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Abstract 

Bacterial biofilms are aggregates of microorganisms anchored to a surface and 

embedded in a self-produced matrix of extracellular polymeric substances. Thanks to the 

properties of the matrix and intercellular interactions between the bacteria within, the 

biofilm becomes increasingly sophisticated with the bacteria having different behaviours 

when compared to their planktonic counterparts. Microorganisms in biofilms have 

several advantages including an increased antibiotic resistance, elevated levels of lateral 

gene transfer, higher stress resistance and subversion of host defence mechanisms. 

Biofilm formation is a complex procedure, involving four phases: attachment to a surface, 

sessile growth phase, biofilm maturation and detachment when the biofilm is no longer 

beneficial.  

Cell-to-cell communication, or quorum sensing, is an important process during 

biofilm maturation, in which cells communicate using auto-inducer signals. It is also 

reported that various virulence factors are regulated by quorum sensing. 

Biofilm infections have been recognized as a serious threat to our society. 

However, although our knowledge about biofilms is increasing, the ability to control 

biofilm formation and to treat biofilm infections remains insufficient. Therefore, the aim of 

this work is to help find new drugs against this issue. Because quorum sensing has 

specific protein targets, it is possible to design inhibitors to block the formation of these 

structures. 

The process of drug discovery and development is a long and expensive process. 

Over the years, the usage of computer-aided drug design as a preliminary stage of drug 

design has increased in order to make the entire process more cost-efficient and 

minimize failures. CADD is defined by IUPAC as “all computer assisted techniques used 

to discover, design and optimize compounds with desired structures and properties”. 

These techniques are used to screen large compound libraries for promising molecules 

to be tested experimentally, optimize lead compounds or design new drugs against a 

specific target. 

Protein-Ligand molecular docking is a computational tool which predicts the 

binding pose and affinity of a ligand to a specific receptor or enzyme. During a virtual 

screening procedure, thousands or even millions of molecules are docked into a 

particular target and scored, giving an indication to which molecules are more probable 

to be active. This reduces the number of molecules that have to be experimentally tested.  
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This work is focused in discovering new promising compounds against CviR, the 

quorum sensing receptor from Chromobacterium violaceum. This bacterium is an 

opportunistic pathogen used as a model organism for QS research. Before the actual 

virtual screening, it was necessary to create an optimized protocol for this target. The 

optimization of the protocol involved several steps. The first step was to download the 

six available pdb structures of CviR. In order to see how accurately the molecular docking 

programs, reproduce experimentally known complexes, multiple redocking procedures 

of the original ligand into their native PDB structures were performed. The programs 

used for molecular docking were Autodock 4, Autodock Vina, GOLD and LeDock. To 

further evaluate both the programs and the available pdb structures, crossdocking of the 

original ligands from each structure into the other structures was executed. The ability to 

discriminate the active molecules within a large database was optimized by screening a 

library containing known active molecules and decoys. The optimized protocol was then 

applied to a ZINC/FDA Approved database and to the Mu.Ta.Lig Virtual Chemotheca, 

which resulted in a list of promising compounds for further studies. 

Following the virtual screening stage of this work, Molecular dynamics 

simulations of the most promising molecules, in complex with CviR, were performed. 

Using the last 40 ns of simulation, MM/PBSA and MM/GBSA calculations were done in 

order to estimate the affinity of each molecule towards CviR. From these calculations, 

six compounds were found that have better or similar results than the native referebce 

ligand. 

In this work, the development of a computational protocol for the virtual screening 

of large compound libraries and further analysis though molecular dynamics simulations 

and MM/PB(GB)SA calculations was reported. This protocol can now be applied to other 

databases, allowing the discovery of additional promising compounds which can be 

tested and validated experimentally. 

Keywords: Bacteria, Biofilms, Chromobacterium violaceum, CviR, Quorum-

Sensing, Virtual Screening, Molecular Docking, Molecular Dynamics Simulations, 

MM/PBSA, MM/GBSA. 
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Resumo 

Biofilmes bacterianos são agregados de microrganismos, ancorados a uma 

superfície e envolvidos numa matriz extracelular, produzida pelas próprias bactérias, 

constituída por substâncias poliméricas. Devido às propriedades da matriz e a 

interações intercelulares entre as bactérias, o biofilme torna-se mais complexo e as 

bactérias dentro do biofilme adoptam diferentes comportamentos das suas homólogas 

planctónicas. Ao fazer parte de biofilmes, os microrganismos adquirem várias 

vantagens, incluindo uma maior resistência aos antibióticos, níveis elevados de 

transferência horizontal de genes; maior resistência ao stress e uma maior resiliência 

contra os mecanismos de defesa do hospedeiro. A formação de biofilmes é um processo 

complexo que envolve quatro fases: fixação à superfície, fase de crescimento fixa, 

maturação do biofilme e a separação quando o biofilme já não for benéfico.  

A comunicação celular, ou quorum sensing, é um processo importante durante 

a maturação do biofilme, no qual as células comunicam usando sinais auto indutores. 

Vários fatores de virulência também são regulados via este mecanismo.  

Infeções relacionadas com biofilmes são reconhecidas como uma séria ameaça. 

No entanto, apesar de o nosso conhecimento sobre biofilmes estar a aumentar, a nossa 

capacidade de controlar a formação de biofilmes e de tratar infeções por eles causadas 

é insuficiente. Assim, o objetivo deste trabalho é ajudar à procura de novos fármacos 

contra este problema. Uma vez que o processo de quorum sensing envolve alvos 

proteicos específicos, é possível encontrar inibidores que impeçam a formação destas 

estruturas. 

O processo de procura e desenvolvimento de fármacos é um processo longo e 

dispendioso. Ao longo dos anos, na fase inicial do processo, tem vindo a aumentar o 

papel desempenhado pelo uso de desenho de fármacos assistido por computador. Usar 

métodos computacionais numa fase inicial do processo minimiza as falhas e os custos. 

O CADD (do inglês computer-aided drug design) é definido pela IUPAC como todas as 

técnicas computacionais usadas para descobrir, desenhar e otimizar moléculas com as 

estruturas e propriedades desejadas. Estas técnicas são usadas para testar grandes 

bases de dados em busca de moléculas promissoras para serem testadas 

experimentalmente, para otimizar compostos promissores já conhecidos ou para 

desenhar novos inibidores para um alvo específico. 

Docking molecular proteína-ligando é um método computacional que prevê a 

pose e a afinidade entre um ligando e um recetor proteico específico. Durante um virtual 
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screening, milhares ou até milhões de processos de docking são efetuados. Cada 

molécula recebe uma pontuação que prevê a afinidade desse ligando para o alvo 

proteico. Esta previsão de quais moléculas têm maior probabilidade de terem a afinidade 

desejada diminui o número de moléculas que serão testadas experimentalmente.  

Este trabalho foi focado na procura de moléculas promissoras contra a CviR, o 

recetor de quorum sensing da Chromobacterium violaceum. Esta bactéria é um 

patógenico oportunista que é usado como modelo na investigação do quorum sensing. 

Antes de proceder ao virtual screening, é necessário desenvolver um protocolo 

otimizado para este alvo proteico. A otimização do protocolo envolveu vários passos. 

Em primeiro lugar, foram analisadas as seis estruturas da CviR que se encontravam 

disponíveis. De seguida procurou-se perceber se os programas de docking molecular 

são capazes de reproduzir os complexos experimentais. Os programas usados foram o 

Autodock 4, Autodock Vina, GOLD e o LeDock. De modo a avaliar não só os programas, 

mas também as estruturas, efetuou-se um crossdocking de cada ligando em todas as 

estruturas. Para melhorar a capacidade de reconhecer/discriminar moléculas ativas 

dentro de uma grande base de dados, o protocolo foi otimizado usando uma biblioteca 

contendo moléculas ativas contra a CviR (testadas experimentalmente), e moléculas 

inativas (decoys). O protocolo otimizado foi então aplicado à base de dados ZINC/FDA 

Approved e à Mu.Ta.Lig Virtual Chemotheca. Estes processos de virtual screening 

resultaram em vários compostos promissores. 

Após a fase de virtual screening, foram efetuadas simulações de dinâmica 

molecular para as moléculas mais promissoras.  Usando os últimos 40 ns de simulação, 

foram efetuados cálculos de MM/PBSA e MM/GBSA, que permitem estimar a afinidade 

de cada molécula para a CviR. Estes cálculos resultaram em seis compostos com 

afinidades iguais ou superiores ao ligando nativo. 

Neste trabalho é reportado o desenvolvimento de um protocolo computacional 

para o virtual screening de grandes bases de dados, e de sucessiva análise via 

simulações de dinâmica molecular e cálculos de MM/PB(GB)SA. Este protocolo pode 

agora ser aplicado a outras bases de dados, permitindo a descoberta de mais moléculas 

promissoras que poderão ser testadas e validadas experimentalmente.  
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1. Introduction 

1.1 Biofilms 

1.1.1 Definition 

Bacterial biofilms are aggregates of microorganisms in which cells are embedded 

in a self-produced matrix of extracellular polymeric substances, anchored to biotic or 

abiotic surfaces1.  

Most cells in biofilms experience cell-to-cell contact, and through intercellular 

interactions and the properties of the matrix, the biofilm becomes increasingly 

sophisticated in its activities. This makes the bacteria within these structures clearly 

different from their planktonic counterparts.2,3 Microorganisms in biofilms have 

communal benefits such as increased antibiotic resistance, slow growth, differential gene 

expression, elevated levels of lateral gene transfer, stress resistance and subversion of 

host defence mechanisms4–6.  

1.1.2 Biofilm Formation 

 Biofilm formation occurs as a response to when the population density of 

unicellular bacteria reaches a certain threshold level. This process can be grouped into 

four phases: attachment, sessile growth phase, biofilm maturation and detachment7. 

 In the first step microbial cells attach to a surface, which can be a tissue or an 

abiotic surface. Motile bacteria have been documented to present a competitive 

advantage, using flagella to overcome repulsive forces. In some bacterial species, 

chemotaxis also plays a role in directing attachment in response to nutrient composition8. 

The fimbriae, pilli and flagella give strength to the interaction between the bacteria and 

the surface of the attachment9. 

Surface contact triggers responses which lead to changes in gene expression.  

These changes up-regulate factors which favour sessility, such as those implicated in 

the formation of the extracellular polymeric matrix. After the attachment becomes stable, 

a process of multiplication and division starts, leading to the formation of many types of 

micro-communities that coordinate each other in multiple aspects9.  

The coordination between micro-communities is essential for the exchange of 

substrates, distribution of metabolic products and excretion of metabolic end-products9. 

Cell-to-cell communication is an important process during biofilm maturation, in which 

cells communicate using auto-inducer signals. When the required microbial density is 
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attained, the secretion of signal molecules known as auto-inducers facilitates quorum 

sensing (QS). At this stage, certain proteins important for the formation of Extracellular 

Polymeric Substances (EPS), the main material in the biofilm’s three-dimensional 

structure, are expressed. Interstitial voids are then produced within the matrix. These 

channels are filled with water and act as a circulatory system which is used to distribute 

nutrients and remove waste products from the micro-communities in the biofilm9. 

As biofilms mature, dispersal becomes an option. Other than passive dispersal, 

brought by shear stress, bacteria have evolved ways to react to the environment and 

decide whether it is still beneficial to reside within the biofilm or return to a planktonic 

lifestyle8. In this phase, microbial cells perform quick multiplication and dispersion in 

order to convert from sessile into motile form. The microbial communities produce 

saccharolytic enzymes, which are responsible for the lysis of the EPS matrix and 

subsequent detachment. In this phase, microbial cells upregulate the expression of 

protein related to flagella formation in order to let the bacteria move to a new site. This 

detachment of microbial cells and the transfer to a new location are important for the 

spreading of infections10. 

1.1.3 The EPS Matrix and Biofilm Architecture 

Most of the biomass of the biofilm is comprised of EPS and not microbial cells. In 

most biofilms the microorganisms account for less than 10% of the dry mass whereas 

the matrix can account for more than 90 %. It consists of a conglomeration of different 

biopolymers, which form a scaffold for the biofilm architecture. This is responsible for the 

adhesion to surfaces and for cohesion in the biofilm11.  

The EPS composition can vary among biofilms, depending on the 

microorganisms present as well as the surrounding environment. Initially, EPS was 

thought to be composed only by extracellular polysaccharides. However it later became 

clear that this matrix also contains proteins, nucleic acids, lipids and other biopolymers11. 

Some of the polysaccharides are neutral or polyanionic, as is the case of the EPS of 

gram-negative bacteria. This allows the association of divalent cations such as calcium 

and magnesium which cross-link with the polymer strands and provide greater binding 

force to the biofilm. In the case of gram-positive bacteria however, the chemical 

composition of EPS may be primarily cationic. Extracellular bacterial structures such as 

flagella, pili and fimbriae can also stabilize the matrix12. 

EPS production is known to be affected by nutrient status of the growth medium. 

Excess of available carbon and limitation of nitrogen, phosphate or potassium promote 

EPS synthesis, as does slow bacterial growth13. 
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The EPS has several important functions within the biofilm. The polysaccharides, 

proteins and DNA are involved in the adhesion in the initial steps of biofilm formation, 

immobilizing the cells within the biofilm. This keeps them in close proximity, allowing for 

intense interactions and the formation of the synergistic micro-comunitites11. Due to the 

existence of extracellular enzymes, an external digestive system is generated. This 

matrix also acts as a recycling centre by keeping the components of lysed cells available. 

This includes DNA, which acts as a reserve of genes for horizontal gene transfer. It is 

also important for the retention of water, leading to their tolerance in water-deficient 

environments, and it can be a nutrient source, providing a source of carbon, nitrogen, 

and phosphorus containing compounds. This matrix also acts as a protective barrier, 

making the biofilm resistant to nonspecific and specific host defences during infections, 

and to various antimicrobial agents11. 

Biofilms are very heterogeneous containing microcolonies of bacterial cells 

encased in an EPS matrix and separated from other microcolonies by interstitial voids14. 

This heterogeneity happens not only on mixed biofilms but also for pure culture biofilms 

such as the ones which are common on medical devices and those associated with 

infectious disease14. The organisms composing the biofilm may also have an effect on 

the structure, with the biofilm thickness affected by the number of component 

organisms15. 

The structure may also be influenced by particles from the host or environment. 

For example, erythrocytes and fibrin may accumulate in biofilms on heart valves. The 

fibrin will protect the organisms in the biofilm from the host’s leukocytes, leading to 

infective endocarditis14.  

The EPS matrix can also dynamically modulate chemical and nutrient gradients 

and define pathogenic environments. These effects contribute to key virulence attributes, 

including recalcitrance. Thus, targeting the EPS matrix may be an effective strategy to 

remove biofilms, disaggregate bacteria and disrupt the pathogenic environment16.  

1.1.4 Resistance and Persister Cells 

The terms persistence, resistance and tolerance are often confused when talking 

about the inability of antibiotics to kill or inhibit the growth of bacteria within a biofilm17. 

Resistance usually has a genetic basis and can be acquired though point mutation or 

horizontal gene transfer. Tolerance is better used when antibiotic-susceptible strains 

require much higher concentrations to obtain similar effects to the ones observed on 

planktonic cells. This tolerance can be lost when biofilms disperse into single cells. That 
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way, dispersal strategies can be used as an adjuvant to the antibiotics. Persistence is 

used to describe a prolonged biofilm infection that remains after treatment18. 

Persistence should also not be confused with persister cells. These cells are in a 

state of dormancy, a state in which cells are metabolically inactive. This phenotype was 

first described in 1942 by Hobby et al. who found that 1% of Staphylococcus aureus cells 

were not killed by penicillin and became persister cells19. In 1944, Bigger discovered that 

one in a million Staphylococcus pyogenes cells were not killed by penicillin, and that, 

unlike resistant cells, these did not suffer any genetic change20. 

Expression profiling of RNA from persister cells revealed the downregulation of 

transcription genes involved in energy production and non-essential functions, which is 

consistent with the idea that these cells are in a state of dormancy21. 

Persister cells are believed to be responsible for the persitence of chronic biofilm 

infections. In fact, after antibiotics kill the majority of cells, persisters remain and 

repopulate the biofilms after the level of antibiotic drops. These cells are less susceptible 

to antibiotics because they are not undergoing metabolic activities that antibiotics can 

disturb.  However, the resistant cells, arise from genetic changes that stop the antibiotic 

activity. This means that resistant cells continue to grow when antibiotics are present, 

unlike persister cells that are dormant and do not grow21. 

1.1.5 Clinical Significance 

Several clinically important pathogenic bacteria such as cystic fibrosis associated 

Pseudomonas aeruginosa, urinary and catheter-associated Proteus mirabilis, lower 

respiratory tract and surgical sites associates Staphylococcus aureus, pneumonia 

causing Haemophilus influenza, and many others, cause infection through biofilms 

formation7. This can have devastating consequences, because as previous mentioned, 

microbes that reside in biofilms may not be eliminated by traditional antibiotics because 

of metabolic dormancy or molecular resistance mechanisms. The extracellular matrix 

also has an important role in conferring tolerance to biofilms22.  

The overall burden of biofilm infections is significant, and it has been recognized 

as a serious threat to our society within the past 20 years. The U.S. National Institutes 

of Health estimates that 80% of all bacterial infections occurring in the human body are 

biofilm related23.  In the United States an estimated 17 million new biofilm infections occur 

each year, which can result in up to 550000 fatalities per year24. Among the over 60000 

cystic fibrosis patients in developed western countries, nearly 80 % will develop a chronic 

biofilm lung infection. For the 1-2 % of western population with chronic wound infections, 
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60 % of these involve biofilms25. The development of biofilm on the surface of 

endotracheal tubes is related to the development of ventilator-associated pneumonia, 

which occurs in 9-27 % of all intubated patients26. On patients with indwelling urinary 

catheters, the rates are even higher with over 50 % of inserted catheters becoming 

colonized within the first 14 days of insertion27.   

Although our knowledge about biofilms is increasing, the control of biofilm 

formation and the treatment for existing biofilms remains tenuous, with few new 

therapeutic options currently available clinically18.  

1.1.6. Current therapeutic approaches 

Because of the recalcitrance and the consequences of a persistent biofilm 

infection, the treatment may include old, last-resort antibiotics such as colistin28. This 

issue is worsened by the fact that multi-drug resistant bacteria are becoming more 

common which also increases the usage of last-resort antibiotics24. Other strategies are 

based on cancer treatment, including a high and sustained antimicrobial 

chemotherapy29.  Another approach used for intravenous catheter infections is lock 

therapy30.  In general, antibiotic lock solutions combine highly concentrated antibiotic 

with an anticoagulant to allow for local instillation into the catheter lumen. The solution is 

locked while the catheter is not in use to prevent colonization or sterilize a previously 

infected catheter31. However, since killing does not necessarily eradicate the biofilm, 

these strategies may lead to colonization by other microorganisms. Therefore, the usage 

of antibiotic agents, which kill most microorganisms but leave other biofilm components 

and persister cells behind, must then be addressed18. 

Since biofilms are formed on solid surfaces, in most clinical trials, the test biofilm 

targeting approaches have been focused on indwelling medical devices. Current 

strategies can be divided into two groups: Physical-mechanic and surface-coating 

approaches. The first ones include high-velocity spray and jet irrigators that disrupt and 

remove the biofilm. The last ones are based on surface impregnation with antibiotics for 

preventing biofilm formation. However most approaches still use conventional antibiotic-

based therapy.18 

Biofilm infections are not easily treated with existing antimicrobial approaches, 

because the biofilm recalcitrance is a consequence of its complex physical and biological 

properties18. On the other hand, the number of infections by multidrug-resistant bacteria 

(MDR) is rising and there is a lack of new antibiotics in development. This means that 

inhibiting the initial formation of the biofilm, by disrupting cell-to-cell communication, or 

quorum sensing is the most promising strategy for treating biofilm infections.32. 
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Additionally, QS inhibition molecules do not affect the normal growth of the bacteria. 

Therefore, they do not create any evolutionary pressure for the emergence of MDR 

bacteria. The QS inhibitors have thus usually a longer functional shelf life than modern 

antibiotics when it comes to treating diseases caused by pathogenic bacteria33.  

1.2 Quorum Sensing 

1.2.1 Definition 

Quorum sensing is a process of cell-to-cell communication that relies on the 

production, detection and response to extracellular signalling molecules called 

autoinducers. It was discovered in 1979 by Nealson and Hastings, who characterized 

bacterial communication by studying the bioluminescence mechanisms of Vibrio fisheri 

and Vibrio harveyi34. QS allows bacteria to synchronously adjust their gene expression 

in order to alter their behaviour in response to changes in population density and 

surrounding bacterial community. It controls processes including bioluminescence, 

virulence factor production and biofilm formation35.  

QS signalling plays an important role in biofilm formation, in such a way that 

specific QS signalling blockage is an effective way to prevent biofilm formation of most 

pathogens36. It also reported to regulate various virulence factors which help bacteria to 

evade the host’s immune response and cause pathological damage. Studies have shown 

that in the case of Gram-negative Pseudomonas aeruginosa virulence factors such as 

pyocyanin, elastase, lectin and exotoxin A are regulated by QS systems37. The same 

applies to Gram-positive Staphylococcus aureus virulence factors such as hemolysin, 

protein A and enterotoxin38.  

Two proteins are required for the QS system in Gram-negative bacteria. One is 

responsible for the production of the signalling molecule, the autoinducer, and the other 

responds to the autoinducer39. On Gram-positive bacteria, the QS system consists of the 

signal molecule and a two-component regulatory system that has a membrane-bound 

histidine kinase sensor and an intracellular response regulator40. There are several 

classes of autoinducers based on molecular features. These include acyl homoserine 

lactones, autoinducing peptides and autoinducer-239. 

1.2.2 Autoinducers 

1.2.2.1 Acyl Homoserine Lactones 

 N-acyl homoserine lactones are the main autoinducer used by Gram-negative 

bacteria, with over 70 species known to communicate via AHL-mediated QS. Specificity 
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is accomplished via variation in the length and oxidation state of the acyl side chain. The 

native AHL used by bacteria are the L-isomers, whereas the D-isomers are biologically 

inactive24. In V. fischeri, the luxI gene is activated to produce the AHL synthase enzyme 

LuxI. Once the AHL concentration in the extracellular environment exceeds a certain 

threshold, they diffuse across the cell membrane and bind to specific QS transcriptional 

regulators, the LuxR receptor. Since the AHL can freely diffuse across the cell 

membrane, the total AHL concentration is proportional to the total bacterial 

concentration. This enables a population-density control of gene expression24,41. 

Investigation in other Gram-negative bacteria has shown the existence of homologous 

systems to LuxI and LuxR proteins for AHL synthesis and response42. 

 

Figure 1 - Conserved chemical structure of acyl homoserine lactones. 

 

Figure 2 - Chemical structures of: A- 3-oxo-C6-HSL, the AHL for Vibrio fischeri; B- C6-HSL, a AHL for 
Chromobacterium violaceum. 

1.2.2.2. Autoinducing Peptides 

 Autoinducing peptides (AIPs) or quorum sensing peptides (QSP) are post-

transcriptionally processed small molecules used by Gram-positive bacteria as 

autoinducers. Although AIPs are the more common autoinducers in Gran-positive 

bacteria, they may not be exclusive. In fact, small molecules known as γ-butyrolactones 

have been identified as signal molecules in some species of Streptomyces40,43. 

 AIPs are secreted by membrane transporters. When the environmental 

concentration reaches the threshold, the signal molecules bind to a bicomponent, 

membrane-bound, histidine kinase sensor. After phosphorylation, this originates a 

change on the target gene expression41. 

A B 
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 Many AIPs possess hydrophobic domains, which have been postulated to play 

an important role in the hydrophobic interactions between the ligand and the receptor. 

Therefore, they are crucial for activity44. 

1.2.2.3. Autoinducer-2 

 Both Gram-positive and Gram-negative bacteria share this universal quorum 

sensing mechanism, which involves the production of a small molecule named 

autoinducer-2 (AI-2). AI-2 molecules are derived from the precursor molecule (S)-

4,5,dihydroxy-2,3-pentanedione (DPD), with the DPD synthase enzyme being found in 

over 55 bacterial species45.  

 When the extracellular concentration of AI-2 reaches the threshold, a signal 

transduction cascade is activated. AI-2 is imported by membrane transporters inside the 

cell, where it is phosphorylated by kinases and binds to repressors and activators of 

relevant genes46. 

 

 

Figure 3 - Chemical structure of Autoinducer-2. 

1.2.2.4 Other signalling molecules 

 There are less common molecules that can also act as signalling molecules in 

specific bacteria. Cis-2-decenoic acid, was shown to inhibit biofilm development in P. 

aeruginosa and to induce the dispersion of established biofilms formed by various 

bacteria, including E. coli and S. aureus47. Other fatty acid, cis-11-methyl-2-dodecenoic 

acid, also known as diffusible signal factor, is able to disaggregate cell flocs formed by 

Xanthomonas campestris48.  

 Some D-amino acids are thought to be a native signal for biofilms disassembly in 

B. subtilis and inhibit biofilm formation in fresh cultures of B. subtilis, S. aureus and P. 
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aeruginosa. The inhibitory activity of these amino acids is thought to be due to a 

disruption of the connection between the extracellular matrix protein and the cell49.  

1.2.3 Quorum sensing in different bacteria 

1.2.3.1 Staphylococcus aureus 

S. aureus is a leading case of nosocomial infections worldwide, being the agent of a 

wide range of diseases. Many of these, including endocarditis and osteomyelitis, appear 

to be caused by biofilm associated S. aureus50. 

 The QS system in use is encoded by the accessory gene regulator (agr) operon. 

The agrD gene encodes for the precursor of the S. aureus AIP, AgrD, which is processed 

into the autoinducing peptide by AgrB. AgrA and AgrC comprise a two-component 

regulatory system that responds to this autoinducer. Signalling via this system, together 

with other regulatory elements such as SarA, results in elevated intracellular 

concentrations of a small, non-coding RNA called RNA-III. When the AIP concentration 

reaches the threshold level it will bind AgrC leading to the expression of RNA-III. This 

RNA will then down regulate genes, which encode adhesins required for biofilm 

formation and increase the expression of secreted virulence factors. The RNA-III 

activating protein (RAP) activates its target, TRAP, via phosphorylation. This induces 

expression of the agr operon and increases cell adhesion and biofilm formation51,52. 

1.2.3.2 Pseudomonas aeruginosa  

P. aeruginosa is one of the most virulent opportunistic pathogens and is responsible 

for 10 to 20 % of infections in hospitals53. It is a leading cause of various acute infections, 

including ventilator associated pneumonia. Furthermore, it can also cause chronic lung 

infections in patients with cystic fibrosis, being associated with increased mortality54.  It 

is responsible for 17 % of nosocomial pneumonia, 7 % of urinary tract infection, 8 % of 

quotidian cause surgical-site infection and 9 % of general infection55. These bacteria 

have a complex genome and a large and variable arsenal of virulence factors. The ability 

to form biofilms provides them with and enormous advantage to establish infections 

within susceptible hosts54. 

P. aeruginosa possesses several QS systems with the most important being las and 

rhl, both associated with AHL56.  Both systems are homologous to the LuxI and LuxR 

system42. For the las system LasI synthesizes the autoinducer, N-(3-oxododecanoyl)-l-

homoserine lactone, which activates the LasR transcriptional activator. Likewise, in the 
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rhl system RhlI synthesizes the autoinducer, N-butyryl-l-homoserine lactone, which 

activates RhlR55. 

1.2.3.3 Chromobacterium violaceum 

Chromobacterium violaceum is a large, motile, Gram-negative bacillus which lives 

on soil and water in tropical and subtropical regions. Although it is considered non-

pathogenic, it can act as an opportunistic pathogen for animals and humans. It enters 

though broken skin, by contamination with soil or stagnant water57.  There have been 

reports of it causing localized skin and soft tissue infection and systemic or invasive 

infection. These including necrotizing fasciitis, visceral abscesses, osteomyelitis and 

central nervous system disease58. Infections due to C. violaceum are very rare with less 

than 150 published clinical reports, but are associated with high mortality59. 

This bacterium is known for the production of a natural violet pigment with antibiotic 

properties, known as violacein, whose production is regulated via quorum sensing60. 

Since this QS-regulated trait is an easily observable and quantifiable trait, C. violaceum 

has been widely used as a model organism for QS research61. Other phenotypes which 

are known to be regulated by QS include biofilm formation and the production of chitinase 

and cyanide61,62. 

The QS system in C. violaceum is homologous of the LuxI/LuxR system, with the 

AHL synthase being CviI and the transcriptional activator being CviR.  

The C. violaceum virulence is controlled by QS system, as indicated by experiments 

carried out on the nematode Caenorhabditis elegans. It was proved that AHL synthase 

antagonists, which replace its natural ligand and induce a CviR conformation that 

prevents DNA binding, protect this nematode from C. violaceum-mediated killing60. Strain 

ATCC 31532 produces the autoinducer N-hexanoyl homoserine lactone (C6-HSL) while 

strain ATCC 12472 produces 3-hydroxyl-C10-HSL60,63.  

Violacein is synthesized by the producers of the vioABCD operon, being produced 

by the fusion of two tryptophan resiudes64. Using vioA promoter mutations, an ideal DNA 

binding site for CviR was defined as CTGNCCNNNNGGNCAG. This allowed the 

discovery of other genes regulated by CviR. These include genes encoding a guanine 

deaminase, an extracellular chitinase, a protein with a role in type VI secretion, a 

transcriptional regulator possibly in Multiple Antibiotic Resistance Regulator family  and 

the autoinducer synthase CviI65. 
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CviR, like other LuxR-type proteins, functions as a homodimer, with each monomer 

consisting of a ligand-binding domain and a DNA-binding domain66.  

 

Figure 4 - Structure of CviR represented in New Cartoon. The ligand-binding domain is coloured in green 
and the DNA-binding domain is coloured in blue. 

When an antagonist is used, the dimer adopts a closed, crossed-domain 

conformation, in which the DBD each monomer is positioned below the LBD of the 

opposite monomer. This conformation separates the two DNA binding helices in way 

incompatible with high-affinity DNA binding, as can be seen in figure 467.  

