that has been observed so far and the resulting execution state of the

formal backend model, to allow for non-determinism in either the specification or the SUT

(Hierons, 2014);

• preprocessing of test scenarios (local observability and controllability analysis and enforce-

ment) to enable distributed test execution and solve the test coordination problem;

• the automatic mapping of test results (coverage and errors) to the ‘frontend’ modeling layer.

As compared to existing approaches (see Chapter 2), the approach proposed in this thesis

provides the following novelties and benefits.

Our approach provides a higher level of automation of the testing process because all phases

of the test process are supported in an integrated fashion. The only manual activity needed is

the development in a user friendly notation of the model required as input for automatic test case

generation and execution; there is no need to develop test components specific for each SUT.

This approach also provides a higher fault detection capability. The use of a hybrid test ar-

chitecture allows the detection of a higher number of errors as compared to purely distributed or
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centralized architectures. Interactions between components in the SUT are also monitored and

checked against the specification, besides the interactions of the SUT with the environment. To

facilitate fault diagnosis, it is used an incremental conformance checking algorithm allowing to

capture the execution state of the SUT as soon as a failure occurs. Because of the support for

temporal constraints, timing faults can also be detected. Our approach has the ability to test non-

deterministic SUT behaviors, using an online, adaptive, test generation strategy.

The proposed approach provides easier support for multiple test levels because the same input

model can be used to perform tests at different levels (unit, integration, and system testing), simply

by changing the selection of observable and controllable events in the input model. A scenario-

oriented approach simplifies the level of detail required in the input models.

With this approach the test execution process is more efficient. With a distributed conformance

checking algorithm, communication overheads during test execution are minimized and the usage

of a state-oriented runtime model allows a more efficient model execution and conformance check-

ing.



Chapter 5

Local Observability and Controllability
Analysis and Enforcement Algorithms

As described in Chapter 4, test coordination in a hybrid test architecture is a big challenge specif-

ically if the properties of local (distributed) observability and controllability do not hold for the

test scenario under consideration. In these cases, we need to try to determine a minimum set of

coordination messages or coordination time constraints to be attached to the given test scenario

to enforce those properties, whilst preserving the semantics of the test scenario. Then the refined

test scenario can be executed as in the purely distributed approach. If only coordination time

constraints are added, the whole testing approach is still purely distributed. But if coordination

messages are added, the whole testing approach becomes a hybrid one (with some coordination

messages exchanged during test execution, with minimal overhead and delays). In this chapter, we

present the algorithms to automate the process of analyzing and enforcing the local observability

and controllability properties.

This chapter is organized as follows. Section 5.1 presents some motivating examples. The

semantics of basic UML SDs are present in Section 5.3. Section 5.3 presents the semantics of

time-constrained UML SDs. Procedures for local observability analysis are presented in Sec-

tion 5.4. Section 5.5 presents procedures for local controllability analysis. Procedures for local

observability and controllability enforcement are presented in Section 5.6. Section 5.7 concludes

the chapter by answering research questions 3 and 4.

5.1 Motivating Examples

Figures 5.1 and 5.2 show examples of simple scenarios to illustrate local observability and con-

trollability problems and ways to overcome them.

Scenario a) illustrates a local controllability problem caused by a race condition. Based on

local knowledge only, lifeline L1 doesn’t know when to send z to ensure that it arrives at L3 after

y, so it may generate invalid (unintended) traces with ?z before ?y. On the right, are illustrated two

ways to overcome this problem. In the first solution, a coordination message is transmitted from

57
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Figure 5.1: Interaction fragments with local observability and controllability problems and possi-
ble refinments.
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L3 to L1, so that L1 knows when to safely send z. From a testing perspective, assuming that L1 is

simulated by a local tester (test driver) and L3 is monitored by another local tester, the coordination

message would be exchanged between the local testers (without affecting the SUT). The commu-

nication overhead of this solution (1 message) is much smaller than the overhead incurred by a

centralized testing approach, in which the events observed by the local testers are constantly com-

municated to the central tester (4 messages from the local testers at L2 and L3 to the central tester),

that decides and communicates back to the local testers the next test inputs (2 messages from the

central tester to the local tester at L1). The second solution relies on coordination time constraints.

From a testing perspective, the maximum duration constraints could represent assumptions about

the SUT behavior (lifelines and communication channels), and the minimum duration constraint

could represent a constraint to be followed by the test driver at L1. If such assumptions can be

made, this approach has the advantage of not implying any communication overhead during test

execution (possibly at the cost of a pessimistic wait time at L1).

Scenario b) illustrates a local observability problem caused by an optional message without

a corresponding acknowledgment message. If message x is lost (i.e., is sent by L1 but does not

arrive at L2), the problem will go unnoticed at L2, because not receiving any message is also a

valid behavior. In other words, the invalid trace [!x] is locally uncheckable. This problem may be

overcome by adding a coordination (acknowledgment) message c, as illustrated on the right; now,

if x is lost, that will be noticed at L1. The coordination message need only be exchanged between

the local testers. Again, the communication overhead of this solution (1 message) is smaller than

the overhead of a centralized testing approach, in which the events observed by the local testers

are constantly communicated to the central tester for conformance checking (2 messages from the

local testers at L1 and L2 to the central tester).

In scenario c), a roundtrip time constraint causes a local controllability problem. Since there

are no limits on the transmission times of x and y, nor on the reaction time of L2, there is no guar-

antee that the roundtrip constraint will be met, so invalid (unintended) traces may be generated

violating it. The problem may be solved by setting appropriate limits on the transmission and

reaction times, as illustrated on the right. This example also illustrates a tension between local

controllability and local observability, because the scenario on the left is locally observable, con-

trarily to the scenario on the right (inter-lifeline time constraints can only be checked after merging

the traces observed at each lifeline).

Scenario d) illustrates a local observability and local controllability problem due to a non-local

choice. In this case, and based only on local information, L3 does not know in which situations

it should send y or w, leading to invalid (unintended) traces with combinations of x & w or z &

y. Locally this error is also not detectable, since for L2 and L4, reception of x or z and y or w

is always locally valid. In order to solve this problem (as shown on the right), two coordination

messages (c1 and c2) are required between L1 and L2. With these coordination messages, L3

becomes able to know locally which message to send in order to ensure correct execution. Once

again, the communication overhead of this solution (2 messages) is smaller than the overhead of a

centralized testing approach.
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Figure 5.2: Interaction fragments with local observability and controllability problems and possi-
ble refinments (continued).
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Scenario e) illustrates a local observability and local controllability problem caused by an inter-

lifeline event ordering constraint. Based on local knowledge only, lifeline L1 does not know when

to send y to ensure that this is done only after x has reached L2 (the strict interaction operator

requires that all events in one interaction operand occur before all the events in the next operand).

The early emission of y can then lead to invalid (unintended) traces with !y before ?x. On the

other hand, the above error may not be locally observable, since, based on local knowledge only,

the invalid execution trace [!x, !y,?x,?y] is locally uncheckable. This problem may be overcome by

adding a coordinating message c between L2 and L1, so that L1 knows when it can send message y.

The communication overhead of this solution (1 message) is again smaller than the overhead of a

centralized testing approach. Alternatively, the problem may be overcome by adding coordination

time constraints in a way similar to scenario a) (with the difference that, in this case, the ordering

we want to enforce is between events in different lifelines).

Scenario f) illustrates a local observability and local controllability problem caused by mutu-

ally exclusive emission and reception events simultaneously enabled. In this case, L1 and L2 do

not have local information that allows them to determine which alternative should be executed;

this can lead to invalid (unintended) traces in which both y and z are sent or none is sent. The

scenario is also locally uncheckable, since the loss of both messages y and z will not be detected

by L1 and L2. This problem may be overcome by adding a coordinating message c between L1

and L2. Alternatively, the controllability problem may be overcome by adding coordination time

constraints so that emission and reception events are not enabled at the same time from the per-

spective of any of the lifelines. In this case, the minimum duration constraint may be seen as a

timeout after which L1 may send z.

In all cases, the scenarios on the right are refinements of the scenario on the left, in the sense

that execution traces valid for the latter are also valid for the former (with coordination messages

removed), although the opposite may not be true (that is, the semantics is narrowed for the sake of

implementability and testability).

In the rest of the chapter we show how to automatically check if an integration test scenario

is locally observable and locally controllable, pinpointing any violations (locally uncheckable and

unintended traces, respectively), and automatically suggest coordination messages and/or time

constraints to enforce those properties.

The results of local observability and controllability analysis can be used by a user or a tool to

refine the scenario or decide about the test approach in several ways:

• if the analysis shows that a test scenario is locally observable and locally controllable, then

it can be safely executed in a purely decentralized way;

• if the analysis shows that a test scenario is not locally controllable, a decentralized execution

is not safe, because the local testers may inject inputs that are locally valid but not globally

valid, leading to failed test executions. Failed test executions caused by such faulty inputs

should be discarded by the central tester;
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• if the analysis shows that a test scenario is locally controllable but not locally observable (as

in scenario b above), then it can still be executed safely in a decentralized way, requiring only

that events observed by the local testers are communicated to the central tester at the end of

test execution to arrive at a final verdict (at the cost of delayed error detection, complicated

by non-synchronized clocks);

• in many cases, local observability and controllability problems are associated with incom-

plete specifications or design flaws (Mitchell, 2005), so the analysis helps identifying the

needed refinements;

• in other cases, the analysis helps identifying timing constraints or coordination messages to

insert manually or automatically to enforce local observability or, at least, local controlla-

bility, with a lower communication overhead than a centralized testing approach, and hence

solve the test coordination problem in a effective and efficient way.

5.2 Semantics of Basic UML SDs

Before investigating the procedures for local observability and controllability checking of time-

constrained SDs, it is important to formalize their syntax and semantics.

In this section we handle basic UML SDs, without time constraints. Time-constrained UML

SDs will be addressed in Section 5.3.

In this thesis, we formalize the structure and semantics of UML SDs using the VDM formal

specification language (Fitzgerald et al., 2005; Larsen et al., 2016). This allows executing and val-

idating the specification with a support tool, such as Overture (http://overturetool.org/).

In this section, we start by presenting a higher-level description of the structure and semantics of

UML SDs. The organization of the VDM++ specifications is described in Chapter 6; the complete

specifications can be found in Appendix B.

5.2.1 Valid Global Traces Defined by a UML Sequence Diagram

In UML, an SD is a variant of an Interaction (OMG, 2017). Figure 5.3 describes the structure of

Interactions based on the UML metamodel (OMG, 2017). For simplicity, we omit the applicable

integrity constraints and the definition of some basic types. An interaction comprises a set of one

or more lifelines (representing in our case CUTs or actors), a set of one or more messages, and a set

of zero or more combined fragments (restricted in this thesis to the most common ones). A com-

bined fragment covers a subset of lifelines and is divided in a sequence of one or more interaction

operands; the semantics is determined by the interaction operator. Co-regions may be represented

by par combined fragments covering the desired message ends, so we allow messages to cross

boundaries of combined fragments. In each lifeline, the ordering of message ends (sendEvent

and receiveEvent in Figure 5.3) and start/finish boundaries of combined fragments and in-

teraction operands (startLocations and finishLocations in Figure 5.3) is represented by assigning

http://overturetool.org/
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sequential natural numbers to their locations. Combined fragments with the opt and loop op-

erator have only one operand. Operands of combined fragments with the opt, loop and alt

operator can have a guard. Most messages exchanged in a distributed system are asynchronous,

but synchronous messages may also be used to represent local interactions.

Figure 5.3: Interactions

In UML, the semantics of an Interaction is expressed in terms of sets of valid and invalid
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traces (OMG, 2017). In this thesis, we do not handle the rarely used constructs for defining

invalid traces (such as the neg interaction operator), so only the valid traces are relevant here.

In general, a trace is a sequence of event occurrences (OMG, 2017), corresponding to the

sending or receiving of messages at lifelines. We represent an event by a tuple 〈m, l,k〉, where m is

the message, l is the lifeline where the event occurs and k is the event kind (Send or Receive). For

example, the event e1 shown in Figure 5.4 may be represented by the tuple 〈“fall_signal", “Care

Receiver", Send〉.
We formalize the semantics of an Interaction I by a function V (I) computed as describe in

Procedure 5.1. The details of some auxiliary functions are omitted for simplifying the presentation.

Procedure 5.1 (Valid traces of an interaction)
Inputs:

• I - interaction (or interaction operand) with top-level messages m1, ...,mk (k ≥ 0) and top-

level combined fragments F1, ...,Fn (n≥ 0);

Outputs:

• V (I) - set of valid traces defined by I;

Computation:

• V (I) =
⋃
{w([s(m1),r(m1)], ..., [s(mk),r(mk)], t1, ..., tn) | t1 ∈ V (F1), ..., tn ∈ V (Fn)}, where

s(mi) and r(mi) denote the emission and reception events of message mi, and w denotes the

set of weak sequencing interleavings of the traces passed as arguments.

The semantics of each type of combined fragment is defined in Procedure 5.2. The expansion

of each operand is similar to the expansion of the top-level diagram.

Procedure 5.2 (Valid traces of a combined fragment)
Inputs:

• F - combined fragment, with interaction operator f and interaction operands o1, ..., on, also

denoted f (o1, ...,on), with n≥ 1 (n = 1 for opt and loop);

Outputs:

• V (F) - set of valid traces defined by F ;

Computation:

• V (alt(o1, ...,on)) =V (o1)∪ ...∪V (on);
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• V (opt(o1)) =V (o1)∪{[]}, where [] is the empty trace;

• V (strict(o1, ...,on)) = {t1 y ...y tn | t1 ∈V (o1), ..., tn ∈V (on)};

• V (par(o1, ...,on)) =
⋃
{p(t1, ..., tn) | t1 ∈ V (o1), ..., tn ∈ V (on)}, where p(t1, ..., tn) denotes

the set of parallel interleavings of the traces t1, ..., tn;

• V (seq(o1, ...,on)) =
⋃
{w(t1, ..., tn) | t1 ∈ V (o1), ..., tn ∈ V (on)}, where w(t1, ..., tn) denotes

the weak sequencing interleavings of the traces t1, ..., tn.

• V (loopm,n(o1)) = V (seq(o1(1), ...,o1(m)))∪ ...∪V (seq(o1(1), ...,o1(n))), where o1(i) de-

notes the i-th copy of o1, and m and n denote the minimum and maximum number of itera-

tions (0≤ m≤ n);

The parallel interleaving p(a,b) of two traces a and b, is given by the set of permutations

of events from a and b that respect the order of events per trace. E.g., p([a1,a2], [b1,b2]) =

{[a1,a2,b1,b2], [a1,b1,a2,b2], [a1,b1,b2,a2], [b1,a1,a2,b2], [b1,a1,b2,a2], [b1,b2,a1,a2]}.
The weak sequencing interleaving w(a,b) of two traces a and b, is given by the set of permu-

tations of events from a and b that, in addition, respect the order of events per lifeline (for events

from different traces). E.g., assuming the ordering of events per lifeline as {l1 7→ [a1,b1], l2 7→ [a2],

l3 7→ [b2]}, then w([a1,a2], [b1,b2]) = {[a1,a2,b1,b2], [a1,b1,a2,b2], [a1,b1,b2,a2]}.
In the presence of loops or multiple messages with the same signature and lifelines, the same

event may occur multiple times in a trace. To distinguish those occurrences when computing weak

sequencing interleavings, it is necessary to keep extended information with each event, namely the

event location, unique message identifier, and an iteration counter (besides the event type, message

signature and lifeline).

Most messages exchanged in a distributed system are asynchronous, but synchronous mes-

sages may also be used to represent local interactions. We model the emission and reception of a

synchronous message as a pair of events, but, since those events occur simultaneously, they need

to be considered as an atomic pair when computing interleavings.

In seq, strict and par combined fragments, all operands represent mandatory behaviors.

Traces from consecutive operands are combined according to the semantics of each operator.

The operands of alt and opt combined fragments represent behaviors that are selected for

execution non-deterministically and/or according to the values of guard conditions. In this thesis,

we don’t take into account possible guard conditions defined, because they shouldn’t limit the set

of possible traces but only the conditions upon which each trace may be selected. Hence, the sets

of valid traces are given simply by the expressions described in Procedure 5.2.

To keep the model executable, in this thesis we restrict our attention to loops that have defined

minimum and maximum numbers of iterations, so the operand of a loop represents a behavior that

may be repeated a number of iterations chosen non-deterministically and/or according to a guard

condition between the specified limits. Consecutive iterations are combined in a weak sequencing
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Figure 5.4: Example of a fall detection scenario (simplified) from an ambient assisted living
ecosystem (AAL4ALL).

way as specified in the UML standard. However, the theoretical approach is also applicable for

unbounded loops.

If we look at example d) in Figure 5.2, the complete set of global valid traces is (omitting the

lifeline of each event):

{[!x,?x, !y,?y], [!x, !y,?x,?y], [!x, !y,?y,?x], [!y, !x,?y,?x], [!y, !x,?x,?y], [!y,?y, !x,?x],

[!z,?z, !w,?w], [!z, !w,?z,?w], [!z, !w,?w,?z], [!w, !z,?w,?z], [!w, !z,?z,?w], [!w,?w, !z,?z]}

5.3 Semantics of Time-constrained UML SDs

In this section we characterize the syntax and semantics of time-constrained UML SDs. First,

we analyze how time is handled in UML SDs, and subsequently show how to compute the valid

traces.

5.3.1 Time-constrained Sequence Diagrams

SDs may be annotated with time constraints (OMG, 2017), as illustrated by the SD of Figure 5.4.

Although the UML standard allows the specification of more complex constraints, in this thesis we

restrict our attention to the types of time constraints that are commonly addressed in the literature

and are most relevant in practice: constraints that specify the minimum and maximum durations

between two events (message sending or receiving) in the same lifeline, or between the sending

and receiving of a message between two lifelines.

5.3.2 Timed Traces

In the presence of time constraints, it is important to store time information associated with the

event occurrences. We use the term timed traces (or t-traces, for short) for traces that con-

vey the time instants of the event occurrences, and represent them by a sequence of pairs of

events and associated time instants, in some integer time scale (seconds, milliseconds, etc.) as
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in [〈e1,1〉,〈e2,5〉,〈e3,8〉] (Later on, in VDM++, we represent the time instant of an event as a

field of the event, for convenience of implementation.).

5.3.3 Time-constrained Traces

Since the set of valid timed traces defined by an SD is usually infinite, we need a finite represen-

tation by means of a set of time-constrained traces (or tc-traces, for short).

A tc-trace is a pair of a trace and an associated Boolean expression on time constraints between

pairs of event occurrences. In those constraints, the time instance of the i-th event occurrence is

represented by the time variable τi. The time constraints are normalized as a conjunction of

difference constraints Cormen et al. (2009) of the form τi− τ j ≤ d, where d is a time duration

literal (positive or negative integer).

For example, the SD of Figure 5.4 defines the following valid tc-traces:

• 〈[e1,e2,e3,e4,e5,e6,e7,e8],τ4−τ3≤1∧ τ5−τ4≤10∧τ6−τ5≤1〉

• 〈[e1,e2,e3,e4,e9,e10],τ4− τ3 ≤ 1∧ τ5− τ4 ≤ 10∧ τ6− τ5 ≤ 1〉

• 〈[e1,e2,e3,e4,e11,e12],τ4− τ3 ≤ 1∧ τ3− τ5 ≤−13〉

5.3.4 Valid Traces and Satisfiability Checking

We express the semantics of a time-constrained SD by a set of valid tc-traces. In this thesis we

assume that loops have (or are explored up to) a bounded number of iterations, so such a set is

finite.

Procedure 5.3 (Valid time-constrained traces).
Inputs:

• Time-constrained interaction ι ;

Outputs:

• V (ι) - set of valid tc-traces defined by ι ;

Steps:

1. Compute the set U (ι) of valid (untimed) traces defined by ι ignoring time constraints,

following the procedure described described in Section 5.3 (this set gives all the possible

event combinations and total orderings defined by ι);

2. Obtain the set D(t, ι) of time constraints applicable to each trace t in U (ι) (see Procedure

5.4);

3. Determine the satisfiability of those constraints (sat), and select the traces with satisfiable

constraints (see Procedure 5.5).
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Formally,

V (ι), {(t,D(t, ι))|t ∈U (ι)∧ sat(D(t, ι))}

The procedure for obtaining the applicable time constraints is presented next. The last con-

dition is important for SDs with loops, to make sure that time constraints are applied to event

occurrences in the same loop iteration. To this end, the untimed traces calculated by U (ι) include

the iteration counter of each event occurrence.

Procedure 5.4 (Applicable time constraints). Generates a conjunctive expression with time

constraints between time instants of event occurrences in a (untimed) trace t of an interaction ι ,

based on the constraints defined between pairs of events in ι .

Inputs:

• Time-constrained interaction ι with a set of time constraints timeConstr(ι);

• (untimed) trace t;

Outputs:

• Conjunctive expression D(t, ι);

Formula:

D(t, ι),
∧
{τi +min≤ τ j ≤ τi +max | 1≤ i < j ≤ |t|
∧ 〈ti, t j,min,max〉 ∈ timeConstr(ι)

∧ itercounter(ti) = itercounter(t j)}

A set of time constraints c is satisfiable for a trace t if there is an assignment of non-decreasing

time instants to the event occurrences in t that satisfies all the constraints in c. Due to the special

nature of the time constrains involved (a conjunction of difference constraints), satisfiability can be

checked in polynomial time, following the procedure summarized in Procedure 5.5 (partly based

on Cormen et al. (2009)) and illustrated in Figure 5.5. The example refers to a trace derived from

the SD of Figure 5.4 that is valid when the time constraints are ignored but is invalid otherwise. In

the case of a more general Boolean expression on difference constraints, as we will need later, we

reduce the expression to disjunctive normal form (DNF), and apply the same procedure to each

conjunctive term.

Procedure 5.5 (Satisfiability checking). Checks if a conjunctive expression E on time con-

straints is satisfiable (sat(E)), i.e., there is an assignment of non-decreasing values to the time

variables referenced in E that makes the expression true, as follows:

Inputs:
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• Conjunctive expression E;

Outputs:

• True - expression E is satisfiable

• False - expression E is not satisfiable

Steps:

1. Add to E implicit ordering constraints τi ≤ τ j between consecutive variables referenced in

E (ordered by their indices).

2. Normalize E into a conjunction E ′ of difference constraints of the form τi− τ j ≤ d, where

τi and τ j are integer (time) variables and d is a literal integer.

3. Build the corresponding difference constraint graph G, with an edge (i, j) of weight d for

each difference constraint τi− τ j ≤ d in E ′.

4. E is satisfiable iff G has no cycles of negative weight.

The detection of cycles with negative weight can be performed by applying the Bellman-Ford

algorithm (Bellman, 1958) for finding the shortest paths from a single source vertex to all of

the other vertices in a directed graph with edges of negative weight. In the implementation, the

implicit ordering constraints are not actually added to the set of constraints. Instead, the Bellman-

Ford algorithm is slightly modified.

5.3.5 Operators on Timed Traces and Time-constrained Traces

The definitions and procedures for local observability and controllability analysis use the opera-

tors defined in Figure 5.6. For the sake of simplicity of presentation, implicit (instead of explicit)

definitions are given for some operators, resorting to a function (ext) that gives the (possibly infi-

nite) set of timed traces defined by a set of tc-traces. We also apply the ext function to complex

structures (such as maps), in order to convert all occurrences of sets of tc-traces to correspond-

ing sets of timed traces. By a feasible timed trace (see the join operator), we mean a timed trace

with non-decreasing time instants that respects the fact that messages can be received only after

being sent. Application examples can be found in Figure 5.8. Full details can be found in the

Appendix B.

5.3.6 Conformance Checking Based on Distributed Observations

In general an observed global trace t conforms to the specification if it belongs to the set of valid

traces (computed as explained in the previous section) and satisfies the time constraints.
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Figure 5.5: Satisfiability checking example (trace from Figure 5.4).

Figure 5.6: Operators on timed traces and time-constrained traces.
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However, in distributed testing, global traces are not directly observed, but only the local traces

observed at each lifeline, which raises the need to infer global traces from the observed local traces,

possibly leading to inconclusive verdicts.

In distributed testing, the time instant of each observed event occurrence is measured with the

local clock of the respective lifeline. Although it is impossible to ensure perfect clock synchro-

nization between lifelines, in practice the difference between the readings of any two clocks (clock

skew) may be limited to a small value of the order of 10ms over Internet and below 1ms over LAN

(Mills, 1991). This clock skew might not have practical impact for coarser time scales used in

testing (e.g., seconds), but could be relevant for finer time scales (e.g., milliseconds). In any case,

for test cases that run for short time spans, one can assume that there is no noticeable clock drift

during test execution (i.e., clocks run at the same rate).

In distributed testing, conformance checking is best performed in two phases: first, local con-

formance checking is performed at each lifeline in and incremental way and, in case a local failure

is detected, the test fails globally; secondly, in case all local checks pass, conformance checking is

performed globally. For some scenarios (called locally observable), the second step is not needed

in this thesis.

For performing incremental conformance checking locally, we assume that each local tester

receives a specification of the traces to be accepted locally and the time constraints checkable

locally at the begin of test execution. For performing final conformance checking globally, we

assume that the global tester receives from the local testers the traces observed locally at the end

of test execution.

We present below the procedure to perform a final conformance check globally by the central

tester.

Procedure 5.6 (Final conformance checking based on distributed observations).

Inputs:

• Time-constrained interaction ι ;

• Observed trace O , represented by a mapping from lifelines to the timed trace observed at

each lifeline, with time instants measured with the local clocks;

• Maximum clock skew M , indicating the maximum difference between the readings of any

two clocks (at different lifelines).

Outputs:

One of the following verdicts, assuming the given maximum clock skew, and no noticeable

clock drift:

• Pass - the observed trace conforms to the specification (as set by ι);

• Fail - the observed trace does not conform to the specification;
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• Inconclusive - the observed trace may conform or not to the specification.

Steps:

1. Compute the set V (ι) of valid tc-traces defined by ι (with time constraints defined with

respect to an ideal global clock);

2. Denoting by δk the (unknown) difference between the readings of the clock at lifeline k

and an ideal global clock, generate a conjunctive expression C for the maximum clock skew

constraints, with a difference constraint δi−δ j ≤M for each ordered pair i, j of lifelines;

3. Compute the set J of feasible joins of the observed timed traces per lifeline, considering the

given max clock skew (formally, on O);

4. For each possible join t ∈ J and valid tc-trace v ∈ V (ι), determine a verdict ver(t,v) for the

pair t,v as follows:

(a) If the untimed traces corresponding to t and v are different, discard the pair t, v (the

same as concluding a Fail verdict);

(b) Denoting by

• τk - time variable for the k-th event in t (defined in terms of an ideal global clock),

• ψk - time instant of the k-th event in t (measured with the local clock), and

• lk - lifeline where the k-th event in t occurs,

consider each intra-lifeline constraint τi− τ j ≤ d in v with li = l j, and check if ψi−
ψ j ≤ d holds. If one of these constraints does not hold, discard the pair t, v (the same

as concluding a Fail verdict). If all the constraints in v are intra-lifeline constraints

and all hold, conclude a Pass verdict for the pair t, v;

(c) Generate a conjunctive expression D for the inter-lifeline constraints in v, by consider-

ing each constraint τi−τ j ≤ d in v with li 6= l j, and replacing τk by ψk+δlk , originating

a modified difference constraint (with variables on the left-hand side and constants on

the right-hand side) δli−δl j ≤ d +ψ j−ψi;

(d) If sat(C∧D)∧¬sat(C∧¬D), then ver(t,v) is Pass;

(e) If ¬sat(C∧D)∧ sat(C∧¬D), then ver(t,v) is Fail;

(f) Otherwise, ver(t,v) is Inconclusive.

5. Determine the final verdict as follows:

(a) If for every t ∈ J and every v ∈ V (ι), ver(t,v) = Fail, then the final verdict if also

Fail;

(b) If for every t ∈ J there is at leat one v ∈ V (ι) such that ver(t,v) = Pass, then the final

verdict if also Pass;

(c) Otherwise, the final verdict is Inconclusive.
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Formally (for the outer steps only),

FCC(O, ι ,M ),

if ∀t ∈ J,∀v ∈ V (ι) · ver(t,v) = Fail then Fail

else if ∀t ∈ J,∃v ∈ V (ι) · ver(t,v) = Pass then Pass

else Inconclusive.

Examples of traces yielding different verdicts are shown in Figure 5.7.

# Observed Local Traces 

(locally valid)
Possible Joins * 

(with first problematic 
event underlined) Verdict *

Care Receiver Fall Detection 

App

AAL4ALL 

Portal

1 [(e1, 0), (e4, 4200), 
(e5, 14200)]

[(e2, 2000), (e3, 
4000), 

(e6, 14500), (e7, 
14600)]

[(e8,16000)] [(e1, 0), (e2, 2000), 
(e3, 4000), (e4, 4200), 
(e5,14200), (e6,14500), 
(e7,14600), (e8,16000)]

Pass

2 [(e1, 0), (e4, 4200), 
(e5, 14200)]

[(e2, 2000), (e3, 
4000), 

(e6, 15200), (e7, 
15600)]

[(e8,16000)] [(e1, 0), (e2, 2000), 
(e3, 4000), (e4, 4200), 
(e5,14200), (e6,15200),
(e7,15600), (e8,16000)]

Inconclusive 
(a)

3 [(e1, 0),  (e4, 4200), 
(e5, 14200)]

[(e2, 2000), (e3, 
4000), 

(e6, 18000), (e7, 
18600)]

[(e8,19000)] [(e1, 0), (e2, 2000), 
(e3, 4000), (e4, 4200), (e5, 

14200), (e6, 18000), 
(e7,18600), (e8,19000)]

Fail (b)

4 [(e1, 0),  (e4, 
16800)]

[(e2, 2000), (e3, 
4000), (e11, 

17000)]

[(e12,18000)] [(e1, 0), (e2, 2000), 
(e3, 4000), (e4,16800), 

(e11,17000), (e12,18000)]

[(e1, 0), (e2, 2000), 
(e3, 4000), (e11, 17000), 
(e4,16800), (e12,18000)]

Fail (c)

* Assuming MaxClockSkew = 500ms
(a) Time constraint between e5 and e6 (1000ms) possibly not respected.
(b) Time constraint between e5 and e6 (1000ms) not respected.
(c) Time constraint between e3 and e4 (1000ms) not respected.

Figure 5.7: Examples of traces with different conformance checking verdicts in the fall detection
scenario

5.4 Local Observability Analysis

In this section, we present procedures to check if conformance checking of observed execution

traces against the expectations set by a time-constrained SD under consideration can be performed

by the local testers alone based on the events observed locally, without the need to communicate

those events to the central tester to ensure that the final test verdict is correct (local observability).
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A preliminary version of the procedures presented in this section were presented in (Lima and

Faria, 2017) for SDs without time constraints.

Local observability is best defined in terms of timed traces, but, since the set of valid timed

traces is usually (almost) infinite, it is best checked in terms of tc-traces.

5.4.1 Definition

Definition 5.1 (Local observability). We say that a test scenario specified by a time-constrained

interaction ι is locally observable iff there are no feasible timed traces that are locally valid but

are not globally valid (also called locally uncheckable traces). We say that a timed trace t is

globally valid when t ∈ ext(V (ι)), and is locally valid when ∀l∈L (ι),πlt ∈ ext(πlV (ι)), where

L (ι) denotes the lifelines in ι .

5.4.2 Local Observability Checking

Procedure 5.7 (Local observability checking). We check the local observability of a test scenario

described by a time constrained interaction ι in a constructive way (pinpointing violations), as

follows:

1. Calculate the set V (ι) of valid tc-traces defined by ι ;

2. Compute the valid local tc-traces in each lifeline, i.e., the projection P of V (ι) onto L (ι);

3. Compute the set J of all possible feasible joins of traces in P;

4. Compute the global tc-traces that are not locally checkable, by subtracting from J the valid

traces V (ι).

5. The given scenario ι is locally observable iff the previous result is empty.

Formally,

isLocallyObservable(ι), (on (π
L (ι)

V (ι)))\V (ι) = /0

Theorem 5.1 (Correctness of Procedure 5.7). Procedure 5.7 correctly checks if an interaction

ι is locally observable.

Proof. Follows from Definition 4.1 and from the definitions of the operators involved in Pro-

cedure 5.7. Based on the meaning of the difference operator (see Figure 5.6), the right-hand side

of the formula in Procedure 5.7 can be rewritten:

{t | t ∈ ext(on (π
L (ι)

V (ι)))∧ t /∈ ext(V (ι))}= /0

Based on the definitions of the join operator (see Figure 5.6), the first term

(t ∈ ext(on (π
L (ι)

V (ι)))) can be rewritten:

∀l∈L (ι),πlt ∈ ext(πlV (ι))

This corresponds to the definition of local validity in Definition 5.1, whilst the second term

(t /∈ ext(V (ι))) corresponds to the negation of global validity. Hence, we conclude that Procedure

5.7 correctly checks local observability.
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Figure 5.8: Example of local observability checking.

Example 5.1 Procedure 5.7 is illustrated in Figure 5.8. In this case, there are two tc-traces

that are not locally checkable, so the scenario is not locally observable. The first one is due to an

optional message without a corresponding acknowledgment message. The second one is due to

an inter-lifeline time constraint (transmission constraint) that is not present in the projections onto

the lifelines.

5.4.3 Impact of Non-synchronized Clocks

Next we show that imperfect clock synchronization in a distributed SUT does not affect local

observability.

As previous explained in Section 5.3.6, although it is impossible to ensure perfect clock syn-

chronization between lifelines, in practice the difference between the readings of any two clocks

(clock skew) may be limited to a small value.

Under this assumption, we next prove our proposition.

Theorem 5.2 (Local observability and clock synchronization). If an interaction ι is locally

observable with perfectly synchronized clocks, then it is also locally observable if clocks are not

perfectly synchronized but run at the same rate.

Proof. Let us assume that ι is locally observable, i.e., all invalid feasible global traces are also

locally invalid, in case the clocks are perfectly synchronized. Let us pick one arbitrary of those

invalid feasible global traces t, and let us denote by tk an invalid local trace observed at a lifeline

k (based on our assumption, such lifeline and trace must exist). In case clocks are not perfectly

synchronized but run at the same rate, the time instants of the corresponding observed local trace
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t ′k in lifeline k will differ from the time instants in tk by a constant amount (the clock skew δk

of lifeline k). Since all the local time constraints we are considering are difference constraints,

shifting time instants by the same amount will not affect the validity of those constraints. So t ′k
will also be checked as invalid by lifeline k. Hence we conclude that invalid traces will also be

detected locally.

This result might look surprising, but is in reality consistent with the fact that scenarios with

inter-lifeline time constraints not implied by other constraints are not locally observable.

5.5 Local Controllability Analysis

5.5.1 Definitions and Example

Definition 5.2 (Local controllability). We say that a time constrained interaction ι is locally con-

trollable if no invalid timed traces are generated (i.e., there are no unintended traces) and all valid

timed traces can be generated (i.e., there are no missing traces) when the lifelines and the commu-

nication channels behave in a locally correct way, using local knowledge only. Formally, denoting

by S (ι) the set of feasible timed traces that can be generated when the lifelines and the commu-

nication channels behave in a locally correct way, ι is locally controllable iff S (ι) = ext(V (ι)).

Unintended traces are given by S (ι)\ ext(V (ι)). Missing traces are given by ext(V (ι))\S (ι).

In a locally controllable interaction, local correctness of actions implies global correctness.

Local controllability ensures that the decision of when and what inputs to inject can be taken lo-

cally by the local testers (simulating lifelines that represent external actors or mocked components)

using local knowledge only, without the need to exchange coordination messages between the test

components during test execution.

Example 5.2 The scenario of Figure 5.4 is locally controllable. In fact, the projection of

the defined time constraints onto the “Fall Detection App” lifeline generates the derived local

constraints time(e6)≤ time(e3)+12 and time(e10)≤ time(e3)+12. So, the lifeline knows that,

after requesting confirmation from the user (event e3), it should wait for a response (events e6

or e10) up to 12 time units, and only send “notify_possible_fall” after at least one more time

unit. Without the specified constraints, the scenario would not be locally controllable, because the

lifeline would not know how much time to wait before sending “notify_possible_fall”. This could

result in the generation of invalid traces such as:

• [e1,e2,e3,e4,e11,e12,e5,e6] (and other permutations with e11 before e6)

• [e1,e2,e3,e4,e11,e12,e9,e10] (and other permutations with e11 before e9)

We next clarify and formalize the notion of a locally correct behavior of lifelines, in Definition

5.3, and communication channels, in Definition 5.4. The set S (ι) contains all feasible timed

traces that satisfy the conditions of 5.3 and 5.4.
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Definition 5.3 (Locally correct behavior of lifelines). A global timed trace t in an interaction

ι demonstrates a locally correct (and complete) behavior of a lifeline l ∈L (ι) iff the local timed

trace p = πl t observed at l satisfies the following conditions:

(a) all outputs (emissions) are locally valid, i.e.,

∀i ∈ inds(p) · isSend(pi) =⇒ p1,...,i ∈ Pl

where Pl = pre f ixes(Vl) and Vl = πl ext(V (ι));

(b) l may remain in a quiescent state after p (i.e., not send any output, at least without first

receiving an input (Hierons, 2012)), because one of the following holds (denoted Ql(p)):

(i) p is a locally valid trace, i.e., p ∈Vl;

(ii) in case there are valid outputs that can be sent after p, there are also valid inputs that

can be received with a deadline greater or equal than the deadline for the outputs (in

this case, l may decide to wait for input, and, if it does not arrive up to the deadline,

will no longer be able to send any output);1 formally,

∀p y [s] ∈ Pl · isSend(s) =⇒
∃p y [r] ∈ Pl · isRecv(r)∧ time(r)≥ time(s);

(c) there are no missing intermediate outputs, i.e., for each input event pi in p, not send any

output between pi−1 and pi is a valid behavior of l (because of a quiescent state or because

possible outputs have not expired); formally,

∀i ∈ inds(p) · isRecv(pi) =⇒ Ql(p1,...,i−1)∨

∃p1,...,i−1 y [s] ∈ Pl · time(s)≥ time(pi) .

Definition 5.4 (Correct behavior of communication channels). A global timed trace t in an

interaction ι demonstrates a correct (and complete) behavior of the communication channels iff

the following conditions hold:

(a) messages are delivered within the specified transmission duration constraints (between pairs

of related emission and reception events in t);

(b) all messages are delivered (i.e., for each emission event in t there is a corresponding recep-

tion event).

5.5.2 Symbolic Simulation

Because S (ι) may be infinite or almost infinite, we calculate a finite set S ′(ι) of tc-traces (instead

of timed traces), equivalent to S (ι) in the sense that ext(S ′(ι)) = S (ι).

1This policy is important to guarantee that all valid traces can be generated, and hence prevent missing traces (at the
possible cost of generating unintended traces).
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S ′(ι) is calculated incrementally by symbolic simulation, starting from the empty tc-trace, as

outlined in Procedure 5.1.

Procedure 5.8 (Symbolic simulation). Computes a set S ′(ι) of tc-traces describing the

timed traces that can be generated by the execution of an interaction ι when the lifelines and

communication channels behave in a locally correct way, as follows:

S ′(ι), {〈u,c∧Qι(〈u,c〉)〉 |
〈u,c〉 ∈T ∗

ι (〈[], true〉)∧ sat(Qι(〈u,c〉))}

where

• Tι(〈u,c〉) is a transition function that gives the successors of tc-trace 〈u,c〉 (a pair of a trace

u and a constraint c) in the symbolic execution tree of ι , by appending time-constrained

emission or reception events generated according to conditions 5.2.a) or 5.3.a), in a proper

temporal ordering. This ordering is determined by computing the earliest deadline D among

all emission deadlines, for lifelines that are not in a quiescent state, and delivery deadlines,

for messages in transit. When working with tc-traces, D is in fact a constraint on the time

instants of the next event and previous events. For each candidate time-constrained event

〈e,c′〉 to append to 〈u,c〉, if the conjunction c∧c′∧D is satisfiable, then the event is selected,

generating the tc-trace 〈u y [e],c∧ c′∧D〉.

• T ∗
ι (〈[], true〉) denotes the set of tc-traces reachable from the empty tc-trace 〈[], true〉 by 0

or more applications of Tι (reflexive transitive closure);

• Qι(〈u,c〉) denotes the condition (on the time variables of events in u) upon which the system

may remain quiescent after the occurrence of 〈u,c〉, as set by conditions 5.2.b) and 5.3.b).

If Qι(〈u,c〉) is satisfiable, 〈u,c〉 is added to the result, further restricted by Qι(〈u,c〉).

Theorem 5.2 (Correctness of Procedure 5.8). Procedure 5.8 correctly computes S ′(ι).

