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ABSTRACT 

 

The nucleolus is a subnuclear compartment that has been increasingly investigated. 

Since its original identification as the cell’s ribosome factory, many other functions were 

attributed to the nucleolus. Some of these functions were implicated in the establishment 

and development of different human diseases, from cancer to neurodegeneration. 

Importantly, the disruption of nucleolar homeostasis, either by defective morphology or 

impaired nucleolar function, has been implicated in cellular senescence and aging. Here, 

we further explored how nucleolar stress is linked to aging. 

First, we found that the nucleolar protein NOL12 is required for maintenance of 

nucleolar homeostasis. Particularly, we demonstrated that its downregulation causes 

increased expression of key nucleolar proteins such as FBL and NCL, impacting nucleolar 

ultrastructure, organization and function, as well as global protein synthesis. Under this 

nucleolar stress, we showed that the ribosomal protein RPL11 is needed for P53 activation, 

which we found to mediate decreased cell proliferation, cell cycle arrest at G2 phase and 

consequent senescence accrual. Finally, we found NOL12 repression in fibroblasts from 

elderly donors, with nucleoli recapitulating the phenotypes observed in NOL12-depleted 

cells. This revealed NOL12 repression as a biomarker in human chronological aging.   

Secondly, we further explored the link between nucleolar stress and aging. We 

investigated the role of FoxM1 in nucleolar homeostasis, a transcription factor whose 

activity was reported as critical in aging. Similarly to NOL12 repression, FoxM1 repression 

in human primary fibroblasts elicited significant morphological alterations in the nucleolus. 

Interestingly, we also found FoxM1 as being required for proper nucleolar function, although 

in a distinct fashion when compared with NOL12. Additionally, FoxM1 repression induced 

the upregulation of several nucleolar proteins, including FBL that was required for NCL 

nucleolar recruitment. Nucleolar stress induced by FoxM1 repression also activates P53, 

mediated by RPL11. Importantly, we found FBL function to be an additional requirement for 

P53 activation. Similarly to NOL12-depleted human primary fibroblasts, we found that 

FoxM1 downregulation decreases the proliferative capacity of cells and promotes the 

accumulation of senescent cells. However, P53 activation was not a major contributor for 

decreased cell proliferation. Interestingly, although FoxM1 seems to regulate ribosome 

biogenesis distinctly from NOL12, FoxM1 repression also results in a decreased global 

protein synthesis, which likely supports the observed decreased cell proliferation. As 

putative direct transcriptional nucleolar targets of FoxM1 linking nucleolar homeostasis and 

cell proliferation, we found PIM1 and PARP1. Altogether, our findings strongly support 

nucleolar stress as an aging hallmark.   
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RESUMO 

 

O nucléolo é um compartimento subnuclear que cada vez mais tem sido 

investigado. Desde a sua identificação original como a fábrica de ribossomas da célula, 

muitas outras funções foram-lhe sendo atribuídas. Algumas destas funções foram 

implicadas no estabelecimento e desenvolvimento de diferentes doenças humanas, desde 

o cancro à neurodegeneração. De modo particularmente importante, a disrupção da 

homeostase nucleolar, quer pela alteração da morfologia, quer pela desregulação da 

função nucleolar, foi implicada na senescência celular e no envelhecimento. Aqui, nós 

explorámos a forma como o stress nucleolar se relaciona com o envelhecimento. 

Em primeiro lugar, descobrimos que a proteína nucleolar NOL12 é necessária para 

a manutenção da homeostase nucleolar. Em particular, demonstrámos que a sua 

diminuição provoca o aumento da expressão de proteínas nucleolares chave como a FBL 

e a NCL, afectando a ultraestrutura, organização e função nucleolares, assim como a 

síntese proteica global. Mostrámos que, sob este stress nucleolar, a proteína ribossomal 

RPL11 é necessária para a activação de P53, que por sua vez medeia a diminuição da 

proliferação celular, a paragem das células na fase G2 do ciclo celular e a consequente 

acumulação de células senescentes. Finalmente, descobrimos que NOL12 está reduzido 

em fibroblastos de dadores envelhecidos, cujos nucléolos reproduzem os fenótipos 

observados nas células em que depletámos NOL12. Isto revelou que a diminuição de 

NOL12 é um biomarcador do envelhecimento cronológico humano.  

Em segundo lugar, explorámos a ligação entre stress nucleolar e envelhecimento. 

Investigámos o papel de FoxM1 na homeostase nucleolar, um factor de transcrição cuja 

actividade foi reportada como central no envelhecimento. De forma similar à depleção de 

NOL12, a depleção de FoxM1 em fibroblastos primários humanos induziu alterações 

significativas na morfologia do nucléolo. De forma relevante, descobrimos também que 

FoxM1 é necessária para a correcta função nucleolar, embora de forma diferente quando 

comparada com NOL12. Adicionalmente, a depleção de FoxM1 induziu o aumento de 

várias proteínas nucleolares, incluindo FBL, que mostrou ser requisito para o recrutamento 

nucleolar de NCL. O stress nucleolar induzido pela depleção de FoxM1 também activa P53 

mediada por RPL11. Descobrimos ainda que a função de FBL é um requisito adicional para 

a activação de P53. De forma similar aos fibroblastos primários humanos depletados em 

NOL12, mostrámos que a diminuição de FoxM1 reduz a capacidade proliferativa das 

células e promove a acumulação de células senescentes. Contudo, a activação de P53 

não foi o maior potenciador da diminuição da proliferação celular. Embora FoxM1 pareça 

regular a biogénese ribossomal de forma distinta de NOL12, a depleção de FoxM1 também 
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resulta na diminuição da síntese proteica global que, provavelmente, suporta a redução da 

proliferação celular observada, o que foi uma descoberta muito interessante. Como alvos 

transcricionais nucleolares de FoxM1, que relacionam a homeostase nucleolar e a 

proliferação celular, encontrámos PIM1 e PARP1. De forma sólida, todas estas 

descobertas suportam o stress nucleolar enquanto marca do envelhecimento. 
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CHAPTER 1 

 

General Introduction 

 

 

In this first chapter, I invite you to travel in the amazing nucleolar world! The central 

goal is to know the structure and the multiple functions of the nucleolus and then to 

understand the numerous potential roles of this subnuclear membraneless organelle in the 

context of different human diseases. 
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1. THE NUCLEOLUS: FROM STRUCTURE TO FUNCTION 

 

1.1 The nucleolus structure 

A typical eukaryotic cell is composed of a single nucleus surrounded by cytoplasm 

(Gorlich and Kutay 1999). A selectively permeable membrane with pore complexes, the 

nuclear envelope, separates the nucleus from the cytoplasm (Figure 1.1A). Importantly, the 

nucleus is considered a central hub for gene expression and regulation. Despite not 

containing any membrane-enclosed sub-compartment, the nucleus is composed of several 

subnuclear aggregates, containing RNA and proteins (Feric, Vaidya et al. 2016). These 

aggregates include the Cajal bodies, the promyelocytic leukemia (PML) bodies and the 

nucleolus, among others (Spector 2001). Alterations on their composition or organization 

result in severe diseases, as Huntington’s (Savas, Makusky et al. 2008) or spinal muscular 

dystrophy (Gall 2000). Although the nucleolus has been the first subnuclear structure 

identified and formally described by 1830’s (Pederson 2011), its dynamics, behaviour and 

biological relevance began to be highlighted only in recent years. It is now clear that the 

nucleolus and other subnuclear bodies behave like liquid droplets, which explains how they 

remain separated from each other and how they fuse, a centenary scientific observation 

(Brangwynne, Mitchison et al. 2011) (Figure 1.1B). Particularly, a recent study used a 

combination of nuclear and nucleolar fluorescently labels and computational mathematics 

to further confirm the liquid-like nature of the nucleolus and more importantly to deeply 

explore the dynamics of the nucleolar fusion (Caragine, Haley et al. 2018).    

The human nucleolus is assembled around the nucleolar organizer regions (NORs), 

which are genomic regions in acrocentric chromosomes (13, 14, 15, 21 and 22) (McStay 

2016) composed of clusters of ribosomal DNA (rDNA) repeats (Kalmarova, Smirnov et al. 

2007) (Figure 1.2). Consequently, the number of nucleoli cannot exceed ten per each 

diploid cell (Farley, Surovtseva et al. 2015). Interestingly, the average number of nucleoli 

per nucleus varies among mammalian cells, as well as between different human cell types 

(Farley, Surovtseva et al. 2015). Also, there is significant variation on this number even 

inside the same cell population, which suggests the number of nucleoli per nucleus to be 

cell- and tissue-dependent (Farley, Surovtseva et al. 2015). Despite these observations, the 

mechanisms that determine the number of nucleoli remain elusive (Farley, Surovtseva et 

al. 2015).     
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Figure 1.1. The nucleolus is a subnuclear compartment. (A) Schematic and simplified illustration of a typical 

mammalian cell showing cytoplasm containing mitochondria, rough endoplasmic reticulum, Golgi apparatus and 

nucleus containing nucleoli embedded in nucleoplasm (light yellow). (B) Schematic illustration of a single 

nucleolus comprising fibrillar centre (FC, yellow))/dense fibrillar component (DFC, red) units embedded in the 

granular component (GC, light blue). 

 

 

By transmission electron microscopy, three morphologically distinct sub-

compartments inside the nucleolus were identified: the fibrillar centre (FC), surrounded by 

the dense fibrillar component (DFC), all embedded within the peripheral granular 

component (GC) (Figure 1.1B). Interestingly, while human and plant cells display this 

tripartite organization, yeast cells exhibit a bipartite configuration (Shaw and Doonan 2005), 

and the Drosophila melanogaster nucleolus has a homogeneous appearance (Knibiehler, 

Mirre et al. 1982, Orihara-Ono, Suzuki et al. 2005). Nevertheless, in human cells, the 

tripartite organization of the nucleolus follows the dynamics of ribosome biogenesis, the 

originally described and major function of the nucleolus.  

 

1.2 Ribosome biogenesis 

During the second half of the 20th century, the nucleolus was extensively studied 

and described as the “ribosome factory” within the cell (Brown and Gurdon 1964). The rDNA 

is organized into transcriptional units separated by intergenic sequences (IGS) and 

repeated several hundred times, although their sequences display some differences 

(Raska, Shaw et al. 2006, Tseng, Chou et al. 2008). In somatic cells, only about half of 

these copies are transcribed (Grummt 2007) (Figure 1.2). How and why the cell decides 
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that a copy is inactivated is still unknown, but it likely involves different epigenetic 

mechanisms, from DNA methylation to noncoding RNAi or late replication timing 

(Schlesinger, Selig et al. 2009). Schlesinger et al (Schlesinger, Selig et al. 2009) suggest 

that during development one allele is randomly chosen to undergo late replication, meaning 

that one allele will be replicated in S phase earlier than the other one (Singh, Ebrahimi et 

al. 2003), generating the “replication timing pattern” (Ensminger and Chess 2004). Once 

established, this pattern is maintained in somatic cells and it may function as an epigenetic 

template, determining which allele will be silenced (Schlesinger, Selig et al. 2009).    

 

 

Figure 1.2. Ribosome biogenesis is a sequential process which follows the tripartite organization of the 

nucleolus. The ribosomal DNA (rDNA) is organized into multiple clusters (rDNA cluster, gray) separated by the 

intergenic sequence (IGS). Each rDNA cluster is a unit containing sequences that code for 18S, 5.8S and 28S 

rRNAs. Ribosome biogenesis begins with the transcription of each cluster into a primary transcript – the 47S 
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pre-rRNA – at the FC (yellow)/DFC (red) border. The rRNA processing and assembly with different factors such 

as 5S rRNA, ribosomal proteins, pre-ribosomal factors and small nucleolar ribonucleoprotein particles occur at 

the DFC and end at the GC (light blue). Those complexes are then transported to nucleoplasm (light yellow), 

where 18S rRNA assembles with small subunit ribosomal proteins (red stars) to generate the small pre-40S 

subunit (dark green), whereas 5.8S, 28S and 5S rRNAs assemble with large subunit ribosomal proteins (blue 

stars) to form the large pre-60S subunit (light green). Both subunits are then exported to the cytoplasm, where 

they maturate into functional ribosomes.        

 

 

In eukaryotes, ribosome biogenesis begins with the transcription of an entire rDNA 

repeat into a single polycistronic transcript, the 47S pre-rRNA, by RNA Polymerase I (RNA 

Pol I) (Boisvert, van Koningsbruggen et al. 2007) (Figure 1.2). The initiation of transcription 

also requires the recruitment and binding of other transcription factors at the rDNA 

promoter, which comprises a core element and an upstream control element (UCE), 

ensuring precise transcription initiation (Russell and Zomerdijk 2005). Among those 

transcription factors, the human selectivity factor 1 (SL1) and the upstream binding factor 

(UBF) are the most relevant in assuring the recruitment of RNA Pol I to the rDNA promoter 

(Russell and Zomerdijk 2005) and the correct architecture of the entire complex that drives 

the synthesis of 47S pre-rRNA (Bazett-Jones, Leblanc et al. 1994, O'Sullivan, Sullivan et 

al. 2002), respectively.  

The 47S pre-rRNA transcript comprises 5’ and 3’ external transcribed spacers 

(ETS), two internal transcribed spacers (ITS1 and ITS2) and the sequences for 18S, 5.8S 

and 28S (Lafontaine 2015) (Figure 1.3). Through a set of multiple endo- and exonucleolytic 

cleavages at the level of both ETS and ITS, methylation in sugar residues (2’-O-ribose 

methylations) and conversion of uridine residues to pseudouridines (pseudouridylations) 

(Thomson, Ferreira-Cerca et al. 2013), the ETS and ITS spacers are gradually removed, 

originating intermediate rRNAs which are chemically modified, ultimately giving rise to the 

18S, 5.8S and 28S rRNAs (Figure 1.3). There are several nucleases involved in 47S pre-

rRNA processing: the endonuclease NOB1 is required for the last step of 18S maturation 

(Pertschy, Schneider et al. 2009); XRN2 is a 5’-3’ exonuclease required for removal of 5’-

ETS fragments and ITS1 and ITS2 sequences (Sloan, Mattijssen et al. 2013); NOL12 is a 

5’-3’ exonuclease required for ITS1 processing (Sloan, Mattijssen et al. 2013); among many 

others. Interestingly, these cleavages do not entirely follow a hierarchical sequence of 

events (Aubert, O'Donohue et al. 2018): there is a major pathway for rRNA processing that 

is paralleled by alternative processing pathways, evidencing the high complexity of this 

process in human cells (Henras, Plisson-Chastang et al. 2015) (Figure 1.3). Concurrently, 

two different families of small nucleolar ribonucleoproteins (snoRNPs), the H/ACA and C/D 

boxes, catalyse pseudouridylation and 2’-O-methylation post-transcriptional modifications, 
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respectively (Sloan, Warda et al. 2017). Both are composed of an enzyme, the pseudouridyl 

synthase dyskerin and the methyltransferase Fibrillarin (FBL), respectively, assisted by 

other proteins, NHP2, NOP10, GAR1 and NOP56, NOP58, 15.5K/NHPX, and a small 

nucleolar RNA sequence (snoRNA), which binds pre-rRNA, guiding and allowing enzymes 

to catalyse the reaction (Aubert, O'Donohue et al. 2018). FBL is a highly conserved protein 

(Newton, Petfalski et al. 2003), which is the unique known methyltransferase in eukaryotes, 

in the context of rRNA processing (Marcel, Ghayad et al. 2013). 

 

 

Figure 1.3. rRNA processing is a complex cascade of cleavage events. Schematic representation of rRNA 

processing, showing the multiple cleavages that occur in the nascent and intermediate rRNA transcripts at the 

level of ETS and ITS sequences. The two alternative processing pathways are shown in different yellow boxes. 

Several exo- (red pacmans) and endonucleases (scissors) ensure the proper production of 18S, 5.8S and 28S 

rRNAs by removing both ETS and ITS. 

 

 

Besides the three different rRNA species, proper ribosome biogenesis requires 

another rRNA: the 5S rRNA. 5S rDNA is organized as clusters of tandem repeats (Torres-

Machorro, Hernandez et al. 2010) and is located in a different chromosomal locus, on 

chromosome 1 (Sorensen and Frederiksen 1991, Ciganda and Williams 2011). However, 
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the 5S rDNA transcription is driven independently by RNA Polymerase III and its 

processing, despite involving several exonucleases (van Hoof, Lennertz et al. 2000) and 

binding of different partners (Zhang, Harnpicharnchai et al. 2007, Ciganda and Williams 

2011), rarely includes base modification (Ciganda and Williams 2011). Whereas 

transcription and processing of 47S pre-rRNA occurs at the FC/DFC boundary, and DFC 

and GC (Thiry and Lafontaine 2005, Hernandez-Verdun 2006, Hernandez-Verdun 2006), 

respectively, 5S rDNA transcription occurs in the nucleoplasm and the 5S rRNA is then 

imported into the nucleolus (Ciganda and Williams 2011) (Figure 1.2).  

While rRNA is processed and modified, the assembly of ribosomal proteins, pre-

ribosomal factors and snoRNPs takes place at the GC (Henras, Plisson-Chastang et al. 

2015). Particularly, 5.8S, 28S and 5S rRNA, and 18S assemble with approximately 80 

ribosomal proteins, which were transcribed by RNA Pol II and imported from cytoplasm into 

the nucleolus, originating the pre-60S and pre-40S ribosome subunits (Venema and 

Tollervey 1999) (Figure 1.2). Depending on whether they will be part of the large or the 

small ribosomal subunit (LSU or SSU), ribosomal proteins are divided into two different 

groups, RPLs or RPSs, respectively. After assembly with ribosomal proteins, both ribosomal 

subunits are then exported to cytoplasm, through nuclear pore complexes (Lafontaine and 

Tollervey 2001), where they undergo key steps of maturation (Thomson, Ferreira-Cerca et 

al. 2013). After that, both large and small ribosomal subunits (60S LSU and 40S SSU, 

respectively) are finally ready to translate messenger RNAs (mRNAs) in the cytoplasm 

(Thomson, Ferreira-Cerca et al. 2013) (Figure 1.2). 

In order to ensure that ribosomes are functional, there is a quality control system of 

rRNA, in which rRNA is polyadenylated when it is unfolded, incorrectly processed or 

excluded from functional ribosomes (Slomovic, Laufer et al. 2006). This post-transcriptional 

modification will then lead to the rRNA degradation by exonucleolytic digestion (Slomovic, 

Fremder et al. 2010). This is interesting since previously it had been shown that: i) in 

general, polyadenylation is a stable post-transcriptional modification that confers mRNA 

stability and allows initiation of the mRNA translation (Colgan and Manley 1997); ii) in yeast, 

5S rRNA polyadenylation is a mark for degradation (Kuai, Fang et al. 2004); iii) in 

prokaryotes and organelles, polyadenylation of transcripts is transient and leads to their 

degradation (Kushner 2004, Slomovic, Laufer et al. 2005, Slomovic, Portnoy et al. 2006). 

This transient polyadenylation works as a surveillance system, not only in nucleus but also 

in cytoplasm (Slomovic, Fremder et al. 2010).  

Once produced, functional ribosomes translate mRNAs into proteins through a 

process comprising three different steps: initiation, elongation and termination (Cooper 

2000). The two different ribosomal subunits play a distinct role during translation: the SSU 

ensures the proper base-pairing between the codon (registered in mRNA) and anticodon 
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(carried by tRNA), whereas the LSU monitors the addition of aminoacids into the newly 

synthetized polypeptide chain (Cooper 2000). Interestingly, mRNA translation has been 

shown to be modulated by different ribosome composition, which could result from 

modifications in rRNA chemical patterning, variations in the RP’s expression and post-

translational modifications and deregulated activity of ribosome-associated factors (Xue 

and Barna 2012, Sulima, Hofman et al. 2017, Bastide and David 2018). The emerged 

concept of ribosome heterogeneity in the cell means that ribosome composition differs 

between different tissues, and even within an individual cell it is modified along time or in 

response to different conditions (Gupta and Warner 2014, Mills and Green 2017, Shi, Fujii 

et al. 2017). Indeed, these different ribosome subpopulations have been shown to be 

necessary to, or to promote, the translation of specific mRNAs (Mills and Green 2017). 

Several interesting examples could be found in literature: different human tissues display a 

highly variable expression of different ribosomal protein genes and from a set of 89 RPs, 

13 were found to be tissue-specific (Bortoluzzi, d'Alessi et al. 2001); particularly, RPS4Y2 

was found to be specifically expressed in testis and prostrate, suggesting that there are 

ribosomes specific of these tissues (Lopes, Miguel et al. 2010); in mice, RPL38 expression 

was found to be required for translation of the development-associated HOX mRNAs, 

leading to the proper establishment of the body plan (Kondrashov, Pusic et al. 2011). 

Another example came from the isolated congenital asplenia, a developmental defect 

characterized by the specific absence of a spleen in humans (Mahlaoui, Minard-Colin et al. 

2011). Importantly, mutations in the RPSA, a ribosomal protein involved in rRNA processing 

(O'Donohue, Choesmel et al. 2010) and a component of the SSU (Ben-Shem, Garreau de 

Loubresse et al. 2011), were found in these patients hence suggesting that it may interfere 

with the translation of specific mRNAs contributing for the pathophysiology of this disease 

(Bolze, Mahlaoui et al. 2013). Furthermore, the downregulation of the ribosome-associated 

protein GYS1 showed to affect the translation of specific mRNA subsets in HeLa cells 

(Fuchs, Diges et al. 2011). Finally, the abolishment of the rRNA pseudouridylation by DKC1 

mutation or repression decreases the translational efficiency (Jack, Bellodi et al. 2011).    

    

1.3 Nucleolar proteins 

Besides being the hub for ribosome biogenesis, the nucleolus has been increasingly 

reported to play central roles in other important cell events such as cell differentiation, cell 

cycle, senescence and apoptosis (Olson, Dundr et al. 2000, Boisvert, van Koningsbruggen 

et al. 2007, Rosete, Padros et al. 2007, Watanabe-Susaki, Takada et al. 2014). Supporting 

this, there are two main findings: i) the nucleolar proteome in human cells revealed the 

presence of an extended set of proteins with different functions, from ribosomal proteins to 
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kinases/phosphatases and chromatin-related factors (Andersen, Lam et al. 2005); ii) 

multiple nucleolar proteins are able to shuttle between the nucleolus and other cell 

compartments, such as the nucleoplasm or cytoplasm (Borer, Lehner et al. 1989). This 

dynamic nature of the nucleolar proteome strongly suggests that the nucleolus is able to 

respond to different cellular growth conditions (Andersen, Lam et al. 2005). Currently, the 

function of several nucleolar proteins is not completely understood, as they interact with 

each other and are often multifunctional proteins, being involved and crosstalking with 

different cell processes (Pederson and Tsai 2009).  

Altogether, this firstly means that the mere localization of a protein in the nucleolus 

does not necessarily imply a role in ribosome biogenesis. An example is nucleostemin 

(NS), a nucleolar protein encoded by the GNL3 gene, whose depletion was initially shown 

to perturb ribosome biogenesis, particularly pre-rRNA processing (Romanova, Grand et al. 

2009). However, it was recently proposed that this could be a secondary effect of cell cycle 

arrest rather than a direct effect of NS in ribosome biogenesis (Tsai 2014). Interestingly, NS 

is involved in DNA repair (Scott and Oeffinger 2016) by recruiting RAD51 to DNA damage 

foci, therefore ensuring genomic stability in stem cells (Meng, Lin et al. 2013, Yamashita, 

Nitta et al. 2013).  

Secondly, data strongly support that nucleolar proteins involved in ribosome 

biogenesis actually play other roles. One example is nucleolin (NCL), an abundant 

phosphoprotein encoded by the NCL gene (Srivastava, McBride et al. 1990) and mainly 

localized at the GC, thus used as a marker for this nucleolar compartment (Tajrishi, Tuteja 

et al. 2011). This localization reflects its function in initiation of rRNA processing (Turner, 

Knox et al. 2009), although a role in rDNA transcription and ribosome assembly was also 

reported (Salvetti, Coute et al. 2016). Additionally, NCL is also present in nucleoplasm and 

cytoplasm, and it was shown to regulate mRNA translation through binding to untranslated 

regions (Chen and Xu 2016). Interestingly, two studies revealed an additional role of NCL 

during mitosis: NCL downregulation elicits centrosome amplification and multipolar mitotic 

spindles (Ugrinova, Monier et al. 2007), and NCL is required for proper chromosome 

congression (Ma, Matsunaga et al. 2007). Moreover, NCL was implicated in DNA repair, by 

disrupting nucleosome (Goldstein, Derheimer et al. 2013), interacting with ɣH2AX and 

MDC1 signalling pathway (Kobayashi, Fujimoto et al. 2012).  

Another abundant nucleolar phosphoprotein at the GC is nucleophosmin (NPM, 

also known as B23), which is encoded by the NPM1 gene (Umekawa, Chang et al. 1993). 

During ribosome biogenesis, NPM is essential for nuclear export of the ribosomal protein 

RPL5 (Yu, Maggi et al. 2006) and of both the pre-40S and pre-60S ribosomal subunits 

(Maggi, Kuchenruether et al. 2008). NPM also plays additional roles during rRNA 

processing (Savkur and Olson 1998) and transcription (Murano, Okuwaki et al. 2008). 
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Importantly, its nucleolar localization was shown to be dependent on RNA binding, and its 

phosphorylation during mitosis disables RNA binding and disrupts nucleolar localization 

(Okuwaki, Tsujimoto et al. 2002). Similarly to other nucleolar proteins, NPM plays several 

non-ribosomal roles. One example is the NPM association with polyadenylated mRNA, 

which strongly suggests a role in controlling gene expression (Palaniswamy, Moraes et al. 

2006, Mukudai, Kubota et al. 2008). Other roles include DNA repair and chromosome 

stability (Colombo, Alcalay et al. 2011) and chromatin remodelling (Okuwaki, Matsumoto et 

al. 2001).  

Another important nucleolar protein is XRN2, encoded by XRN2 gene (Zhang, Yu et 

al. 1999), which is a 5’-3’ exonuclease. During pre-rRNA processing, endonucleases activity 

exposes 5’ ends which are then processed by XRN2 (Wang and Pestov 2011) to generate 

both 5.8S and 18S (Sloan, Mattijssen et al. 2013). Additionally, data support a role for XRN2 

in active degradation of failed RNA Pol I transcripts, spacer fragments and abnormal pre-

rRNA intermediates (Wang and Pestov 2011). Furthermore, XRN2 was also shown to be 

important for processing of snoRNAs (Kufel and Grzechnik 2019), whose highly conserved 

sequences determine the group of proteins that bind them, establishing different snoRNPs 

as the mentioned above C/D and H/ACA boxes (Kufel and Grzechnik 2019). Beyond these 

functions in ribosome biogenesis, XRN2 is involved in termination of RNA Pol II-mediated 

transcription during protein synthesis (Wang and Pestov 2011). Although several models 

are proposed for RNA Pol II termination (Proudfoot 2016), XRN2 was shown to be required 

for the ‘torpedo model’ (West, Gromak et al. 2004). Specifically, it was shown that XRN2 

recognizes an RNA 5’ end exposed by the co-transcriptional cleavage sequence, which is 

downstream of a poly(A) site, leading to the degradation of the nascent transcript (West, 

Gromak et al. 2004). The effective termination of RNA Pol II-mediated transcription happens 

when XRN2 meets RNA Pol II, eliciting the removal of the transcription machinery from the 

DNA template (Proudfoot 2016).  