 

 

Figure 5 - CviR homodimer after bonding an antagonist. Both chains are represented in the New Cartoon 
format with chain A is coloured in blue and chain B is coloured in green. The overall protein is represented 

using the surface representation. 
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The CviR from both strains is 87% identical in amino acid sequence, with its 

difference in autoinducer being partially due to a naturally occurring serine instead of a 

methionine at position 89. This is a key residue that occupies the opening of the ligand-

binding pocket. The importance of Met 89 is reinforced by the fact that, when using 

antagonists, the side chain swings away. The extension of this movement increases with 

strength of the antagonist67.  

Although it is not often involved in human infections, it is regarded as an emerging 

pathogen. On the other hand, since C. violaceum is used as a model QS system, it is 

very useful for the discovery of drugs able to inhibit infections61. Therefore, the research 

of novel molecules able to supress the QS system in this bacterium could be very useful, 

not only for the treatment of C. violaceum-mediated infection, but also for the discovery 

of molecules that inhibit other LuxR-type receptors by analogous mechanisms. 

1.3 Databases for the Study of Biofilms 

Databases for the Study of Biofilms: Current Status and Potential Applications 

Fábio G. Martins, André Melo and Sérgio F. Sousa 

Under submission 

1.3.1 Introduction 

A database is an organized collection of related information that can be stored and 

accessed electronically. The significant growth of some widely used databases such as 

the Protein Data Bank PDB68, ChEMBL69 or PubCHEM70, demonstrates how important 

they are for current research. The number of available databases has also rapidly 

increased over the years. In 2005, the Nucleic Acids Research Molecular Biology 

Database Collection reported a total of 719 databases, while in 2020 the number of 

databases is over twice as large, with a total of 1637 databases71,72. 

Considering the prominence of biofilm research and the importance of databases in 

this information age, the development of specialized databases designed to handle 

information related to microbial biofilms was a logical step. Currently there are 7 online 

databases (Table 1) on the subject of microbial biofilms: (1) “Quorumpeps” was created 

in 2012 and provides an overview of reported QS signalling peptides and their 

derivatives73; (2)“BiofOmics” was created in 2012 and was the first public web platform 

for the systematic and large-scale compilation, processing and analysis of biofilm data 

from high-throughput experiments74; (3) Biofilm-active AMPs, or “BaAMPs”, was created 

in 2015 and it was the first database dedicated to antimicrobial peptides (AMPs) with 

antibiofilm activity, with the goal of building an open access resource that gathered all 
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experimental information about antibiofilm AMPs75; (4) QSPPred was created in 2015 as 

a platform for predicting and designing quorum sensing peptides76; (5) design Peptides 

Against Bacterial Biofilms, or dPABBs, was created in 2016 and functioning also as web 

server for predicting antibiofilm peptides and creating mutants with improved activity77; 

(6) “aBiofilm” was created in 2017 gathering chemical, biological and structural data for 

various anti-biofilm agents78; (7) The Biofilms Structural Database, or BSD, was created 

in 2020 as an open-access collection of all known structures of proteins involved in 

biofilm formation. It has the goal to aid the research of novel antibiofilm drugs and the 

understanding of the structure and activity of proteins participating in biofilm formation79. 
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Table 1 - Overview of all currently available biofilm databases. 

Name Year  Reference Website   

Quorumpeps 2012 73 http://quorumpeps.ugent.be 

Information 
on Quorum 

sensing 
peptides 

BiofOmics 2012 74 http://www.biofomics.org/ 

Standardized 
biofilm 

experimental 
data 

BaAMPs 2015 75 http://www.baamps.it/ 

Antibiofilm 
antimicrobial 

peptides 
experimental 

data 

QSPPred 2015 76 http://crdd.osdd.net/servers/qsppred 

Quorum 
sensing 
peptide 

prediction 

dPABBs 2016 77 http://ab-openlab.csir.res.in/abp/antibiofilm/ 
Antibiofilm 

peptides 
prediction 

aBiofilm 2017 78 https://bioinfo.imtech.res.in/manojk/abiofilm/  

Various data 
about several 
anti-biofilm 

agents 

BSD 2020 79 https://biosim.pt/biofilms/  

Structural 
information 

about 
proteins 

involved in 
biofilm 

formation 

 

1.3.2 The Quorumpeps Database 

Quorum sensing plays a major role in biofilm formation and is also involved in the 

regulation of multiple virulence factors. Therefore, the research of QS signalling 

molecules has received an increased interest. In gram-positive bacteria the quorum 

sensing phenomenon is driven by the involvement of signalling molecules that are 

named Autoinducing peptides or Quorum sensing peptides (QSPs)9,35,73.  

http://quorumpeps.ugent.be/
http://www.biofomics.org/
http://www.baamps.it/
http://crdd.osdd.net/servers/qsppred
http://ab-openlab.csir.res.in/abp/antibiofilm/
https://bioinfo.imtech.res.in/manojk/abiofilm/
https://biosim.pt/biofilms/
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With this in mind, Quorumpeps was developed by the Drug Quality and Registration 

group in Ghent, Belgium. The goal of this database is to document the structures, 

microbial origin, and functionality of QS-derived signalling peptides73.   

The creators performed an intensive research on several search engines and the 

relevant information was included in the database. Users can submit further entries 

through the data submission page. In this page users must enter their name, e-mail, and 

information about the sequence. This includes the sequence, trivial name, SMILES, 

molecular formula, the origin of the peptide, information about its functionality, citation, 

and any further comments the user desires to submit73. 

Each entry on the database features the one-letter amino acid sequence, the 

Quorumpeps molecule ID and the molecular formula. Furthermore, there are five further 

tabs of information. The first one, Chemical information, features the above-mentioned 

information. It also contains the trivial name, the SMILES code, the molecular weight, 

the LogP value and the isoelectric point of the peptide. The species origin, as the name 

implies, contains the origin of the peptide. For example, originated from a bacterial 

species, phage-produced, or produced by modification on another peptide. The 

functionality tab features the method, or methods, which were used to study their QS 

activity. The links tab includes links to other peptides available in the database which are 

related to the selected one. These are divided in peptides that are active and synthesized 

by the same species or active on the same receptor. The peptides which are active on 

the same receptor are further divided into agonists or antagonists. Finally, the literature 

section features a Quorumpeps publication ID. Each publication ID features the title of 

the article, the authors, the year of release, the journal on which it was published, links 

to all other peptides available on this database that are related to this article, and a link 

to PubMed where the user can download this publication73. 

To find the desired information, the user can search this database by sequence, trivial 

name, SMILES, molecular formula, receptor, method, and origin of literature. There is 

also a list of known receptors, methods, and species in order to ease the search. To 

perform a more detailed search within the obtained results, the user can also use a new 

keyword on the search box and click “refine”. If the user desires to directly compare 

multiple entries, this can be done by selecting the desired peptides and clinking “compare 

results”73. 

This database can be useful for multiple experiments. The user can find the QSPs 

for a variety of different targets. This can be used in a laboratory setting, where this 
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information allows the researcher to find specific QSPs for their desired receptor. On an 

in-silico experiment, one can use this database for conservation analyses via multiple 

sequence alignment. The SMILES available for each entry can easily be converted into 

a 3D structure, which can then be used, for example, on molecular docking experiments. 

Quorumpeps can also be used for the development of other databases or even as a 

positive or negative dataset in the development of machine learning based predictors. In 

fact, this database was used as one of the sources for the development of other 

databases also discussed in this article. In fact, it was used during the development of 

dPABBs, QSPpred and aBiofilm76–78. 

In their work about quorum sensing in thermophiles, Kaur et al.80 use Quorumpeps 

to find which thermophiles have been reported to exhibit quorum sensing though the use 

of quorum sensing peptides. 

Rajput and Kumar, in their 2017 article about LuxI and LuxR homologs in Gram-

positive bacteria81, used 51 peptides obtained from the Quorumpeps database. They 

then further analysed and predicted their activity using QSPpred. 

In general, Quorumpeps presents a structured overview of all reported quorum 

sensing peptides and their derivatives. It provides an easy procedure to use search 

engine, and information on a large variety of protein targets belonging to different 

species. Currently, it lacks the ability to download the structure of each peptide, which 

could make the study of multiple peptides an easier process. Overall, this database can 

be very useful in multiple settings, and with the updates from the authors and user made 

submissions, the database remains a useful platform for research related to QSPs. 

1.3.3 The BiofOmics Database 

The emergence of high-throughput technologies led to biofilm studies becoming 

more and more data-intensive. Controlling and managing this information became 

essential, which led to the development of a computational tool to manage this 

information: BiofOmics. This platform was developed in a joint effort between the Institute 

for Biotechnology and Bioengineering at the University of Minho and the Laboratory for 

Process, Environmental and Energy Engineering of the Faculty of Engineering at the 

University of Porto. Since most biofilm information remained with its original researchers 

and often involved different data processing, the goal of BiofOmics was to promote data 

interchange across laboratories. BiofOmics achieves this by collecting, storing, 

standardizing and providing open access to biofilm research data74. 
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Research groups across the world are encouraged to submit their data into 

BiofOmics in order to populate the database. This is done via an online data submission 

interface. This allows the researchers to fully characterize the experiment’s goals, 

operational environments, and results. Considering that one of the goals of this platform 

is to provide access to standardized biofilm data, BiofOmics provides a three-step 

protocol to describe the experiment, standardize the data and upload it to the database. 

Data is standardized via Microsoft Excel worksheets, which researchers use to 

“translate” the terminology to what is used in this database. Finally, curation tools check 

the data for any typos, non-compliant data, structuring and data inconsistencies. This 

originates a validation report which is sent to the researcher for any corrections74. 

BiofOmics allows its users to search the entire database for desired information by 

indicating the biofilm-forming microorganism, biofilm-forming device, growth medium, 

adhesion surface or desired antimicrobial product. This search originates a list containing 

a number of potentially relevant studies from which the data and associated publications 

of any study can be accessed74. 

This sharing of standardized data enables an easier distribution of information and 

allows the comparison of multiple experiments. This can ease research in this field in 

multiple ways. These include allowing the search for similar experiments, the raise in 

awareness for relevant but under-reported areas, and the statistical analysis of 

experimental robustness and reproducibility.  

The BiofOmics database has been mentioned in multiple articles, being 

acknowledged for their effort in offering the first public systematic and standardized 

collection of guidelines, experiments, and biofilm data82–84. By helping the interchange of 

biofilm data, this platform can promote the collaboration across laboratories. This helps 

researchers in searching for similar experiments and developing standardized protocols 

for biofilm-related studies74. 

1.3.4 The Biofilm-active AMPs Database 

Antimicrobial peptides (AMPs) are a large and diverse set of molecules which are 

part of the innate immune system. These molecules show potential for the development 

of new therapeutic strategies to prevent biofilm formation or to destroy existing 

structures75,85. While many databases had been created for collecting AMP sequences, 

none was focused on AMPs active for microbial biofilms. The BaAMPs (Biofilm-active 

AMPs) database was created to collect data on AMPs tested on microbial biofilms. This 

database was developed at the Istituto Nanoscienze-CNR and Scuola Normale 



New Drugs Against Biofilm Formation and Development 
 

18 

Superiore, the Center for Nanotechnology, Istituto Italiano di Tecnologia, and the 

Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, 

Università di Pisa75.  

The BaAMPs database contains experimental data extracted from 86 articles, 

including 162 AMP sequences and 422 experiments. All information was obtained by a 

detailed literature search and all sequences were compared with the corresponding ones 

in public databases in order to prevent errors. This database includes a peptide list and 

an experiment list75.  

The peptide list arranges the information of each entry into two sections, the general 

characteristics and the experimental information. The general characteristics and 

attributes section contains the name of the AMP, sequence, source, and several 

characteristics such as the isoelectric point, molecular weight and hydrophobicity. The 

experimental section contains a list of experiments categorized by target organism, 

featuring a link to the corresponding experiment page. The experimental list contains 

information about the procedure used and the results. This information includes the 

target microorganism, the method of AMP administration, the stage of biofilm formation 

evaluated, method used to evaluate the activity, biofilm reduction and the concentration 

tested. Each experiment page is also linked to the corresponding peptide page. All 

peptide and experimental pages additionally contain references to the original article75d. 

Besides the database, BaAMPs contains a peptide properties calculator which 

calculates and compares crucial physicochemical properties necessary for anti-biofilm 

activity. Users can also submit simple sequences to the NCBI BLASTP server to search 

for similar sequences75.  

The database can be expanded by user contribution. After registration, any user can 

submit new sequences and experimental data. The database administrators will validate 

any new entry before it becomes available in the database, to guarantee the desired 

levels of accuracy75.  

With all the different peptides available in BaAMPs, this database can be used to find 

peptides against a specific target. They can then be further tested or used as a 

benchmark for comparing novel molecules. This database can also be useful for 

conservation analysis, or, using the BLAST section of this website, to find similar 

peptides to the selected one. 
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The availability of experimental information about the activity of multiple peptides 

against multiple targets makes BaAMPs a very useful tool for the development of 

machine-learning tools to predict antibiofilm AMPs. dPABBs, a predictor further explored 

in a later section of this paper, used peptides obtained from BaAMPs as the positive 

dataset for training its machine learning model. Another predictor developed with the 

help of BaAMPs was the one developed by Gupta et al.86. The developers used the 

experimentally validated anti-biofilm AMPs available on the BaAMPs database to 

develop machine learning based prediction models (Support-Vector Machine) for new 

biofilm inhibiting peptides. 178 unique AMPs were used as a positive dataset and 

compared with randomly generated peptides. Using a frequency analysis, it was clear 

that positive charges and aromatic amino acids were more common on anti-biofilm 

peptides. All the models built displayed over 90 % accuracy in the identification of biofilm 

inhibiting peptides.  

In 2019, Vergis and colleagues87 evaluated the effectiveness of indolicidin against 

multi-drug resistant enteroaggregative Escherichia coli strains in the Galleria mellonella 

larval model. Indolicidin, which was retrieved from BaAMPs and synthesized 

commercially, was shown to fully eliminate the bacteria, while being safe to the 

eukaryotic cells. 

In their study concerning the usage of antimicrobial peptides to provide resin 

composite restorations with a 2-tier protective system, Moussa, Fok and Aparicio88 used 

BaAMPs to obtain the physical and chemical properties of the peptide used in this study, 

the GL13K peptide. The usage of this peptide gave antimicrobial properties to the coating 

which is expected to increase the durability of resin composite restorations. 

In this present version, BaAMPs does not provide the possibility of batch 

downloading for multiple peptides. Although the user can search for an experiment by its 

target organism, currently it is not possible to search peptides by their target organism. 

Nevertheless, BaAMPs provides a useful toolbox for researchers and can help in the 

study and design of novel AMPs with anti-biofilm activity. 

1.3.5 The QSPpred predictor 

While Quorumpeps has information on multiple QSPs, it does not have any predictive 

ability. To answer this need, QSPpred was developed in the Bioinformatics Centre of the 

Institute of Microbial Technology, Council of Scientific and Industrial Research in India76. 
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The authors developed Support-Vector Machine models for the prediction of the 

peptides. For the positive dataset, the authors of this work used QSP obtained from 

Quorumpeps and PubMed.  Otherwise the negative dataset was obtained from 

UniProt76. 

The QSPpred website hosts these SVM based prediction models, named 

QSPepPred, QSPepDesign and QSPepMap. QSPepPred analyses one or multiple input 

peptides and quickly predicts if these are quorum sensing peptides. The results show 

the score for each peptide and if it is classified as a QSP or Non-QSP. The results are 

colour-coded, with purple indicating a more effective, while green indicates a less 

effective peptide. The user can also access a graphical representation of multiple 

physicochemical properties of the peptide such as amino acid composition and 

hydrophobicity. QSPepDesign allows users to design quorum sensing peptides by 

developing all possible single point mutants of a given peptide sequence. After 

generating the mutants, it then predicts their activity, offering similar results to those 

obtained in QSPepPred. QSPepMap was designed to identify potential regions of a 

protein which could have quorum sensing activity. Finally, this platform also features 

various analysis tools: QSMotifScan, that allows users to scan possible QS motifs in a 

sequence; MutGen that allows users to create custom mutations in any sequence; 

PhysicoProp, that provides physicochemical information on any sequence; ProtFrag, 

that creates multiple fragments from one input protein. All the peptides used for the 

development of the predictive models can be downloaded from the dataset section of 

this website. All obtained results can be downloaded in excel format76. 

All the tools available in this platform can be fitted into customized workflows. For 

exemple, QSPepMap can be used for finding new QSPs from the proteome of any 

bacteria. Alternatively, a peptide sequence can be fragmented by ProtFrag and the 

resulting peptides can be predicted using QSPepPred. In an experiment in which it is 

necessary to have multiple QSPs, one can use QSPepDesign to find new QSPs from an 

initial peptide. Before advancing to an experimental setting, QSPepPred can be used to 

predict the activity of library of multiple peptides, reducing the number of peptides to be 

tested.  

QSPpred was used on the development of the dPABBs predictor to obtain a series 

of QSPs that were used as the negative training set for this predictor76.  
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As mentioned previously Rajput and Kumar, in their article about LuxI and LuxR 

homologs in Gram-positive bacteria81, analysed and predicted the activity of multiple 

QSPs obtained from Quorumpeps using QSPpred. 

In 2016, Pang and colleagues published an article reporting the identification of 

quorum sensing signal molecule of Lactobacillus delbrueckii subsp. Bulgaricus89. 

Candidate molecules were analyzed using QSPpred, to predict their activity and obtain 

their physicochemical properties. 

Overall, QSPPred is easy to use and contains multiple tools that can be used in the 

identification of new quorum sensing peptides used in biofilm formation or virulence 

mechanisms. It also can help with the discovery of new QSPs which can work as 

therapeutic targets. Thus, QSPpred provides a helpful platform for this area of research. 

1.3.6 The design Peptides Against Bacterial Biofilms Predictor 

The dPABBs (design Peptides Against Bacterial Biofilms) was developed at the 

Open Source Drug Discovery (OSDD) Unit, Council of Scientific and Industrial Research, 

in New Delhi, India. As was the case with BaAMPs, this platform is focused on 

antimicrobial peptides with antibiofilm activity. Whereas BaAMPs is mostly concentrated 

on the documentation of experimental data, dPABBs has the goal of predicting if a 

peptide is active against biofilms and to display several mutations that can improve the 

antibiofilm activity77. 

The developers of this platform built six SVM and Weka-based models using machine 

learning tools. The positive dataset used to train these models consisted of 80 AMPs 

obtained from the BaAMPs database. As for the negative dataset, the developers 

considered that quorum sensing peptides, which exist and function within the biofilm, 

would have a contrasting set of properties to peptides that would disrupt biofilms. 

Therefore, the negative dataset consisted of 88 QSPs obtained from QSPpred and cross 

referenced with Quorumpeps77. All molecules used for the datasets can be downloaded 

in the Download section of the website. 

This platform consists of four different modules: Peptide, Protein, Batch and 

MultiModel. In the peptide module, the user enters the desired peptide sequence, selects 

the preferred model (SVM or Weka), selects the appropriate physicochemical properties 

to be displayed and then can run the analysis. This analysis will assess the antibiofilm 

activity of a single peptide sequence and generate mutants with successive amino acids 

substitutions. The user can then select those mutants with higher SVM scores or Weka 
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probabilities and/or better physicochemical properties. In the protein module the user 

can input a protein sequence to analyse all the possible overlapping peptide fragments 

and therefore identify those presenting anti-biofilm activity. Before running the analysis, 

the user can select the desired length of the peptide fragment, which model is going to 

be used and what physicochemical properties will be displayed. Using the batch module, 

the user can screen antibiofilm peptides from a peptide library in FASTA format in a 

single run. This procedure enables to obtain similar results, as in the peptide module, for 

each of the screened sequences. Finally, the MultiModel module allows the usage of 

multiple models at the same time. This enables the user to identify which peptides have 

been predicted to be active against biofilms by many different models. dPAABs also 

features a list of FDA Approved peptides and the respective prediction made by each 

different model77. 

This application is useful for predicting if a previously untested peptide or family of 

peptides is active against biofilms, to find potential antibiofilm peptides from the proteome 

of a specific organism or to generate multiple mutants starting from a single peptide. 

Similar to other predictors, it can also be used to predict the activity of multiple peptides 

before advancing to the laboratory, minimizing costs. 

In their study about the effect of amino acids substitutions on the biological activity 

of certain AMPs, Chegini et al.90 used the dPABBs database to evaluate the selected 

template AMP, Magainin II, and generated mutations that would improve the antibiofilm 

activity. 

Marimuthu et al.91 analysed temporin AMPs and their interactions with the Middle 

East Respiratory Syndrome‑Coronavirus. One step of this work involved predicting which 

of the temporin AMPs had antibiofilm activity. This was accomplished using dPABBs, 

which predicted high antibiofilm activity for some temporins. 

In 2017, Leoni and colleagues92 performed an in-silico study of the potential biological 

activity of myticalins, a novel family of AMPs. The dPAABs database predicted a 

negligible anti-biofilm potential for most peptides of this family. 

The dPABBs allows its users to not only predict the antibiofilm activity of the desired 

sequences, but also offers mutations that can have more desirable properties. On the 

other hand, presently there is no way to easily download the results, something that can 

be done on other predictors, such as QSPpred. Nevertheless, this database is a useful 

platform in order to predict, identify and optimize antibiofilm peptides. 
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1.3.7 The aBiofilm Database 

The large number of studies involving the experimental testing of antibiofilm agents 

reported in the literature over the years, prompted the need to develop a specialized 

platform gathering all the information on the molecules in an easily accessible way. To 

address this need, “aBiofilm” was developed in the Bioinformatics Centre of the Institute 

of Microbial Technology, Council of Scientific and Industrial Research in India. This 

platform contains a database, a predictor, and a data visualization module78. 

The aBiofilm database contains biological, chemical, and structural information on 

5057 entries belonging to 1720 unique antibiofilm agents, targeting 140 microorganisms. 

All information was obtained by an intensive literature search which resulted in the before 

mentioned 5027 entries, which were obtained from 526 articles and manually curated. 

The biological information reported in the aBiofilm database includes the type of anti-

biofilm agents, organism and strain targeted, concentration of agent, percentage of 

inhibition, stage of biofilm targeted and the mechanism of action. The chemical 

information includes the IUPAC name, SMILES, molecular formula, molecular weight, 

InChI and Lipinski’s rule of five. This information was extracted from various chemical 

repositories. The structural information contains the 2D and 3D representation of every 

molecule in the database78. 

This database is organized into six different sub-categories. These sub-categories 

are anti-biofilm agents, type of anti-biofilm agents, target organism, type of target 

organism, preliminary assays, and the Journal name. The anti-biofilm agents sub-

category, presents a list of all available molecules. Selecting one of the agents leads to 

a different page where all entries in this database featuring this compound can be seen. 

The AntiBiofilm_ID of a specific entry directs to a page featuring all biological, chemical, 

and structural information about this entry. The other sub-categories are organized in a 

similar way, the only difference being the initial list being associated to each sub-

category. The user can also search the database in a specific search page. The search 

can be done by Antibiofilm_ID, antibiofilm agent, SMILES, Antibiofilm agent type, 

Organism, Preliminary assay and/or PubMed ID78. 

aBiofilm also contains a Quantitative Structure–Activity Relationship (QSAR) based 

predictor for the inhibition efficiency of any chemical against biofilm. The Support-Vector 

Machine model development was based on a curated set of 492 chemicals. These 

chemicals were divided into 450 molecules for training and 42 for independent validation. 

Any user can input a chemical in SMILES, sdf or mol format, or draw the chemical in a 
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JSME window. The result is a table which includes the SMILES code of the input 

molecule, the predicted anti-biofilm efficacy, 2D and 3D structures and some general 

properties. The molecule is also searched in the database for any similar compounds78. 

The data visualization module is divided into three sections: (1) A CIRCOS plot 

displaying the organisms and the step of biofilm formation targeted by the anti-biofilm 

compounds present in the database; (2) cytoscape based interaction maps highlighting 

the relationship between the anti-biofilm agents, inhibition efficiency and stage of biofilm 

formation for each targeted organism; (3) a chemical clustering was used to represent 

the diversity of the compounds available in the database78. There are several studies 

that have taken advantage of the aBiofilm database capabilities. 

The large number of compounds available in this database can have multiple uses. 

These molecules can be used as a training set for the development of new machine-

learning tools to predict new antibiofilm agents. It can also be a very good source for the 

development of new databases regarding antibiofilm or antimicrobial agents. This 

database can also be used on molecular docking and virtual screening protocols. The 

compounds available in this database can be used either on the optimization of the 

protocols, being used as sets of active and/or inactive molecules for specific organisms, 

or on the virtual screening process itself. As with other predictors, the aBiofilm predictor 

can also be used to predict the activity of several agents before advancing to further 

experiments. This early prediction can be done before further computational studies or 

before advancing to screening procedures, reducing the number of compounds to be 

evaluated. 

Tiwari93 studied the secondary metabolites produced by nosocomial pathogens, to 

discover if these molecules contributed to their survival over other bacteria in the hospital 

setup. In one of the steps of this study, the aBiofilm predictor was used to predict the 

anti-biofilm activity of 23 antimicrobial secondary metabolites, with multiple molecules 

exhibiting a high or very high predicted anti-biofilm activity. This study concluded that 

these nosocomial pathogens carry antimicrobial secondary metabolites, and that most 

of them have anti-biofilm activity. 

Almeida et al.94 performed virtual screening studies involving the quorum sensing 

receptor present in Salmonella. Several plant compounds and nonsteroidal anti-

inflammatory drugs were docked into SdiA (Suppressor of division inhibitor receptor). 

SdiA is a homologue of LuxR, a transcriptional regulator from Vibrio fischeri, involved for 

the quorum sensing mechanism1. Besides the molecular docking studies, the aBiofilm 
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predictor was used as an indicator of the predicted anti-biofilm activity of each molecule. 

Most molecules tested in this study bind to at least one of the three structures of SdiA 

available. Many of these molecules were shown to have higher binding affinity than the 

native inducers of the quorum sensing mechanism and were predicted to have high anti-

biofilm activity. 

In addition, during the development of MDAD, a comprehensive microbe and drug 

association database, their creators used the aBiofilm database as one of the sources 

for the entries available in this database95. 

In general, the aBiofilm database is simple to use and features a large number of 

compounds, targeting multiple organisms. Even though there is currently no way to 

download compounds, either one by one or in batch, through its database and predictor, 

aBiofilm provides a helpful platform for researchers working in the development of anti-

biofilm agents. 

1.3.8 Biofilms Structural Database 

Over the last decade, there has been a very significant increase in the available 

structural information on proteins and enzymes involved in biofilm formation for many 

bacteria. Hundreds of crystallographic structures on potential targets for the 

development of new anti-biofilm drugs became available on the Protein Data Bank. This 

shift from the cellular to the molecular field was also accompanied by the availability of 

a large amount of chemical and molecular data on new active molecules on databases 

such as the ChEMBL and BindingDB. This, together with other biological or 

bioinformatics-oriented databases offers new possibilities in the application of 

techniques such as virtual screening96–98, protein-ligand docking99–101, QSAR 

models102,103, and molecular dynamics104,105, for the research of new anti-biofilm agents. 

In order to aid this research, the Biofilms Structural Database79  was developed in 2020 

at the University of Porto. BSD contains all available structural information on proteins 

involved in biofilm formation. This database can aid researchers both in the study of 

proteins involved in biofilm formation and in the study of substrate recognition, with the 

ultimate goal of helping the development of new anti-biofilm agents. 

BSD contains currently a total 425 PDB entries, which correspond to 133 unique 

proteins and 93 ligand molecules, from 42 bacteria. All information available on the 

database was obtained through literature search and all information and structures was 

manually checked and validated79.  
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Each entry contains the respective PDB code, three-dimensional representations for 

the representative fragments of the biomolecular (full protein, ligand and surrounding 

amino acid residues), an interactions map of the ligand, and general information about 

the structure. The general information includes the category of the protein, the 

mechanism of biofilm associated with it, the bacteria and specific strain, the ligand, the 

method by which the structure was obtained, resolution, year of deposition on the PDB, 

and the DOI of the corresponding publication. When available, each entry contains links 

to the corresponding sections in the ChEMBL, BindingDB, ExPASy, KEGG, and UniProt 

databases. This way, more information on each entry is readily available. Clicking on 

each ligand presents information including molecular weight, SMILES, molecular 

formula, InChI, PDB code, among other properties. Any selection can be downloaded as 

a comma-separated values (CSV) file, or as a collection of PDB structures. New entries 

can be suggested on a dedicated submission page. In this page, the user must enter 

their e-mail and the PDB code of the suggested structure. The user can also add further 

information. This includes the protein associated with this structure, the mechanism in 

which it is involved, the category, autoinducer type, bacteria, strain, gram-type, and DOI, 

as well as ChEMBL, BindingDB, ExPASy, KeGG and UniProt links79. 

This website also contains a page with statistical analysis of several indicators. These 

include bacteria, gram-type, type of autoinducer, resolution of the structure and the 

number of deposited structures per year79. 

BSD can be useful for a variety of computational techniques, particularly those 

requiring a molecular representation or description of the proteins involved. The user can 

easily download all available PDB structures for a specific protein, and use them for 

molecular docking, virtual screening, and molecular dynamics procedures. By providing 

links to ChEBML and BindingDB, the user can find multiple active compounds against 

the desired target. This can be useful for the development of QSAR or for optimizing 

virtual screening protocols.  

BSD helps researchers to visualize, explore and understand biofilm targets. 

Therefore, it is a useful tool in the development of effective antibiofilm agents. While still 

very recent, this database is expected to play an important role in this field, by connecting 

molecular drug discovery and biofilm research. 

1.3.9  Future Challenges 

While these seven databases are certainly useful tools for biofilm research, at 

different levels and with different purposes, much remains to be done. There is a marked 
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challenge for combining decades of research at the fundamental level, with the recent 

advances in genomic, proteomics, systems biology and high-throughput techniques, 

while preparing the future, in which big data and machine-learning will play an ever-

increasing role. This requires much larger and more comprehensive databases, in a 

dimension and diversity several orders of magnitude higher than the present available 

alternatives. 

