
-

Optimizing Energy Efficiency for Train Operation

Constrained to Scheduling

Agostinho Manuel Afonso da Rocha

Supervisor: Prof. Armando Luı́s Sousa Araújo

Co-Supervisor: Prof. Manuel João Sepúlveda Mesquita Freitas

Thesis submitted for the degree of Doctor of Philosophy

Doctoral Program in Electrical and Computer Engineering,

Department of Electrical and Computer Engineering

Faculty of Engineering, University of Porto

22nd July, 2020

Resumo
O uso ineficiente de energia elétrica é visto como um problema atual. A sociedade é totalmente

dependente desta para o exercı́cio das suas atividades diárias. O seu uso ineficiente provoca um ex-

cesso de produção que quando praticado a larga escala pode contribuir para problemas de maior mag-

nitude tais como a escassez de recursos, aumento de custos de produção e manutenção assim como

o aumento da poluição resultante da transformação da matéria prima. Uma vez que dela somos tão

dependentes, é necessário intervir, implementando medidas que promovam o seu uso racional e efi-

ciente. A atividade ferroviária é um exemplo de um sistema que é fortemente dependente de grandes

quantidades de energia. Algumas das linhas existentes, devido à imensa procura, encontram-se a tra-

balhar perto da sua capacidade máxima, o que impossibilita o aumento da oferta, necessitando assim

de intervenção a fim de tornar este sistema mais seguro e confiável. É nesta perspetiva que atualmente

aparecem incentivos ao desenvolvimento de soluções que visam a redução da pegada ambiental, assim

como a otimização do uso do sistema ferroviário.

A tese aqui apresentada propõe como solução, um algoritmo que pretende contribuir para a

redução do consumo da energia de tração em linhas de ferrovia ou metropolitanas. O algoritmo foi

desenhado com o objetivo de reduzir o custo energético associado às viagens entre estações. O seu de-

senvolvimento foi centrado em aplicações de tempo real a fim de poder vir a ser integrado num sistema

de apoio à condução. O algoritmo apresentado integra um modelo dinâmico do veı́culo em conjunto

com um algoritmo de otimização. A utilização do modelo dinâmico do veı́culo serve para o cálculo

de perfis de velocidade, assim como a estimação das necessidades energéticas do percurso atual. Por

outro lado, o algoritmo de otimização tem como principal função a procura da melhor solução face

ao objetivo inicial do sistema, considerando restrições e condições atuais da viagem. Além do desen-

volvimento do algoritmo de minimização de consumo de energia, e atendendo às necessidades atuais

do sistema ferroviário, um novo objetivo foi adicionado, focado em reduzir os tempos de viagem, a

fim de minimizar os atrasos que possam ocorrer.

Em conjunto com os desenvolvimentos anteriores, um segundo algoritmo foi também imple-

mentado com o objetivo de determinar os parâmetros para o modelo dinâmico do comboio. Este

algoritmo procura, com base na comparação de dados simulados com dados reais, os parâmetros que

iii

mais aproximam o modelo à realidade. Para a implementação deste algoritmo duas abordagens foram

utilizadas. A primeira utiliza o método dos mı́nimos quadrados. A segunda utiliza a meta-heurı́stica

chamada Simulated Annealing. Em ambas as abordagens, o algoritmo utiliza dados recolhidos em

viagens para determinar os parâmetros pretendidos para o modelo. Ao contrário da implementação

anterior, a maior preocupação desde algoritmo não se centra na obtenção de uma resposta em tempo

real, mas sim na obtenção de parâmetros capazes de tornar o modelo o mais realista possı́vel.

Após analise dos resultados apresentados, verifica-se que os algoritmos implementados se en-

contram de acordo com objetivos inicialmente propostos, procurando contribuir para o desenvolvi-

mento do sistema ferroviário, assim como o aumento da sua capacidade de resposta.

iv

Abstract
The inefficient use of electrical energy is seen as an actual problem. Nowadays, society is

totally dependent on electrical energy for the exercise of its daily activities. Its inefficient use leads

to an excessive production and, when practiced on a large scale, it can contribute to problems of

greater magnitude, such as scarcity of resources, increased production and maintenance costs as well

as increased pollution caused by the transformation of raw materials. So, it is necessary to interview,

in order to implement actions that promote rational and efficient use of energy. Railway activity is an

example of a system that is heavily dependent on large amounts of energy. Some of the existing lines,

due to immense demand, are working close to their maximum capacity, which makes it impossible

to increase its capacity, thus requiring intervention in order to make this system more secure and

reliable. It is in this perspective that there are currently incentives for the development of solutions

aiming to reducing the environmental footprint, as well as optimizing the use of the railway system.