The NOL12 protein family plays key roles in and beyond ribosome biogenesis. The 

relevance of this protein gradually increased with reports in different models. In Mus 

musculus, NOP25 was shown to be constitutively nucleolar and a 28S binding protein 

(Suzuki, Kanno et al. 2006). In Saccharomyces cerevisiae, RRP17p displayed a 5’-3’ 

exonucleolytic activity, required for proper 60S pre-rRNA processing and export (Oeffinger, 

Zenklusen et al. 2009). In Drosophila melanogaster, viriato, the single NOL12 homologue, 

was described as a dMyc target (Marinho, Casares et al. 2011), and a positive regulator of 

the Dpp signalling, accounting for both cell growth and photoreceptor differentiation during 

eye development (Marinho, Martins et al. 2013). In human HeLa and HCT116 cell lines, 

NOL12 was reported as being essential for both cleavages in ITS1, contributing for proper 

generation of 5.8S, 18S and 28S pre-rRNAs (Sloan, Mattijssen et al. 2013, Scott, Trahan 
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et al. 2017). Moreover, human NOL12 was able to rescue both cell viability in yeast, which 

is lost in the rrp17Δ strain (Oeffinger, Zenklusen et al. 2009), and the size of eye imaginal 

discs in fruit fly, which is decreased in viriatoRNAi larvae (Marinho, Casares et al. 2011), 

suggesting NOL12 as a protein with a conserved functional role. Recently, in HCT116 cells, 

NOL12 was also found to co-localize with nucleoplasmic and cytoplasmic proteins, 

consistent with a role in DNA damage repair, ensuring the preservation of genomic integrity 

(Scott, Trahan et al. 2017). 

 

1.4 Nucleolar localization 

When nucleolar proteome studies revealed a large number of proteins localized in 

this subnuclear compartment, a question was raised up: how are these factors sent to the 

nucleolus?  

The existence of signals targeting those proteins to the nucleolus was initially 

explored. A study analysed 46 sequences reported as nucleolar localization signals 

(NoLSs) and proposed that using a prediction software for this kind of sequences could 

work as first approach (Scott, Boisvert et al. 2010). Five years later, a set of biochemical 

properties that ensure nucleolar localization was reported, e.g. the existence of 6 arginines 

in the peptide sequence (Martin, Ter-Avetisyan et al. 2015), which was in accordance with 

the previously observed high proportion of basic aminoacids in NoLSs (Scott, Boisvert et al. 

2010). The acidic nature of the nucleolus when compared with the nucleoplasm provides 

the suitable environment for proteins with basic aminoacids, such as arginine, to localize 

there (Martin, Ter-Avetisyan et al. 2015). Importantly, arginines mainly bind RNA inside the 

nucleolus, a mechanism that seems to be highly conserved along evolution, from insect to 

human cells (Martin, Ter-Avetisyan et al. 2015).  

Another process by which proteins localize into the nucleolus is through 

transporters. For instance, NPM was shown to bind the cell cycle protein P120 to drive its 

nucleolar localization (Valdez, Perlaky et al. 1994). However, a NoLS is not sufficient to 

localize P120 in the nucleolus, it also requires a nuclear localization sequence (NLS) 

(Valdez, Perlaky et al. 1994). Interestingly, a recent study reported that high levels of NPM 

and arginine-rich proteins is sufficient for their phase separation into liquid-like droplets, 

proposing phase separation as an additional mechanism through which proteins localize 

into the nucleolus (Mitrea, Cika et al. 2016). Another relevant recent finding is that most of 

RNA-binding proteins contain intrinsically disordered regions that enable those proteins to 

bind RNA, particularly allowing RNA retention into the nucleolus (Jarvelin, Noerenberg et 

al. 2016). These disordered regions are now under research focus since they were shown 
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to be important for RNA metabolism and biology (Xie, Vucetic et al. 2007), and their 

disruption was associated with disease (reviewed in (Jarvelin, Noerenberg et al. 2016)).  

 

 

2. THE NUCLEOLAR DYNAMICS DURING CELL CYCLE 

 

The nucleolus was identified as playing a role during the cell cycle. As a cell enters 

mitosis, specifically in early prophase, the nucleolus is disrupted since the rRNA processing 

machinery leaves the nucleolus (Hernandez-Verdun, Roussel et al. 1993) (Figure 1.4A) to 

localize at the perichromosomal layer of all the chromosomes at the end of prophase 

(Dimario 2004, Angelier, Tramier et al. 2005) or disperse into the cytoplasm (Figure 1.4B). 

Besides, the activation of the CDK1-cyclin B complex was shown to phosphorylate some 

key components of both rRNA processing (Peter, Nakagawa et al. 1990), such as FBL, NCL 

and NOP52 (Hernandez-Verdun, Roussel et al. 1993), and RNA Pol I transcription 

machineries, such as SL1 and TTF-1, leading to their silencing (Heix, Vente et al. 1998, 

Sirri, Roussel et al. 1999). However, at early prophase, this transcription machinery 

maintains the association with rDNA in the NORs (Roussel, Andre et al. 1996), being fully 

silenced only at the end of the prophase, when both the nuclear envelope and the nucleolus 

are no longer visible (Guttinger, Laurell et al. 2009, Gavet and Pines 2010). Thus, inhibition 

of rRNA processing occurs prior to rDNA transcription silencing (Dousset, Wang et al. 

2000), presumably due to different local concentrations of CDK1-cyclin B complex 

(Hernandez-Verdun 2011). During metaphase, rRNA processing components are still in 

association with the perichromosomal layer (Gautier, Robert-Nicoud et al. 1992) (Figure 

1.4C) and remain during anaphase, when chromosomes migrate to spindle poles (Savino, 

Gebrane-Younes et al. 2001) (Figure 1.4D). Interestingly, the components of rRNA 

processing machinery that do not associate with chromosomes start to aggregate into 

numerous large cytoplasmic foci – the nucleolus-derived foci (NDF) – during anaphase 

(Dundr, Misteli et al. 2000) (Figure 1.4D). Contrarily, the RNA Pol I machinery was found to 

be highly dynamic during mitosis, as it travels between rDNA clusters and cytoplasm (Chen, 

Dundr et al. 2005). In telophase, characterized by the reassembly of the nuclear envelope 

and the determination of the cleavage furrow (Pollard, Earnshaw et al. 2017), the nucleolar 

reassembly begins, taking about two hours to be fully completed in HeLa cells (Muro, 

Gebrane-Younis et al. 2010) (Figure 1.4E), whereas nucleolar disassembly only needs 

about thirty minutes (Gavet and Pines 2010). This reflects the strict coordination that is 

needed to reactivate both rDNA transcription and rRNA processing machineries 

(Hernandez-Verdun, Roussel et al. 2002). Regarding rDNA transcription, it is resumed 
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during telophase, when CDK1-cyclin B activity is inhibited by PP1 and PP2A phosphatases 

(Heix, Vente et al. 1998, Sirri, Roussel et al. 1999). This reactivation occurs in each of the 

NOR-containing chromosomes (Hernandez-Verdun, Roussel et al. 2002), although only in 

those where rDNA transcription machinery is associated, the termed “competent” NORs 

(Roussel, Andre et al. 1996) (Figure 1.4F).  

 

 

Figure 1.4. The nucleolus disassembles and reassembles during the cell cycle. (A) During early prophase, 

rDNA transcription machinery (blue stars) is associated with NORs at the FC (yellow). (B) In late prophase, as 

the nucleolus is disrupted, some components of rRNA transcription machinery associate with condensed 

chromosomes at the perichromosomal layer (orange), while others are dispersed in the nucleus. (C) As the cell 

enters in metaphase, chromosomes align at the metaphase plate and rRNA processing components remain in 

the perichromosomal layer. (D) During anaphase, rRNA processing components that are not in the 

perichromosomal layer of the condensed chromosomes are packed in nucleolus-derived foci (NDF, green-to-

red gradient ovals). (E) In early telophase, FC starts to be reassembled around NOR-containing chromosomes. 

rDNA transcription is reactivated in those chromosomes where the transcription machinery is associated. As 

the chromosomes start to decondense, perichromosomal layer breaks down and rRNA processing components 

are packed into prenucleolar bodies (PNBs, orange ovals). (F) In late telophase, chromosomes are fully 

decondensed and nuclear envelope is rebuilt. Along with this, PNBs release their content into nucleus, allowing 

the later re-formation of DFC (red) and GC (light blue).   
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Even though each NOR gives rise to an individualized nucleolar focus (Hernandez-

Verdun, Roussel et al. 2002), the number of foci decreases during G1, due to nucleolar 

fusion (Hernandez-Verdun 2011), likely driven by their liquid-like properties (Brangwynne, 

Mitchison et al. 2011). Despite this, reactivation of rDNA transcription is not enough to 

achieve a fully assembled functional nucleolus, being also dependent on the reactivation of 

rRNA processing machinery (Hernandez-Verdun 2011). This begins during telophase, 

when chromosomes start to decondense, leading to the release of nucleolar components 

from the perichromosomal regions into prenucleolar bodies (PNB) (Savino, Gebrane-

Younes et al. 2001) (Figure 1.4E). Interestingly, there are different types of PNBs with 

distinct composition, which are orderly recruited to the nucleolus during G1 (Hernandez-

Verdun, Roussel et al. 2002), later originating the DFC compartment (Dundr, Misteli et al. 

2000). Concerning NDFs, they are similar to PNBs and it is generally accepted that they 

just exist in cells with high expression of rRNA processing components, which are not able 

to associate with perichromosomal region (Dundr, Meier et al. 1997). Contrarily to PNBs, 

NDFs were found to disappear once they contact with the nuclear envelope, releasing their 

components into the nucleus (Dundr, Misteli et al. 2000). Regarding their composition, both 

NDFs and PNBs are similar, containing components of rRNA processing machinery as well 

as partially processed pre-rRNAs (Hernandez-Verdun, Roussel et al. 2002). These pre-

rRNAs are inherited by daughter cells to support the assembling of a functional nucleolus 

(Hernandez-Verdun, Roussel et al. 2002). Altogether, these data strongly suggest formation 

of PNBs as a cellular strategy to finely regulate the nucleolar assembly upon mitosis 

(Hernandez-Verdun 2011). 

 

 

3. RESPONSE MECHANISMS TO NUCLEOLAR STRESS 

 

As stated above, the nucleolus has been increasingly recognized as a highly 

dynamic subnuclear compartment, where a huge amount of proteins come in and/or go out. 

This dynamic protein traffic reflects and explains why the nucleolus is not just the ribosome 

factory but instead plays important roles on cell homeostasis, from maintenance of genome 

integrity to cell cycle regulation (James, Wang et al. 2014). The additional involvement of 

the nucleolus in apoptosis and senescence highlighted it as a hub for the integration of 

changes in external environment, as well as for the coordination of a suitable response, 

ensuring nucleolar and cell homeostasis.  
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3.1 Nucleolar stress 

The perturbation of ribosome biogenesis caused by deregulation of ribosomal and/or 

nucleolar proteins (Holmberg Olausson, Nister et al. 2012) triggers a nucleolar response 

that ultimately impacts cell growth (Boulon, Westman et al. 2010, James, Wang et al. 2014). 

This response often activates P53, the primary mediator of cellular stress (Olson 2004). 

Given that the nucleolus is able to regulate MDM2, the main negative regulator of P53, 

studies have focused on understanding the mechanisms by which the nucleolus regulates 

P53. On the other hand, other studies aim to unveil the P53-independent mechanisms 

because they are also able to induce similar cell responses, such as cell cycle arrest 

(James, Wang et al. 2014). Comprehension of these mechanisms could unveil new targets 

for cancer therapy since more than half of human cancers are characterized by a non-

functional P53 (James, Wang et al. 2014). Along with biochemical alterations, changes in 

the architecture of the nucleolus lead to a cell state commonly defined as “nucleolar stress”.  

 

3.1.1 P53-dependent responses  

P53 was initially described as an oncogene (Eliyahu, Raz et al. 1984) but posterior 

studies came out to attribute a tumour suppressor function (Baker, Fearon et al. 1989, Nigro, 

Baker et al. 1989, Malkin, Li et al. 1990, Donehower, Harvey et al. 1992). Since then, P53 

has been extensively studied and many pathways involving it were unravelled. Still, many 

questions remain such as why some cells die and others arrest in response to P53, how 

tumour microenvironment favours or prejudices a P53 mutated cell, among others 

(Vogelstein, Sur et al. 2010). 

P53 is a transcription factor containing five different domains (Figure 1.5): the 

transactivation domain (TAD), the proline-rich domain (PRD), the DNA-binding domain 

(DBD), the tetramerization domain (TD) and the basic domain (BD) (Raj and Attardi 2017). 

The TAD guarantees the proper activity and function of P53 and it is described that MDM2, 

an E3 ubiquitin ligase, binds to this region, targeting P53 to proteasomal degradation 

(Shimizu, Burch et al. 2002, Chi, Lee et al. 2005). Additionally, it ensures the proper 

correction of damaged DNA (Kannappan, Mattapally et al. 2018) and is crucial for tumour 

suppression activity (Raj and Attardi 2017). The other N-terminal domain, PRD, is essential 

for inducing apoptosis (Chipuk, Kuwana et al. 2004) and for protein stability (Toledo, 

Krummel et al. 2006). The core domain of P53 is occupied by the DBD which is the 

responsible for the ability of P53 to act as a transcription factor (Natan, Baloglu et al. 2011). 

Interestingly, this domain was found to contain a mutational hotspot where most of the P53 

mutations observed in cancer cells occur (Pavletich, Chambers et al. 1993). Next to DBD, 

P53 contains the TD which ensures the proper conformation to allow the binding to several 
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proteins (Chene 2001). Importantly, TD determinates P53-based cell fate, such as cell 

growth or apoptosis, by regulating the oligomeric status of P53 (Fischer, Prodeus et al. 

2016). Finally, BD is a regulatory domain whose localization at C-terminus allows it to either 

fold, when a target protein binds it, or function as a flexible linker (Harms and Chen 2006). 

BD is able to positively and negatively regulate P53 activity, depending on the post-

translational modification occurred (Harms and Chen 2006). For instance, while 

phosphorylation of serine 15 is essential for P53 transcriptional activity (Loughery, Cox et 

al. 2014), C-terminal neddylation of P53 was shown to decrease transcriptional activity 

(Abida, Nikolaev et al. 2007).  

 

 

Figure 1.5. P53 protein domains and their main functions. The N-terminus (yellow) contains the 

transactivation (TAD) and proline-rich (PRD) domains, while the DNA binding domain (DBD) mainly represents 

the core domain (green). The C-terminus (blue) comprises the tetramerization (TD) and basic (BD) domains. 

The main functions of each domain are indicated. 

 

 

MDM2 is a very interesting protein, with increasing relevance due to its ability to 

target P53 for degradation. A common feature to most E3 ligases is their capacity to 

ubiquitinate themselves. Unexpectedly, MDM2 self-ubiquitination does not result in its 

degradation in vivo (Itahana, Mao et al. 2007). But this ability potentiates substrate 

ubiquitination by strongly recruiting the E2-conjugating enzymes (Ranaweera and Yang 

2013). Interestingly, MDM2 displays a signal for nucleolar localization, which is not 

important for MDM2 ubiquitination or P53 monoubiquitination (which signals P53 to be 

exported from nucleus to cytoplasm (Brooks, Li et al. 2004)), but is absolutely required for 

P53 polyubiquitination, which targets P53 for proteasomal degradation (Xirodimas, Saville 

et al. 2001, Moll and Petrenko 2003, Brooks and Gu 2011).  
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Until 2004, it was believed that P53 was able to both promote and repress 

transcription of its target genes. However, by meta-analysis of genome-wide data, it was 

found that P53 behaves primarily as a transcription activator. Its activity as a repressor 

requires the activation of the P53-P21-DREAM/RB pathway (Fischer, Steiner et al. 2014). 

Some studies also suggest that P53 is able to induce apoptosis through a transcription-

independent pathway (Chipuk, Kuwana et al. 2004).  

Concerning its role in cellular stress, earlier studies reported P53 as the main 

protector of the genome and of the cell itself (Holmberg Olausson, Nister et al. 2012), 

although P53 could be activated in a DNA damage-independent manner (Bursac, Brdovcak 

et al. 2012). Consistently with this, several reports showed P53 activation upon very 

different cellular stresses, including nucleolar stress, which in turn suggests that, in a certain 

way, the nucleolus is required for P53 degradation via MDM2. There is a current model 

stating that nucleolar disruption redistributes nucleolar proteins, from the nucleolus to the 

nucleoplasm (James, Wang et al. 2014). Eventually, these proteins will bind MDM2, 

preventing its binding to P53 and consequent P53 degradation. For instance, once released 

from the nucleolus to the nucleoplasm, ARF is able to bind to the central region of MDM2, 

inhibiting P53 degradation (James, Wang et al. 2014, Box, Paquet et al. 2016) (Figure 1.6A). 

Also, NS overexpression induces P53-dependent G1 cell cycle arrest by directly binding the 

central acidic domain of MDM2, preventing its negative regulatory function over P53 (Dai, 

Sun et al. 2008). On the other hand, ribosomal proteins are delocalized from cytoplasm to 

nucleoplasm, no more being able to assemble ribosomes (James, Wang et al. 2014) (Figure 

1.6B). Notably, a broad range of these proteins are reported to bind MDM2, namely RPS3, 

RPS7, RPL23 and RPL37, among others (Dai, Zeng et al. 2004, Chen, Zhang et al. 2007, 

Yadavilli, Mayo et al. 2009, Daftuar, Zhu et al. 2013). Therefore, altogether these results 

show that nucleolar disruption leads to the dramatic changing of the nucleoplasmic pool of 

ribosomal proteins, leading to P53 activation (Deisenroth and Zhang 2010, Deisenroth and 

Zhang 2011). 

During nucleolar stress, most of MDM2-binding ribosomal proteins are targeted for 

proteasomal degradation (Warner 1977). Among them, RPL11 and RPL5 stand out 

because, actually, they tend to accumulate at the ribosome-free fraction, due to the 

continuous import into the nucleolus of de novo synthesized RPL11 and RPL5 and their 

non-degradation (Bursac, Brdovcak et al. 2012, James, Wang et al. 2014). An important 

complex – the 5S RNP– has been identified, which links both ribosome biogenesis and cell 

proliferation pathways (Sloan, Bohnsack et al. 2013) (Figure 1.6C). This complex is 

composed of the ribosomal proteins RPL11 and RPL5, and 5S rRNA, and in the HEK293 

cell line it is localized mainly at the nucleoplasm, in response to ribosome biogenesis 

inhibition (Sloan, Bohnsack et al. 2013). The existence of this complex has been also 
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reported in U2OS cells, and shown to shift from its assembly with 60S pre-ribosomes to 

MDM2 binding upon impairment of ribosome biogenesis (Donati, Peddigari et al. 2013) 

(Figure 1.6C). Knockdown of any of the three components of this complex decreases the 

binding of the other two to MDM2, therefore suggesting that efficiency of the binding 

depends on all the components (Donati, Peddigari et al. 2013). P53 activation mediated by 

the assembly of the 5S RNP complex with MDM2 has been extensively reported in response 

to different triggers of nucleolar stress and in different cell types. For instance, in A549 cells, 

both RPL11 and RPL5 co-localize with MDM2 in the nucleolus in response to rDNA 

transcription inhibition by low doses of actinomycin D (Bursac, Brdovcak et al. 2012). Also, 

both replicative and oncogenic stresses were shown to drive MCF-7 human breast cancer 

cells through cell senescence by activating P53 in a 5S RNP-dependent manner 

(Nishimura, Kumazawa et al. 2015). Additionally, the G1 cell cycle arrest induced by 

downregulation of NS depends on the interaction of RPL11 and RPL5 with MDM2 to activate 

P53 (Dai, Sun et al. 2008).  

 

 

Figure 1.6. Different mechanisms by which nucleolar stress activates P53. (A) Under normal conditions, 

nucleolar proteins are in the nucleolus, which keep MDM2 (red rectangle) free to bind P53 (green circles), 

leading to its polyubiquitination and consequent degradation. In response to nucleolar stress, some nucleolar 

proteins, such as ARF (purple circles), are delocalized to the nucleoplasm and bind MDM2, precluding its binding 

to P53 and allowing P53 stabilization. (B) Under normal conditions, ribosomal proteins are assembled into 

ribosomes, to produce a functional pool of ribosomes in the cytoplasm. In nucleoplasm, MDM2 binds P53 and 

leads to its degradation. When ribosome biogenesis is impaired, a lower number of ribosomes are produced 

and some ribosomal proteins (blue and red stars) delocalize from cytoplasm to nucleoplasm, where a large 

number of them are able to bind MDM2, preventing P53 degradation, ultimately leading to P53 activation. (C) 

Under normal conditions, RPL11, RPL5 and 5S rRNA form a complex – the 5S RNP – which binds the ribosomal 

60S large subunit (light green). In response to nucleolar stress, such as impairment of ribosome biogenesis, the 

5S RNP shifts to MDM2 binding, preventing P53 degradation and allowing its activation. 
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3.1.2 P53-independent responses  

In mammals, there are P53-independent pathways leading to cell cycle arrest and 

autophagy during nucleolar stress (Pfister 2019). For instance, double knockdown of 

POLR1A (which codes for the catalytic subunit of RNA Polymerase I) and P53 in U2OS and 

HCT-116 cancer cell lines inhibits S-phase, the same phenotype observed in POLR1A-

depleted cells, suggesting that cell cycle arrest induced by POLR1A depletion occurs in a 

P53-independent manner (Donati, Brighenti et al. 2011). Another study using P53-proficient 

and P53-deficient cells showed that, upon impairment of ribosome biogenesis, cells 

underwent cell cycle arrest due to deregulation of PIM1 kinase, a sensor for ribosomal 

stress, which increases P27 protein levels (Iadevaia, Caldarola et al. 2010). Interestingly, 

NPM overexpression was shown to drive cells into senescence due to its ability to bind P53 

and increase its transcriptional activity and protein stability (Colombo, Marine et al. 2002). 

However, in different tumours, NPM arises as a fused protein (Morris, Kirstein et al. 1994, 

Redner, Rush et al. 1996, Yoneda-Kato, Look et al. 1996) becoming unable to bind P53, 

which could eventually explain the P53 inactivity in such tumours (Colombo, Marine et al. 

2002). Importantly, nucleolar stress was shown to activate the NF-κB signalling pathway in 

a P53-independent manner (Chen and Stark 2019). In fact, different stimuli that activate the 

NF-κB signalling also disrupt nucleoli (Chen and Stark 2019). Particularly, treatment with 

aspirin promotes nucleolar disruption, induces degradation of the RNA Pol I component, 

TIF-IA, activates the NF-κB signalling and ultimately promotes apoptosis (Chen, Lobb et al. 

2018).    

Meanwhile, these P53-independent mechanisms were also investigated in other 

organisms. For instance, yeasts do not express P53 or MDM2 as mammalian cells (Koerte, 

Chong et al. 1995, Di Ventura, Funaya et al. 2008), which could explain their different 

response to nucleolar stress induced by ribosome biogenesis inhibition (James, Wang et 

al. 2014). On the other hand, these studies using yeast as a model may provide important 

information about the existence of an ancestral pathway and how it works. Most of these 

reports are based on the observation of different phenotypes in terms of cell cycle and 

morphology induced by impairment of ribosome biogenesis, which emerge through a 

relatively reduced number of pathways (James, Wang et al. 2014). Caenorhabditis elegans 

or Drosophila melanogaster are other interesting organism models that do not express 

MDM2 and ARF, although they express P53 (James, Wang et al. 2014). 

 

3.1.3 Disruption of the nucleolar architecture 

As mentioned above, nucleolar stress is frequently associated with alterations in the 

organization of the nucleolus. For instance, loss-of-function of Drosophila NOL12/VIRIATO 
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was shown to upregulate FBL and to result in a substantial reduction in the packaging of 

nucleolar components and increased granular organisation (Marinho, Casares et al. 2011). 

In Mus musculus, the VIRIATO homologue, NOP25, had been previously implicated in the 

maintenance of nucleolar architecture, since its knockdown led to nucleolar fragmentation 

(Suzuki, Fujiwara et al. 2007).  

Another interesting protein is FBL, whose knockdown in HeLa cells was shown to 

induce an abnormal nuclear morphology, to slow down cell proliferation and to cause G2/M 

arrest without changing the P53 protein levels (Amin, Matsunaga et al. 2007). While its 

downregulation reduces cell proliferation and decreases nucleolar number in prostate 

cancer cells (Koh, Gurel et al. 2011), its upregulation induced by the proto-oncogene Myc 

overexpression, increases nucleolar size and number in prostate intraepithelial neoplasia 

(Koh, Gurel et al. 2011).  

In addition, NCL downregulation also impacts nucleolar ultrastructure in HeLa cells, 

increasing P53 levels and ultimately arrest cells at G2/M (Ugrinova, Monier et al. 2007).  

Altogether, these data indicate the nucleolus as a very malleable and plastic 

membraneless organelle, with the ability to easily fuse or separate. This is actually what 

has been reported recently, pinpointing this and other membraneless organelles as 

possessing liquid-like properties and resulting from liquid-liquid phase separation 

(Brangwynne, Eckmann et al. 2009, Brangwynne, Mitchison et al. 2011). These are the 

features that indeed support and allow cellular components to be fast and reversibly 

concentrated, making the cell able to quickly respond to a stimulus (Hyman, Weber et al. 

2014). Despite evidence showing that specific sequence motifs are responsible for highly 

structural disordered domains in proteins able to be phase separated, the requirements for 

this process are still poorly understood (Vernon and Forman-Kay 2019).  

 

 

4. PATHOPHYSIOLOGICAL RELEVANCE OF THE 

NUCLEOLUS 

 

The observation that the nucleolus is more than just a ribosome factory or an 

indicator of cell malignancy opened new avenues in the study of human diseases. Its ability 

to control many different cell processes has highlighted it as being either crucial for cell 

homeostasis or a potential deregulated target in several human diseases (Nunez Villacis, 

Wong et al. 2018). Therefore, several recent studies have allowed a deeper knowledge of 

pathophysiology of human diseases and sometimes have revealed the nucleolus as a very 

promising therapeutic target.    
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4.1 The nucleolus and cancer 

Early, scientists realized that there was a connection between proliferation and the 

nucleolus: highly proliferating mammalian cells display nucleolar hypertrophy and increased 

ribosome biogenesis (Derenzini and Ploton 1991). This increase would result in greater 

protein synthesis, ensuring that daughter cells have all cell components necessary to their 

normal functioning (Thomas 2000). In addition to this crosstalk between ribosome 

biogenesis and cell proliferation, there is evidence suggesting that both share some 

common pathways (Montanaro, Trere et al. 2008). For instance, in cancer cells, proto-

oncogenes and tumour suppressors regulate positively and negatively the uncontrolled cell 

proliferation, respectively, and at the same time control the rate of ribosome biogenesis 

(Sulic, Panic et al. 2005). Already in the 19th century, nucleoli from cancer cells were 

reported as bigger and morphologically abnormal (Pianese and Teuscher 1896). More 

recently, this nucleolar enlargement was shown to be due to MYC overexpression in 

prostate cancer cells (Koh, Gurel et al. 2011) (Figure 1.7A). Even nowadays, an increased 

number and size of nucleoli is a bad prognosis for tumour development (Derenzini, Trere et 

al. 2000, Ruggero 2012). However, this notion that nucleolar hypertrophy is always 

associated with higher rates of cell proliferation is still controversial (Montanaro, Trere et al. 

2008). For instance, nucleolar hypertrophy was observed upon treatment with an anti-

proliferative agent, MLN4924 (Bailly, Perrin et al. 2016). Besides, the impairment of 

ribosome biogenesis was found to enlarge nucleoli and induce senescence (Nishimura, 

Kumazawa et al. 2015). In addition, enlarged nucleoli were found in intra-epithelial prostate 

cancer cells which showed lower proliferative capacity when compared with other intra-

epithelial cancer cells exhibiting smaller nucleoli (Orsolic, Jurada et al. 2016) 

MYC is a very important transcription factor which targets and regulates several 

genes involved in cell growth (Schmidt 1999, van Riggelen, Yetil et al. 2010) and its 

overexpression is a common feature of several cancers (Dai and Lu 2008, Meyer and Penn 

2008). Interestingly, in Drosophila melanogaster it was shown that cells containing high 

levels of MYC (thus displaying higher translational capacity) are more efficient in the uptake 

of survival and growth factors, leading to the death, or at least the proliferative slowdown, 

of the surrounding cells (Moreno and Basler 2004). MYC was also extensively reported as 

directly controlling the rDNA transcription (Poortinga, Hannan et al. 2004, Arabi, Wu et al. 

2005, Grandori, Gomez-Roman et al. 2005), and a further role in regulation of the rRNA 

processing efficiency was found in human B-cell line P493-6 (Schlosser, Holzel et al. 2003). 