The design and development of biofilm-related databases constitutes a specially 

demanding multidisciplinary challenge. This involves researchers from very diverse 

fields, such as: environmental sciences106,107, chemistry108,109, applied biology110,111, 

evolution112,113, ecology114,115, molecular biology116,117, medicine118,119 and dentistry120,121. 

Biofilm data is dispersed through a number of data sources, targeted towards specific 

audiences, built with a different aim, and anchored on different premises. Combining this 

information in a structured way, through conventional databases, requires the use of 

carefully designed and specifically oriented architectures. This has limited the 

development of such type of databases. The recent development of unstructured big 

data databases will certainly be an interesting alternative for many of these problems. 

The availability of open access public databases, as well as the expected 

development of newer and larger ones, is supposed to play an important role for the 

success of biofilm related research. These databases allow the researchers access to a 

large body of data, which can be directly applied for studying of individual biofilm targets 

or identifying new molecules with potential biofilm inhibiting activity. Additionally, they 

can be used to develop and validate new specifically designed tools and algorithms. 

Furthermore, they can also promote the exchange of information between researchers 

of related fields, stimulate cooperation and accelerate the creation of knowledge. These 

goals can be obtained by enabling incremental research built from previous results and 

decreasing the number of repeated or irrelevant experiments. 

1.4 Protein-Ligand Interactions  

In order to perform molecular docking studies, it is necessary to understand the 

binding model and physicochemical mechanisms involved in protein-ligand binding. 

Many proteins function through the reversible binding of other molecules, called 

ligands. Ligands can be any kind of molecule, ranging from small molecules to a full 

protein. A ligand binds to the protein at the binding site. This site should be 

complementary to the ligand in shape, size, charge and hydrophobicity or hydrophilicity.  

This means that the interaction is specific, with the protein being able to distinguish 
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between thousands of different molecules and selectively interact with only one or a few 

types122. 

Proteins are flexible entities whose molecular motions cover a wide range of 

timescales/amplitudes. Protein motions occur on time­scales ranging from 10­14 to 10-12 

s and covering amplitudes ranging from 0.01 Å to more than 100 Å. Several types of 

motions can be distinguished according to the respective timescales. These include bond 

stretching, angle bending, constraint dihedral torsions, unhindered surface side chain 

motions, loop motions, helix coil transitions, collective motions, and protein folding. 

Specific conformational changes are often indispensable to a protein’s function. This is 

often observed when it comes to the binding of a ligand to a protein, which is coupled by 

a conformational change in the protein in order to make the binding site more 

complementary to the ligand122. 

There are three models which have been proposed to explain the protein-ligand 

binding mechanisms, the lock-and-key model, induced fit and conformational selection. 

In the lock-and-key model, both the protein and the ligand are rigid, and their binding 

interfaces are perfectly matched, meaning that only the correctly sized ligand can be 

inserted into the binding pocket. This leads to a problem, because this model cannot 

explain when a protein binds a ligand even though their initial shapes do not match. This 

is explained by the induced fit model. This model assumes the binding site is flexible and 

interacting with a ligand leads to a conformational change at the binding site. Both the 

lock-and-key and induced fit model treat the protein as a single stable conformation. 

However, most proteins are inherently flexible, and the conformational selection model 

takes this into account. This model proposes that the native state of the protein does not 

exist as a single, rigid conformation, but as a vast ensemble of conformational states that 

exist in equilibrium. The ligand is able to bind selectively the most suitable conformational 

state, shifting the equilibrium towards it. Since all three models have been observed 

experimentally, all three may exist in a simultaneous or sequential manner, covering a 

vast spectrum of binding events123. 

In general, the reversible binding of a protein to a ligand can be described as:  

𝑃 + 𝐿 ⇋ 𝑃𝐿 

Equation 1- Equation for protein-ligand binding. 

This equilibrium is characterized by the association constant (Ka) calculated as:  
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Equation 2 - Association constant. 

The equilibrium associated with the inverse reaction (dissociation of the protein-

ligand complex) is characterised by the dissociation constant (Kd)122:  

𝐾𝑑 =  
[𝑃][𝐿]

[𝑃𝐿]
 

Equation 3 - Dissociation constant. 

Neglecting entropy as a discriminative effect for binding, these equilibrium constants 

(Ka and Kd) also provides an indirect measure of affinity of the ligand to the protein. For 

this purpose, the dissociation constant is more used than the association constant. A 

lower value of Kd corresponds to a higher affinity122. 

The dissociation constant is correlated with the standard molar Gibbs energy of 

association (∆aG0) by the equation 4, where R is the ideal gas constant (8.3134 J mol-1 

∙K-1) and T is the temperature expressed in Kelvin. In standard conditions, the binding of 

a ligand to a protein is favourable from a thermodynamic point of view when (∆aG0) is 

negative122. 

𝛥𝑎𝐺
𝑜 = −𝑅𝑇𝑙𝑛𝐾𝑑 

Equation 4 - Relationship between standard molar Gibbs energy of association and the dissociation 
constant. 

Gibbs energy of association can also be expressed in function of its enthalpic 

component, ∆aH0, and the change in entropic components (∆aS0), as shown in equation 

5122. 

𝛥𝑎𝐺
𝑜 = 𝛥𝑎𝐻

𝑜 − 𝑇𝛥𝑎𝑆
𝑜 

Equation 5 - Standard molar Gibbs energy of association as a function of its enthalpic and entropic 
components. 

The standard molar enthalpy of association (∆aHo) mainly reflects the energy change 

of the system in response to the binding of the ligand to a protein. For reversible ligands, 

this thermodynamic quantity is strongly dependent on the energetic balance between the 

broken and formed non-covalent interactions. This included van der Waals, electrostatic 

and hydrogen bonds contributions. These interactions are broken in the protein-solvent 

and ligand-solvent species. All these individual components can have a positive or 
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negative contribution, and the net standard molar enthalpy change is a result of a sum 

of all these components123. 

Entropy can be correlated with the information available about the system122. It can 

measure how evenly the heat will be distributed over the thermodynamic system. In an 

isolated system, the second law of thermodynamics explains that the heat flows 

spontaneously from regions of higher temperature to regions of lower temperature, 

reducing the information available in the initial system. The standard molar entropy of 

association ∆aSo is a global thermodynamic property of a system, which can be 

calculated as the sum of three compontents123. 

o
/

ooo
traconfasolvaa S+S+S=S   

Equation 6 - Standard molar enthalpy of association ∆aSo decomposition. 

ΔaS0
solv is the component associated with the desolvation/solvation events and 

usually favours the association process. ΔaSo
conf is the component associated with the 

conformation changes occurring in both protein and ligand upon binding. These 

components tend to disfavour the association process. ∆aSo
r/t is the component 

associated with the transformation of three translation and three rotational higher-

entropic degrees of freedom of the separated species (protein and ligand) in six lower-

entropic vibrational degrees of freedom in the protein-ligand complex. This component 

always contributes unfavourably to the association process123.  

For the binding to occur, the association process must overcome the inescapable 

entropic penalties such as the negative ∆aSo
r/t. This can be achieved through large 

solvent entropy gain or favourable protein-ligand interactions123. 

The Gibbs energy of association is the driving force of the protein-ligand binding 

process. Therefore, this thermodynamic quantity is used, together with its components, 

in computer-aided drug design to predict the binding and affinity of a ligand to a specific 

protein. 
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2. Computational methods  

2.1 Computer-Aided Drug Design 

The main purpose of the pharmaceutical industry is to introduce in the market new 

molecular entities (NMEs). A NME is a medicine containing an active ingredient which 

has not been previously approved in any form. The process of drug discovery and 

development is very expensive when it comes to money, manpower, and time. 

Introducing a NME to the market takes on average 10 to 15 years and it can cost between 

800 million and 1.8 billion US dollars124. Advances in chemical synthesis allowed the 

increase of compound databases and the development of high-throughput screening 

(HTS). HTS is a brute force approach, screening a high number of molecules to find the 

ones with promising activity. Is has the advantage of not requiring prior knowledge, 

minimal compound design and often resulting in hit compounds125. However, the hit rate 

is usually low and the lack of understanding of the molecular mechanism can hamper 

the search of promising candidates125,126. Furthermore, the number of NMEs launched 

into the market has decreased over the years. With this in mind, computer-aided drug 

design (CADD) has become essential for the preliminary stage of drug discovery, in a 

process that is more cost-efficient, and it minimizes failures in the final stage126. 

The interest in CADD started to rise in 1981, after an article published in Fortune 

magazine about drug design using this technique at Merck127. However it was only during 

the last decade that this concept re-emerged as a way to significantly reduce the number 

of molecules needed to screen for obtaining the same number of lead compounds 

discovered125. This is achieved because compounds that are predicted to be inactive are 

skipped, and those predicted to be active are prioritized. This way, the cost and workload 

are reduced, while the lead discovery rate is maintained, when comparing to a full 

HTS125. 

This field of research has been through a raise of popularity and expansion due to 

the advances in computational power and software, together with the increased amount 

of 3D structures of potential drug targets being deposited on the protein databank128. 

CADD is defined by IUPAC as “all computer assisted techniques used to discover, 

design and optimize compounds with desired structure and properties” and has three 

main uses: filter large compound libraries into smaller sets of predicted active 

compounds that can then be tested experimentally; guiding the optimization of lead 

compounds by increasing its affinity to the target, or to optimize pharmacodynamic and 
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pharmacokinetic properties; building new drugs, one functional group at a time or by 

joining fragments together125.  

This technique can be divided into structure-based and ligand-based CADD. 

Structure-based CADD depends on the knowledge of the target protein to calculate 

interaction energy for all tested compounds. It is usually used when high-resolution of 

structural data of the target protein is available. It includes methods such as molecular 

docking, de novo design, molecular dynamics, and pharmacophore modelling. Ligand-

based CADD depends on the knowledge of known active and inactive molecules to 

perform chemical similarity searches or construct predictive, quantitative structure-

activity relation models. It is used when little or no structural information of the target is 

available. It includes methods such as QSAR, pharmacophore modelling and ligand-

based virtual screening125. 

2.2 Molecular Docking 

2.2.1 Definition  

Molecular docking is a computational tool which has become essential in drug 

discovery. The goal of this method is to predict the binding position of a specific molecule, 

the ligand, in relation to another, usually larger, called the receptor129. Docking generates 

an ensemble of 3D conformers of a complex, using the known structures of its free 

components. In protein-ligand docking, this entails a search through different ligand 

conformations and orientations within the target protein which are then ranked by the 

binding affinity of each alternative99. 

The first step of a docking study is defining the area on the protein where the ligand 

may bind, the binding region. If the location of the binding site is known, programs usually 

allow the user to restrict the binding region to a specific section of the protein. If nothing 

is known about the binding site, a blind docking can be made, in which the entire surface 

of the target is scanned for putative binding pockets. Predictively, blind docking is much 

less reliable and should only be used as a last resort130. 

There is a large and ever-increasing number of molecular docking programs. All of 

them involve the search for the preferred poses of the ligand in relation to the receptor.  

The two main components for a molecular docking procedure are the search algorithm 

and the scoring function. The search algorithm generates several possible conformations 

and orientations of the ligand, and eventually the protein, which fit the ligand into the 

binding pocket of the target receptor. The scoring function is responsible to generate a 
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score for the different poses generated by the search algorithm and then for ranking 

them. The score should represent the thermodynamics of ligand-protein interaction in 

order to detect the true binding models128. 

Since most molecular docking programs are developed for being applied to large 

databases, they are developed to be fast. This means there are several simplifications 

in both the search algorithms and the scoring functions. Despite that, at the end of the 

docking study, the best-scored solution should correspond to a true binding 

conformation. If experimental data exists, the best-scored pose should be close to what 

is observed128. 

2.2.2 Search Algorithms 

As previously stated, the search algorithm has the job of generating an ensemble of 

protein-ligand poses, hopefully featuring the correct one. Generating poses for a ligand-

protein complex means exploring all six degrees of translational and rotational freedom, 

as well as the conformational degrees of freedom of the ligand and the protein. This 

leads to a number of possible conformations that is too computationally expensive to be 

searched in an acceptable time frame. Therefore, docking algorithms integrate various 

approximations to efficiently search the pose space without an unreasonable 

computational time. These tools can be categorized into rigid-body, flexible-ligand and 

flexible protein algorithms130.  

2.2.2.1 Rigid-body algorithms 

Rigid-body algorithms are the most basic and the ones that sample the 

conformational space the fastest. These algorithms do not consider the conformity 

flexibility of both the ligand and the protein, only sampling the 6 degrees of freedom of 

the rotational and translational space. This provides several limitations considering that 

protein-ligand complexes are very dynamic and flexible, and these conformational 

variations are not being considered. This method was used in earlier ligand-protein 

docking studies, when the computational power was less than what is available today. 

They are currently used only in protein-protein docking, due to the special complexity of 

these systems130. 

2.2.2.2 Flexible-ligand algorithms  

Flexible-ligand algorithms are currently the most widely used. These consider the 

protein as a rigid body and the protein as fully flexible. They explore the 6 translational 

and rotational degrees of freedom of the complex as well as the conformational degrees 
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of freedom of the ligand. Being more computational demanding, these algorithms use 

several approximations to permit their use in an efficient manner. They can be 

categorized into three groups: systematic methods, random or stochastic methods and 

molecular simulation methods130. 

a) Systematic search docking algorithms try to explore all conformational degrees 

of freedom of the ligand, and they are also divided into three categories: 

conformational search methods, fragmentation methods and database 

methods130. 

• Conformational search methods explore systematically all rotatable bonds 

by 360º using small, fixed increments to generate all possible 

conformations. With a higher number of rotatable bonds there is a much 

higher number of conformations generated, with the final result being 

impossible with the current computational power. Therefore, several 

restrains on the ligand bonds are applied to reduce the number of 

conformers generated130.  

• Fragmentation search methods split the ligand into several fragments which 

are then successively docked into the binding site and covalently linked in 

order to recreate the original ligand. Instead, the ligand can be divided into 

a core fragment which is docked first with the left behind fragments being 

added in an approach known as “incremental construction”  or “anchor and 

grow procedure”130. 

• Database search methods use databases of pre-generated conformational 

ensembles to include flexibility in the docking process, considering intra and 

intermolecular distances. Using a small set of constrained distances, 

different poses of the ligand are determined130. 

b) Random or stochastic algorithms search the ligand conformational space by 

doing random modifications in its conformation, which are then accepted or 

rejected by a predefined probability function. Six main types of docking methods 

use random algorithms: Monte Carlo, Genetic Algorithms, Tabu Search, Particle 

Swarm Optimization, Differential Evolutionary Algorithms and Evolutionary 

Gaussians Algorithms130. 

• Monte Carlo methods dock the ligand inside the binding site using many 

random translations and rotations, decreasing the probability of becoming 

trapped in a local minimum. The simple energy minimization functions used 

in these methods do not need any derivative information and are very 

efficient in stepping energy barriers, allowing a good sampling of the 
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conformational space. The generated conformations are evaluated by a 

Boltzmann probability function130. 

• Genetic algorithms are based on genetics and the theory of biological 

evolution. It starts with an initial population of several ligand poses 

(chromosomes) generated randomly. Each pose is represented by an 

individual. Each individual is defined by a set of genes, which describe the 

ligand conformation and its translation and orientation in relation to the 

protein. The full set of these variables is called the genotype and the atomic 

coordinates of the ligand are the phenotype. Through various generations, 

or cycles, genetic operators such as mutations, crossovers and migrations 

are applied to random individuals of the population to explore the 

conformational space. At the end of each generation, at random, individuals 

are evaluated with conformations with negative evolution being excluded. 

The process continues until the population satisfies a predefined fitness 

function. Various programs use these algorithms including GOLD and 

AutoDock which were used in this work. Differential Evolutionary algorithms 

are derived from GA methods130.  

• Tabu Search algorithms move from one pose to another, imposing several 

restrictions to make sure that previous poses are not revisited. The Root 

Mean Square Deviation (RMSD) of a new conformation is calculated in 

relation to a “tabu list” featuring the visited poses and used to accept or 

reject the new conformation130. 

• Particle Swarm Optimization is a simpler and faster process than GA 

methods. The population of ligand poses is called a “swarm” and the poses 

are called “particles”. Each ligand moves within the search space, keeping 

in its memory the pose with the lowest energy130. 

c) Molecular simulation algorithms include Molecular dynamics simulations and 

Energy minimization. 

• Molecular dynamics simulations are based on the integration of the 

Newton’s equations of motion. This method is broadly used in many 

computational studies, however, its application in molecular docking 

procedures is limited. In fact, this technique is not very effective to explore 

the conformational space. It also shows problems such as difficulty crossing 

high-energy rotational barriers. On the other hand, they can include explicit 

solvation and explore low-energy conformations130.  
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• Energy minimization methods are used not as a search technique but rather 

as a complementary method that refines the ligand poses. It works by 

looking to the relative minimum closest to the initial pose. 

2.2.2.3 Flexible-protein algorithms  

Many molecular docking studies showed that the conventional algorithms can give 

satisfactory results, even when the protein is considered as a rigid entity, (lock and key 

model of molecular recognition). However, many proteins undergo a range of structural 

changes upon ligand binding. These range from a local rearrangement of side chains 

near the binding site to less common backbone movements (induced fit model). In order 

to address this issue, specialized search algorithms were developed to account for the 

partial flexibility of the protein130. 

2.2.3 Scoring functions 

Scoring functions are responsible for outlining the correct poses from the incorrect 

ones. In order to achieve its goal in a reasonable time, the binding affinity is estimated 

by using several assumptions and simplifications129. Considering that numerous physical 

phenomena involved in molecular recognition are not considered, the accuracy can be 

compromised. Therefore, the development of scoring functions is not easy. Their 

accuracy can be evaluated by their ability to achieve these goals: (1) It must estimate 

the interaction between the ligand and the receptor, with this value being proportional to 

the Gibbs energy of association; (2) The poses of a ligand must be ranked correctly with 

the best scored being similar to the pose observed experimentally; (3) It must be able to 

distinguish molecules that bind the target from those that do not, with the ones that bind 

having a higher score; (4) It must be fast enough so it can be used in molecular 

docking130. 

The current number of scoring functions is large and always increasing. They can be 

separated into four main groups: force field scoring functions, empirical scoring functions, 

knowledge-based potentials and consensus scoring130.  

2.2.3.1 Force Field Based Scoring Function 

Force Field Based scoring functions are based on molecular mechanics force fields 

such as AMBER. Instead of estimating the free energy of binding they estimate the 

interaction energy between the protein and the ligand. Originally these scoring functions 

only accounted for non-bonded terms (Van der Waals, electrostatic) but nowadays other 

terms such and hydrogen bonds, are also taken into account130. 
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The force field used were design to model enthalpy gas-phase contributions to 

structure and energetics. Therefore, important terms for the ligand-receptor interaction, 

for instance solvation and entropic terms, were not included. This is corrected by the 

inclusion of additional terms. Implicit solvation methods such as GBSA or PBSA account 

for the desolvation energies and a torsional entropy term estimates the conformational 

entropy lost with the binding process130.  

The downside of this scoring function is the fact that it requires the use of cut-off 

distances for the treatment of non-bonded interactions. These are chosen arbitrarily 

which compromises the accurate treatment of long-range effects in the binding 

process130. 

2.2.3.2 Empirical Based Scoring Function 

Although the terms in Empirical Based scoring functions have counterparts in force-

field molecular mechanics, they are usually simpler. These scoring functions decompose 

the overall Gibbs energy of association into components (ΔGi), as it can be seen on 

equation 7. In this equation wi  are weight factors that are derived from regression 

analysis on a training set of protein-ligand complexes with experimentally known binding 

affinities130. 


i

ii ΔGw=Score  

Equation 7 - General Empirical based scoring function. 

However, the usage of experimental data means that we cannot be secure that these 

functions will be able to predict the binding affinity of ligands which are very different from 

the ones used in the training set. This problem has been declining with the rapid increase 

in the number of protein-ligand complexes with known 3D structures and affinities, which 

allows the developing of more general empiric scoring functions130.   

2.2.3.3 Knowledge Based Scoring functions 

Knowledge Based scoring functions reproduce experimental data using statistical 

methods instead of reproducing binding affinities. These functions use statistic potentials 

to predict the frequency of occurrence of typical interactions, such as different atom-atom 

pair contacts, obtained from experimentally determined structures. This method 

assumes that if an interatomic distance is more frequent then average, it represents a 

favourable contact. The general formula can be seen in equation 9. In this equation i and 

j stand for a protein atom and a ligand atom, r is the respective distance, N is the number 
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of all possible atom pairs and uij corresponds to the pairwise potential between atom i 

and j130. 

𝑆𝑐𝑜𝑟𝑒 =  ∑𝑢𝑖𝑗(𝑟)

𝑁

𝑖,𝑗

 

Equation 8- General Knowledge based scoring function. 

The main advantage of knowledge-based scoring function is its computational 

simplicity, only requiring knowledge of a set of protein-ligand complex structures, which 

has been increasing over the years. It also is as fast as empirical scoring functions. The 

main disadvantage is that their parameterisation is limited by the sets of complex 

structures known which are used to develop the algorithm130. 

2.2.3.4 Consensus scoring functions 

Consensus scoring functions use information from different scoring functions in order 

to improve the probability of finding the correct solution. Each scoring function is able to 

predict the pose but cannot predict the binding affinity since the terms used to describe 

this interaction are incomplete. There have been various studies which demonstrated 

that using consensus scoring functions can improve the performance by compensating 

the deficiencies of each scoring function, being able to reduce the number of false 

positives identified.130 

2.2.4 Software 

2.2.4.1 Autodock 4 

Autodock was originally developed by Morris and co-workers and released 1990. Its 

latest version, Autodock 4, was released in 2009. This free protein-ligand docking 

program is one of the most common and most cited software in this field. It has shown 

good accuracy and high versatility, which makes this program very appealing, mainly for 

beginners99,131.  

To search the conformational space around the protein, Autodock uses a grid-based 

method in which a grid is placed on the protein and a probe atom is sequentially placed 

at each grid point. The interaction energy between the probe and the target is calculated 

and stored in the grid that serves as a lookup table during the docking simulation. This 

program primarily uses a Lamarckian genetic searching algorithm, although Monte Carlo 

simulated annealing and a traditional genetic algorithm are also available131. 
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As previously stated, Autodock uses a Lamarckian search algorithm. In the more 

common Darwinian genetic search algorithms, there is a one-way transfer of information, 

from the genotype to the phenotype. On the other hand, the Lamarckian algorithm allows 

each individual conformation to search their conformational space, find their local 

minima, and pass this information to the next generation. This is an inverse mapping 

function, in which a genotype is acquired from a given phenotype131,132. 

Autodock4 uses an empirical scoring function for estimating the Gibbs energy of the 

ligand-protein association process (aG,) in an aqueous environment. The goal is to 

capture the complex enthalpic and entropic contributions in a simplified way. This 

process is then described by a hypothetical mechanism involving two steps, as seen in 

figure 6. 

 

Figure 6 - Hypothetical mechanism for a protein-ligand association. 

In the first step, the molecular fragments (P and L) are rearranged, assuming the 

geometries (Pbound and Lbound) adopted in the complex. In the second step, the 

rearranged species associate with each other, maintaining their geometries and 

originating the complex (PL). The scoring function is then calculated according to this 

approach.  

𝑆𝑐𝑜𝑟𝑒 ≈ 𝛥𝑎𝐺 ⇔ 𝑆𝑐𝑜𝑟𝑒 ≈ 𝛥𝑎𝐺1 + 𝛥𝑎𝐺2 

Equation 9 - Calculation of the Autodock 4 scoring function according to the hypothetical mechanism for a 

protein-ligand association presented in figure 6. 

In equation 9, aG1 and aG2 are the Gibbs energies associated with the steps 1 and 

2, respectively. However, the above-mentioned scoring function (Score) is only used for 

comparative purposes. This means that components considered as non-discriminative 

are neglected. These include the significant entropy reduction associated with the 

transformation of the six rotational and vibrational modes of the separated species 

P + L

Pbound + Lbound

PL

(1)

(2)

P + L

Pbound + Lbound

PL

(1)

(2)
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(protein and ligand) and the six vibrational normal modes in the protein-ligand complex. 

In this context, aGo
1 is considered to have an energetic nature: 

𝛥𝑎𝐺1
𝑜 ≈ 𝛥𝑉1 ⇔ 𝛥𝑎𝐺1

𝑜 ≈ 𝛥𝐸𝑟𝑒𝑎𝑟𝑟(𝐿) + 𝛥𝐸𝑟𝑒𝑎𝑟𝑟(𝑃) ⇔ 

𝛥𝑎𝐺1
𝑜 ≈ 𝐸(𝐿𝑏𝑜𝑢𝑛𝑑) − 𝐸(𝐿) + 𝐸(𝑃𝑏𝑜𝑢𝑛𝑑) − 𝐸(𝑃) 

Equation 10 - First component of the Autodock 4 scoring function, associated with the step 1 of the 
hypothetical mechanism for a protein-ligand association process presented in figure 6. 

In this equation E(X) represents the energy of a molecular specie X (X = L, P, Pbound 

or Lbound). If a rigid-protein search algorithm is adopted, E(Pbound) = E(P) and the second 

term of equation 10 is neglected.  

The second component (aGo
2) is considered to have mix energetic/entropic nature. 

This component uses pairwise terms to assess the protein-ligand interactions, an 

empirical method to estimate the contribution of the desolvation process and a corrective 

term for estimating the decrease of torsional entropy associated with side chains/groups 

involved in the binding process132. 

𝛥𝑎𝐺2 = 𝛥𝑎𝐸2,L‑J + 𝛥𝑎𝐸2,hbond + 𝛥𝑎𝐸2,𝑒𝑙𝑒𝑐 + 𝛥𝑎𝐺2−𝑑𝑒𝑠𝑜𝑙𝑣 + 𝛥𝑎𝑆2,𝑡𝑜𝑟𝑠 ⇔ 

𝛥𝑎𝐺2 = 𝑤𝑣𝑑𝑊∑(
𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐵𝑖𝑗

𝑟𝑖𝑗
6 )

𝑖,𝑗

+ 𝑤ℎ𝑏𝑜𝑛𝑑∑𝐸(𝜃𝑖𝑗) (
𝐶𝑖𝑗

𝑟𝑖𝑗
12 −

𝐷𝑖𝑗

𝑟𝑖𝑗
10)

𝑖,𝑗

+ 

𝑤𝑒𝑙∑
𝑞𝑖 𝑞𝑗

𝜀(𝑟𝑖𝑗)𝑟𝑖𝑗
𝑖,𝑗

+ 𝑤𝑑𝑒𝑠𝑠𝑜𝑙𝑣  ∑(𝑆𝑖 𝑉𝑗 + 𝑆𝑗 𝑉𝑖) 𝑒
−𝑟𝑖𝑗

2 (2𝜎2)⁄

𝑖,𝑗

+ 𝑤𝑡𝑜𝑟𝑠𝛥𝑁𝑡𝑜𝑟𝑠 

Equation 11 - Second component of the Autodock 4 scoring function, associated with the step 3 of the 
hypothetical mechanism for a protein-ligand association process presented in figure 6. 

The weight constants w were optimized, using a least squares fitting using a set of 

Gibbs energies of association determined by experimental techniques. The first term 

(𝛥𝑎𝐸2,𝐿−𝐽) is a typical Lennard-Jones potential energy for estimating the dispersion/short-

range repulsion interactions. The associated parameters (Aij and Bij) were obtained from 

the Amber force field. The second term (𝛥𝑎𝐸2,ℎ𝑏𝑜𝑛𝑑) is a directional hydrogen-bond 

potential energy. The associated parameters (Cij and Dij) are fitted for obtaining a 

maximal well depth of 5 kcalmol-1 at 1.9 Å for the OH and NH hydrogen-bonds, and a 

depth of 1 kcalmol-1 at 2.5 Å for the SH ones. E(ij) is a penalty energy factor, which 

increases with the deviation on the hydrogen-bond angle i away from its ideal value. 

The third term (𝛥𝑎𝐸2,𝑒𝑙𝑒𝑐) is a Coulomb potential energy used for estimating the 

electrostatic interactions. The fourth term (𝛥𝑎𝐺2,𝑑𝑒𝑠𝑜𝑙𝑣
𝑜 ) is associated with the desolvation 
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process. This term has a mixed energetic/entropic nature. It is based on the volume (V) 

of the atoms surrounding a given atom, weighted by a solvation parameter (S) and an 

exponential term based on the distance. The distance weighting factor  was set to 3,5 

Å. The final term (𝛥𝑎𝑆2,𝑡𝑜𝑟𝑠) is associated with the loss of torsional entropy upon binding. 

This term is directly proportional to the variation on the number of rotatable bonds 

(Ntors), from intermediate unbound state (Pbound + Lbound) to the final bound state (PL). 

The remaining terms have the following physical meanings: rij is the distance between 

the atoms i and j, qi and qj are the respective charges and (rij) is a distance-dependent 

dielectric constant133. 

2.2.4.2 Autodock Vina 

Following the success of previous Autodock versions, Autodock Vina was developed 

by Trott and Olson and released in 2009. Vina maintains some of the original ideas from 

Autodock 4, but it is conceptually different. It has shown to be faster and that it predicts 

binding poses more accurately then Autodock 499,134. 

Vina uses an iterated local search global optimizer, in which several steps consisting 

of a mutation and a local optimization are taken, each being accepted according to the 

Metropolis criterion. The local optimization is accomplished using the Broyden-Fletcher-

Goldfarb-Shanno (BFSG) method. BFSG uses both the value of the scoring function and 

its derivatives. Although it may take longer to evaluate the derivatives, it can speed up 

the optimization considerably. The number of steps necessary for obtaining good 

solutions depends on each application134.  

The scoring function (c) used by Vina, is a combination of the knowledge-based and 

empirical scoring functions. It is expressed by a pairwise additive potential, as is shown 

on equation 12. The respective summation includes all pairs of atoms (i,j) which can 

change the respective relative distance (rij) during the molecular docking procedure, with 

the exception of those involved in 1-4 interactions134. 

𝑐 =  ∑𝑓𝑡𝑖𝑡𝑗(𝑟𝑖𝑗)

𝑖<𝑗

 

Equation 12 - Autodock Vina scoring function. 