The thesis presented here proposes, as a solution, an algorithm that aims to contribute to the reduction

of train traction energy consumption. The algorithm was designed with the objective of reducing the

energy costs associated with travels between stations on the railroad. Its development was focused on

real-time applications in order to be integrated in a driver assistant system. It integrates a dynamic

model of the vehicle together with an optimization algorithm. The dynamic model of the vehicle is

used for speed profiles determinations, as well as to estimate the energy needs for the actual journey.

On the other hand, the main function of the optimization algorithm is to search for the best solution

within system main objective, considering current travel conditions and restrictions. In addition to

the implemented algorithm, to reduce the consumption of traction energy, and meeting the current

needs of the railway system, a new objective was added, focused on reducing travelling time. This

second objective was designed with the purpose of minimizing any delays that may occur. Together

with previous developments, other algorithm was also implemented with the purpose of determining

parameters for the train dynamic model. This algorithm, based on the comparison between simulated

and real data, searches for train model parameters which approximate the most the model to reality.

For the implementation of this algorithm, two approaches were used. The first one uses the least

squares method and the second one uses Simulated Annealing meta-heuristic. In both approaches,

v

the algorithm uses data collected on regular journeys to determine the desired model parameters.

Unlike the previous implementation, the main concern of this algorithm is not focused on obtaining

real time results, but on obtaining the better parameters for the most realistic possible model. After

analyzing obtained results, it appears that the implemented algorithms are in accordance with the

objectives initially proposed, seeking to contribute to the development of the railway system, as well

as to increase its response capacity.

vi

Agradecimentos
Ao longo do meu percurso, como estudante de doutoramento, cruzei-me com várias pessoas que,

cada uma à sua maneira, marcaram esta fase. Aproveito para deixar algumas palavras de agradeci-

mento.

Começo pelo meu orientador, o Professor Armando Araújo, que já tem vindo a acompanhar o

meu percurso desde longa data. Agradeço-lhe todo o apoio prestado, não só na realização desta tese,

como também por todo o conhecimento transmitido ao longo destes anos. Mais do que um professor

e mentor tem-se mostrado como um amigo que pretendo conservar. Ao meu co-orientador pela sua

disponibilidade, assim como por todo o apoio fornecido no decurso da tese.

Seguidamente, quero deixar também uma palavra de agradecimento ao Professor Adriano de

Carvalho. Sendo alguém que também já vem a acompanhar o meu percurso, desde longa data, quero

agradecer-lhe pela ajuda, pelas palavras motivadoras na hora do café da manhã assim como pelo

contı́nuo interesse e apreciação do meu trabalho.

À Nomad Tech, pela disponibilidade para me atenderem sempre que necessário, sempre prontos

a ajudar assim que uma dúvida surgia. Obrigado pelo tempo comigo dispensado . Sem o vosso apoio

a realização deste trabalho teria sido muito mais complicada. Agradeço também ao programa doutoral

iRail, que financiou este doutoramento através da bolsa PD/BD/114104/2015, pela oportunidade dada

para enfrentar este desafio do sistema ferroviário .

À minha famı́lia, pelo apoio dado, não só nesta última etapa, como também por toda a educação

à qual tive direito. À minha namorada, por me acompanhar de perto neste percurso com apoio e

compreensão, principalmente nos momentos de maior pressão. Não me esqueço das horas “roubadas”

para serem investidas no desenvolvimento desta tese.

Aos meus colegas de trabalho, Jorge Pinto, Ricardo Carvalho, Vı́tor Lopes e Vı́tor Morais.

Todos os momentos de trabalho, companheirismo, discussão e lazer foram importantes na realização

desta dissertação. Sem querer retirar importância aos restantes, direciono uma mensagem de maior

agradecimento ao Jorge Pinto, colega de luta neste percurso, amigo com quem partilhei todas as

conquistas nesta tese de doutoramento. Quero também englobar nestes agradecimentos o Professor

Carlos Ramos, o Professor Rui Brito, o Professor Paulo Costa e o Professor António Martins pela

vii

amizade e apoio dados. Todos os conselhos fornecidos foram úteis, grande parte deles nos momentos

mais necessários.