Proof sketch. Conditions 5.2.a) and 5.3.a) are satisfied for any tc-trace in the generated exe-

cution tree, because they trivially hold for the initial empty state, and are explicitly considered in

the transition function Tι that generates next states. Conditions 5.2.b) and 5.3.b) are also guaran-

teed, because they are explicitly considered in the quiescence condition Qι used to select tc-traces

to include in S ′(ι). Condition 5.2.c) is also satisfied for any tc-trace in the generated execution

tree, because it trivially holds for the initial empty state, and the temporal ordering constraint (D)

considered in Tι guarantees that a message is not delivered in a timing after the expiration of

any existent emission deadline of the target lifeline. The temporal ordering also guarantees that

a quiescent state is reachable from any execution state generated (i.e., unfeasible states are not

generated). Procedure 5.1 is also complete, in the sense that it generates all feasible tc-traces that

satisfy Definitions 5.2 and 5.3, due to the fact that all candidate events are considered in Tι .

An example of an execution tree and possible quiescent tc-traces generated by the application

of Procedure 5.8 is shown in Figure 5.9.
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Figure 5.9: Example of symbolic execution for the SD of Figure 5.4 without the "{13..}" time
constraint.
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5.6 Local Observability and Controllability Enforcement

As illustrated by the examples in Section 5.1, many observability and controllability problems

can be solved by the addition of coordination messages or coordination time constraints. Hence,

in this section, we present algorithms to search for coordination messages or coordination time

constraints to enforce local observability and/or local controllability of an interaction ι , whilst

preserving the traces valid locally at each lifeline (apart possibly from timing constraints).

An heuristic used to guide the search is based on the intuition that the locations of local observ-

ability or controllability problems (locations where the locally uncheckable or unintended traces

deviate from valid traces) might suggest points where coordination messages or time constraints

need to be inserted.

Therefore, our main algorithm comprises 4 main steps.

Procedure 5.9 (Local observability and controllability enforcement).

1. Determine error locations (where the locally uncheckable or unintended traces deviate from

valid traces);

2. Generate candidate coordination messages;

3. Generate candidate coordination time constraints;

4. Apply and evaluate candidate fixes (coordination messages or time constraints).

In the next subsections we describe each of these steps.

5.6.1 Determination of Error Locations

Procedure 5.10 (Determination of error locations).

1. Determine the set V of valid tc-traces defined by ι ;

2. Determine the set U of unintended and/or locally uncheckable tc-traces of ι (problematic

traces);

3. Determine the set E of missing or erroneous events in the traces in U , doing as follows for

each trace t ∈U :

(a) if t is a valid partial trace (i.e., ∃v ∈ V · u ∈ pre f ixes(v)), select all the valid next

events, formally {e|t y [e] ∈ pre f ixes(V )} (missing events);

(b) otherwise, select the first event e in t such that the prefix of t up to e is not a valid

partial trace (erroneous event);

4. Determine the set S of lifeline locations in ι where the events in E occur (error locations).
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5.6.2 Generation of Coordination Messages

Candidate coordination messages are searched based on the error locations previously determined

and common patterns of local observability and controllability violations and solutions.

Procedure 5.11 (Generation of coordination messages).

1. Determine a set C1 of coordination messages to fix local observability and controllability

violations due to non-local choices, proceeding as follows for each alt combined fragment:

1.1. For each operand and lifeline, check if the first event in the lifeline is an emission event

and, if so, collect that event. Let E be the resulting set of events.

1.2. From the set E , pick a “master” lifeline l, by selecting the lifeline of an arbitrary event

in E that occurs in the first operand.

1.3. For each event e in E that occur in a lifeline other than l and corresponds to an er-

ror location, generate a coordination message having as target location the location

immediately before e, and as source location a location in l selected as follows:

• If there is an event e′ in E that occurs in l in the same operand of e, pick the

location immediately after e′;

• Otherwise, pick a location immediately after the start location of the operand of e

in l.

2. Determine a set C2 of coordination messages to fix race conditions and other event ordering

problems, proceeding as follows:

2.1. Find triples of events e1, e2, and e3 such that: (i) e3 corresponds to a remaining error

location; (ii) e2 is the emission event corresponding to e3 (possibly e2 = e3); (iii) the

triple occurs by that order in a valid trace t; (iv) there are no other events between e1

and e3 in t in the lifeline of e1 or e3; (v) there is no causal chain of events in t between

e1 and e2 (see discussion of causal chains of events in Section 5.6.3); and (vi) e2 does

not occur after e3 in any valid trace.

2.2. For each triple, generate a coordination message having as source location a location

immediately after e1 and as target location a location immediately before e2.

3. Determine a set C3 of coordination messages to fix observability problems caused by op-

tional messages without corresponding acknowledgment messages (typically inside opt or

loop combined fragments), proceeding as follows:

3.1. Find all asynchronous messages such that: (i) the reception event corresponds to a

remaining error location; (ii) it has a variable number of occurrences among the set of

all valid traces.

3.2. For each selected message m, generate a coordination message (acknowledgment mes-

sage) in the opposite direction, immediately after m.
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4. The set C of coordination messages is the union of the three sets.

5.6.3 Generation of Coordination Time Constraints

As illustrated in Section 5.1, several controllability problems (such as race conditions and inter-

lifeline event ordering constraints) may be solved by adding coordination time constraints that

impose an ordering between pairs of events. In fact, lifelines may coordinate their actions by

dynamically exchanging coordination messages or by statically ’agreeing’ on an adequate timing

for their actions.

The pattern of race conditions that our heuristic algorithm looks for and the fix strategy used

are illustrated in Figure 5.10.

Figure 5.10: Fixing race conditions with coordination time constraints.

We use several trace slicing operations illustrated in Figure5.11, based on the causal depen-

dencies that exist between pairs of emission and reception events, and between all the events that

precede an emission event in a lifeline and the emission event itself (assuming the emission deci-

sion is taken based on the events previously observed in the lifeline).

Procedure 5.12 (Generation of coordination time constraints to fix race conditions).

1. Take as candidate instances for e2 the erroneous or missing events in E , as computed by

Procedure 5.10.

2. Take as candidate instances for e1 the events that immediately precede e2 (without interme-

diate events from the respective lifelines) in at least one valid trace t ∈ V , and do not occur

after e2 in any valid trace.

3. Take as candidate instances for e0 the closest common ancestors of e1 and e2 in the valid

traces t ∈ V in which both occur (calculated as illustrated in Figure 5.11).
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Figure 5.11: Causal dependencies and slicing operations (trace of Figure 5.1a).

4. Discard triples (e0,e1,e2) where e0 = e1 or the maximum duration from e0 to e1 is less

than the minimum duration from e0 to e2 (cases where e1 is guaranteed to precede e2).

5. Inject upper time bounds between pairs of events in the causal chain of events from e0 to e1

(bidirectional slice), based on default values for the maximum transmission time (between

emission and reception events) and maximum reaction time (between an event in a lifeline

and a subsequent emission event).

6. Determine the maximum duration τ from e0 to e1 that results from step 5, and inject a

lower time bound τ+1 (wait time) in the chain of events from e0 to e2, between an event

in a lifeline and a subsequent emission event (giving priority to emissions performed by

actors as close as possible to e0). If a time bound cannot be injected, the triple (e0,e1,e2)

is discarded.

7. Return the set of candidate fixes found, where each candidate fix is a set of time constraints

to enforce the ordering between a pair (e1,e2) of events.

Regarding controllability problems caused by pairs of mutually exclusive emission and recep-

tion events simultaneously enabled in a lifeline, we use a similar fix strategy: we inject coordina-

tion time constraints that impose an ordering between those events, based on their physical vertical

location in the sequence diagram (although such physical location does not have a semantic mean-

ing inside alt fragments, it usually has an intuitive meaning for the user).

Procedure 5.13 (Generation of coordination time constraints to fix pairs of mutually ex-
clusive reception and emission events simultaneously enabled).

1. Find pairs of events e1 and e2 that: (i) occur in the same lifeline, with e1 located before e2;

(ii) are of different types (send and receive); (iii) are mutually exclusive (i.e., there is no valid

trace in which both occur); and (iv) may be simultaneously enabled (from the perspective

of their lifeline).



84 Local Observability and Controllability Analysis and Enforcement Algorithms

2. Perform step 3 as in Procedure 5.12, with the difference that distinct traces t1 and t2 have

to be considered for e1 and e2, instead of a common trace t.

3. Perform steps 4, 5, 6 and 7 as in Procedure 5.12.

Procedure 5.14 (Generation of coordination time constraints to fix roundtrip constraints
not implied by other constraints).

1. Find pairs of events e0 and e1 that: (i) occur in the same lifeline, with e0 located before

e1; (ii) e0 is of type send and e1 is of type receive; (iii) there is a maximum duration

constraint between e0 and e1 that is not begin met; and (iv) there is an error location in e1

2. Remove the maximum duration constraint between e0 and e1, and perform step 5 as in

Procedure 5.12

3. If the resulting maximum duration between e0 and e1 exceed the desire duration discard this

pair (e0 and e1)

5.6.4 Application and Evaluation of Candidate Fixes

Procedure 5.15 (Application and evaluation of candidate fixes).

1. Let F be the set of candidate fixes, where each fix is a set of coordination time constraints

or set of coordination messages.

2. Search for single fix solutions, doing as follows for each candidate fix f (message-set or

constraint-set) in F :

(a) apply the fix f (i.e., insert the message-set or constraint-set in ι), obtaining a new

interaction ι ′;

(b) determine the set V ′ of valid traces defined by ι ′;

(c) if the projections of V and V ′ onto the lifelines of ι do not coincide (apart from

coordination events and time constraints), discard f ;

(d) if the set U ′ of unintended and/or locally uncheckable traces of ι ′ is empty, find a

minimal subset f∗ of f that is still sufficient to enforce locally observability and/or

local controllability, and return f∗;

(e) otherwise, if #U ′ (with coordination events removed) is not smaller than #U , discard

f ;

3. If a single fix solution was not found, search for multiple fix solutions using a greedy heuris-

tic as follows:
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(a) pick the candidate fixes in F that were not discarded, and rank them by increasing

values of #U ′ (with coordination events removed), obtaining a new ordered set F ′ of

candidate fixes;

(b) for each candidate fix f ∈F ′, by the defined order, insert f onto ι and execute recur-

sively Procedure 5.15; if a solution is found, return the inserted messages and/or time

constraints.

4. If no single or multiple fix solution was found, fail.

Because of being based on several heuristics, the presented algorithm has several limitations.

Although it was able to find a solution of minimum size in a few seconds or tenths of a second in

all test cases and case studies we experimented with, it might be unable to find a solution when a

solution exists, or might produce a solution more complex than needed.

5.7 Conclusions

In this chapter we presented several examples of simple scenarios to illustrate local observability

and controllability problems and ways to overcome them. In order to automatically detect this

type of problems, we also presented a set of algorithms that allow the automatic detection of local

observability and controllability problems. In this way we can respond to RQ3 as follows:

RQ3 - How do we determine if a test scenario described by a UML SD can be executed

safely in a purely distributed manner, without overlooking conformance faults (false negatives)

or injecting conformance faults (false positives) by the test harness? In other words, how do we

determine if a test scenario described by a UML SD is locally observable and locally controllable?

Using the algorithms proposed in Sections 5.4 and 5.5, it is possible to automatically determine

whether a given SD is locally observable and/or locally controllable.

As we were able to automatically determine this type of problems, we also present in this

chapter algorithms to overcome these problems, which allows us to respond to RQ4 as follows:

RQ4 - Given a test scenario not locally controllable or locally observable, how can we auto-

matically identify a minimal set of coordination messages and/or coordination time constraints to

refine the test scenario and enforce local observability and/or local controllability?

As we show through the algorithms proposed in Section 5.6, it is possible to overcome local

observability and controllability problems, using coordination messages or time constraints. Our

algorithms are able to determine this type of fixes automatically for common patterns of local

observability and controllability violations.
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Chapter 6

Implementation

The algorithms described in Chapter 5 for local observability and controllability analysis and

enforcement were implemented in the DCO Analyzer tool.

The tool architecture is described in Section 6.1. Section 6.2 presents the tool back-end. The

front-end of the tool is presented in Section 6.3. Section 6.4 presents some usage examples.

6.1 Tool Architecture

DCO Analyzer is an application developed in Java (Oracle, 2019) and VDM++ (Durr and Van Katwijk,

1992) to analyze UML SDs representing distributed systems test scenarios. As depicted in Fig-

ure 6.1, the user can use any visual editor of UML SDs (e.g. Papyrus1) and then upload the created

diagrams to DCO Analyzer.

Internally, DCO Analyzer comprises a front-end, developed in Java, and a back-end, devel-

oped in VDM++. The front-end is responsible for receiving and parsing .UML files describing

UML SDs, verifying their conformance with the UML metamodel (OMG, 2017), and converting

them into the formal representation expected by the back-end (VDM++ data structures). It is also

possible to directly provide a .VDMPP file containing the VDM++ data structures; this may be

useful to overcome limitations of modeling tools.

6.2 Back-end

VDM++ is an extension of the VDM specification language (VDM-SL) that is one of the longest

established model-oriented formal methods for the development of computer-based systems and

software. VDM++ supports both the functional style (with types, values and functions’ definitions)

and the object-oriented style (with classes, instance variables and operations) in a single language.

Since the functional style is usually more declarative, most of the data structures and procedures

are defined following the functional style (with types and functions). Some procedures are defined

using the imperative style (with pure static operations), for performance reasons. Classes are used

1https://papyrusuml.wordpress.com

87
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Figure 6.1: DCO Analyzer overview

simply as modules (without instance variables or non-static operations), to group together type

definitions, function definitions and some pure static operations. Invariants and pre-conditions are

used to formalize applicable constraints.

An advantage of VDM ++ is that it can be converted to Java, so it can be more easily integrated

with other tools (Maimaiti, 2011). However, we found that this conversion is not fully compatible,

so we decided to keep the backend in VDM++ and solve the problem of integration with Java in

the tool’s front-end.

As we can see in Figure 6.2, the DCO Analyzer back-end is composed of three packages,

DefinitionAndSemantics, ObservabilityAndControlabilityAnalysisAndEnfor-

cement and ConformanceCheckingAndInputSelection.

The DefinitionAndSemantics package is responsible for the definitions and semantics

of the diagrams and includes four modules, SequenceDiagrams, ValidTraces, Traces and

DifferenceConstraints. The SequenceDiagrams module formalizes the structure and

semantics of the SDs that are composed of interactions, lifelines, messages and time constraints.

The ValidTraces module contains the procedures to determine the set of valid traces of a given

SD. Trace operations are implemented in the Traces module. Constraint satisfiability procedures

are implemented in the DifferenceConstraints module.

The ObservabilityAndControllabilityAnalysisAndEnforcement package is the

main package since it is there that the procedures for the analysis of observability and controlla-

bility are implemented, as well as the the procedures to enforce those properties. This package

consists of four modules, SimulatedExecution, Observability, Controllability and

Enforcement. The SimulatedExecution module implements the procedure responsible for

the simulated execution. The procedures for analyzing local observability are implemented in the

Observability module. The Controllability module is responsible for implementing the
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procedures for analyzing local controllability. The procedure for the enforcement of observability

and controllability properties is implemented in the Enforcement module.

The last package is the ConformanceCheckingAndInputSelection package, which

consists of only one module, module ConformanceChecking. This package contains the pro-

cedures for conformance checking and test input selection.

The various methods specified in VDM ++, are capable of analyzing the following properties

of the UML SDs:

• validTraces: Set of valid global traces defined by the given SD;

• unintendedTraces: Set of invalid global traces caused by locally valid decisions (repre-

senting violations of local controllability);

• uncheckableLocally: Set of invalid global traces that cannot be verified locally (represent-

ing violations of local observability);

• isLocallyControllable: The diagram is locally controllable if there are no unintended traces;

• isLocallyObservable: The diagram is locally observable if there are no locally uncheckable

traces;

• genCoordinationFeatures: Set of coordination messages and/or time constraints to enforce

local controllability and/or local observability.

The full specifications in VDM++ can be found in Appendix B. These specifications can be

directly executed with the Overture tool (Overture community, 2020).

6.3 Front-end

Taking into account the limitations that we found when converting VDM++ specifications to Java

code and the common difficulty of the end-user in dealing with formal specifications, we decided

to implement an interface that facilitates the use of the developed methods by people without the

knowledge of formal methods.

The DCO analyzer frontend was developed in Java and as shown in Figure 6.3, it is composed

of four modules, GUI, UML Parser, VDM Generator and VDM Caller.

The GUI module is the main module, where the user interface is implemented. In UML

Parser module, parser functions for UML files are implemented. This module takes advan-

tage of the DocumentBuilder class to obtain instances from an XML document. In the VDM

Generator module, the functions that allow the generation of VDM models are implemented.

Finally the VDM Caller module is responsible for the connection between Java and VDM++,

which is where the invocations of the VDM++ methods are carried out and the results that are

later presented to the user are interpreted.
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Figure 6.2: Structure of the DCO Analyzer Back-End (UML class diagram, simplified)
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Figure 6.3: DCO Analyzer Front-End Modules

The DCO Analyzer tool provides a simple to use interface. All its features are accessible in a

single window that is divided into three areas as shown in Figure 6.4.

The first area is the area where the user selects the type of input file. The tool accepts two

types of files, the first one is the .UML files that represent the UML standard and which is the

typical export format for UML SD visual editors. Listing 6.1 presents an example of a .UML file

that represents a simple UML SD with two lifelines, a opt combined fragment, and a message

exchanged between the lifelines.

When the user submits a .UML file, the tool starts by doing a pre-analysis in order to check if

the file respects the UML standard. The parser verifies the structure of the document according to

the UML standard for representing SDs. If the structure are correct, the tool converts the .UML

file to the corresponding formal specification (.VDMPP file). The .VDMPP file corresponding to

the example shown in Listing 6.1, can be seen in Listing 6.2. These files correspond to the Papyrus

diagram presented in Figure 6.5, which consists of two lifelines and a message that is contained in

a opt combined fragment.

However, given the current limitations of the visual editing tools, namely with regard to the

modeling of time constraints the user can, if he/she so wishes, directly supply the .VDMPP file to

be analyzed by the tool. For that, he/she only has to select the option .VDMPP in the interface.
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Figure 6.4: DCO Analyzer Front-End

<?xml version="1.0" encoding="UTF−8"?>
<uml:Model xmi:version="20131001" xmlns:xmi="http://www.omg.org/spec/XMI/20131001" xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML" xmi:id="

_YP03oJJ0EemokoQUb−fCSA" name="ExampleB">
<packageImport xmi:type="uml:PackageImport" xmi:id="_YTIDQJJ0EemokoQUb−fCSA">

<importedPackage xmi:type="uml:Model" href="pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#_0"/>
</packageImport>
<packagedElement xmi:type="uml:Interaction" xmi:id="_YQIZoJJ0EemokoQUb−fCSA" name="Interaction1">

<lifeline xmi:type="uml:Lifeline" xmi:id="_aJYaQJJ0EemokoQUb−fCSA" name="L1" coveredBy="_FFxBEJJ1EemokoQUb−fCSA _FFyPMJJ1EemokoQUb−fCSA
_kMIcIJJ1EemokoQUb−fCSA"/>

<lifeline xmi:type="uml:Lifeline" xmi:id="_bULZcJJ0EemokoQUb−fCSA" name="L2" coveredBy="_FFxBEJJ1EemokoQUb−fCSA _FFyPMJJ1EemokoQUb−fCSA
_kMIcIZJ1EemokoQUb−fCSA"/>

<fragment xmi:type="uml:CombinedFragment" xmi:id="_FFxBEJJ1EemokoQUb−fCSA" name="CombinedFragment1" covered="_bULZcJJ0EemokoQUb−fCSA
_aJYaQJJ0EemokoQUb−fCSA" interactionOperator="opt">

<operand xmi:type="uml:InteractionOperand" xmi:id="_FFyPMJJ1EemokoQUb−fCSA" name="InteractionOperand0" covered="_bULZcJJ0EemokoQUb−fCSA
_aJYaQJJ0EemokoQUb−fCSA">

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="_kMIcIJJ1EemokoQUb−fCSA" name="Message1SendEvent" covered="
_aJYaQJJ0EemokoQUb−fCSA" message="_kMGm8JJ1EemokoQUb−fCSA"/>

<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="_kMIcIZJ1EemokoQUb−fCSA" name="Message1ReceiveEvent" covered="
_bULZcJJ0EemokoQUb−fCSA" message="_kMGm8JJ1EemokoQUb−fCSA"/>

<guard xmi:type="uml:InteractionConstraint" xmi:id="_FFyPMZJ1EemokoQUb−fCSA" visibility="package">
<specification xmi:type="uml:LiteralString" xmi:id="_JgtF4JJ2EemokoQUb−fCSA" value="x&lt;2"/>

</guard>
</operand>

</fragment>
<message xmi:type="uml:Message" xmi:id="_kMGm8JJ1EemokoQUb−fCSA" name="m1" messageSort="asynchCall" receiveEvent="_kMIcIZJ1EemokoQUb−fCSA"

sendEvent="_kMIcIJJ1EemokoQUb−fCSA"/>
</packagedElement>

</uml:Model>

Listing 6.1: Example of an .UML file
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Figure 6.5: Example of Basic SD in Papyrus

�
class DiagramT is subclass of SequenceDiagrams

operations

public makeDiagram() res: Interaction ==

(

let

l1 = mk_Lifeline("L1"),

l2 = mk_Lifeline("L2"),

m1 = mkMessage(1, mk_(l1, 3), mk_(l2, 3), "m1"),

o1 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2)}, {mk_(l1, 4), mk_(l2, 4)

}),

f1 = mk_CombinedFragment(<opt>, [o1], {l2 ,l1}),

sd1 = mkInteraction({l1, l2}, {m1}, {f1})

in

return sd1)

end DiagramT
� �
Listing 6.2: Example of a generated .VDMPP file

In the second area, and after the tool checks whether that the user has uploaded a valid file,

the user can select the type of analysis he wants to perform to the UML SD, being able to choose

from the 9 options previously described.

For each analysis, and in order to connect the front-end in java to the back-end developed in

VDM++, an invocation of the respective VDM++ method is performed by running the Overture

tool. For example, to perform the analysis that allows identifying Valid Traces, the tool executes
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the command java -jar Overture-2.7.0.jar -vdmpp -w -e new ValidTraces().

validTracesStr(new DiagramT().makeDiagram()) ./ ./VDDJAR ./VDDJAR/lib.

The result is then processed automatically so that it can be presented to the user.

The third area is the area where the messages are presented to the user, either error messages

(when, for example, the inserted files do not respect the standard format) or results of the analysis

requested by the user.

6.4 Usage Examples

As previously described, the tool is designed so that the user can analyze diagrams obtained from

his favorite visual modeling tool. Figure 6.6 shows an example of an UML SD test scenario,

drawn with the Papyrus tool, for an online driving license renewal system (greatly simplified for

illustration purposes).

Figure 6.6: Example of Initial SD in Papyrus

After uploading the respective .UML file and selecting the analysis of all properties, the user

obtains the output represented in Figure 6.7.

In the output, a set of traces is represented between {...}, a trace (sequence of events) is

represented between [...], the emission of a message m by a lifeline L is represented as !m@L, and

the reception of a message m at a lifeline L is represented as ?m@L.

In this example, the tool identified a set of four valid traces and was able to detect that the

given diagram is not locally controllable, indicating six unintended traces.

These unintended traces are related to the possibility of the electronic payment message (m3)

being received by the electronic payment service (L3) before the reference validation message

(m2).

In order to help the user to make this diagram locally controllable, our tool suggests adding a

coordination message (Ctrl1) between the Electronic Payment Service (L3) and the Driver APP

(L2), after m2 (suffix “Am3”) " and m1 (suffix “Am1”), respectively. In practice, such message
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Figure 6.7: Example of DCO Analyzer output

might represent a payment authorization confirmation message, thereby ensuring that payment can

only be made after the payment reference has been validated.

With this suggestion, the user can then refine the SD as shown in Figure 6.8.

The suggestion given by our tool can be used in several ways:

• the suggested message is actually implemented in the SUT, so the SD is just modified to

include it (incomplete specification);

• the SUT is redesigned to incorporate the suggested message, and the SD is updated accord-

ingly (design flaw);

• the system design is not changed, so the suggested message is marked as a test coordination

message to be exchanged between the test components during test execution (e.g., between

a test monitor co-located with L3 and a test driver co-located with L1).
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Figure 6.8: Refined SD in Papyrus

Another example, illustrating a local observability problem, is shown in Figure 6.9. This

diagram represents the login scenario of a mobile application, where the user, after login, can

receive pending notifications since the last time the application was connected to the server. By

analyzing the diagram with our tool it is possible to detect that local testers are unable to locally

detect the execution trace [!m1@L1,?m1@L2, !m2@L2], which corresponds to the case where the

message m2 is sent but lost. Such loss will not be detected as an error at L1 because not receiving

m2 is also a valid behavior at L1. The solution to this problem recommended by the DCO Analyzer

is to place a coordination message between L1 and L2 upon receipt of m2 in L1. Such message

can be interpreted as an acknowledgment message; if m2 is lost (or the acknowledgment message

is lost), then a problem will be detected at L2.

More complex SDs are also supported, namely SDs with other control flow variants (alt and

loop combined fragments) and time constraints.

DCO Analyzer executable files, some test scenarios in UML, and a demo video can be found

at https://brunolima.info/DCOANALYZER/.

https://brunolima.info/DCOANALYZER/
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Figure 6.9: Example of a scenario not locally observable
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Chapter 7

Validation

In this chapter we describe the validation of the algorithms and the tool developed in this thesis.

Our validation process was carried out at two different times. First, we carried out a series of

validation tests that tried to cover different real-life situations, covering different types of observ-

ability and controllability problems as well as different types of UML SDs (with and without time

constraints) using different combined fragments. The second part of the validation consisted in an

industrial case study whose purpose was to prove the functionality of our tool and algorithms in

real world test scenarios.

Section 7.1 presents the validation tests. Section 7.2 presents the industrial case study. Sec-

tion 7.3 concludes the chapter.

7.1 Validation Tests

To validate the specifications, we encoded in VDM++ real-world test scenarios coming from a

nation-wide project in the ambient-assisted living domain AAL4ALL (2015). Additionally test

scenarios were designed and encoded to ensure full coverage of the specification. In total, 38 test

scenarios (test cases) were defined, divided in three different sets.

In the first set of 21 test cases we used scenarios without time constraints. We focused only

on covering the most common observability and controllability problems (for example race con-

ditions, non-local choices, etc.) in diagrams with different types of combined fragments.

Figure 7.1 shows one of the test cases in this set. This diagram consists of three lifelines, five

messages and an alt combined fragment, and represents an example of multiple violations of

local observability and controllability. The encoding of this test case in VDM++ can be seen in

Listing 7.1.

99
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Figure 7.1: TestRacePlusAlt UML SD.

�
public testRacePlusAlt() ,

(

let l1 = mkLifeline("L1"),

l2 = mkLifeline("L2"),

l3 = mkLifeline("L3"),

m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "m1"),

m2 = mkMessage(2, mk_(l2, 2), mk_(l3, 2), "m2"),

m3 = mkMessage(3, mk_(l1, 3), mk_(l3, 3), "m3"),

m4 = mkMessage(4, mk_(l1, 5), mk_(l2, 5), "m4"),

m5 = mkMessage(5, mk_(l2, 7), mk_(l3, 7), "m5"),

o1 = mk_InteractionOperand(nil, {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)}, {mk_

(l1, 6), mk_(l2, 6), mk_(l3, 6)}),

o2 = mk_InteractionOperand(nil, {mk_(l1, 6), mk_(l2, 6), mk_(l3, 6)}, {mk_

(l1, 8), mk_(l2, 8), mk_(l3, 8)}),

f1 = mk_CombinedFragment(<alt>, [o1, o2], {l1, l2, l3}),

sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3, m4, m5}, {f1})

in

(

assertEqual("{({}, {!m2@L2 - ?m1@L2 <= 1, ?m1@L2 - !m1@L1 <= 2, 6 <= !m3@L1 -

!m1@L1 <= 7, ?m2@L3 - !m2@L2 <= 2, 11 <= !m5@L2 - !m2@L2, ?m3@L3 - !

m3@L1 <= 2, !m4@L1 - !m3@L1 <= 1, ?m4@L2 - !m4@L1 <= 2})}",

genCoordinationFeaturesStr(sd1, false, true, false, true, 2, 1));

)

);
� �
Listing 7.1: The testRacePlusAlt() test case

Our goal with this test case is to prove that our tool is able to identify and solve the controlla-

bility problems by suggesting to the user the set of coordination time constraints that enforce local

controllability.

Figure 7.2 presents the diagram from Figure 7.1, modified to incorporate the time constraints
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Figure 7.2: TesStrict UML SD Corrected.

suggested by the tool (the time constraint for messages delivery <2, which should be applied to all

messages, have been omitted from the diagram for better understanding).

Another example of this set of test cases is theUML SD represented in Figure 7.3. This di-

agram is composed of three lifelines, two messages and the strict combined fragment, and

represents an example of a not locally controllable nor observable scenario. The strict com-

bined fragment imposes an exact order between the events that occur within each part of the

strict, this means that in this case the sending of m2 only occurs after m1 has been received.

The encoding of this test case in VDM++ can be seen in Listing 7.2.

Figure 7.3: TesStrict UML SD with strict sequencing and a race condition.

�
public testStrict() ,

(

let l1 = mkLifeline("L1"),

l2 = mkLifeline("L2"),

l3 = mkLifeline("L3"),

m1 = mkMessage(1, mk_(l1, 3), mk_(l2, 3), "m1"),

m2 = mkMessage(2, mk_(l3, 5), mk_(l2, 5), "m2"),

o1 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2), mk_(l3, 2)},

{mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)}),

o2 = mk_InteractionOperand(nil, {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)},
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{mk_(l1, 6), mk_(l2, 6), mk_(l3, 6)}),

f1 = mk_CombinedFragment(<strict>, [o1, o2], {l1, l2, l3}),

sd1 = mkInteraction({l1, l2, l3}, {m1, m2}, {f1})

in

(

assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, validTraces(sd1));

assertEqual(<Inconclusive>, finalConformanceChecking(sd1,

{l1 7→ [s(m1)], l2 7→ [r(m1), r(m2)], l3 7→ [s(m2)]}));

assertEqual({[s(m1), s(m2), r(m1), r(m2)], [s(m2), s(m1), r(m1), r(m2)]},

uncheckableLocally(sd1));

assertEqual({[s(m1), s(m2)], [s(m2)]}, unintendedTraces(sd1));

assertEqual( /0, missingTraces(sd1)) ;

assertEqual("{{[!Ctrl1@L2Am1, ?Ctrl1@L3Bm2]}}",

genCoordinationMessagesStr2(sd1, false));

)

);
� �
Listing 7.2: The testStrict() test case

Our goal with this test case is to prove that our tool is able to identify and solve the local ob-

servability and controllability problems by suggesting to the user the set of coordination messages

that enforce these proprieties.

One more example of this first set of test cases can be seen in Figure 7.4. This diagram consists

of three lifelines, three messages and an alt combined fragment. This UML SD represents a

scenario with mutually exclusive emission and reception events simultaneously enabled, making

the scenario not locally controllable. The encoding of this test case in VDM++ can be seen in

Listing 7.3.

Figure 7.4: TestSendRecvEnabled UML SD.

�
public testSendRecvEnabled() ,

(

let l1 = mkLifeline("L1"),

l2 = mkLifeline("L2"),

l3 = mkLifeline("L3"),

o11 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2), mk_(l3, 2)},

{mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)}),
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o12 = mk_InteractionOperand(nil, {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)},

{mk_(l1, 8), mk_(l2, 8), mk_(l3, 8)}),

f1 = mk_CombinedFragment(<alt>, [o11, o12], {l1, l2, l3}),

m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "m1"),

m2 = mkMessage(2, mk_(l2, 3), mk_(l1, 3), "m2"),

m3 = mkMessage(3, mk_(l1, 6), mk_(l3, 6), "m3"),

sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3}, {f1})

in

(

assertFalse(isLocallyObservable(sd1));

assertFalse(isLocallyControllable(sd1));

assertEqual("{({[!Ack_m3@L3Am3, ?Ack_m3@L1Am3], [!Ctrl1@L2Am2, ?Ctrl1@L1Am2]},

{})}",

genCoordinationFeaturesStr(sd1, true, true, true, false, 2, 1));

assertEqual("{({}, {!m2@L2 - ?m1@L2 <= 1, ?m1@L2 - !m1@L1 <= 2, 6 <= !m3@L1 - !

m1@L1, ?m2@L1 - !m2@L2 <= 2})}",

genCoordinationFeaturesStr(sd1, false, true, false, true, 2, 1));

)

);
� �
Listing 7.3: The testSendRecvEnabled() test case

Our goal with this test case is to prove that our tool is able to identify and solve the controlla-

bility problems by suggesting to the user two alternatives to enforce local controllability, a set of

coordination messages and a set of time constraints. Figure 7.5 presents two alternative diagrams

that correspond to the implementation of the solutions proposed by the tool when analyzing the

diagram from Figure 7.4. The diagram a) incorporate the solution based on acknowledgement and

control messages, and diagram b) incorporate the solution based in time constraints.

Figure 7.5: TestSendRecvEnabled UML SD.

A last example of this first set of test cases can be seen in Figure 7.6. This diagram consists

of two lifelines, with a loop combined fragment with a finite number of iterations and a single

message in each iteration. Although this is a simple diagram according to the UML standard,
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there is a weak sequencing between iterations, since it is not guaranteed that the sending of the

message m1 in an iteration n+1 occurs only after the reception of the message m1 sent in iteration

n. Because last iteration is optional and the message has no acknowledgment, the scenario is not

locally observable, but can be fixed with an acknowledgment message. The encoding of this test

case in VDM++ can be seen in Listing 7.4.

Figure 7.6: TestLoop UML SD.

�
public testLoop() ,

(

let l1 = mkLifeline("L1"),

l2 = mkLifeline("L2"),

m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 2), "m1"),

ctrl = mkMessage(2, mk_(l2, 3), mk_(l1, 3), "m2"),

o1 = mk_InteractionOperand(mk_InteractionConstraint(1, 2, nil),

{mk_(l1, 1), mk_(l2, 1)}, {mk_(l1, 4), mk_(l2, 4)}),

f1 = mk_CombinedFragment(<loop>, [o1], {l1, l2}),

sd1 = mkInteraction({l1, l2}, {m1}, {f1})

in

(

assertEqual({[s(m1), r(m1)], [s(m1), r(m1), s(m1), r(m1)],

[s(m1), s(m1), r(m1), r(m1)]}, validTraces(sd1));

assertEqual({[s(m1), s(m1), r(m1)], [s(m1), r(m1), s(m1)]},

uncheckableLocally(sd1));

assertTrue(isLocallyControllable(sd1));

assertEqual("{{[!Ctrl1@L2Am1, ?Ctrl1@L1Am1]}}",

genCoordinationMessagesStr2(sd1, false));

)

);
� �
Listing 7.4: The testLoop() test case

With this test case we intend to verify that our tool can handle well the particular cases of

UML like this one.

The second set of 14 test cases focuses on scenarios with time constrains. In this set, we focus

on the validation of scenarios where time constraints cause problems of local observability and

controllability, cause possible inconclusive verdicts, or even cannot be satisfied.

An example of this set of test cases can be seen in Figure 7.7. This UML SD consists of two

lifelines, two messages and a time constraint between the event of sending message m1 and the



7.1 Validation Tests 105

reception of message m2. The time constraint determines that a maximum of 1000ms can pass

between these two events. This diagram is not locally controllable, due to its roundtrip constraint

as explained in Section 5.1. The encoding of this test case in VDM++ can be seen in Listing 7.5.

Figure 7.7: TestNonLocallyControlableTimed UML SD.

�
public testNonLocallyControlableTimed() ,

(

let l1 = mkLifeline("L1"),

l2 = mkLifeline("L2"),

m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"),

m2 = mkMessageTimed(2, mk_(l2, 2), mk_(l1, 2), "m2"),

sd1 = mkInteraction({l1, l2}, {m1, m2}, /0,
{mk_TimeConstraint(t(s(m1)), t(r(m2)), 0, 1000)})

in

(

assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, validTraces(sd1));

assertTrue(isLocallyObservable(sd1));

assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, unintendedTraces(sd1));

assertEqual( /0, missingTraces(sd1))

)

);
� �
Listing 7.5: The testNonLocallyControlableTimed() test case

Our goal with this test is to prove that our tool is capable of detecting local controllability

problems in diagrams with time constraints.

Another example of this set of test cases can be seen in Figure7.8. This diagram is composed

of two lifelines, two messages, two opt combined fragments, and four time constraints. The

diagram represents a scenario that, despite containing two optional combined fragments, they

end up becoming mutually exclusive due to time constraints, thus making the scenario locally

controllable. The encoding of this test case in VDM++ can be seen in Listing 7.6.
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Figure 7.8: TestStrangeControllableTimed UML SD.

�
public testStrangeControllableTimed() ,

(

let l1 = mkLifeline("L1"),

l2 = mkLifeline("L2"),

m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"),

m2 = mkMessageTimed(2, mk_(l1, 3), mk_(l2, 3), "m2"),

m3 = mkMessageTimed(3, mk_(l2, 4), mk_(l1, 4), "m3"),

m4 = mkMessageTimed(4, mk_(l2, 7), mk_(l1, 7), "m4"),

o1 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2)}, {mk_(l1, 5), mk_(l2,

5)}),

o2 = mk_InteractionOperand(nil, {mk_(l1, 6), mk_(l2, 6)}, {mk_(l1, 8), mk_(l2,

8)}),

f1 = mk_CombinedFragment(<opt>, [o1], {l1, l2}),

f2 = mk_CombinedFragment(<opt>, [o2], {l1, l2}),

sd1 = mkInteraction({l1, l2}, {m1, m2, m3, m4}, {f1, f2},

mkMsgTimeConstraints({m1, m2, m3, m4}, 0, 1) ∪
{mk_TimeConstraint(t(s(m1)), t(s(m2)), 7, nil),

mk_TimeConstraint(t(r(m2)), t(s(m3)), 0, 1),

mk_TimeConstraint(t(r(m1)), t(s(m4)), 0, 4),

mk_TimeConstraint(t(s(m2)), t(r(m3)), 0, 5)}),

e1 = s(m1), e2 = r(m1),

e3 = s(m2), e4 = r(m2),

e5 = s(m3), e6 = r(m3),

e7 = s(m4), e8 = r(m4)

in

(

assertEqual({[e1, e2], [e1, e2, e3, e4, e5, e6], [e1, e2, e7, e8]},

validTraces(sd1));
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assertTrue(isLocallyControllable(sd1));

assertFalse(isLocallyObservable(sd1));

)

);
� �
Listing 7.6: The testStrangeControllableTimed() test case

Our goal with this test case was to prove that the tool is able to correctly analyze more complex

diagrams with multiple combined fragments and multiple time constraints.