 

In equation 12, ti and tj are the types assigned to atoms i and j respectively. In this 

equation, 𝑓𝑡𝑖𝑡𝑗  is an effective interaction potential between these atoms. This scoring 
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function can then be decomposed in an intramolecular (cintra) and an intermolecular 

component (cinter): 

𝑐 = 𝑐𝑖𝑛𝑡𝑟𝑎 + 𝑐𝑖𝑛𝑡𝑒𝑟 

Equation 13 - Decomposition of the Autodock Vina scoring function. 

The search algorithm attempts to find the global minimum of c, which corresponds to 

a conformation designated as k. Its Gibbs energy of association (𝛥𝑎𝐺𝑘) is estimated from 

the correspondent intermolecular scoring function (𝑐𝑖𝑛𝑡𝑒𝑟𝑘): 

𝛥𝑎𝐺𝑘 ≈ 𝑔(𝑐𝑖𝑛𝑡𝑒𝑟𝑘) ⇔ 𝛥𝑎𝐺𝑘 ≈ 𝑔(𝑐𝑘 − 𝑐𝑖𝑛𝑡𝑟𝑎𝑘) 

Equation 14 - Estimation of the Gibbs energy of association, for the lowest-scoring conformation obtained 
with the Autodock Vina search algorithm. 

In equation 14, g is an arbitrary strictly increasing smooth function134. 

2.2.4.3 GOLD 

Genetic Optimization for Ligand Docking, or GOLD, is a docking program that was 

originally developed in 1997. This software, resulted from a collaborative project 

involving the University of Sheffield, the GlaxoSmithKline and the Cambridge 

Crystallographic Data Centre. This is one of the most cited docking programs in the 

literature. It uses a genetic algorithm to generate the ligand poses and has an option of 

four scoring functions to use. These are the Astex Statistical Potential (ASP), ChemPLP, 

CHEMSCORE, and GOLDSCORE. The docking procedure can be set-up using the 

Hermes graphical user interface99,135. 

a) The Astex Statistical Potential is an atom-atom potential drawn from a database 

of protein-ligand complexes. It is a knowledge-based scoring function. 

Therefore, it generates statistical potentials using information about the 

frequency of interaction between ligand and protein atoms from existing ligand-

protein structures. ASP differs from other statistical potentials by using a 

reference state, which determinates how the raw distribution of observations is 

transformed into potentials. The reference state is the expected number of 

contacts, if there are no interactions between the atoms136.  

b) ChemPLP is an empirical scoring function which uses the Piecewise Linear 

Potential (PLP) to model the steric complementarily between the protein and 

the ligand. In the PLP scoring function two different piecewise functions are 

defined, one for repulsive/attractive, plp, and one for entirely repulsive 

interactions, rep. 
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𝑓𝑝𝑙𝑝  =  ∑ 𝑝𝑙𝑝(𝑝𝑟 , 𝑝𝐴,

 𝑝𝜖 𝑃𝑝𝑟𝑜𝑡−𝑙𝑖𝑔−𝑝𝑙𝑝

𝑝𝐵, 𝑝𝐶 , 𝑝𝐷 , 𝑝𝐸 , 𝑝𝐹)  

+ ∑ 𝑟𝑒𝑝(𝑝𝑟 , 𝑝𝐴, 𝑝𝐵
 𝑝𝜖 𝑃𝑝𝑟𝑜𝑡−𝑙𝑖𝑔−𝑟𝑒𝑝

𝑝𝐶 , 𝑝𝐷) 

Equation 15 - Piecewise Linear Potential scoring function. 

In equation 15, 𝑃𝑝𝑟𝑜𝑡−𝑙𝑖𝑔−𝑝𝑙𝑝 and  𝑃𝑝𝑟𝑜𝑡−𝑙𝑖𝑔−𝑟𝑒𝑝are sets of protein-ligand atom 

pairs used for the evaluation of each function. The distance between a ligand a 

protein atom is given by 𝑝𝑟. The parameters 𝑝𝐴 to 𝑝𝐹 are dependent on the 

interaction potential chosen137. 

It is the default scoring function for the current version of GOLD. Unlike the PLP 

scoring function on which it is based, ChemPLP uses some terms from the 

CHEMSCORE scoring function (see below). These include the distance and 

angle-dependent terms associated with hydrogen and metal bonds. The 

intraligand interactions are estimated using the Tripos force field and a heavy-

atom clash term. The ChemPLP function is presented in equation 16. In this 

equation, 𝑓𝑝𝑙𝑝 stands for the piece linear potential, 𝑓ℎ𝑏  for the hydrogen bonds, 

𝑓𝑚𝑒𝑡 for the metal interactions, 𝑓𝑐𝑙𝑎𝑠ℎ for the ligand clash potential, 𝑓𝑡𝑜𝑟𝑠 for the 

ligand torsional potential and 𝑐𝑠𝑖𝑡𝑒 for a quadratic potential responsible to guide 

the calculations to the binding site137. 

𝑓𝐶𝐻𝐸𝑀𝑃𝐿𝑃 = 𝑓𝑝𝑙𝑝 + 𝑓ℎ𝑏 + 𝑓ℎ𝑏−𝑐ℎ + 𝑓ℎ𝑏−𝐶𝐻𝑂 + 𝑓𝑚𝑒𝑡 + 𝑓𝑚𝑒𝑡−𝑐𝑜𝑜𝑟𝑑 + 𝑓𝑚𝑒𝑡−𝑐ℎ

+   𝑓𝑚𝑒𝑡−𝑐𝑜𝑜𝑟𝑑−𝑐ℎ + 𝑓𝑐𝑙𝑎𝑠ℎ + 𝑓𝑡𝑜𝑟𝑠 + 𝑐𝑠𝑖𝑡𝑒 

Equation 16 - ChemPLP scoring function. 

c) CHEMSCORE is an empirical scoring function derived from a set of 82 protein-

complexes with experimentally measured binding affinities. It estimates the free 

Gibbs energy of association using equation 17138,139. 

𝐶ℎ𝑒𝑚𝑆𝑐𝑜𝑟𝑒 ≈ 𝛥𝑎𝐺𝑘 ⇔ 𝐶ℎ𝑒𝑚𝑆𝑐𝑜𝑟𝑒 = 𝛥𝑎𝐺𝑟𝑒𝑓 + 𝛥𝑎𝐺(𝐿) + 𝛥𝑎𝐺(𝑃𝐿) 

Equation 17 – General decomposition of the CHEMSCORE scoring function. 

In equation 17 𝛥𝑎𝐺𝑟𝑒𝑓 is a reference value, 𝛥𝑎𝐺(𝐿) is the component associated 

with the ligand’s conformational rearrangement upon binding and 𝛥𝑎𝐺(𝑃𝐿) is the 

component associated with the protein-ligand interactions. 

The ligand conformation rearrangement component 𝛥𝑎𝐺(𝐿) is considered to have 

pure energetic nature. It reflects the energy penalty associated with the adoption 
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of a non-optimized geometry by the ligand, in the PL complex, for maximizing its 

interactions with the protein target138 (see equation 18). 

𝛥𝑎𝑆(𝐿) ≈ 0 ⇒ 𝛥𝑎𝐺(𝐿) ≈ 𝛥𝑎𝐸(𝐿) ⇔ 𝛥𝑎𝐺(𝐿) = 𝐸𝑃𝐿(𝐿) − 𝐸(𝐿) 

Equation 18 - The ligand conformation rearrangement component of CHEMSCORE scoring function. 

In the previous equation, 𝛥𝑎𝑆(𝐿) is the ligand conformation rearrangement 

entropy, 𝛥𝑎𝐸(𝐿) the ligand conformation rearrangement energy, 𝐸𝑃𝐿(𝐿) the 

energy of the ligand in the geometry adopted upon binding with the protein, and 

𝐸(𝐿) the energy of the ligand in its optimised geometry.  

On the other hand, the protein-ligand component 𝛥𝑎𝐺(𝑃𝐿) is calculated according 

to equation 19138: 

𝛥𝑎𝐺(𝑃𝐿) = 𝛥𝑎𝐺ℎ𝑏𝑜𝑛𝑑(𝑃𝐿) + 𝛥𝑎𝐺𝑀𝑎(𝑃𝐿) + 𝛥𝑎𝐺𝑙𝑖𝑝𝑜(𝑃𝐿) + 𝛥𝑎𝑆𝑟𝑜𝑡(𝑃𝐿) + 

                  𝐸𝑐𝑙𝑎𝑠ℎ(𝑃𝐿) + 𝐸𝑐𝑜𝑣(𝑃𝐿) 

Equation 19 - Decomposition of the protein-ligand component of CHEMSCORE scoring function. 

In this equation there are a mix of entropic-energetic, pure entropic and pure 

energetic terms. The entropic-energetic terms are the hydrogen-bond 

𝛥𝑎𝐺ℎ𝑏𝑜𝑛𝑑((𝑃𝐿), the metal-acceptor 𝛥𝑎𝐺𝑀𝑎(𝑃𝐿) and the lipophilic 𝛥𝑎𝐺𝑙𝑖𝑝𝑜((𝑃𝐿) 

terms. The rotameter term 𝛥𝑎𝑆𝑟𝑜𝑡((𝑃𝐿) is the only that is pure entropic. The pure 

energetic terms are the clash 𝐸𝑐𝑙𝑎𝑠ℎ(𝑃𝐿) and the covalent 𝐸𝑐𝑜𝑣(𝑃𝐿) energies. The 

mix entropic-energetic terms can be calculated by the following general 

equation138: 

𝛥𝑎𝐺𝑥(𝑃𝐿) = 𝛥𝑎𝐺𝑋.𝑜𝑝𝑡(𝑃𝐿) ∑𝑓𝑖;  𝑋 = ℎ𝑏𝑜𝑛𝑑,𝑀𝑎 or 𝑙𝑖𝑝𝑜

𝑛𝑋

𝑖=1

 and 0 ≤ 𝑓𝑖 ≤ 1 

Equation 20 - General equation for calculating the mixed entropic-energetic terms associated with the 
protein-ligand component of CHEMSCORE scoring function. 

 

In equation 20, nX is the number of atomic pairs (one atom belonging to the ligand 

and other to the protein) associated with an interaction of the type X, fi is the 

effectiveness factor of the i-th of these interactions and 𝛥𝑎𝐺𝑋.𝑜𝑝𝑡(𝑃𝐿) is the Gibbs 

energy for an optimal interaction (f = 1) of this type. 
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The rotamer term 𝛥𝑎𝑆𝑟𝑜𝑡(𝑃𝐿) represents the entropy penalty, associated with the 

rotamers of ligand that are constrained due to interactions with the protein. This 

term is calculated in a similar way to those used in equation 20. 

𝛥𝑎𝑆𝑟𝑜𝑡(𝑃𝐿) = 𝛥𝑎𝑆𝑟𝑜𝑡,𝑚𝑎𝑥(𝑃𝐿) ∑ 𝑓𝑖

𝑛𝑟𝑜𝑡

𝑖=1

;  0 ≤ 𝑓𝑖 ≤ 1 

Equation 21 - Equation for calculating the rotamer term associated with the protein-ligand component of 
CHEMSCORE scoring function. 

In equation 21, nrot is the number of ligand rotamers that are constrained upon 

binding, fi is the effectiveness factor of the i-th of these rotamers and 

𝛥𝑎𝑆𝑟𝑜𝑡,𝑚𝑎𝑥(𝑃𝐿) is the maximum entropy penalty (correspondent to f = 1) 

associated with a rotamer of this type138. 

The clash energy term (𝐸𝑐𝑙𝑎𝑠ℎ(𝑃𝐿)) is associated with the repulsive interactions 

involving atomic pairs dominant at short distances (r  rclash). This term is 

calculated by equation 22138. 

𝐸𝑐𝑙𝑎𝑠ℎ = ∑ 𝜀𝑖

𝑛𝑐𝑙𝑎𝑠ℎ

𝑖=1

(𝑟𝑖, 𝑟𝑐𝑙𝑎𝑠ℎ𝑖) 

Equation 22 - Equation for calculating the clash energetic term associated with the protein-ligand 

component of CHEMSCORE scoring function. 

In equation 22, 𝑛𝑐𝑙𝑎𝑠ℎ is the number of heavy atomic pairs (one atom belonging 

to ligand and the other to protein), that are close in contact and 𝜀𝑖(𝑟𝑖, 𝑟𝑐𝑙𝑎𝑠ℎ𝑖) is the 

clash energy of the i-th of these pairs that is characterized by a distance 𝑟𝑖 and a 

clash distance 𝑟𝑐𝑙𝑎𝑠ℎ𝑖. This energetic quantity can be calculated by equation 23138. 
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𝜀𝑖(𝑟𝑖, 𝑟𝑐𝑙𝑎𝑠ℎ𝑖)

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
0; 𝑟𝑖 > 𝑟𝑐𝑙𝑎𝑠ℎ𝑖

20

𝛥𝑎𝐺ℎ𝑏𝑜𝑛𝑑,𝑜𝑝𝑡
𝑜

(𝑟𝑐𝑙𝑎𝑠ℎ𝑖 − 𝑟𝑖)

𝑟𝑐𝑙𝑎𝑠ℎ𝑖
; 𝑟𝑖 ≤ 𝑟𝑐𝑙𝑎𝑠ℎ𝑖  and the atomic pair 𝑖  is

                                          involved  in  a  hydrogen‑bond.

20

𝛥𝑎𝐺𝑀𝑎,𝑜𝑝𝑡
𝑜

(𝑟𝑐𝑙𝑎𝑠ℎ𝑖 − 𝑟𝑖)

𝑟𝑐𝑙𝑎𝑠ℎ𝑖
; 𝑟𝑖 ≤ 𝑟𝑐𝑙𝑎𝑠ℎ𝑖  and the atomic pair 𝑖 is  

                                      involved in a metal‑acceptor  interaction.

1 +
4 (𝑟𝑐𝑙𝑎𝑠ℎ𝑖 − 𝑟𝑖)

𝑟𝑐𝑙𝑎𝑠ℎ𝑖
; 𝑟𝑖 ≤ 𝑟𝑐𝑙𝑎𝑠ℎ𝑖  and the atomic pair 𝑖 is not involved  

                                      in  any of the previous interactions.

 

Equation 23 - Clash energy for an atomic pair, characterized by a distance ri and a clash distance rclash. 

The covalent energy term (𝐸𝑐𝑜𝑣(𝑃𝐿)) is associated with the covalent bonds 

eventually established between the ligand and the protein. This term can be 

calculated using equation 24138. 
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Equation 24 - Equation for calculating the covalent term associated with the protein-ligand component of 

CHEMSCORE scoring function. 

In equation 24, the first summation is over all ntc dihedral angles involved in the 

covalent linkage and the second one is extended to all nac covalent bond angles 

around the same linkage. In this equation, tors(i) is the torsional energy 

associated with the dihedral angle (i), Kj  is the force constant of the bond angle 

number, j of magnitude j, 0,j the ideal magnitude for this angle and Ccov a 

constant used to balance the covalent bond term against the rest of the 

CHEMSCORE scoring function. 

d) The GOLDSCORE function is the original scoring function used by GOLD. This 

is a force field scoring function, which is used for estimating the association 

energy (aE) according to the two-step hypothetical mechanism presented in 

figure 6. Therefore, this scoring function can be calculated using equation 25138. 

𝐺𝑜𝑙𝑑𝑆𝑐𝑜𝑟𝑒 ≈ 𝛥𝑎𝐸 ⇔ 𝐺𝑜𝑙𝑑𝑆𝑐𝑜𝑟𝑒 ≈ 𝛥𝑎𝐸1 + 𝛥𝑎𝐸2 (25a) 

𝛥𝑎𝐸1 = 𝛥𝐸𝑟𝑒𝑎𝑟𝑟(𝐿) + 𝛥𝐸𝑟𝑒𝑎𝑟𝑟(𝑃) ⇔ 

𝛥𝑎𝐸1 ≈ 𝐸(𝐿𝑏𝑜𝑢𝑛𝑑) − 𝐸(𝐿) + 𝐸(𝑃𝑏𝑜𝑢𝑛𝑑) − 𝐸(𝑃) (25b) 
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𝛥𝑎𝐸2 = 𝛥𝑎𝐸2,L‑J + 𝛥𝑎𝐸2,hbond (25c) 

Equation 25 - General formulation for the GOLDSCORE scoring function. 

In equation 25, the different terms have similar physical-meanings to the 

correspondent quantities described for the AutoDock 4 scoring function (figure 6 

and equations 8 to 10). If a rigid-protein search algorithm is adopted, E(Pbound) = 

E(P) and second term of equation 25b is neglected. 

2.2.4.4 LeDock 

LeDock is flexible small-molecule docking software developed by Hongtao Zhao and 

co-workers140.  

LeDock combines a genetic algorithm with simulated annealing search to generate 

the first generation of docking poses. The conformation of the ligand is randomly 

changed at the start of each simulated annealing search, so that each search starts with 

a different pose. This software uses knowledge based scoring function which can be 

calculated by the following equation140.  

𝐿𝑒𝐷𝑜𝑐𝑘𝑆𝑐𝑜𝑟𝑒 ≈ 𝛥𝑎𝐺
𝑜 ⇔ 

𝐿𝑒𝐷𝑜𝑐𝑘𝑆𝑐𝑜𝑟𝑒 = 𝛼 ∑(𝐸𝑖
𝐿𝐽 + 𝐸𝑖

ℎ𝑏)

𝑛𝐿

𝑖=1

× 𝐻(|𝐸𝑖
𝐿𝐽 + 𝐸𝑖

ℎ𝑏| − 𝐸𝑐𝑢𝑡) + 𝛽(𝑟)∑𝐸𝑖
𝑒𝑙 + 𝛾 𝐸𝐿

𝑠𝑡𝑟

𝑛𝐿

𝑖=1

 

Equation 26 - LeDock scoring function. 

In this equation, the summations are extended to all the 𝑛𝐿 atoms of the ligand. Each 

of their terms represents a specific interaction (Lennard-Jones + hydrogen bond in the 

first summation and electrostatic in the second summation) between an atom i of the 

ligand with all atoms of the protein. The strained energy 𝐸𝐿
𝑠𝑡𝑟 has a similar physical 

meaning than that of the ligand rearrangement energy (𝛥𝐸𝑟𝑒𝑎𝑟𝑟(𝐿)) term used in equation 

24b. In the first summation, H is the Heaviside step function (see equation 27) and 𝐸𝑐𝑢𝑡 

is the cut-off energy for Lennard-Jones + hydrogen bond interactions. 

𝐻(𝑥) = {
0;  𝑥 < 0

1;  𝑥 ≥ 0
 

Equation 27 - The Heaviside step function. 

As 𝐸𝑐𝑢𝑡 is a positive value, 𝐻(|𝐸𝑖
𝐿𝐽 + 𝐸𝑖

ℎ𝑏| − 𝐸𝑐𝑢𝑡) prevents the docking algorithm of 

calculating negligible interactions of this type. The coefficients  (r) and  are fitted, 

using a least squares procedure, for reproducing experimental values of 𝛥𝑎𝐺
𝑜 obtained 
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for a large number of protein-ligand complexes. In particular, (r) is a distance dependent 

function, which accounts for both electrostatic screening and desolvation. The Lennard-

Jones (𝐸𝑖
𝐿𝐽

), hydrogen bond (𝐸𝑖
ℎ𝑏) and electrostatic (𝐸𝑖

𝑒𝑙) interactions of the ligand atom 

i with the protein are calculated respectively as: 

𝐸𝑖
𝐿𝐽
= ∑ 4𝜀𝑖𝑗  ((

𝜎𝑖𝑗

𝑟𝑖𝑗
)
12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)
6

)
𝑛𝑃
𝑗=1  (28a) 

𝐸𝑖
ℎ𝑏 = ∑ 𝑤𝑖𝑗(𝑟𝑖𝑗 − 𝑟𝑐𝑢𝑡) 𝐻(𝑟𝑐𝑢𝑡 − 𝑟𝑖𝑗)

𝑛𝑃
𝑗=1  (28b) 

𝐸𝑖
𝑒𝑙 = ∑

𝑞𝑖 𝑞𝑗

𝑟𝑖𝑗

𝑛𝑃
𝑗=1  (28c) 

Equation 28 - The Lennard-Jones (𝐸𝑖
𝐿𝐽

 ), hydrogen bond (𝐸𝑖
ℎ𝑏 ) and electrostatic (𝐸𝑖

𝑒𝑙 ) interactions of a 

ligand atom i with the protein. 

 In general, for these equations, 𝑟𝑖𝑗 is the distance between the ligand’s atom i and 

the protein’s atom j. In equation 28a, 𝜎𝑖𝑗 is the distance for which the Lennard-Jones 

interaction energy between atoms i and j is null and 𝜀𝑖𝑗 is the symmetrical of the minimum 

value for this interaction energy. In equation 28b 𝑤𝑖𝑗(𝑟𝑖𝑗 − 𝑟𝑐𝑢𝑡) is the energy of the 

hydrogen-bond that depends on the nature of the atoms involved and on the distance, 

while 𝑟𝑐𝑢𝑡 is the cut-off distance (minimum distance for a non-null hydrogen bond 

interaction). 𝐻(𝑟𝑐𝑢𝑡 − 𝑟𝑖𝑗) is the Heaviside step function that imposes this constrain. In 

equation 28c 𝑞𝑖 and 𝑞𝑗 are the charges of atoms i and j respectively. 

2.3 Virtual Screening 

2.3.1 Introduction 

Virtual screening (VS) is a computational technique which includes several 

methodologies usually divided in two major groups: ligand-based virtual screening and 

receptor-based virtual screening.98  

Ligand-based virtual screening methods try to find molecules with similar physical 

and chemical properties, based on the belief that similar compounds will have similar 

effects on a drug target. These methods discard all information related to the drug target 

only considering the ligand. The main disadvantage is that these methods need a 

significant amount of activity data for the compounds that are studied in order to get 

reasonable results128. 
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Receptor-based virtual screening methods, also known as structure-based methods, 

need a 3D structure of the target in order to perform multiple molecular docking studies. 

The scores obtained are then used to distinguish the ligands that bind strongly to the 

target from those that do not. These methods usually are more reliable and accurate 

than ligand-based methods. Adding to that, the increased amount of available 3D 

structures means that receptor-based methods are gaining significant importance over 

ligand-based methods128.  

Similar to high-throughput screenings, VS methods are used in the beginning of the 

drug discovery process with the purpose of enriching the initial library with active 

compounds. The main advantage that VS has over HTS is that using VS it is possible to 

evaluate thousands of compounds in a matter of hours and reduce the number of 

compounds that have to be synthesized or purchased, therefore decreasing the overall 

cost98.  

2.3.2 Validation 

Before performing the Virtual Screening to a large database, it is important to make 

sure that the computational results can be trusted. Therefore it is important to validate 

the molecular docking protocol and the VS procedure128. 

One way to validate the molecular docking protocol is to assess the quality of the 

docked poses. This can be done by redocking experiments. These experiments consist 

of docking ligands for which the experimental binding modes have already been 

determined. The standard way to compare the redocked pose to the experimental one 

is to calculate the Root Mean Square Deviation between them. Cut-off values used to 

classify poses as correct are usually around 2 Å128. 

The more accurate way to evaluate the performance of a VS procedure is to quantify 

its ability to discriminate between active and inactive molecules. To evaluate this ability, 

a database of active compounds and decoys is created. Active molecules are usually 

found in databases such as ChEMBL141 or in the literature. Since it is rare to find 

information regarding inactive molecules, random molecules are often used as decoys. 

This assumes that these molecules will not be active for the target in study128. These 

molecules can be obtained using the Database of Useful Decoys – Enhanced (DUD-

E)142. For each active molecule, this server can generate 50 decoys with similar physico-

chemical properties but with a different 2D topology. This means that, with only 25 active 
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molecules, 1250 decoys are obtained, and the full database used for validation will have 

1275 compounds142. 

In a perfect VS protocol, the worst active molecule would have a better score than 

the best score for an inactive molecule. However, there is a significant overlap between 

the scores of the active and inactive molecules. Most statistical tools used to quantify the 

performance of the VS protocol are based on a threshold value to classify molecules in 

active or inactive. Active molecules scored above the threshold are called true positives 

while decoys are called false positives. Decoys under the threshold are called false 

positives and actives are false negatives128. 

Different metrics have appeared to evaluate the performance of VS protocols 

including receiver operating characteristics (ROC) curves, area under the curve (AUC), 

enrichment factor (EF), robust initial enhancement (RIE), Boltzmann enhanced 

discrimination of ROC (BEDROC), predictive curves (PC) and total gain (TG)128,143. 

The ROC curve was created to graphically represent the performance of a ranking 

method, not considering any threshold, and therefore giving a general view of the 

performance. It is a plot of the true positive rate (TPR) in function of the false positive 

rate (FPR). The TPR and FPR are the true positives and false positives expressed as a 

percentage of the total number of actives and decoys. A random ranking method would 

lead to a plot line with a slope of 1. Higher initial slopes indicate a better performing VS 

protocol. ROC curves are analysed by calculating the area under the curve which is the 

probability of ranking actives above decoys. A random predictor will display an area 

under the ROC curve of 0.5, while a AUC of 1 would correspond to the perfect 

scenario125,128.  

The predictive curves quantify the predictive power of the scoring functions. The total 

gain is bounded by 0 and 1 and it is calculated from the PC curves. TG quantifies the 

discrimination of actives over decoys attributable to score variations. High TG values, 

over 0.4, combined with an AUC over 0.5 indicate a good performance from the VS 

protocol143. 

Since the goal of a VS process is to generate a list of compounds to test 

experimentally, it is only practical to test the better few hundred ranked molecules of the 

initial database. Therefore, it is important to use metrics that evaluate early recognition 

of actives. One way to evaluate early recognition is by calculating the logarithmic curve 

of the ROC which will gave a greater emphasis to the early performance128. 
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Other way to evaluate early recognition is by using the enrichment factor. EF is a 

measure of how much the sample is enriched with actives at a given threshold. It is 

calculated by the ratio between the fraction of active compounds recovered by the 

fraction of the screened library at the chosen threshold, as seen on equation 29. In order 

to display a more general view of the performance, it is usual to report the EF for more 

than 1 threshold. Typical EF are reported at 1%, but it is also common to report EF up to 

20%128. 

𝐸𝐹 = 
𝑁º 𝑎𝑐𝑡𝑖𝑣𝑒𝑠 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑

𝑁º 𝑎𝑐𝑡𝑖𝑣𝑒𝑠 
𝑥 

𝑁º 𝑡𝑜𝑡𝑎𝑙

𝑁º 𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑
 

Equation 29 - Calculation of the Enrichment Factor. 

The EF has the disadvantage of being strongly dependent of the number of actives, 

and because of its lack of discrimination before the threshold. The robust initial 

enhancement is an early recognition metric which addresses the disadvantages of EF. 

Unlike EF, RIE includes contributions from all actives into the final score. It distinguishes 

the situation where all actives are ranked at the beginning from the situation where all 

actives are ranked closed to the threshold. RIE uses a decreasing exponential weight as 

a function of the actives ranks. The general equation of RIE is shown on equation 30 in 

which n is the number of actives, N is the number of compounds, xi is the relative scaled 

rank and 𝛼 is the weight parameter. While RIE addresses the shortcoming in EF, it lacks 

the advantages of ROC143,144.   

𝑅𝐼𝐸 =
∑ 𝑒−𝛼𝑥𝑖𝑛
𝑖=1

𝑛
𝑁 (

1 − 𝑒−𝛼

𝑒𝛼 𝑁⁄ − 1
)
 

Equation 30 - General equation of the calculation of RIE. 

The Boltzmann enhanced discrimination of ROC is a normalization of the RIE 

bounded by 0 and 1 and can be calculated using equation 31. BEDROC contains the 

discrimination power of RIE and the statistical significance from ROC as well as its well-

behaved boundaries143,144. 

𝐵𝐸𝐷𝑅𝑂𝐶 =  
𝑅𝐼𝐸 − 𝑅𝐼𝐸𝑚𝑖𝑛

𝑅𝐼𝐸𝑚𝑎𝑥  − 𝑅𝐼𝐸𝑚𝑖𝑛
 

Equation 31 - Calculation of BEDROC. 
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2.4 Molecular Dynamics simulations 

2.4.1 Introduction  

Molecular dynamics (MD) simulations are a computational technique that simulates 

the dynamic behaviour of a flexible molecular system in function of time. This method is 

based on numerical integration of the Newton’s motion equations for a molecular 

system:145 

𝑚𝑖

𝜕2𝑟𝑖(𝑡)

𝜕𝑡2
= −

𝜕𝐸(𝑟𝑁)

𝜕𝑟𝑖
;  𝑖 = 1,  2, . . .   , 𝑁 

Equation 32 - The Newton’s motion equation for a molecular system. 

In equation 32, rN = (r1, r2, …, rn) represents the coordinates of the N atoms composing 

the molecular system, ri(t) the coordinates of the atom i as a function of time t, mi the 

respective atomic mass and E(rN) the potential energy associated with that system145. 

 The MD method was originally developed to simulate simple systems, with its first 

application being in 1957. The first simulation of a biomolecule was performed in 1976, 

featured a Bovine Pancreatic Trypsin Inhibitor with 58 residues and covered only 9.2 ps 

of simulation time146. MD simulations are now widely used as a tool to investigate the 

structure and dynamics of proteins in various conditions such as studies of ligand binding 

and protein re-folding147. 

2.4.2 Ensembles and time step 

An MD trajectory only provides information of atomic positions, velocities and single-

point energies. To obtain the general view of the system, statistical mechanics are used. 

These rigorous mathematical expressions relate the distributions and motions of atoms 

and molecules to the macroscopic properties of the system. Using this information, it is 

possible to predict changes in the binding free energy of a particular drug candidate or 

the mechanisms of a conformational change in a particular protein146. 

The macroscopic state of a system can be characterized with a small number of 

properties, called state functions. There are several state functions with some being 

temperature, pressure, and the number of particles. To define the thermodynamic state 

of the system, the value of α+2 state functions is necessary, with α being the number of 

components on the system. Each macrostate corresponds a to very large number of 

microstates. Each microstate can be characterized by the positions and moments of 
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each particle of the system. A set of microstates with the same thermodynamic 

restrictions is called an ensemble145. 