MYC also targets genes involved in ribosome biogenesis, particularly ribosome proteins 

from large and small subunits (Ruggero 2009). In mice, it was shown that the ability of MYC 

to regulate ribosomal proteins L24 and L38 is essential for cell growth induced by MYC 
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(Ruggero 2009). Also, RPL11 is a transcriptional target of MYC but one study demonstrated 

that there is a negative feedback loop, where RPL11 is able to inhibit MYC (Dai, Sears et 

al. 2007). Moreover, it was reported that RPL15 is also overexpressed in gastric cancer cell 

lines and that both cell growth and tumorigenicity are inhibited upon RPL15 knockdown 

(Wang, Zhao et al. 2006). Other examples include RPLP0, RPLP1 and RPLP2, whose 

mRNA upregulation is positively correlated with lymph metastasis in gynecologic tumours 

(Artero-Castro, Castellvi et al. 2011), and RPS11 and RPS20, whose upregulation is a poor 

prognostic marker in glioblastoma (Yong, Shabihkhani et al. 2015). Nevertheless, one 

paradigm exists in tumour cells since some of them display downregulation of several 

ribosomal proteins, which is contrary to what would be expected for cells with increased 

protein synthesis (Kasai, Nadano et al. 2003, Choi and Chen 2005) (Figure 1.7B). This 

suggests that these ribosomal proteins in particular account for cell proliferation and/or 

transformation rather than for translation machinery (Wang, Huang et al. 2010), which is in 

line with the observation that some ribosomal proteins play extra-ribosomal functions 

(Zimmermann 2003). One example is RPL41, which is described as the smallest and most 

basic eukaryotic protein (Yu and Warner 2001) and is downregulated in 9 out of 12 primary 

breast cancers (Wang, Huang et al. 2010). This study showed that this downregulation 

correlates with a very premature centrosome splitting, leading to abnormal mitosis and 

eventually triggering cell transformation (Wang, Huang et al. 2010). Other examples of this 

association between downregulation of ribosomal proteins and increased tumour formation 

include RPS6 in Drosophila (Watson, Konrad et al. 1992), RPL9 and RPL26 in mice (Beck-

Engeser, Monach et al. 2001) and several ribosomal proteins in zebrafish (Amsterdam, 

Sadler et al. 2004).  

Another interesting field in the study of cancer tries to understand how different 

interactions and subcellular localization impact cell transformation and proliferation (Figure 

1.7C). For instance, depending on the binding partners, NPM could act as an oncogenic 

repressor or activator. Particularly, its association with nucleolar ARF inhibits ribosome 

biogenesis and cell proliferation whereas its interaction with nucleolar MYC promotes 

oncogenesis (Weeks, Metge et al. 2019). Lastly, the upregulation of the nucleolar protein 

PICT1 in wild-type P53-expressing cancers showed to sequester RPL11 into the nucleolus, 

preventing the activation of P53, then promoting cell proliferation (Lu 2011).    
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Figure 1.7. Nucleolar structure and function are involved in cancer development. (A) The MYC protein is 

overexpressed in several tumours. Enlarged nucleoli in MYC-overexpressing cells lead to increased ribosome 

production and protein synthesis, which support the increased proliferation of these cells. (B) Several tumours 

display an upregulation of ribosomal proteins (red and blue stars) which leads to increased protein synthesis, 

supporting the higher proliferative capacity of cells. On the other hand, some tumours exhibit a downregulation 

of some ribosomal proteins, which triggers cell transformation, a key step for cancer progression. (C) Some 

proteins, such as NPM, exhibit opposite effects depending on the binding partner. When NPM is associated with 

ARF, ribosome biogenesis and cell proliferation are prevented, whereas its association with MYC increases 

ribosome biogenesis and proliferation of cancer cells. 

 

 

Apart from these most direct effects on ribosome production, cell proliferation or 

apoptosis, a mechanism recently proposed by Marcel et al. postulates P53 as a key protein 

for controlling the quality of ribosomes. Particularly, they propose that in cancer cells with 

no functional P53, FBL expression levels increase which leads to an alteration of the rRNA 

methylation pattern (Marcel, Ghayad et al. 2013). On the one hand, this will lead to the 

production of ribosomes which will translate mRNA with a lower fidelity; on the other hand, 
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this altered methylation pattern will lead to a preferential and biased translation initiation of 

mRNA coding for pro-oncogenic, anti-apoptotic and survival proteins through IRES (Internal 

Ribosome Entry Sites) rather than the CAP (Marcel, Ghayad et al. 2013), which is 

considered the canonical way for translation initiation (Komar and Hatzoglou 2011). Indeed, 

the disequilibrium towards any of the two modes of translation initiation has been 

increasingly implicated in cancer initiation and progression. During mitosis, translation 

initiation through CAP decreases and the IRES-dependent translation ensures the 

expression of specific proteins essential for mitotic progression and proper cytokinesis 

(Wilker, van Vugt et al. 2007, Barna, Pusic et al. 2008). Relevantly, MYC overexpressing 

cells do not do this shift leading to genomic instability, cytokinesis failure and ultimately cell 

transformation (Barna, Pusic et al. 2008). In this context, it is interesting to take into account 

the existence of an IRES element at the MYC 5’UTR (Stoneley, Paulin et al. 1998), which 

might be a chance for cell to downregulate MYC levels since IRES-dependent translation 

is reduced in MYC-overexpressing cells (Ruggero 2009). Another study found that 

decreased levels of ARL2 (ADP ribosylation factor like 2) are associated with an increased 

aggressiveness of breast tumour both in vitro and in vivo (Beghin, Belin et al. 2009). By 

using a cell line knockdown for ARL2, authors found IRES-dependent translation initiation 

decreased, including P53 mRNA, along with a reduced fidelity of ribosomes (Belin, Beghin 

et al. 2009), contributing for tumour aggressiveness.  

Altogether, these results show that the nucleolus plays an important role in cancer 

and, in accordance, it is now recognized as a new and potential target for cancer therapy 

(Quin, Devlin et al. 2014, Lindstrom, Jurada et al. 2018).  

 

4.2 The nucleolus and aging 

Aging can be defined as phenotypic alterations that occur progressively in all of the 

individuals (Guarente 1997), leading to a gradual functional decline with loss of viability 

(Partridge and Mangel 1999). Therefore, “aging” means that there is an intrinsic cell viability 

limit that does not allow immortality. Nowadays, the scientific community is trying to 

understand the mechanisms behind this aging process to provide new reliable therapeutic 

targets, improving human health during aging by minimizing its effects (Lopez-Otin, Blasco 

et al. 2013). However, aging involves many different cell events turning difficult to find out 

“the” trigger. By now, hallmarks of aging have been described which include genomic 

instability, epigenetic alterations, telomere erosion, proteotoxic stress, deregulated nutrient 

sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered 

intercellular communication (Lopez-Otin, Blasco et al. 2013). Outstandingly, nucleolar 

function has emerged as a key regulator of some of these hallmarks of aging. Particularly, 
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it plays a role in the maintenance of genomic stability (Ogawa and Baserga 2017). For 

instance, NCL was shown to interact with the DNA damage response proteins γH2AX, 

RPA32 and PCNA (Kawamura, Qi et al. 2019), and NOL12 was described as an RNA-

binding protein which colocalizes with the DNA repair proteins DHX9 and TOPBP1, 

contributing for the resolution of DNA stress and preservation of the genomic integrity 

(Scott, Trahan et al. 2017). Additionally, the observation that the nucleolus accumulates 

some of the components of the telomerase complex, which confers protection to the 

telomere DNA, suggests that the nucleolus is somewhat involved in the synthesis of this 

complex, although that was not clearly demonstrated. Nevertheless, there are studies 

reporting telomerase components as playing roles beyond telomere length maintenance. 

For instance, the nucleolar protein NOLC1 regulates the nucleolar accumulation of the 

TRF2 protein, a component of mammalian telomerase complex, which impacts the rDNA 

transcription and cell cycle progression (Yuan, Xu et al. 2018). Therefore, the regulation of 

cell senescence might be related to the nucleolar localization of telomerase complex 

components (Rosete, Padros et al. 2007). Contrarily to the other hallmarks of aging, the 

relationship between nucleolus and cellular senescence has been largely explored and it is 

described in the section below.  

 

4.2.1 Nucleolar regulation of senescence and lifespan 

A senescent cell is defined as a cell which is no more able to divide again (Campisi 

and d'Adda di Fagagna 2007). This cell state was described by Hayflick in 1965, when he 

realized that cells are not able to proliferate indefinitely in culture (Hayflick 1965). Forty 

years later, Campisi et al described the “senescent phenotype”, a set of features commonly 

found in senescent cells: i) growth arrest, as these cells stop cycling even if favourable 

growth conditions are present; ii) resistance to apoptosis; iii) altered gene expression, 

including upregulation of cell cycle kinase inhibitors (Campisi and d'Adda di Fagagna 2007). 

Interestingly, the “senescent gene expression program” includes the overexpression of 

proteins able to change tissue microenvironment, which are not directly related with growth 

arrest (Yoon, Kim et al. 2004). So, it is believed that senescent cells play a role in alteration 

of structure and function of the aging tissues, supported by the fact that the number of 

senescent cells increases with age (Campisi 2005).  

Notably, studies have demonstrated the power of the nucleolus to regulate cellular 

senescence. In yeast, premature senescence is induced by mutations in nucleolar proteins 

and DNA helicases (Rosete, Padros et al. 2007), and chronological aging is associated with 

nucleolar stress, characterized mainly by nucleolar fragmentation, altered nucleolar size 

and dysregulated expression of nucleolar proteins (Lewinska, Miedziak et al. 2014). Despite 
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the presence of changes in nucleolar structure and function found in both humans and 

yeast, these changes are different. Nucleolar fragmentation does not usually characterize 

old human cells (Comai 1999). A human senescent cell is morphologically enlarged, 

displays a flat irregular shape and accumulates stress granules and vacuoles (Goldstein 

1990, Campisi 1997). In addition, it often presents an increased activity of the acidic 

senescence-associated β-galactosidase (SA-β-gal), which is a useful senescence marker 

(Dimri, Lee et al. 1995).  

The link between nucleolus, senescence and aging was originally reported in 1978, 

in a study showing a decrease in the number of nucleoli concomitant with an increase of 

nucleolar area and nucleolar dry mass in replicative senescent WI-38 human lung 

fibroblasts (Bemiller and Lee 1978). But this connection was just resumed in the last two 

decades, being under focus since then. Recently, nucleolar function has been correlated 

with lifespan, with small nucleoli being associated with increased lifespan in different 

organism models such as fruit fly, nematode worm and mouse (Tiku, Jain et al. 2017). 

Moreover, diminished 60S ribosomal subunit in yeast (Steffen, MacKay et al. 2008) and 

reduced ribosomal proteins or translation-initiation factors in nematode worm, extended the 

lifespan (Hansen, Taubert et al. 2007). Importantly, i) as decreased FBL expression was 

observed in different longevity models and ii) mild repression of FBL by small interference 

RNA decreased nucleoli size and extended the longevity of adult nematode worm (Tiku, 

Jain et al. 2017), data strongly suggest longevity as being regulated by FBL expression and 

nucleolar function (Tiku and Antebi 2018) (Figure 1.8A). Significantly, cells from Hutchinson-

Gilford progeria syndrome patients showed increased rDNA transcription, rRNA synthesis, 

ribosomal proteins production and protein synthesis concomitant with reduced number but 

enlarged nucleoli, while FBL expression was not consistently upregulated (Buchwalter and 

Hetzer 2017) (Figure 1.8B).  

Furthermore, different signalling pathways are emerging as mediators of this 

connection between nucleolar function and aging. For instance, downregulation of the 

insulin/insulin-like growth factor (IGF) signalling pathway was shown to enhance longevity 

in different models (Kenyon, Chang et al. 1993, Clancy, Gems et al. 2001, Bartke 2008, 

Kappeler, De Magalhaes Filho et al. 2008, Selman, Lingard et al. 2008), and rDNA 

transcription was shown to be a major target of this pathway (Wu, Tu et al. 2005). 

Accordingly, smaller nucleoli were observed in nematode worms exhibiting declined IGF 

receptor signalling and increased lifespan (Tiku, Jain et al. 2017) (Figure 1.8A). Also, a key 

component of this pathway, the serine/threonine kinase AKT, was shown to enhance rRNA 

synthesis, whereas its downregulation diminishes rRNA transcription (Chan, Hannan et al. 

2011). Another central linker of nucleolar function and aging is the target of rapamycin 

(TOR) signalling pathway, which responds directly to nutrient availability by inversely 
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regulating cell growth and autophagy, i.e., under nutrient deficiency conditions it signals to 

abolish cell growth while inducing autophagy (Kapahi, Chen et al. 2010). Interestingly, 

nucleolar factors have risen as key players of autophagy, mainly regulated by the TOR 

signalling pathway (Pfister 2019), whereas autophagy was shown to promote the production 

of senescence-associated interleukins (Young, Narita et al. 2009, Kuilman, Michaloglou et 

al. 2010). Similarly to IGF signalling pathway, TOR downregulation also decreases 

nucleolar size (Sheaffer, Updike et al. 2008), reduces RNA Pol I-mediated transcription 

(Grummt, Smith et al. 1976) and increases lifespan of adult nematode worms presumably 

by decreasing RNA Pol III-dependent transcription (Filer, Thompson et al. 2017) (Figure 

1.8A). Another emergent signalling pathway is the NF-κB, which is chronically activated in 

aging (Osorio, Soria-Valles et al. 2016). Particularly, this signalling pathway elicits 

senescent cells to secrete several different factors such as cytokines, chemokines, 

proteases and growth factors (Acosta, Banito et al. 2013), which together constitute the 

senescence-associated secretory phenotype (SASP) (Borodkina, Deryabin et al. 2018). 

The SASP is a very powerful mechanism for senescence spreading by supporting cell cycle 

arrest and showing both autocrine and paracrine effects over neighbouring cells (Borodkina, 

Deryabin et al. 2018). On the other hand, TIF-IA degradation was shown to induce both 

increased nucleolar size and NF-κB activation (Chen, Lobb et al. 2018). Despite these 

important findings, it remains unclear the correlation of NF-κB activation, enlargement of 

nucleoli and increased senescence (Figure 1.8A). Nevertheless, studies have unveiled a 

role for NF-κB activation for lifespan of different organisms: in fruit fly brain, high levels of 

NF-κB signals cause neurodegeneration and shorten the lifespan (Kounatidis, Chtarbanova 

et al. 2017) and pharmacological suppression of NF-κB extends the fruit fly longevity 

(Moskalev and Shaposhnikov 2011); in mice, either the downregulation of P65, a subunit of 

NF-κB, by allelic removal, or pharmacological inhibition of NF-κB resulted in extended 

lifespan, by decreasing DNA damage and cellular senescence as well as by delaying the 

onset of age-related pathologies in progeroid model (Tilstra, Robinson et al. 2012). 

Outstandingly, studies from yeast and nematode worm showed that SIRT1 and FOXO 

proteins are able to prevent the activation of NF-kB signalling, extending the lifespan of 

organisms, by counteracting the inflammaging process (Salminen, Ojala et al. 2008), an 

age-related activation of innate immunity mainly controlled by NF-κB signalling (Salminen, 

Huuskonen et al. 2008). Altogether, NF-κB configures a very promising and powerful 

therapeutic target for both extending lifespan (Osorio, Soria-Valles et al. 2016) and even for 

rejuvenation purposes (Tilstra, Clauson et al. 2011). 

Despite the advances on establishing and understanding the connection between 

nucleolar function and human aging, the literature lacks studies using primary naturally 

aged human cells at low passages, in order to avoid replicative senescence. 
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Notwithstanding all limitations that an in vitro culture involves (de Magalhaes 1997-2013), 

that approach will allow to address specific questions about human chronological aging.  

 

 

Figure 1.8. Smaller nucleoli are associated with increased lifespan. (A) Downregulation of the FBL 

nucleolar protein or IGF and TOR signaling leads to the reduction of nucleolar size and ultimately promotes the 

lifespan extension in different organisms. Downregulation of NF-κB signaling pathway increases lifespan but it 

is still unclear a direct effect in decreased nucleolar size and increased lifespan (dashed arrow) (see text for 

details). (B) Cells from HGPS (Hutchinson–Gilford progeria syndrome) patients exhibit enlarged nucleoli 

concomitant with increased 47S pre-rRNA levels, expression of ribosomal proteins (red and blue stars), 

ribosome production and protein synthesis. 

 

 

4.3 Nucleolar deregulation in human diseases 

Since nucleoli have revealed to be multifunctional, evidence emerged showing their 

involvement in different human pathologies. Any spontaneous mutation in ribosomal 

proteins or factors involved in ribosome biogenesis is included on a group of diseases 
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termed ribosomopathies. For instance, in Diamond-Blackfan anemia (DBA) patients, 

mutations were only observed in ribosomal proteins, such as RPS19, RPS24, RPS17, 

RPL5, RPL11 and RPL35A (Narla and Ebert 2010). Although patients could exhibit different 

clinical phenotypes depending on the ribosomal protein affected, they all show defective 

production of mature ribosomes (Narla and Ebert 2010), ultimately leading to erythroid 

failure and anemia, congenital anomalies and susceptibility to develop cancer (Lipton and 

Ellis 2009) (Figure 1.9A). Another example is the Shwachman-Diamond syndrome, caused 

by a mutation in the SBDS gene, which was reported to be involved in ribosome biogenesis 

(Ganapathi, Austin et al. 2007, Wong, Traynor et al. 2011). These patients exhibit bone 

marrow dysfunction, exocrine pancreatic insufficiency and increased risk to develop 

leukemia (Shwachman, Diamond et al. 1964, Ganapathi, Austin et al. 2007) (Figure 1.9A). 

Another ribosomopathy is dyskeratosis congenita, which is characterized by bone marrow 

failure, skin hyperpigmentation, nail dystrophy and oral leukoplakia (Walne and Dokal 

2008). Although it is caused by mutations in different components of the telomerase 

complex, the more severe phenotype is observed in patients carrying a mutation in DKC1 

gene, which encodes for dyskerin protein (Heiss, Knight et al. 1998). Interestingly, beyond 

its role in preventing telomere shortening (Narla and Ebert 2010), dyskerin was shown to 

support the pseudouridylation of rRNAs (Liu and Ellis 2006). By now, the contribution of 

each dyskerin function for the pathophysiology of this disease remains unknown (Narla and 

Ebert 2010).    

Another important set of human diseases whose pathophysiology could be, at least 

in part, explained by nucleolar deregulation are the neurodegenerative diseases (Yang, 

Yang et al. 2018). Particularly, the impairment of nucleolar function has been implicated in 

the process through which degeneration or loss of neurons occurs (Hetman and Pietrzak 

2012). For instance, the dopaminergic neurons, which are lost in Parkinson’s disease, 

display decreased nucleolar volume (Mann and Yates 1982) (Figure 1.9B), inversely 

correlating with the duration of the disease (Gertz, Siegers et al. 1994). Furthermore, NCL 

was suggested to play a key role in Parkinson’s disease, particularly by interacting with 

mutated RNAs, leading to a decrease of rDNA transcription (Weeks, Metge et al. 2019). 

Also, the overexpression of NCL in a cellular model of Parkinson’s disease revealed a 

neuroprotective effect, by targeting both oxidative and proteotoxic stress (Caudle, Kitsou et 

al. 2009). Similarly, in Alzheimer’s disease, nucleolar volume of neurons from the CA1-

hippocampus area is also decreased (Iacono, O'Brien et al. 2008) (Figure 1.9B). 

Interestingly, the SIRT1 protein, mentioned above as a positive lifespan contributor, is 

diminished in both Parkinson and Alzheimer disease patients, which supports the decrease 

of rDNA transcription that in turn contributes for neurodegeneration (Kreiner, Sonmez et al. 

2019). In agreement, several models of both Parkinson’s and Alzheimer’s disease are 
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based on loss of function of TIF-IA in specific neuron subpopulations (Yang, Yang et al. 

2018). In dopaminergic neurons, downregulation of TIF-IA represses TOR activity, 

impacting on protein translation (Parlato and Kreiner 2013). Moreover, it was shown that 

under nucleolar stress these neurons retain the signals for P53-dependent apoptosis 

(Rieker, Engblom et al. 2011). Based on the liquid-like properties of the nucleolus, a recent 

work used an optogenetic protein system and showed that, by modulating material 

properties of the nucleolus, it is possible to affect rRNA processing (Zhu, Richardson et al. 

2019). Given that both neurodegenerative diseases and ribosomopathies alter the 

interaction of molecules inside nucleolus (Kwon, Xiang et al. 2014, Elbaum-Garfinkle and 

Brangwynne 2015), the modulation of the nucleolar properties appears as a very powerful 

approach for therapeutic interventions (Zhu, Richardson et al. 2019). Also cardiac diseases 

have been shown to be associated with nucleolar deregulation (Hariharan and Sussman 

2014). Previously, both number and size of nucleoli were indicated as early predictors of 

myocardial hypertrophy onset (Neuburger, Herget et al. 1998). In a recent study using a 

model of heart failure induced by pressure overload, authors found that cardiac fibroblasts 

become senescent, displaying increased nucleolar size and activation of P53 (Kumazawa, 

Nishimura et al. 2017) (Figure 1.9C). These senescent fibroblasts will then secrete SASP 

factors, which will induce hypertrophy of cardiomyocytes paracrinally. Therefore, senescent 

fibroblasts ultimately lead to both cardiac fibrosis and hypertrophy, aggravating heart failure 

(Kumazawa, Nishimura et al. 2017) (Figure 1.9C). Lastly, a model was proposed in which 

the nucleolus plays a role in autoimmune diseases (Brooks 2017). This model is based on 

the observation that nucleolar size increases in response to stress and predicts that this 

leads to the engulfment of the inactive X-chromosome. Consequently, this chromosome will 

be exposed to a large number of nucleolar polyamines, ultimately leading to the 

overexpression of X-linked genes, generating abnormal DNA, RNA and RNP 

conformations. Once stabilized, they will give rise to autoantigenic complexes (Brooks 

2017). 
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Figure 1.9. Nucleolar structure and function are involved in several human diseases. (A) In the Diamond-

Blackfan anemia (top line), mutations in different ribosomal proteins (red and blue stars) decrease ribosome 

biogenesis leading to a common phenotype. In the Schwachman-Diamond syndrome, a recessive mutation on 

SBDS gene blunts the maturation of the ribosomal 60S large subunit (light green), preventing its assembly with 

the ribosomal 40S small subunit (dark green), resulting in several dysfunctions in patients. (B) Neurons 

displaying a reduced nucleolar size or impaired nucleolar function, as those from Parkinson’s and Alzheimer’s 

diseases, have been associated with neurodegeneration. (C) Cardiac fibroblasts from a heart failure model 

exhibit an increased nucleolar size along with P53 accumulation, becoming senescent. Once senescent, they 

secrete SASP factors that will aggravate heart failure by promoting fibrosis (in an autocrine manner) and eliciting 

hypertrophy of cardiomyocytes (in a paracrine manner). 
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5. AIMS 

The main goal of this thesis was to explore the role of nucleolar stress in senescence 

and aging. Specifically, we aimed to: i) characterize the role of NOL12 in nucleolar structure 

and function by measuring morphological nucleolar parameters and ribosome biogenesis 

in NOL12-depleted human dermal fibroblasts from neonatal skin; ii) ascertain the correlation 

between NOL12 downregulation-driven nucleolar stress and human advancing age by 

using human primary fibroblasts from healthy donors with different ages; iii) dissect the role 

of the age-associated nuclear protein, FoxM1, in nucleolar homeostasis; iv) determine the 

role of P53-dependent and P53-independent mechanisms in response to nucleolar stress, 

particularly in cell proliferation and senescence; v) identify FoxM1 nucleolar transcriptional 

targets that link nucleolar homeostasis, cell proliferation and aging by interrogating RNA 

sequencing datasets from FoxM1-depleted neonatal fibroblasts and from elderly donors’ 

fibroblasts. 
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1. ABSTRACT 

The nucleolus is a subnuclear compartment with key roles in rRNA synthesis and 

ribosome biogenesis, complex processes that require hundreds of proteins and factors. 

Alterations in nucleolar morphology and protein content have been linked to the control of 

cell proliferation and stress responses and, recently, further implicated in cell senescence 

and ageing. In this study, we report the functional role of NOL12 in the nucleolar 

homeostasis of human primary fibroblasts. NOL12 repression induces specific changes in 

nucleolar morphology, with increased nucleolar area but reduced nucleolar number, along 

with nucleolar accumulation and increased levels of fibrillarin and nucleolin. Moreover, 

NOL12 repression leads to stabilization and activation of p53 in an RPL11-dependent 

manner, which arrests cells at G2 phase and ultimately leads to senescence. Importantly, 

we found NOL12 repression in association with nucleolar stress-like responses in human 

fibroblasts from elderly donors, disclosing it as a biomarker in human chronological aging. 

 

 

2. INTRODUCTION 

The nucleolus is a subnuclear multifunctional compartment with a central role in 

ribosome biogenesis and RNA-processing events, and it is also involved in the sensing of 

cellular stress and in cell cycle regulation (Boisvert et al., 2007; Boulon et al., 2010; Tsai 

and Pederson, 2014). The main function of the nucleolus is the synthesis of rRNA and its 

complex processing and co assembly with ribosomal proteins into ribosome subunits 

(Henras et al., 2015). RNA polymerase I (RNA Pol I) synthesizes a precursor rRNA 

transcript (47S pre-rRNA in humans) that is processed and modified (including 2’O-

methylation and pseudouridylation) into 28S, 18S, and 5.8S rRNAs. These three rRNAs, 

together with the 5S rRNA synthesized by RNA Pol III in the nucleoplasm, are assembled 

with ribosomal proteins into large and small ribosomal subunits to be exported 

independently to the cytoplasm (Henras et al., 2015). Ribosome biogenesis is one of the 

most energy-consuming processes in a cell, and it is highly regulated, so that protein 

synthesis potential (ribosome levels) matches energy supply to ensure proper cellular 

proliferation and cell growth (Lempiainen and Shore, 2009). Mammalian cells have the 

ability to sense extreme variations in their internal and external environments and frequently 

respond accordingly with cell cycle arrest or apoptosis. p53 is a tumor suppressor protein, 

with crucial functions in protecting genome integrity upon cellular stress (Woods et al., 

2015). Direct and localized micropore UV irradiation of cell nucleoli was shown to induce 

p53 stabilization. However, cells could tolerate a large amount of DNA damage without 

inducing a p53 response if this DNA damage was not localized and if the nucleoli were not 
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disrupted (Rubbi and Milner, 2003). Furthermore, in addition to DNA damage, several other 

stresses, including chemotherapeutic drugs and inhibition of RNA Pol I transcription by low 

doses of actinomycin D (ActD), interfere with nucleolar homeostasis and promote a p53-

dependent nucleolar stress response (Tsai and Pederson, 2014). Under normal conditions, 

MDM2, an E3 ubiquitin ligase, prevents p53 stabilization through proteasome-mediated 

degradation. If nucleolar stress occurs or ribosome biogenesis is perturbed by ribosomal 

protein deficiency or oncogenic overstimulation, the intermediate ribosomal assembly 

complex 5S RNP, comprised of RPL11, RPL5, and 5S rRNA, directly binds and represses 

MDM2 to stabilize p53 (Bursac et al., 2012; Donati et al., 2013; Horn and Vousden, 2008; 

Sloan et al., 2013a). Also, both replicative stress (with delayed rRNA processing) and 

oncogenic stress (with accelerated rRNA transcription) were shown to promote the 

association of the 5S RNP complex with MDM2, leading to p53 stabilization (Nishimura et 

al., 2015). Nucleoli have been shown to behave like liquid droplets (Brangwynne et al., 

2011; Feric et al., 2016), where proteins and other molecules that participate in ribosome 

biogenesis dynamically self-segregate into the three microscopically recognized nucleolar 

regions: dense fibrillar component (DFC), fibrillar center (FC), and granular component 

(GC). Therefore, alterations in nucleolar structure are expected to closely reflect changes 

in the nature or dynamic partition of enzymatic nucleolar reactions. For decades, 

pathologists have recognized the correlation between changes in nucleolar size and/or 

number and tumor aggressiveness (Derenzini et al., 2009). In our previous studies, we 

identified viriato, the single Drosophila member of the NOL12/Nop25 gene family, as a 

crucial regulator of nucleolar architecture (Marinho et al., 2011), as also described for rat 

Nop25 (Suzuki et al., 2007). The yeast NOL12 homologue Rrp17 was shown to function as 

a 5’-to-3’ RNA exonuclease for processing of the internal transcribed spacer 1 (ITS1) region 

of pre-rRNA during ribosome biogenesis (Oeffinger et al., 2009; Sahasranaman et al., 

2011). Human NOL12 was shown to be required for pre-rRNA ITS1 processing, in particular 

for cleavage of site 2 (Scott et al., 2017; Sloan et al., 2013b), but its putative 5’-to-3’ RNA 

exonucleolytic activity has not yet been ascertained. Interestingly, NOL12 colocalized with 

DNA repair proteins, such as Dhx9 and TOPBP1, and was required for HCT116 cells to 

recover from DNA stress (Scott et al., 2017). In this colon cancer cell line, p53 stabilization 

was observed, but it was not required for cell cycle arrest or apoptosis (Scott et al., 2017). 