The third and last set of test cases is composed of three real scenarios taken from different

projects. One of the tested scenarios in this set is the fall detection scenario previously presented

in Figure 5.4. The scenario is locally controllable with the specified time constraints but would

not in the absence of such constraints. The encoding of this test case in VDM++ can be seen in

Listing 7.7.�
public testFallDetection() ,

(

let l1 = mkLifeline("Care_Receiver"),

l2 = mkLifeline("Fall_Detection_App"),

l3 = mkLifeline("AAL4ALL_Portal"),

m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "fall_signal"),

m2 = mkMessageTimed(2, mk_(l2, 2), mk_(l1, 2), "confirm?"),

m3 = mkMessageTimed(3, mk_(l1, 4), mk_(l2, 4), "yes"),

m4 = mkMessageTimed(4, mk_(l2, 5), mk_(l3, 5), "notify_fall"),

m5 = mkMessageTimed(5, mk_(l1, 7), mk_(l2, 7), "no"),

m6 = mkMessageTimed(6, mk_(l2, 9), mk_(l3, 9), "notify_possible_fall"),

o1 = mk_InteractionOperand(nil, {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3)},

{mk_(l1, 6), mk_(l2, 6), mk_(l3, 6)}),

o2 = mk_InteractionOperand(nil, {mk_(l1, 6), mk_(l2, 6), mk_(l3, 6)},

{mk_(l1, 8), mk_(l2, 8), mk_(l3, 8)}),

o3 = mk_InteractionOperand(nil, {mk_(l1, 8), mk_(l2, 8), mk_(l3, 8)},

{mk_(l1, 10), mk_(l2, 10), mk_(l3, 10)}),

f1 = mk_CombinedFragment(<alt>, [o1, o2, o3], {l1, l2, l3}),

tcs = {mk_TimeConstraint(t(s(m2)), t(r(m2)), 0, 1000),

mk_TimeConstraint(t(s(m3)), t(r(m3)), 0, 1000),

mk_TimeConstraint(t(s(m5)), t(r(m5)), 0, 1000),

mk_TimeConstraint(t(r(m2)), t(s(m3)), 0, 10000),

mk_TimeConstraint(t(r(m2)), t(s(m5)), 0, 10000),

mk_TimeConstraint(t(s(m2)), t(s(m6)), 13000, nil)},

sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3, m4, m5, m6}, {f1}, tcs),

sd2 = mkInteraction({l1, l2, l3}, {m1, m2, m3, m4, m5, m6}, {f1}, /0),
e1 = s(m1), e2 = r(m1),

e3 = s(m2), e4 = r(m2),

e5 = s(m3), e6 = r(m3),

e7 = s(m4), e8 = r(m4),

e9 = s(m5), e10 = r(m5),

e11 = s(m6), e12 = r(m6),
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e1a = mk_Event(<Send>, "fall_signal", l1, 0),

e2a = mk_Event(<Receive>, "fall_signal", l2, 2000),

e3a = mk_Event(<Send>, "confirm?", l2, 4000),

e4a = mk_Event(<Receive>, "confirm?", l1, 4200),

e5a = mk_Event(<Send>, "yes", l1, 14200),

e6a = mk_Event(<Receive>, "yes", l2, 14500),

e7a = mk_Event(<Send>, "notify_fall", l2, 14600),

e8a = mk_Event(<Receive>, "notify_fall", l3, 16000),

e6b = mk_Event(<Receive>, "yes", l2, 15200),

e7b = mk_Event(<Send>, "notify_fall", l2, 15600),

e6c = mk_Event(<Receive>, "yes", l2, 18000),

e7c = mk_Event(<Send>, "notify_fall", l2, 18600),

e8c = mk_Event(<Receive>, "notify_fall", l3, 19000),

e4d = mk_Event(<Receive>, "confirm?", l1, 16800),

e11d = mk_Event(<Send>, "notify_possible_fall", l2, 17000),

e12d = mk_Event(<Receive>, "notify_possible_fall", l3, 18000)

in

(

assertEqual({[e1, e2, e3, e4, e5, e6, e7, e8],

[e1, e2, e3, e4, e9, e10],

[e1, e2, e3, e4, e11, e12]},

validTraces(sd1));

MaxClockSkew := 500;

assertEqual(<Pass>, timedFinalConformanceChecking(sd1,

{l1 7→ [e1a, e4a, e5a], l2 7→ [e2a, e3a, e6a, e7a], l3 7→ [e8a]}));

assertEqual(<Inconclusive>, timedFinalConformanceChecking(sd1,

{l1 7→ [e1a, e4a, e5a], l2 7→ [e2a, e3a, e6b, e7b], l3 7→ [e8a]}));

assertEqual(<Fail>, timedFinalConformanceChecking(sd1,

{l1 7→ [e1a, e4a, e5a], l27→ [e2a, e3a, e6c, e7c], l3 7→ [e8c]}));

assertEqual(<Fail>, timedFinalConformanceChecking(sd1,

{l1 7→ [e1a, e4d], l2 7→ [e2a, e3a, e11d], l3 7→ [e12d]}));

MaxClockSkew := 10;

assertTrue(isLocallyControllable(sd1));

assertFalse(isLocallyControllable(sd2));

assertFalse(isLocallyObservable(sd1)); -- because of optional messages without

ack

)

);
� �
Listing 7.7: The testFallDetection() test case

With this test case we intend to verify that the tool has the behavior expected in the analysis of
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this type of diagrams, analyzing the same scenario with and without time constraints. As already

described in Figure 5.7 a particular case in this scenario occurs when the message yes is sent and

the times recorded in the local observation of events e5 and e6, are 14200 and 15200 respectively.

Applying the procedure described in Section 5.3.6, we obtain an inconclusive verdict since the

difference between the observed times is exactly coincident with the maximum time allowed by the

inter lifeline time constraint (1000). If the local clocks were perfectly synchronized, the test would

pass, however admitting a clock skew of 500, the test may have violated this time constraint,

so the verdict is inconclusive.

The VDM++ specification for all test cases can be found in Appendix B (TestCases class),

these specifications can be directly executed with the Overture tool (Overture community, 2020).

The complete set of test cases executes in approximately 23 seconds in Overture, with all run-

time checks enabled (dynamic type checks, invariant checks, pre-condition checks, post-condition

checks, and measure run-time checks) and test coverage instrumentation activated. The test cases

were executed in a MacBook Pro 2018 with an Intel Core i7 CPU @2.7 GHZ, 16GB RAM, and

the macOS Catalina.

7.2 Industrial Case Study

In order to validate the algorithms in industrial scenarios we conducted an evaluation experiment

with real-world test scenarios from an industrial partner who is currently developing a solution for

automatic incident detection on motorways. The goals of the evaluation are:

1. to check if our analysis tool is able to correctly identify local controllability and/or local

observability issues in real-world test scenarios;

2. to check if the analysis is performed in an adequate time;

3. to check if the output results produced by the tool help the users to understand the root

causes of the detected problems and refine the input test scenarios accordingly.

7.2.1 Motorway Incident Detection Project

The project of our industrial partner (here described in a simplified way for privacy reasons),

illustrated in Figure 7.9, consists of the placement of sensors on the motorways that interact with

each other and are able (among other features) to detect incidents automatically.

When the system detects a possible incident, a message is automatically presented to the

drivers through the Dynamic Message Sign (DMS), so that they can reduce the speed and thus re-

duce the possibility of a chain collision. On the other hand, the system also automatically informs

the Operational Coordination Center (OCC) operators so that they can validate the occurrence and

trigger the help assistance if necessary.
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Figure 7.9: Traffic Control System.

7.2.2 Test Scenario

We asked our partner to describe the system interactions (including temporal constraints) using

UML SDs. Figure 7.10 shows one of the scenarios that was provided.

The scenario involves 3 alternatives. In the first case, a vehicle circulating on the motorway

is detected by sensors A and B, situated 1 km apart, in a time interval between 24 s and 72 s

(indicating that the vehicle circulates at a speed between 50 and 150 kmh−1). In this case, the

system does not need to take any action. In the second case, the vehicle is detected by the sensors

A and B in a time interval less then 23 s, which corresponds to a speed above 150 kmh−1. In this

case, the system sends a speed alert to the Traffic Management Controller (TMC). In the last case,

a vehicle is detected by sensor A but is not detected by sensor B in the next 72 s, meaning that

something may have occurred with the vehicle and it may be immobilized on the road. In this

case, the system informs the TMC that automatically sends a message to be presented to the other

drivers through the DMS and informs the OCC. In the OCC the operator visualizes the alert and

can optionally cancel the alert which is done through the TMC that removes the message from the

DMS.

7.2.3 Scenario Analysis - Local Controllability

We analyzed the local controllability of the previous test scenario (Figure 7.10) with our tool,

which took 1.1 s to run in the machine previously described and reported 3 unintended tc-traces

(with lifeline indicated only when needed to disambiguate):

1. [!id_signal, ?id_signal@A, !noti f y_id, !id_signal, ?id_signal@B, ?noti f y_id, . . . ], with

τ4− τ1 ≤ 72;

2. [!id_signal, ?id_signal@A, !id_signal, ?id_signal@B, !noti f y_id, ?noti f y_id, . . . ], with

τ3− τ1 ≤ 72;
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Figure 7.10: Initial scenario and problem locations.

3. [!id_signal, ?id_signal@A, !noti f y_id, ?noti f y_id, !noti f y_tra f f ic_alert, . . . ,

?warning_msg_o f f , ?warning_msg_on], with τ5− τ1 ≥ 73.

These 3 tc-traces correspond to the following 2 problems, both related with race conditions:

1. Unexpected reception of id_signal at sensor B before reception of noti f y_id (unintended

traces 1 and 2). As delays can occur in the transmission of the noti f y_id message between

sensor A and sensor B, the message noti f y_id may arrive at sensor B before the message

id_signal. As a consequence, the system may be unable to use the sensor data or may

incorrectly conclude that a vehicle is moving against the flow of traffic; this suggests a

design flaw or an incomplete specification.

2. Unexpected late reception of warning_msg_on at DMS after reception of warning_msg_o f f

(unintended trace 3). As delays can occur in the transmission of the warning_msg_on mes-

sage between TMC and DMS, the message warning_message_o f f may arrive at DMS be-

fore the message warning_message_on. This case shows that in some situations an alert

message can remain visible in the DMS even after it has been removed by the operator,

thereby transmitting erroneous information to the drivers.



112 Validation

7.2.4 Scenario Analysis - Local Observability

We also analyzed the local observability of the previous test scenario with our tool, which took

1.3 s to run in the machine previously described and reported 22 locally uncheckable tc-traces:

1) [!id_signal, ?id_signal@A, !noti f y_id, ?noti f y_id, !id_signal, ?id_signal@B,

!noti f y_speed_alert], with τ5−τ1 ≤ 72∧τ6−τ4 ≤ 23 (message noti f y_speed_alert lost);

...

22) [!id_signal, ?id_signal@A, !noti f y_id, ?noti f y_id, !noti f y_tra f f ic_alert, ...,

!warning_msg_o f f ], with τ5− τ4 ≥ 73 (message warning_message_o f f lost).

After close inspection, we conclude that all the uncheckable tc-traces are due to the presence

of the following 6 optional asynchronous messages without corresponding acknowledgment mes-

sages:

• noti f y_speed_alert;

• noti f y_tra f f ic_alert from SensorB to T MC;

• warning_message_on;

• noti f y_tra f f ic_alert from T MC to OCC;

• message_cancel;

• warning_message_o f f .

As explained in Section 5.1, if any of these messages is lost, the problem will go undetected

by the target lifeline, because not receiving a message is also a locally valid behavior. The solution

recommended by our tool to enforce local observability consists of the addition of 6 corresponding

acknowledgment (coordination) messages.

However, in discussion with our partner, considering the solution architecture and technolo-

gies, the possibility of such messages being lost was deemed negligible, and the insertion of ac-

knowledgment messages was not considered a priority, so we focused only on fixing the local

controllability issues as explained in the next section.

7.2.5 Scenario Refinement

In discussion with our industrial partner, we concluded that a maximum delay of 1 s could be as-

sumed for all internal actions in the system (message emission after some observed events, and

message transmission between lifelines). Hence, we ran our tool again asking for recommen-

dations of coordination time constraints and/or coordination messages to enforce controllability,

using the 1s upper bound for system transmission and reaction time where needed (these bounds

are currently configured in a configuration file).



7.2 Industrial Case Study 113

The tool recommended the addition of 3 upper time bounds and 2 lower time bounds as indi-

cated in red in Figure 7.11, solving both controllability problems. The analysis took 1.8 s to run

in the machine previously described.

Our partner accepted the suggestions, but opted to further refine the test scenario as indicated

by the solid arrows in Figure 7.11. Considering that a maximum car speed of 450 kmh−1 could

be safely assumed, the minimum time for a car to travel between sensors A and B was changed

from 3 to 8 s. Our partner also decided to redesign the operator user interface, so that traffic alert

messages can only be canceled after 5 s; hence, the minimum operator response time was changed

from 2 to 5 s.

Other test scenarios from the same project were also analyzed and refined successfully using

the same procedure.

Those scenarios are related to other traffic anomalies that can be detected and notified using

the same road infrastructure (see Figure 7.9), namely:

• cars that reverse direction after passing the first sensor (A), causing the sensor activation

sequence A-A;

• cars that move against the flow of traffic, causing an activation of sensor B without a prior

activation of sensor A.

Those scenarios differ from the scenario in Figure 7.10 in the initial sensor activation sequence,

but share a similar traffic alert notification sequence, and present similar types of observability and

controllability problems.

7.2.6 Discussion

Regarding the goals of the experiment, we concluded that:

1. our tool was able to correctly identify relevant local controllability issues in real-world test

scenarios, including issues that escaped manual inspection;

2. the analysis was performed quickly by the tool (in a few seconds);

3. the outputs produced by the tool helped in understanding and fixing the root causes of the

detected problems (in this case, incomplete specifications or system design flaws).

7.2.7 Threats to Validity

Our experiments have several validity threats. First, our validation examples may not cover all

possible real-world scenarios. In order to reduce this possibility, in addition to the scenarios

provided by our industrial partner, we also tested a series of validation tests that tried to cover

different real-life situations with all UML combined fragments. Second, the manual interpretation

of the error messages produced by our solution can only mean that people with some experience

in modeling can understand the errors in more complex scenarios. In order to better understand
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Figure 7.11: Refined locally controllable scenario (automatic refinement in red, followed by man-
ual refinement indicated with solid arrows).

this phenomenon we asked our industrial partner to analyze the results produced by our tool; this

analysis was performed by people with different modeling experiences. The results showed that

although there is a better perception from more experienced professionals, the less experienced

ones can also understand the problems that have been detected.

7.3 Conclusions

The validation tests and the industrial case study allowed an extended validation of the local ob-

servability and controllability analysis and enforcement algorithms, and the DCO Analyzer tool.

We believe that with validation tests we are able to cover not only the most common causes of

local observability and controllability problems, but also the different types of UML SD (with or

without time restrictions, different combined fragments, etc.). The results also showed that the tool

was always able to suggest the respective corrections to the user, either in the form of coordination

messages, time constraints or in some cases the two alternatives.

The validation in the industrial case study, allowed us to confirm that the tool is capable of

dealing with real scenarios, as well as giving suggestions that the user is able to understand, thus

proving to be a useful tool for professionals interested in modeling and testing this type of systems.



Chapter 8

Conclusions

8.1 Summary of Contributions

The main contributions of the research work are a state of the art on time-constrained distributed

systems testing, a state of the practice on testing distributed and heterogeneous systems, a testing

approach and architecture for the integration testing time-constrained distributed systems, local

observability and controllability analysis and enforcement algorithms implemented in the DCO

Analyzer tool and validated in an industry case study.

The state of the art analysis performed in this thesis allowed us to conclude that although some

works address observability and controllability problems in distributed systems testing and design,

none addresses the problem of observability and controllability analysis and enforcement for time-

constrained distributed systems. This open research problem requires community attention given

its serious importance in this type of systems.

The state of the practice analysis on testing DHS that we carry out through an exploratory

survey that was responded by 147 software testing professionals that attended industry-oriented

software testing conferences allowed us to confirm the high relevance of DHS in software testing

practice, confirm and prioritize the relevance of testing features characteristics of DHS, confirm

the existence of a significant gap between the current and the desired status of test automation for

DHS, and confirm and prioritize the relevance of test automation features for DHS. The survey re-

sults indicated a limited adoption of complete test automation processes by companies. For better

understanding what are the obstacles that companies face for not adopting complete test automa-

tion approaches, we conducted follow-up interviews with companies of different sizes and testing

approaches. The conclusions drawn from the interviews allowed us to identify some common

obstacles, such as the cost of acquisition and difficulty of adaptation of test automation tools, the

cost of test suite maintenance (namely with frequent changes in the software under test), and the

effort and expertise required for the creation of system models needed as input for automatic test

suite generation.

The proposed testing approach and architecture for the integration testing time-constrained

distributed systems that provides a higher level of automation of the testing process because all
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phases of the test process are supported in an integrated fashion. The only manual activity needed

is the development in a user friendly notation of the model required as input for automatic test case

generation and execution, and there is no need to develop test components specific for each SUT.

This approach also provides a higher fault detection capability. The use of a hybrid test architecture

allows the detection of a higher number of errors as compared to purely distributed or centralized

architectures. The proposed approach provides easier support for multiple test levels because

the same input model can be used to perform tests at different levels, simply by changing the

selection of observable and controllable events in the input model. A scenario-oriented approach

simplifies the level of detail required in the input models. The test execution process is also

more efficient. With a distributed conformance checking algorithm, communication overheads

during test execution are minimized and the usage of a state-oriented runtime model allows a

more efficient model execution and conformance checking.

We also proposed an approach to assess if test scenarios are ready for distributed execution,

and, if not, refine them to become test ready with minimal overhead. This approach is based on the

notions of local (or distributed) observability and controllability, that is, the ability to perform con-

formance checking (observability) and test input selection (controllability) in a purely distributed

way, without exchanging coordination messages between the test components during test execu-

tion or overlooking conformance faults or causing incorrect test inputs. All the algorithms were

implemented in the DCO Analyzer tool, for test scenarios specified by means of UML sequence

diagrams.

To validate the algorithms and the tool we first conducted a series of validation tests that tried

to cover different real-life situations, covering different types of observability and controllability

problems as well as different types of UML SDs (with and without time constraints) using differ-

ent combined fragments. Secondly we conducted an evaluation experiment with real-world test

scenarios from an industrial partner. In that experiment, our tool was able to correctly identify

local observability and controllability issues and recommend possible fixes; the outputs reported

helped the users to understand and fix the root causes of the detected problems.

8.2 Research Questions Revisited

The results achieved allow us to answer the four research questions set in Section 1.2.

RQ1 - What are the main difficulties and needs in the integration testing of distributed systems

listed in the state of the art and state of practice?

Looking at the state of the art presented in Chapter 2, we can say that there is a lack of

studies that solve the problem of observability and controllability analysis and enforcement for

time-constrained distributed systems. This is a critical problem in this type of systems. However,

the principles adopted by the approaches present in Table 2.3, namely at the level of solutions to

the observability and controllability problems in distributed systems testing and design are a good

starting point for this thesis.
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Looking at the conclusions of this survey presented in Chapter 3, we can say that main dif-

ficulties and needs in the integration testing of distributed systems with time-constraints in the

state of practice are expensive testing tools, so more open source solutions are needed in order to

allow smaller companies to also be able to automate the testing process for these types of systems.

The results also highlights important needs in the context of DHS testing, namely: the need for

checking interactions between the system components; the need for automated test execution; the

need to support multiple platforms, among others.

RQ2 - What is an adequate architecture and approach to conduct integration tests in these

types of systems?

Looking at the analysis performed in Chapter 2, the hybrid test architecture that combines

local testers and the central tester is one that appears to be the architecture that best suits this type

of system, namely due to its failure detection capacity. For this reason it was our starting point in

the proposed solution for the integration test in this type of systems.

RQ3 - How do we determine if a test scenario described by a UML SD can be executed

safely in a purely distributed manner, without overlooking conformance faults (false negatives)

or injecting conformance faults (false positives) by the test harness? In other words, how do we

determine if a test scenario described by a UML SD is locally observable and locally controllable?

Using the algorithms proposed in Sections 5.4 and 5.5, it is possible to automatically determine

whether a given SD is locally observable and/or locally controllable.

RQ4 - Given a test scenario not locally controllable or locally observable, how can we auto-

matically identify a minimal set of coordination messages and/or coordination time constraints to

refine the test scenario and enforce local observability and/or local controllability?

As we show through the algorithms proposed in Section 5.6, it is possible to overcome local

observability and controllability problems, using coordination messages or time constraints. Our

algorithms are able to determine this type of fixes automatically.

8.3 Future Work

Currently, DCO Analyzer is available as a standalone Java application. As future work, we intend

to make it available as a plug-in for some visual modeling editors so it can be accessed in a more

integrated way in the modeling environment. We believe that this way we will reach more possible

users of the tool and enable further validation experiments in industrial settings. We also intend

to explorer a way to present enforcement recommendations visually; we believe that this will

facilitate the interpretation of the recommendations given by the tool and thereby allow users with

less experience in modeling to use it. It is also in our plans integrate the tool in a full-edged toolset

for model-based distributed systems testing since at this moment the testing execution part of our

proposed testing approach is not implemented.
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Regarding the features of the DCO Analyzer we intend to improve the enforcement heuristics

and algorithms, for common patterns of problems and solutions.



Appendix A

Testing Distributed and Heterogeneous
Systems – State of the practice - Survey
Form

To explore the testing of distributed and heterogeneous systems from the point of view of industry

practitioners, in order to assess the current state of the practice and identify opportunities and

priorities for research and innovation initiatives we conducted an survey in two industry-oriented

conferences in the software testing area. The form used in these questionnaires is presented below.
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            Conducted by:                                           Supported by: 

                     

1/4 

Testing Distributed and Heterogeneous 

Systems – State of the practice 

 

 

Dear Sir/Madam, 

We are contacting you to participate in this survey due to your invaluable knowledge and 

experience in software development and testing. 

This survey is part of a research project carried out at the Software Engineering Research 

Group (http://softeng.fe.up.pt/) at the Faculty of Engineering, University of Porto, 

Portugal.  

In the context of this survey we define a Distributed and Heterogeneous System as a set 

of small independent systems that together form a new distributed system, combining 

hardware components and software system, possibly involving mobile and cloud-based 

platforms. 

By sharing your expertise with us, you will get access to the expert opinions of others (in 

terms of aggregated results), see how your opinion relates to theirs, and better understand 

the current state of the art in testing Distributed and Heterogeneous Systems. 

We sincerely appreciate your experience and expert opinion. Your identity and individual 

answers will be kept anonymous, only aggregated results will be presented. 

Please do not hesitate to contact us if you need any additional information. 

Thank you! 

Yours faithfully, 

Bruno Lima (bruno.lima@fe.up.pt) 

João Pascoal Faria (jpf@fe.up.pt) 

 

If you prefer, can also answer this survey in: 

 

 

 

 

 

 
 
 

https://goo.gl/GExS2w  
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2/4 

*Mandatory  
 

1- Professional Characterization 
 

1.1 - Which is your main responsibility in your current position? * 

o  Software testing, verification & validation 

o  Software developer, architect or analyst 

o  Project manager 

o  Other:  

 

1.2 - How long have you been working in your current position? * 

o  Less than 1 year 

o  Between 1 and 2 years 

o  Between 2 and 5 years 

o  More than 5 years 

 

1.3 - How long have you been working with software testing? * 

o  I've never worked with software testing 

o  Less than 1 year 

o  Between 1 and 2 years 

o  Between 2 and 5 years 

o  More than 5 years 

 

1.4 - How long have you been working with distributed and heterogeneous 

systems? * 

o  I've never worked with testing of distributed and heterogeneous systems 

o  Less than 1 year 

o  Between 1 and 2 years 

o  Between 2 and 5 years 

o  More than 5 years 

 

1.5 - In case you want to receive the aggregated results of this questionnaire, 

please provide us an email address (which will be kept private): 
 

 

 

2 - Company Characterization 
 

2.1 - In what industry is your company working? * 

o  ICT - Products and Services 

o  Education and Research 

o  Government and Military 

o  Healthcare 

o  Transportation 

o  Finance 

o  Entertainment/Tourism 

o  Energy 

o  Other.  
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3/4 

 

2.2 - What is the size of your company? * 

o  Less than 10 collaborators 

o  Between 10 and 99 collaborators 

o  Between 100 and 1000 collaborators 

o  More than 1000 collaborators 

 

2.3 - In what role(s) does your company conducts software test, if any? 

o  As developer 

o  As costumer/user 

o  As test services provider (independent tester) 

o  As system integrator 

 

2.4 - Which software test levels are performed in your company, if any? 

o  Unit testing 

o  Integration testing 

o  System testing 

o  Acceptance testing 

 

 

3 - Testing Distributed and Heterogeneous Systems 
 

3.1 - In what role(s) does your company conduct software tests, if any? 

o  As developer 

o  As costumer/user 

o  As test services provider (independent tester) 

o  As system integrator 

 

3.2 - About these systems, which software test levels are performed in your 

company, if any? 

o  Unit testing 

o  Integration testing 

o  System testing 

o  Acceptance testing 

 

3.3 - What is the level of test automation for these systems? 

o  Only manual testing 

o  Automatic test execution (with manual test scripting/coding) 

o  Automatic test generation (with manual execution) 

o  Automatic test generation and execution 

 

3.4- If you selected "Automatic test ..." in the previous question, what type of 

tools are used? 

o  Commercial off-the-shelf tool 

o  Developed/adapted in-house tool, reusable for different systems under 

test (SUTs) 

o  Developed/adapted in-house tool, tailor-made for the SUT 

 



            Conducted by:                                           Supported by: 

                     

4/4 

3.5 - Please rate the degree of importance of testing each of the following 

features of distributed and heterogeneous systems: * 

 

 VERY 

SMALL 

SMALL 

 

MEDIUM 

 

HIGH 

 

VERY 

HIGH 

INTERACTIONS BETWEEN THE 

SYSTEM AND THE ENVIRONMENT  
o  o  o  o  o  

INTERACTIONS BETWEEN 

COMPONENTS OF THE SYSTEM   
o  o  o  o  o  

PARALLELISM AND 

CONCURRENCY  
o  o  o  o  o  

TIME CONSTRAINTS o  o  o  o  o  
NON DETERMINISTIC BEHAVIORS o  o  o  o  o  

MULTIPLE PLATFORMS o  o  o  o  o  

 

3.6 - Please rate the degree of importance of each of the following features of a test 

automation solution for distributed and heterogeneous systems: * 

 

 VERY 

SMALL 

SMALL 

 

MEDIUM 

 

HIGH 

 

VERY 

HIGH 

SUPPORT FOR AUTOMATIC TEST 

CASE EXECUTION 
o  o  o  o  o  

SUPPORT FOR AUTOMATIC TEST 

CASE GENERATION 
o  o  o  o  o  

SUPPORT FOR TEST COVERAGE 

ANALYSIS 
o  o  o  o  o  

SUPPORT FOR AUTOMATIC TEST 

STUB GENERATION 
o  o  o  o  o  

SUPPORT FOR MULTIPLE 

PLATFORMS 
o  o  o  o  o  

 

 

3.7 - If there was a tool that could test a distributed and heterogeneous system using 

only a model of interactions (UML sequence diagram) as an entry model, would you 

find it useful? 

o  Yes 

o  No 

 

4 – In case you have any comments, suggestions or further information please tell 

us in the following box: 
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Appendix B

Observability and Controllability in
Scenario-based Integration Testing of
Time- Constrained Distributed
Systems: VDM++ Specifications

This report presents the complete specification in VDM++ of the local observability and local

controllability analysis and enforcement procedures and associated test cases described in this

thesis.
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1. Introduction 
 

This report presents the complete specification in VDM++ [1] of the local observability and local controllability 

analysis and enforcement procedures and associated test cases described in the thesis [2]. 

The specification follows a combination of the functional and imperative styles supported by VDM++. Classes 

are used simply as modules. The imperative style is used in some cases for performance reasons. 

The test cases can be executed with the Overture interpreter 1.  

In this document, it used to the extent possible the mathematical notation of VDM++ supported by Overture 

[1], as indicated in the next table. 

  

                                                           
1 http://overturetool.org/ 
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Category ASCII notation Mathematical notation 

Type definition set of T T-set 

 map U to T U 
𝑚
→ T 

 seq of T T* 

 seq1 of T T+ 

 nat ℕ 

 int ℤ 

 bool 𝔹 

 real ℝ 

Set operators and literals in set ∈ 

 not in set ∉ 

 inter ∩ 

 union ∪ 

 subset ⊆ 

 dinter ⋂ 

 dunion ⋃ 

 {} ∅ 

 iota ℩ 

 card # 

Sequence operators in seq ∈ 

 ^ ↷ 

Map operators munion ∪ 

 |-> ↦ 

 ++ † 

 :> ⊳ 

 <: ⊲ 

 :-> ⊳ 

 <-: ⊲ 

Record operations mu μ 

Logical and comparison operators forall ∀ 

 exists ∃ 

 not exists ∄ 

 and ∧ 

 or ∨ 

 not ¬ 

 <=> ⇔ 

 => ⇒ 

 <> ≠ 

 <= ≤ 

 >= ≥ 

Function and operation definition -> ⟶ 

 ==> ⟶ 

 == ≜ 

 * × 

 lambda λ 

 & • 
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2. Class Utils 
 

/** 
 * Common utilities. 
 */ 
  
class Utils 
 
types 
public String = char*; 
 
functions 
 
-- Obtains the minimum of a non-empty set (s) of elements of type @T. 
public min[@T]: @T-set ⟶ @T 
min(s) ≜ ℩ x ∈ s • ∄ y ∈ s • y < x 
pre s ≠ ∅; 
 
-- Obtains the maximum of a non-empty set (s) of elements of type @T. 
public max[@T]: @T-set ⟶ @T 
max(s) ≜ ℩ x ∈ s • ∄ y ∈ s • y > x 
pre s ≠ ∅; 
 
-- Sorts a set (s) of elements of type @T given a comparision function (compFunc). 
public sort[@T]: @T-set × (@T × @T ⟶ ℤ) ⟶ @T* 
sort(s, compFunc) ≜ 
  if s = ∅ then [] 
  else let x ∈ s be st ∄ y ∈ s • compFunc(y, x) < 0 
       in [x] ↷ sort[@T](s \ {x}, compFunc);  
                
-- Computes the transitive reflexive closure of a set (S) by a binary relation (R). 
public getTransitiveReflexiveClosure[@T]: @T-set × (@T × @T)-set ⟶ @T-set 
getTransitiveReflexiveClosure(S, R) ≜ 
  let next = {y | mk_(x, y) ∈ R • x ∈ S} ∪ S 
  in if next = S then S else getTransitiveReflexiveClosure[@T](next, R);   
 
-- Converts a set of values to a string. 
public set2str[@T]: @T-set × (@T ⟶ String) ⟶ String 
set2str(s, elem2str) ≜ 
  if s = ∅ then "{}"  
  else let t ∈ s in  
         if # s = 1 then "{" ↷ elem2str(t) ↷ "}" 
         else "{" ↷ elem2str(t) ↷ ", " ↷ tl set2str[@T](s \ {t}, elem2str); 
 
-- Converts a sequence of values to a string. 
public seq2str[@T]: @T* × (@T ⟶ String) ⟶ String 
seq2str(t, elem2str) ≜ 
  if t = [] then "[]"  
  else if len t = 1 then "[" ↷ elem2str(hd t) ↷ "]" 
  else "[" ↷ elem2str(hd t) ↷ ", " ↷ tl seq2str[@T](tl t, elem2str); 
 
-- Converts a pair of values to a string. 
public pair2str[@T1, @T2]: (@T1 × @T2) × (@T1 ⟶ String) × (@T2 ⟶ String)⟶ String 
pair2str(mk_(first, second), first2str, second2str) ≜ 
  "(" ↷ first2str(first) ↷ ", " ↷ second2str(second) ↷ ")"; 
 
end Utils 
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3. Class DifferenceConstraints 
 

/** 
 * Manipulation of difference constraints (DC) on integer time variables 
 * and boolean combinations in disjunctive normal form (DNF). 
 */ 
  
class DifferenceConstraints 
 
/*** Representation of difference constraints and expressions in DNF ***/ 
 
types 
public VariableId = ℕ;   -- time variable identifier 
public TimeValue  = ℕ;   -- time value in any desired scale (sec, mili, etc.) 
public Duration   = ℤ;   -- difference between time values 
 
-- Difference constraint, meaning vi - vj <= d 
public DC :: i: VariableId 
             j: VariableId 
             d: Duration; 
 
-- Expressions in Disjunctive-Normal-Form (DNF) 
public OrExp  :: args: (AndExp | DC)-set; 
public AndExp :: args: DC-set; 
public DCExp = DC | AndExp | OrExp;  
 
values 
public FalseExp: DCExp = mk_OrExp(∅); -- existential quantifier on empty set 
public TrueExp: DCExp = mk_AndExp(∅); -- unversal quantifier on empty set 
 
 
/*** Creation and simplificatin of difference constraint expressions ***/ 
 
-- Given a set of expressions in DNF, returns the conjunction normalized in DNF  
-- (partially simplified). 
operations 
public static pure mkAndExp: DCExp-set ⟶ DCExp 
mkAndExp(args) ≜ ( 
  dcl left : DCExp; 
    
  -- special case (absorbing element) 
  if FalseExp ∈ args then 
    return FalseExp; 
   
  -- process conjunctive or terminal arguments 
  left := mk_AndExp(simplifyDC(⋃{if is_AndExp(e) then e.args else {e} |  
                                        e ∈ args • ¬ is_OrExp(e)})); 
 
  -- process one disjunctive argument at a time 
  for all right ∈ args do  
    if is_OrExp(right) then 
      if left = TrueExp then  
      left := right 
      else ( 
        -- applies distributive property  
        left := mkOrExp({mkAndExpAux(e1, e2) | 
                           e1 ∈ (if is_OrExp(left) then left.args else {left}),  
                           e2 ∈ right.args}); 
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        -- aborts with absorbing element, i.e., FalseExp 
        if left = FalseExp then  
          return FalseExp 
    ); 
   
    return left 
 );  
 
-- Produces the conjunction (partially simplified) of two non-disjunctive expressions. 
-- Does a partial check for contradictions. 
functions 
mkAndExpAux: (AndExp | DC) × (AndExp | DC) ⟶ DCExp 
mkAndExpAux(exp1, exp2) ≜  
  let args1 = if is_AndExp(exp1) then exp1.args else {exp1}, 
      args2 = if is_AndExp(exp2) then exp2.args else {exp2} 
  in  
    if ∃ mk_DC(i, j, d1) ∈ args1 •  
        ∃ mk_DC((j), (i), d2) ∈ args2 • d1 + d2 < 0 then 
      FalseExp 
    else 
      mk_AndExp(simplifyDC(args1 ∪ args2)); 
 
-- Creates a conjunctive expression (partially simplified) based on a set of difference 
constraints. 
public mkAndExpDC: DC-set  ⟶ DCExp 
mkAndExpDC(args) ≜ mk_AndExp(simplifyDC(args)); 
 
-- Given an expression in DNF, returns the negation in DNF (partially simplified). 
public mkNotExp: DCExp ⟶ DCExp 
mkNotExp(exp) ≜  
  if is_AndExp(exp) then mkOrExp({mkNotExp(arg) | arg ∈ exp.args}) 
  else if is_OrExp(exp) then mkAndExp({mkNotExp(arg) | arg ∈ exp.args}) 
  else mk_DC(exp.j, exp.i, -(exp.d + 1)); 
 
-- Creates a DNF expression (partially simplified) for the disjunction  
-- of a set of expressions in DNF.  
public mkOrExp: DCExp-set ⟶ DCExp 
mkOrExp(args) ≜ 
  let flatten = ⋃ {arg.args | arg ∈ args • is_OrExp(arg)} 
                ∪ {arg | arg ∈ args • ¬ is_OrExp(arg)}, 
      non_redundant = {a | a ∈ flatten • ∄ b ∈ flatten •  
                            a ≠ b ∧ impliesDC(if is_AndExp(a) then a.args else {a},  
                                              if is_AndExp(b) then b.args else {b})} 
  in  
     -- in case of a single term, doesn't need or'ing 
    if # non_redundant = 1 then (let arg ∈ non_redundant in arg) 
    else mk_OrExp(non_redundant); -- normal case      
 
-- Partially simplifes a set of difference constraints by removing redundant  
-- constraints (because they hold trivially or are implied directly by others).  
-- Assumes implicit ordering constraints. 
simplifyDC: DC-set ⟶ DC-set 
simplifyDC(C) ≜ 
  {mk_DC(i, j, d) | mk_DC(i, j, d) ∈ C •       
       ¬ (i ≤ j ∧ d ≥ 0) ∧  
       ¬ (∃ mk_DC(i2, j2, d2) ∈ C • mk_DC(i, j, d) ≠ mk_DC(i2, j2, d2) 
             ∧ i ≤ i2 ∧ j ≥ j2 ∧ d2 ≤ d)};-- because of implicit ordering 
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-- Given expressions 'a' and 'b', obtains the expression corresponding to 'a and not b'. 
public mkExceptExp: DCExp × DCExp ⟶ DCExp 
mkExceptExp(a, b) ≜  
  if a = b then FalseExp  -- optimization 
  else if b = FalseExp then a -- optimization 
  else mkAndExp({a, mkNotExp(b)}); 
 
-- Given expressions 'a' and 'b', obtains the expression corresponding to 'not a or b'. 
public mkImpliesExp: DCExp × DCExp ⟶ DCExp 
mkImpliesExp(a, b) ≜  
  if a = TrueExp ∨ b = TrueExp then b  -- optimization 
  else mkOrExp({mkNotExp(a), b}); 
 
-- Checks if a set (conjunction) of difference constraints, implies another set 
-- (conjunction). Assumes implicit ordering constraints.  
public impliesDC: DC-set × DC-set ⟶ 𝔹 
impliesDC(args1, args2) ≜ 
  ∀ mk_DC(i2, j2, d2) ∈ args2 • 
       ∃ mk_DC(i1, j1, d1) ∈ args1 •  
         i2 ≤ i1 ∧ j2 ≥ j1 ∧ d2 ≥ d1; 
 
 
/*** Satisfiability checking ***/ 
 
-- Checks the satisfiability of an expression in DNF. 
-- The first version assumes implicit ordering constraints between (numbered) variables, 
-- so the problem  is to check if the there is an assignment of non-decreasing values to 
-- the variables that satisfy the given expression. 
-- The second version doesn’t assume implicit ordering constraints. 
operations 
public static pure sat: DCExp ⟶ 𝔹 
sat(exp) ≜ satMain(exp, true); 
 
public static pure satRaw: DCExp ⟶ 𝔹 
satRaw(exp) ≜ satMain(exp, false); 
 
static pure satMain: DCExp  × 𝔹  ⟶ 𝔹 
satMain(exp, implicitOrdering) ≜ ( 
  dcl vertices: VariableId*; 

  dcl dist : VariableId 
𝑚
→ Duration; 

  dcl changed : 𝔹; 
   
  -- special cases 
  if is_OrExp(exp) then  
    return ∃ arg ∈ exp.args • satMain(arg, implicitOrdering); 
   
  if is_DC(exp) then  
    return exp.i ≠ exp.j ∨ exp.d ≥ 0; 
    
  if ∀ mk_DC(-,-,d) ∈ exp.args • d ≥ 0 then 
     return true; -- satisfiable by assigning 0 to all variables 
 
  -- ordered vertex set 
  vertices := [i | i ∈ {c.i | c ∈ exp.args} ∪ {c.j | c ∈ exp.args} ];  
 
  -- Bellman-Ford algorithm to find shortest paths from a (artificial) source vertex to  
  -- all vertices in the presence of edges of negative weight 
  dist := {v ↦ 0 | v ∈ vertices}; -- start with 0 because of implicit ordering edges 
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  for i = 1 to len vertices - 1 do ( 
    changed := false; 
    -- process the given edges 
    for all mk_DC(u, v, d) ∈ exp.args do 
      if dist(v) > dist(u) + d then ( 
        dist(v) := dist(u) + d; 
        changed := true; 
      ); 
     
    -- optimization 
    if ¬ changed then  
      return true; 
      
    -- propagate changes using implicit ordering constraints, in order 
    if implicitOrdering then ( 
      dcl min: Duration := 0; 
      for v in vertices do 
        if dist(v) > min then 
          dist(v) := min 
        else 
          min := dist(v) 
    ); 
  );  
   
  -- If didn't converge, there are negative loops, so exp is not satisfiable 
  return ∄ mk_DC(u, v, d) ∈ exp.args • dist(v) > dist(u) + d 
); 
 
-- Reduces an expression by eliminating non-satisfiable terms.  
functions 
public red: DCExp  ⟶ DCExp   
red(exp) ≜ ( 
  if is_OrExp(exp) then  
   let feasible = {arg | arg ∈ exp.args • sat(arg)}  
   in if # feasible = 1 then let arg ∈ feasible in arg 
      else mk_OrExp(feasible) 
  else if sat(exp) then exp else FalseExp  
); 
 
 
/*** Variable elimination in difference constraint expressions ***/ 
   
-- Eliminates variables after a given one in a given expression (i.e., projects the  
-- expression onto the variables that remain). 
-- Assumes implicit ordering constraints between consecutively numbered vertices. 
operations 
public static pure elimVarsAfter:  VariableId × DCExp ⟶ DCExp 
elimVarsAfter(maxV, c) ≜ 
  return if is_OrExp(c) then mkOrExp({elimVarsAfter(maxV, arg) | arg ∈ c.args}) 
    else mk_AndExp(elimVarsAfter(maxV, if is_AndExp(c) then c.args else {c})); 
 
-- Eliminates variables after a given one (v) in a set of difference constraints (C). 
-- Assumes implicit ordering constraints between consecutively numbered vertices. 
public static pure elimVarsAfter: VariableId × DC-set ⇨ DC-set 
elimVarsAfter(v, C) ≜ ( 
   dcl C2: DC-set; 
   dcl vars : VariableId*; 
      
   -- special cases 
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   if ∄ mk_DC(i, j, -) ∈ C • i < v ∨ j < v then 
     return ∅; 
    
   -- relevant vertices in constraint graph (referenced vertices plus v), sorted 
   vars := [v] ↷ [k | k ∈ {i | mk_DC(i,-,-) ∈ C • i>v} ∪ {j | mk_DC(-,j,-) ∈ C • j>v}]; 
   if len vars = 1 then 
     return C; 
      