With different sets of α+2 defined state functions, there are different ensembles. The 

most common are: the canonical ensemble (NVT), where the number of particles (N), 

the volume (V) and the temperature (T) are constant; the microcanonical ensemble, 

(NVE), where number of particles, the volume, and the total energy (E) are constant; the 

isothermal-isobaric ensemble (NPT), where the number of particles, the temperature and 

the pressure (P) are constant; and the grand canonical ensemble (µVT) where the 

chemical potential (µ), the volume and the temperature are constant. The appropriate 

ensemble used for simulating a molecular system, depends on the experimental 

condition desired to replicate145. 

Molecular dynamics is a deterministic method. This means that the state of any 

system at any future time can be predicted from its current state. Atomic positions and 

moments are determined by integrating the above-mentioned Newton’s equations of 

motion (see equation 32). In MD simulations, the trajectory of each particle is calculated 

in order to get a set of chronologically ordered microstates. To achieve this, the resultant 

force acting in each atom is calculated and the equations of movement are numerically 

integrated. In order to perform this integration, a time step is necessary145.  

The choice of an appropriate time step is essential. If it is too short a lot of 

computational power and time will be needed to simulate a short period of time. If the 

time step is too large, there will be inaccuracies on the integration of the equations. The 

first MD simulations used very simple potentials such as the hard-sphere potential in 

which particles move in straight lines at constant velocity between collisions. While this 

model provided useful results in the past, is not ideal for the simulation of atomic or 

molecular systems. Potentials currently used have a more continuous nature, for 

example, in the Lennard-Jones potential the force between two atoms changes 

continuously as they separate. These more realistic potentials need the integration of 

the equations of motion into a series of shorter time steps145.  

The time step is usually one order of magnitude smaller than the shortest motion in 

the system. In biomolecular systems, the shortest motion is the vibrations associated to 

bond-stretching of atoms bonded to hydrogens. This motion has a vibration period in the 

order of 10 fs. This means that the recommended time step used for MD simulations is 

usually 1fs. However, these motions rarely affect the study of the properties of the 

system. The solution for this problem is to restrict bonds involving hydrogen to their 
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equilibrium values, while not affecting all other bonds. With this restriction, the shortest 

motions are vibrations involving heavy atoms which are 2 to 5 times slower, allowing the 

usage of a 2 fs time step145. The most common way to restrict bonds involving hydrogen 

atoms is to use the SHAKE algorithm148.  

2.4.3 Molecular Mechanics, Classic Potential Energy and Force Fields 

The concepts of “molecular mechanics”, “classic potential energy functions” and 

“force fields” are frequently misunderstood. In this section, an effort is made for clarifying 

these concepts. 

Molecular mechanics is a methodology for modelling molecular systems. It is based 

on the following general principles: a) Molecular mechanics is based in a classic 

approach; b) The electrons are not explicitly treated; c) Atoms are considered to be point 

particles, characterized by their charge and mass; d) The interactions between the atoms 

are described by a classic potential energy (E(rN))145. 

The classic potential energy function, which emerges from the general principle d) of 

the molecular mechanics formalism, can be expressed as a sum of a bonded component 

(Ebond) and a nonbonded one (En/bond). 

𝐸 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑛/𝑏𝑜𝑛𝑑 

Equation 33 - General decomposition of a classic potential energy function. 

The bonded potential energy can be decomposed into stretching (Estret), bending 

(Ebend), and torsional (Etors), as shown in the following equation: 

𝐸𝑏𝑜𝑛𝑑 = 𝐸𝑠𝑡𝑟𝑒𝑡 + 𝐸𝑏𝑒𝑛𝑑 + 𝐸𝑡𝑜𝑟𝑠 

Equation 34 - General decomposition of a bonded potential energy. 

The nonbonded potential energy can be expressed as a sum of a Lennard-Jones 

term (ELJ) and an electrostatic one (Eel): 

𝐸𝑛/𝑏𝑜𝑛𝑑 = 𝐸𝐿𝐽 + 𝐸𝑒𝑙 

Equation 35 - General decomposition of a nonbonded potential energy. 

The usage of an appropriate energy function to describe intermolecular and 

intramolecular interactions is essential to achieve a successful molecular dynamics 

simulation. The energy functions usually consist of several parameterized terms which 
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are obtained from experimental or quantum mechanical studies of small molecules. The 

set of functions with the associated set of parameters is called a force field146.  

Various force fields have been developed, with several being specific for the 

simulation of proteins. Some of these are AMBER, CHARMM and GROMOS145.  

2.4.4 Boundaries 

Treating boundaries and boundary effects properly is essential in a MD simulation. 

Simulated systems frequently have up to 300000 atoms in a cubic or octahedral cell. 

One of the issues of using these cells is that, on a cubic box, the molecules close to the 

edges will suffer different interactions to the ones inside the box. These are called 

boundary effects. To calculate properties without these effects, one could not count the 

contribution of the molecules near the border. The issue here is that the molecules near 

the border can account for 40% of the system leaving too few molecules in order to derive 

the properties145. 

To solve this issue, periodic boundary conditions can be used. In these conditions, 

the simulation cell is the central point of an infinite cubic network of its copies. The 

integration of the equations of motion is only done on the central cell while all other cells 

mimic them. If a particle leaves the box, it is replaced by an image particle that enters 

from the opposite side. Using these conditions, a simulation can be performed using a 

relatively small number of particles, in such a way that all particles experience forces as 

if all were in fluid145.  

Obviously, the replicated movements of the image molecules are not realistic and 

coherent in a biologic system. It becomes necessary for the central cell to be big enough 

so that each molecule does not interact in a significant manner with the replica 

molecules145.  

In an infinite network consisting of an infinite number of particles, it is not possible to 

calculate the interaction energy. Intermolecular interactions are only approximately 

calculated when these calculations only include a finite number of neighbouring 

molecules. This can be achieved using the minimum image convention or by a spherical 

cut-off. The minimum image convention centres, in each atom, one cell with the same 

size and shape as the original. Interactions are calculated for each atom inside that cell, 

with all other being ignored. Alternatively, in the spherical cut-off approach, a sphere with 

a predetermined radius is used for the same puropose145. 
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2.4.5 Long-Range Interactions 

Since the interaction energy calculation cannot include all particles and their infinite 

images, there must be a cut-off at a certain radius. For short-range, Lennard-Jones, 

interactions, a reasonably small cut-off (10-12 Å) can be used without significant errors. 

However, for long-range, electrostatic interactions, the cut-off should be significantly 

bigger. Nevertheless, for molecular systems containing many charged groups, additional 

procedures have to be adopted for accounting long-range interactions of this type145.  

The issue of long-range interactions can be solved using the Ewald summation 

method. In an ionic system, this method will make two changes. Each point charge is 

neutralized at long distances by the introduction of a spherical charge cloud. The cloud’s 

charge density is calculated by a Gaussian function centred at the ion. Adding the point 

charges and Gaussian charges cancels the electrostatic potentials and makes it short 

range, allowing it to be treated by simple truncation. The other change is to introduce a 

second set of Gaussian clouds with an opposite charge to the first to cancel their effect. 

It is also necessary to calculate the interaction energy that each charge cloud has with 

itself. This constant will be subtracted from the result of the Ewald summation145. 

This method is controlled by two parameters, the truncation radius and parameter 

that controls the variation of the Gaussian charge distribution. A higher value means a 

less dense Gaussian charge and shorter-range electrostatic interactions. This means a 

shorter cut-off radius can be used. However, the lesser density of the Gaussian charge 

leads to a higher volume of calculus. The solution is to use the higher truncation radius 

possible, which is half the size of the cell, and the smaller possible value. That way the 

contribution of the interactions outside the radius does not have a significant effect on 

the system145. 

 

2.4.6 AMBER 

2.4.6.1 Force Field 

AMBER is a force field used in MD simulation of proteins, nucleic acids, and 

carbohydrates. The functional form for its potential energy is described as minimalist and 

expressed by equations 33 to 35 presented above. The bonded terms, present in 

equation 33 have the following forms149: 

𝐸𝑠𝑡𝑟𝑒𝑡 = ∑ 𝐸𝑖
𝑛𝑏
𝑖=1 , with 𝐸𝑖 = 𝐾𝑖 (𝑟𝑖 − 𝑟𝑖,𝑒𝑞)

2 and 𝐾𝑖 =
𝜕2𝐸𝑖

𝜕𝑟𝑖
2  (36a) 
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𝐸𝑏𝑒𝑛𝑑 = ∑ 𝐸𝑗
𝑛𝑏𝑎
𝑗=1 , with 𝐸𝑗 = 𝐾𝑗 (𝜃𝑗 − 𝜃𝑗,𝑒𝑞)

2 and 𝐾𝑗 =
𝜕2𝐸𝑗

𝜕𝑟𝑗
2  (36b) 

𝐸𝑡𝑜𝑟𝑠 = ∑ 𝐸𝑘
𝑛𝑡
𝑘=1  with 𝑉𝑙 =

𝐾𝑘

2
 [1 + 𝑐𝑜𝑠( 𝑛𝑘𝜔𝑘 − 𝛾𝑘)] (36c) 

Equation 36 - Bonded terms of AMBER potential energy function. 

In equation 36a, the summation is extended to all nb bonds of the molecular system. 

In the same equation Ei is the stretching potential energy associated with the i-th bond, 

Ki the associated force constant, ri the length of this bond and ri,wq the correspondent 

equilibrium value149. 

In equation 36b, the summation is extended to all nba bond angles of the molecular 

system. Ej is the potential energy associated with the j-the bond angle Kj the associated 

force constant, i the amplitude of this angle and j,eq the correspondent equilibrium 

value149. 

In equation 36c, the summation is extended to all nt torsional angles of the molecular 

system. In the same equation Ek is the potential energy associated with the k-th torsional 

angle, k the amplitude of this angle, Kk the maximum for the referred potential energy, 

k the torsional angle associated with this maximum and nk the torsional angle multiplicity 

(number of energy minima associated with it)149. 

For a molecular system with N atoms, the nonbonded terms that occur in equation 

35 have the following forms:  

𝐸𝐿𝐽 = ∑ ∑ 𝐸𝐿𝐽(𝑖, 𝑗)
𝑁
𝑗=𝑖+1

𝑁
𝑖=1 , with 𝐸𝐿𝐽(𝑖, 𝑗) =

𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐵𝑖𝑗

𝑟𝑖𝑗
6  (37a) 

𝐸𝑒𝑙 = ∑ ∑ 𝐸𝑒𝑙(𝑖, 𝑗)
𝑁
𝑗=𝑖+1

𝑁
𝑖=1 , with 𝐸𝑒𝑙(𝑖, 𝑗) =

𝑞𝑖×𝑞𝑗

4𝜋𝜀𝑜𝑟𝑖𝑗
 (37b) 

Equation 37 - Nonbonded terms of AMBER potential energy functional. 

In equation 37, both Lennard-Jones and electrostatic terms are expressed as 

pairwise additive summations of interatomic interactions. These summations include all 

atomic pairs (i,j), occurring at a distance rij in the molecular system, with the exception of 

those associated with either 1-2 or 1-3 interactions (figure 7)149. 
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Figure 7 -Classification of the interatomic interactions that occur in a molecular system: i-j 1-2 interaction; 
i-k 1-3 interaction; i-l 1-4 interaction and i-m “normal interaction”. 

In equation 37a, Aij and Bij are the rearranged Lennard-Jones parameters that can 

be calculated from the original ones (see equation 37) as: 

𝐴𝑖𝑗 = 4𝜀𝑖𝑗𝜎𝑖𝑗
12, 𝐵𝑖𝑗 = 4𝜀𝑖𝑗𝜎𝑖𝑗

6  

Equation 38 - Calculation of the rearranged Lennard-Jones parameters (Aij and Bij) from the original ones 

(ij and ij). 

In equation 37b, o is the vacuum permittivity and qi and qj are respectively the 

charges of atom i and j149. 

2.4.6.2 AMBER Package  

AMBER is also the collective name for a suite of programs that allows the execution 

of molecular dynamics simulations. There are three main steps in the MD protocol: 

system preparation, simulation and trajectory analysis150.  

The main preparation programs are antechamber and LEaP. Antechamber takes a 

three-dimensional structure and assigns charges, atom types and force field parameters 

for residues or organic molecules that are not part of standard libraries. LEaP constructs 

biopolymers from the respective residues, solvates the system and prepares the list of 

force field terms and parameters. The result of this phase is a file that contains the 

Cartesian coordinates of all atoms in the system and a file which contains all the other 

information required, including atom names and masses, force field parameters, lists of 

bons, angles and dihedral angles150. 

The main simulation program is sander. It uses a replicated data structure, in which 

each processor is responsible for certain atoms, but all processors know the coordinates 

of all atoms. During each step, the processors calculate a portion of the potential energy 

and then a binary tree global communication sums the force vectors. This way each 

processor has the full force vector components for the atoms it is responsible for. Then 
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the processors perform a MD update step for those atoms and a use another binary tree 

to communicate the updated positions to all processors150. 

The main analysis programs are ptraj and its successor cpptraj. These programs 

read the parameter and topology files. They also allow the inspection of the information 

within that file such as lists of bonds, angles, dihedrals and other150. 

2.5 MM/PB(GB)SA 

Scoring functions are efficient, can predict binding modes and distinguish binders 

from non-binders. However, they are not able to separate between molecules that 

diverge by less than one order of magnitude. There are other methods to calculate Gibbs 

energy of association including the thermodynamic perturbation (TP) and 

thermodynamic integration (TI) methods. These methods are very rigorous and 

computationally expensive methods, requiring massive sampling of the free ligand and 

complex in solution. They require the definition of a considerable number of intermediate 

states between the initial and final states. It is also necessary to perform many 

independent MD simulations, correspondent to the transition between each pair of 

consecutive states of this type. Fortunately, there are other methods that only require 

the end states of the ligand, the receptor, and the complex. They are less expensive than 

TP or TI formalisms and more accurate than scoring functions. These end-point methods 

include the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and the 

Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) approachs151. 

These methods are very effective to estimate the Gibbs energy of association of 

small ligands to large biological receptors152. 

In these methods, the Gibbs energy of association of a protein-ligand complex is 

estimated using the following equation: 

𝛥𝑎𝐺 = ⟨𝐺(𝑃𝐿)⟩ − ⟨𝐺(𝑃)⟩ − ⟨𝐺(𝐿)⟩ 

Equation 39 - Estimation of Gibbs energy of association using either the MM/PBSA or MM/GBSA 
formalisms. 

In equation 39, the notation  ⟨𝐺(𝑋)⟩ stands for the average value of the Gibbs energy 

of the molecular specie X (with X = PL, P or L). This thermodynamic quantity is then 

estimated as: 

⟨𝐺(𝑋)⟩ = ⟨𝐸𝑏𝑜𝑛𝑑(𝑋)⟩ + ⟨𝐸𝑒𝑙(𝑋)⟩ + ⟨𝐸𝐿𝐽(𝑋)⟩ + ⟨𝐺𝑝𝑜𝑙(𝑋)⟩ + ⟨𝐺𝑛/𝑝𝑜𝑙(𝑋)⟩– 𝑇 𝑆(𝑋) 
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Equation 40 - Estimation of the average value for the Gibbs energy of a molecular specie X, using either 

the MM/PBSA or MM/GBSA formalisms. 

In the last two equations, the different physical quantities within brackets are 

estimated as ensemble averages for the conformations generated by MD simulatons100. 

In equation 40 all the quantities are referred to the molecular specie X. In this context, 

𝐸𝑏𝑜𝑛𝑑(𝑋) is its bonded energy,𝐸𝑒𝑙(𝑋) its electrostatic energy and 𝐸𝐿𝐽(𝑋) its Lennard-

Jones energy. These quantities are evaluated using an appropriate force field as for 

example AMBER. In the same equation 𝐺𝑝𝑜𝑙(𝑋) and 𝐺𝑛/𝑝𝑜𝑙(𝑋) are respectively the polar 

and the non-polar contributions to the solvation Gibbs energy of the molecular specie X, 

T is the absolute temperature and 𝑆(𝑋) is the entropy of the same species. The 𝐺𝑝𝑜𝑙(𝑋) 

term is obtained by solving the Poisson-Boltzmann (PB) equations for the MM/PBSA 

formalism or using the generalized Born model (GB) for the MM/GBSA approach. The 

Poisson-Boltzmann approach leads to very high computational costs, because the PB 

equation has to be solved every time the conformation of the molecule changes. The 

Generalized Born method became popular due to its relative simplicity and 

computational efficiency compared to the PB equations. The 𝐺𝑛/𝑝𝑜𝑙(𝑋) term is estimated 

from a linear relation to the solvent accessible surface area (SASA). The entropy 𝑆(𝑋) 

can be estimated by using a normal modes analysis. However, the correspondent 𝑇 𝑆(𝑋) 

term is often neglected. In fact, this term frequently increases the errors associated with 

this type of calculations151,152.  

Although the ensemble averages in equation 39 should be estimated from three 

separate MD simulations (for protein, ligand, and protein-ligand solvated species), it is 

common to adopt a more simplified procedure. In fact, if the effects associated with the 

conformation rearrangements of both solvated protein and ligand species are neglected, 

it is only necessary to perform one MD simulation of the solvated protein-ligand 

complex152. 

MM/PB(GB)SA calculations can be run using AMBER’s MM/PBSA.py python script. 

In this method representative snapshots from an ensemble of conformations are used to 

calculate the change in the Gibbs energy between two states153. 

The Solvent Accessible Surface Area (SASA) is a geometric evaluation for the 

exposure of the amino acids to their environment. The SASA is computationally 

calculated using a spherical probe, similar to a water molecule, on a full-atom molecular 

model154. 
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2.6 Molecular Visualization Software 

2.6.1 PyMOL 

PyMOL is a cross-platform molecular graphic system originally released in 2000. 

Adding to the fact that PyMOL has most of the features seen in most molecular graphics 

packages, the integrated Python interpreter allows its users to develop an unlimited 

number of plugins with a wide range of functions. This Python interpreter is the reason 

for the “Py” portion of the software’s name155,156. 

The most common graphical representations are supported by PyMOL including 

cartoon ribbons, backbone ribbons, solid surfaces, ball-and-stick, between others. Atoms 

can be labelled, and dash bonds can be used to illustrate hydrogen bonds and distances 

between atoms155.  

PyMOL can produce high quality 3D images of both small molecules and larger 

biological macromolecules. It features an integrated ray-tracing engine capable of 

converting any displayed view into a publication quality figure. In fact, it is estimated that 

nearly a quarter of all published images of 3D protein structures were made using 

PyMOL155,156. 

2.6.2 VMD 

Visual Molecular Dynamics was released in 1996 and it designed for the visualization 

and analysis of biological systems such as proteins and nucleic acids. VMD can display 

structures using several representations and colouring methods including CPK spheres, 

licorice bonds, cartoon drawings, and others157.  

VMD was also designed to animate and display the trajectory of a molecular 

dynamics simulation, imported from files or from a direct connection to a running MD 

simulation157. 

This software has a graphical user interface as well as a Tcl text interface to allow 

the users to create their own scripts. VMD was written in C++ and its source code and 

documentation is available online157. 
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2.7 Structural Files 

2.7.1 PDB 

The Protein Data Bank was created in 1971 by Walter Hamilton in response to a 

necessity for a central repository for information about biological macromolecular 

structures. Due to its simplicity and uniformity, the PDB format is still the most popular 

format for macromolecular structural data158. 

The PDB format features the coordinates of each atom, chemical and biochemical 

features, experimental data of the structure determination, and some structural features 

including secondary structure and hydrogen bonds. PDB has defined conventions for 

naming atoms, residues, and nucleotides158.  

2.7.2 SMILES  

The Simplified Molecular Input Line System (SMILES) is an unambiguous and 

reproducible method for representing small molecules. It was developed in 1985 by 

David Weininger. SMILLES does not explicitly include hydrogen atoms, with the 

convention that hydrogens make up the remainder of an atom’s normal valence. All other 

atoms are represented by their atomic symbols surrounded by square brackets, or 

without square brackets implying the existence of hydrogens. This format also includes 

information on formal charges, aromaticity, and bonds.  Formal charges are included 

with the number preceded by a + or -. Aromatic atoms are represented with lowercase 

atomic symbols. Single bonds, double bonds, triple bonds and aromatic bonds are 

represented by “-“, “=”, “#” and “:;”. Usually there are several SMILES descriptions for 

the same molecule, all equally valid. This format is used across multiple ligand 

databases125. 

2.7.3 PDBQT 

The PDBQT file was created with AutoDock 4. This file stores atomic coordinates, 

partial charges and AutoDock atom types necessary for the molecular docking 

procedure. Both the ligand and receptor PDBQT file require Gasteiger PEOE partial 

charges and a united-atom representation, including only polar-hydrogens, so that they 

work with the AutoDock 4 scoring function159. This format is also required to perform 

molecular docking using AutoDock Vina134. 
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2.7.4 Open Babel 

With the emergence of several file formats to store chemical structure information, 

there was a need to convert the different formats into the required one for each software. 

Open Babel was designed to read the many representations of chemical data and it is 

able to search, convert, analyse, or store molecular data.  It can read 82 different formats 

and write 85, supporting in total 111 chemical file formats160. 
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3. Aim of this study 

Over the years, the usage of computer-aided drug design as a preliminary stage of 

drug design has increased. This makes the entire process more cost-efficient and 

minimizes failures.  

Biofilm infections have been recognized as a serious threat to our society. These 

biological structures are not easily treated by existing antimicrobial treatments and are 

very hard to remove after their formation. Consequently, it is increasingly important to 

find new drugs to mitigate biofilm formation. 

Quorum sensing is deeply involved on the process of biofilm formation. Impeding this 

cell-to-cell communication has been shown as a promising way to prevent the formation 

of biofilms.  

Therefore, the aim of the present work was to model promising molecules for blocking 

quorum sensing and preventing biofilm formation. Different computational methods were 

used in this study. These include molecular docking, virtual screening, MD simulations 

and MM/PB(GB)SA calculations. The molecular target in this study is CviR, the quorum 

sensing receptor from Chromobacterium violaceum, an opportunistic pathogen used as 

a model organism for QS research. The workflow of this work is presented on figure 8. 
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Figure 8 - Workflow for the project performed in the present work 
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4. Results and Discussion 

4.1 Structure preparation 

The first step was to download the six structures of CviR available on PDB. These 

structures were found with the help of the Biofilm Structural Database79. Information on 

each structure is available in the following table. 

Table 2 - Available structures of CviR on PDB. 

PDB Code Protein Resolution Ligand Strain 

3QP1 
Ligand-Binding 

Domain 
1.55 Å C6-HSL Strain 31532 

3QP2 
Ligand-Binding 

Domain 
1.638 Å C8-HSL Strain 31532 

3QP4 
Ligand-Binding 

Domain 
1.55 Å C10-HSL Strain 31532 

3QP5 Full Protein 3.249 Å CL Strain 31532 

3QP6 Full Protein 2 Å C6-HSL Strain 12472 

3QP8 
Ligand-Binding 

Domain 
1.6 Å C10-HSL Strain 12472 

 

Different ligands with different activities are present in each structure. 3QP1 is 

complexed with its native ligand C6-HSL which is a full agonist in strain 31532. 3QP2 

and 3QP4 are bonded to ligands with longer acyl chains which fail to fully activate CviR. 

C8-HSL leads to 40 % of the original activity and C10-HSL elicits only 6 %. These ligands 

also work as a partial antagonist in the presence of C6-HSL. 3QP5 is bonded to 

chlorolactone, an even stronger antagonist than C10-HSL. 3QP6 is bonded to C6-HSL 

which functions as an antagonist on strain 12472. Finally, 3QP8 is bonded to C10-HSL. 

This is a partial agonist, located closer to this strain’s native ligand that is 3-hydroxy-C10-

HSL67. 

All structures were opened in PyMOL. They were aligned using this program, and a 

monomer of each protein was isolated. After the alignment, the RMSD was calculated. 

The results are presented in table 3 and the alignment in figure 9. The analysis of this 

figure suggests that all structures are very similar, which is supported by the fact that all 

RMSD values are less than 1 Å. 
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Table 3 - RMSD values (Å) for all structures of CviR in PDB. 

 3QP1 3QP2 3QP4 3QP5 3QP6 3QP8 

3QP1 0.000 0.083 0.102 0.638 0.725 0.461 

3QP2 0.083 0.000 0.107 0.578 0.635 0.487 

3QP4 0.102 0.107 0.000 0.587 0.635 0.417 

3QP5 0.638 0.578 0.587 0.000 0.939 0.765 

3QP6 0.725 0.635 0.635 0.939 0.000 0.543 

3QP8 0.461 0.417 0.417 0.765 0.543 0.000 
 

 

Figure 9- Alignment of all CviR structures, using the Cartoon representation, obtained using PyMOL. 

The most important amino acids in the binding pocket are Tyr80, Trp84, Asp97 and 

Ser155. These amino acids also exhibited high similarity as seen on table 4 and figure 

10. The only difference is with Tyr84 on 3QP5, which has a different conformation in 

relation with the other structures. The specific interactions between the protein, in this 

case 3QP1, and its native ligand are displayed in figure 11. This interactions map was 

obtained from the Biofilms Structural Database79. There are four hydrogen bonds 

connecting the ligand to the protein, one from each of the amino acids mentioned above. 
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Table 4 - RMSD values (Å) for the binding pockets of the available CviR structures. 

  3QP1 3QP2 3QP4 3QP5 3QP6 3QP8 

3QP1 0.000 0.053 0.070 0.770 0.770 0.768 

3QP2 0.053 0.000 0.066 0.771 0.769 0.765 

3QP4 0.070 0.066 0.000 0.768 0.769 0.769 

3QP5 0.770 0.771 0.768 0.000 0.875 0.893 

3QP6 0.770 0.769 0.769 0.875 0.000 0.134 

3QP8 0.768 0.765 0.769 0.893 0.134 0.000 
 

 

Figure 10 - Alignment of the binding pocket of all available CviR structures. 
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One important detail found in these structures is the importance of the amino acid  

resid 89 and its pose. On the CviR from strain 31532 (3QP1-3QP5) it is a methionine 

while on strain 12472 (3QP6 and 3QP8) it is a serine67.  

Starting with strain 31532, it was observed that Met89’s side chain swings away from 

the ligand-binding pocket along with an increase of length of ligand’s acyl chain. The 

extent of this variation relates to the antagonist capabilities of the ligand. 3QP1 is bonded 

to its native ligand and Met89 is in its original pose. In 3QP2, there are two conformations: 

one similar to 3QP1 and the other in which there is a small, intermediate variation on the 

side chain orientation. In both 3QP4 and 3QP5, the side chain has fully changed its 

position, swinging far away from the centre of the binding pocket. This is depicted on 

Figure 11 – Interactions map between 3QP1 and C6-HSL. 
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figure 12. This variation of the conformation of the side chain allows the bonding of larger 

ligands, which would not be possible otherwise67. 

On strain 12472 the presence of a serine, a smaller amino acid, means that larger 

ligands can be bonded to the protein without the need for a conformational change. This 

explains why the native ligand in this strain is a longer molecule. The bonding of smaller 

ligands originates a cavity in the binding pocket, which leads to a conformational change 

where the side chain of Met257 of the DNA binding domain is inserted. This interaction 

stabilizes a close conformation of the CviR dimer which explains the antagonist activity 

of smaller ligands like C6-HSL67. 

Before the molecular docking studies, using PyMOL, all water molecules were 

removed from each structure and the receptor and ligand were isolated in different pdb 

files. Finally, 3QP2 was separated into two different files, one for each conformation of 

Met89. 3QP2a has the intermediate conformation while 3QP2b has a similar 

conformation to 3QP1. 

4.2 Redocking and Cross-Docking 

4.2.1 Methods 

4.2.1.1 Introduction 

The first step towards selecting which structures and programs will be used in the 

virtual screening protocol is to perform redocking and cross-docking studies. The goal of 

the redocking studies is to see if the molecular docking programs are able to accurately 

reproduce the experimental complexed pose of the ligand. The RMSD between the re-

docked and the original poses was calculated in order to better evaluate the results. In 

3QP1    3QP2    3QP4    3QP5 

Figure 12- Variation of the Met89 side chain over the different structures. 
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cross-docking studies, each ligand from each structure is docked into all other structures. 

Considering that all structures are of the same protein, this is an assessment of how 

accurately each structure docks the ligands from the other structures, i.e. its general 

usefulness.  

To perform these studies, four programs were used, AutoDock 4, AutoDock Vina, 

LeDock and GOLD. The RMSD calculations were done using DockRMSD161. 

4.2.1.2 AutoDock 4 

Each isolated ligand and receptor file was converted from pdb into pdbqt using two 

AutoDock 4 scripts, prepare_ligand4.py and prepare_receptor4.py, respectively. 

In AutoDock 4, the energy of each probe atom is calculated and saved on grid maps, 

with each atom type in the ligand having one grid map. The grid parameter file sets the 

number of points in each dimension, the centre of the grid, the space between points, 

the types of probe atoms to be used, the filename of the receptor and the names of each 

grid map. To prepare this grid parameter file, the prepare_gpf4.py script was used. In 

order to generate the grid maps AutoGrid needs a user written input file containing the 

information on the centre of the grid, the size, and the spacing. Several grids were tested 

with the same centre but different sizes. The information on the best performing one is 

presented in table 5. After obtaining the grid parameter file and writing the input file, the 

grid maps can be generated using the script autogrid4.  

Table 5 - Grid-box coordinates for AutoDock4. 

AutoDock 4 Grid-box  

Centre x 19.790 

Centre y 12.010 

Centre z 51.400 

Size x 40.000 

Size y 40.000 

Size z 37.300 

Spacing 0.375 

 

AutoDock 4 needs a specific docking parameter file for each ligand-receptor pair. 

This file was prepared using the prepare_dpf4.py script. For this work, the default 

Lamarckian genetic algorithm parameters were used. 

After all the preparation, AutoDock 4 was run using the autodock4 script. The result 

is a dlg file featuring all generated poses, for the ligand-receptor complex and their 
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respective scores. In order to separate all structures into their own pdbqt files, the 

write_all_complexes.py script was used. 