Ficam por deixar algumas palavras de agradecimento a muitas outras pessoas com quem me

cruzei em todos estes anos na Faculdade de Engenharia. A todos, sem me querer alongar, o meu

muito obrigado.

Muito Obrigado

viii

Contents

1 Introduction 1

1.1 Contextualization . 1

1.2 Problem Description . 2

1.3 Objectives . 3

1.4 System Requirements . 4

1.5 Original thesis contributions . 5

1.6 Thesis Structure . 5

2 State of the Art 7

2.1 Regenerative Energy Flow . 7

2.2 Energy Efficiency in Railways . 9

2.2.1 Optimal Control Theory . 9

2.2.2 Literature Review . 11

2.3 Parameter Estimation for the Train Model . 16

2.4 Optimization Algorithms . 20

2.4.1 Linear Programming . 21

2.4.2 Genetic Algorithms . 21

2.4.3 Simulated Annealing . 23

2.4.4 Particle Swarm Optimization . 25

2.4.5 Ant Colony Optimization . 26

3 Optimal Speed Profile Simulator 27

3.1 Train Model . 27

3.2 Train Dynamics . 32

3.2.1 Acceleration . 32

3.2.2 Cruising . 32

3.2.3 Coasting . 33

ix

3.2.4 Braking . 33

3.3 Train Motion Simulator . 34

3.3.1 Formulation . 34

3.3.2 Single Trip . 35

3.3.3 Model Integration . 45

3.3.4 Non constant accelerations . 48

3.4 Line Constraints . 50

3.4.1 Gradients . 51

3.4.2 Velocity Limits . 54

3.4.3 Neutral Zones . 57

3.5 Train Model State Machine . 60

3.6 Train Motion Simulator with Line Constraints . 62

3.7 Speed Profiles Generator . 65

3.7.1 Speed Profile Phases . 68

3.7.2 Solution Construction . 85

4 Optimization Algorithm 93

4.1 Introduction . 93

4.2 Simulated Annealing . 93

4.2.1 Generation Mechanism . 96

4.2.2 Temperature Scheme . 97

4.2.3 Cost Function . 99

4.2.4 Acceptance Probability . 99

4.2.5 Stop Criteria . 100

4.3 Driving Assistant Algorithm . 101

4.3.1 Energy Consumption . 101

4.3.2 Travelling Time . 126

5 Parameters Estimation 141

5.1 Introduction . 141

5.2 Methodology . 142

5.3 Least Square Methods Approach . 145

x

5.3.1 Theoretical demonstration . 145

5.3.2 Method Application . 148

5.3.3 Method Implementation . 150

5.3.4 Results . 153

5.4 Simulated Annealing Approach . 157

5.4.1 Generation mechanism . 159

5.4.2 Cost Function . 161

5.4.3 Results . 162

5.5 Methodology Comparison . 174

6 Conclusion 177

6.1 Main Conclusions . 177

6.2 Future Work . 179

xi

List of Figures

1.1 Train Control Problem. 2

1.2 System Overview. 4

2.1 Regenerative energy flow in railways [5] . 8

2.2 Train Trajectory . 10

2.3 Genetic algorithm flowchart (adapted from [44]) . 22

2.4 Simulated Annealing flowchart (adapted from [46]) 24

3.1 Train acting forces in uphill motion. 28

3.2 Train traction, braking and resistive forces vs. train velocity. 31

3.3 Optimal Speed Profile . 34

3.4 Speed profile with three driving regimes - definition of variables. 35

3.5 Speed profile with four driving regimes - definition of variables. 40

3.6 Sequence of operations to determine speed profiles. 45

3.7 Train Model Integration. 46

3.8 Constant acceleration with low and high velocity - algorithm results with train model. 47

3.9 Example of velocity limits - data representation. 55

3.10 TMS algorithm using the train model state machine. 62

3.11 TMS algorithm - driving regimes sequence. 65

3.12 TMS algorithm flowchart. 66

3.13 Braking phase - graphical representation of the phase determination. 68

3.14 Braking phase: comparison between vbk, current and following velocity limit, VMAX . . 70

3.15 Braking phase: acceleration regime estimation. 71

3.16 Results for braking phase determination. 73

3.17 Acceleration phase: comparison between vop, current and following velocity limit. . 75

3.18 Acceleration phase: braking estimation. 75

3.19 Acceleration phase: examples of speed profiles. 77

xiii

3.20 Coasting phase - graphical representation of the phase determination. 79

3.21 Coasting phase: comparison between vop and velocity limits. 80

3.22 Coasting phase: examples of speed profiles. 81

3.23 Cruising phase: comparison between vop and velocity limits. 83

3.24 Cruising phase: examples of speed profiles. 84

3.25 Acceleration phase: train velocity and position . 88

3.26 Cruising phase: train velocity and position . 89

3.27 Coasting phase: train velocity and position . 89

3.28 Braking phase: train velocity and position . 90

3.29 Train velocity vs. time graphic. 90

3.30 Train position vs. time graphic. 91

3.31 Train velocity vs. distance graphic. 91

4.1 Simulated Annealing flowchart [46]. 96