   -- removes one variable/vertex at a time from right to left  
   -- (shortcircuiting constraints/edges)    
   C2 := C; 
   for idx = len vars to 2 by -1 do 
     let e = vars(idx) in 
        C2 := {mk_DC(i1, j2, d1 + d2) | mk_DC(i1, (e), d1),  
                    mk_DC((e), j2, d2) ∈ C2 • i1 ≠ e ∧ j2 ≠ e} 
             ∪ {mk_DC(i, j, d) | mk_DC(i, j, d) ∈ C2 • i ≠ e ∧ j ≠ e}              
             ∪ {mk_DC(vars(idx-1), j, d) | mk_DC((e), j, d) ∈ C2 • j ≠ e}; 
 
    -- simplifies      
    C2 := simplifyDC(C2); 
     
    return C2 
 ); 
 
-- Projects an expression (satisfiable) onto a set of variables (eliminating other 
-- variables), and renumbers the variables to sequential numbers starting in 1. 
public static pure projectToVars: DCExp × VariableId* ⟶ DCExp 
projectToVars(c, V) ≜ ( 
  dcl C : DC-set; 
  dcl vars : VariableId*; 
 
  if is_OrExp(c) then  
    return mkOrExp({projectToVars(arg, V) | arg ∈ c.args});  
 
  -- optimization 
  if len V ≤ 1 ∨ c = TrueExp then  
    return TrueExp; 
   
  -- set of difference constraints 
  C:= if is_AndExp(c) then c.args else {c}; 
   
  -- sorted list of relevant variables (mentioned in constraints and range) 
  vars := [i | i ∈ elems V ∪ {i | mk_DC(i, -, -) ∈ C} ∪ {j | mk_DC(-, j, -) ∈ C}]; 
    
  -- add implicit ordering constraints   
  C := C ∪ {mk_DC(vars(i), vars(i+1), 0) | i ∈ {1,..., len vars-1} 
                 • ∄ mk_DC((vars(i)), (vars(i+1)), d) ∈ C • d ≤ 0}; 
 
  -- remove unwanted variables (shortcircuiting constraints/edges)    
  for all v ∈ elems vars \ elems V do 
    C :=  {mk_DC(i1, j2, d1 + d2) |  
              mk_DC(i1, (v), d1), mk_DC((v), j2, d2) ∈ C • i1 ≠ v ∧ j2 ≠ v} 
          ∪ {mk_DC(i, j, d) | mk_DC(i, j, d) ∈ C • i ≠ v ∧ j ≠ v}; 
   
  -- simplify and remove implicit ordering constraints, and then 
  -- renumber (pack) variables sequentially, mapping old to new numbers 
  return mk_AndExp(renumVars({V(i) ↦ i | i ∈ inds V}, simplifyDC(C))) 
); 
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/*** Variable renumbering in difference constraint expressions ***/ 
   
-- Renumbers the variables in a set C of difference constraints, based on a given 
-- map or sequence from old ids to new ids.     
functions 

public renumVars: (VariableId 
𝑚
→ VariableId | VariableId*) × DC-set ⟶ DC-set 

renumVars(renum, C) ≜ {mk_DC(renum(i), renum(j), d)| mk_DC(i, j, d) ∈ C}; 
 
-- Renumbers a single variable.     
public renumVar: DCExp × VariableId × VariableId ⟶ DCExp 
renumVar(exp, oldNum, newNum) ≜ 
  if is_OrExp(exp) then  
    mk_OrExp({renumVar(arg, oldNum, newNum) | arg ∈ exp.args})  
  else if is_AndExp(exp) then  
    mk_AndExp({renumVar(arg, oldNum, newNum) | arg ∈ exp.args}) 
  else let mk_DC(i, j, d) = exp in 
    mk_DC(if i = oldNum then newNum else i, if j = oldNum then newNum else j, d); 
 
 
/*** Maximum and minimum difference between two variables ***/ 
 
-- Obtains the maximum difference between two variables (j - i <= ?) as 
-- determined by a difference constraint expression (nil if there is no upper limit). 
public getMaxDiff: DCExp × VariableId × VariableId ⟶ [Duration] 
getMaxDiff(exp, i, j) ≜ getMaxDiffAux(projectToVars(exp, [i, j])) 
pre i < j; 
 
getMaxDiffAux: DCExp ⟶ [Duration] 
getMaxDiffAux(exp) ≜      
  if is_OrExp(exp) then getMax({getMaxDiffAux(e) | e ∈ exp.args}) 
  else if is_AndExp(exp) then getMin({getMaxDiffAux(e) | e ∈ exp.args}) 
  else if exp.i = 2 ∧ exp.j = 1 then exp.d 
  else nil; 
   
-- Obtains the minimum difference between two variables (j - i >= min or i - j <= -min) 
-- as determined by a difference constraint expression (0 if there is no lower limit). 
public getMinDiff: DCExp × VariableId × VariableId ⟶ Duration 
getMinDiff(exp, i, j) ≜  
  getMinDiffAux(projectToVars(exp, [i, j])) 
pre i < j; 
 
getMinDiffAux: DCExp ⟶ [Duration] 
getMinDiffAux(exp) ≜ 
  if is_OrExp(exp) then getMin({getMinDiffAux(e) | e ∈ exp.args}) 
  else if is_AndExp(exp) then getMax({getMinDiffAux(e) | e ∈ exp.args}) 
  else if exp.i = 1 ∧ exp.j = 2 then -exp.d 
  else 0;   
 
-- Obtains the maximum of a set of (non-negative) durations, possibly including nil 
-- (treated as infinity). 
-- The maximum of an empty set is the minimum of the scale, i.e., zero. 
operations 
static pure getMax: [Duration]-set ⟶ [Duration] 
getMax(s) ≜ ( 
   dcl m : [Duration] := 0; -- start with min (0) 
   for all d ∈ s do 
      if d = nil then 
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         return nil 
      else if d > m then  
         m := d; 
   return m; 
); 
 
-- Obtains the minimum of a set of durations, possibly with nil (treated as infinity). 
-- The minimum of an empty set is the maximum of the scale, i.e., infinity (nil). 
static pure getMin: [Duration]-set ⟶ [Duration] 
getMin(s) ≜ ( 
   dcl m : [Duration] := nil; -- start with max (infinity) 
   for all d ∈ s do 
      if d ≠ nil ∧ (m = nil ∨ d < m) then  
         m := d; 
   return m 
); 
 
end DifferenceConstraints 
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4. Class SequenceDiagrams 
 

/** 
* Specification of UML Sequence Diagrams (UML Interactions) used for describing 
* integration test scenarios of time-constrained distributed systems,  
* primitives for conformance checking and test input selection,  
* primitives for local observability and local controlability analysis and enforcement,  
* and examples. 
**/ 
 
class SequenceDiagrams is subclass of DifferenceConstraints, Utils 
 
/*** Configuration parameters ***/ 
 
-- Semantic variation point: FIFO channel between each pair of lifelines 
values  
public static FIFO_CHANNELS = false;  
 
-- Maximum difference between clocks associated with different lifelines 
instance variables  
public static MaxClockSkew : TimeValue := 10;  -- e.g., 10 ms 
  
types 
 
/*** Values, Value Specifications, and Timing (based on UML metamodel) ***/ 
 
public Value = ℕ | 𝔹 | ℝ | String; 
 
public ValueSpecification = Value | Variable | Expression | <Unknown>; 
public Variable :: name: String; 
public Expression :: symbol: ExpSymbol 
                     operands: [ValueSpecification]*; 
public ExpSymbol = <Neg> | <Eq> | <Plus> | <Minus> | <Lt> | <Lte> | <Gt> | <Gte> | <And> 
| <Or>; 
 
public TimeInterval = [TimeValue] × [TimeValue]; 
public DurationInterval = [Duration] × [Duration]; 
 
 
/*** UML Interactions (based on UML meta-model) ***/ 
 
public Interaction :: 
  lifelines         : Lifeline-set 
  messages          : Message-set 
  combinedFragments : CombinedFragment-set 
  timeConstraints   : TimeConstraint-set 

  messageMap        : MessageId 
𝑚
→ Message 

inv i ≜  
  -- message ids and send and receive locations are unique 
  (∀ m1, m2 ∈ i.messages • m1 ≠ m2 ⇒  
    m1.id ≠ m2.id  
    ∧ m1.sendEvent ≠ m2.sendEvent  
    ∧ m1.receiveEvent ≠ m2.receiveEvent) 
    
  -- lifeline names are unique 
  ∧ (∀ l1, l2 ∈ i.lifelines • l1 ≠ l2 ⇒ l1.name ≠ l2.name)   
    



 14 

  -- referenced lifelines exist  
  ∧  (∀ m ∈ i.messages • {m.sendEvent.#1, m.receiveEvent.#1} ⊆ i.lifelines) 
  ∧  (∀ c ∈ i.combinedFragments • c.lifelines ⊆ i.lifelines) 
   
  -- time variables are unique 
  ∧ (∀ m1, m2 ∈ i.messages • m1 ≠ m2 ⇒ 
    let l = [m1.sendTimestamp, m1.recvTimestamp, m2.sendTimestamp, m2.recvTimestamp] 
    in ∄ i, j ∈ inds l • i ≠ j ∧ l(i) ≠ nil ∧ l(j) ≠ nil ∧ l(i) = l(j))   
  ∧ (∀ m ∈ i.messages • m.sendTimestamp ≠ nil ∧ m.recvTimestamp ≠ nil ⇒ 
      m.sendTimestamp ≠ m.recvTimestamp); 
 
public Lifeline :: name : String 
                   actor : 𝔹;      
 
public MessageType = <Synch> | <Asynch>; 
 
public Message :: 
  id            : MessageId          
  sendEvent     : LifelineLocation   
  receiveEvent  : LifelineLocation   
  signature     : MessageSignature 
  sendTimestamp : [Variable] 
  recvTimestamp : [Variable] 
  type          : MessageType 
  guard         : [TimeConstraint]     
inv m ≜ m.sendEvent ≠ m.receiveEvent;  
 
public MessageSignature = String; 
public MessageId = ℕ; 
public Location = ℕ;  
public LifelineLocation = Lifeline × Location; 
 
public CombinedFragment :: 
  interactionOperator : InteractionOperatorKind 
  operands            : InteractionOperand+ 
  lifelines           : Lifeline-set 
inv f ≜  
  -- number of operands and guards allowed depend on the interaction operator 
  cases f.interactionOperator: 
    <loop>, <opt>, <sloop> ⟶ len f.operands = 1, 
    <alt>, <par>, <strict>, <seq> ⟶  
        len f.operands > 1 ∧ ∀ op ∈ f.operands • op.guard = nil 
  end 
  -- the lifelines covered by the combined fragment must be the same as the ones 
  -- covered by its operands   
  ∧ (∀ o ∈ f.operands • 
         {lf | mk_(lf, -) ∈ o.startLocations} = f.lifelines 
         ∧ {lf | mk_(lf, -) ∈ o.finishLocations} = f.lifelines) 
  -- the finish locations of an operand must equal the start locations of the next 
  -- operand 
  ∧ (∀ i ∈ {1, ..., len f.operands - 1} • 
          f.operands(i+1).startLocations = f.operands(i).finishLocations);  
 
public InteractionOperatorKind = <seq> | <alt> | <opt> | <par> | <strict> | <loop> | 
<sloop>; 
 
public InteractionOperand :: 
  guard            : [InteractionConstraint] 
  startLocations   : LifelineLocation-set 
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  finishLocations  : LifelineLocation-set; 
 
public InteractionConstraint :: 
  minint       : [ValueSpecification]  -- loop 
  maxint       : [ValueSpecification]  -- loop 
  specification: [ValueSpecification] | <else>; 
 
public TimeConstraint :: 
  firstEvent : Variable 
  secondEvent: Variable 
  min        : [Duration] 
  max        : [Duration] 
inv tc ≜ tc.min ≠ nil ∨ tc.max ≠ nil; 
 
functions 
 
/*** Helper functions for creating Interactions, Messages, and Lifelines ***/ 
 
-- Creates an interaction. 
public mkInteraction : Lifeline-set × Message-set × CombinedFragment-set × 
                       TimeConstraint-set ⟶ Interaction 
mkInteraction(lifelines, messages, combinedFragments, timeConstraints) ≜  
 mk_Interaction(lifelines, messages, combinedFragments, timeConstraints, {↦}, ∅); 
 
public mkInteraction : Lifeline-set × Message-set × CombinedFragment-set ⟶ Interaction 
mkInteraction(lifelines, messages, combinedFragments) ≜  
 mkInteraction(lifelines, messages, combinedFragments, ∅); 
 
protected mkMessage: MessageId × LifelineLocation × LifelineLocation ×  
                     MessageSignature ⟶ Message 
mkMessage(id, sendEvent, receiveEvent, signature) ≜  
  mk_Message(id, sendEvent, receiveEvent, signature, nil, nil, <Asynch>, nil); 
 
protected mkMessageTimed: MessageId × LifelineLocation × LifelineLocation ×  
                          MessageSignature ⟶ Message 
mkMessageTimed(id, sendEvent, receiveEvent, signature) ≜  
  mk_Message(id, sendEvent, receiveEvent, signature,  
  mk_Variable("s_" ↷ signature ↷ VDMUtil`val2seq_of_char[MessageId](id)),  
  mk_Variable("r_" ↷ signature ↷ VDMUtil`val2seq_of_char[MessageId](id)), 
<Asynch>,nil); 
 
protected mkMessageTimedGuarded: MessageId × LifelineLocation × LifelineLocation ×  
                          MessageSignature × TimeConstraint ⟶ Message 
mkMessageTimedGuarded(id, sendEvent, receiveEvent, signature, guard) ≜  
  mk_Message(id, sendEvent, receiveEvent, signature,  
    mk_Variable("s_" ↷ signature ↷ VDMUtil`val2seq_of_char[MessageId](id)),  
    mk_Variable("r_" ↷ signature ↷ VDMUtil`val2seq_of_char[MessageId](id)), 
<Asynch>,guard); 
 
protected mkMessageTimedSynch: MessageId × LifelineLocation × LifelineLocation ×  
                               MessageSignature ⟶ Message 
mkMessageTimedSynch(id, sendEvent, receiveEvent, signature) ≜  
  mk_Message(id, sendEvent, receiveEvent, signature,  
  mk_Variable("s_" ↷ signature ↷ VDMUtil`val2seq_of_char[MessageId](id)),  
  mk_Variable("r_" ↷ signature ↷ VDMUtil`val2seq_of_char[MessageId](id)), 
<Synch>, nil); 
 
public mkLifeline: String ⟶ Lifeline 



 16 

mkLifeline(name) ≜ mk_Lifeline(name, false); 
  
public mkActor: String ⟶ Lifeline 
mkActor(name) ≜ mk_Lifeline(name, true); 
 
-- Builds the messageMap index from message ids to messages in an interaction. 
protected buildMessageMap: Interaction ⟶ Interaction 
buildMessageMap(sd) ≜ μ(sd, messageMap ↦ {m.id ↦ m | m ∈ sd.messages}); 
 
 
/*** Containment checking functions ***/ 
 
protected contains: CombinedFragment × CombinedFragment ⟶ 𝔹 
contains(f1, f2) ≜  
  contains(f1.operands(1).startLocations, f1.operands(len f1.operands).finishLocations,  
           f2.operands(1).startLocations, f2.operands(len f2.operands).finishLocations); 
 
protected contains: InteractionOperand × CombinedFragment ⟶ 𝔹 
contains(o, c) ≜  
  contains(o.startLocations, o.finishLocations,  
          c.operands(1).startLocations, c.operands(len c.operands).finishLocations); 
 
protected contains: InteractionOperand × InteractionOperand ⟶ 𝔹 
contains(o1, o2) ≜  
  contains(o1.startLocations, o1.finishLocations, 
           o2.startLocations, o2.finishLocations);  
 
protected contains: InteractionOperand × LifelineLocation ⟶ 𝔹 
contains(o, lfloc) ≜ contains(o.startLocations, o.finishLocations, lfloc); 
 
protected contains: CombinedFragment × LifelineLocation ⟶ 𝔹 
contains(f, lfloc) ≜ contains(f.operands(1).startLocations,  
                               f.operands(len f.operands).finishLocations, lfloc); 
 
protected contains: LifelineLocation-set × LifelineLocation-set × LifelineLocation ⟶ 𝔹 
contains(startLocs, endLocs, mk_(lf, loc)) ≜ 
  (∃ mk_(lf1, loc1) ∈ startLocs • lf1 = lf ∧ loc1 < loc)  
  ∧ (∃ mk_(lf2, loc2) ∈ endLocs • lf2 = lf ∧ loc2 > loc); 
 
protected contains: LifelineLocation-set × LifelineLocation-set ×  
                    LifelineLocation-set × LifelineLocation-set ⟶ 𝔹 
contains(startLocs1, endLocs1, startLocs2, endLocs2) ≜ 
  (∀ mk_(lf2, loc2) ∈ startLocs2 • 
     ∃ mk_(lf1, loc1) ∈ startLocs1 • lf1 = lf2 ∧ loc1 < loc2) 
  ∧ (∀ mk_(lf2, loc2) ∈ endLocs2 • 
         ∃ mk_(lf1, loc1) ∈ endLocs1 • lf1 = lf2 ∧ loc1 > loc2); 
 
 
/*** Miscelaneous functions on time constraints ***/ 
  
-- Checks if a difference constraint is a maximum duration constraint. 
protected isMaxDuration: DC ⟶ 𝔹 
isMaxDuration(mk_DC(i, j, d)) ≜ i > j; 
 
-- Checks if there is a maximum duration constraint between two time variables. 
public hasMaxDurationConstraint: Interaction × Variable × Variable ⟶ 𝔹 
hasMaxDurationConstraint(sd, e1_timestamp, e2_timestamp) ≜ 
  ∃ c ∈ sd.timeConstraints •  
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      c.firstEvent = e1_timestamp ∧ c.secondEvent = e2_timestamp ∧ c.max ≠ nil; 
    
-- Checks if there is a minimum duration constraint between two time variables. 
public hasMinDurationConstraint: Interaction × Variable × Variable ⟶ 𝔹 
hasMinDurationConstraint(sd, e1_timestamp, e2_timestamp) ≜ 
  ∃ c ∈ sd.timeConstraints •  
    c.firstEvent = e1_timestamp ∧ c.secondEvent = e2_timestamp ∧ c.min ≠ nil; 
    
-- Obtain the minimum duration between two time variables. 
public getMinDurationConstraint: Interaction × Variable × Variable ⟶ [ℕ] 
getMinDurationConstraint(sd, e1_timestamp, e2_timestamp) ≜ 
  let s = {c.min | c ∈ sd.timeConstraints •  
             c.firstEvent =  e1_timestamp ∧ c.secondEvent = e2_timestamp ∧ c.min ≠ nil} 
  in if s = ∅ then nil else max[Duration](s); 
 
-- Obtain the maximum duration between two time variables. 
public getMaxDurationConstraint: Interaction × Variable × Variable ⟶ [ℕ] 
getMaxDurationConstraint(sd, e1_timestamp, e2_timestamp) ≜ 
  let s = {c.max | c ∈ sd.timeConstraints •  
             c.firstEvent =  e1_timestamp ∧ c.secondEvent = e2_timestamp ∧ c.max ≠ nil} 
  in if s = ∅ then nil else min[Duration](s); 
 
-- Simplifies the set of time constraints in an interaction. 
public simplifyTimeConstraints: Interaction ⟶ Interaction 
simplifyTimeConstraints(sd) ≜ 
  let pairs = {mk_(e1, e2) | mk_TimeConstraint(e1, e2, min, max) ∈ sd.timeConstraints}, 
      newTimeConstraints = {mk_TimeConstraint(e1, e2,  
                              getMinDurationConstraint(sd, e1, e2), 
                              getMaxDurationConstraint(sd, e1, e2)) 
      | mk_(e1, e2) ∈ pairs } 
  in μ(sd, timeConstraints ↦ newTimeConstraints); 
    
end SequenceDiagrams 

 



 18 

5. Class Traces 
 

/** 
 * Representation and manipulation of traces (plain, timed and time-constrained). 
 */ 
  
class Traces is subclass of SequenceDiagrams 
 
 
/*** Representation and construction of traces ***/ 
 
Types 
 
public Trace = Event*;  
protected TraceExt = EventExt*; -- Trace with extra info 
 
public TCTrace = Trace × DCExp; -- Time constrained trace 
protected TCTraceExt = TraceExt × DCExp; -- Time constrained trace with extra info 
   
public Event :: 
 type       : EventType 
 signature  : MessageSignature 
 lifeline   : Lifeline 
 timestamp  : [Variable | TimeValue]; --Var. in event; Value in event occurrence  
  
public EventType = <Send> | <Receive> | <Stop>; 
 
protected EventExt :: 
 type       : EventType 
 signature  : MessageSignature 
 lifeline   : Lifeline 
 timestamp  : [ValueSpecification]  
 location   : Location 
 messageId  : ℕ   
 itercounter: ℕ* 
 messageType: MessageType; 
 
functions 
 
protected mkEvent: EventType × MessageSignature × Lifeline ⟶ Event 
mkEvent(type, signature, lifeline) ≜ mk_Event(type, signature, lifeline, nil); 
 
protected mkEvent: EventType × MessageSignature × Lifeline × [ValueSpecification] ⟶ 
Event 
mkEvent(type, signature, lifeline, timestamp) ≜  
  mk_Event(type, signature, lifeline, timestamp); 
 
public mkStopEvent: Lifeline ⟶ Event 
mkStopEvent(l) ≜ mk_Event(<Stop>, [], l, nil); 
 
           
/*** Project (sets of) traces and tc-traces onto lifelines ***/ 
   
-- Projects a set of traces (T) onto a set of lifelines (L). 

protected projectTraces: Trace-set × Lifeline-set ⟶ Lifeline 
𝑚
→ Trace-set 

projectTraces(T, L) ≜ {l ↦ projectTraces(T, l) | l ∈ L}; 
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-- Projects a set of traces (T) onto a lifeline (l). 
protected projectTraces: Trace-set × Lifeline ⟶ Trace-set 
projectTraces(T, l) ≜ {projectTrace(t, l) | t ∈ T} ; 
 
-- Projects a trace (t) onto a lifeline (l). 
protected projectTrace: Trace × Lifeline ⟶ Trace 
projectTrace(t, l) ≜ [e | e ∈ t • e.lifeline = l]; 
 
-- Projects a set T of tc-traces onto a set L of lifelines. 

public projectTCTraces: TCTrace-set × Lifeline-set ⟶ Lifeline 
𝑚
→ TCTrace-set 

projectTCTraces(T, L) ≜ {l ↦ projectTCTraces(T, l) | l ∈ L}; 
 
-- Projects a set T of tc-traces onto a lifeline (l). 
public projectTCTraces: TCTrace-set × Lifeline ⟶ TCTrace-set 
projectTCTraces(T, l) ≜  
  let P = {projectTCTrace(t, l) | t ∈ T} 
  in {mk_(t, c) | mk_(t, c) ∈ P •  
          ∄ mk_((t), c2) ∈ P • c2 ≠ c ∧ impliesDC(c.args, c2.args)}; 
 
-- Projects a tc-trace (t, c) onto a lifeline (l). 
public projectTCTrace: TCTrace × Lifeline ⟶ TCTrace 
projectTCTrace(mk_(t,c), l) ≜  
  mk_(projectTrace(t, l), projectToVars(c, lifelineInds(l, t))); 
 
 
/*** Subtraction of sets of tc-traces ***/ 
  
-- Subtracts two sets of tc-traces (S1 - S2). 
public subtractTimedTraces: TCTrace-set × TCTrace-set ⟶ TCTrace-set 
subtractTimedTraces(S1, S2) ≜  
  ⋃ {let c2 = mkOrExp({c2 | mk_(t2, c2) ∈ S2 • eqIgnTimestamps(t1, t2)}), 
         c3 = red(mkExceptExp(c1, c2)) 
     in if c3 ≠ FalseExp then {mk_(t1, c3)} else ∅ 
    | mk_(t1, c1) ∈ S1}; 
 
 
/*** Equality of sets of tc-traces and traces ***/ 
 
-- Checks if two sets of tc-traces are equivalent, i.e., represent the same set of  
-- timed traces. 
public areEquivalent: TCTrace-set × TCTrace-set ⟶ 𝔹 
areEquivalent(S1, S2) ≜ 
  subtractTimedTraces(S1, S2) = ∅ ∧ subtractTimedTraces(S2, S1) = ∅; 
             
-- Checks if two traces are equal, ignoring timestamps 
protected eqIgnTimestamps: Trace × Trace ⟶ 𝔹 
eqIgnTimestamps(t1, t2) ≜ 
  len t1 = len t2 ∧ ∀ i ∈ inds t1 • eqIgnTimestamps(t1(i), t2(i)); 
 
-- Check if two events are equal, ignoring timestamps 
protected eqIgnTimestamps: Event × Event ⟶ 𝔹 
eqIgnTimestamps(e1, e2) ≜ μ(e1, timestamp ↦ 0) = μ(e2, timestamp ↦ 0); 
 
 
/*** Join (sets of) traces and tc-traces from different lifelines ***/ 
 
functions 
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-- Gives the feasible joins of traces from different lifelines (one per lifeline),  
-- respecting the order of events per trace and message. 

protected joinTraces: Interaction × Lifeline 
𝑚
→ Trace ⟶ Trace-set 

joinTraces(sd, localTraces) ≜  
  joinTraces(sd, [], {l ↦ {localTraces(l)} | l ∈ dom localTraces}); 
 
-- Recursive version, with an accumulator for already processed events. 

protected joinTraces: Interaction × Trace × Lifeline 
𝑚
→ Trace-set ⟶ Trace-set 

joinTraces(sd, left, m) ≜ 
  if m = {↦} then {left}  
  else ⋃ { ⋃ {if t = [] then joinTraces(sd, left, {l} ⊲ m) 
               else joinTraces(sd, left ↷ [hd t], m † {l ↦ {tl t}})      
              | t ∈ m(l) • t = [] ∨ isFeasibleAddition(sd, left, hd t)}   
         | l  ∈ dom m}; 
 
-- Checks if an event occurrence is a feasible addition to a trace, i.e., respects the  
-- fact that messages can only be received after being sent, and respects timestamp 
-- ordering (for the given MaxClockSkew). 
protected isFeasibleAddition: Interaction × Trace × Event ⟶ 𝔹  
isFeasibleAddition(sd, t, e) ≜ 
  (e.type = <Receive> ⇒  
     len [ 0 | mk_Event(<Send>, sig, -, -) ∈ t • sig = e.signature] > 
     len [ 0 | mk_Event(<Receive>, sig, -, -) ∈ t • sig = e.signature]) 
  ∧ (len t > 0 ∧ t(len t).type = <Send>   
      ⇒ ∃ m ∈ sd.messages • eqIgnTimestamps(s(m), t(len t)) ∧  
          (m.type=<Asynch> ∨ eqIgnTimestamps(r(m), e))) 
  ∧ (e.timestamp ≠ nil ∧ ¬ is_Variable(e.timestamp) ⇒ 
      ∀ f ∈ t • f.timestamp ≠ nil ⇒  
          if f.lifeline = e.lifeline then f.timestamp ≤ e.timestamp  
          else f.timestamp ≤ e.timestamp + MaxClockSkew);     
   
-- Joins sets of tc-traces per lifeline, i.e., gives the set of all the possible 
-- combinations of tc-traces from different lifelines, preserving the order of  
-- events per lifeline and message (send before receive, and synchronous messages 
-- respected), and such that the joined time constraints are satisfiable.  
operations 

protected static pure joinTimedTraces2: Interaction × Lifeline 
𝑚
→ TCTrace-set ⟶ 

TCTrace-set 
joinTimedTraces2(sd, M) ≜  
( 
  dcl res : TCTrace-set := ∅; 
  let J = joinTimedTraces(sd,  M) in    
    if ∃ m ∈ sd.messages • m.type = <Synch> then 
    ( 
      for all mk_(t, c) ∈ J do 
        if checkSyncMessagesPresent(sd, t) then 
          let c2 = getSyncMessagesConstr(sd, t), 
              c3 = red(mkAndExpDC(c.args ∪ c2)) 
          in if sat(c3) then  
                res := res ∪ {mk_(t,c3)}; 
      return res 
    ) 
    else 
      return J;  
); 
 
-- Checks if the send and receive events of sync messages are present and contiguous 



 21 

functions 
checkSyncMessagesPresent: Interaction × Trace ⟶ 𝔹 
checkSyncMessagesPresent(sd, t) ≜ 
  ∀ i ∈ inds t • t(i).type = <Send> ⇒ 
        let m = msg(sd, t(i)) in 
           m.type = <Synch> ⇒ i < len t ∧ t(i+1) = r(m); 
 
-- Obtains the time constraints corresponding to the synchronous messages in a trace t. 
getSyncMessagesConstr: Interaction × Trace ⟶ DC-set 
getSyncMessagesConstr(sd, t) ≜ 
  {mk_DC(i+1, i, 0) | i ∈ inds t • t(i).type = <Send> ∧ msg(sd, t(i)).type = <Synch>}; 
 
-- Joins sets of tc-traces from different lifelines. 

protected joinTimedTraces: Interaction × Lifeline 
𝑚
→ TCTrace-set ⟶ TCTrace-set 

joinTimedTraces(sd, m) ≜ joinTimedTracesAux(sd, mk_([], TrueExp), m);           
 
-- Recursive version, with an accumulator for a tc-trace constructed so far. 
operations 

static pure joinTimedTracesAux: Interaction × TCTrace × Lifeline 
𝑚
→ TCTrace-set ⟶ 

TCTrace-set 
joinTimedTracesAux(sd, mk_(t, c), m) ≜ 
( 
  dcl result : TCTrace-set := ∅; 
  dcl terminated : Lifeline-set := ∅;  
      
  for all l ∈ dom m do 
    for all mk_(t2, lc) ∈ m(l) do 
      if t2 = [] then 
          terminated := terminated ∪ {l}  
      else if isFeasibleAddition(sd, t, hd t2) then   
       let e = hd t2,  
           rt = tl t2, 
           newT = t ↷ [e] 
       in if lc.args = ∅ then 
                 let newM = m † {l ↦ {mk_(rt, lc)}} -- restricts to this trace in l 
                 in result := result ∪ joinTimedTracesAux(sd, mk_(newT, c), newM) 
          else 
           let r = lifelineInds(l, newT),  
                     C2 = elimVarsAfter(len r, lc.args), 
                     newC = mkAndExp({c} ∪ renumVars(r, C2)) 
                 in if sat(newC) then  
                     let newM = m † {l ↦ {mk_(rt, lc)}} --restricts to this trace in l 
                     in result := result ∪ joinTimedTracesAux(sd, mk_(newT,newC), newM); 
 
   if terminated = sd.lifelines then 
     result := result ∪ {mk_(t,c)}; 
         
  return result 
); 
 
 
/*** Utility functions ***/ 
 
functions 
   
-- Obtains the sequence of indices of events in a trace t that occur at a lifeline l. 
protected lifelineInds: Lifeline × Trace  ⟶ ℕ*  
lifelineInds(l, t) ≜ [i | i ∈ inds t • t(i).lifeline = l]; 
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-- Similar, with extra trace info . 
protected lifelineInds: Lifeline × TraceExt ⟶ ℕ*  
lifelineInds(l, t) ≜ [i | i ∈ inds t • t(i).lifeline = l]; 
 
 
/*** Auxiliary query functions ***/ 
 
-- Obtains the set of traces in a set of tc-traces.  
public untimed: TCTrace-set ⟶ Trace-set 
untimed(T) ≜ {t | mk_(t, -) ∈ T}; 
 
-- Get timestamp of an event. 
protected t: Event ⟶ [Variable | TimeValue] 
t(e) ≜ e.timestamp; 
 
-- Get 'send' event of a message.  
protected s: Message ⟶ Event 
s(m) ≜ mk_Event(<Send>, m.signature, m.sendEvent.#1, m.sendTimestamp); 
 
-- Get 'receive' event of a message. 
protected r: Message ⟶ Event 
r(m) ≜ mk_Event(<Receive>, m.signature, m.receiveEvent.#1, m.recvTimestamp); 
 
-- Gets the message corresponding to an event. 
protected msg: Interaction × Event ⟶ Message 
msg(sd, e) ≜ let m ∈ sd.messages be st e = s(m) ∨ e = r(m) in m; 
 
-- Checks if an event is of type Send. 
public isSend: Event ⟶ 𝔹 
isSend(e) ≜ e.type = <Send>; 
     
-- Checks if an event is of type Receive. 
public isReceive: Event ⟶ 𝔹 
isReceive(e) ≜ e.type = <Receive>; 
  
-- Obtains the event corresponding to a time variable 
operations 
public static pure getEventByTimeVariable: Interaction × Variable ⟶ [Event] 
getEventByTimeVariable(sd, v) ≜ 
( 
   for all m ∈ sd.messages do 
     if m.sendTimestamp = v then return s(m) 
     else if m.recvTimestamp = v then return r(m); 
   return nil 
); 
 
  
/*** Auxiliary functions for converting Events and Traces to String ***/ 
 
functions  
public event2str: Event ⟶ String 
event2str(mk_Event(type, msg, lifeline, -)) ≜ 
   (if type = <Send> then "!" else "?") ↷ msg ↷ "@" ↷ lifeline.name; 
 
public event2strSimple: Event ⟶ String 
event2strSimple(mk_Event(type, msg, lifeline, -)) ≜ 
   (if type = <Send> then "!" else "?") ↷ msg; 
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public traces2str: Trace-set ⟶ String 
traces2str(s) ≜ set2str[Trace](s, trace2str); 
 
public traces2strSimple: Trace-set ⟶ String 
traces2strSimple(s) ≜ set2str[Trace](s, trace2strSimple); 
 
public tctraces2str: TCTrace-set ⟶ String 
tctraces2str(s) ≜ set2str[TCTrace](s, tctrace2str); 
 
public trace2str: Trace ⟶ String 
trace2str(t) ≜ seq2str[Event](t, event2str); 
 
public trace2strSimple: Trace ⟶ String 
trace2strSimple(t) ≜ seq2str[Event](t, event2strSimple); 
            
public tctrace2str: TCTrace ⟶ String 
tctrace2str(mk_(t, c)) ≜ "";  
          
-- Represents a time constraint in a string 
public timeConstraint2str: Interaction × TimeConstraint ⟶ String 
timeConstraint2str(sd, mk_TimeConstraint(firstEvent, secondEvent, min, max)) ≜  
   (if min = nil then "" else VDMUtil`val2seq_of_char[Duration](min) ↷ " <= ") 
   ↷ event2str(getEventByTimeVariable(sd, secondEvent)) 
   ↷ " - "  
   ↷ event2str(getEventByTimeVariable(sd, firstEvent)) 
   ↷ (if max = nil then "" else " <= " ↷ VDMUtil`val2seq_of_char[Duration](max)); 
   
end Traces 
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6. Class ValidTraces 
 

/** 
 * Computation of valid traces defined by an Interaction  
 * (without and with time constraints). 
 */ 
  
class ValidTraces is subclass of SequenceDiagrams, Traces 
 
/*** Configuration parameters ***/ 
 
values 
-- Maximum number of iterations to consider when expanding unconstrained loops. 
public MAX_LOOP_ITER = 4; 
 
functions 
 
/*** Main functions ***/ 
 
-- Valid traces represented in a string 
public validTracesStr: Interaction ⟶ String 
validTracesStr(sd) ≜ traces2str(validTraces(sd)); 
 
-- Valid traces defined by an interaction (sd), with timing info removed. 
public validTraces: Interaction ⟶ Trace-set 
validTraces(sd) ≜ untimed(validTimedTraces(sd)); 
 
-- Valid traces defined by an interaction (sd), without considering time constraints. 
public validTracesUntimed: Interaction ⟶ Trace-set 
validTracesUntimed(sd) ≜  removeExtraInfo(validTracesExt(sd)); 
      
-- Valid timed constrained traces (tc-traces) defined by an interaction (sd). 
public validTimedTraces: Interaction ⟶ TCTrace-set 
validTimedTraces(sd) ≜ removeExtraInfo(validTimedTracesExt(sd)); 
 
-- Valid tc-traces with extra event information. 
protected validTimedTracesExt: Interaction ⟶ TCTraceExt-set 
validTimedTracesExt(sd) ≜  
  let cand =  {mk_(t, constraintExp(t, sd)) | t ∈ validTracesExt(sd)} 
  in {mk_(t,c) | mk_(t,c) ∈ cand • sat(c)}; 
 
-- Incremental evaluation of valid tc-traces with extra event information, after adding 
time constraints. 
protected validTimedTracesExtIncr: Interaction × TCTraceExt-set ⟶ TCTraceExt-set 
validTimedTracesExtIncr(sd, oldV) ≜  
  let cand =  {mk_(t, constraintExp(t, sd)) | mk_(t, -) ∈ oldV} 
  in {mk_(t, c) | mk_(t, c) ∈ cand • sat(c)}; 
 
-- Truncates an invalid tc-trace (t, c) to the shortest invalid sub-trace, 
-- to facilitate error diagnosis, given the set V of valid tc-traces.  
operations 
protected static pure truncateOnError: TCTrace-set × TCTrace ⟶ Trace 
truncateOnError(V, mk_(t, c)) ≜ ( 
  dcl t1 : Trace := t; 
  dcl c1 : DCExp := c; 
  dcl res : Trace := t; 
  while t1 ≠ [] do ( 



 25 

    -- truncate removing last event 
    t1 := t1(1,..., len t1 - 1); 
    c1 := elimVarsAfter(len t1, c1); 
      
    -- if this is a valid subtrace, at least partially, then stop 
    if ∃ mk_(vt, vc) ∈ V •  
          len t1 ≤ len vt ∧ eqIgnTimestamps(t1, vt(1,...,len t1)) 
          ∧ sat(mkAndExp({c1} ∪ elimVarsAfter(len t1, vc.args))) 
    then  
      return res; 
    res := t1 
  ); 
  return res; 
); 
   
/*** Computation of valid tc-traces ***/ 
 
-- Obtains a conjunctive expression with difference constraints applicable to a trace t. 
operations 
protected static pure constraintExp: TraceExt × Interaction ⟶ DCExp 
constraintExp(t, sd) ≜ ( 
  dcl res : DC-set := ∅; 
   
  -- Normal constraints 
  for i = 1 to len t - 1 do 
    for all c ∈ sd.timeConstraints do  
      if c.firstEvent = t(i).timestamp then 
        for j = i + 1 to len t do 
          if c.secondEvent = t(j).timestamp ∧ t(i).itercounter = t(j).itercounter then 
             res := res ∪ ev2ocConstr(i, j, c); 
 
  -- Message guard constraints  
  for all m ∈ sd.messages do 
    if m.guard ≠ nil then let c = m.guard in 
      for k = 3 to len t do 
        if t(k).type = <Send> ∧ t(k).messageId = m.id then 
          for i = 1 to k - 2 do 
            if c.firstEvent = t(i).timestamp ∧ t(i).itercounter = t(k).itercounter then 
              for j = i+1 to k - 1 do 
                if c.secondEvent=t(j).timestamp ∧ t(i).itercounter=t(j).itercounter then 
                  res := res ∪ ev2ocConstr(i, j, c); 
                     
  return mkAndExpDC(res) 
); 
 
 
functions 
-- Generates the difference constraints corresponding to the application of a time 
-- constraint 'c' to a pair of event occurences at positions 'i' and 'j' of a trace.  
protected ev2ocConstr: ℕ × ℕ × TimeConstraint ⟶  DC-set 
ev2ocConstr(i, j, c) ≜ 
   if c.max = nil then {mk_DC(i, j, -c.min)} 
   else if c.min = nil then {mk_DC(j, i, c.max)} 
   else {mk_DC(i, j, -c.min), mk_DC(j, i, c.max)};  
 
 
/*** Conversion from traces with extra info to simple traces. ***/ 
 
protected removeExtraInfo: EventExt ⟶ Event 
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removeExtraInfo(e) ≜ mkEvent(e.type, e.signature, e.lifeline, e.timestamp); 
 
protected removeExtraInfo: TraceExt ⟶ Trace 
removeExtraInfo(t) ≜ [removeExtraInfo(e) | e ∈ t]; 
 
protected removeExtraInfo: TraceExt-set ⟶ Trace-set  
removeExtraInfo(s) ≜ {removeExtraInfo(t) | t ∈ s}; 
 
protected removeExtraInfo: TCTraceExt-set ⟶ TCTrace-set  
removeExtraInfo(s) ≜ {mk_(removeExtraInfo(t), c) | mk_(t, c) ∈ s}; 
   
 
/*** Computation of valid traces without time constraints (with extra event info) ***/ 
         
-- Gets the valid traces with extra event info in an Interaction (sd). 
validTracesExt: Interaction ⟶ TraceExt-set 
validTracesExt(sd) ≜  
  freeComb({{s} | s ∈ topLevelEvents(sd) • s ≠ []} 
      ∪ {expandCombinedFragment(sd, c) | c ∈ topLevelCombFrag(sd)}); 
 