4.2.1.3 AutoDock Vina 

The receptor and ligand pdbqt files were obtained in the same way than for AutoDock 

4.  Additionally, Vina also needs a docking parameters file. This file features information 

on the name of the receptor, the size, centre and spacing of the search space. To run 

Vina, the general Vina script is used. This script indicates which ligand should be used 

and the names of the two output files.  

Several different runs were performed, using the same box centre, but different box 

sizes and different exhaustiveness values. Exhaustiveness relates to the time spent on 

each search. A higher value corresponds to more time spent. The default value is 8. 

Table 6 displays the best performing parameters. 

Table 6 - Best performing AutoDock Vina parameters for the molecular system under study. 

Vina Parameters  

Centre x 19.79 

Centre y 12.01 

Centre z 51.40 

Size x 15.00 

Size y 15.00 

Size z 14.00 

Spacing 1.00 

Exhaustiveness 8.00 

 

After running Vina, a log and out files are generated. The log file features information 

on the progression of the docking procedure, the final scores for each of the generated 

poses and the RMSD of every pose in reference to the best scored pose. The out file 

contains the structural information of all generated poses, in PDBQT format, with the 

highest scored pose in first place and all other poses following in decreasing order of the 

scoring.  

4.2.1.4 GOLD 

To perform the docking studies using GOLD, it is required a receptor file in pdb format 

and a ligand in mol2 format. Open Babel was used to convert the original ligand files 

from pdb to mol2 format. 
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The first step was to add all hydrogens to the original pdb file. This originated a new 

protein structure in mol2 format, named ID_protein.mol2 which is the one used for the 

docking procedure. The next step was to define the binding site. The centre coordinates 

used were the same selected in both AutoDock 4 and Vina. Several sphere radii were 

tested, with the final sphere volume being similar to all the different box sizes tested in 

both AutoDock 4 and Vina. The radii tested were 7 Å, 8 Å, 9 Å and 10 Å. After this, the 

ligand(s) to be docked were selected. The following step was to choose one from the 

four scoring functions available (ASP, CHEMPLP, CHEMSCORE or GOLDSCORE). All 

non-mentioned options were left on their default values.  

Finally, GOLD can be run on the graphical interface or one can choose to run it on 

the background. By running it on the graphical interface, one can see the several log files 

being written as the docking procedure happens. On the other hand, by running on the 

background, there is no display of what is happening, but the docking files can be opened 

manually if necessary.  A third option is to save all the parameters on a gold.conf file and 

running GOLD in the terminal using the previously mentioned gold_auto script. In this 

step of the work, GOLD was run using the graphical interface. 

In the end, the best scored pose for each ligand, can be seen in the bestranking.lst 

file. Additionally, all the poses are written as gold_soln_ligandname_m#_n.mol2 files, in 

which # is the number of the docking attempt. These are the most important output files 

by a GOLD run. However, there are others, such as the rnk files in which all poses for 

each ligand and their scores are displayed or gold.err files where every error is written 

(when one occurs). 

Table 7 - Optimized GOLD parameters for the molecular system under study. 

GOLD Parameters 

Centre x 19.79 

Centre y 12.01 

Centre z 51.40 

Sphere radius 9 Å 

 

4.2.1.5 LeDock 

LeDock requires the usage of the LePro application to prepare the receptor for the 

docking procedure. Using the lepro_linux_x86 script, the original pdb file is transformed 

in a pro.pdb. All ligands have to be in mol2 format, and so, all were converted from pdb 

to mol2 using Open Babel. LeDock needs all the names of every ligand to be in a single 

text file, here named list_ligand. The final file required is the parameters file here named, 



New Drugs Against Biofilm Formation and Development 
 

74 

input_file.in. This file features information on the name of the receptor file, the maximum 

RMSD desired between poses, the coordinates for the binding pocket, the number of 

desired binding poses and the name of the file containing the ligand’s names. After 

preparing all input files, LeDock was run using the ledock_linux_x86 script. Several box 

sizes were used, with the same sizes as in AutoDock 4 and Vina, with the coordinates 

of the best performing one displayed in table 8. 

Table 8 – Optimized box coordinates for LeDock molecular docking calculations. 

LeDock Box  

xmin 12.29 

xmax 27.29 

ymin 4.51 

ymax 19.51 

zmin 44.40 

zmax 58.40 

 

LeDock produces a dok output file, featuring the score for each generated pose, and 

their atomic coordinates. To open the generated poses in a molecular visualization 

software, the coordinates have to be converted into mol2 format using the dok2mol2 

script. To obtain the docking_summary.txt, which features the score of the best pose for 

each ligand, the script ledock_anal was used. 

4.2.2 Results 

4.2.2.1 Redocking  

The scoring values for all the redocking studies are summarized in table 9. The 

corresponding RMSDs values are presented in table 10. For an easier interpretation of 

the results, a colour gradient is used in which the best results are coloured green and as 

the results get worse, the colour becomes closer to red. On the RMSD averages, the 

gradient is different, with the best results being coloured blue instead of green.  

 

Table 9 - Redocking scores for all available CviR structures. Values for Vina and LeDock are in kcal/mol. 
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Table 10 - Redocking RMSD for all available CviR structures. All values are in Å 

 

The worst scores are seen in 3QP1 and 3QP6, where the ligand is C6-HSL. This was 

expected because for strain 31532, C6-HSL is the native ligand while the other ligands 

are antagonists with higher affinity to CviR. The low score in 3QP6 can be explained with 

the substitution of Met89 by Ser89, which leads to a reduced affinity towards smaller 

molecules. 

The RMSD shows that the best docking program, for reproducing experimental 

poses of the ligand is LeDock. On the other hand, the programs which performed worse 

were Vina and Autodock 4. However, the Vina’s performance is not as bad as the 

average indicates. A better look at the results shows a reasonable value in all structures 

except in structure 3QP6 where Vina placed the molecule the opposite way, as seen on 

figure 12. The following images showing the superimposition of the re-docked and 

original poses, together with the RMSD values indicate a good overall performance from 

all the different molecular docking software. In general, AutoDock 4 proved to be less 

capable to accurately reproduce the experimental poses. This good performance is 

mainly seen with the lactone head group, with most programs struggling with the acyl 

chain. 

PDB Code Vina CHEMPLP ASP CHEMSCORE GOLDSCORE LeDock Autodock

3QP1 0.64 0.70 0.87 0.65 0.56 0.49 1.08

3QP2a 0.84 0.67 0.51 0.73 0.48 0.27 1.52

3QP2b 0.90 0.67 0.69 0.80 0.74 1.17 1.58

3QP4 2.04 1.18 0.64 1.05 1.16 1.03 1.72

3QP5 1.38 1.64 2.04 1.58 1.75 1.09 1.51

3QP6 5.57 0.53 1.02 0.59 0.34 0.61 0.96

3QP8 0.95 1.03 0.96 1.11 0.94 0.51 1.74

Average 1.76 0.92 0.96 0.93 0.85 0.74 1.44

Redocking RMSD
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Figure 13 - Comparison between the original (white) and re-docked (blue) poses for several structures 

using AutoDock Vina. 

3QP1      3QP2a 

3QP4      3QP6 

Autodock Vina 

CHEMPLP 

     3QP1         3QP2a 

     3QP4          3QP6 

Figure 14 - Comparison between the original (white) and re-docked (blue) poses for several structures 
using CHEMPLP. 
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     3QP4          3QP6 

      3QP1         3QP2a 

ASP 

Figure 15 - Comparison between the original (white) and re-docked (blue) poses for several structures 

using ASP. 

     3QP4          3QP6 

      3QP1         3QP2a 

CHEMSCORE 

Figure 16 - Comparison between the original (white) and re-docked (blue) poses for several 
structures using CHEMSCORE. 



New Drugs Against Biofilm Formation and Development 
 

78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     3QP4          3QP6 

      3QP1         3QP2a 

GOLDSCORE 

Figure 17 - Comparison between the original (white) and re-docked (blue) poses for several 
structures using GOLDSCORE. 

     3QP4          3QP6 

      3QP1         3QP2a 

AutoDock 4 

Figure 18 - Comparison between the original (white) and re-docked (blue) poses for several 

structures using AutoDock 4. 
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4.2.2.2 Crossdocking 

The Crossdocking scores for all software and structures are presented in the tables 

11 to 17. As before, a colour gradient is applied a for better comprehension. The best 

scores are coloured green, and the worst are coloured in red, except for the averages 

where the best results are coloured in blue. 

 

 

 

PDB Code Ligand 3QP1 3QP2a 3QP2b 3QP4 3QP5 3QP6 3QP8

3QP1 C6-HSL -7.7 -7.6 -7.6 -7.8 -6.7 -7.7 -7.6

3QP2 C8-HSL -8.0 -7.9 -7.9 -8.0 -7.3 -8.0 -7.9

3QP4 C10-HSL -8.2 -8.2 -8.2 -8.2 -7.5 -8.3 -8.1

3QP5 CL -8.4 -8.9 -8.9 -8.9 -8.1 -8.8 -9.0

3QP6 C6-HSL -7.8 -7.7 -7.6 -7.7 -6.7 -7.7 -7.6

3QP8 C10-HSL -8.2 -8.3 -8.2 -8.2 -7.4 -8.3 -8.2

Average -8.05 -8.10 -8.07 -8.13 -7.28 -8.13 -8.07

AutoDock Vina

Table 11 - Crossdocking results for AutoDock Vina. All values are in kcal/mol. 

LeDock 

     3QP4          3QP6 

      3QP1         3QP2a 

Figure 19 - Comparison between the original (white) and re-docked (blue) poses for several structures 
using LeDock. 
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Table 14 - Crossdocking results for CHEMSCORE. 

 

Table 15 - Crossdocking results for GOLDSCORE. 

 

 

PDB Code Ligand 3QP1 3QP2a 3QP2b 3QP4 3QP5 3QP6 3QP8

3QP1 C6-HSL 69.3 69.2 68.9 70.3 58.8 71.2 70.5

3QP2 C8-HSL 77.5 77.2 77.9 76.7 65.0 80.6 78.4

3QP4 C10-HSL 83.9 84.1 85.1 85.5 73.5 88.7 85.6

3QP5 CL 83.7 85.5 86.0 84.5 70.9 80.5 88.2

3QP6 C6-HSL 69.0 69.3 69.4 70.4 58.7 71.2 70.1

3QP8 C10-HSL 82.6 84.0 85.5 86.2 71.5 88.9 86.2

Average 77.7 78.2 78.8 78.9 66.4 80.2 79.8

CHEMPLP

PDB Code Ligand 3QP1 3QP2a 3QP2b 3QP4 3QP5 3QP6 3QP8

3QP1 C6-HSL 38.2 37.8 37.1 37.5 35.1 38.9 39.5

3QP2 C8-HSL 41.7 40.9 41.9 41.7 37.7 43.8 43.2

3QP4 C10-HSL 44.5 43.9 43.7 44.8 40.5 46.3 45.6

3QP5 CL 48.2 49.3 48.3 48.6 44.3 49.5 51.0

3QP6 C6-HSL 37.6 37.1 37.6 37.6 33.7 40.2 39.6

3QP8 C10-HSL 43.8 43.4 44.0 44.4 39.6 46.5 45.5

Average 42.3 42.1 42.1 42.4 38.5 44.2 44.1

ASP

PDB Code Ligand 3QP1 3QP2a 3QP2b 3QP4 3QP5 3QP6 3QP8

3QP1 C6-HSL 32.9 32.3 32.7 32.5 27.4 33.7 33.4

3QP2 C8-HSL 36.5 35.9 35.9 35.9 29.5 37.0 36.6

3QP4 C10-HSL 39.7 38.8 38.6 39.3 33.1 39.9 39.4

3QP5 CL 41.2 41.2 41.1 41.0 33.1 42.3 41.1

3QP6 C6-HSL 33.1 32.7 32.3 32.4 27.0 33.6 33.5

3QP8 C10-HSL 39.2 38.7 38.7 39.0 33.9 40.3 39.4

Average 37.1 36.6 36.5 36.7 30.7 37.8 37.2

CHEMSCORE

PDB Code Ligand 3QP1 3QP2a 3QP2b 3QP4 3QP5 3QP6 3QP8

3QP1 C6-HSL 57.7 56.9 56.6 58.7 50.1 58.7 59.1

3QP2 C8-HSL 65.3 61.9 62.1 63.9 51.8 64.2 64.6

3QP4 C10-HSL 63.8 66.9 69.0 70.8 59.1 74.1 73.0

3QP5 CL 67.0 68.8 69.9 68.5 62.3 74.0 72.2

3QP6 C6-HSL 56.3 55.8 56.3 56.6 51.3 57.7 57.8

3QP8 C10-HSL 64.0 66.8 68.3 71.0 58.3 72.3 73.7

Average 62.3 62.8 63.7 64.9 55.5 66.8 66.7

GOLDSCORE

Table 12 - Crossdocking results for CHEMPLP. 

Table 13 - Crossdocking results for ASP. 
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The crossdocking studies show that, on average, the best results are seen on 

structures 3QP6 and 3QP8, both from strain 12472. From strain 31532 the structure 

which generates the best scores is 3QP4. In contrast, the worst results in all ligands and 

software are seen on structure 3QP5. This may be due to the bad resolution of this 

structure, which is by a considerable margin, the structure with the worse resolution, as 

seen on table 2. 

Similar to the redocking studies, C6-HSL shows less affinity when compared to all 

other ligands, while C10-HSL and CL show the best results. This behaviour can be seen 

on the majority of structures and software. 

One major difference from the redocking and crossdocking studies is the behaviour 

of 3QP6. As expected, the bad performance during the redocking studies was due to the 

ligand, C6-HSL. When docking other ligands, 3QP6 is frequently the best performing 

structure. 

4.2.3 Conclusions 

The redocking and crossdocking studies suggest that most software perform similarly 

with the worst being AutoDock 4 and, to a lesser extent, Vina. However, Vina is the 

easiest and fastest of all software used, while AutoDock 4 is the most time-consuming 

PDB Code Ligand 3QP1 3QP2a 3QP2b 3QP4 3QP5 3QP6 3QP8

3QP1 C6-HSL -7.9 -7.8 -8.8 -7.9 -6.8 -7.9 -7.8

3QP2 C8-HSL -8.4 -8.4 -8.5 -8.5 -7.5 -8.8 -8.6

3QP4 C10-HSL -9.0 -8.9 -9.1 -9.1 -8.0 -9.2 -8.9

3QP5 CL -9.1 -9.5 -9.4 -9.4 -8.4 -9.9 -9.7

3QP6 C6-HSL -7.9 -7.8 -7.8 -7.9 -7.2 -7.9 -7.9

3QP8 C10-HSL -8.9 -8.9 -9.0 -9.0 -7.9 -9.3 -9.0

Average -8.54 -8.53 -8.76 -8.63 -7.64 -8.84 -8.66

AutoDock 4

PDB Code Ligand 3QP1 3QP2a 3QP2b 3QP4 3QP5 3QP6 3QP8

3QP1 C6-HSL -5.99 -5.92 -5.91 -6.04 -5.02 -5.81 -5.78

3QP2 C8-HSL -6.47 -6.41 -6.41 -6.53 -5.54 -6.30 -6.30

3QP4 C10-HSL -6.36 -6.78 -6.67 -6.95 -5.85 -6.81 -6.68

3QP5 CL -6.40 -7.32 -7.21 -7.43 -6.32 -7.26 -7.52

3QP6 C6-HSL -6.01 -5.93 -5.92 -6.08 -5.09 -5.92 -5.81

3QP8 C10-HSL -6.78 -6.82 -6.73 -7.00 -5.83 -6.94 -6.82

Average -6.34 -6.53 -6.48 -6.67 -5.61 -6.51 -6.49

LeDock

Table 16 - Crossdocking results for AutoDock 4 all values are in kcal/mol. 

Table 17 - Crossdocking results for LeDock all values are in kcal/mol. 



New Drugs Against Biofilm Formation and Development 
 

82 

one. Because of this, the decision was made to not continue to use AutoDock 4 on the 

following steps of this work. 

Regarding the structures, the main conclusions emerging from these results are: 

• Both structures from strain 12472 (3QP6 and 3QP8) displayed the higher 

scores. 

• 3QP6 is the structure that generated the best results. 

• From strain 31532, 3QP4 displayed the higher and most consistent scores 

for all software. 

• The structures 3QP1, 3QP2a and 3QP2b presented more variable scores. 

• 3QP5, was consistently the worst performing of all available structures of 

CviR. 

4.3 Optimization of the Virtual Screening Protocol  

4.3.1 Methods 

The optimization of the virtual screening protocol was separated into two parts. The 

first was a screening of known active compounds and the second a screening of actives 

and decoys. 

The screening of active molecules was done on all previously mentioned molecular 

docking software, with the exception of AutoDock 4. Different sized binding pockets were 

used in this study, similarly to procedure adopted for the redocking and crossdocking 

studies. All software was run in the same way as in the previous studies. The only 

exception was GOLD, which from this point forward was run using the gold_auto script. 

A total of 46 actives were used, 23 obtained from ChEMBL141 and 23 were found in 

the literature162–173 and downloaded from the PubChem174. The 46 actives can be seen 

on figure 20. Since all these compounds were downloaded in smi format, they were 

converted into pdbqt and mol2 using Open Babel.  
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Figure 20 – Known active molecules for CviR 
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The screening of actives and decoys was done only for the best performing binding 

pocket. To obtain the decoys, the 46 actives were submitted to the Database of Useful 

Decoys – Enhanced which generated 50 decoys per active. This led to a total of 2346 

molecules. 

The calculation of the metrics to evaluate the performance of VS protocols was 

performed using two different applications. The ROC and Enrichment Factor was 

calculated on Microsoft Excel. The web based application Screening Explorer was used 

for calculating Total Gain and BEDROC143. 

4.3.2 Results 

4.3.2.1 Virtual Screening of the Active molecules 

First all active compounds were docked on all structures, using all the binding pocket 

dimensions also used on the redocking studies. The average value of all the scores for 

each active on each structure was used to calculate an overall average score for each 

molecular docking program. These average scores are displayed on table 18. 

The sphere used in GOLD and the box used in Vina and LeDock were designed to 

have similar volume. That way the performance of the different molecular docking 

software can be directly compared. 

Table 18 - Average score of all actives on every structure. The scores for Vina and LeDock are expressed 

in kcal/mol. The box dimensions are expressed in Å. 

 

The results indicate that the overall best dimensions for the binding pocket chosen 

are a sphere radius of 9 Å for GOLD and a similar volume box for AutoDock Vina and 

LeDock.  

The average values for each molecule (for each structure), using every molecular 

docking program were ranked. Figure 21 shows the average 10 best placed actives on 

the virtual screenings with different molecular docking programs. 

Sphere Radius 7 Å 8 Å 9 Å 10 Å

ASP Average 42.81 42.98 42.88 42.75

CHEMPLP Average 69.69 69.75 69.94 69.44

CHEMSCORE Average 34.51 34.80 34.72 34.48

GOLDSCORE Average 57.29 57.61 57.59 57.82

Box Dimentions 8x10x12.5 13x14x13 15x15x14 16x17x16

Vina Average -7.47 -7.80 -7.84 -7.86

LeDock Average -5.71 -5.81 -5.83 -5.86
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Figure 21 - Comparison of the 10 best placed active molecules on each virtual screening with different 
molecular docking programs. 

Of the 46 active molecules in this virtual screening, 25 were placed at least once in 

the top 10 by one of the molecular docking programs. Of these 25 molecules, nine only 

appeared in the top 10 once, five appeared twice, seven appeared three times, two 

molecules appeared four and other two five times. Even though there was no molecule 

being placed in the top 10 in all programs, these results mean that there was some 

consistency between all scoring functions used.  

Lastly, it was evaluated if some of the scoring functions have any bias towards 

ranking molecules with certain properties higher. For this purpose, the linear correlations 

between the scores and multiple chemical properties were calculated. The values for 

these properties were obtained and the statistical calculation was done using the open-

source program for data analysis Datawarrior175. The results are presented on table 19. 

Actives Screening

ASP CHEMPLP CHEMSCORE GOLDSCORE LeDock Vina
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Table 19 - Correlation between the used scoring functions and several chemical properties of the active 

molecules. 

 

Before analysing the results, it is important to remember than Vina and LeDock have 

scores with negative values while GOLD has scores with positive values. The ASP 

scoring function generates better results for molecules with a higher number of aromatic 

rings, a higher molecular mass and total surface area. CHEMPLP also displays a bias 

towards molecules with a higher molecular mass and surface area, but also favours 

molecules with a higher number of rotatable bonds. On the other hand, CHEMSCORE 

displays better results for molecules with a lower molecular mass, surface area and 

partition coefficient. GOLDSCORE shows favouritism towards molecules with higher 

molecular mass, total surface area, and number of rotatable bonds. All GOLD scoring 

functions display a bias towards molecules with a higher molecular mass when 

compared to LeDock and Vina. LeDock’s scoring function ranks favourably molecules 

with a higher number of electronegative atoms, hydrogen bond acceptors and polar 

surface area. Finally, Vina shows less bias on relation to the different properties when 

compared with the other scoring functions, with the only substantial correlation being 

with a higher number of aromatic rings. 

4.3.2.2 Actives vs Decoys Virtual Screening 

The 2346 molecules were screened on all available structures using Vina, GOLD and 

LeDock. The results were evaluated using several metrics. The results obtained for the 

area under the ROC curve (ROC) metrics, are presented in table 20. 

Bravais-Pearson Linear Correlation Amides Aromatic Nitrogens Aromatic Rings Basic Nitrogens

Score ASP -0.21 0.12 0.62 0.29

Score CHEMPLP -0.07 -0.20 -0.16 0.18

Score CHEMSCORE 0.00 0.10 -0.15 -0.27

Score GOLDSCORE 0.04 -0.07 -0.08 0.08

Score LeDock -0.35 0.01 -0.04 -0.27

Score Vina -0.08 -0.05 -0.58 -0.33

Bravais-Pearson Linear Correlation Electronegative Atoms H-Acceptors H-Donors Polar Surface Area

Score ASP 0.34 0.38 0.33 0.29

Score CHEMPLP -0.16 -0.17 -0.24 -0.24

Score CHEMSCORE 0.22 0.24 0.32 0.34

Score GOLDSCORE 0.23 0.20 0.12 0.18

Score LeDock -0.65 -0.58 -0.42 -0.56

Score Vina -0.22 -0.24 -0.12 -0.11

Bravais-Pearson Linear Correlation Rotatable Bonds Total Molweight Total Surface Area cLogP

Score ASP -0.05 0.69 0.52 0.18

Score CHEMPLP 0.66 0.58 0.77 0.58

Score CHEMSCORE -0.30 -0.46 -0.58 -0.50

Score GOLDSCORE 0.56 0.74 0.78 0.33

Score LeDock -0.08 -0.46 -0.28 0.32

Score Vina 0.30 -0.32 -0.17 0.02
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Table 20 - Area under the curve from the actives vs decoys virtual screening. 

 

 These results show that the molecular docking program capable of better 

discriminating the active molecules from the decoys is AutoDock Vina. This program 

presented, not only the higher average AUC, but also the higher AUC across every 

structure. Other programs displaying a good performance are GOLD, using the 

CHEMPLP scoring function, and LeDock. On the other side of the scale, ASP is, by a 

clearly, the scoring function with the lowest AUC, generating the lowest value in every 

structure. The average AUC for ASP is 0.092 lower than the next lowest value, which is 

GOLDSCORE.  

In the same way as the crossdocking studies, the structures that led to better AUC 

results were 3QP6 and 3QP8. 3QP6 was the overall best performing structure, having 

the best results in every program. There was only one exception, where 3QP8 presented 

the higher value of AUC. Between the structures from strain 31532, 3QP4 generated the 

highest values in every program, with 3QP1, 3QP2a and 3QP2b displaying similar 

performance. In contrast, 3QP5 consistently exhibited the worst AUC values, with its 

average AUC being 0.121 lower than 3QP2a that presented the next lowest values. 

An overall view of the ROC curves for the active vs decoys virtual screening using 

3QP6 can be seen on figure 22. 

PDB Code Vina CHEMPLP ASP CHEMSCORE GOLDSCORE LeDock Average

3QP1 0.746 0.703 0.544 0.676 0.668 0.701 0.673

3QP2a 0.739 0.687 0.551 0.682 0.650 0.710 0.670

3QP2b 0.752 0.698 0.542 0.677 0.647 0.718 0.672

3QP4 0.772 0.712 0.580 0.696 0.672 0.744 0.696

3QP5 0.619 0.567 0.490 0.549 0.503 0.565 0.549

3QP6 0.820 0.757 0.614 0.715 0.722 0.753 0.730

3QP8 0.817 0.762 0.609 0.710 0.708 0.743 0.725

Average 0.752 0.698 0.561 0.672 0.653 0.705

AUC
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Figure 22 - ROC curve of the active vs decoys virtual screening for 3QP6. 

The results, obtained for the enrichment factor (EF) at 1 %, are presented in table 

21. 

Table 21 - Enrichment factor at 1 % of the actives vs decoys virtual screening. 

 

The enrichment factor at 1% evaluates how many active molecules each docking 

procedure places within the top 1% of the results. In this database, 1% corresponds to 

the 23 best scored molecules.  

The best performing program according to this metric is GOLD using the CHEMPLP 

scoring function, the only program capable of placing a least on molecule on the top 1 % 

(corresponding to a EF value of 2.22) in every structure, and resulting on the highest 

obtained EF value at 1 % 11.08 (corresponding to 5 molecules). CHEMPLP was followed 

by the GOLDSCORE and AutoDock Vina. The worst performing programs are ASP and 

LeDock. Both programs were only able to place one active molecule on the top 1 % in 

one of the structures. 

EF nº Actives/46 EF nº Actives/46 EF nº Actives/46 Score nº Actives/46 EF nº Actives/46 EF nº Actives/46

3QP1 2.22 1      11.08 5      0.00 0      2.22 1      0.00 0      0.00 0      

3QP2a 2.22 1      2.22 1      0.00 0      2.22 1      2.22 1      0.00 0      

3QP2b 3.92 2      4.43 2      0.00 0      2.22 1      2.22 1      0.00 0      

3QP4 2.22 1      4.43 2      0.00 0      2.22 1      6.65 3      0.00 0      

3QP5 0.00 0      2.22 1      0.00 0      2.22 1      0.00 0      0.00 0      

3QP6 6.65 3      4.43 3      0.00 0      2.22 1      4.43 3      2.22 1      

3QP8 4.43 2      4.43 2      2.22 1      2.22 1      6.65 3      0.00 0      

Average 3.09 1.43 4.75 2.29 0.32 0.14 2.22 1.00 3.17 1.57 0.32 0.14

1%

Receptor Vina CHEMPLP ASP CHEMSCORE GOLDSCORE LeDock
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Using the EF at 1 % metrics, the structures with that produced the best results were, 

as before, both structures from strain 12472. Additionally, 3QP6 presented a better 

average value. Concerning the other structures, 3QP1 and 3QP4 had the highest EF 

values, with 3QP1 using CHEMPLP displaying the highest overall score, placing 5 active 

molecules in the top 1 %. 

The results, obtained for the enrichment factor at 5 % metric, are presented on table 

22. 

Table 22 - Enrichment factor at 5 % of the actives vs decoys virtual screening. 

 

The enrichment factor at 5 % evaluates how many active molecules each docking 

procedure places within the top 5 % of the results. In this database, the number of the 5 

% best scored molecules was 117. 

The best performing program was GOLD using the CHEMPLP scoring function, with 

a maximum of 13 active molecules found, using 3QP2b. After GOLD, the best results 

were obtained by AutoDock Vina and LeDock. As before, ASP generated the worst 

results, only being able to place 2 molecules on the top 5 % in 3QP5. 

Unlike the previous results, the best performing structures was 3QP2b, followed by 

3QP4, and then the two structures from strain 12472, led by 3QP8. The worst values 

were obtained, as it has become usual, using 3QP5. 

The results, obtained for the enrichment factor (EF) at 20 % metrics, are presented 

in table 23. 

EF nº Actives/46 EF nº Actives/46 EF nº Actives/46 EF nº Actives/46 EF nº Actives/46 EF nº Actives/46

3QP1 2.18 5 4.79 11 1.31 3 1.74 4 1.74 5 1.74 4.00

3QP2a 3.92 9 5.23 12 1.74 4 1.31 3 1.74 4 2.62 6.00

3QP2b 3.92 9 5.66 13 1.74 4 2.18 5 2.61 6 4.36 10.00

3QP4 4.36 10 4.79 11 1.31 3 2.18 5 2.61 6 4.36 10.00

3QP5 0.87 2 0.87 2 0.87 2 0.87 2 0.44 1 0.44 1.00

3QP6 3.49 8 5.23 12 1.31 3 2.18 5 2.61 6 3.05 7.00

3QP8 4.36 10 5.23 12 1.74 4 2.61 6 3.05 7 2.18 5.00

Average 3.30 7.57 4.54 10.43 1.43 3.3 1.87 4.29 2.12 5.00 2.68 6.14

Receptor

5%

Vina CHEMPLP ASP CHEMSCORE GOLDSCORE LeDock
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Table 23 - Enrichment factor at 20 % of the actives vs decoys virtual screening. 

 

The enrichment factor at 20 % evaluates how many active molecules each docking 

procedure places within the top 20 % of the results. In this database, the number of the 

20 % best scored molecules was 469. 

The results indicate that the program which is more capable for placing active 

molecules on the top 20 % is AutoDock Vina, with a maximum of 33 active molecules 

being found on 3QP6. GOLD using CHEMPLP also had a good performance, and so did 

LeDock. On the other hand, ASP continues to be the worst performing molecular docking 

software in this work, in 3QP1 it was only being able to correctly place 11 molecules in 

the top 20%. 

Concerning the structures, the highest EF 20 % values were obtained for 3QP6, 

closely followed by 3QP8. As for the other structures, 3QP4 continues to display the best 

results, while 3QP5 also continues to have the worst performance.  

The results obtained for the Total gain metrics are presented in table 24. 

Table 24 - Total Gain values for the actives vs decoys virtual screening. 

 

Similar to the results obtained from the other metrics, the best total gain values are 

obtained using AutoDock Vina, GOLD with the CHEMPLP scoring function, and LeDock. 