4.2 Algorithm Flowchart. 103

4.3 Line profile - gradients and velocity limits values. 110

4.4 Algorithm solutions - Speed profiles and cost function values. 111

4.5 Algorithm solutions – Calculated speed profiles and cost function value. 112

4.6 Line profile - gradients and velocity limits values. 113

4.7 Algorithm solutions - Speed profiles determined and cost function value 114

4.8 Algorithm’s solutions – Calculated speed profiles and cost function value. 115

4.9 Line profile - gradients and velocity limits values. 116

4.10 Algorithm’s solutions – Calculated speed profiles and cost function values. 117

4.11 Coasting phase: train velocity and position . 118

4.12 Line profile - gradients and velocity limits values. 119

4.13 Algorithm’s solutions - Speed profiles determined and cost function values 120

4.14 Coasting phase: train velocity and position . 121

4.15 Coasting phase: train velocity and position . 122

4.16 Line profile - gradients and velocity limits values. 123

4.17 Coasting phase: train velocity and position . 124

4.18 Coasting phase: train velocity and position . 125

4.19 Algorithm Flowchart. 129

xiv

4.20 Algorithm results for all scenarios simulated in journey 1. 134

4.21 Algorithm results for all scenarios simulated on journey 2. 137

5.1 Train Motion Simulator (TMS) basic operations. 143

5.2 Parameters estimation methodology block diagram. 145

5.3 Input data - velocity vs. time. 148

5.4 Algorithm flowchart for Least Square Method (LSM). 150

5.5 Velocity records for LSM algorithm tests . 153

5.6 Velocity results using parameters from Table 5.3 - Measurements in red dashed line,

TMS in blue line . 155

5.7 Position results using parameters from Table 5.3 - Measurements in red dashed line,

TMS in blue line . 156

5.8 Simulated Annealing (SA) algorithm for parameters estimation. 157

5.9 Velocity results using parameters from Table 5.7 - Measurements in red dashed line,

TMS in blue line . 165

5.10 Position results using parameters from Table 5.7 - Measurements in red dashed line,

TMS in blue line . 166

5.11 SA cost function (5.19). 167

5.12 Velocity results using parameters from Table 5.8 - Measurements in red dashed line,

TMS in blue line . 168

5.13 Position results using parameters from Table 5.8 - Measurements in red dashed line,

TMS in blue line . 169

5.14 SA cost function (5.20). 170

5.15 Velocity results using parameters from Table 5.8 - Measurements in red dashed line,

TMS in blue line . 172

5.16 Positions results using parameters from Table 5.9 - Measurements in red dashed line,

TMS in blue line . 173

5.17 SA cost function (5.21). 174

5.18 Results comparison. 174

xv

List of Tables

3.1 Example of a gradients vector’s input . 51

3.2 Example of velocity limits input . 54

3.3 Example of neutral zones location input . 58

3.4 Results for speed profile phases . 88

4.1 Algorithm configurations . 108

4.2 Results comparison for case 1 . 113

4.3 Results comparison for case 2 . 116

4.4 Results comparison for case 3 . 119

4.5 Results comparison for case 4 . 123

4.6 Results comparison for case 5 . 125

4.7 Algorithm initializations. 133

4.8 Results for journey 1 . 136

4.9 Results for journey 2 . 138

5.1 LSM function organization . 150

5.2 Train model parameters . 152

5.3 LSM result . 154

5.4 Searching area for each parameter. 159

5.5 SA initial configurations. 163

5.6 Initial points for the SA algorithm using cost function (5.19) 163

5.7 SA results for cost function (5.19) . 164

5.8 SA results using cost function (5.20) . 167

5.9 SA results using cost function (5.21) . 170

5.10 Summary table of results . 175

xvii

Acronyms and Symbols

Acronyms

ACO Ants Colony Optimization

ANN Artificial Neural Network

ATO Automatic Train Operation

DAS Driving Assistant System

DE Differential Evolution

DP Dynamic Programming

EA Evolutionary Algorithm

ESS Energy Storage System

GA Genetic Algorithms

HGA Hierarchical Genetic Algorithm

IBEA Indicator - Based Evolutionary Algorithm

LSM Least Square Method

MARK Minimum-Allele-Reserve-Keeper

MLES Maximum Likelihood Estimation

MMAS MAX-MIN Ant System

ODE Ordinary Differential Equation

OSP Optimal Speed Profile

PMP Pontryagin’s Maximum Principle

PSO Particle Swarm Optimization

RMSE Root Mean Square Error

SA Simulated Annealing

TMS Train Motion Simulator

xix

Symbols

a Acceleration

A Davis equation constant