-- Gets the top level event sequences in an Interaction (sd). 
topLevelEvents: Interaction ⟶ TraceExt-set 
topLevelEvents(sd) ≜ 
  {(if ∄ c ∈ sd.combinedFragments • contains(c, m.sendEvent) then  
     [mk_EventExt(<Send>, m.signature, m.sendEvent.#1, m.sendTimestamp, m.sendEvent.#2, 
m.id, [], m.type)] 
    else []) 
   ↷ 
   (if ∄ c ∈ sd.combinedFragments • contains(c, m.receiveEvent) then 
  [mk_EventExt(<Receive>, m.signature, m.receiveEvent.#1, m.recvTimestamp, 
m.receiveEvent.#2, m.id, [], m.type)] 
     else []) 
  | m ∈ sd.messages}; 
  
-- Gets the top level combined fragments in an Interaction (sd). 
topLevelCombFrag: Interaction ⟶ CombinedFragment-set 
topLevelCombFrag(sd) ≜ 
  {c | c ∈ sd.combinedFragments • ∄ c2 ∈ sd.combinedFragments • contains(c2, c)}; 
       
-- Given several sets of traces, obtains all possible trace interleavings, picking one 
-- trace from each set. 
freeComb: TraceExt-set-set ⟶ TraceExt-set 
freeComb(s) ≜ 
  if s = ∅ then {[]} 
  else let s1 ∈ s in ⋃ {freeComb2(t1, t2) | t1 ∈ s1, t2 ∈ freeComb(s \ {s1})} 
measure # s; 
 
-- Obtains all interleavings of two traces. 
freeComb2: TraceExt × TraceExt ⟶ TraceExt-set 
freeComb2(t1, t2) ≜ 
  if t1 = [] then {t2} 
  else if t2 = [] then {t1} 
  else freeComb2Aux(t1, t2) ∪ freeComb2Aux(t2, t1)  
 measure len t1 + len t2;      
 
-- Gets all interleavings of traces t1 and t2 that start with the first event of t1. 
freeComb2Aux:  TraceExt × TraceExt ⟶ TraceExt-set 
freeComb2Aux(t1, t2) ≜ 
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  let e1 = hd t1, r1 = tl t1 in 
    if precedes(t2, e1) then ∅ 
    else 
       if e1.messageType = <Synch> ∧ e1.type = <Send>  
          ∧ r1 ≠ [] ∧ (hd r1).messageId = e1.messageId ∧ (hd r1).type = <Receive>  
       then 
          if precedes (t2, hd r1) then ∅ 
          else {[e1, hd r1] ↷ r | r ∈ freeComb2(tl r1, t2)} 
       else  
          {[e1] ↷ r | r ∈ freeComb2(r1, t2)}; 
           
-- Checks if there exists any event in a trace t1 that precedes an event e2. 
precedes: TraceExt × EventExt ⟶ 𝔹 
precedes(t1, e2) ≜ ∃ e1 ∈ t1 • precedes(e1, e2); 
     
-- Checks if an event e1 precedes an event e2. 
precedes: EventExt × EventExt ⟶ 𝔹 
precedes(e1, e2) ≜ 
  (e1.messageId = e2.messageId ∧ e1.itercounter = e2.itercounter ∧ e1.type = <Send> ∧ 
e2.type = <Receive>) 
   ∨ (e1.lifeline = e2.lifeline  
      ∧ (e1.location < e2.location  
    ∨ e1.location = e2.location ∧ precedesIter(e1.itercounter, e2.itercounter))); 
  
-- Checks if an iteration counter s1 precedes another iteration counter s2. 
precedesIter: ℕ* × ℕ* ⟶ 𝔹 
precedesIter(s1, s2) ≜ 
  s1 ≠ [] ∧ s2 ≠ [] ∧ (hd s1 < hd s2 ∨ hd s1 = hd s2 ∧ precedesIter(tl s1, tl s2)) 
pre len s1 = len s2 
measure len s1 + len s2; 
 
-- Gets the valid traces defined by a combined fragment 'c' in an interaction 'sd'. 
expandCombinedFragment: Interaction × CombinedFragment ⟶ TraceExt-set 
expandCombinedFragment(sd, c) ≜ 
  cases c.interactionOperator:  
    <seq>     ⟶ expandNary(sd, c.operands, seqComb), 
    <strict>  ⟶ expandNary(sd, c.operands, strictComb), 
    <par>     ⟶ expandNary(sd, c.operands, parComb), 
    <alt>     ⟶ expandAlt(sd, c.operands), 
    <opt>     ⟶ expandOpt(sd, c.operands(1)), 
    <loop>    ⟶ expandLoop(sd, c.operands(1), false), 
    <sloop>   ⟶ expandLoop(sd, c.operands(1), true) 
  end; 
 
-- Gets the valid traces defined by a combined fragment of type seq, strict or par. 
expandNary: Interaction × InteractionOperand* × (TraceExt × TraceExt ⟶ TraceExt-set) ⟶ 
TraceExt-set 
expandNary(sd, args, comb) ≜ 
  if args = []  then {[]} 
  else ⋃ {comb(t1, t2) | t1 ∈ expandOperand(sd, hd args),  
                          t2 ∈ expandNary(sd, tl args, comb)}; 
 
-- Weak sequencing combination of two traces t1 and t2, given by the interleavings  
-- that preserve the order of events per trace and lifeline. 
seqComb: TraceExt × TraceExt ⟶ TraceExt-set 
seqComb(t1, t2)≜ 
  if t1 = [] ∨ t2 = [] then {t1 ↷ t2} 
  else {[hd t1] ↷ r | r ∈ seqComb(tl t1, t2)}  
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      ∪ if ∃ e ∈ t1 • (hd t2).lifeline = e.lifeline then ∅  
        else {[hd t2] ↷ r | r ∈ seqComb(t1, tl t2)}; 
 
-- Strict sequencing of two traces t1 and t2, given by their concatenation. 
strictComb: TraceExt × TraceExt ⟶ TraceExt-set 
strictComb(t1, t2) ≜ {t1 ↷ t2}; 
   
-- Parallel combination of two traces t1 and t2, given by the interleavings  
-- that preserve the order of events per trace. 
parComb: TraceExt × TraceExt ⟶ TraceExt-set 
parComb(t1, t2) ≜ 
  if t1 = [] ∨ t2 = [] then {t1 ↷ t2} 
  else {[hd t1] ↷ r | r ∈ parComb(tl t1, t2)} ∪ {[hd t2] ↷ r | r ∈ parComb(t1, tl t2)}; 
 
-- Gets the valid traces defined by an 'alt' combined fragment, which is  
-- simply the union of traces defined by its operands (args). 
expandAlt: Interaction × InteractionOperand* ⟶ TraceExt-set 
expandAlt(sd, args) ≜ ⋃ {expandOperand(sd, arg) | arg ∈ args}; 
 
-- Gets the valid traces defined by an 'opt' combined fragment. 
expandOpt: Interaction × InteractionOperand ⟶ TraceExt-set 
expandOpt(sd, arg) ≜ expandOperand(sd, arg) ∪ {[]}; 
 
-- Gets the valid traces defined by a 'loop' combined fragment (limiting the number of  
-- loop iterations to MAX_LOOP_ITER). 
operations 
pure static expandLoop: Interaction × InteractionOperand × 𝔹 ⟶ TraceExt-set 
expandLoop(sd, arg, strict) ≜ 
  let argExpansions = expandOperand(sd, arg),  
      max = if arg.guard ≠ nil ∧ arg.guard.maxint ≠ nil then arg.guard.maxint  
            else MAX_LOOP_ITER, 
      min = if arg.guard ≠ nil ∧ arg.guard.minint ≠ nil then arg.guard.minint else 0 
  in ( 
    dcl arg2n: TraceExt-set := {[]}; -- arg ^ n 
    dcl res: TraceExt-set := if min = 0 then arg2n else {}; 
    for n = 1 to max do ( 
      arg2n :=  ⋃ {if strict then strictComb(t1, addIterNumber(t2, n))  
                   else seqComb(t1, addIterNumber(t2, n)) 
                  | t1 ∈ arg2n, t2 ∈ argExpansions}; 

      if n  min then res := res ∪ arg2n 
    ); 
    return res     
  ); 
 
-- Adds an interation number to an iteration counter of events in a trace. 
functions 
addIterNumber: TraceExt × ℕ ⟶ TraceExt  
addIterNumber(t, iter) ≜ [μ(e, itercounter ↦ [iter] ↷ e.itercounter) | e ∈ t]; 
      
-- Expands an interaction operand to a set of traces. 
expandOperand: Interaction × InteractionOperand ⟶ TraceExt-set 
expandOperand(i, o) ≜  
  freeComb({{s} | s ∈ nestedEvents(i, o) • s ≠ []} 
           ∪ {expandCombinedFragment(i, c) | c ∈ nestedCombFrag(i, o)}); 
 
-- Gets the topmost event sequences contained in a given intreaction operand.     
nestedEvents: Interaction × InteractionOperand ⟶ TraceExt-set 
nestedEvents(sd, o) ≜ 
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  let cf = {c | c ∈ sd.combinedFragments • contains(o, c)} in  
    {(if contains(o, m.sendEvent) ∧ ∄ c ∈ cf • contains(c, m.sendEvent) 
      then [mk_EventExt(<Send>, m.signature, m.sendEvent.#1, m.sendTimestamp, 
m.sendEvent.#2, m.id, [], m.type)] 
      else []) 
     ↷  
     (if contains(o, m.receiveEvent) ∧ ∄ c ∈ cf • contains(c, m.receiveEvent) 
      then [mk_EventExt(<Receive>, m.signature, m.receiveEvent.#1, m.recvTimestamp, 
m.receiveEvent.#2, m.id, [], m.type)] 
      else []) 
    | m ∈ sd.messages}; 
 
-- Gets the topmost combined fragments contained in a given intreaction operand.     
nestedCombFrag: Interaction × InteractionOperand ⟶ CombinedFragment-set 
nestedCombFrag(sd, o) ≜ 
  let cf = {c | c ∈ sd.combinedFragments • contains(o, c)}  
  in {c | c ∈ cf • ∄ c2 ∈ cf • c2 ≠ c ∧ contains(c2, c)};    
end ValidTraces 
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7. Class ConformanceChecking  
 

/** 
 * Local and global conformance checking primitives, as well as local input  
 * selection primitives. 
 */ 
  
class ConformanceChecking is subclass of SequenceDiagrams, Traces, ValidTraces 
 
types 
public Verdict = <Pass> | <Fail> | <Inconclusive>; 
 
 
/*** Primitives for local conformance checking, without and with time-constraints ***/ 
 
-- Checks if the next observed event occurence (e) in a lifeline is valid, given the 
-- local  trace previously observed (t), and the set V of valid traces for the lifeline. 
functions 
public checkNextEvent: Trace × Event × Trace-set ⟶ 𝔹 
checkNextEvent(t, e, V) ≜ ∃ (t) ↷ [(e)] ↷ - ∈ V • true; 
  
-- Checks if the next observed event occurrence (e) in a lifeline is valid, given the 
-- local timed trace previously observed (t), and the set of valid local tc-traces (V). 
public timedCheckNextEvent: Trace × Event × TCTrace-set ⟶ 𝔹 
timedCheckNextEvent(t, e, V) ≜ 
  ∃ mk_(v, c) ∈ V • len v > len t 
     ∧ matchesTimed(t ↷ [e], mk_(v(1,...,len t + 1), elimVarsAfter(len t + 1, c))) =  
        <Pass>; 
 
 
/*** Primitives for global conformance checking, without and with time-constraints ***/ 
 
-- Final conformance checking in the absence of time constraints, given the observed 
-- local traces. 

public finalConformanceChecking: Interaction × Lifeline 
𝑚
→ Trace ⟶ Verdict 

finalConformanceChecking(sd, localTraces) ≜ 
  let V = validTraces(sd),  
      J = joinTraces(sd, localTraces) 
  in if J ∩ V = ∅ then <Fail> 
     else if J ⊆ V then <Pass> 
     else <Inconclusive>; 
 
-- Final conformance checking in the presence of time constraints, given the observed 
-- local traces. 

public timedFinalConformanceChecking: Interaction × Lifeline 
𝑚
→ Trace ⟶ Verdict 

timedFinalConformanceChecking(sd, localTraces) ≜ 
  let V = validTimedTraces(sd), 
      J = joinTraces(sd, localTraces) 
  in if ∀ j ∈ J • ∀ v ∈ V • matchesTimed(j, v) = <Fail> then <Fail> 
     else if ∀ j ∈ J • ∃ v ∈ V • matchesTimed(j, v) = <Pass> then <Pass>        
     else <Inconclusive>; 
 
-- Checks if an actual timed trace t matches a valid tc-trace (v, c).  
matchesTimed: Trace × TCTrace ⟶ Verdict 
matchesTimed(t, mk_(v, c))  ≜  
  if ¬ eqIgnTimestamps(t, v) then <Fail>  
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  else if ∃ mk_DC(i, j, d) ∈ c.args • t(i).lifeline = t(j).lifeline ∧ t(i).timestamp - 
t(j).timestamp > d then <Fail> 
  else if ∄ mk_DC(i, j, d) ∈ c.args • t(i).lifeline ≠ t(j).lifeline then <Pass> 
  else let lfOrd = VDMUtil`set2seq[Lifeline]({e.lifeline | e ∈ t}), 
           vars = {lfOrd(i) ↦ i | i ∈ inds lfOrd}, 
           C = {mk_DC(i, j, MaxClockSkew) | i ∈ inds lfOrd, j ∈ inds lfOrd • i ≠ j}, 
           D = {mk_DC(vars(t(i).lifeline), vars(t(j).lifeline),  
                 d + t(j).timestamp - t(i).timestamp) | mk_DC(i, j, d) ∈ c.args}, 
           s1 = satRaw(mk_AndExp(C ∪ D)), -- C and D 
           s2 = satRaw(mk_OrExp({mk_AndExp(C ∪ {mk_DC(j, i, -d-1)}) | mk_DC(i, j, d) ∈ 
D})) -- C and not D 
       in if s1 ∧ ¬ s2 then <Pass> 
          else if ¬ s1 ∧ s2 then <Fail> 
          else <Inconclusive>; 
 
 
/*** Primitives for local test input selection, without and with time-constraints  ***/ 
 
-- Gives the next events that can be sent by a lifeline, given the local trace 
-- trace observed so far (t), and the set of valid local traces (V). 
public nextSendEvents: Trace × Trace-set ⟶ Event-set 
nextSendEvents(t, V) ≜ {e | (t) ↷ [e] ↷ - ∈ V • e.type = <Send>}; 
 
-- Gives the next events that can be sent by a lifeline, and  the time interval  
-- for sending each event, given the local timed trace observed so far (t), 
-- and the set of valid local tc-traces (V). 
public nextSendEventsTimed: Trace × TCTrace-set ⟶ (Event × TimeInterval)-set 
nextSendEventsTimed(t, V) ≜ 
  {mk_(v(len t +1), nextEventInterval(t, mk_(v, c))) | mk_(v, c) ∈ V • 
     len v > len t ∧ v(len t + 1).type = <Send>  
     ∧ matchesTimed(t, mk_(v(1, ..., len t), elimVarsAfter(len t, c))) = <Pass> 
     ∧ nextEventInterval(t, mk_(v, c)) ≠ nil}; 
 
-- Determines the TimeInterval for the next valid event in a lifeline, given the 
-- trace observed so far (t), and a valid local tc-trace (v, c).  
-- Returns nil if impossible. 
nextEventInterval: Trace × TCTrace ⟶ [TimeInterval] 
nextEventInterval(t, mk_(v, c)) ≜ 
  if t = [] then mk_(nil, nil) 
  else let c2 = elimVarsAfter(len t + 1, c), 
           mn = min[TimeValue]({t(i).timestamp - d | mk_DC(i, j, d) ∈ c2.args •  
                                 j = len t + 1} ∪ {t(len t).timestamp}), 
           smx = {t(j).timestamp + d | mk_DC(i, j, d) ∈ c2.args • i = len t + 1}, 
           mx = if smx = ∅ then nil else max[TimeValue](smx) 
       in if mx ≠ nil ∧ mn > mx then nil else mk_(mn, mx); 
 
end ConformanceChecking 
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8. Class SimulatedExecution 
 

/** 
 * Simulated symbolic execution of time-constrained sequence diagrams. 
 */ 
  
class SimulatedExecution is subclass of SequenceDiagrams, Traces, ValidTraces 
 
 
/********************* Configuration parameters *******************/ 
 
values 
 
protected EMISSION_TIMESTAMP_TRANSMITTED = false;  
-- If true, interlifeline constraints don't cause local observability problems. 
 
protected MAY_LOOSE_MESSAGES = true;  
-- If true, optional messages without a corresponding ackowledgment message, 
-- cause local observability problems 
 
protected MAX_TRACE_LEN = 1000000; 
-- Use to generate event timestamp ids that are beyond valid ones. 
 
 
/********************** Auxiliary structures ************************/ 
 
types 
 
-- Transmission channel for each pair of lifelines (if FIFO_CHANNELS = true)  
-- or pair of lifelines and message signature (if FIFO_CHANNELS = false). 
Channel = (Lifeline × Lifeline) | (Lifeline × Lifeline × MessageSignature); 
 
-- Queue of index of emission event and corresponding reception event. 
ChannelStatus = (ℕ × Event)*; 
 
-- Each extension of a tc-trace is a pair of an added event and added time constraints. 
Extension = Event × DC-set; 
 
-- Structure return by traceExtLf 
LifelineTraceExtensions = Extension-set × TCTrace-set × DCExp × DCExp; 
 
 
/********************** Main procedures ************************/ 
 
-- Computes the set of tc-traces that can be generated by the simulated execution 
-- of an interaction, when lifelines behave local knowledge only. 
-- If the goal is to analyse controllability, it is assumed that transmission channels 
-- behave correctly (without losing messages and respecting transmission time  
-- constraints), and lifelines are input enabled (accept all messages delivered by  
-- the transmission channels). 
-- If the goal is to analyse observability, transmission channels need no to behave 
-- correctly, but lifelines only accept valid reception messages. 
functions 
public simulExec: Interaction × 𝔹 ⟶ TCTrace-set 
simulExec(sd, observability) ≜ 
  simulExec(sd, projectTCTraces(validTimedTraces(sd), sd.lifelines), observability); 
 
-- Similar with the set of valid tc-traces per lifeline pre-computed.  
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public simulExec: Interaction × Lifeline 
𝑚
→ TCTrace-set × 𝔹  ⟶ TCTrace-set 

simulExec(sd, P, observability) ≜    
  simulExec(sd, P, mk_([], TrueExp), {↦}, observability, mk_([], TrueExp), 
      {l ↦ traceExtLf(mk_([], TrueExp), l, P(l), observability) | l ∈ sd.lifelines});  
 
-- Recursively computes the time constrained traces that can be generated by the  
-- execution of an interaction (sequence diagram), if each lifeline behaves according  
-- to local knowledge only (traces observed locally and traces valid locally) and the  
-- transmission chanel respects transmission constraints (in case of controlability).  
-- Parameters: 
--  sd - interaction (sequence diagram) 
--  P - valid local time constrained traces per lifeline (with trace advanced to current 
--  (t, c) - time constrained trace generated so far (initially empty) 
--  m - map from channel identifier to queue of messages in transit 
--  observability - if true, is for observability (instead of controlability) analysis. 
--  oldT, oldE - parameters for incremental calculations. 

static simulExec: Interaction × Lifeline 
𝑚
→ TCTrace-set × TCTrace × 

            Channel 
𝑚
→ ChannelStatus × 𝔹 × TCTrace × Lifeline 

𝑚
→ LifelineTraceExtensions  

            ⟶ TCTrace-set 
simulExec(sd, P, mk_(t, c), m, observability, oldT, oldE) ≜   
(  
 -- Handle different cases in disjunction separately 
 if is_OrExp(c) then  
   ⋃ {simulExec(sd, P, mk_(t, arg), m, observability, oldT, oldE) | arg ∈ c.args} 
 
 -- Handle normal cases 
 else  
   let -- Compute possible trace extensions, from the perspective of each lifeline,  
       -- as well as termination condition and action deadline for each lifeline. 
       E = {l ↦ updTraceExtLf(mk_(t, c), l, P(l), observability, oldT, oldE(l))  
            | l ∈ sd.lifelines},  
        
       -- Flat set of possible next events (including stop events) and respective 
       -- constraints from all lifelines. 
       E1 =  ⋃ {E(l).#1 | l ∈ sd.lifelines}, 
          
       -- Emission candidates and respective constraints 
       S = {mk_(e, C) | mk_(e, C) ∈ E1 • e.type = <Send>},      
  
       -- Updated status of projections per lifeline 
       newP = {l ↦ E(l).#2 | l ∈ sd.lifelines}, 
                  
       -- Compute reception candidates, based on messages in transit,  
       -- transmission constraints (only for controllability analysis), 
       -- and reception constraints (only for observability analysis) 
       R0 = candFromChannels(sd, mk_(t, c), m, observability), 
       R = if ¬ observability then R0 
           else let R1 = {mk_(e, C) | mk_(e, C) ∈ E1 • e.type = <Receive>} 
                in ⋃ {{mk_(i, e, C0 ∪ C1) | mk_((e), C1) ∈ R1} | mk_(i, e, C0) ∈ R0}, 
                          
    -- Compute constraint for lifeline actions 
       cS = {E(l).#4 | l ∈ sd.lifelines},      
          
       -- Compute constraint for channel actions 
       cR = if observability then ∅ -- already included in Cs 
         else ⋃ {{ct | ct ∈ C • isMaxDuration(ct)} | mk_(-, -, C) ∈ R}            
           
   in  
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     -- Reception  
     ⋃ {let newC = renumVar(red(mkAndExp({c} ∪ cR ∪ cS ∪ C)), MAX_TRACE_LEN, len t + 1)  
        in if newC = FalseExp then ∅  
           else simulExec(sd, consumeEvent(e, newP), mk_(t ↷ [e], newC),   
                               updChannelsRecv(e, t(i), m), observability, mk_(t,c), E)  
        | mk_(i, e, C) ∈ R} 
               
     -- Emission 
     ∪ 
     ⋃ {let me = msg(sd, e) in         
          if me.type = <Synch> then  
            let r = r(me),  
                C2 = if ¬ observability then TrueExp 
                     else mkOrExp({mkAndExp(C2)| mk_((r),C2) ∈ E(r.lifeline).#1}), 
                C3 = mkAndExp({c, C2, mk_DC(MAX_TRACE_LEN + 1, MAX_TRACE_LEN, 0)}  
                              ∪ cR ∪ cS ∪ C) 
                C4 = renumVar(red(C3), MAX_TRACE_LEN, len t + 1), 
                newC = renumVar(C4, MAX_TRACE_LEN + 1, len t + 2)  
            in if newC = FalseExp then ∅  
               else simulExec(sd, consumeEvent(r, consumeEvent(e, newP)),  
                              mk_(t ↷ [e, r], newC), m, observability, mk_(t,c), E)  
          else 
            let newC = renumVar(red(mkAndExp({c}∪cR∪cS ∪ C)), MAX_TRACE_LEN, len t + 1)  
            in if newC = FalseExp then ∅  
               else simulExec(sd, consumeEvent(e, newP), mk_(t ↷ [e], newC),   
                              updChannelsSend(len t + 1, e, r(msg(sd, e)), m), 
                              observability, mk_(t,c), E)  
       | mk_(e, C) ∈ S} 
               
     -- Termination (quiescense) 
     ∪ (if R = ∅ ∨ observability /*may loose messages*/then 
        let cQ = red(mkAndExp({c} ∪ {E(l).#3 | l ∈ sd.lifelines})) 
        in if cQ = FalseExp then ∅ else {mk_(t, cQ)} 
        else ∅) 
); 
 
 
functions 
-- Update status (m) of transmission channels after an emission event (s) in position  
-- 'i' of a trace (being 'r' the corresponding reception event). 

updChannelsSend: ℕ × Event × Event × Channel 
𝑚
→ ChannelStatus  

                 ⟶ Channel 
𝑚
→ ChannelStatus 

updChannelsSend(i, s, r, m) ≜ 
   let channel = if FIFO_CHANNELS then mk_(s.lifeline, r.lifeline)  
                 else mk_(s.lifeline, r.lifeline, s.signature) 
   in if channel ∈ dom m then m † {channel ↦ m(channel) ↷ [mk_(i, r)]} 
      else m ∪ {channel ↦ [mk_(i, r)]}; 
 
-- Update status (m) of transmission channels after reception event (r) at the head of 
-- the queue (being 's' the corresponding emission event). 

updChannelsRecv: Event × Event × Channel 
𝑚
→ ChannelStatus ⟶ Channel 

𝑚
→ ChannelStatus 

updChannelsRecv(r, s, m) ≜ 
  let channel = if FIFO_CHANNELS then mk_(s.lifeline, r.lifeline)  
                else mk_(s.lifeline, r.lifeline, s.signature) 
  in if len m(channel) = 1 then {channel} ⊲ m  
     else m † {channel ↦ tl m(channel)}; 
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-- Determines candidate reception events from FIFO transmission channels (m),  
-- after a given tc-trace. 

candFromChannels: Interaction × TCTrace × Channel 
𝑚
→ ChannelStatus × 𝔹 

                  ⟶ (ℕ × Event × DC-set)-set 
candFromChannels(sd, mk_(t, -), m, observability) ≜ 
  {let mk_(i, r) = hd m(channel),       
       C = if observability ∧ ¬ EMISSION_TIMESTAMP_TRANSMITTED then ∅ 
           else ⋃ {ev2ocConstr(i, MAX_TRACE_LEN, c2) | c2 ∈ sd.timeConstraints • 
                         c2.firstEvent = t(i).timestamp ∧ c2.secondEvent = r.timestamp} 
   in mk_(i, r, C) 
   | channel ∈ dom m}; 
 
-- Updates the status (P) of lifelines after an event (e) 

consumeEvent: Event × Lifeline 
𝑚
→ TCTrace-set ⟶ Lifeline 

𝑚
→ TCTrace-set 

consumeEvent(e, P) ≜ 
   P † {e.lifeline ↦ {mk_(tl t, c) |  
                        mk_(t, c) ∈ P(e.lifeline) • t ≠ [] ∧ eqIgnTimestamps(hd t, e)}};     
 
-- Obtains the possible extensions of a global time constrained trace (t,c), from the  
-- perspective of a lifeline l with a set V of locally valid time constrained traces.  
-- Each extension is a pair of an added event and added time constraints. 
-- Return a tuple with: 
--  - set of extensions 
--  - updated V (restricting to satisfiable tc-traces). 
--  - acceptance/quiescence/termination condition after the given tc-trace 
--  - action deadline condition after the given tc-trace.  
operations 
static pure traceExtLf: TCTrace × Lifeline × TCTrace-set × 𝔹 ⟶ LifelineTraceExtensions 
traceExtLf(mk_(t, c), l, V, observability) ≜ ( 
  dcl E : Extension-set := ∅; 
  dcl newV : TCTrace-set := ∅; 
  dcl newE : Event; 
  dcl newC : DC-set; 
  dcl r1 : ℕ* := lifelineInds(l, t); 
  dcl r2 : ℕ* := r1 ↷  [MAX_TRACE_LEN]; -- len t + 1 
  dcl hasSend : 𝔹 := false; 
  dcl hasUnrestrictedSend : 𝔹 := false; 
  dcl hasUnrestrictedStop : 𝔹 := false; 
  dcl hasUnrestrictedRecv : 𝔹 := false; 
 
  for all mk_(lt, lc) ∈ V do ( 
    if lt = [] then ( 
      newC := renumVars(r1, lc.args); 
      newE := mkStopEvent(l)  
    ) 
    else ( 
      newC := renumVars(r2, elimVarsAfter(len r2, lc.args)); 
      newE := hd lt 
    );  
         
    if newC ⊆ c.args ∨ sat(mkAndExpDC(c.args ∪ newC)) then ( 
      E := E ∪ {mk_(newE, newC)}; 
      newV := newV ∪ {mk_(lt, mk_AndExp(lc.args))}; 
      cases newE.type: 
         <Send>    ⟶ (hasSend := true; 
                       if newC = ∅ then hasUnrestrictedSend := true), 
         <Stop>    ⟶ if newC = ∅ then hasUnrestrictedStop := true, 
         <Receive> ⟶ if newC = ∅ then hasUnrestrictedRecv := true 
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      end 
    ) 
  ); 
 
  -- cases in which may remain quiescent (terminate) for sure  
  if hasUnrestrictedStop ∨ (¬ observability ∧ (¬ hasSend ∨ hasUnrestrictedRecv)) then  
    return mk_(E, newV, TrueExp, TrueExp); 
 
  -- other cases         
  let n = MAX_TRACE_LEN, -- len t + 1,   
      preE = {C ↦ elimVarsAfter(len t, C) | mk_(e, C) ∈ E • e.type ≠ <Stop>},  
      maxE = {C ↦ {mk_DC(n, j, d) | mk_DC((n), j, d) ∈ C • j < n} -- max dur. constr. 
              | mk_(e, C) ∈ E • e.type ≠ <Stop>}, 
         
      -- termination 
      A = mkOrExp({mk_AndExp(C) | mk_(e,C) ∈ E • e.type = <Stop>}), 
         
      -- for all emission candidates 's', if 's' is enabled, then there is at least 
      -- on reception event 'r' such that 'r' is enabled and deadline(r) <= deadline(s) 
      B = if observability then FalseExp  
          else 
            mkAndExp({ 
              mkImpliesExp( 
                mk_AndExp(preE(Cs)), 
                mkOrExp({ 
                   mkAndExp({ 
                     mk_AndExp(preE(Cr)),                     
                     mkAndExp({mkOrExp({mk_DC(js,jr,dr-ds)| mk_DC(-,js,ds) ∈ maxE(Cs)}) 
                               | mk_DC(-, jr, dr) ∈ maxE(Cr)}) 
                   })   
                | mk_(r, Cr) ∈ E • r.type = <Receive>}) 
              ) 
            | mk_(s, Cs) ∈ E • s.type = <Send>}), 
         
     -- for at least one emission (or reception) event, it may be enabled and deadline 
     -- is met 
     C = if observability then  
           mkOrExp({mk_AndExp(preE(C) ∪ maxE(C)) | mk_(e, C) ∈ E • e.type ≠ <Stop>}) 
         else  
           mkOrExp({mk_AndExp(preE(C) ∪ maxE(C)) | mk_(e, C) ∈ E • e.type = <Send>}) 
  in 
    if observability then 
      return mk_(E, newV, A, mkOrExp({A, C})) 
    else  
      return mk_(E, newV, mkOrExp({A, B}), mkOrExp({A, B, C})); 
); 
 
-- Incremental calculation of traceExtLf for otpmization purposes. 
functions 
updTraceExtLf: TCTrace × Lifeline × TCTrace-set × 𝔹 × TCTrace × LifelineTraceExtensions 
               ⟶ LifelineTraceExtensions 
updTraceExtLf(mk_(t, c), l, V, observability, mk_(old_t, old_c), oldE) ≜ 
  if (len t = len old_t ∨ ∀ i ∈ {len old_t + 1, ..., len t} • t(i).lifeline ≠ l)  
     ∧ (c.args = old_c.args ∨  
          ∀ mk_(-, newC) ∈ oldE.#1 • newC = ∅ ∨ sat(mkAndExpDC(c.args ∪ newC)))  
  then oldE 
  else traceExtLf(mk_(t, c), l, V, observability); 
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end SimulatedExecution 
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9. Class Observability 
 

/** 
 * Analysis of local observability. 
 */ 
  
class Observability is subclass of SequenceDiagrams, Traces, ValidTraces, 
SimulatedExecution 
 
functions 
 
-- Determines if an interaction sd is locally observable. 
public isLocallyObservable: Interaction ⟶ 𝔹 
isLocallyObservable(sd) ≜ uncheckableLocallyTimed(sd) = ∅; 
 
-- Gives the set of global traces that are uncheckable locally in an interaction sd,  
-- i.e., the global traces that are locally valid but are not globally valid. 
public uncheckableLocally: Interaction ⟶ Trace-set 
uncheckableLocally(sd) ≜ 
  if sd.timeConstraints = ∅ then uncheckableLocallyUntimed(sd)  
  else untimed(uncheckableLocallyTimed(sd)); 
 
-- Gives a string representation of the uncheckable locally traces in an interaction sd. 
public uncheckableLocallyStr: Interaction ⟶ String 
uncheckableLocallyStr(sd) ≜ traces2str(uncheckableLocally(sd)); 
   
-- Gives the set of global tc-traces that are uncheckable locally in an interaction sd. 
public uncheckableLocallyTimed: Interaction ⟶ TCTrace-set 
uncheckableLocallyTimed(sd) ≜ uncheckableLocallyTimed(sd, validTimedTraces(sd)); 
  
-- Same as above, but receives the set V of valid tc-traces pre-computed. 
public uncheckableLocallyTimed: Interaction × TCTrace-set ⟶ TCTrace-set 
uncheckableLocallyTimed(sd, V) ≜ 
  let P = projectTCTraces(V, sd.lifelines), 
      J = joinTimedTraces2(sd, P)  
  in subtractTimedTraces(J, V); 
 
-- Gives the set of global traces that are locally uncheckable in an interaction sd 
-- without time constraints (or ignoring time constraints). 
public uncheckableLocallyUntimed: Interaction ⟶ Trace-set 
uncheckableLocallyUntimed(sd) ≜ 
  let V = validTraces(sd),  
      P = projectTraces(V, sd.lifelines) 
  in joinTraces(sd, [], P) \ V; 
 
 
-- Faster calculation of local observability violations using simulated execution. 
-- Truncated on error. 
public uncheckableTracesTimed: Interaction ⟶ Trace-set 
uncheckableTracesTimed(sd) ≜  
  let V = validTimedTraces(sd),  
      U = uncheckableTracesTimedRaw(sd, V) 
  in {truncateOnError(V, tc) | tc ∈ U};  
    
-- Faster calculation of local observability violations using simulated execution. 
public uncheckableTracesTimedRaw: Interaction ⟶ TCTrace-set 
uncheckableTracesTimedRaw(sd) ≜ 
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  let V = validTimedTraces(sd),  
      P = projectTCTraces(V, sd.lifelines), 
      S = simulExec(sd, P, true), 
      U = subtractTimedTraces(S, V) 
  in U;  
 
-- Similar, with the set of valid tc-traces (V) pre-computed. 
public uncheckableTracesTimedRaw: Interaction × TCTrace-set ⟶ TCTrace-set 
uncheckableTracesTimedRaw(sd, V) ≜ 
  let P = projectTCTraces(V, sd.lifelines), 
      S = simulExec(sd, P,  true) 
  in subtractTimedTraces(S, V);  
 
   
end Observability 
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10. Class Controllability 
 

/** 
 * Analysis of local controllability and identification of violations. 
 */ 
  
class Controllability is subclass of SequenceDiagrams, Traces, ValidTraces, 
SimulatedExecution 
 
 
/*************************** Main public functions  ************************/ 
 
-- Determines if an interaction is locally controllable, i.e., no invalid traces are 
-- generated and all valid traces are generated when lifelines behave using local 
-- knowledge only (traces observed locally and traces valid locally), without exchanging 
-- coordination messages between them, and transmission channels behave correctly. 
functions 
public isLocallyControllable: Interaction ⟶ 𝔹 
isLocallyControllable(sd) ≜  
  let V = validTimedTraces(sd),  
      P = projectTCTraces(V, sd.lifelines), 
      S = simulExec(sd, P, false) 
  in areEquivalent(V, S);  
   
-- Determines the invalid traces that can be generated when lifelines  
-- behave using local knowledge only (traces observed locally and traces valid locally). 
-- The invalid traces are truncated up to the first invalid event. 
public unintendedTraces: Interaction ⟶ Trace-set 
unintendedTraces(sd) ≜  
 if sd.timeConstraints = ∅ then unintendedTracesUntimed(sd)  
 else unintendedTracesTimed(sd); 
 
-- String representation of the set unintended traces. 
public unintendedTracesStr: Interaction ⟶ String 
unintendedTracesStr(sd) ≜ traces2str(unintendedTraces(sd)); 
 
-- Determines the invalid traces that can be generated when lifelines 
-- behave using local knowledge only (sets of traces valid locally), 
-- in the presence of time constraints. 
public unintendedTracesTimed: Interaction ⟶ Trace-set 
unintendedTracesTimed(sd) ≜ 
  let V = validTimedTraces(sd),  
      P = projectTCTraces(V, sd.lifelines), 
      S = simulExec(sd, P,  false), 
      U = subtractTimedTraces(S, V) 
  in {truncateOnError(V, tc) | tc ∈ U};   
 
-- Similar, but tc-traces, not truncated. 
public unintendedTracesTimedRaw: Interaction ⟶ TCTrace-set 
unintendedTracesTimedRaw(sd) ≜ 
  let V = validTimedTraces(sd),  
      P = projectTCTraces(V, sd.lifelines), 
      S = simulExec(sd, P, false), 
      U = subtractTimedTraces(S, V) 
  in U;   
       
-- Similar, with set of vald tc-traces (V) pre-computed. 
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public unintendedTracesTimedRaw: Interaction × TCTrace-set ⟶ TCTrace-set 
unintendedTracesTimedRaw(sd, V) ≜ 
  let P = projectTCTraces(V, sd.lifelines), 
      S = simulExec(sd, P,  false), 
      U = subtractTimedTraces(S, V) 
  in U;  
 
-- Determines the valid traces that are not generated when lifelines behave using  
-- local knowledge only (traces observed locally and traces valid locally). 
public missingTraces: Interaction ⟶ Trace-set 
missingTraces(sd) ≜ 
  let V = validTimedTraces(sd),  
      P = projectTCTraces(V, sd.lifelines), 
      S = simulExec(sd, P, false) 
  in untimed(subtractTimedTraces(V, S));  
   
     
/*********** Auxiliary functions for untimed interactions **********/ 
 
-- Calculation of unintended traces, in the absence of time constraints. 
-- Gives subtraces that can be generated according to causality rules,  
-- but end in an unintended send (us), receive (ur) or termination (ut). 
protected unintendedTracesUntimed: Interaction ⟶ Trace-set  
unintendedTracesUntimed(sd) ≜ unintendedTracesUntimed(sd, validTracesUntimed(sd)); 
 
-- Idem, with set of valid traces (V) pre-computed. 
protected unintendedTracesUntimed: Interaction × Trace-set ⟶ Trace-set 
unintendedTracesUntimed(sd, V) ≜  
  let T = prefixes(V),  
      L = sd.lifelines,  
      P = projectTraces(V, L), 
   us = {q ↷ [t2(len t2)] | q ∈ T, t2 ∈ T • len t2 > 0 ∧  
           let p = t2(1, ..., len t2-1), e = t2(len t2) in 
            e.type = <Send>  
            ∧ projectTrace(q, e.lifeline) = projectTrace(p, e.lifeline)} \ T, 
   ur =   ⋃ {{q  ↷ [t2(len t2)] | q ∈ prefixes({t2(1,...,len t2-1)}) •  
                                     isFeasibleAddition(sd, q, t2(len t2))} 
              | t2 ∈ T • len t2 > 0 ∧ t2(len t2).type = <Receive>} \ T,               
   ut = {p | p ∈ T • allMsgsReceived(p) ∧ mayRemainQuiescentUntimed(sd, p, P)} \ V 
  in us ∪ ur ∪ ut; 
 
-- Computes the set of prefixes of a set of traces 
prefixes: Trace-set ⟶ Trace-set 
prefixes(T) ≜ {[]} ∪ ⋃{{t(1, ..., i) | i ∈ inds t} | t ∈ T}; 
   
-- Checks (in a simplified way) if all message have been received in a trace (t). 
allMsgsReceived: Trace ⟶ 𝔹  
allMsgsReceived(t) ≜  
  # {i | i ∈ inds t • isSend(t(i))} = # {i | i ∈ inds t • isReceive(t(i))};             
  
-- Determines if a lifeline may remain quiescent after a valid global trace (t). 

mayRemainQuiescentUntimed: Interaction × Trace × Lifeline 
𝑚
→ Trace-set ⟶ 𝔹 

mayRemainQuiescentUntimed(sd, t, P) ≜ 
  ∀ l ∈ sd.lifelines • let p = projectTrace(t, l) in 
    p ∈ P(l)   
    ∨ (∄ (p) ↷ [e] ↷ - ∈ P(l) • e.type = <Send>) 
    ∨ (∃ (p) ↷ [e] ↷ - ∈ P(l) • e.type = <Receive>);           
end Controllability 
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11. Class Enforcement 
 

/*  
 * Algorithms for the enforcement of local observability and controllability by  
 * the addition of coordination messages and coordination time constraints.  
 */ 
 
class Enforcement is subclass of Controllability, Observability 
 
values 
 
/************************  Configuration parameters **********************************/ 
 
public CoordinationMessagePrefix = "Ctrl"; -- prefix for generated coordination messages 
public AcknowledgmentMessagePrefix = "Ack"; -- prefix for generated ackowledgment 
messages 
public LocationMultiplier = 10000; -- used to insert new messages between given 
locations 
 