In this case, AutoDock Vina has the highest average total gain, having the absolute 

overall value in six of the seven structures. The worst values are once again obtained 

EF nº Actives/46 EF nº Actives/46 EF nº Actives/46 EF nº Actives/46 EF nº Actives/46 EF nº Actives/46

3QP1 2.60 24 2.06 19 1.19 11 1.95 18 1.41 13 2.39 22.00

3QP2a 2.28 21 2.28 21 1.30 12 2.17 20 1.95 18 2.17 20.00

3QP2b 2.50 23 2.28 21 1.30 12 2.28 21 1.52 14 2.29 22.00

3QP4 2.50 23 2.39 22 1.74 16 2.39 22 1.63 15 2.39 22.00

3QP5 1.19 11 1.30 12 1.19 11 1.08 10 0.76 7 1.09 10.00

3QP6 3.58 33 2.82 26 1.74 16 2.28 21 2.06 19 2.50 23.00

3QP8 3.04 28 2.82 26 1.84 17 2.06 19 2.49 23 2.39 22.00

Average 2.53 23.29 2.28 21.00 1.47 13.6 2.03 18.71 1.69 15.57 2.17 20.14

Receptor

20%

Vina CHEMPLP ASP CHEMSCORE GOLDSCORE LeDock
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using GOLD with the ASP scoring function, with its total gain value being 0.114 inferior 

to the next lowest performing software. 

The best performing structure was 3QP6, once again followed by 3QP8. Using 

AutoDock Vina with these two structures resulted in the only two cases in which the total 

gain value was higher than 0.4. Among the other structures, 3QP4 remains the structure 

displaying the best results. On the other hand, 3QP5 remains the worst performing 

structure, with a total gain value 0.162 inferior then the next worst score.  

The results, obtained for BEDROC metrics, are presented in table 25. 

Table 25 - BEDROC values for the actives vs decoys virtual screening. 

 

The last metric used was BEDROC, a normalization of the robust initial 

enhancement, used to evaluate the early recognition of actives. The three best 

performing programs according to this metric were, as in most other metrics, GOLD with 

the CHEMPLP scoring function, AutoDock Vina and LeDock. In this case, CHEMPLP 

displayed the higher values. In agreement with the other metrics, the ASP scoring 

function once again generated the lowest values. 

Finally, the structures which displayed the best BEDROC value were, as in most 

other metrics, both structures from strain 12472. In this case, the active vs decoys virtual 

screenings using 3QP8 generated the highest average value. 3QP4 was the best 

performing structure among the structures from strain 31532. 3QP5 continued to be the 

structure that led to the worst scores. 

4.3.3 Conclusions 

The objective of this section of the work was to develop an optimized virtual screening 

protocol that will be applied to larger databases. This way the probability to find promising 

molecules in further VS experiments was increased. 
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Three main components were evaluated through all metrics above displayed: the 

size of the binding area used for the molecular docking, the different molecular docking 

programs and all the available structures of CviR. 

Concerning the size of the grid box, or sphere, depending on what software is used, 

the more consistent high scores were obtained for a radius of 9 Å in GOLD, and a box 

with the dimensions present in table 26 for AutoDock Vina and LeDock. Considering that 

these dimensions were generating the better scores, they were used for the Virtual 

Screening experiments. 

Table 26 - Grid-box dimensions for AutoDock Vina and LeDock, values are expressed in Å. 

Box dimensions 

Size x 15.0 

Size y 15.0 

Size z 14.0 

The best performing programs were consistent across most of the metrics, with 

AutoDock Vina and GOLD using CHEMPLP being more capable of distinguishing the 

active compounds from the decoys, generally followed by LeDock. While LeDock usually 

generates lower results, principally with a very low EF at 1 %, it generates better results 

in all other metrics. Additionally, it and has the advantage that it generates results that 

are very easy to analyse. With this in mind, the software used in the Virtual Screening 

stage of this work were AutoDock Vina, GOLD with the CHEMPLP scoring function 

(GOLD/CHEMPLP) and LeDock. 

Finally, it is important to select the receptor structures. Across nearly all metrics, the 

best results were obtained using 3QP6 and 3QP8. However, since they are both from 

strain 12472, the decision was made to use the best performing structure from each 

strain. The structure form strain 31532 that generally generated the best results was 

3QP4. Therefore, the two CviR structures used in the Virtual Screening step of this work 

were 3QP4 and 3QP6. 

4.4 Virtual Screening 

4.4.1 Methods 

The virtual screening protocol followed the conclusions obtained in the optimization 

step of this work. AutoDock Vina, GOLD/CHEMPLP and LeDock were run in the 

conditions optimized as in the previous chapter. These molecular docking procedures 

and were applied to two databases: a DrugBank FDA (U.S. Food and Drug 
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Administration) approved database available on ZINC, and Mu.Ta.Lig. Virtual 

Chemotheca. 

ZINC is a public access database, which is used to obtain compounds for several 

uses. These include virtual screening, ligand discovery and force field development. It 

was created in the Department of Pharmaceutical Chemistry at the University of 

California (UCSF) and includes 220 million molecules176. In the present work, 1657 FDA 

approved molecules were downloaded in SMILES format from this database. These 

molecules were further converted into pdbqt and mol2 using Open Babel. For simplicity, 

this database will be referred as ZINC/FDA. 

The Mu.Ta.Lig. (Multi-Target Ligand) Chemotheca database was developed with the 

goal of identifying multi-target agents and repurposing known active compounds. For 

simplicity, this database will be referred just as Chemotheca. A large number of 

molecules with promising pharmaceutical relevance are developed every year and are 

forgotten when they fail to have the desired effect. However, these molecules can have 

a positive effect on other targets. The availability of a list of inactive compounds for a 

specific target can be useful for generating decoys or developing QSAR models. For this 

purpose, Chemotheca allows users to not only download compounds but also to upload 

their own177. At the time of this work, this database features 64804 compounds. These 

compounds were downloaded in sdf format and converted into pdbqt and mol2 formats 

using Open Babel. 

4.4.2 Results 

4.4.2.1 ZINC/FDA database 

Table 27 displays the 20 best ranked molecules for the virtual screening of the 

ZINC/FDA compounds database, using AutoDock Vina for both 3QP4 and 3QP6. 

Considering that all the molecules on this database are FDA approved drugs, they are 

identified by the name used in Drugbank. Histograms for these virtual screening 

simulations are present in figure 23. 
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Table 27 - Results of the virtual screening on the ZINC/FDA database using AutoDock Vina. The scores 

are expressed in kcal/mol. 

Virtual Screening Results 

3QP4 3QP6 

Rank Ligand Score Rank Ligand Score 

1 Atovaquone -12.1 1 Atovaquone -11.9 

2 Risperidone -11.1 2 Mebendazole -11.1 

3 Mebendazole -11.0 3 Risperidone -10.9 

4 Paliperidone -10.5 4 Paliperidone -10.9 

5 Tolnaftate -10.4 5 Benzoyl peroxide -10.4 

6 Axitinib -10.4 6 Droperidol -10.4 

7 Umeclidinium -10.4 7 Permethrin -10.3 

8 Lansoprazole -10.3 8 Pimozide -10.3 

9 Permethrin -10.2 9 Bicalutamide -10.2 

10 Belinostat -10.2 10 Ketoprofen -10.1 

11 Benzoyl peroxide -10.1 11 Nebivolol -9.9 

12 Fenofibric acid -10.1 12 Cilostazol -9.9 

13 Ketoprofen -10.0 13 Vismodegib -9.9 

14 Dexketoprofen -10.0 14 Pirfenidone -9.8 

15 Haloperidol -10.0 15 Nateglinide -9.8 

16 Fenofibrate -10.0 16 Mirabegron -9.8 

17 Cilostazol -10.0 17 Niraparib -9.8 

18 Estradiol -10.0 18 Isocarboxazid -9.7 

19 Dolasetron -9.9 19 Benzophenone -9.7 

20 Nateglinide -9.9 20 Sulfasalazine -9.7 

21 Benzophenone -9.9 21 Iloperidone -9.7 

22 Nebivolol -9.9 22 Dapsone -9.6 

23 Iloperidone -9.8 23 Tolnaftate -9.6 

24 Eletriptan -9.8 24 Haloperidol -9.6 

25 Vemurafenib -9.8 25 Ziprasidone -9.6 

 

Figure 23 - Histograms for the virtual screening of ZINC/FDA Approved compounds database using 
AutoDock Vina for both 3QP4 and 3QP6. 
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Atovaquone is the best ranked molecule for both 3QP4 and 3QP6 target. It is also 

important to stress that there are ten compounds present in the 25 best ranked molecules 

in both structures. One molecule which yielded a high score in both structures is the best 

ranked molecule in both virtual screenings, Atovaquone. The other nine molecules with 

high ranking using both structures are Risperidone, Mebendazole, Paliperidone, 

Permethrin, Ketoprofen, Cilostazol, Benzoyl peroxide, Iloperidone and Nebivolol. 

All molecules in the top 25 yielded higher scores than those obtained during the 

redocking step and the crossdocking with the native ligands. A comparison between the 

scores of the 1st and 25th best ranked molecules for each target, and the corresponding 

redocking and crossdocking values is presented on table 28. This indicates that these 

new molecules obtained from the VS may have higher affinity to CviR than its specific 

ligands. 

Table 28 - Comparison between the scores for the 1st and 25th best ranked molecules, obtained from 
ZINC/FDA database using AutoDock Vina, and the corresponding redocking and crossdocking values. 

3QP4 3QP6 

Atovaquone -12.1 Atovaquone -11.9 

Vemurafenib -9.8 Ziprasidone -9.6 

Re-docking -7.8 Re-docking -7.8 

Crossdocking -8.2 Crossdocking -8.3 

Some of the highest scored molecules docked poses are shown in figure 24 and 

more information about these drugs is provided on table 29.  
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Figure 24 - Some of the best ranked compounds, obtained from the ZINC/FDA database using AutoDock 
Vina, in both 3QP4 and 3QP6 targets. 

  

Atovaquone      Risperidone 

Mebendazole     Benzoyl peroxide 

Cilostazol        Ketoprofen 

   Permethrin              Nebivolol 
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Table 29 – Information on some of the best ranked compounds, obtained of from the ZINC/FDA Approved 

database using Autodock Vina, in both 3QP4 and 3QP6 targets. 

Molecule Description 2D Structure 

Atovaquone 

Atovaquone is an analog of ubiquinone, 
that has antimicrobial and 

antipneumocystis activity. It can 
selectively affect mitochondrial electron 

transport and parallel processes such as 
ATP and pyrimidine biosynthesis in 

atovaquone-responsive parasites. Its 
currently used in antimalarial 

protocols178. 
 

Risperidone 

Risperidone is an atypical antipsychotic 
with a high affinity towards 5-

hydroxytryptamine (5-HT)2A, dopamine 
D2 and α1- and α2-adrenergic 

receptors179. 

  

Mebendazole 

Mebendazole is a broad spectrum 
anthelmintic. It binds to the colchicine-
sensitive site of tubulin, inhibiting its 

polymerization or assembly into 
microtubules180. 

 

 

Benzoyl 
peroxide 

Benzoyl peroxide is used for topical acne 
therapy. This drug has broad-spectrum 
bactericidal activity due to its powerful 

oxidizing activity181. 

 

 

Cilostazol 

Cilostazol and multiple of its metabolites 
are cyclic AMP phosphodiesterase III 

inhibitors. They originate in an increase 
in cAMP in platelets and blood vessels, 
which leads to an inhibition of platelet 

aggregation and vasodilation.182 
 

 

Ketoprofen 

Ketoprofen is a nonsteroidal anti-
inflammatory drug with analgesic 

properties. These properties are due to 
the suppression of prostaglandin 

synthesis through 
cyclo-oxygenase inhibition183. 

 

 

Permethrin 

 

Permethrin is active against a severs 
pests including lice, fleas, and other 

arthropods. This drug acts on the nerve 
cell membrane, disrupting the sodium 
channel current. This causes delayed 

repolarization and paralysis of the 
pests184. 

 

 

 

 

 

Nebivolol 

Nebivolol is a cardioselective lipophilic 
beta-blocker that decreases vascular 

resistance, increases stroke volume and 
cardiac output, and does not affect left 

ventricular function185.  
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The results for the virtual screening of the ZINC/FDA database using 

GOLD/CHEMPLP scoring function are presented on table 30. Histograms for these 

virtual screening simulations are presented in figure 25. 

Table 30 - Results of the virtual screening on the ZINC/FDA database using the GOLD/CHEMPLP 
procedure. 

Virtual Screening Results 

3QP4 3QP6 

Rank Ligand Score Rank Ligand Score 

1 Montelukast 116.32 1 Iloprost 111.30 

2 Vitamin K1 108.73 2 Montelukast 110.21 

3 Glycerol phenylbutyrate 108.65 3 Glycerol phenylbutyrate 110.08 

4 Bazedoxifene 107.61 4 Bazedoxifene 108.90 

5 Pimozide 106.69 5 Atazanavir 108.20 

6 Cobicistat 106.19 6 Travoprost  106.51 

7 Imatinib 105.99 7 Salmeterol 106.14 

8 Raloxifene 105.50 8 Pimozide 105.31 

9 Ketoconazole 104.70 9 Iloperidone 105.20 

10 Nefazodone 103.83 10 Raloxifene 104.50 

11 Zafirlukast 103.23 11 Vitamin K1 103.95 

12 Salmeterol 102.34 12 Nonoxynol-9 103.46 

13 Silodosin 102.00 13 Nefazodone 103.27 

14 Vilanterol 101.24 14 Mirabegron 102.51 

15 Iloprost 100.83 15 Lapatinib 101.93 

16 Itraconazole 100.28 16 Imatinib 101.78 

17 Iloperidone 100.14 17 Deferoxamine 101.31 

18 Dronedarone 100.02 18 Ketoconazole 101.30 

19 Orlistat 98.21 19 Dabigatran etexilate 100.56 

20 Fosinopril 98.10 20 Tirofiban 100.26 

21 Nintedanib 97.62 21 Cetylpyridinium 100.10 

22 Posaconazole 97.48 22 Orlistat 99.79 

23 Permethrin 97.30 23 Cobicistat 99.69 

24 Pimavanserin 97.07 24 Posaconazole 99.43 

25 Thonzonium 97.02 25 Itraconazole 98.99 



New Drugs Against Biofilm Formation and Development 
 

99 

 

 

Figure 25 - Histograms for the virtual screening of ZINC/FDA database using the GOLD/CHEMPLP 
procedure. 

The two best ranked molecules are Montelukast in 3QP4 and Iloprost in 3QP6. 

Both molecules gave high ranking in both structures. As before, there are other 

molecules that generated high scores with both structures. These molecules were 

Glycerol phenylbutyrate, Phylloquinone, Bazedoxifene, Raloxifene, Ketoconazole, 

Nefazodone and Salmeterol.  All molecules in the top 25 generated higher scores than 

those obtained during the redocking step and the crossdocking with the native ligands. 

A comparison between the scores of the 1st and 25th best ranked molecules, for each 

target structure, and the corresponding redocking and crossdocking values is 

presented on table 31. This indicates that these new molecules, obtained from the VS 

simulations may have higher affinity to CviR than its specific ligands. Some of these 

molecules are presented in figure 26, and a description of their current use is provided 

on table 32. 

Table 31 - Comparison between the scores for the 1st and 25th best ranked molecules, obtained from 
ZINC/FDA database using the GOLD/CHEMPLP procedure, and the corresponding redocking and 

crossdocking values. 

3QP4 3QP6 

Montelukast 116.32 Iloprost 111.30 

Thonzonium 97.02 Itraconazole 98.99 

Re-docking 69.70 Re-docking 71.70 

Crossdocking 87.20 Crossdocking 89.30 
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Montelukast        Glycerol phenybutyrate 

  Phylloquinone    Salmeterol 

Nefazodone       Iloprost 

Figure 26 - Some of the best ranked docked compounds, obtained from the ZINC/FDA database using 
the GOLD/CHEMPLP procedure, in both 3QP4 and 3QP6 targets. 
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Table 32 - Information on some of the best ranked compounds, obtained from the ZINC/FDA database 

using the GOLD/CHEMPLP procedure, in both 3QP4 and 3QP6 targets. 

Molecule Description 2D Structure 

Montelukast 

Montelukast is a potent selective 
antagonist of the leukotriene 

D4 (LTD4) receptor that was developed 
as an oral treatment for adults and 

children with asthma186. 

 

Glycerol 
phenybutyrate 

Glycerol phenylbutyrate works as a 
prodrug. Phenylacetic acid, the major 

metabolite, binds to nitrogen by 
conjugating with glutamine through 

acetylation in the liver and kidneys to 
form phenylacetylglutamine, which is 

excreted by the kidneys. This provides 
an alternative nitrogen elimination 
pathway for people with Urea cycle 

disorders187. 

 

 

Phylloquinone 

Phylloquinone, or vitamin K1, is an 
essential cofactor for the gamma-

carboxylase enzymes which catalyse 
the posttranslational gamma-

carboxylation of glutamic acid residues 
in inactive hepatic precursors of 

coagulation factors II, VII, IX and X188. 
 

 

Salmeterol 

Salmeterol is an inhaled long-acting 
selective β2-adrenergic receptor agonist 

that is currently prescribed for the 
treatment of asthma and chronic 

obstructive pulmonary disease189. 

 

 

Nefazodone 

Nefazodone is an antidepressant which 
acts as an antagonist for type 2 
serotonin (5-HT2) post-synaptic 

receptors and moderately inhibits 
serotonin and noradrenaline 

reuptake190. 

 

 

Iloprost 

Iloprost is a synthetic analogue of 
prostacyclin PGI2 which dilates 
systemic and pulmonary arterial 
vascular beds. It is used for the 
treatment of pulmonary arterial 

hypertension191. 
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The results of the virtual screening of the ZINC/FDA database using LeDock are 

displayed in on table 33. Histograms for these virtual screening simulations are 

presented in figure 27. 

Table 33 - Results of the virtual screening of the ZINC/FDA database using LeDock Scores are expressed 
in kcal/mol. 

Virtual Screening Results 

3QP4 3QP6 

Rank Ligand Score Rank Ligand Score 

1 Famotidine -8.96 1 Famotidine -9.61 

2 Sulfasalazine -8.74 2 Sulfasalazine -8.44 

3 Pemetrexed -8.43 3 Cimetidine -7.85 

4 Glipizide -8.00 4 Cefazolin  -7.83 

5 Rabeprazole -7.97 5 Cidofovir -7.81 

6 Cefazolin -7.82 6 Sorafenib -7.74 

7 Cidofovir -7.75 7 Folic acid -7.71 

8 Folic acid -7.73 8 Glipizide -7.65 

9 Chlorpropamide -7.71 9 Panobinostat -7.61 

10 Risedronic acid -7.71 10 Pemetrexed -7.56 

11 Cangrelor -7.66 11 Ibandronate -7.56 

12 Nizatidine -7.65 12 Regadenoson -7.54 

13 Dasatinib -7.62 13 Nizatidine -7.49 

14 Ibutilide -7.58 14 Cidofovir -7.46 

15 Ibandronate -7.56 15 Nizatidine -7.46 

16 Delavirdine -7.51 16 Glyburide -7.46 

17 Tenofovir disoproxil -7.49 17 Vorinostat -7.43 

18 Dexlansoprazole -7.47 18 Chlorhexidine -7.38 

19 Paliperidone -7.43 19 Risedronic acid -7.38 

20 Ceftriaxone -7.42 20 Tenofovir disoproxil -7.3 

21 Zoledronic acid -7.42 21 Dofetilide -7.29 

22 Sulfisoxazole -7.38 22 Ranitidine -7.26 

23 Tolbutamide -7.37 23 Mirabegron -7.25 

24 Ziprasidone -7.35 24 Zoledronic acid -7.23 

25 Trazodone -7.34 25 Adefovir dipivoxil -7.21 
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Figure 27 – Histograms for the virtual screening of ZINC/FDA database using LeDock 

In both structures the best scored molecule is Famotidine, followed by Sulfasalazine. 

There are nine others, which generated high scores in both structures. These 

compounds are Pemetrexed, Glipizide, Cefazolin, Cidofovir, Folic acid, Risedronic acid, 

Nizatidine, Tenofovir disoproxil and Zoledronic acid. As on the virtual screenings using 

the previous two molecular docking procedures, the top 25 ranked molecules yielded 

higher scores than those generated on the redocking and crossdocking experiments (see 

table 34). Some of these molecules are shown on figure 28 and more information about 

them is provided on table 35. 

Table 34 - Comparison between the scores for the 1st and 25th best ranked molecules, obtained from 
ZINC/FDA database using LeDock. 

3QP4 3QP6 

Famotidine -8.96 Famotidine -9.61 

Trazodone -7.34 Adefovir dipivoxil -7.21 

Re-docking -6.04 Re-docking -5.87 

Crossdocking -6.92 Crossdocking -7.00 
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Figure 28- Some of the best ranked docked compounds, obtained from the ZINC/ FDA database obtained 
using LeDock, in both 3QP4 and 3QP6 targets. 

  

Famotidine        Glipizide 
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Table 35 - Information on some of the best ranked compounds, obtained from the ZINC/FDA database 

using LeDock, in both 3QP4 and 3QP6 targets. 

Molecule Description 2D Structure 

Famotidine 

Famotidine is a competitive histamine H2 
receptor antagonist. It is used for 

gastrointestinal conditions related to acid 
secretion, such as gastric ulcers192. 

 

Glipizide 

Glipizide is part of the sulfonylurea drug 
class. This drug acts by stimulating the 

pancreatic β-cells to secrete insulin. This is 
done by binding to receptors that block the 
potassium ATP-dependent channels. This 

depolarises the cell leading to insulin 
exocytosis193. 

  

Cefazolin 

Cefazolin is a cephalosporin analog with 
broad-spectrum antibiotic action. Its effect 
is achieved by binding to specific penicillin-

binding proteins inside the bacterial cell 
wall, inhibiting the synthesis of the cell 

wall194.  

 

Cidofovir 

Cidofovir is an antiviral drug used for the 
treatment of cytomegalovirus retinitis in 
patients diagnosed with AIDS. It acts by 
inhibiting the viral DNA polymerase195.  

 

 

Folic acid 

Folic acid is used to treat tetrahydrofolic 
acid and vitamin B12 deficiencies. It is 

converted to tetrahydrofolic acid by 
dihydrofolate reductase122. 

 

 

Nizatidine 
Nizatidine is a histamine H2 receptor 
antagonist used for the treatment of 

duodenal ulcers196.  

 

 

 
 

There are a reduced number of molecules that yielded high scores using more than 

one molecular docking. Two molecules (Pimozide and Iloperidone) presented high 

scores using both AutoDock Vina and GOLD/CHEMPLP procedures. Three other 

molecules (Paliperidone, Mirabegron and Iloperidone) had high scores using AutoDock 
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Vina and LeDock. These molecules, presented in figure 29, are more likely to have high 

affinity towards CviR. Further information on these compounds is presented in table 36. 

 

 

 

 

 

Figure 29 – Molecules that generated high scores in multiple molecular docking procedures.  

Pimozide     Paliperidone 

Mirabegron      Sulfasalazine 

           Iloperidone 
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Table 36 - Further information on the compounds that generated high scores in multiple molecular docking 
procedures. 

Molecule Description 2D Structure 

Pimozide 

Pimozide is used as an antipsychotic agent 
and for the suppression of vocal and motor 

tics in patients with Tourette syndrome. 
Although its exact mechanism of action is 
unknown, it is thought that it inhibits the 

dopamine D2 receptor197. 

 

Paliperidone 

Palperidone is a metabolite of risperidone, 
now also used as an antipsychotic. The 
mechanism of action is unknown but it is 

likely to act via a similar pathway to 
risperidone198. 

  

Mirabegron 

Mirabegron is selective 
β3-Adrenoceptor Agonist. It is used for the 

treatment of symptoms of overactive 
bladder199. 

 

 

Sulfasalazine 

Sulfasalazine is an anti-inflammatory drug 
used for the treatment of ulcerative colitis 

and rheumatoid arthritis. Its activity is 
believed to be due to its metabolites 5-
aminosalicylic acid and sulfapyridine200. 

 

 

Iloperidone 

Iloperidone is an antipsychotic for the 
treatment of schizophrenia symptoms. It 
shows high affinity and maximal receptor 
occupancy for dopamine D2 receptors in 
the caudate nucleus and putamen of the 

brains of schizophrenic patients201. 
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4.4.2.2 Mu.Ta.Lig Virtual Chemotheca 

The results of the virtual screening of the Chemotecha database, obtained using 

Autodock Vina, are presented on table 37 and figure 30. 

Table 37 - The 25 best ranked molecules of obtained by virtual screening on the Chemotheca database 

using Autodock Vina. Scores are expressed in kcal/mol. 

Virtual Screening Results 

3QP4 3QP6 

Rank Ligand Score Rank Ligand Score 

1 CMLDID18049 -12.1 1 CMLDID40723 -12.1 

2 CMLDID40723 -12.0 2 CMLDID2574 -12.0 

3 CMLDID28191 -11.9 3 CMLDID18049 -11.8 

4 CMLDID42504 -11.9 4 CMLDID29755 -11.8 

5 CMLDID21539 -11.8 5 CMLDID59940 -11.8 

6 CMLDID2574 -11.8 6 CMLDID60625 -11.8 

7 CMLDID44495 -11.8 7 CMLDID12797 -11.7 

8 CMLDID49025 -11.8 8 CMLDID53665 -11.7 

9 CMLDID56771 -11.8 9 CMLDID9445 -11.7 

10 CMLDID18431 -11.7 10 CMLDID10171 -11.6 

11 CMLDID20345 -11.7 11 CMLDID15258 -11.6 

12 CMLDID22811 -11.7 12 CMLDID28191 -11.6 

13 CMLDID35301 -11.7 13 CMLDID42504 -11.6 

14 CMLDID39041 -11.7 14 CMLDID43475 -11.6 

15 CMLDID53028 -11.7 15 CMLDID16034 -11.5 

16 CMLDID61796 -11.7 16 CMLDID17663 -11.5 

17 CMLDID13405 -11.6 17 CMLDID19001 -11.5 

18 CMLDID22732 -11.6 18 CMLDID22279 -11.5 

19 CMLDID32434 -11.6 19 CMLDID22810 -11.5 

20 CMLDID33654 -11.6 20 CMLDID34358 -11.5 

21 CMLDID48212 -11.6 21 CMLDID18431 -11.4 

22 CMLDID50158 -11.6 22 CMLDID23260 -11.4 

23 CMLDID610 -11.6 23 CMLDID24236 -11.4 

24 CMLDID12797 -11.5 24 CMLDID36243 -11.4 

25 CMLDID1363 -11.5 25 CMLDID49245 -11.4 
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Figure 30 - Histograms for the virtual screening of the Chemotheca database using Autodock Vina 

All the 25 best ranked molecules generated much higher scores than those obtained 

on the redocking and crossdocking studies (see table 38). 

Table 38 - Comparison between the scores for the 1st and 25th best ranked molecules, obtained from 
Chemotheca database using AutoDock Vina, and the corresponding redocking and crossdocking values. 

3QP4 3QP6 

CMLDID18049 -12.10 CMLDID40723 -12.10 

CMLDID1363 -11.50 CMLDID49245 -11.40 

Re-docking -7.80 Re-docking -7.80 

Crossdocking -8.20 Crossdocking -8.30 

There were seven molecules that ranked in the top 25 in both structures. These 

molecules are presented on table 39. 
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Table 39 - Best ranked compounds, obtained from the Chemotheca database using AutoDock Vina, in 

both 3QP4 and 3QP6 targets. 

Molecule Docked pose 2D Structure 

CMLDID18049 

 

 
 

CMLDID40723 

 

 

CMLDID28191 

 

  

CMLDID42504 

 

 
 

CMLDID2574 

 

  

CMLDID18431 

 

   

CMLDID12797 
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The results for the virtual screening of the Chemotheca database using 

GOLD/CHEMPLP are presented on table 40 and figure 31.  

Table 40 - The 25 best ranked molecules obtained by virtual screening on the Chemotheca database 
using the GOLD/CHEMPLP procedure. 

Virtual Screening Results 

3QP4 3QP6 

Rank Ligand Score Rank Ligand Score 

1 CMLDID5450 116.23 1 CMLDID5450 124.35 

2 CMLDID11709 115.42 2 CMLDID17434 123.05 

3 CMLDID23812 115.22 3 CMLDID29373 121.98 

4 CMLDID17434 115.22 4 CMLDID23842 121.32 

5 CMLDID6261 114.34 5 CMLDID50715 118.84 

6 CMLDID18556 114.25 6 CMLDID28747 118.66 

7 CMLDID64050 113.19 7 CMLDID38590 118.60 

8 CMLDID38590 112.36 8 CMLDID23812 118.25 

9 CMLDID27098 112.28 9 CMLDID44663 116.66 

10 CMLDID57782 112.24 10 CMLDID61216 116.18 

11 CMLDID23842 112.13 11 CMLDID23215 116.10 

12 CMLDID62223 112.01 12 CMLDID11154 115.62 

13 CMLDID25998 111.94 13 CMLDID14675 115.50 

14 CMLDID20688 111.92 14 CMLDID29578 115.39 

15 CMLDID33851 111.88 15 CMLDID16134 115.13 

16 CMLDID11293 111.86 16 CMLDID44012 114.60 

17 CMLDID31711 111.78 17 CMLDID20688 114.57 

18 CMLDID54588 111.77 18 CMLDID3837 114.44 

19 CMLDID19295 111.72 19 CMLDID54632 114.22 

20 CMLDID3426 111.58 20 CMLDID20544 114.11 

21 CMLDID49778 111.58 21 CMLDID17058 114.04 

22 CMLDID12819 111.51 22 CMLDID18631 113.94 

23 CMLDID46450 111.47 23 CMLDID13117 113.84 

24 CMLDID6049 111.43 24 CMLDID58653 113.63 

25 CMLDID44834 111.40 25 CMLDID31711 113.61 
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Figure 31 - Histograms for the virtual screening of Chemotheca database using the GOLD/CHEMPLP 
procedure 

As before, the 25 best ranked molecules generated higher scores than those 

obtained during the redocking and crossdocking steps of this work (see table 41). 