We also previously found that viriato is a novel transcriptional target of Drosophila Myc with 

a crucial function in ensuring a coordinated nucleolar response to dMyc-induced tissue 

growth (Marinho et al., 2011). Furthermore, through a retina-targeted double RNA 

interference (RNAi) screen, we identified a genetic interaction between viriato and several 

Drosophila transforming growth factor β (TGF-β) signaling gene members (Marinho et al., 

2013). This led us to study and implicate TGF-β/activin signaling in the regulation of 
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nucleolar biogenesis and cell growth in Drosophila salivary glands (Martins et al., 2017). 

Furthermore, we also disclosed that, during retina development, viriato knockdown induced 

an increase of p53-independent, caspase-mediated apoptotic cell death (Marinho et al., 

2011). Overall, our analysis of Drosophila Viriato suggested a potential novel link between 

structural/functional changes in the nucleolus and cell proliferation and apoptosis. 

Nevertheless, the putative role of p53 activation in response to nucleolar stress induced by 

Viriato/NOL12 knockdown awaited further analysis. Using primary human fibroblasts to 

investigate the functional role of human NOL12, here we show that NOL12 is important for 

nucleolar homeostasis, regulating its structure and the nucleolar levels of the multifunctional 

fibrillarin and nucleolin proteins. Moreover, we found NOL12 depletion to induce strong p53 

activation, which at the mechanistic level requires the function of MDM2 inhibitor 60S 

ribosomal protein L11 and which causes G2 arrest. Importantly, we show that NOL12 

repression, either experimental or age-associated, leads to p53-driven senescence, 

suggesting an important role for NOL12 in replicative and chronological aging and its 

potential as aging biomarker. 

  

 

3. MATERIALS AND METHODS 

Cell culture. Human dermal fibroblasts retrieved from skin biopsies of Caucasian 

males reported as healthy, were acquired from cell biobanks as summarized in 

Supplementary Table 1. Cells were seeded at 1-1.5 x 104 cells per cm2 of growth area in 

minimal essential medium Eagle-Earle (MEM) supplemented with 15% fetal bovine serum 

(FBS), 2.5 mM L-glutamine and antibiotic-antimycotic (1:100) (all from Gibco®; Life 

Technologies, Thermo Scientific, CA, USA). Only early passage dividing fibroblasts (up to 

passage 3-5) with cumulative population doubling level PDL<24, well below replicative 

senescence, were used in all experiments. Cells were grown at 37ºC and humidified 

atmosphere with 5% CO2. For immunostaining experiments, cells were cultured in 

coverslips coated with 50 µg/ml fibronectin (Sigma-Aldrich; MO, USA).  

Drug treatments. For RNA Polymerase I inhibition, fibroblasts were incubated for 

4h in medium containing 8 nM Actinomycin D (Sigma-Aldrich, MO, USA). For siRNA-

depleted cells, Actinomycin was added 4 hours before cell harvesting or fixation. For 

apoptosis induction, cells were incubated for 4h in medium with 5 µM staurosporine (LC 

Laboratories). For the puromycin assay, puromycin was added to cell culture at 10 µg/mL 

for 10 min at 37ºC, before cell harvesting. 

Senescence-associated β-galactosidase assay. Cells were incubated in medium 

with 100 nM Bafilomycin A1 (Sigma-Aldrich, MO, USA) for 90 min to induce lysosomal 
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alkalinization. 33 μM of the fluorogenic substrate for β-galactosidase, fluorescein di-β-D-

galactopyranoside (Sigma-Aldrich, MO, USA), was then added to the cell culture medium, 

and incubation carried out for 90 min. Cells were fixed in 4% paraformaldehyde for 15 min, 

rinsed with PBS and permeabilized for 15 min with 0.1% Triton-X100 in PBS. Finally, cells 

were counterstained with 1 µg/ml DAPI (Sigma-Aldrich; MO, USA). 

siRNA transfection. For NOL12 depletion, we tested 3 different siRNAs from Sigma 

(SASI_Hs01_00047858, SASI_Hs01_00047859 and SASI_Hs01_00047860). 

SASI_Hs01_00047859 depleted NOL12 the most efficiently. Sequences of all siRNAs used 

in this study (from Sigma-Aldrich) are summarized in Supplementary Table 2. For XRN2 

efficient depletion, we used a mixture of two previously reported siRNAs (Sloan et al., 

2013b; West et al., 2004). One hour after their plating, cells were transfected with a final 

concentration of 45nM siRNA using Lipofectamine RNAiMAX transfection reagent (Thermo 

Scientific, CA, USA) accordingly to the manufacturer’s instructions. Cells treated under the 

same conditions with transfection reagent without siRNA were used as controls (mock-

depleted cells). 6h after transfection, medium was replaced by fresh medium supplemented 

with 5% FBS, and the next day, by complete MEM medium. Phenotypes were analyzed and 

quantified 72h posttransfection. 

Immunostaining. Fibroblasts were grown on sterilized glass coverslips coated with 

50 µg/ml fibronectin (Sigma-Aldrich; MO, USA). Cells were fixed in freshly prepared 2% 

paraformaldehyde in PBS for 20 minutes or in 4% paraformaldehyde in PBS for 15 minutes 

in the case of 53BP1 and p21 markers.  Following fixation, cells were rinsed in PBS, 

permeabilized with 0.3% Triton-X100 in PBS for 7 min and blocked in 0.05% Tween-20 in 

PBS (PBS-T) supplemented with 10% fetal bovine serum (FBS) for 1h at room temperature. 

Cells were then incubated overnight at 4ºC with primary antibodies diluted in PBS-T 

supplemented with 5% FBS as follows: mouse anti-NOL12 (sc-374257, Santa Cruz 

Biotechnology, CA, USA), 1:800; rabbit anti-fibrillarin (ab5821, Abcam, Shanghai, China), 

1:1000; rabbit anti-p53 (sc-6243, Santa Cruz Biotechnology, CA, USA), 1:1000; mouse anti-

fibrillarin (ab4566, Abcam, Shanghai, China), 1:3000; rabbit anti-nucleolin (sc-13057, Santa 

Cruz Biotechnology, CA, USA) 1:500; rabbit anti-53BP1 (#4937, Cell Signaling Technology, 

MA, USA), 1:100; mouse anti-p21 (sc-6246, Santa Cruz Biotechnology, CA, USA), 1:1000; 

rat anti-α-tubulin (Sigma-Aldrich; MO, USA), 1:100; rabbit anti-Ki67 (ab15580, Abcam, 

Shanghai, China), 1:1500; rabbit anti-cyclin B1 (#4138, Cell Signaling Technology, MA, 

USA), 1:100. Secondary antibodies AlexaFluor®-488, 568 and 647 were diluted 1:1500 in 

PBS-T supplemented with 5% FBS and coverslips were incubated for 45 minutes at room 

temperature. DAPI (Sigma-Aldrich, MO, USA) was used at 1 µg/ml for nuclei staining and 

coverslips were then mounted in slides with mounting solution (90% glycerol, 0.5% N-propyl 

gallate and 20 nM Tris pH 8).  
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FUrd incorporation assay. To assess rDNA transcription in human primary 

fibroblasts, 5-Fluorouridine (FUrd; F5130, Sigma) was added to cell culture for 20 min at 2 

mM. Coverslips were then rapidly washed in cold PBS, fixed in 1% PFA for 10 min, washed 

in cold PBS and permeabilized with 0.5% Triton-X100 in PBS for 10 min on ice. Coverslips 

were then immunostained as described above.  

EdU incorporation assay. To assess the proliferative activity of human primary 

fibroblasts, 5-ethynyl-2′-deoxyuridine (EdU) (Invitrogen, Darmstadt, Germany; 20 μM/well) 

was added to cells for 3 hours before each time point monitored (24, 48 and 72 hours). 

Coverslips were fixed in 4% PFA for 15 minutes, washed with 10% FBS and permeabilized 

with 0,3% Triton-X100 in PBS for 7 min. Instructions from Click-iT EdU Alexa Fluor 594 

Imaging Kit (Invitrogen) were then followed.  

Microscopy and image analysis. Slides were analyzed under HC PL APO CS 

63x/1.30 Glycerine 21ºC objective in a Laser Scanning confocal microscope Leica TCS SP5 

II (Leica Microsystems, Germany). Images were acquired at 1024x1024 pixel resolution and 

edited using Adobe Photoshop CS4 Extended Version 11.0. All image fields used for 

quantitative analyses were acquired in IN Cell Analyzer 2000® (GE Healthcare, UK), 

equipped with a Photometrics CoolSNAP K4 camera. IN Cell Investigator software was 

used for measuring nucleolus and nucleus parameters (number and areas); nuclear area 

was measured in the DAPI channel whereas the total nucleolar area and the number of 

nucleoli per nucleus were measured in the fibrillarin channel. The mean pixel intensity of 

fibrillarin, nucleolin and p53 (referred as “nuclear protein levels”) were measured based on 

mask defined by the DAPI channel. In senescence associated-β-galactosidase activity 

assay, cells displaying >5 fluorescent granules were considered positive.  

Western blotting. Cell pellets were resuspended in lysis buffer (150 nM NaCl, 10 

nM Tris-HCl pH=7.4, 1 nM EDTA, 1 nM EGTA, 0.5% IGEPAL) and instantaneously frozen 

in liquid nitrogen. Clarified lysates were quantified for protein content by the Lowry Method 

(DC™ Protein Assay; BioRad, CA, USA). 20 μg of total extract (except for the detection of 

cleaved caspase-3, in which we used 40 μg of total extract) were loaded in SDS-PAGE gels 

and transferred into nitrocellulose membranes for western blot analysis. Membranes were 

blocked with 0.05% Tween-20 in TBS (TBS-T) containing 5% low fat milk, during 1h at RT. 

Primary antibodies were diluted in TBS-T containing 2% low fat milk as follows: mouse anti-

NOL12 (sc-374257), 1:1000; rabbit anti-p53 (sc-6243), 1:1500; mouse anti-p21 (sc-6246), 

1:1000; mouse anti-cyclin B1 (#4135, Cell Signaling Technology, MA, USA) 1:1500; rabbit 

anti-RPL11 (ab79352, Abcam) 1:1000; rabbit anti-nucleolin (sc-13057) 1:3000; rabbit anti-

cleaved caspase-3 (#9661, Cell Signaling Technology, MA, USA) 1:1000; mouse anti-

fibrillarin (ab4566) 1:1000; rabbit anti-XRN2 (A301-103A-T, Bethyl Laboratories, 

Montgomery, TX) 1:1000;  mouse anti-α-tubulin (Sigma-Aldrich, CA, USA), 1:100000; 
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mouse anti-GAPDH (Protein Tech Group Inc, IL, USA), 1:30000. Horseradish peroxidase 

(HRP)-conjugated goat anti-mouse and anti-rabbit antibodies (sc-2005 and sc-2004, Santa 

Cruz Biotechnology, CA, USA, respectively) were used at a dilution of 1:3000 in TBS-T 

containing 2% low fat milk. Signal was detected using Clarity Western ECL Substrate 

reagent (BioRad) according to manufacturer’s instructions. A GS-800 calibrated 

densitometer (Bio-Rad Laboratories, CA, USA) was used for quantitative analysis of protein 

levels.  

Phase-contrast live-cell imaging. Fibroblasts were cultured in glass-bottom 35mm 

µ-dishes (Ibidi GmbH, Germany) coated with 50 µg/ml fibronectin (Sigma-Aldrich, MO, 

USA) and transfected with siRNAs. 24h post-transfection, cell cultures were imaged on a 

Zeiss Axiovert 200M inverted microscope (Carl Zeiss, Germany) equipped with a CoolSnap 

camera (Photometrics Tucson, USA), XY motorized stage and NanoPiezo Z stage, under 

controlled temperature, atmosphere and humidity. Neighbor fields (20-25) were imaged 

every 2.5 min for 42h, using a 20x/0.3 NA A-Plan objective. Stitching of neighboring fields 

was done using the plugin “Stitch Grid” (Stephan Preibisch) from ImageJ/Fiji software. The 

time between two consecutive mitoses (referred as cell cycle duration) was manually 

quantified using ImageJ/Fiji software.  

Flow cytometry. Cells were trypsinized, washed twice in cold PBS, and fixed in 

70% ethanol at -20ºC overnight. Cells were washed twice in cold PBS and then incubated 

at 37ºC for 6 hours in propidium iodide (20 µg/mL) plus RNase (40 µg/mL) solution 

containing. Finally, cells were filtrated into a FACS tube. Data was recorded in FACS Canto 

II and analyzed with the FlowJo software using the Watson-Pragmatic algorithm to generate 

the cell cycle profiles.  

Transmission Electron Microscopy. Cells were fixed with 2.5% glutaraldehyde 

(Electron Microscopy Sciences, Hatfield, USA) and 2% paraformaldehyde (Merck, 

Darmstadt, Germany) in cacodylate buffer 0.1M (pH 7.4), dehydrated and embedded in 

Epon resin (TAAB, Berks, England). 40–60 nm ultrathin sections were prepared on a RMC 

Ultramicrotome (PowerTome, USA) using diamond knives (DDK, Wilmington, DE, USA). 

The sections were mounted on 200 mesh copper or nickel grids, stained with uranyl acetate 

and lead citrate for 15 min each, and examined under a JEOL JEM 1400 TEM (Tokyo, 

Japan). Images were digitally recorded using a CCD digital camera Orious 1100W (Tokyo, 

Japan).  

qRT-PCR. Total RNA was isolated from cultured cells using the RNeasy Mini Kit 

(Qiagen) accordingly to the manufacturer’s instructions. 1 µg of RNA was reverse 

transcribed (RT) using the SuperScript™ III First-Strand Synthesis SuperMix for qRT-PCR 

(Invitrogen). Quantitative real-time PCR analysis was performed in duplicate in 20 µl 

reactions containing iQ SYBR Green Supermix (BioRad), each gene-specific primer at 125 
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nM (100 nM for G6PD), and 1 µl of cDNA template previously diluted at 1:5. Cycling 

conditions in the iCycler iQ5 (Bio-Rad Laboratories) were 95°C for 3 minutes, followed by 

40 cycles of denaturation at 95°C for 15 seconds and annealing for 20 seconds at 60ºC, 

and a final extension step at 55ºC for 10 seconds.  The 2−∆∆Ct method was used to quantify 

the transcript levels of NOL12, CDKN1A, MMP1, CXCL8 and TSPAN13 against the 

transcript levels of the housekeeping genes (TBP and G6PD). Primers were designed to 

span at least one exon–intron junction (Supplementary Table 3). Data was analyzed using 

Bio-Rad iQ5 – Standard Edition (Bio-Rad Laboratories). 

Lentiviral plasmids. NOL12 was amplified from pENTR223.1-NOL12 (clone 

OCABo5050F031D, ImaGenes) as a BamHI-NOL12-NotI fragment, by using the following 

primers: 5’-CGGGATCCATGGGCCGCAACAAGAAG-3’ and 5’- 

ATAAGAATGCGGCCGCTCACTCCCCGCTGTGC-3’, forward and reverse, respectively. 

This BamHI-NOL12-NotI fragment was cloned into pLVX–Tight-Puro (Clontech, CA, USA) 

digested with BamHI + NotI, to generate pLVX–Tight-Puro-NOL12. 

Lentiviral production and infection. Lentiviruses were produced according to the 

protocol described in Lenti-X Tet-ON Advanced Inducible Expression System (Clontech). 

Lentiviruses carrying pLVX–Tight-Puro–NOL12 and lentiviruses carrying pLVX–Tet-On 

Advanced (which expresses rtTA) were generated in HEK293T helper cells transfected with 

packaging plasmids (pMd2.G and psPAX2) using Lipofectamine 2000 (Life Technologies, 

Thermo Scientific, CA, USA). Human fibroblasts were co-infected for 12–16 h with 

responsive and trans-activator lentiviruses at 2:1 ratio, in the presence of 8 μg/ml polybrene 

(AL-118, Sigma-Aldrich, MO, USA). 375 ng/ml doxycycline (D9891, Sigma-Aldrich, MO, 

USA) was added for 1 day to induce co-transduction, and washed out for two days. This 

cyclic induction scheme was repeated 7 times before phenotype quantitative analysis. 

Western blot was used to monitor the efficiency of transduction. 

Statistical Analysis. P-values were obtained using GraphPad Prism version 7.00 

(GraphPad, San Diego, CA, USA). Data were tested for parametric vs. non-parametric 

distribution using D'Agostino & Pearson omnibus normality test. Mann-Whitney, paired t-

test, one-way ANOVA, Kruskal-Wallis or two-tailed χ2-square were then applied accordingly 

to the experiment.  

 

 

4. RESULTS 

NOL12 regulates nucleolar structure and the protein levels of fibrillarin and 

nucleolin. To investigate the functional role of NOL12 at the nucleolus, we started by 

evaluating the NOL12 localization pattern in human primary dermal fibroblasts (HDFs) from 
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neonatal foreskin by immunostaining (Fig. 2.1A; Fig. S2.1A). We observed that NOL12 

localization is mainly restricted to the nucleolus, partially colocalizing with the fibrillarin RNA 

methyltransferase at the DFC compartment and with the nucleolin RNA-binding protein that 

also localizes to the GC (Fig. 2.1A) (Ochs et al., 1985; Ugrinova et al., 2007). To gain insight 

into the functional role of NOL12 in neonatal HDF, we efficiently depleted NOL12 by about 

80% at both transcript and protein levels (Fig. S2.1B and C). Importantly, the NOL12 

nucleolar immunolocalization pattern observed was specific, as it was abolished following 

NOL12 small interfering RNA (siRNA [siNOL12])-mediated depletion (Fig. S2.1A).  

Interestingly, we found that NOL12 repression increases both nucleolin and fibrillarin 

protein levels (Fig. 2.1B, F-H; Fig. S2.1D, E). These results are distinct from previous 

reports showing that fibrillarin, nucleolin, and nucleophosmin repressions do not interfere 

with the levels of other nucleolar proteins involved in ribosome biogenesis (Amin et al., 

2007; Amin et al., 2008; Ugrinova et al., 2007). NOL12 knockdown also interfered with 

nucleolar organization, as evidenced by an increased ratio between nucleolar and nuclear 

areas (6.2%), along with a decrease in the average number of nucleoli per nucleus (from 

3.4 to 2.6) (Fig. 2.1C, D; Fig. S2.1F, G). Using transmission electron microscopy (TEM), we 

observed that, whereas mock-depleted fibroblasts exhibited highly defined nucleoli with the 

typical amniote tripartite organization (Thiry and Lafontaine, 2005), nucleoli in NOL12-

depleted fibroblasts presented poorly defined FC/DFC units (Fig. 2.1E). 

We then asked if the observed nucleolar phenotype is specific to NOL12 repression 

or if other regulators of pre-rRNA processing might reveal a similar phenotype. To answer 

that, we depleted XRN2, a well-characterized nucleolar 5’-to-3’ RNA exonuclease (Coccia 

et al., 2017; Memet et al., 2017; West et al., 2004). However, fibrillarin and nucleolin nuclear 

levels (Fig. 2.1F-H), as well as the average number of nucleoli per nucleus (Fig. 2.1I) were 

only marginally affected. Unlike the results of NOL12 depletion, XRN2-depleted fibroblasts 

actually displayed reduced nucleolar-/nuclear-area ratios (Fig. 2.1J; Fig. S2.1F, G). No 

cross-regulation between NOL12 and XRN2 protein levels was observed; therefore, the 

effects of each repression were specific (Fig. 2.1H). 

Lastly, FBL and NCL were reported as being involved in ribosome biogenesis: while 

FBL is mainly involved in the 2’-O-methylation of rRNA (Sloan et al., 2017), NCL plays 

different roles in rDNA transcription, rRNA processing and ribosome assembly (Salvetti et 

al., 2016; Turner et al., 2009). Moreover, NOL12 depletion was shown to impair rRNA 

processing (Sloan et al., 2013b). Therefore, we addressed nucleolar function, particularly 

rDNA transcription, by measuring the incorporation of FUrd into newly synthesized rRNA 

transcripts. Relevantly, we found a decrease of immunofluorescence levels of incorporated 

FUrd in NOL12-depleted HDFs (Fig. S2.2), suggesting that accumulation of unprocessed 

rRNA transcripts in NOL12-depleted HDFs disturbs rDNA transcription. Based on this, we 
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hypothesized that NOL12 depletion distresses ribosome biogenesis and subsequently 

protein synthesis. Therefore, we measured the incorporation of puromycin into newly 

synthesized proteins and we found decreased global protein synthesis upon NOL12 

repression (Fig. S2.2).  

Altogether, our results showed that human NOL12 is a nucleolar protein specifically 

required for the maintenance of nucleolar structure, as well as for the regulation of nucleolar 

levels of fibrillarin and nucleolin, key players in pre-rRNA processing and ribosome 

assembly. Consistently, the dysregulation of nucleolar proteins seems to impair nucleolar 

function, reducing rDNA transcription and protein synthesis.   

 

Figure 2.1. NOL12 repression induces a specific nucleolar stress response in human untransformed 

cells. (A) NOL12 immunolocalization pattern in neonatal dermal fibroblasts (green) and co-localization with 

fibrillarin and nucleolin nucleolar markers (red). DAPI was used for DNA staining (blue). (B) fibrillarin 

immunostaining (greyscale) in control (mock) and NOL12 siRNA-depleted (siNOL12). In the nuclei 
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magnifications (63x; lower panels), the white dashed and the yellow solid lines represent the masks used to 

define and measure nuclear and nucleolar areas, respectively. (C) Ratio between nucleolar and nuclear areas. 

Each dot represents a single cell. Horizontal lines represent the mean values normalized to mock controls. (D) 

Histogram and respective distribution curves for the percentage of mock- and siNOL12-depleted cells exhibiting 

a total number of nucleoli as indicated. (E) Ultrastructure of mock- and siNOL12-depleted nucleoli accessed by 

transmission electron microscopy. Representative micrographs, at 20000x magnification, are shown. Arrows 

indicate FC/DFC units. Inset in red is a 6.6x magnification of a nucleolar unit containing well defined FC, DFC 

and GC compartments. Scale bars, 0.5 µm. np: nucleoplasm, nu: nucleolus, FC: fibrillar center, DFC: dense 

fibrillar component, GC: granular component. (F) Scatter plots of the mean pixel intensities of fibrillarin (FBL) 

and nucleolin (NCL) nuclear levels in mock-, siNOL12- and siXRN2-depleted cells. Each dot represents a single 

cell, and horizontal lines represent the mean values. (G) Immunostaining of fibrillarin and nucleolin 

(greyscale/red and greyscale/green, respectively) in mock-, siNOL12- and siXRN2-depleted cells. Nuclei were 

stained with DAPI (grey). (H) Cell extracts from mock-, siNOL12- and siXRN2-depleted neonatal fibroblasts 

were immunoblotted for nucleolin, fibrillarin, XRN2 and NOL12. Tubulin levels were used for loading control. 

Protein levels were normalized to mock control. (I) Stacked bars for the distribution of the total number of nucleoli 

per nucleus in mock-, siNOL12- and siXRN2-depleted cells. Different patterns in bars represent different number 

of nucleoli per nucleus. (J) Ratio between nucleolar and nuclear areas in mock-, siNOL12 and siXRN2-depleted 

cells. Values are mean  SD normalized to control mean. Scale bars are 10µm in A), B) and G). n= total number 

of cells analyzed. ****p≤0.0001 by Mann-Whitney and Kruskal-Wallis statistical tests in C) and J). 

 

 

NOL12 repression activates the p53-signaling pathway in an RPL11-

dependent manner. Next, we asked whether NOL12 knockdown and the associated 

disruption of nucleolar structure could induce p53 stabilization, which is elicited by a variety 

of cellular stresses (Joerger and Fersht, 2016), including RNA Pol I inhibition-driven 

nucleolar stress (Choong et al., 2009). Both immunoblot and immunofluorescence 

quantitative analyses of p53 levels revealed its stabilization upon NOL12 and XRN2 

knockdowns, although the level was significantly higher in NOL12 repression (Fig. 2.2A-C).  

At low doses, actinomycin D (ActD) specifically inhibits RNA Pol I, preventing the 

transcription of rDNA into a 47S pre-rRNA primary transcript (Hadjiolova et al., 1995) and 

inducing alterations in nucleolar structure (Boulon et al., 2010). Mechanistically, it was 

previously shown in U2OS cells that p53 activation by ActD treatment is dependent on the 

tripartite complex RPL11-RPL5-5S rRNA binding to MDM2, preventing the MDM2-mediated 

p53 degradation (Sloan et al., 2013a). We confirmed that RPL11 is also required for ActD-

induced p53 stabilization in HDF (Fig. 2.2D, F, G; Fig. S2.3). Therefore, we explored the 

contribution of RPL11 to the p53 activation induced by NOL12 repression. Both 

immunofluorescence and immunoblot analyses revealed RPL11 to be required for p53 

activation upon NOL12 knockdown (Fig. 2.2E-G). Accordingly, upon NOL12 knockdown, 

we detected a significant induction of the p53 downstream target p21/CDKN1A (Wang and 

El-Deiry, 2005), which was abolished in the double depletion of NOL12 and RPL11 using 
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siRNAs siNOL12 and siRPL11 (Fig. 2.2E-G). Altogether, our data suggest that nucleolar 

stress caused by NOL12 knockdown activates the p53-dependent signaling pathway in an 

RPL11-dependent manner. 

 

 

Figure 2.2. NOL12 repression activates the p53-signaling pathway in an RPL11-dependent manner. (A) 

Western blotting analysis of p53 levels in cell extracts from mock-, siNOL12- and siXRN2-depleted neonatal 

dermal fibroblasts. Tubulin protein levels were used as loading control. In the graph, bars are mean  SD values 

from three independent experiments and normalized to mock control. * p≤0.05 by Kruskal-Wallis statistical test. 

(B) p53 immunostaining (green) of mock-, siNOL12- and siXRN2-depleted human fibroblasts. DNA was stained 

with DAPI (red). Scale bars, 10µm. (C) Scatter plot of p53 nuclear mean pixel intensity levels in mock-, siNOL12- 

and siXRN2-depleted cells. Each dot represents a single cell and horizontal lines represent mean values. n= 

total number of cells analyzed. **** p≤0.0001 by Kruskal-Wallis statistical test. (D) Western blotting analysis of 

p53 and p21 protein levels in cell extracts from control or siRpL11-depleted fibroblasts, untreated or treated with 

8nM Actinomycin D for 4 hours, as indicated. Tubulin was used as loading control. (E) Western blotting analysis 

of p53 and p21 protein levels in cell extracts from mock, siNOL12- and siNOL12+siRpL11-depleted fibroblasts. 

Tubulin was used as loading control. (F) p53 and p21 protein levels measured by western blotting analysis (as 
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shown in D and E) from four independent experiments. Bars represent mean  s.d values normalized to tubulin 

loading control and to DMSO control. * p≤0.05, ** p≤0.01, *** p≤0.001 and **** p≤0.0001, by Mann-Whitney 

statistical test. (G) Immunostaining of p53 (red) and p21 (green) in control, siRpL11-, siNOL12- and 

siNOL12+siRpL11-depleted fibroblasts, untreated and treated with 8nM Actinomycin D for 4 hours. DNA was 

stained with DAPI (grey). Scale bars, 10µm. 