 
/******* Interaction manipulation functions and operations **************/ 
 
-- Compares messages by their ids (used for sorting purposes) 
functions 
compByMessageId: Message × Message ⟶ ℤ 
compByMessageId(m1, m2) ≜ m1.id - m2.id; 
 
-- Compares pairs (event, message) by the message id (used for sorting purposes) 
compByMessageId2: (Event × Message) × (Event × Message) ⟶ ℤ 
compByMessageId2(mk_(-,m1), mk_(-,m2)) ≜ m1.id - m2.id; 
 
-- Obtains a message corresponding to a given extended event 
-- (assumes messageMap is updated). 
getMessageOfEventExt: Interaction × EventExt ⟶ Message 
getMessageOfEventExt(sd, e) ≜ sd.messageMap(e.messageId); 
 
-- Makes sure that all messages in a sequence diagram 'sd' have defined  
-- timestamp variables and messageMap is updated. Returns a new SD with such property. 
mkMsgsTimedAndIndexed: Interaction ⟶ Interaction 
mkMsgsTimedAndIndexed(sd) ≜ 
  let ms = {μ(m, sendTimestamp ↦  
                   if m.sendTimestamp ≠ nil then m.sendTimestamp 
                   else mk_Variable("s_" ↷ m.signature ↷ "_" ↷ 
VDMUtil`val2seq_of_char[MessageId](m.id)), 
                 recvTimestamp ↦  
                   if m.recvTimestamp ≠ nil then m.recvTimestamp 
                   else mk_Variable("r_" ↷ m.signature ↷ "_" ↷ 
VDMUtil`val2seq_of_char[MessageId](m.id))) 
          | m ∈ sd.messages} 
   in μ(sd, messages ↦ ms, messageMap ↦ {m.id ↦ m | m ∈ ms}); 
 
-- Renumber the location numbers in an Interaction (sd), multiplying all numbers by a 
-- given factor, to permit subsequent insertion of coordination messages in 
-- intermmediate locations. 
renumberInteraction: Interaction × ℕ ⟶ Interaction 
renumberInteraction(sd, factor) ≜ 
  let ms =  {μ(m, sendEvent ↦ renumberLocation(m.sendEvent, factor),   
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                   receiveEvent ↦ renumberLocation(m.receiveEvent, factor)) 
            | m ∈ sd.messages} 
  in μ(sd,  
      messages ↦ ms, 
      messageMap ↦ {m.id ↦ m | m ∈ ms}, 
      combinedFragments ↦  
        {μ(c, operands ↦ 
                [μ(o, startLocations ↦ {renumberLocation(l, factor) | l ∈ 
o.startLocations}, 
                      finishLocations ↦ {renumberLocation(l, factor) | l ∈ 
o.finishLocations}) 
               | o ∈ c.operands])         
         | c ∈ sd.combinedFragments});  
   
-- Renumbers a lifeline location,  multiplying by a given factor. 
renumberLocation: LifelineLocation × ℕ ⟶ LifelineLocation 
renumberLocation(mk_(lifeline, location), factor) ≜ mk_(lifeline, location × factor); 
 
 
/******** Finding coordination time constraints  *********/ 
   
-- Determines the events in a trace t that have a causal link to the i-the event in the 
-- trace.  Returns a boolean sequence, with the same length as t, indicating those  
-- events (including the i-th event). 
operations 
static pure getCausalChainBackwards: TraceExt × ℕ ⟶ 𝔹* 
getCausalChainBackwards(t, i) ≜ 
( 
  dcl select: 𝔹* := [k = i | k ∈ inds t]; 
  for k = i to 1 by -1 do 
    if select(k) then 
      if t(k).type = <Send> then 
      ( 
         -- select all the preceeding events in the same lifeline  
         -- (because they may influence the decision to emit this event) 
         for all j ∈ {1, ..., k-1} do 
           if t(j).lifeline = t(k).lifeline then 
             select(j) := true 
      ) 
      else  
      ( 
        -- <Receive>: select the corresponding emission event 
        let j ∈ {1, ..., k-1} be st  
            t(j).messageId = t(k).messageId ∧ t(j).type = <Send> 
            ∧ t(j).itercounter = t(k).itercounter 
        in select(j) := true  
      ); 
  return select 
) 
pre i ∈ inds t; 
 
-- Similar, but in forward direction. 
static pure getCausalChainForward:TraceExt × ℕ ⟶ 𝔹* 
getCausalChainForward(t, i) ≜ 
( 
  dcl select: 𝔹* := [k = i| k ∈ inds t]; 
  for k = i to len t by 1 do 
     if select(k) then 
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     ( 
        -- select all the succeeding emission events in the same lifeline  
        for all j ∈ {k+1, ..., len t} do 
          if t(j).lifeline = t(k).lifeline ∧ t(j).type = <Send> then 
            select(j) := true; 
 
        -- select the corresponding reception event 
        if t(k).type = <Send> then 
          let j ∈ {k+1, ..., len t} be st  
             t(j).messageId = t(k).messageId ∧ t(j).type = <Receive> 
             ∧ t(j).itercounter = t(k).itercounter 
          in select(j) := true  
     ); 
  return select 
) 
pre i ∈ inds t; 
 
-- Select the events in a trace that have a causal relation regarding two other events. 
functions  
getCausalEventsBetween: TraceExt × ℕ × ℕ ⟶ 𝔹* 
getCausalEventsBetween(t, i1, i2) ≜ 
( 
  let select1 = getCausalChainForward(t, i1), 
      select2 = getCausalChainBackwards(t, i2)       
  in [select1(i) ∧ select2(i) | i ∈ inds t] 
) pre i1 < i2 ∧ i1 ≥ 1 ∧ i2 ≤ len t; 
 
-- Obtains the nearest common ancestor in the causal event chains that lead  
-- to events in positions i1 and i2 in a trace t. 
-- Returns 0 if no such common ancestor can be found. 
operations 
static pure getNearestCommonAncestor2: TraceExt × ℕ × ℕ ⟶ ℕ 
getNearestCommonAncestor2(t, i1, i2) ≜ 
( 
   let chain1 = getCausalChainBackwards(t, i1), 
       chain2 = getCausalChainBackwards(t, i2) 
   in 
   ( 
      for res = len t to 1 by -1 do 
        if chain1(res) ∧ chain2(res) then 
           return res; 
      return 0 
    )      
)  
pre i1 ∈ inds t ∧ i2 ∈ inds t; 
 
-- Similar, but with different traces for i1 and i2 
static pure getNearestCommonAncestor3: TraceExt × ℕ × TraceExt × ℕ ⟶ [ℕ × ℕ] 
getNearestCommonAncestor3(t1, i1, t2, i2) ≜ 
( 
   let chain1 = getCausalChainBackwards(t1, i1), 
       chain2 = getCausalChainBackwards(t2, i2) 
   in 
   ( 
      for res1 = i1 to 1 by -1 do 
         if chain1(res1) then 
            for res2 = i2 to 1 by -1 do 
               if chain2(res2) ∧ t1(res1) = t2(res2) then 
                  return mk_(res1, res2); 
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      return nil 
   ) 
)  
pre i1 ∈ inds t1 ∧ i2 ∈ inds t2; 
 
 
-- Obtains the set of events (and corresponding traces) that can occur immediatly before 
-- a given event, without intermediate events. 

static pure getAdjacentEvents: TCTraceExt-set × Event × 𝔹 × 𝔹⟶ Event 
𝑚
→ (TCTraceExt × 

ℕ × ℕ × ℕ) 
getAdjacentEvents(T, e2, ancestorMandatory, findAll) ≜ 
( 

  dcl res : Event 
𝑚
→ (TCTraceExt × ℕ × ℕ × ℕ) := {↦}; 

  dcl occurAfter : Event-set := ∅; 
  for all mk_(t, c)  ∈ T do 
    for k = len t to 1 by -1 do 
       if removeExtraInfo(t(k)) = e2 then 
       ( 
         dcl lfs : Lifeline-set := ∅; 
         for i = k-1 to 1 by -1 do   
           if t(i).lifeline ∉ lfs then  
             let e1 = removeExtraInfo(t(i)) in 
             ( 
               if e1 ∉ occurAfter ∧ e1 ∉ dom res then 
                 let i0 = getNearestCommonAncestor2(t, i, k) in 
                   if (i0 > 0 ∨ ¬ ancestorMandatory) ∧ i0 ≠ i then  
                     if mayOccurAfter(T, e1, e2) then 
                       occurAfter := occurAfter ∪ {e1} 
                     else 
                     ( 
                       res(e1) := mk_(mk_(t, c), i0, i, k); 
                       if ¬ findAll then  
                         return res 
                     ); 
               lfs := lfs ∪ {e1.lifeline} 
             ) 
       ); 
  return res 
);           
 
-- Checks if an event e1 may occur after an event e2 in a set T of tc-traces. 
functions 
mayOccurAfter: TCTraceExt-set × Event × Event ⟶ 𝔹 
mayOccurAfter(T, e1, e2) ≜ 
  ∃ mk_(t,c) ∈ T •  
    ∃ i1, i2 ∈ inds t • 
      i1 > i2 ∧ removeExtraInfo(t(i1)) = e1 ∧ removeExtraInfo(t(i2)) = e2;  
 
-- Checks if two (mutually exclusive) events (in the same lifeline) may be  
-- simultaneously enabled. 
operations 
static pure simultaneouslyEnabled: TCTraceExt-set × Event × Event ⟶ [TCTraceExt × ℕ × 
ℕ × TCTraceExt × ℕ × ℕ]  
simultaneouslyEnabled(T, e1, e2) ≜ 
( 
  for all mk_(t1, c1) ∈ T do 
    for i1 = 1 to len t1 by 1 do 
       if removeExtraInfo(t1(i1)) = e1 then 
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          for all mk_(t2, c2) ∈ T do 
            if e1 ∉ elems removeExtraInfo(t2) then 
              for i2 = 1 to len t2 by 1 do 
                if removeExtraInfo(t2(i2)) = e2 then 
                  let p1 = [t1(i) | i ∈ {1, ..., i1-1} • t1(i).lifeline = e1.lifeline],  
                      p2 = [t2(i) | i ∈ {1, ..., i2-1} • t2(i).lifeline = e2.lifeline]  
                  in 
                     if p1 = p2 then 
                       let I1 =  lifelineInds(e1.lifeline, t1(1, ..., i1)), 
                           I2 =  lifelineInds(e2.lifeline, t2(1, ..., i2)), 
                           cp1 = projectToVars(c1, I1), 
                           cp2 = projectToVars(c2, I2) 
                       in if sat(mkAndExp(cp1.args ∪ cp2.args)) then   
                            let nca = getNearestCommonAncestor3(t1, i1, t2, i2) in 
                              if nca ≠ nil then  
                                let mk_(i01, i02) = nca in 
                                  return mk_(mk_(t1, c1), i01, i1, mk_(t2, c2), i02, 
i2); 
   return nil 
); 
                 
-- Tries to add time constraints to a sequence diagram (sd) to enforce local  
-- controllability. 
-- Assumes all the messages are timed. 
-- Receives parameters with maximum transmission time and maximum response time that  
-- can be assumed. 
-- The first refers to the duration between between emission and reception of a message. 
-- The second refers to the duration between the event that precedes an emission event 
-- in a lifeline, and the emission event itself. 
-- Returns a set of candidates, where each candidate is a set of time constraints to 
-- solve a specific problem. 
static pure genCoordTimeConstraints: Interaction × TCTraceExt-set × Event-set × Duration 
× Duration  ⟶ TimeConstraint-set-set 
genCoordTimeConstraints(sd, VExt, E0, transmissionTime, responseTime) ≜ 
( 
   dcl sol : TimeConstraint-set-set := ∅;  
   dcl sortedMessages: Message* := sort[Message](sd.messages, compByMessageId); 
   dcl E : Event-set :=  ⋃ {let m = msg(sd, e) in  
                                    if m.type = <Synch> then {s(m), r(m)} else {e}  
                                    | e ∈ E0}; 
    
   -- search for patterns of potential race conditions:  triples of events e0, e1, e2,  
   -- such that e2 is a discrepant event, e1 immeditaly precedes e2, 
   -- and e0 is a common ancestor of e1 and e2 (distinct from e1). 
   let pairs = sort[Event × Message]({mk_(e, msg(sd, e)) | e ∈ E}, compByMessageId2) in 
     for mk_(e2, -) in pairs do 
       let map1 = getAdjacentEvents(VExt, e2, true, true) in 
         for all e1 ∈ dom map1 do 
           let mk_(tc, i0, i1, i2) = map1(e1), 
               tcs = insertUpperLowerBounds( 
                        μ(sd, timeConstraints ↦ sd.timeConstraints ∪ ⋃ sol),   
                        tc, i0, i1, tc, i0, i2, responseTime, transmissionTime) 
           in if tcs ≠ ∅ then 
                sol := sol ∪ {tcs}; 
                           
   -- search for pairs (e1, e2) of mutually exclusive emission and reception events  
   -- on the same lifeline simultaneously enabled, with e1 before e2 in the layout,  
   -- and e2 an error location  
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   let sd2 = if sol = ∅ then sd else μ(sd, timeConstraints ↦ sd.timeConstraints ∪ ⋃ 
sol), 
       VExt2 = if sol = ∅ then VExt else validTimedTracesExt(sd2) 
   in for m2 in sortedMessages do 
        for mk_(e2, loc2) in [mk_(r(m2), m2.receiveEvent), mk_(s(m2), m2.sendEvent)] do 
          for m1 in sortedMessages do 
            for all mk_(e1, loc1) ∈ {mk_(r(m1), m1.receiveEvent), mk_(s(m1), 
m1.sendEvent)} do 
              if e1.lifeline = e2.lifeline ∧ loc1.#2 < loc2.#2 ∧ e1.type ≠ e2.type  
                 ∧ (e1 ∈ E ∨ e2 ∈ E) 
                  then 
                    let res = simultaneouslyEnabled(VExt2, e1, e2) in 
                      if res ≠ nil then  
                          let mk_(tc1, i01, i1, tc2, i02, i2) = res, 
                              tcs = insertUpperLowerBounds(sd2, 
                                       tc1, i01, i1, tc2, i02, i2, responseTime, 
transmissionTime) 
                          in if tcs ≠ ∅ then 
                               sol := sol ∪ {tcs}; 
 
   -- search for patterns of roundtrip constraints not satisfied: pairs of events e0 and 
   -- e1, such that e1 is associated with an error location, e0 is a reception even that 
   -- precedes e1 in the same lifeline, and there is a maximum duration constraint from 
   -- e0 to e1 that is not met. 
   let sd3 = if sol = ∅ then sd else μ(sd, timeConstraints ↦ sd.timeConstraints ∪ ⋃ 
sol), 
       VExt3 = if sol = ∅ then VExt else validTimedTracesExt(sd3) 
   in  for all e1 ∈ E do  
         if e1.type = <Receive> then 
           for all mk_(t, c) ∈ VExt do 
             for all j ∈ inds t do 
               if removeExtraInfo(t(j)) = e1 then   
                 for all i ∈ {1, ..., j-1} do 
                   if t(i).lifeline = t(j).lifeline ∧ t(i).type = <Send> then 
                     for all mk_DC((j), (i), d) ∈ c.args do 
                       let tcs = insertUpperBounds( 
                                   μ(sd, timeConstraints ↦ sd.timeConstraints ∪ ⋃ sol),   
                                   mk_(t, mk_AndExp(c.args \ {mk_DC(j, i, d)})), i, j, 
d, responseTime, transmissionTime) 
                       in if tcs ≠ ∅ then 
                            sol := sol ∪ {tcs}; 
                              
   return sol; 
); 
 
-- Inserts time constraints for delaying one of the paths. 
static pure insertWaitTime: Interaction × TimeConstraint-set × TraceExt × ℕ × ℕ × 
TraceExt × ℕ × ℕ ⟶ TimeConstraint-set 
insertWaitTime(sd, tcs, t1, i01, i1, t2, i02, i2) ≜ 
( 
    let c21 = constraintExp(t1, μ(sd, timeConstraints ↦ sd.timeConstraints ∪ tcs)), 
        c22 = constraintExp(t2, μ(sd, timeConstraints ↦ sd.timeConstraints ∪ tcs)), 
        d1 = getMaxDiff(c21, i01, i1),  
        d2 = getMinDiff(c22, i02, i2), 
        m02 = getMessageOfEventExt(sd, t2(i02))  
    in if d1 ≠ nil ∧ d1 ≥ d2 then  
         let E2 = getCausalEventsBetween(t2, i02, i2) in 
            for restrict2actors in [true, false] do 
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            for chgMin in [false, true] do 
             -- find the first emission event in the causal chain without a lower time  
             -- bound with priority for events performed by actors 
             -- (and no upper time bound or compatible time bound) 
             for k = i02 + 1 to i2 by 1 do 
               if E2(k) ∧ t2(k).type = <Send> ∧ (¬ restrict2actors ∨ 
t2(k).lifeline.actor) then 
               ( 
                 dcl j : ℕ := k-1; 
                 dcl found: 𝔹 := false; 
                 while j ≥ i02 ∧ ¬ found do 
                 ( 
                   if E2(j) ∧ t2(j).lifeline = t2(k).lifeline then 
                   ( 
                      let m = getMessageOfEventExt(sd, t2(k)), 
                          m1 = getMessageOfEventExt(sd, t2(j)), 
                          ts = if t2(j).type = <Send> then m1.sendTimestamp else 
m1.recvTimestamp 
                      in 
                           if (¬ hasMaxDurationConstraint(sd, ts, m.sendTimestamp)  
                               ∨ getMaxDurationConstraint(sd, ts, m.sendTimestamp) > 
d1+1)  
                              ∧ (¬ hasMinDurationConstraint(sd, ts, m.sendTimestamp) 
                                   ∨ chgMin ∧ getMinDurationConstraint(sd, ts, 
m.sendTimestamp) < d1+1)  
                           then  
                             return {mk_TimeConstraint(ts, m.sendTimestamp, d1 + 1, 
nil)}; 
                      found := true 
                   ); 
                   j := j-1 
                 )  
               ); 
    return ∅; 
); 
 
 
-- Inserts time constraints for accelerating one of path and delaying the other. 
functions 
insertUpperLowerBounds: Interaction × TCTraceExt × ℕ × ℕ × TCTraceExt × ℕ × ℕ × ℕ × ℕ 
⟶ TimeConstraint-set 
insertUpperLowerBounds(sd, mk_(t1, c1), i01, i1, mk_(t2, c2), i02, i2, responseTime, 
transmissionTime) ≜ 
   let d1 = getMaxDiff(c1, i01, i1),  
       d2 = getMinDiff(c2, i02, i2)  
   in if d1 = nil ∨ d1 ≥ d2 then 
        let u = insertUpperBounds2(sd, mk_(t1, c1), i01, i1,  responseTime, 
transmissionTime), 
            w = insertWaitTime(sd, u, t1, i01, i1, t2, i02, i2)  
        in if w = ∅ then ∅ else u ∪ w 
      else ∅; 
 
-- Inserts time constraints for accelerating a path between two events in a trace  
-- bewlow a certain limit. 
insertUpperBounds: Interaction × TCTraceExt × ℕ × ℕ × ℕ × ℕ × ℕ ⟶ TimeConstraint-set 
insertUpperBounds(sd, mk_(t, c), i, j, upperBound, responseTime, transmissionTime) ≜ 
   let d = getMaxDiff(c, i, j) in  
     if d = nil ∨ d > upperBound then 
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       let tcs = insertUpperBounds2(sd, mk_(t, c), i, j, responseTime, transmissionTime) 
in 
         if tcs ≠ ∅  then 
           let newc = constraintExp(t, μ(sd, timeConstraints ↦ sd.timeConstraints ∪ 
tcs)), 
               newd = getMaxDiff(newc, i, j)  
           in if newd ≠ nil ∧  newd ≤ upperBound then tcs else ∅ 
         else ∅ 
     else ∅; 
 
-- Inserts time constraints (upper bounds) for trying to accelerate a path between two 
-- events in a trace. 
operations 
static pure insertUpperBounds2: Interaction × TCTraceExt × ℕ × ℕ × ℕ × ℕ ⟶ 
TimeConstraint-set 
insertUpperBounds2(sd, mk_(t, c), i, j,  responseTime, transmissionTime) ≜ 
( 
   dcl tcs : TimeConstraint-set := ∅; 
   let E1 = getCausalEventsBetween(t, i, j) in 
     for k = j to i + 1 by - 1 do 
     ( 
        if E1(k) then 
           if t(k).type = <Send> then 
           ( 
              dcl l : ℕ := k - 1; 
              dcl found: 𝔹 := false; 
              while l ≥ i ∧ ¬ found do 
              ( 
                 if E1(l) ∧ t(l).lifeline = t(k).lifeline then 
                 ( 
                    if ¬ hasMaxDurationConstraint(sd, t(l).timestamp, t(k).timestamp) 
then 
                       if hasMinDurationConstraint(sd, t(l).timestamp, t(k).timestamp) 
then 
                          tcs := tcs ∪ {mk_TimeConstraint(t(l).timestamp, 
t(k).timestamp, nil,  
                                       getMinDurationConstraint(sd, t(l).timestamp, 
t(k).timestamp) + responseTime)} 
                        else 
                          tcs := tcs ∪ {mk_TimeConstraint(t(l).timestamp, 
t(k).timestamp, nil, responseTime)}; 
                    found := true; 
                 ); 
                 l := l-1; 
               ); 
           ) 
           else if getMessageOfEventExt(sd, t(k)).type = <Asynch> then 
           ( 
              dcl l : ℕ := k - 1; 
              dcl found: 𝔹 := false; 
              while l ≥ i ∧ ¬ found do 
              ( 
                 if E1(l) ∧ t(l).type = <Send> ∧ t(l).messageId = t(k).messageId  then 
                 ( 
                    if ¬ hasMaxDurationConstraint(sd, t(l).timestamp, t(k).timestamp) 
then                           
                       tcs := tcs ∪ {mk_TimeConstraint(t(l).timestamp, t(k).timestamp, 
nil, transmissionTime)}; 
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                    found := true; 
                 ); 
                 l := l-1; 
              ); 
           ); 
      ); 
       
   return tcs 
  
); 
 
 
/**************************** Finding error locations **************************/ 
 
-- Finds invalid or missing events in a set I of invalid tc-traces,  
-- by comparison with V a set of valid tc-traces. 
static pure findDiscrepantEvents2: TCTrace-set × TCTrace-set ⟶ Event-set 
findDiscrepantEvents2(I, V) ≜  
( 
   dcl res : Event-set := ∅; 
   for all mk_(t, c) ∈ I do 
      let missing = {v(len t + 1) | mk_(v, vc) ∈ V • len v > len t 
                            ∧ eqIgnTimestamps(t, v(1,...,len t)) 
                            ∧ sat(mkAndExp({c} ∪ elimVarsAfter(len t, vc.args)))} in 
         if missing ≠ ∅ then  
            res := res ∪ missing 
         else 
         (  
            dcl t1 : Trace := t; 
            dcl c1 : DCExp := c; 
            while t1 ≠ [] ∧ ∄ mk_(v, vc) ∈ V • len v ≥ len t1  
                            ∧ eqIgnTimestamps(t1, v(1,...,len t1)) 
                            ∧ sat(mkAndExp({c1} ∪ elimVarsAfter(len t1, vc.args))) 
            do ( 
               t1 := t1(1, ..., len t1 - 1); 
               c1 := elimVarsAfter(len t1, c1); 
            );     
            if len t1 < len t then  
               res := res ∪ {t(len t1 + 1)} 
         );  
  return res; 
); 
    
 
/******************* Insertion of coordination messages **************************/ 
 
functions 
 
-- Generates a valid message id for a new coordination message to insert in an 
Interaction (sd). 
newMessageId: Interaction ⟶ ℕ 
newMessageId(sd) ≜ hd reverse [id | id ∈ {m.id | m ∈ sd.messages}] + 1 
pre sd.messages ≠ ∅; 
 
-- Inserts a set of coordination messages (msgs) in an Interaction (sd). 
insertMessages: Interaction × Message-set ⟶ Interaction 
insertMessages(sd, msgs) ≜  
   μ(sd, messages ↦ sd.messages ∪ msgs, 
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            combinedFragments ↦ sd.combinedFragments, 
            messageMap ↦ sd.messageMap ∪ {m.id ↦ m | m ∈ msgs});   
 
-- Removes all events associated with coordination messages in a set of traces (T). 
removeCoordinationEvents: Trace-set × Message-set ⟶ Trace-set 
removeCoordinationEvents(T, newMsgs) ≜ 
  let sigs = {m.signature | m ∈ newMsgs} in 
     {[e | e ∈ t • e.signature ∉ sigs] | t ∈ T};  
 
-- Removes all events associated with coordination messages in a set of traces (T). 
-- Assumes that such messages start with a common prefix and order number. 
removeCoordinationEvents: Trace-set × ℕ ⟶ Trace-set 
removeCoordinationEvents(T, ordnum) ≜ 
     {[e | e ∈ t •  
            ¬ (e.signature(1,..., len CoordinationMessagePrefix) = 
CoordinationMessagePrefix    
                  ∨ e.signature(1,..., len AcknowledgmentMessagePrefix) = 
AcknowledgmentMessagePrefix)] 
     | t ∈ T};   
                   
-- Checks is a modified Interaction (sd), with coordination features added,  
-- preserves the valid local traces of the initial Interaction (appart from timing 
constraints). 

preserveValidLocalTraces3: Interaction ×  (Lifeline 
𝑚
→ Trace-set) × (Lifeline 

𝑚
→ Trace-

set)  ⟶ 𝔹 
preserveValidLocalTraces3(sd, oldP, newP) ≜ 
  ∀ l ∈ sd.lifelines • oldP(l) = newP(l); 
 
-- Checks is a modified Interaction (sd), with coordination features added,  
-- preserves the valid local traces (P) of the initial Interaction (appart from timing 
constraints).  

preserveValidLocalTraces2: Interaction ×  Lifeline 
𝑚
→ Trace-set × Message-set × TCTrace-

set ⟶ 𝔹 
preserveValidLocalTraces2(sd, P, newMsgs, V) ≜ 
  let newV = removeCoordinationEvents({t | mk_(t,-) ∈ V}, newMsgs), 
      newP = {l ↦ projectTraces(newV, l) | l ∈ sd.lifelines}, 
      changed = {l | l ∈ sd.lifelines • P(l) ≠ newP(l)} 
  in changed = ∅; 
 
 
/*********** Generation of candidate coordination messages *******************/ 
 
-- Generates coordination messages to overcome problems with non-local choices in an 
-- interaction (sd). 
-- Assumes locations in the given Interaction have been renumbered to permit insertion 
-- of coordination messages. 
-- Receives the set (E) of suspicious events and parameters for message and location 
-- numbering.  
--  startId - next (added) message identifier 
--  startSuffix - next control message sequence number 
--  delta - location delta for insertion of new message ends 
operations 
static pure genCoordMessagesForNonLocalChoices: Interaction × Event-set × ℕ × ℕ × ℕ ⟶ 
Message-set 
genCoordMessagesForNonLocalChoices(sd, E, startId, startSuffix, delta) ≜  
( 
  dcl sol : Message-set := ∅; 
  dcl sortedMessages: Message* := sort[Message](sd.messages, compByMessageId); 
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  dcl id : ℕ := startId; 
  dcl suffix : ℕ := startSuffix; 
   
  for all c ∈ sd.combinedFragments do 
    if c.interactionOperator = <alt> then 
    ( 
      dcl firstDecider: [InteractionOperand × LifelineLocation × Event]  := nil; 
      dcl otherDeciders: (InteractionOperand × LifelineLocation × Event)-set := ∅;  
      for o in c.operands do 
        for all mk_(lf, loc1) ∈ o.startLocations do 
        ( 
          dcl firstEv : [LifelineLocation]  := nil; 
          let loc2 = let mk_((lf), loc2) ∈ o.finishLocations in loc2 in         
            for m in sortedMessages do  
              if firstEv = nil ∧ m.sendEvent.#1 = lf ∧ m.sendEvent.#2 > loc1 ∧ 
m.sendEvent.#2 < loc2 then 
              ( 
                firstEv := m.sendEvent; 
                if firstDecider = nil then  
                  firstDecider := mk_(o, m.sendEvent, s(m)) 
                else  
                  otherDeciders := otherDeciders ∪ {mk_(o, m.sendEvent, s(m))} 
              ) 
        ); 
         
        if firstDecider ≠ nil then 
          let mk_(o1, mk_(lf1, loc1), -) = firstDecider in 
            for all mk_(o2, mk_(lf2, loc2), e2) ∈ otherDeciders do 
              if lf2 ≠ lf1 ∧ e2 ∈ E then 
              ( 
                let sourceLoc = if o2 = o1 then loc1  
                                else if ∃ mk_((o2), mk_((lf1), -), -) ∈ otherDeciders • 
true then 
                                        let mk_((o2), mk_((lf1), loc), -) ∈ 
otherDeciders in loc 
                                else let mk_((lf1), loc) ∈ o2.startLocations in loc, 
                     m = mkMessageTimed(id, mk_(lf1, sourceLoc + delta), mk_(lf2, loc2 - 
delta),  
                             CoordinationMessagePrefix ↷ 
VDMUtil`val2seq_of_char[ℕ](suffix)) 
                in  
                ( 
                  sol := sol ∪ {m}; 
                  suffix := suffix + 1; 
                  id := id + 1 
                ) 
            ) 
    ); 
  return sol; 
); 
 
-- Find position of emission event corresponding to another event in an extended trace. 
operations 
pure static findEmissionPos: TraceExt × ℕ ⟶ ℕ 
findEmissionPos(t, k) ≜ 
( 
  for i = k to 1 by -1 do 
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    if t(i).messageId = t(k).messageId ∧ t(i).type = <Send> ∧ t(i).itercounter = 
t(k).itercounter then 
      return i; 
  return 0 
);   
 
-- Generates coordination messages to overcome race conditions and other event ordering 
-- problems. 
-- Besides the parameters received by genCoordMessagesForNonLocalChoices, 
-- also receives the set of valid tc-traces with extra info (VExt). 
operations 
static pure genCoordMessagesForEventOrdering: Interaction × TCTraceExt-set × Event-set × 
ℕ × ℕ × ℕ ⟶ Message-set 
genCoordMessagesForEventOrdering(sd, VExt, E0, startId, startSuffix, delta) ≜  
( 
  dcl sol : Message-set := ∅; 
  dcl sortedMessages: Message* := sort[Message](sd.messages, compByMessageId); 
  dcl id : ℕ := startId; 
  dcl suffix : ℕ := startSuffix; 
   
  -- augment set of error events to consider both sides of synchronous messages 
  dcl E : Event-set :=  ⋃ {let m = msg(sd, e) in  
                                    if m.type = <Synch> then {s(m)} else {e}  
                                    | e ∈ E0}; 
    
   -- Search for triples of events e0, e1, e2, such that e2 is a discrepant event,  
   -- e1 immeditaly precedes e2 (in the e1's lifeline), e0 is the emission event  
   -- corresponding to e2 (possibly e0 = e2), and there is no causal chain of events 
between e1 and e0. 
   -- Generates a coordination message to be sent immeditaly after e1 to the lifeline of 
e2. 
   let pairs = sort[Event × Message]({mk_(e, msg(sd, e)) | e ∈ E}, compByMessageId2) in 
     for mk_(e2, -) in pairs do 
       let map1 = getAdjacentEvents(VExt, e2, false, false) in 
         for all e1 ∈ dom map1 do 
           let mk_(tc, -, i1, i2) = map1(e1), 
               mk_(t, c) = tc, 
               i0 = findEmissionPos(t, i2) 
           in if i0 ≠ 0 ∧ t(i0).lifeline ≠ t(i1).lifeline then 
                let m = mkMessageTimed(id, mk_(t(i1).lifeline, t(i1).location + delta), 
mk_(t(i0).lifeline, t(i1).location + delta),  
                             CoordinationMessagePrefix ↷ 
VDMUtil`val2seq_of_char[ℕ](suffix)) 
                in  
                ( 
                  sol := sol ∪ {m}; 
                  suffix := suffix + 1; 
                  id := id + 1 
                ); 
  return sol; 
); 
 
-- Generates a set of acknowledgment messages. 
operations 
static pure genAckMessages: Interaction × TCTrace-set × Event-set × ℕ × ℕ × ℕ ⟶ 
Message-set 
genAckMessages(sd, VT, E, startId, startSuffix, delta) ≜  
( 
  dcl sol : Message-set := ∅; 
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  dcl id : ℕ := startId; 
  for all e ∈ E do 
    if e.type = <Receive> then 
      let m = msg(sd, e) in 
        if m.type = <Asynch>  
           ∧ # {len [i | i ∈ inds t • t(i) = e] | mk_(t,-) ∈ VT} > 1 then -- opt or loop 
           ( 
             sol := sol ∪ {mkMessageTimed(id,  
                                     mk_(m.receiveEvent.#1, m.receiveEvent.#2 + delta),  
                                     mk_(m.sendEvent.#1, m.sendEvent.#2 + delta),  
                                     AcknowledgmentMessagePrefix ↷ "_" ↷ m.signature)}; 
             id := id + 1; 
           ); 
  return sol 
);   
               
 
 
/** Core algorithm for the generation of coordination messages and time constraints ***/ 
 
-- Auxiliary structures to represent solutions and intermmediate results 
types 
public EnforcementSolution = Interaction × Message-set × TimeConstraint-set; 
 
InteractionEval1 :: 
        validTCTracesExt    : TCTraceExt-set 
        validTCTraces       : TCTrace-set 
        validTraces         : Trace-set 

        validLocalTraces    : Lifeline 
𝑚
→ Trace-set; 

 
InteractionEval2 :: 
        validTCTracesExt    : TCTraceExt-set 
        validTCTraces       : TCTrace-set 
        validTraces         : Trace-set 

        validLocalTraces    : Lifeline 
𝑚
→ Trace-set 

        unintendedTCTraces  : TCTrace-set 
        uncheckableTCTraces : TCTrace-set 
        unintendedTraces    : Trace-set 
        uncheckableTraces   : Trace-set; 
 
-- Computation of several properties of the interaction under analysis 
functions 
evalInteraction1: Interaction × [TCTraceExt-set] ⟶ InteractionEval1  
evalInteraction1(sd, oldVExt) ≜ 
  let 
     VExt = if oldVExt = nil then validTimedTracesExt(sd) else 
validTimedTracesExtIncr(sd, oldVExt),  
     VT = {mk_(removeExtraInfo(t), c) | mk_(t,c) ∈ VExt}, -- valid tc-traces 
     V = untimed(VT), -- valid traces 
     P = projectTraces(V, sd.lifelines) -- valid traces per lifeline 
  in 
    mk_InteractionEval1(VExt, VT, V, P); 
 
evalInteraction2: Interaction × 𝔹 × 𝔹 ⟶ InteractionEval2  
evalInteraction2(sd, observability, controllability ) ≜ 
  let  
     VExt = validTimedTracesExt(sd), -- valid tc-traces extended 
     VT = {mk_(removeExtraInfo(t), c) | mk_(t,c) ∈ VExt}, -- valid tc-traces 
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     V = untimed(VT), -- valid traces 
     P = projectTraces(V, sd.lifelines), -- valid traces per lifeline 
     U1_timed = if ¬ controllability then ∅ 
                else if sd.timeConstraints ≠ ∅ then unintendedTracesTimedRaw(sd, VT)  
                else {mk_(t, TrueExp) | t ∈ unintendedTracesUntimed(sd, V)}, -- 
truncated 
     U2_timed = if ¬ observability then ∅ 
                else if sd.timeConstraints ≠ ∅ then uncheckableTracesTimedRaw(sd, VT)  
                else {mk_(t, TrueExp) | t ∈  joinTraces(sd, [], P) \ V} -- truncated 
  in 
    mk_InteractionEval2(VExt, VT, V, P, U1_timed, U2_timed, untimed(U1_timed), 
untimed(U2_timed)); 
 
evalInteraction2: Interaction × 𝔹 × 𝔹 × InteractionEval1 ⟶ InteractionEval2  
evalInteraction2(sd, observability, controllability, mk_InteractionEval1(VExt, VT, V, 
P)) ≜ 
  let 
     U1_timed = if ¬ controllability then ∅ 
                else if sd.timeConstraints ≠ ∅ then unintendedTracesTimedRaw(sd, VT)  
                else {mk_(t, TrueExp) | t ∈ unintendedTracesUntimed(sd, V)}, -- 
truncated 
     U2_timed = if ¬ observability then ∅ 
                else if sd.timeConstraints ≠ ∅ then uncheckableTracesTimedRaw(sd, VT)  
                else {mk_(t, TrueExp) | t ∈  joinTraces(sd, [], P) \ V} -- truncated 
  in 
    mk_InteractionEval2(VExt, VT, V, P, U1_timed, U2_timed, untimed(U1_timed), 
untimed(U2_timed)); 
 
-- Minimizes a given set of coordination messages (msgs) for a given interaction (sd), 
-- with a given set of valid traces per lifeline (P). 
operations 

static pure minimizeCoordMsgs: Interaction × Lifeline 
𝑚
→ Trace-set × Message-set × 𝔹 × 𝔹 

⟶ Message-set 
minimizeCoordMsgs(sd, P, msgs, enforceObservability, enforceControllability) ≜ 
( 
  dcl best : Message-set := msgs; 
  for all m ∈ msgs do  
    if # best > 1 then 
      let msgs2 = msgs \ {m}, 
           sd2 = insertMessages(sd, msgs2), 
           eval1_sd2 = evalInteraction1(sd2, nil) 
       in if preserveValidLocalTraces2(sd2, P, msgs2, eval1_sd2.validTCTraces) then 
             let eval2_sd2 = evalInteraction2(sd2, enforceObservability, 
enforceControllability, eval1_sd2),  
                 count1 = # removeCoordinationEvents(eval2_sd2.uncheckableTraces, 
msgs2), 
                 count2 = # removeCoordinationEvents(eval2_sd2.unintendedTraces, msgs2)  
              in if count1 + count2 = 0 then 
                   let msgs3 = minimizeCoordMsgs(sd, P, msgs2, enforceObservability, 
enforceControllability) 
                   in if # msgs3 < # best then 
                        best := msgs3; 
  return best 
);                         
 
functions 
findDiscrepantEvents: Interaction × 𝔹 × 𝔹 ⟶ TCTraceExt-set × TCTrace-set × Event-set 
findDiscrepantEvents(sd, enforceObservability, enforceControllability) ≜ 
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( 
   let mk_InteractionEval2(VExt, VT, V, P, U1_timed, U2_timed, U1, U2) =  
         evalInteraction2(sd, enforceObservability, enforceControllability) 
   in mk_(VExt, VT, findDiscrepantEvents2(U2_timed ∪ U1_timed, VT)) 
); 
                   
 
-- Core internal procedure (recursive). 
-- Generates and checks possible coordination messages and time constraints to make an 
-- interaction locally observable and locally controllable (assuming it initially is not 
-- so). 
-- Returns a set of solutions, where each solution is a set of coordination messages and 
-- time constraints. 
operations 
static pure genCoordinationFeatures: Interaction × 𝔹 × 𝔹 × 𝔹 × 𝔹 × Duration × Duration  
× ℕ × ℕ × [InteractionEval2] ⟶ EnforcementSolution-set  
genCoordinationFeatures(sd0, enforceObservability, enforceControllability, 
genCoordMessages, genCoordConstraints, transmissionTime, responseTime, suffix, 
multiplier, eval) ≜ 
( 
  dcl partialSolWithCoordMsgs : [EnforcementSolution] := nil;  
  dcl partialSolWithCoordTc : [EnforcementSolution] := nil;  
  dcl cost : ℕ := 0; -- number of candidates explored 
 
  let  
     -- makes sure all messages are timed (i.e., all message ends have timestamp 
     -- variables) 
     sd = if suffix = 1 then mkMsgsTimedAndIndexed(sd0) else sd0, 
   
     -- renumbers the locations in the given Interaction to permit insertion of 
     -- coordination messages  
     sd2 = if suffix = 1 then renumberInteraction(sd, multiplier) else sd, 
       
     -- pre-computes several sets (valid traces, projected, unintended, uncheckable) 
     mk_InteractionEval2(VExt, VT, V, P, U1_timed, U2_timed, U1, U2) =  
       if eval ≠ nil then eval else evalInteraction2(sd2, enforceObservability, 
enforceControllability), 
 
     U1_truncated = {truncateOnError(VT, tc) | tc ∈ U1_timed},  
     count1 = # U1_truncated, 
     count2 = # U2, 
     UT = U2_timed ∪ U1_timed, 
     E = findDiscrepantEvents2(UT, VT) 
        
  in ( 
    if count1 + count2 = 0 then 
      return ∅; 
 
    -- Generate and check candidate coordination messages 
    if genCoordMessages then 
    ( 
       dcl coordMsgs : Message-set := ∅; 
       dcl newId : ℕ := newMessageId(sd2); -- start id for new messages 
       dcl delta : ℕ := multiplier div 2;  
       dcl n : ℕ := suffix; 
        