Table 41 - Comparison between the scores for the 1st and 25th best ranked molecules, obtained from the 
Chemtheca database using the GOLD/CHEMPLP procedure, and the corresponding redocking and 

crossdocking values. 

3QP4 3QP6 

CMLDID5450 116.23 CMLDID5450 124.35 

CMLDID44834 111.40 CMLDID31711 113.61 

Re-docking 69.70 Re-docking 71.70 

Crossdocking 87.20 Crossdocking 89.30 
 

There were 6 molecules which placed in the top 25 in both virtual screenings using 

the GOLD/CHEMPLP procedure. Their 2D structures and docked poses are provided in 

the table 42. 
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Table 42 - Best ranked compounds, obtained from the Chemotheca database using the GOLD/CHEMPLP 

procedure, in both 3QP4 and 3QP6 targets. 

Molecule Docked pose 2D Structure 

CMLDID5450 

 

 

CMLDID17434 

 

 

 

CMLDID23812 

 
 

CMLDID38590 

 
 

CMLDID20688 

 

 
 

 

 

CMLDID31711 

 
 

 

 

The results for the virtual screening on the Chemotheca database using LeDock are 

presented in table 43 and figure 32. 
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Table 43 - The 25 best ranked molecules obtained by virtual screening on the Mu.Ta.Lig database using 

LeDock. Scores are expressed in kcal/mol. 

Virtual Screening Results 

3QP4 3QP6 

Rank Ligand Score Rank Ligand Score 

1 CMLDID34044 -9.87 1 CMLDID35542 -10.00 

2 CMLDID37602 -9.86 2 CMLDID60399 -9.93 

3 CMLDID53319 -9.82 3 CMLDID56610 -9.81 

4 CMLDID22194 -9.79 4 CMLDID59293 -9.77 

5 CMLDID11222 -9.76 5 CMLDID34911 -9.76 

6 CMLDID54235 -9.74 6 CMLDID50121 -9.71 

7 CMLDID50121 -9.73 7 CMLDID53952 -9.71 

8 CMLDID36452 -9.65 8 CMLDID39280 -9.70 

9 CMLDID50368 -9.65 9 CMLDID29586 -9.62 

10 CMLDID53952 -9.63 10 CMLDID46590 -9.58 

11 CMLDID20643 -9.61 11 CMLDID34296 -9.55 

12 CMLDID28193 -9.61 12 CMLDID57884 -9.53 

13 CMLDID35542 -9.61 13 CMLDID63369 -9.50 

14 CMLDID42086 -9.60 14 CMLDID20822 -9.49 

15 CMLDID43726 -9.60 15 CMLDID30007 -9.47 

16 CMLDID60399 -9.59 16 CMLDID34451 -9.47 

17 CMLDID55168 -9.56 17 CMLDID22894 -9.45 

18 CMLDID65218 -9.56 18 CMLDID50451 -9.45 

19 CMLDID60211 -9.55 19 CMLDID59073 -9.44 

20 CMLDID62031 -9.55 20 CMLDID16747 -9.40 

21 CMLDID15435 -9.54 21 CMLDID17650 -9.39 

22 CMLDID16776 -9.53 22 CMLDID46997 -9.39 

23 CMLDID10746 -9.50 23 CMLDID56704 -9.38 

24 CMLDID44007 -9.50 24 CMLDID22361 -9.37 

25 CMLDID5331 -9.50 25 CMLDID4018 -9.37 

 

 

Figure 32 - Histograms for the virtual screening of Chemotheca database using LeDock 
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Keeping with the previous results, the best ranked molecules present much higher 

scores than what was generated with redocking and crossdocking. 

Table 44 - Comparison between the scores for the 1st and 25th best ranked molecules, obtained from the 
Chemotheca database using LeDock, and the corresponding redocking and crossdocking values. 

3QP4 3QP6 

CMLDID34044 -9.87 CMLDID35542 -10.00 

CMLDID5331 -9.50 CMLDID4018 -9.37 

Re-docking -6.04 Re-docking -5.87 

Crossdocking -6.92 Crossdocking -7.00 

 

After analysing the final results, it can be seen that there were 4 molecules which 

ranked in the best 25 scores on both the virtual screening using 3QP4 and 3QP6. Their 

2D structures and docked poses of these molecules are available on table 45.  
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Table 45 - Best ranked compounds, obtained from the Chemotheca database using LeDock, in both 3QP4 

and 3QP6 targets. 

Molecule Docked pose 2D Structure 

CMLDID50121 

 

 

 

CMLDID53952 

 
 

 

 

CMLDID35542 

 

 

 

CMLDID60399 

 
 

 

 

4.4.3 Overall 

Figures 33 and 3 summarize all virtual screening simulations performed with 3QP4 

and 3QP6 respectively, comparing them with the scores of known active molecules.  
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Figure 33 - Histograms all screened molecule on 3QP4 using each molecular docking program. The lines 
represent the distribution (in percentage) of each database and the known active molecules. 



New Drugs Against Biofilm Formation and Development 
 

118 

 

Figure 34 - Histograms all screened molecule on 3QP6 using each molecular docking program. The lines 
represent the distribution (in percentage) of each database and the known active molecules. 
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These results show that Chemotheca was the database which yielded the highest 

percentage of high scoring compounds. Even though the ZINC/FDA virtual screening did 

not generate scores as high as Chemotheca, it still resulted in multiple molecules with 

higher scores than the best ranked known active molecules. Using Autodock Vina, the 

Chemotheca virtual screenings generated over 2000 molecules with a higher score then 

the best scored known active, while the ZINC/FDA database generated over 10 

molecules of this type. With GOLD, Chemotheca possessed over 1000 molecules with 

a score higher than the best scored active and the FDA Approved database virtual 

screening resulted in over 20 molecules. Finally, using LeDock, Chemotheca yielded 

over 10000 molecules with higher scores than the best scored known active and there 

were over 20 ZINC/FDA compounds with similar performances. Considering the total 

number of molecules of each database (1657 for ZINC/FDA and 64804 for Chemotheca) 

this difference on the number of molecules with the highest scores was expected. With 

this in mind, both databases had a positive performance, generating several promising 

molecules for a screening in a laboratory or for further computational testing.  

4.4.4 Conclusions 

The virtual screening experiments performed on 3QP4 and 3QP6, using two different 

databases and three different molecular docking procedures resulted in several 

promising molecules. 

In order to provide a better understanding on their inhibitory potential to CviR and 

their capacity for hindering the quorum sensing process, the best performing compounds 

from each database will be further studied using more rigorous methods. Ten molecules 

from each database were selected for these studies. The molecules chosen from the 

ZINC/FDA database were Atovaquone, Famotidine, Iloprost, Mebendazole, Mirabegron, 

Montelukast, Paliperidone, Glycerol Phenybutyrate and Sulfasalazine. The molecules 

chosen from Chemotheca were CMLDID2574, CMLDID5450, CMLDID17434, 

CMLDID18049, CMLDID23812, CMLDID35542, CMLDID38590, CMLDID40723, 

CMLDID50121 and CMLDID60399. These were the top ranked molecules in virtual 

screening simulations using both structures of CviR or the high-placed ones by more 

than one molecular docking procedure.  



New Drugs Against Biofilm Formation and Development 
 

120 

4.5 Molecular dynamics simulations and MM/PB(GB)SA 

4.5.1 Methods 

4.5.1.1 Molecular dynamics simulations 

 The molecular dynamics simulations were performed using the Amber18 software. 

The selected ligands were minimized using the HF/6-31G* optimization in Gaussian202 

and the force field parameters were assigned using antechamber and LEaP programs, 

with RESP HF/G-31G(d) charges. The protein was described through the amber14sb 

force filed. The complex was embedded into a box of TIP3P water molecules, whose 

edges are placed at least 12 Å away from each atom of the complex. Periodic boundaries 

were applied, and the long-range electrostatic interactions were calculated using the 

particle mesh Ewald summation method. The cut-off value for the short-range 

electrostatic and Lennard–Jones interactions was set at 10.0 Å. All bonds involving 

hydrogen atoms were constrained using the SHAKE algorithm enabling the application 

of a 2 fs time step. 

All ligand-CviR solvated complexes went through 4 minimization steps, with a 

maximum of 2500 cycles each. After 1250 cycles the minimization method was switched 

from steepest descent to conjugate gradient. In the first minimization all molecules 

except water molecules were restrained. In the second minimization, only hydrogen 

atoms were not restrained. During the third minimization only the protein backbone was 

restrained. Finally, for the last minimization step, there were no restraints. 

Following the minimization phase, all solvated complexes were heated from 0 to 

310.15 K over 50 ps. They were further equilibrated at 310.15 K during 50 ps, to stabilize 

the density. 

Finally, the production phase was run for a total of 100 ns in an NPT ensemble at a 

pressure of 1 bar and a temperature of 310.15 K. 

The analysis of the trajectories were carried out using the cpptraj tool203 and  its visual 

analysis were done using VMD.   

4.5.1.2 MM/PB(GB)SA 

The MM/PB(GB)SA calculations were performed using the MM/PBSA.py script 

available in AMBER153. The calculations considered the last 40 ns of the MD simulation 

of every complex, using an interval of 100 ps. This means that the program will use every 

10th frame of simulation. In the MM/PBSA calculations, the following constants were 
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used: ionic strength of 0.100 mol dm-3, external dielectric constant of 80.0 and internal 

dielectric constant of 4. In the MM/GBSA calculations a salt concentration of 0.100 mol 

dm-3 was used. 

The Free energy decomposition option was used in order to obtain information about 

the local interactions of the complex. Using per-residue decomposition, the contribution 

of each residue to the total free energy was estimated. 

4.5.2 Results 

4.5.2.1 ZINC/FDA 

As stated above, the 10 molecules chosen from this database were Atovaquone, 

Famotidine, Iloprost, Mebendazole, Mirabegron, Montelukast, Paliperidone, Pimozide, 

Glycerol Phenybutyrate and Sulfasalazine. For each molecule, in complex with 3QP6, 

100 ns of MD simulation was performed in order to evaluate the structural stability of the 

protein-ligand complex and to carry out the MM/PB(GB)SA studies. To assess the 

structural stability of the complex, RMSD calculations were performed for the Cα atoms 

of each complex and the results can be seen on table 46 and figure 35 and for the 

ligands, which can be seen on table 47 and figure 36. For reference, a MD simulation of 

C10-HSL in complex with the protein was also performed. Since this ligand was the 

agonist which generated the highest scores on the cross-docking studies with 3QP6, it 

was selected for this study. While the native ligand of the strain 12472 of C. violaceum 

is 3-hydroxy-C10-HSL, it also responds to C10-HSL67.  
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Table 46 - Average RMSD values (Å) of the last 40ns of the simulation for the CviR-ligand complexes for 
the selected molecules from the ZINC/FDA database. 

Ligand Average RMSD Standard Deviation 

C10HSL 1.55 0.12 

Atovaquone 1.78 0.19 

Famotidine 1.68 0.14 

Iloprost 1.72 0.08 

Mebendazole 1.64 0.14 

Mirabegron 1.35 0.09 

Montelukast 1.50 0.09 

Paliperidone 1.26 0.13 

Pimozide 1.78 0.15 

Glycerol Phenylbutyrate 1.29 0.10 

Sulfasalazine 1.27 0.09 
 

Figure 35 - Root mean square deviation plots of the Cα atoms for the CviR-ligand complexes for the 
selected molecules from the ZINC/FDA database. 
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Table 47 - Average RMSD values (Å) for the ligand, for the last 40 ns of the simulation of the CviR-ligand 

complexes for the selected molecules from the ZINC/FDA database. 

Ligand Average RMSD Standard Deviation 

C10HSL 0.97 0.23 

Atovaquone 1.23 0.17 

Famotidine 2.42 0.17 

Iloprost 2.00 0.32 

Mebendazole 0.75 0.22 

Mirabegron 2.21 0.16 

Montelukast 1.89 0.48 

Paliperidone 1.07 0.29 

Pimozide 2.35 0.15 

Glycerol Phenylbutyrate 3.18 0.34 

Sulfasalazine 1.68 0.50 

 

Figure 36 - Root mean square deviation plots of the ligands on the CviR-ligand complexes for the selected 
molecules from the ZINC/FDA database. 

All complexes exhibit low RMSD values thought the simulation. In fact, all present an 

average RMSD value lower than 2 Å, with most never presenting a RMSD value higher 

than 2 Å. (see figure 34 and table 46). The exceptions were the complex with 

Atovaquone, Paliperidone and Pimozide. All these complexes briefly presented values 

higher than 2 Å but never higher than 3 Å. Most ligands (figure 35 and table 47) also 
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display low RMSD values. However, Famotidine, Iloprost, Pimozide and Glycerol 

Phenylbutyrate display higher values. This indicates that the pose predicted by the 

docking software was not ideal, and the ligand adjusted to a more favourable pose.  

 

Figure 37 – Solvent accessible surface area calculation for the CviR-ligand complexes for the selected 

molecules from the ZINC/FDA database. 

Table 48 - Average solvent accessible surface area calculation for each ligand during the last 40 ns of 
simulation of CviR-ligand complexes for the selected molecules from the ZINC/FDA database. 

Ligand Average SASA Standard Deviation 

C10HSL 52.20 24.40 

Atovaquone 91.16 16.59 

Famotidine 35.20 29.46 

Iloprost 216.74 32.70 

Mebendazole 138.44 21.93 

Mirabegron 128.30 26.69 

Montelukast 261.55 24.56 

Paliperidone 211.22 22.99 

Pimozide 54.89 17.83 

Glycerol Phenylbutyrate 209.50 27.11 

Sulfasalazine 133.09 23.04 
 

Figure 37 displays the solvent accessible surface area for each complex along the 

MD simulations. If there was a sudden increase in the SASA, that would imply that the 
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ligand would have become separated from the protein. The average SASA of each ligand 

is available on table 48. From these values, Famotidine and Pimozide are the ligands 

which display better results. Fortunately, all complexes keep a stable value along the 

simulation. This, together with the RMSD results, indicates that all selected ligands form 

stable complexes with CviR.   

The final step of this study was to perform a MM/PB(GB)SA analysis for each ligand-

receptor complex. For these calculations, only the last 40 ns of MD simulation were 

considered. The results can be seen on table 49 and a graph with the predicted Gibbs 

energy of association (∆aG) values can be seen on figure 38. 

Table 49 - Predicted Gibbs energy of association (∆aG0) for the selected ligands from the ZINC/FDA 

database using MM/PBSA and MM/GBSA 

 

 

Figure 38 - Predicted Gibbs energy of association (∆aG) for the selected ligands from the ZINC/FDA 
database using MM/PBSA and MM/GBSA. 

A graph with the predicted difference in Gibbs energy of association (Δ∆aG) using 

C10-HSL as reference is displayed on figure 39. 

Molecule GB Standard Mean of Error PB Standard Mean of Error

C10HSL -49.0 0.2 -23.9 0.2

Atovaquone -38.9 0.2 -14.3 0.2

Famotidine -29.6 0.2 -13.4 0.2

Iloprost -48.4 0.2 -23.5 0.2

Mebendazole -22.7 0.1 -11.7 0.1

Mirabegron -37.7 0.2 -19.9 0.2

Montelukast -43.0 0.3 -19.8 0.2

Paliperidone -31.0 0.2 -14.7 0.2

Pimozide -67.2 0.2 -24.7 0.2

Glycerol Phenybutyrate -43.3 0.1 -24.3 0.2

Sulfasalazine -40.1 0.2 -19.3 0.2

MM/PB(GB)SA 
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Figure 39 - Predicted difference in Gibbs energy of association (Δ∆aG0) for the ZINC/FDA database, using 
C10-HSL as reference, calculated using MM/PBSA and MM/GBSA.  

The MM/PBSA and MM/GBSA free energies are predictions which should not be 

compared to experimental results, bearing in mind that the entropy is not being 

considered in the calculation. However, it is beneficial to compare the predicted Gibbs 

energy of association of different ligands bound to the same protein to have relative 

binding affinities. 

Analysing the difference in Gibbs energy of association, it becomes clear that most 

ligands showcase a lower affinity towards CviR than C10-HSL. The only ligand which 

displays larger affinity towards CviR using both MM/PBSA and MM/GBSA is Pimozide. 

Glycerol Phenylbutyrate shows good results using MM/PBSA but presents lower affinity 

towards CviR using MM/GBSA. Another notable result is the performance of Iloprost 

which, in both methods, displayed similar performance to C10-HSL. 

To further analyse the affinity between the ligands and the receptor, the overall Gibbs 

energy of association was decomposed into the contribution of each residue. The 

individual energy of association of residues which, in general, have a bigger impact in 

the predicted Gibbs energy of association are represented on figure 40 and 41.  
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Figure 40 – Decomposition of the Gibbs energy of association (∆aG), calculated using MM/GBSA, for the 
selected ligands of the ZINC/FDA database. 
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Figure 41 - Decomposition of the Gibbs energy of association (∆aG), calculated using MM/PBSA, for the 
selected ligands of the ZINC/FDA database. 

On C10-HSL, using both methods, the amino acids that have a bigger impact are 

Tyr80, Trp84, Tyr88, Ile99 and Ser155. When comparing with the already known 

interactions map, these results show great similarity. The only difference is the 

contribution of Asp97. While this residue is considered to have an important role on the 

binding of ligand to CviR, these calculations result in a lower value for Asp97. In fact, this 

residue shows a negative contribution in nearly all calculations using MM/GBSA with the 

only exception being with Pimozide where it is the major contribution to its affinity towards 

CviR. On the MM/PBSA calculations Asp97 has a more positive contribution on multiple 

ligands, with its contribution to the affinity of Pimozide being even more significative. On 

Iloprost, the amino acids which show a higher contribution to the Gibbs energy of 

association are Met72, Tyr80, Leu85 and Tyr88 using GB, and Met72, Tyr80, Leu85, 
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Tyr88 and Asp 97 using PB. In the case of Pimozide, besides Asp97, only Tyr88, using 

the GB method, has a significant contribution compared to the other highlighted amino 

acids. Lastly, on the MM/PBSA calculations with Glycerol Phenylbutyrate, the amino 

acids with the biggest impact are Met72, Leu85 and Tyr88.  

4.5.2.2 Chemotheca  

As previously mentioned, the 10 molecules from Chemotheca that were selected for 

further experiments were CMLDID2574, CMLDID5450, CMLDID17434, CMLDID18049, 

CMLDID23812, CMLDID35542, CMLDID38590, CMLDID40723, CMLDID50121 and 

CMLDID60399. As before, 100 ns of MD simulation was performed for each molecule in 

complex with 3QP6 and the results were compared to the results obtained with C10-

HSL. To evaluate the structural stability of the complex, RMSD calculations were 

performed for each complex and ligand (see figure 42, figure 43, table 50 and table 51). 

  

Table 50 - Average RMSD values (Å) for the last 40ns of simulation of the CviR-ligand complexes for the 
selected molecules from the Chemotheca database 

Ligand Average RMSD Standard Deviation 

C10HSL 0.97 0.23 

CMLDID17434 1.50 0.12 

CMLDID18049 1.31 0.13 

CMLDID23812 1.39 0.16 

CMLDID2574 1.32 0.14 

CMLDID35542 1.34 0.10 

CMLDID38590 1.41 0.13 

CMLDID40723 1.42 0.13 

CMLDID50121 1.37 0.16 

CMLDID5450 1.46 0.09 

CMLDID60399 1.29 0.07 
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Figure 42 - Root mean square deviation plots of the Cα atoms for the CviR-ligand complexes for the 
selected molecules from the Chemotheca database. 

Table 51- Average RMSD values (Å) for the ligand, for the last 40 ns of the simulation of the CviR-ligand 

complexes for the selected molecules from the Chemotheca database 

Ligand Average RMSD Standard Deviation 

C10HSL 0.97 0.23 

CMLDID17434 2.64 0.43 

CMLDID18049 2.15 0.14 

CMLDID23812 2.50 0.43 

CMLDID2574 1.10 0.30 

CMLDID35542 2.07 0.24 

CMLDID38590 3.19 0.29 

CMLDID40723 1.56 0.40 

CMLDID50121 2.42 0.41 

CMLDID5450 2.91 0.43 

CMLDID60399 1.26 0.17 
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Figure 43 - Root mean square deviation plots of the ligands of the CviR-ligand complexes for the selected 

molecules from the Chemotheca database 

All protein-ligand complexes display low RMSD values thought the simulation, with 

all average RMSD values being below 2 Å. Some ligands also display low RMSD values, 

however, multiple ligands have higher RMSD values. As before, this indicates that the 

pose predicted by the docking software was not ideal, and the ligand adjusted to a more 

favourable pose. 
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Figure 44 – Solvent accessible surface area calculation for the CviR-ligand complexes for the selected 
molecules from the Chemotheca database 

Table 52 – Average solvent accessible surface area calculation for each ligand during the last 40 ns of 
simulation of CviR-ligand complexes for the selected molecules from the Chemotheca database 

Ligand Average SASA Standard Deviation 

C10HSL 52.20 24.39 

CMLDID17434 166.97 22.19 

CMLDID18049 191.94 69.17 

CMLDID23812 172.38 48.51 

CMLDID2574 168.89 26.81 

CMLDID35542 96.61 25.48 

CMLDID38590 194.71 27.78 

CMLDID40723 119.11 33.02 

CMLDID50121 109.18 33.41 

CMLDID5450 185.42 48.40 

CMLDID60399 77.15 14.32 

 

Figure 44 displays the SASA for each protein-ligand complex along the MD 

simulations. On table 52, the average SASA for each ligand can be seen. CMLDID18049 

is the ligand with the best result. There was no sudden change in the accessible surface 

area in none of the complexes. This is in agreement with the RMSD results, showing that 

all complexes were stable for the length of the simulation.  
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As before, MM/PB(GB)SA calculations were performed for the last 40 ns of MD 

simulation for each ligand-receptor complex. The results can be seen on table 53, and a 

graph with the predicted Gibbs energy of association (∆aG) values can be seen on figure 

45. 

Table 53 - Predicted Gibbs energy of association (∆aG) for the selected ligands from the Chemotheca 
database using MM/PBSA and MM/GBSA. 

 

 

Figure 45 - Predicted Gibbs energy of association (∆aG) for the selected ligands from the Chemotheca 
database using MM/PBSA and MM/GBSA. 

The predicted difference in Gibbs energy of association (ΔΔaG) using C10-HSL as 

reference is displayed on figure 46. 

Molecule GB Standard Mean of Error PB Standard Mean of Error

C10HSL -49.0 0.2 -23.9 0.2

CMLDID17434 -50.0 0.2 -24.5 0.2

CMLDID18049 -27.8 0.2 -13.8 0.2

CMLDID23812 -48.0 0.2 -24.1 0.2

CMLDID2574 -25.4 0.1 -12.3 0.1

CMLDID35542 -44.4 0.2 -22.3 0.2

CMLDID38590 -47.3 0.2 -23.4 0.2

CMLDID40723 -34.1 0.2 -17.6 0.2

CMLDID50121 -45.4 0.2 -20.6 0.2

CMLDID5450 -48.4 0.2 -22.9 0.2

CMLDID60399 -53.0 0.2 -27.8 0.2

MM/PB(GB)SA 
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Figure 46 - Predicted difference in Gibbs energy of association (∆∆aG) for the Chemotheca database, 

using C10-HSL as reference, calculated using MM/PBSA and MM/GBSA. 

In Figure 45 it can be seen that the ligands that display higher affinity towards CviR 

than C10-HSL are CMLDID17434 and CMLDID60399 with both methods, and CMLDID 

23812 using MM/PBSA.  

As previously done, the overall Gibbs energy of association was decomposed into 

the contribution of each residue. The individual energy of association of residues which 

have a bigger impact in the predicted Gibbs energy of association are represented on 

figure 47 and 48.  
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Figure 47 - Decomposition of the Gibbs energy of association (∆aG), calculated using MM/GBSA, for the 

selected ligands of the Chemotheca database. 
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Figure 48 - Decomposition of the Gibbs energy of association (∆aG), calculated using MM/PBSA, for the 

selected ligands of the Chemotheca database. 

For CMLDID17434, the residues with the highest contribution to the overall result 

using both methods are Leu85, Tyr88 and Ser155. Although these are the amino acids 

that contribute the most to CMLDID17434’s affinity towards CviR, most residues have a 

very positive contribution to this ligand’s affinity. The only exceptions are Tyr80 and 

Asp97 in the MM/GBSA calculations and Asp97 in MM/PBSA. As was the case with the 

ligands from the ZINC/FDA database, in these calculations Asp97 also shows a curious 

behaviour. In the MM/GBSA calculations this residue shows negative or little influence 

on the final results of most ligands. In the MM/PBSA calculations it has a more positive 

contribution for the affinity of most ligands, but it still has a negative contribution in some 

ligands. Adding to this, similarly to what was observed during the previous section, Asp97 

again displays a much higher value than what is observed for all the residues. This is 

observed on the MM/PBSA calculations for CMLDID50121. For CMLDID2381, using the 
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MM/PBSA method, the residues with the most impact in the affinity towards CviR are 

Leu85, Tyr88, Asp97 and Ser155. Lastly, for CMLDID60399, the amino acids with the 

greater impact are Met72, Tyr80, Tyr88, for both methods. In the MM/PBSA calculations, 

Asp97 also displays a high contribution to the affinity of the ligand towards CviR. 

4.5.3 Conclusions 

The molecular dynamics simulations and the MM/PB(GB)SA calculations performed 

in this section resulted in six molecules with higher or comparable binding affinities to 

C10-HSL. These molecules were Pimozide (figure 49), Glycerol Phenylbutyrate (figure 

50) and Iloprost (figure 51) from the ZINC/FDA database and CMLDID17434 (figure 52), 

CMLDID23812 (figure 53) and CMLDID60399 (figure 54) from the Chemotheca 

database. Overall, the amino acids which contribute the most to a higher affinity of the 

ligand towards CviR, across all ligands, are Met72, Tyr80, Leu85 and Tyr88 and Ser155. 
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Figure 49 – Pimozide in complex with CviR. Top left picture represents the ligand in licorice and the protein 
in surface. Top right and bottom left pictures feature, in surface, the amino acids residues which, overall, 
have a bigger impact in the predicted affinity. Bottom right picture represents, in licorice. the amino acids 

with the biggest contribution to the affinity of this ligand. 

 

Figure 50 - Glycerol Phenylbutyrate in complex with CviR. Top left picture represents the ligand in licorice 
and the protein in surface. Top right and bottom left pictures feature, in surface, the amino acids residues 

which, overall, have a bigger impact in the predicted affinity. Bottom right picture represents, in licorice. the 

amino acids with the biggest contribution to the affinity of this ligand 
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Figure 51 - Iloprost in complex with CviR. Top left picture represents the ligand in licorice and the protein in 
surface. Top right and bottom left pictures feature, in surface, the amino acids residues which, overall, 

have a bigger impact in the predicted affinity. Bottom right picture represents, in licorice. the amino acids 
with the biggest contribution to the affinity of this ligand.

 

Figure 52 - CMLDID17434 in complex with CviR. Top left picture represents the ligand in licorice and the 
protein in surface. Top right and bottom left pictures feature, in surface, the amino acids residues which, 

overall, have a bigger impact in the predicted affinity. Bottom right picture represents, in licorice. the amino 
acids with the biggest contribution to the affinity of this ligand 
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Figure 53 - CMLDID23812 in complex with CviR. Top left picture represents the ligand in licorice and the 
protein in surface. Top right and bottom left pictures feature, in surface, the amino acids residues which, 

overall, have a bigger impact in the predicted affinity. Bottom right picture represents, in licorice. the amino 
acids with the biggest contribution to the affinity of this ligand 

 

Figure 54 - CMLDID60399 in complex with CviR. Top left picture represents the ligand in licorice and the 
protein in surface. Top right and bottom left pictures feature, in surface, the amino acids residues which, 

overall, have a bigger impact in the predicted affinity. Bottom right picture represents, in licorice. the amino 
acids with the biggest contribution to the affinity of this ligand 



New Drugs Against Biofilm Formation and Development 
 

141 

5. Conclusion 

The aim of this work was to use Computer Assisted Drug Design to model promising 

molecules to block quorum sensing and therefore prevent biofilm formation. This was 

achieved by optimizing molecular docking and virtual screening protocols focused on the 

quorum sensing receptor from Chromobacterium violaceum, CviR. The final result a new 

selection of promising compounds which were than analysed using molecular dynamics 

simulations and MM/PB(GB)SA calculations. 

Because microorganisms embedded in biofilms have several advantages, infections 

associated with biofilms have been accepted as a significant danger to our society. The 

recalcitrance of these structures towards existing antimicrobial approaches made 

necessary the discovery of novel methods to inhibit their mechanisms of formation. 

Inhibiting the formation of biofilms by disrupting quorum sensing is the most promising 

strategy.  

The optimized molecular docking and virtual screening protocols were applied to two 

databases, a database comprising of FDA approved compounds, obtained from ZINC, 

and the Mu.Ta.Lig Chemotheca. These virtual screening procedures resulted in a list of 

compounds which can be further tested, either in a computational or experimental 

setting.  

20 of the most promising compounds that resulted from the virtual screening 

procedures were than further analysed using molecular dynamics simulations and 

MM/PB(GB)SA calculations. These procedures predicted that six molecules of the initial 

20 have similar or better affinity towards CviR than the reference ligand. From the 

ZINC/FDA database, the best results were obtained with Pimozide, Glycerol 

Phenylbutyrate and Iloprost. From the Chemotheca database, CMLDID17434, CMLDID 

23812 and CMLDID60399 had the most promising results. These results, together with 

compounds which can be found in the future, are valuable information for an eventual 

experimental screening. 

In the future, the optimized protocol can be applied to other databases, such as the 

ZINC lead-like database, consisting of over 4.6 million molecules. This will hopefully 

result in additional promising compounds. 

In brief, this work reports the development of an optimized CADD protocol for the 

development of new quorum sensing inhibitors. Through the usage of multiple 
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computational techniques, it was possible to obtain a list of compounds to be validated 

experimentally, which will hopefully result in the discovery of new drugs against biofilm 

formation.   
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