 

 

NOL12 repression induces p53-dependent G2 arrest and cellular senescence. 

As a consequence of p53 activation, cells can undergo marked phenotypic changes, 

ranging from increased DNA repair to senescence and apoptosis (Joerger and Fersht, 

2016). Independently of the cell fate, p53 activation typically inhibits the cell cycle by 

inducing the expression of p21/CDKN1A (Wang and El-Deiry, 2005). To gain insight into 

the contribution of stabilized p53 in cell proliferation, we performed time-lapse phase-

contrast microscopy of mock-, NOL12-, p53-, and NOL12-and-p53-depleted primary 

fibroblast cultures (Fig. 2.3A; Movies S1 to S4). Live-cell imaging revealed a clear reduction 

in the proliferation rate of NOL12-depleted cell cultures, confirmed by a decreased 

percentage of living cells that incorporated 5-ethynyl-2’-deoxyuridine (EdU) (Fig. 2.3B), with 

cycling cells from NOL12-depleted cell cultures exhibiting a cell cycle delay in comparison 

to the cycling of the control (Fig. 2.3C). This cell cycle delay was consistent along three cell 

generations (from a grandmother cell to the granddaughter cells), although there was a 

progressive decrease in the number of cycling cells over the recorded period (Fig. S2.4B). 

Reduced proliferative capacity was further confirmed by an increased percentage of fixed 

cells staining negative for the proliferation marker Ki67 (66.5% ± 6.9% [mean ± standard 

deviation] versus 10.7% ± 5.5% in controls) (Fig. 2.3D; Fig. S2.4A). Importantly, the data 

showed that the proliferation rate of NOL12-depleted cells was rescued by p53 depletion 

(Fig. 2.3A-D).  

To determine which cell cycle phase primarily contributes to the cell cycle delay 

observed following NOL12 repression, we performed flow cytometry cell cycle profiling. We 

found a significant increase (3.7-fold) in the G2/M cell subpopulation in NOL12-depleted 

cell cultures, which was rescued by p53 depletion (Fig. 2.3E; Fig. S2.4C). Moreover, cell 

cultures treated both with siRNA against p53 (siP53) and with siNOL12 and siP53 together 

(siNOL12 + siP53) exhibited an accumulation of S-phase cells, which is likely due to the 

absence of the breaker role of p53 in cell cycle progression (Fig. 2.3E). In addition, we 

measured the levels of cyclin B1, which specifically accumulates at the G2/M transition 

(Pines and Hunter, 1989), and surprisingly, we found them to be significantly reduced in 

NOL12-depleted cell extracts (Fig. 2.3F). In agreement with the role of p53 as a cell cycle 

suppressor, p53 repression induced increased levels of cyclin B1 and restored the cyclin 

B1 levels in NOL12-depleted cell extracts (Fig. 2.3F).  
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Figure 2.3. NOL12 repression induces p53-dependent G2 arrest. (A) Long-term phase-contrast live-cell 

imaging of mock-, siNOL12-, siP53- and siNOL12+siP53-depleted fibroblast cell cultures. Movie 

representative images captured at 28, 48 and 68 hours post-transfection are shown. Scale bars, 100µm. (B) 

Percentage of mock-, siNOL12- and siNOL12+siP53-depleted cells staining positive upon EdU incorporation 

assay at the 24, 48 and 72 hours post-transfection. Data are mean  SEM from three independent 

experiments. *** p≤0.001 by χ2-square statistic test. (C) Cell cycle duration, measured as the interval between 

mother cell mitosis and daughter cell mitosis, in mock-, siNOL12-, siP53- and siNOL12+siP53-depleted 

fibroblast cell cultures. Values are mean  SEM from n= total number of cells analyzed. * p≤0.05 and **** 

p≤0.0001 by Mann-Whitney statistical test. (D) Percentage of cells staining negative for the proliferation 

marker Ki67 in mock-, siNOL12-, siP53- and siNOL12+siP53-depleted cell cultures. Values are mean  SD 

from at least two independent experiments. **** p≤0.0001 by χ2-square statistical test. (E) Percentage of cells 

in G1, S and G2/M cell cycle phases in mock-, siNOL12-, siP53- and siNOL12+siP53-depleted fibroblast 

cultures as determined by flow cytometer cell cycle profiling. Values are mean ± SD from three independent 

experiments. * p≤0.05, ** p≤0.01 and *** p≤0.001 by two-way ANOVA statistical test. (F) Western blot analysis 

of Cyclin B1 levels in cell extracts from mock-, siNOL12-, siP53- and siNOL12+siP53-depleted neonatal 

fibroblasts. Tubulin levels were used as loading control and Cyclin B1 levels were normalized to mock controls. 

Values are mean ± SD from at least seven independent experiments. * p≤0.05, *** p≤0.001 and **** p≤0.0001 

by Mann-Whitney statistical test. 
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Since the proliferation rate and cyclin B1 levels were significantly decreased 

following NOL12 repression, we hypothesized that the G2/M subpopulation in the cell cycle 

profiling most likely reflects a G2 arrest. Interestingly, transient induction of p53 in G2 has 

been shown to act as the first irreversible step in the onset of senescence, a state of 

permanent withdrawal from the cell cycle without undergoing cell death (Krenning et al., 

2014). Indeed, both live-cell imaging (Fig. 2.3A; Movies S1, S2) and immunoblot analysis 

of cleaved caspase-3 (Fig. S2.4D) excluded apoptosis as a significant contributor to the 

decreased proliferation rate in NOL12-depleted cell cultures. Thus, we asked whether 

NOL12 repression was inducing an accumulation of G2-arrested senescent cells. This 

permanent arrest is dependent on induction of p53 and p21, resulting in transient nuclear 

retention of cyclin B1 in the presence of high nuclear p21 levels (Krenning et al., 2014). 

Additionally, a study in primary fibroblasts showed p21 as being able to retain inactive cyclin 

B1/Cdk1 complexes in the nucleus (Charrier-Savournin et al., 2004). Therefore, we stained 

NOL12-depleted cells for both p21 and cyclin B1 and investigated the presence of double-

positive staining. Albeit scarce due to the transient nature of nuclear cyclin B1 retention, we 

found a 6-fold enrichment of p21/cyclin B1 double-positive nuclei in NOL12 depletion (Fig. 

2.4A). p53 depletion was sufficient to prevent nuclear retention of cyclin B1 in NOL12-

depleted cells (Fig. 2.4A). Furthermore, we quantified the percentages of cells exhibiting 

senescence-associated markers, namely, β-galactosidase (β-Gal) activity and double 

positivity for p21 and 53BP1 (a DNA damage response marker) (Macedo et al., 2018). We 

found significant increases in these markers following NOL12 repression (p21 positive 

[p21+]/53BP1+, 10.68% ± 3.46% versus 1.55% ± 0.09% in controls; senescence-associated 

β-Gal positive [SA–β-Gal+], 16.42% ± 4.28% versus 5.38% ± 0.52% in controls), which was 

rescued upon p53 depletion (Fig. 2.4B, C). Accordingly, we also found p53-dependent 

upregulation of the senescence-associated secretome by assessing the RNA expression of 

selected genes (Fig. 2.4D) (Macedo et al., 2018).  

Even though p53 activation was reported to impact rDNA transcription and ribosome 

biogenesis (Golomb et al., 2014; Zhai and Comai, 2000), we did not observe any significant 

alteration in the number of nucleoli per nucleus or the nucleolar size in siNOL12+siP53 

double-depleted cells in comparison to siNOL12-depleted cells based on FBL staining (Fig. 

S2.5A-C). siP53-depleted cells also did not exhibit reduced number of nuclei per nucleus, 

and the nucleolar/nuclear size ratio was lower rather than higher (Fig. S2.5B, C). Similarly, 

FBL upregulation in NOL12-depleted cells is not dependent on P53 activation, as we found 

that P53 activation does not account for FBL upregulation in NOL12-depleted cells (Fig. 

S2.5D). Interestingly, siP53-depleted cells showed upregulation of FBL, which is in 

accordance with previous reports (Fig. S2.5D) (Chen et al., 2020; Marcel et al., 2013). 
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Taken together, our data strongly support that cellular senescence induced by 

NOL12 knockdown is p53-dependent. Notably, we found senescence as the primary cell 

fate of untransformed cells in response to nucleolar stress, contrary to the induction of p53-

dependent and -independent apoptosis previously reported in transformed cells (James et 

al., 2014). 

 

 

Figure 2.4. NOL12 repression induces p53-dependent senescence. (A) Percentage of cells staining positive 

for p21/Cyclin B1 immunofluorescence in mock-, siNOL12-, siP53- and siNOL12+siP53-depleted fibroblast 

cultures. In the graph, values are mean ± SD from n>50000 cells, and values are shown as fold change in 

comparison to mock controls.  *** p≤0.001 and **** p≤0.0001 by χ2-square statistical test. Panel below shows 

a representative image of a siNOL12-depleted cell staining double positive for p21/Cyclin B1 (white arrow). 

Scale bar, 10µm. (B) Percentage of cells double positive for p21/53BP1 immunostaining in mock-, siNOL12-, 

siP53- and siNOL12+siP53-depleted fibroblast cultures. Values are mean ± SD from two independent 

experiments. **** p≤0.0001 by χ2-square statistical test. Panel below shows representative images for each 

experimental condition. Nuclei masking is shown in white. Arrows indicate p21/53BP1 double positive cells. 

Scale bars, 10µm. (C) Percentage of SA-β-galactosidase (SA-β-Gal) positive cells in mock-, siNOL12-, siP53- 

and siNOL12+siP53-depleted fibroblast cultures. Values are mean ± SD from two independent experiments. * 
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p≤0.05, *** p≤0.001 and **** p≤0.0001 by χ2-square statistical test. Panel below shows representative images 

of mock- and siNOL12-depleted cells staining negative and positive for SA-β-gal, respectively. DNA was stained 

with DAPI (blue). Scale bars, 10µm. (D) qPCR analysis of transcript levels of NOL12, CDKN1A, MMP1, CXCL8 

and TSPAN13 in mock-, siNOL12-, and siNOL12+siP53-depleted fibroblast cultures. G6PD and TBP were used 

as housekeeping genes. Values are mean ± SD from four independent experiments and normalized to controls. 

* p≤0.05 and *** p≤0.001 by ordinary one-way ANOVA statistical test. 

 

 

NOL12 repression and nucleolar stress during chronological aging. Our 

findings showing a link between NOL12 repression and cellular senescence led us to ask 

whether regulation of NOL12 plays a role in naturally aged cells and in replicative 

senescence. In agreement with the widely reported accumulation of senescent cells during 

chronological and replicative aging (Baker et al., 2011; Dimri et al., 1995), we found 

significantly higher levels of senescence-associated biomarkers in the proliferating 

fibroblast cultures from elderly than from neonatal donors and in high- versus low-passage-

number cells, thus validating their suitability as models of aging (Fig. S2.6A-C). 

Importantly, we found downregulation of NOL12 protein levels in primary fibroblasts 

from 77-, 84-, 85-, and 87-year-old donors (<5 early cell culture passages), as well as in 

replicatively aged cells (Fig. 2.5A, B). Next, we investigated whether naturally and 

replicatively aged primary cells with decreased NOL12 levels were under nucleolar stress. 

Remarkably, nucleoli in elderly donor cells displayed undefined and/or reduced numbers of 

FC/DFC units (Fig. 2.5C). Also, both naturally and replicatively senescent cells exhibited 

alterations in the nucleolar organization similar to those observed in NOL12-depleted cells, 

namely, upregulation of fibrillarin nuclear levels, decreased numbers of nucleoli per 

nucleus, and increased ratios between nucleolar/nuclear areas (Fig. 2.5D-F; Fig. S2.6D, E). 

Since NOL12 depletion induces nucleolar stress, ultimately leading to a decreased 

proliferation rate and accumulation of senescent cells in human primary neonatal fibroblast 

cultures, we hypothesized that NOL12 overexpression in elderly donor cells should 

counteract this stress response. Using lentiviral infection, we efficiently overexpressed 

NOL12 in fibroblasts retrieved from an 84-year-old donor (Fig. S2.7A). We found NOL12 

overexpression to partially rescue the proliferation rate and fibrillarin nuclear levels (Fig. 

S2.7B, C). However, other nucleolar-stress-associated phenotypes, such as the ratio 

between nucleolar/nuclear area and the number of nucleoli per nucleus, were not 

significantly altered (Fig. S2.7D, E). Also, the number of senescent cells remained 

unchanged, as evidenced by quantification of SA–β-Gal-positive cells (Fig. S2.7F).  

Thus, by restoring NOL12 protein levels in elderly donor cells, we partially rescued 

the proliferation rate but not the accumulation of senescent cells. Still, our data disclosed a 
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correlation between NOL12 repression, nucleolar stress, and chronological aging in human 

primary fibroblasts. 

 

 

Figure 2.5. NOL12 repression and nucleolar stress in human elderly fibroblasts. (A) Immunofluorescence 

analysis of NOL12 (grey/green) and fibrillarin (grey/red) levels in neonatal (Neo2) vs. 84-year-old (84y) HDFs, 

and low passage (P<9) vs. high passage (P>25; RS- replicative senescence) neonatal (Neo1) fibroblasts. DNA 

was stained with DAPI (grey). Scale bars, 10µm. (B) Western blot analysis of NOL12 protein levels in cell 

extracts from neonatal (Neo2), 85y, 77y, 84y and 87y HDFs, as well as from low and high passage neonatal 

fibroblasts (Neo1 P<9 and Neo1 P>25). Tubulin was used as loading control. In the graph, values are mean ± 

SD from two independent experiments and normalized to Neo2 (all red bars) or Neo1 (dark grey bar). (C) 

Ultrastructural analysis of neonatal and 84y nucleoli by transmission electron microscopy. Representative 

micrographs, at 30000x and 50000x magnification respectively, are shown. Arrows indicate FC/DFC units. Scale 

bars, 0.5µm. np: nucleoplasm, nu: nucleolus. (D) Scatter plot shows the mean pixel intensity of fibrillarin nuclear 

levels in neonatal (Neo1 and Neo2), elderly (Old; 77y, 84y, 85y and 87y), NOL12 repressed (siNOL12) and 

neonatal low and high passage (Neo1 P<9 and Neo1 P>25) cells. Each dot represents a single cell. Horizontal 

lines represent the mean. **** p≤0.0001 by Kruskal-Wallis statistical test. (E) Distribution curves for the total 

number of nucleoli per cell in neonatal (Neo1 and Neo2), elderly (Old; 77y, 84y, 85y and 87y) and NOL12 
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repressed (siNOL12) fibroblast cultures. (F) Ratio between nucleolar and nuclear areas in neonatal (Neo1 and 

Neo2 were), elderly (Old; 77y, 84y, 85y and 87y), NOL12 repressed (siNOL12) and neonatal low and high 

passage (Neo1 P<9 and Neo1 P>25) cells. Values are mean ± SD normalized to Neo (red bars) or Neo1 (dark 

grey bar). **** p≤0.0001 by Kruskal-Wallis statistical test. RS, replicative senescence. P, cell passage. 

 

 

5. DISCUSSION 

We previously showed that Drosophila Viriato/NOL12 is a nucleolar protein crucial 

for proper nucleolar structure and dMyc-induced cell growth (Marinho et al., 2011). In this 

work, we used human primary fibroblasts to further investigate the cellular functions of 

NOL12. 

We examined the nucleolar localization of NOL12 in human primary fibroblasts, 

finding that it co-localizes with fibrillarin and nucleolin, in accordance with a recent study 

performed in the HCT116 cell line (Scott et al., 2017). To investigate the largely elusive role 

of NOL12 in nucleolar homeostasis, we knocked down NOL12 in neonatal primary 

fibroblasts, which revealed that NOL12 is required for proper nucleolar organization due to 

a role in limiting nucleolar size and regulating nucleolar number. Interestingly, repression of 

NOL11 or hUTP4 in human MCF10A cells was also found to cause a strong reduction in 

nucleolar number, in correlation with defects in pre-rRNA processing (Freed et al., 2012). 

Moreover, a reduction in nucleolar number was recently used in a genome-wide siRNA 

screen to identify 16 regulators of ribosome biogenesis (Farley-Barnes et al., 2018).  

In addition, we found NOL12 acting to restrain nucleolar accumulation of nucleolin 

and fibrillarin. To evaluate whether this pattern of nucleolar stress was specific for NOL12, 

we knocked down XRN2, another nucleolar 5’-to-3’ RNA exoribonuclease able to localize 

to the nucleolus (Coccia et al., 2017; Memet et al., 2017), which has multiple roles in pre-

rRNA cleavage and rRNA maturation (Sloan et al., 2014; Sloan et al., 2013b). We found 

that in contrast to NOL12 repression, XRN2 depletion actually decreased nucleolar size 

without modifying the number of nucleoli per cell. Moreover, whereas NOL12 depletion 

caused significant increases in fibrillarin and nucleolin cellular protein levels, XRN2 did not 

have that role. Repression of other nucleolar proteins, such as nucleolin (Ma et al., 2007), 

fibrillarin (Amin et al., 2007), and nucleophosmin (Amin et al., 2008), also did not change 

the expression levels of different nucleolar proteins.  

Stabilization and/or activation of p53 is central in the nucleolar stress response to 

defects in rRNA synthesis/processing and ribosomal subunit assembly (Deisenroth et al., 

2016), even though p53-independent mechanisms have also been suggested (Holmberg 

Olausson et al., 2012; James et al., 2014; Jayaraman et al., 2017). Thus, we assessed p53 

protein levels upon NOL12 or XRN2 repression in human fibroblasts. Interestingly, we found 
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significantly increased p53 protein levels in NOL12-depleted cells compared with the levels 

in mock- or XRN2-depleted cells. The transcriptional activity of p53 also increased, as p21 

target protein levels were upregulated. p53 has been described to repress fibrillarin 

expression at the transcriptional level (Marcel et al., 2013), so we were intrigued by the 

concomitant increase of both p53 and fibrillarin upon NOL12 knockdown. Nevertheless, we 

cannot exclude the possibility that in the context of NOL12 repression, p53 activation 

actually helps to limit an otherwise stronger upregulation of nucleolar fibrillarin. Given that 

high fibrillarin expression levels are associated with poor prognosis in breast cancer (Marcel 

et al., 2013), more studies are needed to clarify the mechanisms behind fibrillarin 

upregulation.  

Mechanistically, our results show that activation of the p53 signaling pathway by 

NOL12 repression is dependent on RPL11 expression. In response to nucleolar stress, 

RPL11 interacts with MDM2 (or HDM2 in human), inhibiting its ability to regulate p53 

degradation. This has been reported for several stress conditions, including the inhibition of 

the activity of RNA Pol I by low-level actinomycin D treatment (Lohrum et al., 2003; Zhang 

et al., 2003) or the perturbation of ribosome biogenesis by RPL29 and RPL30 knockdown 

(Sun et al., 2010).  
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Figure 2.6. Proposed model for the impact of NOL12 downregulation in nucleolar homeostasis and 

senescence in HDFs. NOL12 repression changed the nucleolar architecture by increasing nucleolar size, 

decreasing the number of nucleoli per nucleus and upregulating both FBL and NCL protein levels. Regarding 

nucleolar function, NOL12 downregulation decreased rDNA transcription and rRNA processing, thus likely 

reducing ribosome biogenesis, which supports the decreased global protein synthesis observed. These 

nucleolar alterations led to the accumulation of the 5S RNP bound to MDM2, leading to P53 activation. This, in 

turn, decreased the proliferative capacity, arrested cells at the G2 phase and ultimately led to senescence. 

Similarly to P53 activation, decreased protein synthesis could also contribute for decreased cell proliferation 

(dashed arrow).  

 

 

We next explored the cellular consequences of p53 activation in NOL12-depleted 

cells. Phase-contrast live-cell-imaging analysis first indicated enlarged cell morphology and 

reduced proliferative capacity in NOL12-depleted cell cultures. These effects were rescued 

by NOL12 and p53 codepletion, suggesting defective cell proliferation, as previously 

described for Drosophila vito RNAi (Marinho et al., 2011). In agreement with previous 

studies showing direct correlation between cellular amount of proteins and proliferative 

capacity (Polymenis and Aramayo, 2015), we also found an overall decrease in protein 

synthesis. Therefore, although our data clearly disclosed p53 activation as a major 

contributor for decreased cell proliferation, we cannot exclude defective protein synthesis 

driven by faulty nucleolar function as an additional contributor. In addition, we excluded 

apoptosis as potential cause for reduced cell number as we did not detect cleaved caspase-

3 or an increased sub-G1 population by flow cytometry. This is in contrast to nucleolar stress 

caused by depletion of TIF-IA, a basal transcription initiation factor for RNA Pol I, found to 

induce p53-dependent apoptosis in embryonic fibroblasts (Yuan et al., 2005). One 

possibility is that the increase in fibrillarin nucleolar levels in NOL12-depleted cells 

contributes to biased translation for internal ribosomal entry site (IRES)-containing mRNAs 

encoding important antiapoptotic proteins, as previously described (Marcel et al., 2015; 

Marcel et al., 2013). With apoptosis excluded in NOL12-depleted cell cultures, we next 

evaluated senescence. Cell cycle profiling and immunodetection of cyclin B1 levels allowed 

us to conclude that NOL12-depleted cells are arrested in G2 phase in a p53-dependent 

manner. Interestingly, the increased nucleolar area observed in NOL12-depleted cells is 

consistent with cells at the G2 phase (Hernandez-Verdun, 2011; Junera et al., 1995; 

Maszewski and Kwiatkowska, 1984). Previous studies also found the repression of 

nucleolin and nucleostemin to induce G2 arrest (Huang et al., 2015; Ugrinova et al., 2007), 

even though p53 activation was not investigated. Remarkably, an irreversible G2 arrest, 

characterized by a transient nuclear accumulation of p21 and cyclin B1, was shown to be 

the first step in the onset of senescence (Krenning et al., 2014). Accordingly, we found that 

NOL12-depleted cell cultures are enriched in p21/cyclin B1 double-positive cells. Moreover, 
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Nol12-depleted cell cultures displayed increased numbers of cells positive for senescence-

associated biomarkers, SA–β-galactosidase activity, and p21/53BP1 immunostaining and 

exhibited the senescence-associated secretory phenotype. Therefore, our results show that 

senescence, rather than apoptosis, is the outcome for untransformed cells in response to 

NOL12 depletion-driven nucleolar stress. Interestingly, therapeutic inhibition of Pol I 

transcription by treatment with CX-5461, a specific small-molecule inhibitor of RNA Pol I, 

was shown to induce cell death in malignant B cell lymphomas but not in normal B cells 

(Bywater et al., 2012). This bias was also reported in mouse epidermis upon p53 activation 

induced by MDM2 deletion (Gannon et al., 2011). In contrast, in transformed cells, it was 

reported that apoptosis mainly configures the response to nucleolar stress (James et al., 

2014). During preparation of our manuscript, increased apoptosis upon NOL12 depletion in 

colon cancer HCT116 cells was reported (Scott et al., 2017). In contrast to our results, 

apoptosis was associated with p53-independent G1 arrest and ATR-Chk1 activation (Scott 

et al., 2017). It has been shown that, in response to nucleostemin depletion, embryonic 

fibroblasts and HCT116 cells have different p53-regulated responses (Huang et al., 2015). 

At the mechanistic level, whereas transient induction of p53 in untransformed G2 cells is 

sufficient to induce the onset of senescence (Krenning et al., 2014), HCT116 cancer cells 

can overcome the G2 arrest 18 h after a DNA-damaging insult, upon checkpoint recovery 

mediated by the function of the Wip1 phosphatase (Lindqvist et al., 2009). Therefore, we 

hypothesize that a similar differential response to p53 activation could explain the distinct 

phenotypes induced by NOL12 knockdown in primary fibroblasts and HCT116 cells. 

After establishing a connection between NOL12 repression and increased 

senescence, we next asked whether regulation of NOL12 expression plays a role in aging-

associated senescence. Remarkably, we found that both low-passage-number fibroblast 

cultures retrieved from elderly donors or high-passage-number human neonatal fibroblasts 

(replicative senescence) exhibit significant downregulation of NOL12 expression. Similar to 

the nucleolar phenotypes observed following NOL12 repression, both replicatively and 

naturally aged cells exhibited increased nucleolar area, lower numbers of nucleoli per 

nucleus, higher nuclear fibrillarin levels, and altered nucleolar ultrastructure. In parallel, 

recent studies characterized fibrillarin upregulation and increased nucleolar size as 

hallmarks of aging across species (Buchwalter and Hetzer, 2017; Tiku et al., 2017). In 

Caenorhabditis elegans, fibrillarin knockdown reduced nucleolar size and ribosome 

biogenesis, and these alterations correlated with extended lifespan (Tiku et al., 2017). 

Furthermore, prematurely aged cells from HGPS (Hutchinson-Gilford progeria syndrome) 

donors exhibited bigger but fewer nucleoli (Buchwalter and Hetzer, 2017). By restoring 

NOL12 protein levels in fibroblasts from elderly donors, we expected to rescue their 

senescent phenotype. Although we found a partial rescue in the number of proliferative cells 
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and a mild reduction of fibrillarin levels, the number of senescent cells and the nucleolar 

organization remained unchanged, likely due to the complexity of the senescence process. 

Eventually, cells would need more time in culture in order to allow the dilution of the 

senescent cells and their paracrine effects by the more fit proliferating cells expressing 

NOL12. While the recovery of NOL12 protein levels was not sufficient to revert senescence 

in cell cultures from elderly donors, FoxM1, a transcription factor involved in G2/M transition 

(Fischer et al., 2016; Sadasivam et al., 2012), was recently reported as able to do it (Macedo 

et al., 2018). Interestingly, RNA sequencing profiling of neonatal FoxM1-depleted cells and 

of octogenarian FoxM1-overexpressing cells showed that NOL12 expression is responsive 

to FoxM1 modulation (Macedo et al., 2018), suggesting that cell proliferation is closely 

linked to nucleolar homeostasis. Further work will be needed to address the functions of 

NOL12 during aging, in particular the mechanism responsible for its aging-associated 

repression and its contribution to ribosome biogenesis and p53-dependent senescence. 
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8. SUPPLEMENTAL MATERIAL 

Supplemental material for this article can be found at https://doi.org/10.1128/MCB 

.00099-19 (except Figures S2.2 and S2.5). 

 

Figure S2.1. NOL12 regulates fibrillarin and nucleolin protein levels, and nucleolar area. (A) NOL12 

(green) and tubulin (grey) immunostaining of mock- and siNOL12-depleted fibroblasts. DNA was stained with 

DAPI (blue). Scale bars, 10µm. (B) Western blot analysis of NOL12 protein levels in cell extracts from mock- 

and siNOL12-depleted fibroblasts. Tubulin levels were used as loading control. Values are mean ± SD from 

three independent experiments and normalized to mock controls. ** p≤0.01 by Mann-Whitney statistical test. 

(C) qPCR analysis of NOL12 transcript levels in mock- and siNOL12-depleted fibroblasts. G6PD was used as 

housekeeping gene. Values are mean ± SD from four independent experiments and normalized to mock 

controls. * p≤0.05 by Mann-Whitney statistical analysis. (D) Western blot analysis of fibrillarin protein levels. 