       -- coordination messages for non-local choices 
       let nlcMsgs = genCoordMessagesForNonLocalChoices(sd2, E, newId, n, delta) in 
         if nlcMsgs ≠ ∅ then 
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         ( 
           coordMsgs := coordMsgs ∪ nlcMsgs; 
           n := n + # nlcMsgs; 
           newId := newId + # nlcMsgs 
         );       
        
       -- coordination messages for races and other event ordering problems remaining  
       delta := delta div 2;        
       let sd3 = if coordMsgs = ∅ then sd2 else insertMessages(sd2, coordMsgs),           
           mk_(VExt3, -, E3) = if coordMsgs = ∅ then mk_(VExt, VT, E)  
                               else findDiscrepantEvents(sd3, enforceObservability, 
enforceControllability), 
           eoMsgs = genCoordMessagesForEventOrdering(sd3, VExt3, E3, newId, n, delta)  
       in if eoMsgs ≠ ∅ then 
          ( 
            coordMsgs := coordMsgs ∪ eoMsgs; 
            n := n + # eoMsgs; 
            newId := newId + # eoMsgs 
          );       
                                     
       -- acknowledgment messages, for observability problems remaining 
       if count2 > 0 then 
       ( 
         delta := delta div 2; 
         let sd3 = if coordMsgs = ∅ then sd2 else insertMessages(sd2, coordMsgs),           
             mk_(-, VT3, E3) = if coordMsgs = ∅ then mk_(VExt, VT, E)  
                               else findDiscrepantEvents(sd3, enforceObservability, 
enforceControllability) 
         in let ackMsgs = genAckMessages(sd3, VT3, E3, newId, suffix, delta) in  
              if ackMsgs ≠ ∅ then  
              ( 
                coordMsgs := coordMsgs ∪ ackMsgs; 
                n := n + # ackMsgs; 
               newId := newId + # ackMsgs 
              ) 
       );   
        
       -- evaluate the set of candidates 
       if coordMsgs ≠ ∅ then      
          let sd3 = insertMessages(sd2, coordMsgs), 
              eval1_sd3 = evalInteraction1(sd3, nil) 
          in 
          ( 
             cost := cost+1; 
             if preserveValidLocalTraces2(sd3, P, coordMsgs, eval1_sd3.validTCTraces) 
then 
                let eval2_sd3 = evalInteraction2(sd3, enforceObservability, 
enforceControllability, eval1_sd3),  
                    count4 = # removeCoordinationEvents(eval2_sd3.uncheckableTraces, 
coordMsgs), 
                    count3 = # removeCoordinationEvents(eval2_sd3.unintendedTraces, 
coordMsgs)  
                in  
                  -- full solution 
                  if count3 + count4 = 0 then 
                  ( 
                     -- minimze solution and terminate 
                     let minMsgs = minimizeCoordMsgs(sd2, P, coordMsgs, 
enforceObservability, enforceControllability) 
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                     in return {mk_(sd3, minMsgs, ∅)}; 
                  )  
 
                  -- partial sollution, may be usefull for a combined solution 
                  else if count3 + count4 < count1 + count2 then  
                  ( 
                    partialSolWithCoordMsgs := mk_(sd3, coordMsgs, ∅); 
                  ) 
          ); 
    ); 
     
    -- Generate and check coordination time constraints for controllability issues 
    if genCoordConstraints ∧ transmissionTime ≠ 0 ∧ responseTime ≠ 0 ∧ count1 > 0 then 
        let tc = ⋃ genCoordTimeConstraints(sd2, VExt, E, transmissionTime, 
responseTime),  
            sd3 = simplifyTimeConstraints(μ(sd2, timeConstraints ↦ sd2.timeConstraints 
∪ tc)), 
            eval1_sd3 = evalInteraction1(sd3, VExt)  
        in 
        ( 
          if preserveValidLocalTraces3(sd3, P, eval1_sd3.validLocalTraces) then 
            let eval2_sd3 = evalInteraction2(sd3, enforceObservability, 
enforceControllability, eval1_sd3),  
                    count4 = # removeCoordinationEvents(eval2_sd3.uncheckableTraces, 
suffix), 
                    count3 = # removeCoordinationEvents(eval2_sd3.unintendedTraces, 
suffix)  
                
            in -- full solution, just return 
               if count3 + count4 = 0 then 
               ( 
                 return {mk_(sd3, ∅, sd3.timeConstraints \ sd2.timeConstraints)};  
               ) 
               else if count3 + count4 < count1 + count2 then 
               ( 
                 partialSolWithCoordTc := mk_(sd3, ∅, sd3.timeConstraints \ 
sd2.timeConstraints); 
               ) 
        ); 
  
     -- try a combined solution (could also search incrementally) 
     if partialSolWithCoordMsgs ≠ nil ∧ partialSolWithCoordTc ≠ nil then 
        let mk_(sd3, -, t) = partialSolWithCoordTc, 
            mk_(-, m, -) = partialSolWithCoordMsgs, 
            sd4 = insertMessages(sd3, m), 
            eval1_sd4 = evalInteraction1(sd4, nil) 
        in if preserveValidLocalTraces2(sd4, P, m, eval1_sd4.validTCTraces) then 
             let eval2_sd4 = evalInteraction2(sd4, enforceObservability, 
enforceControllability, eval1_sd4),  
                 count4 = # removeCoordinationEvents(eval2_sd4.uncheckableTraces, m), 
                 count3 = # removeCoordinationEvents(eval2_sd4.unintendedTraces, m)  
             in if count3 + count4 = 0 then 
                ( 
                  -- minimize solution and terminate 
                  let minMsgs = minimizeCoordMsgs(sd4, P, m, enforceObservability, 
enforceControllability) 
                  in return {mk_(sd4, minMsgs, t)}; 
                ) 
  );  
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  -- Failed 
  return ∅ 
); 
 
-- Simplified version, with fewer parameters, still being used for testing. 
operations 
protected static pure genCoordinationMessages: Interaction × 𝔹 ⟶ EnforcementSolution-
set  
genCoordinationMessages(sd, controllabilityOnly) ≜  
genCoordinationFeatures(sd, ¬ controllabilityOnly, true, true, false, 0, 0, 1, 
LocationMultiplier, nil); 
 
 
/****** Computation of relative positions of inserted coordination messages *******/ 
 
-- Auxiliary types to represent relative positions. 
types 
PositionType = <Before> | <After>; 
PositionTarget = MessageEnd | CombinedFragment | InteractionOperand; 
RelativePosition :: 
         positionType: PositionType 
         positionTarget: PositionTarget;     
MessageEnd :: 
          event: EventType 
          signature: String 
          lifeline: Lifeline 
          location: ℕ; 
 
-- Obtains the relative position of an event (message end) in an interaction.   
functions   
getRelativePosition: MessageEnd × Interaction ⟶ [RelativePosition] 
getRelativePosition(e, sd) ≜  
   let messageEnds = ⋃ { 
        {mk_MessageEnd(<Send>, m.signature, m.sendEvent.#1, m.sendEvent.#2), 
         mk_MessageEnd(<Receive>, m.signature, m.receiveEvent.#1, m.receiveEvent.#2)}             
        | m ∈ sd.messages}, 
       before = {me | me ∈ messageEnds • me.lifeline = e.lifeline ∧ me.location < 
e.location}, 
       after = {me | me ∈ messageEnds • me.lifeline = e.lifeline ∧ me.location > 
e.location}, 
       closestBefore = if before = ∅ then nil  
                       else ℩ me ∈ before • ∄ me2 ∈ before • me2.location > me.location, 
       closestAfter = if after = ∅ then nil  
                      else ℩ me ∈ after • ∄ me2 ∈ after • me2.location < me.location 
   in if closestBefore = nil then 
         if closestAfter = nil then nil 
         else mk_RelativePosition(<Before>, closestAfter) 
      else mk_RelativePosition(<After>, closestBefore); 
 
types 
CoordMsgEnd = MessageEnd × [RelativePosition]; 
 
-- Obtains the relative positions of the events (message end) in a message.   
functions 
getRelativePosCoordMessage: Message × Interaction ⟶ CoordMsgEnd* 
getRelativePosCoordMessage(m, sd) ≜ 
   let s = mk_MessageEnd(<Send>, m.signature, m.sendEvent.#1, m.sendEvent.#2), 
       r = mk_MessageEnd(<Receive>, m.signature, m.receiveEvent.#1, m.receiveEvent.#2) 
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   in [ mk_(s, getRelativePosition(s, sd)), mk_(r, getRelativePosition(r, sd))];   
 
-- Represents a coordination event (message end) in a string 
static coordEvent2str: CoordMsgEnd ⟶ String 
coordEvent2str(mk_(e, pos)) ≜ 
   (if e.event = <Send> then "!" else "?") ↷ e.signature ↷ "@" ↷ e.lifeline.name 
   ↷ (if pos = nil then ""  
      else (if pos.positionType = <Before> then "B" else "A")  
           ↷ pos.positionTarget.signature); 
     
     
/********** Main functions, with results in string ***********************/               
 
-- Generates coordinations messages and time constraints to make an interaction locally  
-- controllable and/or locally observable. 
-- Input parameters: 
--   sd: interaction 
--   enforceObservability: enforce local observability 
--   enforceControllability: enforce local controllability 
--   genCoordMessages: generate coordination messages 
--   genCoordConstraints: generate coordination time constraints 
--   transmissionTime: default transmission time to consider for generation of time 
--       constraints 
--   responseTime: default response time to consider for generation of time constraints 
-- Returns: 
--   A string representation of the coordination messages and time constraints. 
public genCoordinationFeaturesStr: Interaction × 𝔹 × 𝔹 × 𝔹 × 𝔹 × nat1 × nat1 ⟶ String 
genCoordinationFeaturesStr(sd, enforceObservability, enforceControllability, 
genCoordMessages, genCoordConstraints, transmissionTime, responseTime) ≜  
  let sd1 = mkMsgsTimedAndIndexed(sd), 
      sd2 = renumberInteraction(sd1, LocationMultiplier), 
      sol1 = genCoordinationFeatures(sd1, enforceObservability, enforceControllability, 
genCoordMessages, genCoordConstraints, transmissionTime, responseTime, 1, 
LocationMultiplier, nil), 
      sol2 =  {mk_(sd3, {getRelativePosCoordMessage(m, sd2) | m ∈ s}, t)  
                | mk_(sd3, s, t) ∈ sol1} 
  in set2str[Interaction × CoordMsgEnd*-set × TimeConstraint-set]( 
       sol2,  
       λ mk_(sd3, s,t): Interaction × CoordMsgEnd*-set × TimeConstraint-set •  
         pair2str[CoordMsgEnd*-set, TimeConstraint-set] (mk_(s,t),  
              λ s: CoordMsgEnd*-set • set2str[CoordMsgEnd*](s, 
                      λ sq: CoordMsgEnd* • seq2str[CoordMsgEnd](sq, coordEvent2str)), 
              λ t: TimeConstraint-set •  
                     set2str[TimeConstraint](t,  
                        λ t1: TimeConstraint • timeConstraint2str(sd3, t1)))                            
     );  
 
-- Simplified version of genCoordinationFeaturesStr, with fewer input parameters. 
public genCoordinationMessagesStr: Interaction × 𝔹 × Duration × Duration  ⟶ String 
genCoordinationMessagesStr(sd, controllabilityOnly, transmissionTime, responseTime) ≜  
 genCoordinationFeaturesStr(sd, ¬ controllabilityOnly, true, true, true, 
transmissionTime, responseTime); 
 
-- Simplified version of genCoordinationFeaturesStr, with fewer input parameters. 
public genCoordinationMessagesStr2: Interaction × 𝔹 ⟶ String 
genCoordinationMessagesStr2(sd, controllabilityOnly) ≜  
   let sd1 = mkMsgsTimedAndIndexed(sd),  
       sd2 = renumberInteraction(sd1, LocationMultiplier), 
       sol1 = genCoordinationMessages(sd1, controllabilityOnly), 
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       sol2 =  {{getRelativePosCoordMessage(m, sd2) | m ∈ s} | mk_(-, s, -) ∈ sol1} 
   in set2str[CoordMsgEnd*-set](sol2,  
         λ s: CoordMsgEnd*-set • set2str[CoordMsgEnd*](s, 
                  λ sq: CoordMsgEnd+ • seq2str[CoordMsgEnd](sq, coordEvent2str)));  
 
end Enforcement 
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12. Class TestCases 
 

/**  
 * Test cases.  
 */ 
 
class TestCases is subclass of SequenceDiagrams, Traces, ValidTraces, Observability, 
Controllability, Enforcement, ConformanceChecking 
 
operations 
 
/*** Auxiliary assertion checking primitives and test helpers ***/ 
 
-- Simulates assertion checking by reducing it to post-condition checking. 
-- If 'arg' does not hold, a post-condition violation will be signaled. 
protected assertTrue: 𝔹 ⟶ () 
assertTrue(arg) ≜  
  return  
post arg; 
 
protected assertFalse: 𝔹 ⟶ () 
assertFalse(arg) ≜  
  return  
post ¬ arg; 
 
-- Simulates assertion checking by reducing it to post-condition checking. 
-- If values are not equal, prints a message in the console and generates  
-- a post-conditions violation. 
protected assertEqual: ? × ? ⟶ () 
assertEqual(expected, actual) ≜  
  if expected ≠ actual then ( 
    IO`print("Actual value ("); 
    IO`print(actual);  
    IO`print(") different from expected ("); 
    IO`print(expected); 
    IO`println(")\n") 
) 
post expected = actual; 
 
functions 
 
-- Generates time constraints with given minimum and maximum durations for a set of 
messages. 
public mkMsgTimeConstraints: Message-set × [Duration] × [Duration] ⟶ TimeConstraint-set 
mkMsgTimeConstraints(messages, minDuratin, maxDuration) ≜ 
  {mk_TimeConstraint(t(s(m)), t(r(m)), minDuratin, maxDuration) | m ∈ messages}; 
 
  
/**************** Test scenarios without time constraints ****************/ 
 
operations 
 
-- Simple scenario with two lifelines and two messages in opposite directions. 
-- It has a single valid trace and is locally observable and controllable. 
public testSimple() ≜ 
( 
  let l1 = mkLifeline("L1"), 
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      l2 = mkLifeline("L2"), 
      m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessage(2, mk_(l2, 2), mk_(l1, 2), "m2"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2}, ∅) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, validTraces(sd1)); 
    assertEqual(<Pass>, finalConformanceChecking(sd1,  
                            {l1 ↦ [s(m1), r(m2)], l2 ↦ [r(m1), s(m2)]})); 
    assertTrue(checkNextEvent([s(m1)], r(m2), {[s(m1), r(m2)]})); 
    assertFalse(checkNextEvent([], s(m2), {[r(m1), s(m2)]}));    
    assertEqual({s(m1)}, nextSendEvents([], {[s(m1), r(m2)]}));  
    assertTrue(isLocallyObservable(sd1)); 
    assertTrue(isLocallyControllable(sd1)); 
  ) 
); 
 
-- Invalid scenario with two lifelines and two messages that cross each other. 
public testImpossible() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 1), "m1"), 
      m2 = mkMessage(2, mk_(l2, 2), mk_(l1, 1), "m2"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2}, ∅) 
  in 
  ( 
    assertEqual(∅, validTraces(sd1)); 
  ) 
); 
 
-- Scenario with four lifelines and two independent messages. 
-- It has several valid traces corresponding to different permutations of the same 
events. 
-- It is locally observable and controllable. 
public testIndepMessages() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      l4 = mkLifeline("L4"), 
      m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessage(2, mk_(l3, 1), mk_(l4, 1), "m2"), 
      sd1 = mkInteraction({l1, l2, l3, l4}, {m1, m2}, ∅) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)], [s(m1), s(m2), r(m1), r(m2)],  
                 [s(m1), s(m2), r(m2), r(m1)], [s(m2), s(m1), r(m1), r(m2)], 
          [s(m2), s(m1), r(m2), r(m1)], [s(m2), r(m2), s(m1), r(m1)]}, 
               validTraces(sd1)); 
    assertTrue(isLocallyObservable(sd1)); 
    assertTrue(isLocallyControllable(sd1)); 
  ) 
); 
 
-- Scenarios with an 'opt' combined fragment with an optional message. 
-- It is not locally observable, but can be refined with an acknowledgment message. 
-- Corresponds to motivating example b). 
public testOpt() ≜ 
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( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 2), "m1"), 
      o1 = mk_InteractionOperand(nil, {mk_(l1,1), mk_(l2,1)}, {mk_(l1,3), mk_(l2,3)}), 
      f1 = mk_CombinedFragment(<opt>, [o1], {l1, l2}), 
      sd1 = mkInteraction({l1, l2}, {m1}, {f1}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1)], []}, validTraces(sd1)); 
    assertEqual(<Pass>, finalConformanceChecking(sd1, {l1 ↦ [], l2 ↦ []})); 
    assertEqual(<Pass>, finalConformanceChecking(sd1, {l1 ↦ [s(m1)], l2 ↦ [r(m1)]})); 
    assertEqual(<Fail>, finalConformanceChecking(sd1, {l1 ↦ [s(m1)], l2 ↦ []})); 
    assertTrue(isLocallyControllable(sd1)); 
    assertEqual({[s(m1)]}, uncheckableLocally(sd1)); 
    assertEqual("{{[!Ack_m1@L2Am1, ?Ack_m1@L1Am1]}}",  
                genCoordinationMessagesStr2(sd1, false)); 
  ) 
); 
 
-- Scenario with an 'alt' combined fragment with two alternative messages. 
-- It is locally observable and controllable. 
public testAlt() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 2), "m1"), 
      m2 = mkMessage(2, mk_(l1, 4), mk_(l2, 4), "m2"), 
      o1 = mk_InteractionOperand(nil, {mk_(l1,1), mk_(l2,1)}, {mk_(l1, 3), mk_(l2, 3)}), 
      o2 = mk_InteractionOperand(nil, {mk_(l1,3), mk_(l2,3)}, {mk_(l1, 5), mk_(l2, 5)}), 
      f1 = mk_CombinedFragment(<alt>, [o1, o2], {l1, l2}), 
      sd1 = mkInteraction({l1, l2}, {m1, m2}, {f1}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1)], [s(m2), r(m2)]}, validTraces(sd1)); 
    assertEqual(<Pass>, finalConformanceChecking(sd1, {l1 ↦ [s(m1)], l2 ↦ [r(m1)]})); 
    assertTrue(isLocallyObservable(sd1)); 
    assertTrue(isLocallyControllable(sd1)); 
  ) 
); 
 
-- Scenario with a 'strict' combined fragment that imposes an ordering between 
-- otherwise unrelated message ends. 
-- It is not locally observable nor controllable. 
-- Such properties can be enforced with a coordination message. 
public testStrict() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      m1 = mkMessage(1, mk_(l1, 3), mk_(l2, 3), "m1"), 
      m2 = mkMessage(2, mk_(l3, 5), mk_(l2, 5), "m2"), 
      o1 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2), mk_(l3, 2)},  
                                 {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)}), 
      o2 = mk_InteractionOperand(nil, {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)},  
                                {mk_(l1, 6), mk_(l2, 6), mk_(l3, 6)}), 
      f1 = mk_CombinedFragment(<strict>, [o1, o2], {l1, l2, l3}), 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2}, {f1}) 
  in 
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  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, validTraces(sd1)); 
    assertEqual(<Inconclusive>, finalConformanceChecking(sd1,  
                   {l1 ↦ [s(m1)], l2 ↦ [r(m1), r(m2)], l3 ↦ [s(m2)]})); 
    assertEqual({[s(m1), s(m2), r(m1), r(m2)], [s(m2), s(m1), r(m1), r(m2)]}, 
                uncheckableLocally(sd1)); 
    assertEqual({[s(m1), s(m2)], [s(m2)]}, unintendedTraces(sd1)); 
    assertEqual(∅, missingTraces(sd1)) ;  
    assertEqual("{{[!Ctrl1@L2Am1, ?Ctrl1@L3Bm2]}}", 
               genCoordinationMessagesStr2(sd1, false)); 
  ) 
); 
 
-- Scenario with a 'loop' combined fragment with a finite number of iterations 
-- and a single message in each iteration. 
-- According to the standard, there is a weak sequencing between iterations. 
-- Because last iteration is optional and the message has no acknowledgment, the  
-- scenario is not locally observable, but can be fixed with an acknowledgment message. 
public testLoop() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 2), "m1"), 
      ctrl = mkMessage(2, mk_(l2, 3), mk_(l1, 3), "m2"), 
      o1 = mk_InteractionOperand(mk_InteractionConstraint(1, 2, nil),  
             {mk_(l1, 1), mk_(l2, 1)}, {mk_(l1, 4), mk_(l2, 4)}), 
      f1 = mk_CombinedFragment(<loop>, [o1], {l1, l2}), 
      sd1 = mkInteraction({l1, l2}, {m1}, {f1}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1)], [s(m1), r(m1), s(m1), r(m1)],  
                 [s(m1), s(m1), r(m1), r(m1)]}, validTraces(sd1)); 
    assertEqual({[s(m1), s(m1), r(m1)], [s(m1), r(m1), s(m1)]}, 
                 uncheckableLocally(sd1)); 
    assertTrue(isLocallyControllable(sd1)); 
    assertEqual("{{[!Ack_m1@L2Am1, ?Ack_m1@L1Am1]}}",  
               genCoordinationMessagesStr2(sd1, false)); 
  ) 
); 
 
-- Combined scenario with nested 'alt' combined fragments. 
-- It is locally observable and controllable. 
public testAltNested() ≜ 
( 
  let l1 = mkLifeline("User"), 
      l2 = mkLifeline("Watch"), 
      l3 = mkLifeline("Smartphone"), 
      l4 = mkLifeline("WebServer"), 
      o11 = mk_InteractionOperand(nil, {mk_(l1,2), mk_(l2, 2), mk_(l3, 2), mk_(l4, 2)},  
                                       {mk_(l1,4), mk_(l2, 4), mk_(l3, 4), mk_(l4, 4)}), 
      o12 = mk_InteractionOperand(nil, {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4), mk_(l4, 4)},  
                                      {mk_(l1,14), mk_(l2,14), mk_(l3,14), mk_(l4,14)}), 
      f1 = mk_CombinedFragment(<alt>, [o11, o12], {l1, l2, l3, l4}), 
      o21 = mk_InteractionOperand(nil, {mk_(l2, 6), mk_(l3, 6), mk_(l4, 6)},  
                                       {mk_(l2, 8), mk_(l3, 8), mk_(l4, 8)}), 
      o22 = mk_InteractionOperand(nil, {mk_(l2, 8), mk_(l3, 8), mk_(l4, 8)},  
                                       {mk_(l2, 12), mk_(l3, 12), mk_(l4, 12)}), 
      f2 = mk_CombinedFragment(<alt>, [o21, o22], {l2, l3, l4}), 
      m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
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      m2 = mkMessage(2, mk_(l2, 3), mk_(l1, 3), "m2"), 
      m3 = mkMessage(3, mk_(l2, 5), mk_(l3, 5), "m3"), 
      m4 = mkMessage(4, mk_(l3, 7), mk_(l2, 7), "m4"), 
      m5 = mkMessage(5, mk_(l3, 9), mk_(l4, 9), "m5"), 
      m6 = mkMessage(6, mk_(l4, 10), mk_(l3, 10), "m6"), 
      m7 = mkMessage(7, mk_(l3, 11), mk_(l2, 11), "m7"), 
      m8 = mkMessage(8, mk_(l2, 13), mk_(l1, 13), "m8"), 
      sd1 = mkInteraction({l1, l2, l3, l4}, {m1, m2, m3, m4, m5, m6, m7, m8}, {f1, f2}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)],  
                 [s(m1), r(m1), s(m3), r(m3), s(m4), r(m4), s(m8), r(m8)],  
                 [s(m1), r(m1), s(m3), r(m3), s(m5), r(m5), s(m6), r(m6), s(m7), r(m7), 
                  s(m8), r(m8)]},  
      validTraces(sd1)); 
    assertTrue(isLocallyObservable(sd1)); 
    assertTrue(isLocallyControllable(sd1)); 
  ) 
); 
  
-- Scenario with a race condition. 
-- It is not locally controllable, but can be enforced wih a coordination message. 
public testRace() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessage(2, mk_(l3, 2), mk_(l2, 2), "m2"), 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2}, ∅) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)], [s(m1), s(m2), r(m1), r(m2)],  
                 [s(m2), s(m1), r(m1), r(m2)]}, validTraces(sd1)); 
    assertTrue(isLocallyObservable(sd1)); 
    assertEqual({[s(m1), s(m2), r(m2)], [s(m2), s(m1), r(m2)], [s(m2), r(m2)]}, 
                unintendedTraces(sd1)); 
    assertEqual(∅, missingTraces(sd1));  
    assertEqual("{{[!Ctrl1@L2Am1, ?Ctrl1@L3Bm2]}}", 
                genCoordinationMessagesStr2(sd1, false)); 
  ) 
); 
 
-- Another race condition, with 3 messages. 
-- Corresponds to motivating example a). 
-- Not locally controllable, but can be enforced with a coordination message  
-- or a set of coordination time constraints. 
public testRaceReceiveReceive() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessage(2, mk_(l2, 2), mk_(l3, 2), "m2"), 
      m3 = mkMessage(3, mk_(l1, 4), mk_(l3, 4), "m3"), 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3}, ∅)       
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2), s(m3), r(m3)], 
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                 [s(m1), r(m1), s(m2), s(m3), r(m2), r(m3)], 
                 [s(m1), r(m1), s(m3), s(m2), r(m2), r(m3)], 
                 [s(m1), s(m3), r(m1), s(m2), r(m2), r(m3)]}, validTraces(sd1)); 
    assertTrue(isLocallyObservable(sd1));     
    assertEqual({[s(m1), r(m1), s(m2), s(m3), r(m3)], 
                 [s(m1), r(m1), s(m3), s(m2), r(m3)], 
                 [s(m1), r(m1), s(m3), r(m3)], 
                 [s(m1), s(m3), r(m1), s(m2), r(m3)], 
                 [s(m1), s(m3), r(m1), r(m3)], 
                 [s(m1), s(m3), r(m3)]}, unintendedTraces(sd1)); 
    assertEqual("{{[!Ctrl1@L3Am2, ?Ctrl1@L1Am1]}}",  
                genCoordinationMessagesStr2(sd1, false)); 
    assertEqual("{({}, {!m2@L2 - ?m1@L2 <= 1, ?m1@L2 - !m1@L1 <= 1, 4 <= !m3@L1 - 
!m1@L1, ?m2@L3 - !m2@L2 <= 1})}",  
                genCoordinationFeaturesStr(sd1, false, true, false, true, 1, 1));  
  ) 
); 
 
-- Similar to previous scenario, followed by 'alt' combined fragment, 
-- with multiple violations of local observability and controllability. 
-- Local controllability can be enforced with coordination time constraints. 
public testRacePlusAlt() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessage(2, mk_(l2, 2), mk_(l3, 2), "m2"), 
      m3 = mkMessage(3, mk_(l1, 3), mk_(l3, 3), "m3"), 
      m4 = mkMessage(4, mk_(l1, 5), mk_(l2, 5), "m4"), 
      m5 = mkMessage(5, mk_(l2, 7), mk_(l3, 7), "m5"), 
      o1 = mk_InteractionOperand(nil, {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)}, {mk_(l1, 6), 
mk_(l2, 6), mk_(l3, 6)}), 
      o2 = mk_InteractionOperand(nil, {mk_(l1, 6), mk_(l2, 6), mk_(l3, 6)}, {mk_(l1, 8), 
mk_(l2, 8), mk_(l3, 8)}), 
      f1 = mk_CombinedFragment(<alt>, [o1, o2], {l1, l2, l3}), 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3, m4, m5}, {f1})       
  in 
  ( 
    assertEqual("{({}, {!m2@L2 - ?m1@L2 <= 1, ?m1@L2 - !m1@L1 <= 2, 6 <= !m3@L1 - !m1@L1 
<= 7, ?m2@L3 - !m2@L2 <= 2, 11 <= !m5@L2 - !m2@L2, ?m3@L3 - !m3@L1 <= 2, !m4@L1 - !m3@L1 
<= 1, ?m4@L2 - !m4@L1 <= 2})}", 
      genCoordinationFeaturesStr(sd1, false, true, false, true, 2, 1));  
  ) 
); 
 
-- Yet another race condition, causing a local controllability problem 
-- that can be solved with a coordination message or coordination time constraints. 
public testRaceSendReceive() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      m1 = mkMessage(1, mk_(l1, 1), mk_(l3, 1), "m1"), 
      m2 = mkMessage(2, mk_(l3, 2), mk_(l2, 2), "m2"), 
      m3 = mkMessage(3, mk_(l1, 3), mk_(l3, 3), "m3"), 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3}, ∅)       
  in 
  ( 
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    assertTrue(isLocallyObservable(sd1)); 
    assertFalse(isLocallyControllable(sd1)); 
    assertEqual("{({[!Ctrl1@L3Am2, ?Ctrl1@L1Am1]}, {})}", 
        genCoordinationFeaturesStr(sd1, true, true, true, false, 2, 1));  
    assertEqual("{({}, {!m2@L3 - ?m1@L3 <= 1, ?m1@L3 - !m1@L1 <= 2, 4 <= !m3@L1 - 
!m1@L1})}", 
        genCoordinationFeaturesStr(sd1, false, true, false, true, 2, 1));  
  ) 
); 
 
-- Scenario with non-local choice causing observability and controllability problems 
-- that can be solved with coordinations messages. 
-- Corresponds to motivating example d). 
public testNonLocalChoice() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      l4 = mkLifeline("L4"), 
      o11 = mk_InteractionOperand(nil, {mk_(l1, 1), mk_(l2, 1), mk_(l3, 1), mk_(l4, 1)},  
                                      {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3), mk_(l4, 3)}), 
      o12 = mk_InteractionOperand(nil, {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3), mk_(l4, 3)},  
                                      {mk_(l1, 5), mk_(l2, 5), mk_(l3, 5), mk_(l4, 5)}), 
      f1 = mk_CombinedFragment(<alt>, [o11, o12], {l1, l2, l3, l4}), 
      m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 2), "m1"), 
      m2 = mkMessage(2, mk_(l3, 2), mk_(l4, 2), "m2"), 
      m3 = mkMessage(3, mk_(l1, 4), mk_(l2, 4), "m3"), 
      m4 = mkMessage(4, mk_(l3, 4), mk_(l4, 4), "m4"), 
      sd1 = mkInteraction({l1, l2, l3, l4}, {m1, m2, m3, m4}, {f1}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)], [s(m1), s(m2), r(m1), r(m2)],  
                 [s(m1), s(m2), r(m2), r(m1)],  
                 [s(m2), s(m1), r(m1), r(m2)], [s(m2), s(m1), r(m2), r(m1)],  
                 [s(m2), r(m2), s(m1), r(m1)], 
                 [s(m3), r(m3), s(m4), r(m4)], [s(m3), s(m4), r(m3), r(m4)],  
                 [s(m3), s(m4), r(m4), r(m3)],  
                 [s(m4), s(m3), r(m3), r(m4)], [s(m4), s(m3), r(m4), r(m3)],  
                 [s(m4), r(m4), s(m3), r(m3)]}, 
            validTraces(sd1)); 
    assertFalse(isLocallyObservable(sd1)); 
    assertEqual({[s(m1), r(m1), s(m4)], [s(m1), s(m4)], [s(m4), s(m1)],  
                 [s(m4), r(m4), s(m1)], [s(m3), r(m3), s(m2)], [s(m3), s(m2)],   
                 [s(m2), s(m3)], [s(m2), r(m2), s(m3)]},  
            unintendedTraces(sd1)); 
    assertEqual("{{[!Ctrl1@L1Am1, ?Ctrl1@L3Bm2], [!Ctrl2@L1Am3, ?Ctrl2@L3Am2]}}",  
                genCoordinationMessagesStr2(sd1, false)); 
  ) 
); 
 
-- Race condition caused by message overtaking (allowed in UML standard). 
public testRaceByMsgOvertaking() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(3, mk_(l1, 3), mk_(l2, 3), "m2"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2}, ∅) 
  in 



 69 

  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)], [s(m1), s(m2), r(m1), r(m2)]}, 
                validTraces(sd1)); 
    assertTrue(isLocallyObservable(sd1)); 
    assertEqual({[s(m1), s(m2), r(m2)]}, unintendedTraces(sd1)); 
    assertEqual("{({[!Ctrl1@L2Am1, ?Ctrl1@L1Am1]}, {})}", 
         genCoordinationFeaturesStr(sd1, true, true, true, false, 2, 1));  
    assertEqual("{({}, {?m1@L2 - !m1@L1 <= 2, 3 <= !m2@L1 - !m1@L1})}", 
         genCoordinationFeaturesStr(sd1, false, true, false, true, 2, 1));  
  ) 
); 
 
-- Scenario with mutually exclusive emission and reception events 
-- simultaneously enabled, involving 3 lifelines. 
-- Can be enforced with coordination messages or coordination time constraints. 
public testSendRecvEnabled() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      o11 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2), mk_(l3, 2)},  
                                       {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)}), 
      o12 = mk_InteractionOperand(nil, {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)},  
                                       {mk_(l1, 8), mk_(l2, 8), mk_(l3, 8)}), 
      f1 = mk_CombinedFragment(<alt>, [o11, o12], {l1, l2, l3}), 
      m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessage(2, mk_(l2, 3), mk_(l1, 3), "m2"), 
      m3 = mkMessage(3, mk_(l1, 6), mk_(l3, 6), "m3"), 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3}, {f1}) 
  in 
  ( 
    assertFalse(isLocallyObservable(sd1)); 
    assertFalse(isLocallyControllable(sd1)); 
    assertEqual("{({[!Ack_m3@L3Am3, ?Ack_m3@L1Am3], [!Ctrl1@L2Am2, ?Ctrl1@L1Am2]}, 
{})}", 
         genCoordinationFeaturesStr(sd1, true, true, true, false, 2, 1));  
    assertEqual("{({}, {!m2@L2 - ?m1@L2 <= 1, ?m1@L2 - !m1@L1 <= 2, 6 <= !m3@L1 - 
!m1@L1, ?m2@L1 - !m2@L2 <= 2})}", 
         genCoordinationFeaturesStr(sd1, false, true, false, true, 2, 1));  
  ) 
); 
 
-- Another scenario with mutually exclusive emission and reception events 
-- simultaneously enabled, with 2 lifelines. 
-- Can be enforced with coordination messages or coordination time constraints. 
-- Corresponds to motivating example f). 
public testSendRecvEnabled2() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      o11 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2)},  
                                       {mk_(l1, 4), mk_(l2, 4)}), 
      o12 = mk_InteractionOperand(nil, {mk_(l1, 4), mk_(l2, 4)},  
                                       {mk_(l1, 6), mk_(l2, 6)}), 
      f1 = mk_CombinedFragment(<alt>, [o11, o12], {l1, l2}), 
      m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessage(2, mk_(l2, 3), mk_(l1, 3), "m2"), 
      m3 = mkMessage(3, mk_(l1, 5), mk_(l2, 5), "m3"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2, m3}, {f1}) 



 70 

  in 
  ( 
    assertFalse(isLocallyObservable(sd1)); 
    assertFalse(isLocallyControllable(sd1)); 
    assertEqual("{({[!Ctrl1@L2Am2, ?Ctrl1@L1Am2]}, {})}", 
         genCoordinationFeaturesStr(sd1, true, true, true, false, 2, 1));  
    assertEqual("{({}, {!m2@L2 - ?m1@L2 <= 1, ?m1@L2 - !m1@L1 <= 2, 6 <= !m3@L1 - 
!m1@L1, ?m2@L1 - !m2@L2 <= 2})}", 
         genCoordinationFeaturesStr(sd1, false, true, false, true, 2, 1));  
  ) 
); 
 
-- A scenario with two alternative messages unrelated (with 4 lifelines),  
-- causing local observability and controllability problems. 
public testUnintendedEmptyTrace() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      l4 = mkLifeline("L4"), 
      o11 = mk_InteractionOperand(nil, {mk_(l1, 1), mk_(l2, 1), mk_(l3, 1), mk_(l4, 1)},  
                                      {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3), mk_(l4, 3)}), 
      o12 = mk_InteractionOperand(nil, {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3), mk_(l4, 3)},  
                                      {mk_(l1, 5), mk_(l2, 5), mk_(l3, 5), mk_(l4, 5)}), 
      f1 = mk_CombinedFragment(<alt>, [o11, o12], {l1, l2, l3, l4}), 
      m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 2), "m1"), 
      m2 = mkMessage(2, mk_(l3, 4), mk_(l4, 4), "m2"), 
      sd1 = mkInteraction({l1, l2, l3, l4}, {m1, m2}, {f1}), 
 
      e1 = mkEvent(<Send>, "m1", l1), 
      e2 = mkEvent(<Receive>, "m1", l2), 
      e3 = mkEvent(<Send>, "m2", l3), 
      e4 = mkEvent(<Receive>, "m2", l4) 
  in 
  ( 
    assertEqual({[s(m1), r(m1)], [s(m2), r(m2)]}, validTraces(sd1)); 
    assertFalse(isLocallyObservable(sd1)); 
    assertFalse(isLocallyControllable(sd1)); 
    assertEqual("{{[!Ctrl1@L1Am1, ?Ctrl1@L3Bm2]}}",  
       genCoordinationMessagesStr2(sd1, true /*controllability only*/));     
    assertEqual("{{[!Ack_Ctrl1@L3Bm2, ?Ack_Ctrl1@L1Am1], [!Ack_m1@L2Am1, ?Ack_m1@L1Am1], 
[!Ack_m2@L4Am2, ?Ack_m2@L3Am2], [!Ctrl1@L1Am1, ?Ctrl1@L3Bm2]}}", 
       genCoordinationMessagesStr2(sd1, false));     
  ) 
); 
 
-- A scenario with two alternative messages partially unrelated (with 3 lifelines),  
-- causing local observability and controllability problems. 
public testUnintendedEmptyTrace2() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      o11 = mk_InteractionOperand(nil, {mk_(l1, 1), mk_(l2, 1), mk_(l3, 1)}, 
                                       {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3)}), 
      o12 = mk_InteractionOperand(nil, {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3)},  
                                       {mk_(l1, 5), mk_(l2, 5), mk_(l3, 5)}), 
      f1 = mk_CombinedFragment(<alt>, [o11, o12], {l1, l2, l3}), 
      m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 2), "m1"), 
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      m2 = mkMessage(2, mk_(l3, 4), mk_(l2, 4), "m1"), 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2}, {f1}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1)], [s(m2), r(m2)]}, validTraces(sd1)); 
    assertFalse(isLocallyObservable(sd1)); 
    assertFalse(isLocallyControllable(sd1)); 
    assertEqual("{{[!Ctrl1@L1Am1, ?Ctrl1@L3Bm1]}}",  
                genCoordinationMessagesStr2(sd1, true)); 
  ) 
); 
 
-- Example with unintendedTraces with invalidStop but not other problems  
-- (at least one sends). 
public testUnintendedEmptyTrace3() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      o11 = mk_InteractionOperand(nil, {mk_(l1, 1), mk_(l2, 1), mk_(l3, 1)},  
                                       {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3)}), 
      o12 = mk_InteractionOperand(nil, {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3)},  
                                       {mk_(l1, 5), mk_(l2, 5), mk_(l3, 5)}), 
      o13 = mk_InteractionOperand(nil, {mk_(l1, 5), mk_(l2, 5), mk_(l3, 5)},  
                                       {mk_(l1, 11), mk_(l2, 11), mk_(l3, 11)}), 
      f1 = mk_CombinedFragment(<alt>, [o11, o12, o13], {l1, l2, l3}), 
      o21 = mk_InteractionOperand(nil, {mk_(l2, 6)}, {mk_(l2, 8)}), 
      o22 = mk_InteractionOperand(nil, {mk_(l2, 8)}, {mk_(l2, 10)}), 
      f2 = mk_CombinedFragment(<par>, [o21, o22], {l2}), 
      m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 2), "m1"), 
      m2 = mkMessage(2, mk_(l3, 4), mk_(l2, 4), "m1"), 
      m3 = mkMessage(3, mk_(l1, 7), mk_(l2, 7), "m1"), 
      m4 = mkMessage(4, mk_(l3, 9), mk_(l2, 9), "m1"), 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3, m4}, {f1, f2}), 
 
      e1 = mkEvent(<Send>, "m1", l1), 
      e2 = mkEvent(<Receive>, "m1", l2), 
      e3 = mkEvent(<Send>, "m1", l3) 
  in 
  ( 
    assertEqual({[e1, e2], [e3, e2], [e1, e2, e3, e2], [e3, e2, e1, e2],  
                 [e3, e1, e2, e2], [e1, e3, e2, e2]}, validTraces(sd1)); 
    assertEqual({[e1, e3, e2], [e3, e1, e2], [e3, e2, e1], [e1, e2, e3]}, 
                uncheckableLocally(sd1)); 
    assertEqual({[]}, unintendedTraces(sd1)); 
    -- violates assumption of biunivoc relation between send and receive events 
  ) 
); 
 