Tubulin levels were used as loading control. Values are mean ± SD from four independent experiments and 

normalized to mock controls. * p≤0.05 by Mann-Whitney statistical test. (E) Western blot analysis of nucleolin 

protein levels. Tubulin levels were used as loading control. Values are mean ± SD from four independent 

experiments and normalized to mock controls. * p≤0.05 by Mann-Whitney statistical test. (F) Nucleolar area 

(µm2) in mock-, siNOL12- and siXRN2-depleted cells. Values are mean ± SD of n=total number of cells. **** 

p≤0.0001 by Kruskal-Wallis statistical test. (G) Nuclear area (µm2) in mock-, siNOL12- and siXRN2-depleted 

cells. Values are mean ± SD of n= total number of cells. **** p≤0.0001 by Kruskal-Wallis statistical test.  
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Figure S2.2. NOL12 downregulation decreases ribosome biogenesis. (A) Immunostaining of incorporated 

FUrd (grayscale/green) in mock- and siNOL12-treated cells. Scale bars, 10µm. Box-and-whiskers plot of 

median nuclear immunofluorescence levels of incorporated FUrd. Horizontal line within box represents the 

median fluorescence intensity; whiskers-representing boundaries of the box, 1st and 99th percentiles. a.u., 

arbitrary units. n = total number of cells analysed. (B) Cell extracts from mock- and siNOL12-treated cells were 

immunoblotted for puromycin. Ponceau S levels were used for the loading control. In bar graphs, values are 

means ± SD from four independent experiments, normalized to the values for the mock-treated control. MW, 

molecular weight. ** p≤0.01 and **** and p≤0.0001 by Mann-Whitney statistical test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.3. RPL11 is required for Actinomycin D-induced p53 stabilization in human dermal 

fibroblasts. (A) p53 and p21 levels in cell extracts from neonatal fibroblasts incubated with 0nM, 8nM and 

16nM Actinomycin D (ActD) for 4 hours. Tubulin was used as loading control in the immunoblotting. In the 

graph, bars are the protein levels normalized to the untreated control from a single experiment. (B) Western 

blot analysis of p53 and RPL11 protein levels in cell extracts from control and siRpL11-depleted cells treated 

with 8nM Actinomycin D for 4 hours. Tubulin was used as the loading control. 
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Figure S2.4. NOL12 repression inhibits cell proliferation in an apoptosis-independent manner. (A) 

Immunostaining of Ki67 cell proliferation marker (red) in mock-, siNOL12-, siP53- and siNOL12+siP53-

depleted human dermal fibroblasts. DAPI staining was used for nuclei masking (white solid lines). Scale bars, 

10µm. (B) Cell cycle duration was measured as the interval between mother cell mitosis and daughter cell 

mitosis over three generations (1st – 3rd Gen), in mock-, siNOL12-, siP53- and siNOL12+siP53-depleted 

fibroblast cultures. Each dot represents a single cell. n= total number of cells analyzed. n.s., not significant. 

(C) Representative flow cytometry cell cycle profiles from control mock-, siNOL12-, siP53- and 

siNOL12+siP53-depleted cell cultures. (D) Western blot analysis of the apoptotic marker cleaved-caspase 3 

in cell extracts from mock-, siNOL12- and siNOL12+siP53-depleted fibroblasts. Extracts from cells treated 

with DMSO or 5µM staurosporine (STS) for 4 hours were used as negative and positive controls, respectively. 

Tubulin was used as the loading control.   
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Figure S2.5. Nucleolar alterations induced by NOL12 downregulation occur in a p53-independent 

manner. (A) Fibrillarin (FBL, grayscale/red) immunostaining in mock-, siNOL12-, siNOL12+siP53- and siP53-

depleted cells. Scale bars are 10µm. (B) Ratio between nucleolar and nuclear areas in mock-, siNOL12-, 

siNOL12+siP53- and siP53-depleted cells. Each dot represents a single cell. Horizontal lines represent the 

mean values normalized to mock controls. (C) Stacked bars for the distribution of the total number of nucleoli 

per nucleus in mock-, siNOL12-, siNOL12+siP53- and siP53-depleted cells. Different patterns in bars represent 

different number of nucleoli per nucleus. (D) Scatter plots of the mean pixel intensities of FBL nuclear levels in 

mock-, siNOL12-, siNOL12+siP53- and siP53-depleted cells. Each dot represents the value for a single cell, 

and horizontal lines represent the mean values. a.u., arbitrary units. n= total number of cells analyzed in panels 

B, C and D. n.s., not significant. **** p≤0.0001 by Kruskal-Wallis statistical tests. 
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Figure S2.6. Quantification of senescence markers in naturally aged and replicative senescent 

fibroblasts. (A) Percentage of Ki67 negative cells in neonatal (Neo2), vs. elderly (Old; 77y, 84y, 85y and 87y 

average), as well as in neonatal low vs. high passage (Neo1 P<9 and Neo1 P>25) fibroblast cultures. Values 

are mean ± SD from at least two independent experiments. ****p≤0.0001 by χ2-square statistical test. (B) 

Percentage of cells double positive for p21/53BP1 staining. Values are mean ± SD from two independent 

experiments. ****p≤0.0001 by χ2-square statistical test. (C) Percentage of SA-β-galactosidase (SA-β-Gal) 

positive cells. Values are mean ± SD from two independent experiments. ****p≤0.0001 by χ2-square statistical 

test. (D) Nucleolar area (µm2). Values are mean ± SD. ****p≤0.0001 by Kruskal-Wallis statistical test. (E) 

Nuclear area (µm2). Values are mean ± SD. ****p≤0.0001 by Kruskal-Wallis statistical test. In all graphs (A-E), 

values were normalized to Neo (red bars) or Neo1 (dark grey bar), and n= total number of cells analyzed.  
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Figure S2.7. Overexpression of NOL12 in elderly cells negligibly impacts on nucleolar stress and 

senescence phenotypes. (A) NOL12 immunoblotting in cell extracts from neonatal (Neo1), 84-year-old (84y) 

and 84-year-old fibroblasts overexpressing NOL12 (84y+NOL12 OE). Tubulin was used as the loading control.  

(B) Percentage of Ki67 negative cells in Neo1, 84y and 84y+NOL12OE cell cultures. Values are mean ± s.d 

from two independent experiments. ****p≤0.0001 by χ2-square statistical test. (C) Scatter plot of the mean 

pixel intensity of fibrillarin nuclear levels in Neo1, 84y and 84y+NOL12OE nuclei. Each dot represents a single 

cell. Horizontal lines represent the mean. **p≤0.01 and ***p≤0.001 by Kruskal-Wallis statistical test. (D) Ratio 

between nucleolar and nuclear areas in neonatal Neo1, 84y and 84y+NOL12OE cells. Values are mean ± SD 

and normalized to 84y mean value. ***p≤0.001 by Kruskal-Wallis statistical test. (E) Distribution curves of the 

percentage of Neo1, 84y and 84y+NOL12OE cells exhibiting a total number of nucleoli as indicated. (F) 

Percentage of SA-β-galactosidase (SA-β-Gal) positive cells in Neo1, 84y and 84y+NOL12OE cell cultures. 

Values are mean ± SD from two independent experiments. ****p≤0.0001 by χ2-square statistical test. n=total 

number of cells analyzed in each experiment. 

 

 

Table S2.1. Human dermal fibroblasts (HDFs) used in this study. 

 

HDFs (age) Reference, Repository Referred as 

Neonatal DFM021711A, Zen Bio Neo2 

1 day GM21811, Coriell Cell Repository Neo1 

77 years AG07135, Coriell Cell Repository 77y 

84 years AG11488, Coriell Cell Repository 84y 

85 years AG09271, Coriell Cell Repository 85y 

87 years AG10884, Coriell Cell Repository 87y 
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Table S2.2. Sequences of siRNAs used in this study. 

 

mRNA targets Sequence 5’-3’ 

NOL12 

(SASI_Hs01_00047859) 

CAGAUGAGCUGGACCGGUU[dT][dT] (sense) 

AACCGGUCCAGCUCAUCUG[dT][dT] (antisense) 

P53 

(SASI_Hs02_00302766) 

GAGGUUGGCUCUGACUGUA[dT][dT] (sense) 

UACAGUCAGAGCCAACCUC[dT][dT] (antisense) 

RPL11 
CGCGAGCAGCCAAGGUGUUGGAGCA[dT][dT]  (sense) 

UGCUCCAACACCUUGGCUGCUCGCG[dT][dT] (antisense) 

XRN2 

siRNA 1: AAGAGUACAGAUGAUCAUG[dT][dT] (sense) 

CAUGAUCAUCUGUACUCUU[dT][dT] (antisense) 

siRNA 2: GGGAAGAAAUAUUGGCAAA[dT][dT (sense) 

UUUGCCAAUAUUUCUUCCC[dT][dT (antisense) 

 

 

Table S2.3. Sequences of primers used in qPCR experiments. 

 

 

Gene 

Sequence (5’-3’) 

Forward                                              Reverse 

G6PD AACATCGCCTGCGTTATCCTC ACGTCCCGGATGATCCCAA 

NOL12 GGCCGAGGCTCGTTCTTAG TGCCTTCTTTCGCTCGACC 

CDKN1A TGGACCTGGAGACTCTCAGG CGGATTAGGGCTTCCTCTTGG 

MMP1 AGCGTGTGACAGTAAGCTAACC AACTTCCGGGTAGAAGGGATTTG 

CXCL8 GCCTTCCTGATTTCTGCAGCT GCACTGACATCTAAGTTCTTTAGCA 

TSPAN13 CGCCATGTGCTCCAATCATAG GTAGGTCAGCCAAACACCCA 

TBP GAGCCAAGAGTGAAGAACAGTC GCTCCCCACCATATTCTGAATCT 

 

 

Supplementary Movies 1-4 (online available). Related to Figure 2.3. Long-term phase-contrast live-cell 

imaging (Movies 1-4) of mock-, siNOL12-, siP53- and siNOL12+siP53-depleted cell cultures, respectively. Movie 

records started 28 hours and ended 70 hours after post-transfection post-transfection. Images were acquired 

every 2.5 min. Scale bars, 100µm. 
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CHAPTER 3 

 

Forkhead box M1 transcriptional 

activity regulates nucleolar 

homeostasis 

in preparation 

 

In this study, I participated in the experimental design, cell culture handling, 

immunostaining and western blotting experiments and I also performed image analysis and 

quantification. Additionally, I contributed to the writing of the manuscript. 
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1. ABSTRACT 

The nucleolus is the subnuclear compartment previously identified as the ribosome 

factory. Notably, studies have increasingly emphasized the nucleolus as a sensor of cellular 

stress and a coordinator of stress responses leading to cell cycle arrest and apoptosis. 

Previously, we disclosed an association between nucleolar structure disruption, 

senescence and aging. In addition, we found that repression of transcription factor FoxM1 

during aging primarily accounts for senescence accrual during aging. Here, we investigated 

the impact of FoxM1 transcriptional activity in nucleolar homeostasis. We demonstrate 

FoxM1 as being required for regulated expression levels of different nucleolar proteins and 

for proper nucleolar morphology and function. Interestingly, FoxM1 repression leads to 

increased pre-rRNA transcription, but uncoordinated synthesis of mature 18S and 28S 

rRNA and reduced global protein synthesis. Moreover, we show that nucleolar stress 

induced by FoxM1 repression activates P53 in a FBL- and RPL11-dependent manner. 

Finally, we identified PIM1 and PARP1 as transcriptional targets of FoxM1 that potentially 

account for loss of nucleolar homeostasis during aging.  

 

 

2. INTRODUCTION 

The nucleolus is a phase-separated subnuclear compartment (Feric et al., 2016) in 

which ribosome biogenesis takes place (Leary and Huang, 2001). Briefly, this complex 

process starts with the transcription of the ribosomal DNA (rDNA) by RNA Polymerase I into 

a precursor rRNA transcript – the 47S pre-rRNA (Goodfellow and Zomerdijk, 2013). This 

primary transcript is then processed and modified, including 2’-O-methylation and 

pseudouridylation, which are carried out by the methyl transferase fibrillarin (FBL) and 

dyskerin, respectively (Sloan et al., 2017). This processing step leads to the synthesis of 

the three rRNA species – 18S, 28S and 5.8S – which are then assembled with the 5S rRNA 

(transcribed by RNA Polymerase III) and several ribosomal proteins to generate the small 

and large ribosome subunits (Fromont-Racine et al., 2003). Although mostly recognized by 

this main function, the nucleolus has emerged as a multifunctional and dynamic structure 

(Boisvert et al., 2007). Particularly, its capacity to sense intra- and extracellular alterations 

and to build a cellular response, makes the nucleolus a central hub for stress responses 

(Lindstrom and Latonen, 2013). Generally, any disruption in the nucleolar structure or 

function put cells under the so-called nucleolar stress (Yang et al., 2018). Mammalian cells 

often respond to this stress by activating P53, a tumour suppressor protein (James et al., 

2014). For instance, low dose actinomycin D specifically inhibits RNA Polymerase I, 

decreases rDNA transcription and activates the P53-dependent signaling pathway (Tsai 



120 
 

and Pederson, 2014). Under normal conditions, the 5S RNP complex, which comprises 

RPL5, RPL11 and 5S rRNA, assembles with the pre-60S rRNA allowing the proper 

formation of a mature ribosome (Donati et al., 2013). However, under nucleolar stress, this 

complex binds MDM2, a negative regulator of P53, inhibiting its binding to P53 and 

subsequently P53 proteasomal degradation (Donati et al., 2013). Relevantly, this 

mechanism was shown to mediate P53 stabilization in cells with accelerated rDNA 

transcription, delayed rRNA processing or ribosomal protein deficiency (Dutt et al., 2011; 

Nishimura et al., 2015; Sloan et al., 2013a). Moreover, we recently showed that repression 

of NOL12, a nucleolar protein involved in rRNA processing (Scott et al., 2017; Sloan et al., 

2013b), activates P53 through this 5S RNP mechanism and induces senescence (Pinho et 

al., 2019). Additionally, we found NOL12 downregulation in dermal fibroblasts from elderly 

donors in association with nucleolar features similar to those observed in NOL12-depleted 

neonatal fibroblasts (Pinho et al., 2019), namely reduced number but increased area of 

nucleoli and fibrillarin upregulation (Pinho et al., 2019). This is in line with increasing 

evidence implicating nucleolar stress in senescence (Chen and Stark, 2019) and aging 

(Tiku and Antebi, 2018). Particularly, premature aged cells from Hutchinson-Gilford progeria 

syndrome (HGPS) patients were shown to exhibit bigger but fewer nucleoli (Buchwalter and 

Hetzer, 2017), and a longer lifespan has been associated with smaller nucleoli in 

Caenorhabditis elegans, Drosophila melanogaster, mice and human cells (Tiku et al., 

2017). Recently, repression of FoxM1 transcriptional activity was found in human fibroblasts 

from elderly donors (Macedo et al., 2018). FoxM1 belongs to the forkhead box (FOX) protein 

family that comprises several transcription regulators (Myatt and Lam, 2007). In particular, 

FoxM1 is a pro-oncogenic factor found overexpressed in several different human tumors 

(Lee et al., 2016). Mechanistically, its role in promoting proliferation stands from its capacity 

to form a complex with Myb-MuvB – the MMB-FoxM1 complex – which promotes the 

transcription of several cell cycle genes, allowing cells to progress into mitosis (Fischer et 

al., 2016; Sadasivam et al., 2012). FoxM1 repression during aging was shown to increase 

the incidence of lagging chromosomes during mitosis, leading to the emergence of 

aneuploid senescent cells (Macedo et al., 2018).  

Given the physiological relevance of both FoxM1 and nucleolar function in aging, here we 

investigated the functional link between FoxM1 transcriptional activity, nucleolar 

homeostasis and cellular senescence. We found FoxM1 repression to impact on nucleolar 

function and we identified putative transcriptional targets that account for this functional link. 
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3. MATERIALS AND METHODS 

Cell culture. Human dermal fibroblasts retrieved from neonatal skin biopsy of a 

healthy Caucasian male (DFM021711A) were acquired from Zen Bio repository. Cells were 

seeded at 1-1.5 x 104 cells per cm2 of growth area in minimal essential medium Eagle-

Earle (MEM) supplemented with 15% fetal bovine serum (FBS), 2.5 mM L-glutamine and 

antibiotic-antimycotic (1:100) (all from Gibco®; Life Technologies, Thermo Scientific, CA, 

USA). Only early passage dividing fibroblasts (up to passage 3-5) with cumulative 

population doubling level PDL<24, well below replicative senescence, were used in all 

experiments. Cells were grown at 37ºC and humidified atmosphere with 5% CO2. For 

immunostaining experiments, cells were cultured in coverslips coated with 50 µg/ml 

fibronectin (Sigma-Aldrich; MO, USA).  

siRNA transfection. Cells were transfected cells with 45nM small interfering RNA 

1h after their plating using Lipofectamine RNAiMAX transfection reagent (Thermo Scientific, 

CA, USA) according to the manufacturer’s instructions. The sequences of all siRNAs used 

in this study (from Sigma-Aldrich, MO, USA) are summarized in Table S1. For efficient 

depletion of FBL, we used a mixture of two previously reported siRNAs. Cells treated under 

the same conditions with transfection reagent without siRNA were used as controls (mock-

depleted cells). Six hours after transfection, medium was replaced by fresh medium 

supplemented with 5% FBS and, the next day, by complete MEM medium. Phenotypes 

were analyzed and quantified 72h post-transfection. 

Immunostaining. Fibroblasts were grown on sterilized glass coverslips coated with 

50 µg/ml fibronectin (Sigma-Aldrich; MO, USA). Cells were fixed in freshly prepared 2% 

paraformaldehyde in PBS for 20 min or in 4% paraformaldehyde in PBS for 15 min in the 

case of 53BP1 and p21 markers. Following fixation, cells were rinsed in PBS, permeabilized 

with 0.3% Triton-X100 in PBS for 7 min and blocked in 0.05% Tween-20 in PBS (PBS-T) 

supplemented with 10% fetal bovine serum (FBS) for 1h at room temperature. Cells were 

then incubated overnight at 4ºC with primary antibodies diluted in PBS-T supplemented with 

5% FBS as follows: rabbit anti-fibrillarin (ab5821, Abcam, Shanghai, China), 1:1000; mouse 

anti-fibrillarin (ab4566, Abcam, Shanghai, China), 1:3000; rabbit anti-p53 (sc-6243, Santa 

Cruz Biotechnology, CA, USA), 1:1000; rabbit anti-nucleolin (sc-13057, Santa Cruz 

Biotechnology, CA, USA) 1:500; rabbit anti-53BP1 (#4937, Cell Signaling Technology, MA, 

USA), 1:100; mouse anti-p21 (sc-6246, Santa Cruz Biotechnology, CA, USA), 1:1000; 

rabbit anti-Ki67 (ab15580, Abcam, Shanghai, China), 1:1500; mouse anti-NOL12 (sc-

374257; Santa Cruz Biotechnology, CA), 1:800; mouse anti-UBF (sc-13125, Santa Cruz 

Biotechnology, CA, USA), 1:200; mouse anti-NPM (sc-271737, Santa Cruz Biotechnology, 

CA, USA), 1:100; rat anti-BrdU (ab6326, Abcam, Shanghai, China), 1:200; rabbit anti-



122 
 

FoxM1 (Cell Signaling Technology, MA, USA), 1:200. Secondary antibodies AlexaFluor®-

488, 568 and 647 were diluted 1:1500 in PBS-T supplemented with 5% FBS and coverslips 

were incubated for 45 min at room temperature. DAPI (Sigma-Aldrich, MO, USA) was used 

at 1 µg/ml for nuclei staining and coverslips were then mounted in slides with mounting 

solution (90% glycerol, 0.5% N propyl gallate and 20 nM Tris pH 8).  

FUrd incorporation assay. To assess rDNA transcription in human primary 

fibroblasts, 5-Fluorouridine (FUrd; F5130, Sigma) was added to cell culture for 20 min at 2 

mM. Coverslips were then rapidly washed in cold PBS, fixed in 1% PFA for 10 min, washed 

in cold PBS and permeabilized with 0.5% Triton-X100 in PBS for 10 min on ice. Coverslips 

were then immunostained as described above.  

ClickiT assay. To visualize protein synthesis, we used Click-iT reagents (C10429, 

Invitrogen) according with the manufacture’s protocol. Briefly, cells were incubated in 

methionine-free medium (21013-024, ThermoFisher) containing the methionine analog L-

homopropargylglycine (HPG) for 30 min. After washing with PBS, cells were fixed with 4% 

paraformaldehyde for 15 min and rinsed twice in 10% FBS. Cells were permeabilized in 

0.5% Triton X-100 for 20 min, and rinsed twice in 10% FBS followed by the click-iT reaction 

with Alexa 594 detection reagents, as described in manufacturer’s protocol.  

RNA quantification. Total RNA was isolated from cultured cells using the Quick 

RNA MicroPrep (R1050, Zymo Research) according to the manufacturer’s instructions. 

After quantification in Nanodrop 1000 UV-Vis spectrophotometer, RNA was diluted at 100 

ng/µL in RNAse free water and analyzed using the Experion RNA kit (Bio-Rad).    

Drug treatments. For RNA Polymerase I inhibition, fibroblasts were incubated in 

medium containing 8 nM Actinomycin D (Sigma-Aldrich, MO, USA) for 4h before fixation. 

To enrich the cell culture mitotic index, the kinesin-5 inhibitor STLC (2799-07-7, Tocris) was 

used at 5µM for the last 16h, before cell harvesting by shake-off. To inhibit protein synthesis, 

cells were treated with cycloheximide (CHX) at 100 µg/mL for 30 min, before cell harvesting 

or fixation. For the puromycin assay, puromycin was added to cell culture at 10 µg/mL for 

10 min at 37ºC, before cell harvesting.  

Microscopy and image analysis. Slides were analyzed under HC PL APO CS 63x 

1.30NA Glycerine objective in a Laser Scanning confocal microscope Leica TCS SP5 II 

(Leica Microsystems, Germany). Images were acquired at 1024x1024 pixel resolution and 

edited using Adobe Photoshop CS4 Extended Version 11.0. For ClickiT quantification, each 

cell was manually defined and integrated intensity was calculated in ImageJ. All the other 

image quantifications were based on fields acquired in IN Cell Analyzer 2000® (GE 

Healthcare, UK), equipped with a Photometrics CoolSNAP K4 camera. IN Cell Investigator 

software was used for measuring nucleolus and nucleus parameters (number and areas); 

nuclear area was measured in the DAPI channel whereas the total nucleolar area and the 
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number of nucleoli per nucleus were measured in the nucleolin channel. The mean pixel 

intensity of fibrillarin, nucleolin and FUrd (referred as “nuclear protein levels”) were 

measured based on mask defined by the DAPI channel.  

Western blotting. Cell pellets were resuspended in lysis buffer (150 nM NaCl, 10 

nM Tris-HCl pH=7.4, 1 nM EDTA, 1 nM EGTA, 0.5% IGEPAL) and instantaneously frozen 

in liquid nitrogen. Clarified lysates were quantified for protein content by the Lowry Method 

(DC™ Protein Assay; BioRad, CA, USA). 20 μg of total extract were loaded in SDS-PAGE 

gels and transferred into nitrocellulose membranes for western blot analysis. Membranes 

were blocked with 0.05% Tween-20 in TBS (TBS-T) containing 5% low fat milk, during 1h 

at RT. Primary antibodies were diluted in TBS-T containing 2% low fat milk as follows: rabbit 

anti-p53 (sc-6243), 1:1500; rabbit anti-fibrillarin (ab5821, Abcam, Shanghai, China), 1:1000; 

rabbit anti-nucleolin (sc-13057) 1:3000; mouse anti-fibrillarin (ab4566) 1:1000; mouse anti 

α tubulin (Sigma-Aldrich, CA, USA), 1:200000; mouse anti-GAPDH (Protein TechGroup, 

Inc., IL), 1:30000; mouse anti-FoxM1 (sc-271746, Santa Cruz Biotechnology, CA, USA) 

1:500; rabbit anti-PARP1 (sc-7150, Santa Cruz Biotechnology, CA, USA), 1:500; mouse 

anti-puromycin (AB-2619605, DSHB), 1:1000. Horseradish peroxidase (HRP)-conjugated 

goat anti-mouse and anti-rabbit antibodies (GENA9310 and GENA9340, GE Healthcare 

Life Sciences, USA, respectively) were used at a dilution of 1:1000 in TBS-T containing 2% 

low fat milk. Signal was detected using Clarity Western ECL Substrate reagent (BioRad) 

according to manufacturer’s instructions. A GS-800 calibrated densitometer (Bio-Rad 

Laboratories, CA, USA) was used for quantitative analysis of protein levels.  

Statistical Analysis. P-values were obtained using GraphPad Prism version 7.00 

(GraphPad, San Diego, CA, USA). Data were tested for parametric vs. non-parametric 

distribution using D'Agostino & Pearson omnibus normality test. Mann-Whitney, paired t-

test, one-way ANOVA, Kruskal-Wallis or two-tailed χ2-square statistic tests were then 

applied accordingly to the experiment.  

 

 

4. RESULTS 

FoxM1 is required for nucleolar organization and regulates the expression of 

nucleolar proteins. FoxM1 repression was reported in naturally aged cells (Macedo et al., 

2018) and aging has been increasingly associated with nucleolar alterations (Buchwalter 

and Hetzer, 2017; Pinho et al., 2019). We therefore asked whether FoxM1 could be required 

for proper nucleolar organization. To address this, we performed siRNA-mediated depletion 

of FoxM1 in human dermal fibroblasts (HDFs) to investigate changes in the 

immunolocalization patterns of known nucleolar protein markers. FoxM1 efficient depletion 
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(~85% knockdown) was validated in asynchronous populations of the MCF7 cancer cell line 

(Fig. S3.1A) and HDFs (Fig. S3.1B), as well as in interphasic and mitotic cell subpopulations 

of synchronous cultures of HDFs (Fig. S3.1C). Depletion efficiency was further confirmed 

by immunofluorescence analysis using a different antibody (Fig. S3.1D). We started by 

analyzing the levels of the fibrillarin (FBL) and nucleolin (NCL) nucleolar proteins in mock 

and FoxM1-depleted cells (Fig. 3.1A). FBL and NCL displayed increased 

immunofluorescence levels (Fig. 3.1B, C). Moreover, immunoblotting analysis confirmed 

increased FBL protein levels (Fig. 3.1D), but unchanged NCL protein levels (Fig. 3.1E), 

suggesting that FoxM1 repression leads to NCL relocalization rather than its upregulation. 

Furthermore, we found FBL upregulation as an upstream event essential for NCL nucleolar 

recruitment, as the double-depleted siFoxM1+siFBL fibroblasts showed restored NCL 

protein levels (Fig. 3.1B), whereas NCL depletion was not able to rescue FBL protein levels 

in FoxM1-depleted cells (Fig. 3.1C). We also found increased immunostaining levels of 

other nucleolar proteins such as NOL12, NPM and UBF (Fig. S3.2A-C).  

 

 

Figure 3.1. FoxM1 downregulation induces significant alterations in nucleolar morphology and impacts 

protein expression of nucleolar proteins. (A) Fibrillarin (FBL, grayscale/green) and Nucleolin (NCL, 

grayscale/red) immunostaining in control (mock-depleted) and FoxM1 siRNA-depleted (siFoxM1) cells. (B) 

Scatter plots of the mean pixel intensities of NCL nuclear levels in mock-, siFoxM1-, and siFoxM1+siFBL-treated 

cells. Each dot represents the value for a single cell, and horizontal lines represent the mean values. a.u., 
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arbitrary units. (C) Scatter plots of the mean pixel intensities of FBL nuclear levels in mock-, siFoxM1-, and 

siFoxM1+siNCL-treated cells. Each dot represents the value for a single cell, and horizontal lines represent the 

mean values. a.u., arbitrary units. (D) Cell extracts from mock- and siFoxM1-treated neonatal fibroblasts were 

immunoblotted for fibrillarin. Tubulin levels were used for the loading control. In the graph, bars show mean 

values ± SD from five independent experiments, normalized to the values for the mock-treated control. MW, 

molecular weight. (E) Cell extracts from mock- and siFoxM1-treated neonatal fibroblasts were immunoblotted 

for nucleolin. Tubulin levels were used for the loading control. In the graph, bars show mean values from one 

independent experiment, normalized to the values for the mock-treated control. MW, molecular weight. (F) 

Nucleolin immunostaining (grayscale) in control (mock-depleted) and FoxM1 siRNA-depleted (siFoxM1) cells. 

The nuclear magnifications (x63), the white dashed and the yellow solid lines represent the masks used to define 

and measure nuclear and nucleolar areas, respectively. (G) Ratios of nucleolar and nuclear areas in mock- and 

siFoxM1-treated cells. Values are mean ± SD normalized to the mean value for the control. (H) Histograms and 

respective distribution curves for the percentages of mock- and siFoxM1-treated cells exhibiting total numbers 

of nucleoli as indicated. Scale bars represent 10µm in panels A and F. n = total number of cells analysed. ****, 

P≤0.0001, by Mann-Whitney and Kruskal-Wallis statistical tests in panels B, C, and G. 

 

 

Finally, since dysregulation of several nucleolar proteins leads to significant changes 

in the nucleolar structure (Amin et al., 2008; Pinho et al., 2019; Ugrinova et al., 2007), we 

measured the nucleolar area and number of nucleoli in FoxM1-depleted cells, using a 

nucleolar mask based on NCL staining (Fig. 3.1F). We found an increased nucleolar size 

along with a decreased number of nucleoli per nucleus (Fig. 3.1G, H). Altogether, our data 

disclosed FoxM1 as a regulator of nucleolar organization, primarily repressing the 

expression and/or nucleolar recruitment of several proteins.  

 

 

FoxM1 modulation of different nucleolar protein players impacts nucleolar 

organization parameters distinctly. We next investigated how the upregulation of NCL, 

FBL and NOL12 nucleolar proteins following FoxM1 repression contributes to the observed 

nucleolar phenotypes. To test this, we performed siRNA-double depletions of FoxM1 in 

combination with each one of the other players. Interestingly, FBL downregulation (Fig. 

S3.3A) in FoxM1-depleted cells did not alter the nucleolar area nor the number of nucleoli 

per nucleus (Fig. 3.2A, B). On the other hand, NCL downregulation (Fig. S3.3B) in FoxM1-

depleted HDFs rescued the increased nucleolar area (Fig. 3.2C) while aggravating the 

number of nucleoli per nucleus (Fig. 3.2D). In a distinct manner, NOL12 downregulation did 

not restore the nucleolar size (Fig. 3.2E) but partially rescued the number of nucleoli per 

nucleus (Fig. 3.2F). Altogether, these results showed that NCL upregulation is a 

downstream event of FBL upregulation that is specifically causative of an increased 

nucleolar area observed in FoxM1-repressed fibroblasts. On the other hand, NOL12 

upregulation seems to primarily contribute to the decreased number of nucleoli per nucleus 
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displayed by FoxM1-depleted HDFs. Further studies will be needed to ascertain whether 

NOL12 upregulation is a downstream event of FBL upregulation, similarly to NCL 

upregulation, or alternatively, directly regulated by FoxM1 repression.   

 

  

Figure 3.2. NCL and NOL12, but not FBL, mediate alterations of nucleolar morphology induced by FoxM1 

depletion. (A) Ratios of nucleolar and nuclear areas in mock-, siFoxM1- and siFoxM1+siFBL-treated cells. 

Values are mean ± SD normalized to the mean value for the control. (B) Stacked bars showing the distribution 

of the total numbers of nucleoli per nucleus in mock-, siFoxM1-, and siFoxM1+siFBL-treated cells. (C) Ratios of 

nucleolar and nuclear areas in mock-, siFoxM1- and siFoxM1+siNCL-treated cells. Values are mean ± SD 

normalized to the mean value for the control. (D) Stacked bars showing the distribution of the total numbers of 

nucleoli per nucleus in mock-, siFoxM1-, and siFoxM1+siNCL-treated cells. (E) Ratios of nucleolar and nuclear 

areas in mock-, siFoxM1- and siFoxM1+siNOL12-treated cells. (F) Stacked bars showing the distribution of the 

total numbers of nucleoli per nucleus in mock-, siFoxM1-, and siFoxM1+siNOL12-treated cells. Values are mean 

± SD normalized to the mean value for the control in the bar graphs A, C and E. Different patterns in bars 



127 
 

represent different numbers of nucleoli per nucleus in panels B, D and F. n = total number of cells analysed. 

****, P≤0.0001, and n.s., not significant, by Kruskal-Wallis statistical tests.  

 

 

FoxM1 repression increases rDNA transcription, imbalances rRNA processing 

and decreases protein synthesis. As we observed morphological changes in nucleoli 

from FoxM1-depleted cells along with deregulated expression of several nucleolar proteins, 

we hypothesized these events affect the nucleolar canonical function on ribosome 

biogenesis. To test that, we assessed different steps of ribosome biogenesis, starting by 

measuring rDNA transcription using FUrd incorporation into nascent rRNA transcripts 

(Kruhlak et al., 2007). To validate this procedure, we treated neonatal HDFs with a low dose 

of actinomycin D that inhibits RNA Pol I and, as expected, we found decreased levels of 

FUrd incorporation (Fig. 3.3A) (Perry and Kelley, 1970). Interestingly, upon FoxM1 

depletion, we found significantly increased FUrd nuclear levels (Fig. 3.3B). Next, we asked 

whether increased rDNA transcription translated into increased production of 18S and 28S 

rRNAs. Indeed, 18S and 28S rRNAs were increased (Fig. 3.3C) suggesting that FoxM1 

repression does not impair rRNA processing. However, the ratio 28S/18S was significantly 

higher (Fig. 3.3D), which reveals an imbalance between these two rRNA species. 

Nevertheless, as 18S and 28S rRNA species are assembled with other factors to generate 

functional small and large ribosome subunits, respectively, we next evaluated the rates of 

protein synthesis. To test this, we firstly measured the levels of incorporated L-

homopropargylglycine (HPG) in newly synthesized proteins, by using a click reaction as 

previously described (Narita et al., 2011). To validate this procedure, we treated cells with 

cycloheximide (CHX), a protein synthesis inhibitor (Baliga et al., 1969), and as expected we 

found decreased incorporation of HPG (Fig. 3.3E). Interestingly, FoxM1 repression was 

found to significantly decrease HPG incorporation (Fig. 3.3F). In addition, we measured the 

incorporation of puromycin, an alternative method to read protein production. Similarly to 

the HPG incorporation assay, we found reduced puromycin incorporation in cells treated 

with CHX (Fig. 3.3G) as well as in FoxM1-depleted cells (Fig. 3.3H). Altogether, these data 

show that FoxM1 is required to maintain protein synthesis and balanced production of 28S 

and 18S rRNAs.  

 

 

 

 

 

 



128 
 

 

 Figure 3.3. FoxM1 depletion increases rDNA transcription, impairs rRNA processing and decreases 

global protein synthesis. (A) Immunostaining of incorporated FUrd (grayscale/green) in control-, 

control+FUrd- and actinomycin D control+FUrd-treated human fibroblasts. DNA was stained with DAPI (blue). 

(B) Immunostaining of incorporated FUrd (grayscale/green) in mock- and siFoxM1-treated cells. Box-and-

whiskers plot of median nuclear immunofluorescence levels of incorporated FUrd. Horizontal line within box 

represents the median fluorescence intensity; whiskers-representing boundaries of the box, 1st and 99th 

percentiles. (C) Representative profile of RNA fluorescence levels from mock- (black line) and siFoxM1- (red 
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line) treated cells. In the graph, bars show mean values ± SD of 18S and 28S rRNAs levels from two independent 

experiments. (D) Ratios of 28S/18S rRNAs in mock- and siFoxM1-treated human primary fibroblasts. Values 

are means ± SD from two independent experiments. (E) Immunostaining of incorporated L-HPG (grayscale/red) 

in control-, control+L-HPG- and CHX treated control+L-HPG-treated human fibroblasts. DNA was stained with 

DAPI (blue). (F) Immunostaining of incorporated L-HPG (grayscale/red) in mock- and siFoxM1-treated human 

fibroblasts. DNA was stained with DAPI (blue). Scatter plots of the mean pixel intensities of ClickiT cellular levels 

in mock- and siFoxM1-treated cells. Each dot represents the value for a single cell, and horizontal lines represent 

the mean values. (G) Cell extracts (10µg or 20µg) from control-, control+puromycin- and CHX-treated 

control+puromycin-treated fibroblasts were immunoblotted for puromycin. Ponceau S levels were used for the 

loading control. MW, molecular weight. (H) Cell extracts from mock- and siFoxM1-treated cells were 

immunoblotted for puromycin. Ponceau S levels were used for the loading control. In bar graphs, values are 

means ± SD from six independent experiments, normalized to the values for the mock-treated control. MW, 

molecular weight. a.u., arbitrary units in panels B, C and F. Scale bars, 10µm in panels A, B, E and F. n = total 

number of cells analysed in panels B and F. **, P≤0.01 and ****, P≤0.0001 by Mann-Whitney statistical test.  

 

 

FoxM1 downregulation activates P53 in an RPL11-dependent manner. Next, we 

asked whether FoxM1 repression and the associated nucleolar alterations could stabilize 

P53, as observed upon RNA Pol I inhibition (Choong et al., 2009) or NOL12 depletion-

driven nucleolar stress (Pinho et al., 2019). Consistently, both immunofluorescence and 

immunoblotting data revealed an upregulation of P53 protein levels in response to FoxM1 

siRNA-mediated depletion (Fig. 3.4A, B). We then ascertained if any of the FBL, NCL and 

NOL12 nucleolar proteins contributes for the P53 upregulation. Interestingly, increased P53 

protein levels were blunted upon FBL repression (Fig. 3.4C) suggesting that FBL 

upregulation primarily accounts for P53 activation in FoxM1-depleted cells. Since nucleolar 

stress-induced P53 activation requires the 5S RNP complex, comprising RPL11, RPL5 and 

5S rRNA, which binds MDM2 thereby preventing P53 proteasomal degradation (Sloan et 

al., 2013a), we additionally tested whether this mechanism contributes to P53 activation 

upon FoxM1 repression. Immunoblotting and immunofluorescence analysis of 

siFoxM1+siRPL11 double-depleted HDFs confirmed RPL11 to be required for P53 

activation in response to FoxM1 repression (Fig. 3.4C, D). Overall, these data showed that 

FoxM1 repression activates P53 in an RPL11-dependent manner and revealed the 

nucleolar protein FBL as an important contributor for this P53 activation. 
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Figure 3.4. Both RPL11 and FBL mediate P53 activation elicited by FoxM1 depletion. (A) P53 

immunostaining (green) of mock- and siFoxM1-treated human fibroblasts. DNA was stained with DAPI (red). 

Scale bars, 10µm. (B) Western blotting of P53 levels in cell extracts from mock- and siFoxM1-treated neonatal 

dermal fibroblasts. Tubulin protein levels were used as the loading control. In the graph, bars show mean values 

± SD from three independent experiments, normalized to the values for the mock-treated control. (C) Cell 

extracts from mock-, siFoxM1-, siFoxM1+siFBL- and siFoxM1+siRPL11-treated neonatal fibroblasts were 

immunoblotted for P53. Tubulin protein levels were used as the loading control. (D) Scatter plots of the mean 

pixel intensities of P53 nuclear levels in mock-, siFoxM1- and siFoxM1+siRPL11-treated cells. Each dot 

represents the value for a single cell, and horizontal lines represent the mean values. a.u., arbitrary units. n = 

total number of cells analysed. *, P≤0.05 and ****, P≤0.0001 by Kruskal-Wallis statistical tests. 

 

 

FoxM1 repression decreases proliferation and increases senescence. Previous 

studies reported P53 activation as a major trigger of distinct cellular events, such as 

activation of DNA damage response, cell cycle arrest, apoptosis and senescence (Joerger 

and Fersht, 2016). In order to explore the cellular consequences of FoxM1 depletion-driven 

P53 activation, we immunostained mock- and FoxM1-depleted cell cultures for the 

proliferation marker Ki67. As illustrated in Fig. 3.5A, the percentage of cells staining 

negative for Ki67 markedly increased (26.23% ± 9.6% [mean ± standard deviation] vs 8.10% 

± 1.8% in controls), showing that FoxM1 repression decreases the proliferative capacity. 

Furthermore, upon FoxM1 depletion we found an increased percentage of cells staining 

positive for double immunostaining of P21 cell cycle inhibitor and 53BP1 DNA damage 

markers, a readout of senescence (10.40% ± 1.1% vs 3.30% ± 1.3% in controls; Fig. 3.5B), 

which is in agreement with previous data (Macedo et al., 2018). Since RPL11 and FBL were 

found to mediate P53 activation induced by FoxM1 repression, we asked whether these two 

proteins contribute to the decreased proliferation capacity of FoxM1-depleted cell cultures. 

Surprisingly, none of the double-depleted fibroblast cultures siFoxM1+siRPL11 and 

siFoxM1+siFBL was able to rescue the reduced proliferative capacity caused by FoxM1 

repression (Fig. 3.5C). This suggests that nucleolar stress activates P53-independent 
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mechanisms, as previously reported (James et al., 2014), which mainly contribute to 

decrease cell proliferation upon FoxM1 depletion. 

 

  

Figure 3.5. FoxM1 repression decreases cell proliferation and increases senescence. (A) Immunostaining 

of the proliferation marker Ki67 (grayscale/red) in mock- and siFoxM1-treated human fibroblasts. DNA was 

stained with DAPI (blue). Scale bars, 10µm. In bar graphs, percentages of cells staining negative for Ki67 are 

plotted. Values are means ± SD from four independent experiments. ****, P≤0.0001, by ꭕ2 statistical test. (B) 

immunostaining of P21 (grayscale/green) and 53BP1 (red) in mock- and siFoxM1-treated human fibroblasts. 

Nuclear masking is shown in dashed white. Yellow arrows indicate P21/53BP1 double-positive cells. Scale bars, 

10µm. In bar graphs, percentages of cells staining positive for P21/53BP1 are plotted. Values are means ± SD 

from two independent experiments. ****, P≤0.0001, by ꭕ2 statistical test. (C) Percentages of cells staining 

negative for the proliferation marker Ki67 in mock-, siFoxM1-, siFoxM1+siNCL, siFoxM1+siRPL11- and 

siFoxM1+siFBL-treated cells. Values are means ± SD from two independent experiments. n = total number of 

cells analysed. *, P≤0.05 and ****, P≤0.0001 by ꭕ2 statistical test. 

 

 

PARP1 and PIM1 as putative FoxM1 transcriptional targets required for 

nucleolar homeostasis. Even though we found FBL and RPL11 to mediate P53 activation 

in FoxM1-depleted cells (Fig. 3.4C, D), we reasoned that transcriptional regulation of P53 

by FoxM1 should not be disregarded. Indeed, increased P53 levels and transcriptional 

activity in response to FoxM1 depletion were previously described (Tan et al., 2007), as well 

as P53 feedback repression of FoxM1 expression (Barsotti and Prives, 2009). When 
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interrogating our previous RNA-sequencing datasets (Macedo et al., 2018) for P53 

expression, we found that P53 transcripts are only slightly increased in FoxM1-depleted 

cells (Fig. 3.6A), thus excluding transcriptional regulation by FoxM1 as a major mechanism 

behind P53 upregulation. Interestingly, although naturally aged cells and FoxM1-depleted 

cells have low FoxM1 levels (Macedo et al., 2018), P53 transcripts are downregulated in 

elderly cells (Fig. 3.6B), and upregulated following expression of constitutively active FoxM1 

(FoxM1dNdK) (Fig. 3.6C). Moreover, interrogation of the RNA-seq datasets for the 

nucleolar players NOL12, FBL, and NCL, for which we found increased protein levels upon 

FoxM1 repression, surprisingly revealed that these are unaltered or downregulated at the 

transcript level in siFoxM1-depleted cells and 87 year-old cells, and upregulated in 

FoxM1dNdK-overexpressing cells (Fig. 3.6A-C). This suggests for post-transcriptional 

increased stability of these players upon FoxM1 repression. To identify nucleolar FoxM1 

transcriptional targets directly contributing to nucleolar disruption and senescence, we again 

interrogated the available RNA-seq datasets for a set of nucleolar genes (Huntley et al., 

2015) to determine which are significantly responsive to FoxM1 levels. Intersection of i) the 

5529 differentially expressed genes (DEGs) in mock vs siFoxM1 HDFs, ii) the 2818 DEGs 

in 87y vs 87y dNdK HDFs, iii) the 3188 DEGs in neo vs 87y HDFs, and iv) the 2364 nucleolar 

genes, came out with 42 genes as shown in Fig. 3.6D. Additionally, interrogation of a 

dataset of 1029 DEGs from targeted transcriptome analysis of asynchronous neonatal vs 

aged HDFs (Barroso-Vilares et al., 2020), also came out with 42 nucleolar genes of the 

Huntley et al. list (Fig. 3.6E). Intersection between the 42 genes found in each independent 

analysis revealed 9 overlapping genes (Fig. 3.6F). Three genes, SPECC1, GPRC5A and 

RASL11A, were excluded as candidate targets as their expression was not consistently 

responsive to FoxM1 levels (i.e., downregulation in both siFoxM1 and 87y, and upregulation 

in FoxM1dNdK) (Fig. 3.6G). This left us with 6 genes, 3 genes repressed by FoxM1 

(HOXD9, YPEL2 and YPEL3), and 3 genes upregulated by FoxM1 (NFIB, PARP1 and 

PIM1). Interestingly, both HOXD9 (Fromental-Ramain et al., 1996) and YPEL2 (Wang et 

al., 2016) are mainly involved in development, while YPEL3 was shown to be 

transcriptionally regulated by P53 and an inducer of senescence (Kelley et al., 2010).  

 

 

 

 

 



133 
 

 

  

Figure 3.6. Six nucleolar proteins respond to FoxM1 modulation. (A), (B) and (C) Previously reported RNA 

sequencing data from different FoxM1 modulation conditions (Macedo et al., 2018) was plotted in volcano plots. 

Blue dots represent downregulated genes, red dots represent upregulated genes (|log2FC| ≥ 0.5) and gray dots 

represent unaltered expressed genes. Horizontal dashed line indicates a pvalue of 0.05. Specific genes are 

indicated. (D) Venn diagram showing the overlap of differentially expressed genes (DEGs) previously reported 

by (Macedo et al., 2018) and an RNA sequencing dataset of nucleolar genes. (E) Venn diagram showing the 

overlap of differentially expressed genes (DEGs) previously reported by (Vilares-Barroso al., 2020) and an RNA 

sequencing dataset of nucleolar genes. (F) Venn diagram showing the overlap of genes that result from the 

Venn diagrams in D and E panels. (G) Heatmap showing the log2FC values of the nine genes that result from 

the Venn diagram in F panel. Those values are indicated in the four conditions of FoxM1 modulation from 

(Macedo et al., 2018) and (Vilares-Barroso et al., 2020). Blue boxes indicate downregulated DEGs and red 

boxes indicate upregulated DEGs. 
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We next evaluated NFIB, PARP1 and PIM1 genes, which behave as putative direct 

transcriptional targets of FoxM1. We analysed available ChIP sequencing data (Mei et al., 

2017; Zheng et al., 2019) to check whether and where FoxM1 binds in each of the three 

candidate gene sequences. As shown in Fig. 3.7A, there are no significant FoxM1-binding 

sites in the NFIB gene. In the PIM1 gene, there are at least two significant and strong 

FoxM1-binding sites, one in the promoter region and another in an intronic region, likely 

representing an enhancer cis-regulatory element since it displays the acetylated H3K27 

mark (Fig. 3.7B). In addition, the PARP1 gene also displays a FoxM1-binding site in the 

promoter region displaying the acetylated H3K27 mark (Fig. 3.7C). Relevantly, our 

preliminary data confirmed that PARP1 is downregulated in FoxM1-depleted fibroblasts 

(Fig. 3.7D). Interestingly, while NFIB was previously shown to be essential for development 

of different organs (Steele-Perkins et al., 2005), PARP1 (Boamah et al., 2012; Kim et al., 

2019) and PIM1 (Iadevaia et al., 2010) were implicated in ribosome biogenesis. Particularly, 

PARP1 seems to function as a structural support for the recruitment of rRNA processing 

factors, such as FBL (Boamah et al., 2012). Notably, PIM1 loss is associated with ribosomal 

stress and growth arrest (Iadevaia et al., 2010; Sagar et al., 2016). Altogether, these data 

strongly suggest PARP1 and PIM1 as putative functional links coupling nucleolar 

alterations, particularly impairment of nucleolar function, and decreased proliferation 

induced by FoxM1 repression.  
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Figure 3.7. PIM1 and PARP1 are putative direct transcriptional nucleolar targets of FoxM1. (A) ChIP-

sequencing data from K562 cell line aligned with sequences of NFIB gene and the H3K27 acetylation profile. 

Peaks correspond to interaction of the NFIB DNA sequence and FoxM1 protein. (B) ChIP-sequencing data from 

different K562 cell line aligned with sequences of PIM1 gene and the H3K27 acetylation profile. Peaks 

correspond to interaction of the PIM1 DNA sequence and FoxM1 protein. The strongest and most 

significant/relevant peaks are highlighted with a green box. (C) ChIP-sequencing data from K562 cell line aligned 

with sequences of PARP1 gene and the H3K27 acetylation profile. Peaks correspond to interaction of the 

PARP1 DNA sequence and FoxM1 protein. The strongest and most significant/relevant peaks are highlighted 

with a green box. (D) Western blotting of PARP1 levels in cell extracts from mock- and siFoxM1-treated neonatal 

dermal fibroblasts. Tubulin protein levels were used as the loading control. In the graph, bars show mean values 

± SD from two independent experiments, normalized to the values for the mock-treated control. 
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5. DISCUSSION 

Previously, we found FoxM1 to be a key transcriptional regulator in human normative 

aging, controlling cellular mitotic fitness and consequently aneuploidy, which is a main 

trigger of full-blown senescence (Macedo et al., 2018). Moreover, we found a correlation 

between nucleolar stress and aging, with aged cells displaying significant alterations in 

nucleolar organization and structure (Pinho et al., 2019). Based on these findings, we 

studied the role of FoxM1 transcriptional activity in nucleolar homeostasis.  

By efficiently depleting FoxM1 in neonatal HDFs, we found a reduced number of 

nucleoli per nucleus. Importantly, our data disclosed NOL12 upregulation as key contributor 

for this phenotype, and thus further establishing NOL12’s role in the regulation of nucleolar 

aggregation (Pinho et al., 2019). Furthermore, nucleoli from FoxM1-depleted fibroblasts 

exhibited an increased relative area when compared with controls. Interestingly, this was 

recently reported in HeLa cervical cancer cells upon treatment with latrunculin A, an inhibitor 

of the actin polymerization (Caragine et al., 2019). Furthermore, it was shown that this 

inhibitor is able to regulate the YAP/TEAD transcriptional activity (Ou et al., 2017), which 

was previously shown to target FoxM1 (Mizuno et al., 2012). Therefore, this seems to be a 

particular cell response to FoxM1 repression. Importantly, we found FBL upregulation as an 

upstream event relatively to NCL nucleolar recruitment although, surprisingly, increased 

FBL levels did not account for the altered nucleolar parameters tested upon FoxM1 

repression. However, this is in agreement with a previous report showing FBL as playing a 

role in preserving nuclear morphology whereas none impact was observed in nucleoli from 

HeLa cells (Amin et al., 2007). Interestingly, our data revealed NCL nucleolar recruitment 

as a requirement for the increased nucleolar area of the FoxM1-depleted neonatal HDFs. 

Therefore, FBL upregulation, as an upstream event, might elicit several nucleolar 

modifications that counteract each other. This would explain that interference with a 

downstream event, such as NCL repression, induces a specific modification that is not 

revealed when FBL upregulation is blunted. Furthermore, the observed upregulation of 

other nucleolar proteins involved in ribosome biogenesis seems to support the effects of 

FoxM1 depletion in nucleolar function. Notably, we found an increased rDNA transcription, 

which is consistent with the upregulation of UBF since it is a nucleolar protein crucial for 

RNA Pol I-mediated transcription (Jantzen et al., 1992; Stefanovsky et al., 2001). Moreover, 

it was previously shown that UBF overexpression increases rDNA transcription in rat 

neonatal cardiomyocytes (Hannan et al., 1996). Importantly, while increase of 18S and 28S 

rRNA levels suggests that FoxM1-repressed cells were able to deal with the increased 

amount of rRNA transcripts, we found an increased 28S/18S level ratio, disclosing an 

imbalance between the two rRNA species. Therefore, these results suggest that the 18S 
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rRNA processing is not as efficient as the 28S rRNA processing. Altogether, these data 

reveal that FoxM1 depletion disrupts nucleolar organization and impairs the nucleolar 

function, driving cell into a state generally called nucleolar stress (Yang et al., 2018). In 

response to this stress, FoxM1-depleted fibroblasts activate P53, which is a common event 

often reported in response to nucleolar stress (James et al., 2014). Mechanistically, the 5S 

RNP complex, comprising RPL11, RPL5 and 5S rRNA, has been shown to mediate this 

activation by binding MDM2 hence preventing the P53 targeting to proteasomal degradation 

(Donati et al., 2013; Sloan et al., 2013a). Notably, our data strongly suggest this mechanism 

as a mediator of P53 activation in FoxM1-repressed neonatal HDFs. Interestingly, we found 

that FBL upregulation, but not NCL or NOL12 (data not shown), also strongly contributes 

for P53 activation. This could occur through RPL11, as previously reported for the nucleolar 

protein GRWD1 (Kayama et al., 2017). Since FBL protein levels are increased in 

siFoxM1+siRPL11 cells (data not shown), our data strongly suggest that P53 activation 

negatively regulates FBL protein levels. While the impact of FBL in regulating P53 has not 

been previously reported, some studies have revealed P53 as a negative regulator of FBL: 

in immortalized human mammary epithelial cells, P53 was shown to inhibit FBL transcription 

and protein levels (Marcel et al., 2013); in C. elegans, P53 was recently shown to indirectly 

reduce FBL protein levels (Chen et al., 2020). Nevertheless, although FBL depletion blunts 

P53 activation, it does not alter the nucleolar phenotypes of FoxM1-depleted HDFs. This 

suggests that in these cells, stabilized P53 does not regulate nucleolar morphology, which 

is in accordance with our previous results showing that nucleolar disruption induced by 

NOL12 depletion is not modified upon P53 depletion (Chapter 2).  

Next, we inspected the cellular consequences of P53 activation upon FoxM1 

repression. We observed decreased cell proliferation in primary neonatal fibroblasts upon 

FoxM1 depletion, along with an accumulation of senescent cells, as previously reported 

(Macedo et al., 2018). Interestingly, we formerly described a nucleolar stress-driven G2/M 

arrest that ultimately leads to decreased proliferation and increased senescence, in a P53-

dependent manner (Pinho et al., 2019). Moreover, the decreased average of number of 

nucleoli per nucleus observed in FoxM1-depleted HDFs could be associated with an 

accumulation of cells arrested at G2/M. This is expected due to reduced transcription of the 

G2/M gene cluster regulated by FoxM1 (Wang et al., 2005). Thus, FoxM1 repression 

induces nucleolar stress-driven P53 activation and senescence even though our data 

suggest that P53 activation may not be essential for the reduction in proliferation. In line 

with decreased cell proliferation, we found reduced protein synthesis, a connection 

extensively reported. Notably, the cell cycle protein CDK1, which is a transcriptional target 

of FoxM1 (Macedo et al., 2018), was recently found to be required for global protein 

synthesis providing a support for proliferation in HeLa cells (Haneke et al., 2020). For 
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instance, a mouse model of increased lifespan exhibits decreased proliferation rate 

associated with a reduced protein synthesis (Thompson et al., 2016); fibroblasts from HGPS 

patients are hyperproliferative (Bridger and Kill, 2004) and display an increased protein 

synthesis rate (Buchwalter and Hetzer, 2017). Remarkably, using two independent assays 

we showed a significant decrease of newly synthesized proteins in FoxM1-depleted HDFs, 

suggesting impaired ribosome biogenesis due to uncoordinated 28S and 18S synthesis. 

Previously, FoxM1 repression was shown to downregulate several ribosomal proteins from 

both ribosome subunits (Chen et al., 2018). Hence, ribosomes might not be properly 

assembled, compromising their function. However, this might not be the case in our primary 

fibroblasts since we observed no differences in the protein levels of some ribosomal 

proteins (data not shown).  

To get further insight into direct FoxM1 transcriptional targets with nucleolar function 

and accounting for impaired ribosome biogenesis, and eventually senescence, we took 

advantage from previous RNA-seq datasets as well as from ChIP-seq data. From this 

analysis, we found two interesting candidates, PARP1 and PIM1. PARP1 was shown to 

bind rDNA, creating a physical network and allowing the recruitment of nucleolar proteins 

involved in ribosome biogenesis, hence facilitating rRNA modifications and processing 

(Boamah et al., 2012). Accordingly, PARP inhibitors elicited a decrease of rDNA 

transcription, rRNA processing, modification and folding, and cell growth, in samples from 

human breast cancer patients (Kim et al., 2019). However, this contrasts with our data 

showing PARP1 downregulation concomitant with an increased rDNA transcription in 

FoxM1-depleted cells. One reconciling possibility is that PARP1 repression in FoxM1-

depleted HDFs may disrupt the PARP1-TIP5-mediated epigenetic mechanism of rDNA 

silencing, resulting in an increased number of active rDNA copies (Guetg et al., 2012). 