-- Scenario with two alternative messages in opposite directions. 
public testWhoSends() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      o11 = mk_InteractionOperand(nil, {mk_(l1, 1), mk_(l2, 1)},  
                                       {mk_(l1, 3), mk_(l2, 3)}), 
      o12 = mk_InteractionOperand(nil, {mk_(l1, 3), mk_(l2, 3)},  
                                       {mk_(l1, 5), mk_(l2, 5)}), 
      f1 = mk_CombinedFragment(<alt>, [o11, o12], {l1, l2}), 
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      m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 2), "m1"), 
      m2 = mkMessage(2, mk_(l2, 4), mk_(l1, 4), "m2"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2}, {f1}), 
 
      e1 = mkEvent(<Send>, "m1", l1), 
      e2 = mkEvent(<Receive>, "m1", l2), 
      e3 = mkEvent(<Send>, "m2", l2), 
      e4 = mkEvent(<Receive>, "m2", l1) 
  in 
  ( 
    assertEqual({[s(m1), r(m1)], [s(m2), r(m2)]}, validTraces(sd1)); 
    assertEqual({[s(m1), s(m2)], [s(m2), s(m1)]}, uncheckableLocally(sd1)); 
    assertEqual({[], [s(m1), s(m2)], [s(m2), s(m1)]}, unintendedTraces(sd1)); 
    assertEqual(∅, missingTraces(sd1)) ;  
    assertEqual("{{[!Ctrl1@L1Am1, ?Ctrl1@L2Am1]}}",  
                genCoordinationMessagesStr2(sd1, false)); 
  ) 
); 
 
-- Conformance checking of timed traces showing different verdicts. 
-- The scenario is not time constrained. 
public testVerdictWithTimestamps() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      m1 = mkMessage(1, mk_(l1, 2), mk_(l2, 2), "m1"), 
      m2 = mkMessage(2, mk_(l3, 4), mk_(l2, 4), "m2"), 
      o1 = mk_InteractionOperand(nil, {mk_(l1, 1), mk_(l2, 1), mk_(l3, 1)},  
                                 {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3)}), 
      o2 = mk_InteractionOperand(nil, {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3)},  
                                 {mk_(l1, 5), mk_(l2, 5), mk_(l3, 5)}), 
      f1 = mk_CombinedFragment(<strict>, [o1, o2], {l1, l2, l3}), 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2}, {f1}), 
 
      te1 = mkEvent(<Send>, "m1", l1, 10), 
      te2 = mkEvent(<Receive>, "m1", l2, 20), 
      te3a = mkEvent(<Send>, "m2", l3, 20 + MaxClockSkew), 
      te3b = mkEvent(<Send>, "m2", l3, 20 + MaxClockSkew + 1), 
      te3c = mkEvent(<Send>, "m2", l3, 20 - MaxClockSkew - 1), 
      te3d = mkEvent(<Send>, "m2", l3, 20 - MaxClockSkew), 
      te4 = mkEvent(<Receive>, "m2", l2, 20 + MaxClockSkew + 2) 
  in 
  ( 
    assertEqual(<Inconclusive>, finalConformanceChecking(sd1,  
                                {l1 ↦ [s(m1)], l2 ↦ [r(m1), r(m2)], l3 ↦ [s(m2)]})); 
    assertEqual(<Inconclusive>, timedFinalConformanceChecking(sd1,  
                                {l1 ↦ [te1], l2 ↦ [te2, te4], l3 ↦ [te3a]})); 
    assertEqual(<Pass>, timedFinalConformanceChecking(sd1,  
                                {l1 ↦ [te1], l2 ↦ [te2, te4], l3 ↦ [te3b]})); 
    assertEqual(<Fail>, timedFinalConformanceChecking(sd1,  
                                {l1 ↦ [te1], l2 ↦ [te2, te4], l3 ↦ [te3c]})); 
    assertEqual(<Inconclusive>, timedFinalConformanceChecking(sd1,  
                                {l1 ↦ [te1], l2 ↦ [te2, te4], l3 ↦ [te3d]})); 
  ) 
); 
 
 
/**************** Test scenarios with time constraints ****************/ 
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-- Scenario with a non-locally controllable roundtrip time constraint. 
public testRoundtripConstraint() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l2, 2), mk_(l1, 2), "m2"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2}, ∅, 
            {mk_TimeConstraint(t(r(m1)), t(s(m2)), 0, 2), 
             mk_TimeConstraint(t(s(m1)), t(r(m2)), 0, 5)}),       
      e1 = mk_Event(<Send>, "m1", l1, 1), 
      e2 = mk_Event(<Receive>, "m1", l2, 2), 
      e3 = mk_Event(<Send>, "m2", l2, 3), -- meets first constraint 
      e4a = mk_Event(<Receive>, "m2", l1, 6), -- meets second constraint 
      e4b = mk_Event(<Receive>, "m2", l1, 7) -- violates second constraint 
       
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, validTraces(sd1)); 
    assertEqual(∅, uncheckableLocally(sd1)); 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, unintendedTraces(sd1)); -- cannot assure 
2nd constraint 
    assertEqual(∅, missingTraces(sd1)) ;  
 
    assertTrue(timedCheckNextEvent([e1], e4a, projectTCTraces(validTimedTraces(sd1), 
l1))); 
    assertFalse(timedCheckNextEvent([e1], e4b, projectTCTraces(validTimedTraces(sd1), 
l1))); 
 
    assertEqual({mk_(s(m2), mk_(2, 4))},  
           nextSendEventsTimed([e2], projectTCTraces(validTimedTraces(sd1), l2))); 
 
    assertEqual(<Pass>, timedFinalConformanceChecking(sd1,  
                                  {l1 ↦ [e1, e4a], l2 ↦ [e2, e3]})); 
    assertEqual(<Fail>, timedFinalConformanceChecking(sd1,  
                                 {l1 ↦ [e1, e4b], l2 ↦ [e2, e3]})); 
 
    assertEqual("{({}, {?m1@L2 - !m1@L1 <= 1, ?m2@L1 - !m2@L2 <= 1})}", 
           genCoordinationMessagesStr(sd1, true, 1, 1)); 
  ) 
); 
 
-- Scenario to check that, in the presence of multiple timed events refering to the same 
-- timestamp variable (e.g., in a loop), it’s the most recent occurrence that prevails.  
public testTimeConstraintInLoop() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      m1 = mkMessageTimed(1, mk_(l1, 2), mk_(l2, 2), "m1"), 
      m2 = mkMessageTimed(2, mk_(l2, 3), mk_(l1, 3), "m2"), 
      o1 = mk_InteractionOperand(mk_InteractionConstraint(1, 2, nil),  
                     {mk_(l1, 1), mk_(l2, 1)}, {mk_(l1, 4), mk_(l2, 4)}), 
      f1 = mk_CombinedFragment(<loop>, [o1], {l1, l2}), 
      sd1 = mkInteraction({l1, l2}, {m1, m2}, {f1}, 
            {mk_TimeConstraint(t(r(m1)), t(s(m2)), nil, 2), 
             mk_TimeConstraint(t(s(m1)), t(r(m2)), nil, 5)}), 
       
      te1 = mk_Event(<Send>, "m1", l1, 1), 
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      te2 = mk_Event(<Receive>, "m1", l2, 2), 
      te3 = mk_Event(<Send>, "m2", l2, 3), 
      te4a = mk_Event(<Receive>, "m2", l1, 6), 
      te4b = mk_Event(<Receive>, "m2", l1, 7), 
 
      te21 = mk_Event(<Send>, "m1", l1, 11), 
      te22 = mk_Event(<Receive>, "m1", l2, 12), 
      te23 = mk_Event(<Send>, "m2", l2, 13), 
      te24a = mk_Event(<Receive>, "m2", l1, 16), 
      te24b = mk_Event(<Receive>, "m2", l1, 17) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)],  
                 [s(m1), r(m1), s(m2), r(m2), s(m1), r(m1), s(m2), r(m2)]}, 
                validTraces(sd1)); 
    assertTrue(isLocallyObservable(sd1)); 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)],  
                 [s(m1), r(m1), s(m2), r(m2), s(m1), r(m1), s(m2), r(m2)]}, 
                unintendedTraces(sd1)); 
       
    assertTrue(timedCheckNextEvent([te1], te4a,  
                                   projectTCTraces(validTimedTraces(sd1), l1))); 
    assertFalse(timedCheckNextEvent([te1], te4b,  
                                    projectTCTraces(validTimedTraces(sd1), l1))); 
 
    assertEqual({mk_(s(m2), mk_(2, 4))},  
        nextSendEventsTimed([te2], projectTCTraces(validTimedTraces(sd1), l2))); 
 
    assertEqual(<Pass>, timedFinalConformanceChecking(sd1,  
                       {l1 ↦ [te1, te4a], l2 ↦ [te2, te3]})); 
    assertEqual(<Fail>, timedFinalConformanceChecking(sd1,  
                       {l1 ↦ [te1, te4b], l2 ↦ [te2, te3]})); 
    assertEqual(<Pass>, timedFinalConformanceChecking(sd1,  
                       {l1 ↦ [te1, te4a, te21, te24a], l2 ↦ [te2, te3, te22, te23]})); 
    assertEqual(<Fail>, timedFinalConformanceChecking(sd1,  
                       {l1 ↦ [te1, te4a, te21, te24b], l2 ↦ [te2, te3, te22, te23]})); 
 
    assertEqual("{({}, {?m1@L2 - !m1@L1 <= 1, ?m2@L1 - !m2@L2 <= 1})}", 
           genCoordinationMessagesStr(sd1, true, 1, 1)); 
  ) 
); 
 
-- Scenario with intra and inter-lifeline time constraints, showing inconclusive 
verdicts. 
public testInterLifelineTimeConstraints() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l2, 2), mk_(l1, 2), "m2"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2}, ∅, 
            {mk_TimeConstraint(t(s(m1)), t(r(m1)), 0, 2000), 
             mk_TimeConstraint(t(r(m1)), t(s(m2)), 0, 2000), 
             mk_TimeConstraint(t(s(m2)), t(r(m2)), 0, 2000), 
             mk_TimeConstraint(t(s(m1)), t(r(m2)), 0, 5000)}), 
       
      te1 = mk_Event(<Send>, "m1", l1, 1000), 
      te2a = mk_Event(<Receive>, "m1", l2, 2000), 
      te2b = mk_Event(<Receive>, "m1", l2, 4000), 
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      te3 = mk_Event(<Send>, "m2", l2, 4000), 
      te4a = mk_Event(<Receive>, "m2", l1, 6000 - 10), 
      te4b = mk_Event(<Receive>, "m2", l1, 7000), 
      te4c = mk_Event(<Receive>, "m2", l1, 6000) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, validTraces(sd1)); 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, unintendedTraces(sd1)); -- violating 
time constraint s(m1)-r(m2) 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, uncheckableLocally(sd1)); -- because of 
inter-lifeline constraints 
    assertEqual(∅, missingTraces(sd1)) ;  
       
    assertTrue(timedCheckNextEvent([te1], te4a, projectTCTraces(validTimedTraces(sd1), 
l1))); 
    assertFalse(timedCheckNextEvent([te1], te4b, projectTCTraces(validTimedTraces(sd1), 
l1))); 
 
    assertEqual({mk_(s(m2), mk_(2000, 4000))},  
           nextSendEventsTimed([te2a], projectTCTraces(validTimedTraces(sd1), l2))); 
 
    assertEqual(<Pass>, timedFinalConformanceChecking(sd1,  
                {l1 ↦ [te1, te4a], l2 ↦ [te2a, te3]})); 
    assertEqual(<Fail>, timedFinalConformanceChecking(sd1,  
               {l1 ↦ [te1, te4a], l2 ↦ [te2b, te3]})); 
    assertEqual(<Fail>, timedFinalConformanceChecking(sd1,  
               {l1 ↦ [te1, te4b], l2 ↦ [te2a, te3]})); 
    assertEqual(<Inconclusive>, timedFinalConformanceChecking(sd1,  
               {l1 ↦ [te1, te4c], l2 ↦ [te2a, te3]})); 
  ) 
); 
 
-- Example of restricting valid traces based on time constraints. 
public testIsLocallyObservableTimed() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
      l4 = mkLifeline("L4"),                   
      m1 = mkMessageTimed(1, mk_(l2, 2), mk_(l1, 2), "m1"), 
      m2 = mkMessageTimed(2, mk_(l2, 4), mk_(l3, 4), "m2"), 
      m3 = mkMessageTimed(3, mk_(l3, 6), mk_(l4, 6), "m3"), 
      m4 = mkMessageTimed(4, mk_(l4, 7), mk_(l3, 7), "m4"), 
      m5 = mkMessageTimed(5, mk_(l3, 10), mk_(l2, 10), "m5"), 
      o1 = mk_InteractionOperand(nil, {mk_(l1, 1), mk_(l2, 1)}, {mk_(l1, 3), mk_(l2, 
3)}), 
      o2 = mk_InteractionOperand(nil, {mk_(l3, 5), mk_(l4, 5)}, {mk_(l3, 8), mk_(l4, 
8)}), 
      o3 = mk_InteractionOperand(nil, {mk_(l2, 9), mk_(l3, 9)}, {mk_(l2, 11), mk_(l3, 
11)}), 
      f1 = mk_CombinedFragment(<opt>, [o1], {l1, l2}), 
      f2 = mk_CombinedFragment(<opt>, [o2], {l3, l4}), 
      f3 = mk_CombinedFragment(<opt>, [o3], {l2, l3}), 
      sd1 = mkInteraction({l1, l2, l3, l4}, {m1, m2, m3, m4, m5}, {f1, f2, f3}, 
               {mk_TimeConstraint(t(s(m1)), t(r(m1)), nil, 1000), 
                mk_TimeConstraint(t(s(m1)), t(s(m2)), 2000, nil), 
                mk_TimeConstraint(t(r(m3)), t(s(m4)), 10000,nil), 
                mk_TimeConstraint(t(s(m1)), t(r(m5)), nil, 5000)}), 
      e1 = s(m1), e2 = r(m1),    
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      e3 = s(m2), e4 = r(m2), 
      e5 = s(m3), e6 = r(m3), 
      e7 = s(m4), e8 = r(m4), 
      e9 = s(m5), e10 = r(m5) 
  in 
  ( 
    assertEqual({[e1, e2, e3, e4], [e1, e2, e3, e4, e5, e6, e7, e8], [e1, e2, e3, e4, 
e9, e10],  
      [e3, e4], [e3, e4, e5, e6, e7, e8],  [e3, e4, e5, e6, e7, e8, e9, e10], [e3, e4, 
e9, e10]},  
      validTraces(sd1)); 
       
    let t = [e1, e2, e3, e4, e5, e6, e7, e8, e9, e10] in 
    ( 
      assertFalse(t ∈ uncheckableLocally(sd1)); 
      assertTrue(t ∈ uncheckableLocallyUntimed(sd1)) 
    ); 
     
    assertTrue({[e1, e3, e2, e4], [e1, e3, e4, e2]} ⊆ uncheckableLocally(sd1)); 
    assertTrue({[e1, e3, e2, e4], [e1, e3, e4, e2]} ⊆ uncheckableLocallyUntimed(sd1)); 
    assertEqual(∅, missingTraces(sd1)); 
  ) 
); 
 
-- Example of non-controllability because of roundtrip constraint. 
public testNonLocallyControlableTimed() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"),                   
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l2, 2), mk_(l1, 2), "m2"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2}, ∅,  
                          {mk_TimeConstraint(t(s(m1)), t(r(m2)), 0, 1000)}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, validTraces(sd1));       
    assertTrue(isLocallyObservable(sd1));       
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, unintendedTraces(sd1));    
    assertEqual(∅, missingTraces(sd1))   
  ) 
); 
 
-- Example in which two optional fragments become mutually exclusive 
-- and controllable because of time constraints. 
public testStrangeControllableTimed() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
                   
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l1, 3), mk_(l2, 3), "m2"), 
      m3 = mkMessageTimed(3, mk_(l2, 4), mk_(l1, 4), "m3"), 
      m4 = mkMessageTimed(4, mk_(l2, 7), mk_(l1, 7), "m4"), 
       
      o1 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2)}, {mk_(l1, 5), mk_(l2, 
5)}), 
      o2 = mk_InteractionOperand(nil, {mk_(l1, 6), mk_(l2, 6)}, {mk_(l1, 8), mk_(l2, 
8)}), 
      f1 = mk_CombinedFragment(<opt>, [o1], {l1, l2}), 
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      f2 = mk_CombinedFragment(<opt>, [o2], {l1, l2}), 
       
      sd1 = mkInteraction({l1, l2}, {m1, m2, m3, m4}, {f1, f2}, 
        mkMsgTimeConstraints({m1, m2, m3, m4}, 0, 1) ∪ 
        {mk_TimeConstraint(t(s(m1)), t(s(m2)), 7, nil), 
         mk_TimeConstraint(t(r(m2)), t(s(m3)), 0, 1), 
         mk_TimeConstraint(t(r(m1)), t(s(m4)), 0, 4), 
         mk_TimeConstraint(t(s(m2)), t(r(m3)), 0, 5)}), -- roundtrip 
      e1 = s(m1), e2 = r(m1),   
      e3 = s(m2), e4 = r(m2),  
      e5 = s(m3), e6 = r(m3),  
      e7 = s(m4), e8 = r(m4)  
  in 
  ( 
    assertEqual({[e1, e2], [e1, e2, e3, e4, e5, e6], [e1, e2, e7, e8]}, 
                validTraces(sd1));       
    assertTrue(isLocallyControllable(sd1)); 
    assertFalse(isLocallyObservable(sd1)); 
  ) 
); 
 
-- Example of race condition solved with time constraints. 
public testSendableFirst() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"), 
      l3 = mkLifeline("L3"), 
                   
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l1, 2), mk_(l3, 2), "m2"), 
      m3 = mkMessageTimed(3, mk_(l2, 3), mk_(l3, 3), "m3"), 
       
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3}, ∅, 
              mkMsgTimeConstraints({m1, m2, m3}, 0, 1) ∪ 
              {mk_TimeConstraint(t(s(m1)), t(s(m2)), 2, 4), 
               mk_TimeConstraint(t(r(m1)), t(s(m3)), 8, nil)}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2), s(m3), r(m3)]}, validTraces(sd1));       
    assertTrue(isLocallyControllable(sd1));   
    assertFalse(isLocallyObservable(sd1)); -- because of inter-lifeline constraints 
  ) 
); 
 
-- Example of controllability problem caused by mutually exclusive events 
-- simultaneously enabled solved with the addition of time constraints. 
public testSendableFirst2() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"),            
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l1, 3), mk_(l2, 3), "m2"), 
      m3 = mkMessageTimed(3, mk_(l2, 5), mk_(l1, 5), "m3"), 
      m4 = mkMessageTimed(4, mk_(l1, 6), mk_(l2, 6), "m4"), 
      o1 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2)}, {mk_(l1, 4), mk_(l2, 
4)}), 
      o2 = mk_InteractionOperand(nil, {mk_(l1, 4), mk_(l2, 4)}, {mk_(l1, 7), mk_(l2, 
7)}), 
      f1 = mk_CombinedFragment(<alt>, [o1, o2], {l1, l2}),  
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      sd1 = mkInteraction({l1, l2}, {m1, m2, m3, m4}, {f1}, 
        mkMsgTimeConstraints({m1, m2, m3, m4}, 0, 1) ∪ 
        {mk_TimeConstraint(t(s(m1)), t(s(m2)), 2, 5), 
         mk_TimeConstraint(t(r(m1)), t(s(m3)), 8, nil),  
         mk_TimeConstraint(t(r(m3)), t(s(m4)), 0, 3),  
         mk_TimeConstraint(t(s(m3)), t(r(m4)), 0, 5)}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)],  
                 [s(m1), r(m1), s(m3), r(m3), s(m4), r(m4)]},  
                validTraces(sd1));      
    assertTrue(isLocallyControllable(sd1)); 
  ) 
); 
 
-- Example of intra-lifeline time constraint that causes controllability problems: 
-- a maximum delay is defined between two send events, with an unconstrained event in  
-- between (in this case, a reception event). 
public testSendRecvSendConstraint() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"),              
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l2, 2), mk_(l1, 2), "m2"), 
      m3 = mkMessageTimed(3, mk_(l1, 3), mk_(l2, 3), "m3"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2, m3}, ∅,  
             {mk_TimeConstraint(t(s(m1)), t(s(m3)), nil, 5000)}), 
      sd2 = mkInteraction({l1, l2}, {m1, m2, m3}, ∅, 
             {mk_TimeConstraint(t(s(m1)), t(r(m1)), 0, 1000), 
              mk_TimeConstraint(t(r(m1)), t(s(m2)), 0, 2000), 
              mk_TimeConstraint(t(s(m2)), t(r(m2)), 0, 1000), 
              mk_TimeConstraint(t(s(m1)), t(s(m3)), 0, 5000)}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2), s(m3), r(m3)]}, validTraces(sd1)); 
    assertEqual({[s(m1), r(m1), s(m2), r(m2), s(m3), r(m3)]}, validTraces(sd2)); 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, unintendedTraces(sd1));  
    assertEqual(∅, unintendedTraces(sd2));  
  )     
); 
 
-- Similar to testSendRecvSendConstraint, but now with a send event in between. 
public testSendSendSendConstraint() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"),              
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l1, 2), mk_(l2, 2), "m2"), 
      m3 = mkMessageTimed(3, mk_(l1, 3), mk_(l2, 3), "m3"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2, m3}, ∅,  
                {mk_TimeConstraint(t(s(m1)), t(s(m3)), 0, 6000)}), 
      sd2 = mkInteraction({l1, l2}, {m1, m2, m3}, ∅, { 
          mk_TimeConstraint(t(s(m1)), t(r(m1)), nil, 1000), 
          mk_TimeConstraint(t(s(m2)), t(r(m2)), nil, 1000), 
          mk_TimeConstraint(t(s(m1)), t(s(m2)), 2000, 3000), 
          mk_TimeConstraint(t(s(m2)), t(s(m3)), 2000, 3000), 
          mk_TimeConstraint(t(s(m1)), t(s(m3)), 0, 6000)})       
  in 
  ( 
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    assertEqual({ 
      [s(m1), r(m1), s(m2), r(m2), s(m3), r(m3)], 
      [s(m1), r(m1), s(m2), s(m3), r(m2), r(m3)], 
      [s(m1), s(m2), r(m1), r(m2), s(m3), r(m3)], 
      [s(m1), s(m2), r(m1), s(m3), r(m2), r(m3)], 
      [s(m1), s(m2), s(m3), r(m1), r(m2), r(m3)]}, validTraces(sd1)); 
 
    assertEqual({[s(m1), r(m1), s(m2), r(m2), s(m3), r(m3)]}, validTraces(sd2)); 
     
    let U = unintendedTraces(sd1) in ( 
      assertTrue([s(m1), s(m2), r(m2)] ∈ U); --message overtaking 
      assertTrue([s(m1), r(m1), s(m2), r(m2)] ∉ U);-- invalid termination  
      assertTrue([s(m1), s(m2), r(m1), r(m2)] ∉ U);-- invalid termination  
    );  
 
    assertEqual(∅, unintendedTraces(sd2)); 
  ) 
); 
 
-- Test case for a bug fixed in the satisfiability checking algorithm. 
public testBugFixCheckSatisfiability() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"),              
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l2, 2), mk_(l1, 2), "m2"), 
      m3 = mkMessageTimed(3, mk_(l1, 3), mk_(l2, 3), "m3"), 
      m4 = mkMessageTimed(4, mk_(l1, 4), mk_(l2, 4), "m4"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2, m3, m4}, ∅, { 
          mk_TimeConstraint(t(r(m2)), t(s(m3)), 0, 1000), 
          mk_TimeConstraint(t(r(m2)), t(s(m4)), 0, 1000), 
          mk_TimeConstraint(t(s(m1)), t(s(m3)), 0, 10000), 
          mk_TimeConstraint(t(s(m1)), t(s(m4)), 12000, nil)}) 
  in 
  ( 
    assertEqual(∅, validTraces(sd1));   
  ) 
); 
 
-- Example of non-locally controllable round-trip constraint. 
public testRcvConstraint() ≜ 
( 
  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"),              
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l2, 2), mk_(l1, 2), "m2"), 
      sd1 = mkInteraction({l1, l2}, {m1, m2}, ∅,  
                          {mk_TimeConstraint(t(s(m1)), t(r(m2)), nil, 4000)}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, validTraces(sd1)); 
    assertEqual({[s(m1), r(m1), s(m2), r(m2)]}, unintendedTraces(sd1));   
    assertEqual(∅, missingTraces(sd1)); 
  ) 
); 
 
-- Examples in which the system may remain in an invalid quiescent state. 
public testMayRemainQuiescentTimed() ≜ 
( 
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  let l1 = mkLifeline("L1"), 
      l2 = mkLifeline("L2"),              
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "m1"), 
      m2 = mkMessageTimed(2, mk_(l2, 3), mk_(l1, 3), "m2"), 
      m3 = mkMessageTimed(3, mk_(l1, 5), mk_(l2, 5), "m3"), 
      o1 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2)}, {mk_(l1, 4), mk_(l2, 
4)}), 
      f1 = mk_CombinedFragment(<opt>, [o1], {l1, l2}), 
      sd1 = mkInteraction({l1, l2}, {m1, m2, m3}, {f1}, 
              {mk_TimeConstraint(t(s(m1)), t(r(m1)), nil, 1)}), --to force timed version 
      sd2 = mkInteraction({l1, l2}, {m1, m2, m3}, {f1},  
              {mk_TimeConstraint(t(r(m1)), t(s(m2)), nil, 2), 
               mk_TimeConstraint(t(r(m1)), t(r(m3)), nil, 4)}), 
      sd3 = mkInteraction({l1, l2}, {m1, m2, m3}, {f1},  
              {mk_TimeConstraint(t(s(m1)), t(r(m1)), nil, 1), 
               mk_TimeConstraint(t(r(m1)), t(s(m2)), nil, 2), 
               mk_TimeConstraint(t(s(m2)), t(r(m2)), nil, 1), 
               mk_TimeConstraint(t(s(m1)), t(s(m3)), 5, 6)}) 
  in 
  ( 
    assertEqual({[s(m1), r(m1), s(m2), r(m2), s(m3), r(m3)],  
                 [s(m1), r(m1), s(m3), r(m3)], [s(m1), s(m3), r(m1), r(m3)]},  
                validTraces(sd1)); 
    assertTrue([s(m1), r(m1)] ∈ unintendedTraces(sd1));      
    assertTrue([s(m1), r(m1)] ∈ unintendedTraces(sd2));    
    assertEqual(∅, unintendedTraces(sd3)); 
    assertEqual(∅, missingTraces(sd1));    
    assertEqual(∅, missingTraces(sd2));    
    assertEqual(∅, missingTraces(sd3));    
  ) 
); 
 
 
/**************** Case studies ****************/ 
 
-- Fall detection scenario from an ambient-assisted living (AAL) ecosystem. 
-- The scenario is locally controllable with the specified time constraints, 
-- but would not in the absence of such constraints. 
public testFallDetection() ≜ 
( 
  let l1 = mkLifeline("Care_Receiver"), 
      l2 = mkLifeline("Fall_Detection_App"), 
      l3 = mkLifeline("AAL4ALL_Portal"), 
      m1 = mkMessageTimed(1, mk_(l1, 1), mk_(l2, 1), "fall_signal"), 
      m2 = mkMessageTimed(2, mk_(l2, 2), mk_(l1, 2), "confirm?"), 
      m3 = mkMessageTimed(3, mk_(l1, 4), mk_(l2, 4), "yes"), 
      m4 = mkMessageTimed(4, mk_(l2, 5), mk_(l3, 5), "notify_fall"), 
      m5 = mkMessageTimed(5, mk_(l1, 7), mk_(l2, 7), "no"), 
      m6 = mkMessageTimed(6, mk_(l2, 9), mk_(l3, 9), "notify_possible_fall"), 
      o1 = mk_InteractionOperand(nil, {mk_(l1, 3), mk_(l2, 3), mk_(l3, 3)},  
                                 {mk_(l1, 6), mk_(l2, 6), mk_(l3, 6)}), 
      o2 = mk_InteractionOperand(nil, {mk_(l1, 6), mk_(l2, 6), mk_(l3, 6)},  
                                 {mk_(l1, 8), mk_(l2, 8), mk_(l3, 8)}), 
      o3 = mk_InteractionOperand(nil, {mk_(l1, 8), mk_(l2, 8), mk_(l3, 8)},  
                                 {mk_(l1, 10), mk_(l2, 10), mk_(l3, 10)}), 
      f1 = mk_CombinedFragment(<alt>, [o1, o2, o3], {l1, l2, l3}), 
      tcs =  {mk_TimeConstraint(t(s(m2)), t(r(m2)), 0, 1000), 
           mk_TimeConstraint(t(s(m3)), t(r(m3)), 0, 1000), 
           mk_TimeConstraint(t(s(m5)), t(r(m5)), 0, 1000), 
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           mk_TimeConstraint(t(r(m2)), t(s(m3)), 0, 10000), 
           mk_TimeConstraint(t(r(m2)), t(s(m5)), 0, 10000), 
           mk_TimeConstraint(t(s(m2)), t(s(m6)), 13000, nil)}, 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3, m4, m5, m6}, {f1}, tcs), 
      sd2 = mkInteraction({l1, l2, l3}, {m1, m2, m3, m4, m5, m6}, {f1}, ∅), 
      e1 = s(m1), e2 = r(m1),   
      e3 = s(m2), e4 = r(m2), 
      e5 = s(m3), e6 = r(m3), 
      e7 = s(m4), e8 = r(m4), 
      e9 = s(m5), e10 = r(m5), 
      e11 = s(m6), e12 = r(m6), 
       
      e1a = mk_Event(<Send>, "fall_signal", l1, 0), 
      e2a = mk_Event(<Receive>, "fall_signal", l2, 2000),   
      e3a = mk_Event(<Send>, "confirm?", l2, 4000), 
      e4a = mk_Event(<Receive>, "confirm?", l1, 4200), 
      e5a = mk_Event(<Send>, "yes", l1, 14200), 
      e6a = mk_Event(<Receive>, "yes", l2, 14500), 
      e7a = mk_Event(<Send>, "notify_fall", l2, 14600), 
      e8a = mk_Event(<Receive>, "notify_fall", l3, 16000), 
       
      e6b = mk_Event(<Receive>, "yes", l2, 15200), 
      e7b = mk_Event(<Send>, "notify_fall", l2, 15600), 
       
      e6c = mk_Event(<Receive>, "yes", l2, 18000), 
      e7c = mk_Event(<Send>, "notify_fall", l2, 18600), 
      e8c = mk_Event(<Receive>, "notify_fall", l3, 19000), 
       
      e4d = mk_Event(<Receive>, "confirm?", l1, 16800), 
      e11d = mk_Event(<Send>, "notify_possible_fall", l2, 17000), 
      e12d = mk_Event(<Receive>, "notify_possible_fall", l3, 18000) 
       
  in 
  ( 
    assertEqual({[e1, e2, e3, e4, e5, e6, e7, e8],  
                 [e1, e2, e3, e4, e9, e10],   
                 [e1, e2, e3, e4, e11, e12]},  
                validTraces(sd1)); 
     
    MaxClockSkew := 500; 
    assertEqual(<Pass>, timedFinalConformanceChecking(sd1,  
                 {l1 ↦ [e1a, e4a, e5a], l2 ↦ [e2a, e3a, e6a, e7a], l3 ↦ [e8a]})); 
    assertEqual(<Inconclusive>, timedFinalConformanceChecking(sd1,  
                 {l1 ↦ [e1a, e4a, e5a], l2 ↦ [e2a, e3a, e6b, e7b], l3 ↦ [e8a]})); 
    assertEqual(<Fail>, timedFinalConformanceChecking(sd1,  
                {l1 ↦ [e1a, e4a, e5a], l2 ↦ [e2a, e3a, e6c, e7c], l3 ↦ [e8c]})); 
    assertEqual(<Fail>, timedFinalConformanceChecking(sd1,  
                {l1 ↦ [e1a, e4d], l2 ↦ [e2a, e3a, e11d], l3 ↦ [e12d]})); 
    MaxClockSkew := 10; 
     
    assertTrue(isLocallyControllable(sd1)); 
    assertFalse(isLocallyControllable(sd2));     
    assertFalse(isLocallyObservable(sd1)); -- because of optional messages without ack 
  ) 
); 
 
-- Scenario of driving license renewal with a race condition. 
public testDrivingLicenseRenewal() ≜ 
( 
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  let l1 = mkLifeline("DriverApp"), 
      l2 = mkLifeline("DrivingLicenseIssuerApp"), 
      l3 = mkLifeline("ElectronicPaymentService"), 
      m1 = mkMessage(1, mk_(l1, 1), mk_(l2, 1), "requestDriverLicenseRenewal"), 
      m2 = mkMessage(2, mk_(l2, 3), mk_(l1, 3), "paymentReference"), 
      m3 = mkMessage(3, mk_(l2, 5), mk_(l3, 5), "referenceValidation"), 
      m4 = mkMessage(4, mk_(l1, 9), mk_(l3, 9), "electronicPayment"), 
      ctrl1 = mkMessage(5, mk_(l3, 7), mk_(l1, 7), "ctrl"), 
      o1 = mk_InteractionOperand(nil, {mk_(l1, 2), mk_(l2, 2), mk_(l3, 2)},  
                                 {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)}), 
      o2 = mk_InteractionOperand(nil, {mk_(l1, 4), mk_(l2, 4), mk_(l3, 4)},  
                                {mk_(l1, 8), mk_(l2, 8), mk_(l3, 8)}), 
      f1 = mk_CombinedFragment(<par>, [o1, o2], {l1, l2, l3}), 
      sd1 = mkInteraction({l1, l2, l3}, {m1, m2, m3, m4}, {f1}), 
      sd2 = mkInteraction({l1, l2, l3}, {m1, m2, m3, m4, ctrl1}, {f1})       
  in 
  ( 
     assertTrue(isLocallyObservable(sd1)); 
     assertTrue(isLocallyObservable(sd2)); 
     assertFalse(isLocallyControllable(sd1)); 
     assertTrue(isLocallyControllable(sd2)); 
     assertEqual("{{[!Ctrl1@ElectronicPaymentServiceAreferenceValidation, 
?Ctrl1@DriverAppApaymentReference]}}", 
                 genCoordinationMessagesStr2(sd1, false));      
  ) 
); 
 
-- Scenario from a paper in the International Journal of Parallel, Emergent and  
-- Distributed Systems. 
public testDistributedTestingPaper() ≜  
( 
  let actor1 = mkActor("Actor1"), 
      port1 = mkLifeline("Port1"),              
      actor2 = mkActor("Actor2"),              
      port2 = mkLifeline("Port2"),              
      actor3 = mkActor("Actor3"),              
      port3 = mkLifeline("Port3"),              
 
      L = {actor1, port1, actor2, port2, actor3, port3},  
 
      a1 = mkMessageTimedSynch(1, mk_(actor1, 3), mk_(port1, 3), "a1"), 
      x1 = mkMessageTimedSynch(2, mk_(port1, 5), mk_(actor1, 5), "x1"), 
      i1 = mkMessageTimed(3, mk_(port1, 6), mk_(port2, 6), "i1"), 
      y1 = mkMessageTimedSynch(4, mk_(port2, 8), mk_(actor2, 8), "y1"), 
       
      b1 = mkMessageTimedSynch(5, mk_(actor2, 11), mk_(port2, 11), "b1"), 
      y2 = mkMessageTimedSynch(6, mk_(port2, 13), mk_(actor2, 13), "y2"), 
      i2 = mkMessageTimed(7, mk_(port2, 14), mk_(port1, 14), "i2"), 
      x2a = mkMessageTimedSynch(8, mk_(port1, 16), mk_(actor1, 16), "x2a"), 
 
      b2 = mkMessageTimedSynch(9, mk_(actor2, 18), mk_(port2, 18), "b2"), 
      i3 = mkMessageTimed(10, mk_(port2, 19), mk_(port1, 19), "i3"), 
      x2b = mkMessageTimedSynch(11, mk_(port1, 20), mk_(actor1, 20), "x2b"), 
 
      c1 = mkMessageTimedSynch(12, mk_(actor3, 23), mk_(port3, 23), "c1"), 
      z1 = mkMessageTimedSynch(13, mk_(port3, 25), mk_(actor3, 25), "z1"), 
      i4 = mkMessageTimed(14, mk_(port3, 26), mk_(port1, 26), "i4"), 
      x3 = mkMessageTimedSynch(15, mk_(port1, 28), mk_(actor1, 28), "x3"), 
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      c2 = mkMessageTimedSynch(16, mk_(actor3, 30), mk_(port3, 30), "c2"), 
      z2 = mkMessageTimedSynch(17, mk_(port3, 32), mk_(actor3, 32), "z2"), 
    
      i5 = mkMessageTimed(18, mk_(port3, 33), mk_(port2, 33), "i5"), 
      y3 = mkMessageTimedSynch(19, mk_(port2, 34), mk_(actor2, 34), "y3"), 
      i6 = mkMessageTimed(20, mk_(port3, 36), mk_(port1, 36), "i6"), 
      x4 = mkMessageTimedSynch(21, mk_(port1, 38), mk_(actor1, 38), "x4"), 
 
      synchMsgs = {a1, x1, y1 , b1, x2a, y2, b2, x2b, c1 , z1 , x3, c2 /*,z2,x4,y3*/},       
      internalMsgs = {i1, i2 , i3, i4 /*, i5, i6*/}, 
 
      -- strict operands       
      o1 = mk_InteractionOperand(nil, {mk_(a, 2) | a ∈ L}, {mk_(a, 9) | a ∈ L}), 
      o2 = mk_InteractionOperand(nil, {mk_(a, 9) | a ∈ L}, {mk_(a, 22) | a ∈ L}), 
      o3 = mk_InteractionOperand(nil, {mk_(a, 22) | a ∈ L}, {mk_(a, 29) | a ∈ L}), 
      o4 = mk_InteractionOperand(nil, {mk_(a, 29) | a ∈ L}, {mk_(a, 39) | a ∈ L}), 
 
      -- alt operands       
      o5 = mk_InteractionOperand(nil, {mk_(a, 10) | a ∈ L}, {mk_(a, 17) | a ∈ L}), 
      o6 = mk_InteractionOperand(nil, {mk_(a, 17) | a ∈ L}, {mk_(a, 21) | a ∈ L}), 
 
      -- loop operand       
      o7 = mk_InteractionOperand(mk_InteractionConstraint(1, 1, nil),  
                                 {mk_(a, 1) | a ∈ L}, {mk_(a, 40) | a ∈ L}), 
 
      f1 = mk_CombinedFragment(<strict>, [o1, o2, o3, o4], L), 
      f2 = mk_CombinedFragment(<alt>, [o5, o6], L), 
      f3 = mk_CombinedFragment(<sloop>, [o7], L), 
      sd1 = mkInteraction(L, synchMsgs ∪ internalMsgs, {f1, f2, f3},  
               mkMsgTimeConstraints(synchMsgs, nil, 0))    
  in 
  ( 
     assertEqual(2, # validTraces(sd1));  
  ) 
); 
 
 
/***********  Entry points *************/ 
 
public testAll() ≜ 
( 
    -- Scenarios without time constraints 
    testSimple(); 
    testImpossible(); 
    testIndepMessages(); 
    testOpt(); 
    testAlt();   
    testStrict(); 
    testLoop(); 
    testAltNested(); 
    testRace(); 
    testRaceReceiveReceive(); 
    testRacePlusAlt(); 
    testRaceSendReceive(); 
    testNonLocalChoice(); 
    testRaceByMsgOvertaking(); 
    testSendRecvEnabled(); 
    testSendRecvEnabled2(); 
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    testUnintendedEmptyTrace(); 
    testUnintendedEmptyTrace2(); 
    testUnintendedEmptyTrace3(); 
    testWhoSends(); 
    testVerdictWithTimestamps(); 
 
    -- Scenarios with time constraints 
    testRoundtripConstraint(); 
    testTimeConstraintInLoop();  
    testInterLifelineTimeConstraints(); 
    testVerdictWithTimestamps(); 
    testIsLocallyObservableTimed(); 
    testNonLocallyControlableTimed(); 
    testStrangeControllableTimed(); 
    testSendableFirst();  
    testSendableFirst2(); 
    testSendRecvSendConstraint(); 
    testSendSendSendConstraint(); 
    testBugFixCheckSatisfiability(); 
    testRcvConstraint(); 
    testMayRemainQuiescentTimed(); 
 
    -- Case studies 
    testFallDetection(); 
    testDrivingLicenseRenewal(); 
    testDistributedTestingPaper(); 
); 
 
end TestCases 
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