Regarding PIM1, previous studies reported it as a constitutive active serine-threonine 

kinase responsible for decreasing the activity and increasing the degradation of the cell 

cycle inhibitor P27Kip1 (Morishita et al., 2008). Importantly, PIM1 downregulation was 

shown to induce P27Kip1 stabilization, leading to cell cycle arrest, independently of P53 

status (Iadevaia et al., 2010). Although PIM1 is described as a sensor for ribosome 

deficiency (Iadevaia et al., 2010), its potential as a marker for the quality of ribosomes 

remains unexplored. Additionally, PIM1 was shown to bind RPS19 and both were found in 

association with both ribosome subunits and polysomes, suggesting that PIM1 plays a role 

during translation (Chiocchetti et al., 2005). Altogether, these data support PARP1 and 

PIM1 as attractive FoxM1 nucleolar targets, putatively mediating the impact of FoxM1 

repression in protein synthesis. Promisingly, we found reduced PARP1 protein levels in 

FoxM1-depleted neonatal HDFs. Further analyses will be needed to disclose both PARP1 
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and PIM1 as nucleolar effectors of FoxM1, linking nucleolar homeostasis to protein 

synthesis and cellular fitness. 

 

 

Figure 3.8. Model that summarizes and integrates the consequences of FoxM1 downregulation. FoxM1 

downregulation in human primary fibroblasts leads to FBL upregulation, which is required for nucleolar 

recruitment of NCL, and NOL12 upregulation. This disrupts nucleolar morphology, increasing nucleolar size and 

decreasing the number of nucleoli per nucleus. Also, nucleolar function is perturbed by FoxM1 downregulation: 

both rDNA transcription and 28S and 18S rRNA levels increases. However, there is an imbalance between 

those rRNA species. Together, these nucleolar alterations configure a cell state called nucleolar stress which 
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activates P53. This activation is mediated by 5S RNP complex and FBL upregulation. In turn, FoxM1 depletion-

induced P53 activation was shown to abrogate FBL protein levels. FoxM1-depleted cell cultures showed a 

reduced proliferative capacity which cannot be fully explained by P53 activation. Alternatively, both decreased 

global protein synthesis and downregulation of cell cycle genes that respond directly to FoxM1 downregulation 

are possible explanations. Furthermore, our preliminary data disclosed PARP1 and PIM1 as putative nucleolar 

proteins that respond directly to FoxM1. We hypothesize these downregulation events impact nucleolar 

homeostasis, leading to decreased protein synthesis thus being important contributors for decreased 

proliferative capacity of FoxM1-depleted fibroblasts. Solid arrows and lines exhibit observed and solid evidence, 

dashed arrows indicate work hypothesis.  
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8. SUPPLEMENTAL MATERIAL 

 

Table S3.1. Sequences of siRNAs used in this study. 

 

mRNA targets Sequence 5’-3’ 

FoxM1 

(SASI_Hs01_00243977) 

AACUCUUCUCCCUCAGAU[dT][dT] (sense) 

AUCUGAGGGAGAAGAGUU [dT][dT] (antisense) 

FBL 

siRNA1: UGGAGGACACUUUGUGAUU[dT][dT] (sense) 

AAUCACAAAGUGUCCUCCA[dT][dT] (antisense) 

siRNA2: GUCUUCAUUUGUCGAGGAA[dT][dT] (sense) 

UUCCUCGACAAAUGAAGAC[dT][dT] (antisense) 

NCL 
GGAAGAGCCUGUCAAAGAA[dT][dT] (sense) 

UUCUUUGACAGGCUCUUCC[dT][dT] (antisense) 

NOL12 

(SASI_Hs01_00047859) 

CAGAUGAGCUGGACCGGUU[dT][dT] (sense) 

AACCGGUCCAGCUCAUCUG[dT][dT] (antisense) 

RPL11 
CGCGAGCAGCCAAGGUGUUGGAGCA[dT][dT] (sense) 

UGCUCCAACACCUUGGCUGCUCGCG[dT][dT] (antisense) 
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Figure S3.1. Validation of FoxM1 downregulation in human primary fibroblasts. (A) Western blotting of 

FoxM1 levels in cell extracts from mock- and siFoxM1-treated MCF7 cells, using an antibody anti-FoxM1 from 

Santa Cruz Biotechnology (sc-271746). Tubulin protein levels were used as the loading control. (B) Western 

blotting of FoxM1 levels in asynchronous cell extracts from mock- and siFoxM1-treated human dermal 

fibroblasts (HDFs), using an antibody anti-FoxM1 from Santa Cruz Biotechnology (sc-271746). Tubulin protein 

levels were used as the loading control. In the graph, bars show mean values ± SD from four independent 

experiments, normalized to the values for the mock-treated control. (C) Western blotting of FoxM1 levels in 

synchronous cell extracts from mock- and siFoxM1-treated human primary fibroblasts, using an antibody anti-

FoxM1 from Santa Cruz Biotechnology (sc-271746). Both mitotic and interphasic cell extracts were run 

separately. Tubulin protein levels were used as the loading control. (D) Immunostaining of the FoxM1 (red) in 

mock- and siFoxM1-treated human fibroblasts using an antibody anti-FoxM1 from from Cell Signalling 

Technology (#5436). Nuclear masking is shown in dashed white. Yellow arrows indicate FoxM1 positive cells. 

Scale bars, 10µm. In bar graphs, percentages of cells staining positive for FoxM1 are plotted. Values are means 

± SD from four independent experiments. ****, P≤0.0001, by ꭕ2 statistical test.       
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Figure S3.2. FoxM1 downregulation leads to nucleolar upregulation of the NOL12, NPM and UBF 

proteins. (A) Immunostaining of the nucleolar protein NOL12 (grayscale/green) in mock- and siFoxM1-treated 

human fibroblasts. DNA was stained with DAPI (blue). Scatter plots of the mean pixel intensities of NOL12 

nuclear levels in mock- and siFoxM1-treated cells. Each dot represents the value for a single cell, and horizontal 

lines represent the mean values. (B) Immunostaining of the nucleolar protein NPM (grayscale/green) in mock- 

and siFoxM1-treated human fibroblasts. DNA was stained with DAPI (blue). Scatter plots of the mean pixel 

intensities of NPM nuclear levels in mock- and siFoxM1-treated cells. Each dot represents the value for a single 

cell, and horizontal lines represent the mean values. (C) Immunostaining of the nucleolar protein UBF 

(grayscale/green) in mock- and siFoxM1-treated human fibroblasts. DNA was stained with DAPI (blue). Scatter 

plots of the mean pixel intensities of UBF nuclear levels in mock- and siFoxM1-treated cells. Each dot represents 

the value for a single cell, and horizontal lines represent the mean values. Scale bars, 10µm. a.u., arbitrary 

units. n = total number of cells analysed. ****, P≤0.0001 by Mann-Whitney statistical test. 
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Figure S3.3. Validation of FBL and NCL downregulation in human primary fibroblasts. (A) Western blotting 

of FBL levels in cell extracts from mock- and siFBL-treated neonatal dermal fibroblasts. Tubulin protein levels 

were used as the loading control. In the graph, bars show mean values ± SD from two independent experiments, 

normalized to the values for the mock-treated control. (B) Western blotting of NCL levels in cell extracts from 

mock- and siNCL-treated neonatal dermal fibroblasts. GAPDH protein levels were used as the loading control. 

In the graph, bars show mean values ± SD from two independent experiments, normalized to the values for the 

mock-treated control. (C) Western blotting analysis of NOL12 protein levels in cell extracts from mock- and 

siNOL12-depleted fibroblasts. Tubulin levels were used as loading control. Values are mean ± SD from three 

independent experiments and normalized to mock controls. ** p≤0.01 by Mann-Whitney statistical test. MW, 

molecular weight.  
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CHAPTER 4 

 

General Discussion 

 

 

With this chapter, we discuss our findings in light of the current knowledge in the 

field, while pinpointing future research lines to pursue. 
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The nucleolus is a distinctive membraneless organelle that emerged in eukaryotic 

cells. Evolutionarily, it is thought that its tripartite organization arose with amniotes, being 

related with the increased rDNA intergenic region, whereas a bipartite organization 

characterizes anamniotes (Thiry and Lafontaine, 2005). Nevertheless, it was firstly 

described as the site where ribosomes, the molecular machines that ultimately lead to the 

production of all cellular proteins, are produced. This complex process of ribosome 

biogenesis is so important that cells dispense at least 60% of energy to ensure proper 

ribosome production (Zhou et al., 2015). Importantly, other functions were posteriorly 

attributed to the nucleolus, including cell cycle regulation, DNA repair, apoptosis and 

senescence (Boisvert et al., 2007). Recent studies have unveiled the nucleolus as an 

important player in several age-associated diseases, such as neurodegenerative, 

cardiovascular and cancer (Nunez Villacis et al., 2018). Therefore, understanding the 

regulation of nucleolar structure and function, as well as the response mechanisms that the 

nucleolus is able to activate, will ultimately disclose potential therapeutic targets.  

 

 

1. NOL12 and FoxM1: how do they regulate nucleolar 

homeostasis? 

Our findings described in Chapter 2 revealed NOL12 as a nucleolar protein in human 

neonatal fibroblasts, consistently to previous observations in yeast (Oeffinger et al., 2009), 

Drosophila melanogaster (Marinho et al., 2011) and mice (Suzuki et al., 2006). Furthermore, 

NOL12 repression was shown to elicit an increase of nucleolar relative area, a decreased 

number of nucleoli per nucleus and significant alterations in the nucleolar ultrastructure. 

Although repression of other nucleolar proteins, such as XRN2, did not mimic these 

nucleolar alterations (Chapter 2), the loss of FoxM1, a nuclear transcription factor mainly 

involved in cell cycle (Sadasivam et al., 2012), induced similar nucleolar alterations in 

neonatal HDFs (Chapter 3). This is an original observation since till now there are no reports 

showing FoxM1 as a regulator of nucleolar morphology. Unlike other nucleolar proteins, 

whose dysregulation did not show any impact in the expression of nucleolar proteins (Amin 

et al., 2007; Amin et al., 2008; Ma et al., 2007), NOL12 downregulation was able to 

upregulate the expression levels of other nucleolar proteins, such as FBL and NCL (Chapter 

2). Also, upon FoxM1 repression, we found FBL upregulation, and as an upstream event 

required for nucleolar recruitment of NCL (Chapter 3). Interestingly, FBL upregulation in 

association with enlarged nucleoli was previously reported in C. elegans (Yi et al., 2015). 

Since recent studies have shown nucleoli as a liquid-like compartment, and prolonged 

stress was shown to induce a nucleolar shift from a liquid- into a solid-like state along with 
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nucleolar expansion (Frottin et al., 2019), our data suggests FBL as a determinant of 

nucleolar viscoelastic properties. Importantly, the liquid-solid transition of the nucleolus was 

recently found to impair rRNA processing (Zhu et al., 2019), and is also associated with the 

formation of nucleolar aggregates, characteristic of neurodegenerative diseases, such as 

Huntington’s disease and spinocerebellar ataxias (Latonen, 2019).  

Nucleolar function is nevertheless distinctly affected by FoxM1 and NOL12: while 

rDNA transcription is increased upon FoxM1 repression (Chapter 3), it decreases in NOL12-

depleted cells (Chapter 2). This is interesting if we take into account that FoxM1 depletion 

increased NOL12 protein levels, possibly through protein stabilization (Chapter 3). Thus, 

our data strongly suggest NOL12 as a major positive regulator of rDNA transcription. Since 

NOL12 was shown to be required for proper rRNA processing in yeast (Oeffinger et al., 

2009) and HeLa cells (Sloan et al., 2013b), the decreased rDNA transcription might be a 

feedback response to the accumulation of unprocessed rRNA transcripts, in NOL12-

depleted cells. On the other hand, FoxM1-depleted cells seem to handle with the higher 

amount of synthesized 47S pre-rRNA by increasing both 18S and 28S rRNAs (Chapter 3), 

although we found an imbalance towards 28S rRNA. Interestingly, mRNA levels of NOB1, 

an endonuclease involved specifically in the 18S processing, and WDR46, a nuclear protein 

required for structuring the 18S rRNA processing machinery (Hirai et al., 2013), were both 

found to be decreased in FoxM1-depleted cells (Macedo et al., 2018), which could explain 

the smaller efficiency of 18S rRNA processing. Alternatively, one could speculate that 28S 

rRNA processing is more efficient and faster. The increased levels of XRN2 upon FoxM1 

depletion (data not shown) might explain this, due to its involvement in rRNA processing 

and its ability to clean the unprocessed transcripts (Wang and Pestov, 2011).    

Altogether, our data demonstrated that NOL12 and FoxM1 repressions induce 

similar alterations in the nucleolar morphology, but distinct responses in nucleolar function. 

 

 

2. P53 activation in response to nucleolar stress 

Nucleolar stress occurs when nucleolar homeostasis is disrupted, thus it is 

characterized by both structural and functional defects in the nucleolus (Yang et al., 2018). 

Frequently, in response to this stress, P53 accumulates in the cell (Holmberg Olausson et 

al., 2012), activating its signalling pathway. Notably, both NOL12 and FoxM1 repression 

showed to induce P53 activation (Chapters 2 and 3). Importantly, 5S RNP, comprising 

RPL11, RPL5 and 5S rRNA, has been shown to be the main mediator of P53 activation in 

response to nucleolar stress by binding MDM2 preventing its repressor activity over P53 

(Bursac et al., 2012; Donati et al., 2013; Sloan et al., 2013a). We found P53 activation upon 
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NOL12 and FoxM1 depletions to be mediated by RPL11, strongly supporting the 

involvement of the 5S RNP. Moreover, FBL upregulation was shown to also mediate P53 

activation upon FoxM1 repression (Chapter 3), while its contribution in the context of NOL12 

depletion was not addressed. Interestingly, when P53 activation is abrogated in double-

depleted siFoxM1+siRPL11 cells, FBL protein levels increased (data no shown). Together, 

these results suggest that under FoxM1 downregulation, P53 represses FBL, which is in 

agreement with the transcriptional repressing activity of P53 over FBL previously reported 

in human cancer cells (Marcel et al., 2013). Interestingly, the depletion of P53 in non-

senescent cells elicited an increase of FBL protein levels (Chapter 2). Although 

interestingly, we cannot actually compare directly these two findings since ablation of P53 

activation (by doing siFoxM1+siRPL11) might not elicit the same effects as reduction of P53 

mRNA levels (by doing siP53). In fact, P53 mRNA could activate mechanisms that result 

into the upregulation of FBL. Therefore, the measurement of FBL protein levels in double-

depleted siFoxM1+siP53 is a key experiment missed here. Additionally, FBL emerged as 

an unforeseen positive regulator of P53, in siFoxM1 cells, whereas its depletion increased 

P53 protein levels in normal fibroblasts (data not shown). This is a very interesting finding 

which could reveal a specific impairment of FBL/P53 crosstalk in senescent cells.  

Altogether, these data revealed P53 activation as a common event in response to 

nucleolar stress in primary human cells.  

 

 

3. Nucleolar stress induces cellular senescence 

The activation of P53 in NOL12- and FoxM1-depleted fibroblasts was shown to 

induce upregulation of the P53 transcriptional target CDKN1A (Chapter 2) (Macedo et al., 

2018). As P53 is involved in major cellular events, we hypothesized its activation would 

impact cell homeostasis.  We did not find any impact of P53 in nucleolar morphology in 

neonatal primary fibroblasts. However, NOL12 depletion led to the accumulation of G2 

arrested cells in a P53-dependent manner. Interestingly, NCL repression in HeLa cells 

(Ugrinova et al., 2007) and FoxM1 depletion in MCF-7 cells (Barsotti and Prives, 2009) were 

previously reported to elicit a G2 arrest. So, although P53 did not account for maintenance 

of nucleolar morphology, it had a major role in downstream events, in NOL12-depleted cells. 

Accordingly, our data revealed loss of proliferative capacity of upon NOL12 or FoxM1 

repression, which ultimately led to the accumulation of cells stained positive for different 

senescence biomarkers (Chapters 2 and 3). Therefore, our data disclosed senescence as 

an outcome of nucleolar stress. 
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4. Nucleolar stress-driven loss of proliferative capacity is likely 

due to defective protein synthesis  

Although we observed loss of proliferative capacity in both NOL12- and FoxM1-

depleted fibroblasts, P53 was found to partially mediate this loss in NOL12 repression 

(Chapter 2), but not in FoxM1 repression (Chapter 3). Interestingly, increased protein 

synthesis has been associated with enhanced proliferative capacity (Pardee, 1989; 

Polymenis and Aramayo, 2015). So, we hypothesized that protein synthesis and cell 

proliferation are coupled in neonatal fibroblasts under nucleolar stress. Accordingly, we 

found decreased protein synthesis in NOL12-depleted cells, which indicates that a 

decreased ribosome biogenesis (suggested by decreased rDNA transcription) 

compromises protein synthesis (Chapter 2). Similarly, FoxM1-depleted fibroblasts 

displayed a decreased protein synthesis rate, even though under increased rDNA 

transcription and 18S and 28S rRNAs levels, which suggests that ribosome production is 

elevated (Chapter 3). This might result from a compensatory mechanism through which 

decreased protein synthesis may signal cells to produce more ribosomes. Nevertheless, 

our aim was to find nucleolar factors able to causally link decreased protein synthesis to 

reduced proliferative capacity. From our analysis, PIM1 emerged as a promising candidate 

(Chapter 3), since it is required for proper ribosome production (Iadevaia et al., 2010). 

Downregulation of PIM1 in FoxM1-depleted cells could reconcile the increased amount of 

18S and 28S rRNAs with defective ribosome production and consequent decrease of 

protein synthesis. Additionally, PARP1 arose as an auspicious candidate, as it was 

described to be required for recruitment of factors such as FBL, hence controlling rRNA 

processing and pre-ribosome assembly (Boamah et al., 2012). Indeed, we found 

downregulation of PARP1 in FoxM1-depleted fibroblasts (Chapter 3).  

Noteworthy, although NOL12 and FoxM1 repressions impact ribosome biogenesis 

distinctly, they both inhibit protein synthesis and cell proliferation. Interestingly, as human 

aged cells displayed NOL12 (Pinho et al., 2019) and FoxM1 downregulation (Macedo et al., 

2018), our data contrasts with recent data showing an increased protein synthesis in 

premature aged cells (Buchwalter and Hetzer, 2017).      

 

 

5. Nucleolar stress during aging: a new research avenue 

In agreement with the increased number of senescent cells upon NOL12 and FoxM1 

repressions, naturally aged cells displayed reduced levels of both proteins (Macedo et al., 

2018; Pinho et al., 2019). This led us to explore the role of nucleolar stress during human 

aging. Remarkably, fibroblasts from elderly donors exhibited a similar nucleolar phenotype 
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as NOL12-depleted neonatal fibroblasts (Chapter 2). Taking into account recent studies 

showing nucleolar stress as a potential hallmark of aging (Buchwalter and Hetzer, 2017; 

Tiku et al., 2017), we asked whether nucleolar organization, as well as proliferation and 

senescence, could be rescued upon re-establishment of NOL12 levels in elderly cells. 

Except for FBL expression, we did not find any improvement in the general structure of the 

nucleolus. Moreover, even though we found proliferation rate slightly rescued, the 

accumulation of senescent cells remained unchanged (Chapter 2). This was in contrast with 

previous data showing that the expression of constitutively active FoxM1 in aged cell 

rescues senescence (Macedo et al., 2018). There are possible explanations. Firstly, NOL12 

is a nucleolar protein, with a limited spectrum of action in comparison to FoxM1 wide 

transcriptional activity that impacts the expression of many genes. Moreover, senescence 

is a complex multifactorial process unlikely rescued by simply restored nucleolar structure 

and NOL12 expression. However, we cannot discard the hypothesis that NOL12 

overexpression protocol may technically require further optimization, regarding time of 

infection, doxycycline induction and end point analysis (Chapter 2). Also, it would be very 

interesting to determine if FoxM1 induction in elderly cells is able to rescue nucleolar stress. 

Second, FoxM1 appears to regulate NOL12 levels (Chapter 3), with FoxM1 induction 

leading to increased NOL12 transcripts (Macedo et al., 2018). Thus, it would be important 

to also measure NOL12 protein levels to disclose a putative synergistic effect between 

NOL12 and FoxM1 in the regulation of nucleolar homeostasis.  

In another perspective, our data showed FBL upregulation as a common event in 

response to nucleolar stress, shared by NOL12-depleted, FoxM1-depleted and elderly 

fibroblasts (Chapters 2 and 3). Although FBL dysregulation and nucleolar morphology have 

been correlated with lifespan (Tiku and Antebi, 2018), the mechanism behind FBL 

upregulation remains unknown. Also, the mechanism through which NOL12 is 

downregulated in elderly aged cells awaits further studies. 
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Figure 4.1. Proposed model for the impact of NOL12 and FoxM1 repressions in nucleolar homeostasis, 

senescence and aging. Both NOL12 or FoxM1 repressions induce nucleolar stress, particularly by increasing 

nucleolar size and decreasing the number of nucleoli per nucleus, along with FBL upregulation and deregulation 

of nucleolar function. Nucleolar stress elicts P53 activation likely mediated by the accumulation of 5S RNP 

bound to MDM2. Activation of P53 decreases cell proliferation ultimately leading to senescence. Additionally, 

both NOL12- and FoxM1-depleted cells exhibit decreased global protein synthesis which could support the 

reduced proliferative capacity of these cells. Two independent studies reported NOL12 and FoxM1 

downregulation in elderly cells. How do they crosstalk to disorganize nucleolar morphology and function remains 

elusive.  
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CHAPTER 5 

 

Future Perspectives 

 

 

In this chapter, we propose future directions, taking our data as a starting point. 

Importantly, we expect that these research lines will lead to deepened understanding of 

basic cell biology and physiology processes, which might be explored as therapeutic targets 

in the context of human diseases, particularly in cancer. 
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As typically in science, from our interesting findings, many other questions arose as 

described below.  

 

Explore the impact of FBL upregulation in the RPs pool and protein translation   

A missing piece in our study was the evaluation of the composition of the ribosomal 

proteins (RPs) pool in the different nucleolar stress conditions (NOL12 and FoxM1 

repression cellular models and fibroblasts from different age donors). This represents a 

relevant research topic as ribosomes are now recognized as heterogeneous entities, 

meaning that ribosomes have distinct RP compositions specialized on translating specific 

mRNA populations (Shi et al., 2017; Xue and Barna, 2012). Examples include the tissue-

specific RP expression (Xue and Barna, 2012), the sensitivity of a certain mRNA population 

to RPL40 depletion (Lee et al., 2013) and the biased translation of mRNAs associated to 

stress pathways upon RPS26 depletion (Ferretti et al., 2017). Therefore, in line with this, it 

would be interesting to find which mRNAs are more or less abundant in response to different 

nucleolar stress stimuli. On the other hand, our data revealed FBL upregulation as a 

common event to distinct nucleolar stress conditions. Noteworthy, modulation of FBL 

expression was shown to bias mRNA translation towards IRES-dependent vs. CAP-

dependent translation (Erales et al., 2017; Marcel et al., 2013). Therefore, future studies will 

be needed to investigate the contribution of FBL upregulation and changes in the RP pool 

for a hypothetic biased translation under different nucleolar stress conditions. This would 

be relevant in the context of neurodegenerative diseases, since they have been associated 

with nucleolar stress (Parlato and Kreiner, 2013), as well as in cancer, as cancer cells often 

exhibit structurally altered ribosomes driven by RP mutations (Penzo et al., 2019).   

 

Disclose a NOL12 role in cancer development 

The involvement of the nucleolus in neoplasia processes has been increasingly 

addressed (Stepinski, 2018). Our data unveiled NOL12 as a nucleolar protein required for 

nucleolar homeostasis, regulating both nucleolar structure and function. Also, previous data 

showed that NOL12 is distinctly dysregulated in different types of cancer (Marinho, 2011), 

which is in agreement with the observation that NOL12 functions either as a good or a bad 

prognostic marker (Uhlen et al., 2017) (Human Protein Atlas available from 

http://www.proteinatlas.org). On the one hand, reports have been consensual to show that 

cancer cells exhibit increased ribosome biogenesis to cope with increased proliferation 

(Penzo et al., 2019). Therefore, given its role in rRNA processing, NOL12 upregulation 

would be expected (Scott et al., 2017; Sloan et al., 2013b). On the other hand, it is more 

difficult to reconcile NOL12 downregulation and cancer development. Firstly, NOL12 

repression could elicit downregulation of specific RPs triggering cell transformation and 
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giving support for cancer development, as previously described (Wang et al., 2010). 

Second, our data showed NOL12 downregulation as a pro-senescence event (Chapter 2), 

a feature with great importance in the cancer context (Chan and Narita, 2019). Strikingly, 

senescent cells are able to produce SASP, whose capacity to non-autonomously influence 

microenvironment contributes for chronic inflammation (Lecot et al., 2016), tumour invasion 

(Kim et al., 2017) and vascularization (Coppe et al., 2006), among other features that 

generally characterize cancers (Chan and Narita, 2019). Additionally, our data also 

disclosed that the roles played by NOL12 in nucleolar homeostasis, and proliferation and 

senescence are independent or dependent on P53, respectively. Therefore, the P53 status 

of a certain cancer cell could likely influence the NOL12 impact for cancer development. 

This is particularly relevant if we take into account that nearly half of the human cancers 

were reported to exhibit mutations on the TP53 gene (Perri et al., 2016).  

Altogether, these data highlight NOL12 as an interesting protein to study in the 

cancer context. Different cancer lines, with distinct NOL12 levels and P53 status should be 

investigated, to further understand its role in ribosome biogenesis and senescence, and 

disclose it as a potential therapeutic target.   

 

Functional analysis of NOL12 during mitosis 

The nucleolar dynamics (Caragine et al., 2019) and the association of some 

nucleolar proteins to the perichromosomal region during mitosis (Booth et al., 2014) indicate 

a nucleolar role for efficient chromosome segregation. Accordingly, nucleolar proteins as 

dyskerin (Alawi and Lin, 2013) and nucleolin (Ma et al., 2007; Ugrinova et al., 2007) were 

shown to be required for mitotic fidelity. Therefore, it would be interesting to understand the 

role of NOL12 during mitosis, particularly whether its repression affects chromosome 

segregation, being important to distinguish between acrocentric and 

submetacentric/metacentric chromosomes, as acrocentric chromosomes contain rDNA 

repeats (McStay, 2016). Noteworthy, naturally aged fibroblasts, which we found to be 

NOL12 downregulated (Chapter 2), exhibit higher rate of chromosome mis-segregation 

(Macedo et al., 2018). Additionally, the impact of NOL12 repression in the dynamics of other 

nucleolar proteins, such as FBL, would provide important clues about the way nucleolar 

structure is post-mitotically established under nucleolar stress conditions.  

 

Search for a putative crosstalk between NF-κB signalling pathway and NOL12  

As mentioned in Chapter 1, the activation of the NF-κB signalling pathway was 

shown to increase senescence and contribute for aging, thus representing an interesting 

target in the context of rejuvenation (Osorio et al., 2016). In addition, NF-κB activation was 

shown to enlarge the nucleolus (Chen et al., 2018), in particular upon heat stress-induced 
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changes in the conformation of the nucleolar NF-κB repressing factor, leading to rRNA 

processing impairment, due to the XRN2 mislocalization (Coccia et al., 2017). Therefore, it 

seems that the NF-κB signalling pathway plays a role during nucleolar stress, hence it would 

be interesting to explore whether and how NOL12 crosstalks with this signalling pathway. 

For instance, the analysis of the impact of NOL12 and FoxM1 modulations in NF-kB 

activation, and the use of available tools targeting NF-κB signaling pathway (Cvek and 

Dvorak, 2007; Garg and Aggarwal, 2002; Sethi et al., 2008), would allow to mechanistically 

uncover the role of NOL12 during aging and eventually also disclose a crosstalk between 

NF-κB signaling pathway and FoxM1. 
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