aacc Acceleration on acceleration phase

abk Acceleration on braking phase

acoa Acceleration on coasting phase

acru Acceleration on cruising phase

amax Maximum acceleration

B Davis equation constant

B1 Maximum braking force

C Davis equation constant

Ec Energy consumed

Ecr Energy consumed measured

Ecs Energy consumed estimation

Fb Braking force

∆t Schedule time

∆tr Remaining time to travel

∆xacc Distance travelled for acceleration

∆xbk Distance travelled for braking

∆xcoa Distance travelled for coasting

∆xcru Distance travelled for cruising

∆xtotal Total distance to travel

∆xr Remaining distance to travel

Fg Gravitational force

Fr Resistance force

FTotal Total force

Ft Traction force

Me Effective mass

γ Mass correction factor

xx

Mp Passengers mass

M Train mass

Pa Maximum traction power

Pb Maximum braking power

Pm Mechanical power

v Velocity

vF Final velocity

vi Train velocity at instant i

vI Initial velocity

vri Train velocity at instant i measured

vsi Train velocity at instant i estimated

vbk Braking velocity

VMax Velocity limit

vop Cruising velocity

tF Final trip time

tI Initial trip time

θ Line angle

T1 Maximum traction force

x Position

xF Arrival station position

xi Train position at instant i

xI Departure station position

xri Train position at instant i measured

xsi Train position at instant i estimated

xxi

CHAPTER1
Introduction

This first thesis chapter, the introduction, starts with a brief contextualization of the problem

to be solved and the associated motivation. Then, the problem is contextualized and its main issues

described, as well as the intended objectives and requirements. Finally, the main original contributions

and conclusions are presented.

1.1 Contextualization

It is well known that the railway is one of the most used systems for freight and passenger trans-

portation. Its widely use derives mainly from being a reliable, on time and secure transport system.

Unfortunately, operation and maintenance costs associated to railways have augmented over the

years, and so the associated consumption of electrical energy has also increased. On the other hand,

due to today high traffic, some infrastructures are near to its maximum capacity, debilitating their

ability to respond to all costumers/system needs. So, associated to the iRail Program framework, and

with the purpose of accomplishing modern railway system needs, this thesis presents the results of a

research in methods capable of improving trains’ energy efficiency and at the same time maintaining

the defined train time table.

The iRail program - Innovation in Railway Systems and Technologies - has the purpose of trying

to answer to the actual concerns related with railway systems, such as achieving a high capacity, cost-

efficient and sustainable rail transportation system. The Thesis work covers the innovation program

IP3 – Cost-Efficient, Sustainable and Reliable High Capacity Infrastructures, exploring how electron-

ics and computer systems can contribute for the iRail program objectives, more precisely with this

innovation program [1].

Pursuing these objectives, this thesis presents an algorithm that solves, in real time, for optimal

train velocity in order to minimize energy consumption during train operation. This reduction is,

therefore, an opportunity for the increase concerning the railway system capacity.

1

Thus, this thesis starts presenting a typical train driving cycle. This will enable to identify the

train dynamics and, consequently, the amount of energy involved on a typical railway system. The

work carried out so far allows to develop a Driving Assistant System (DAS) capable of presenting,

in real time, to the train driver, the optimal speed profile between two consecutive stations. The

DAS optimization algorithm tries to minimize train energy consumption and to maximize the use of

regenerative energy constrained to the system schedules and line velocity limits.

1.2 Problem Description

The main problem that this thesis tries to solve is how to travel from two consecutive stations

minimizing the consumed energy. Also, the time table must be accomplished, velocity restrictions

in any part of the line should be respected, and maximum acceleration/deceleration, for passenger

comfort, must be taken into account. Additionally, lines with some parts without electrical energy are

also allowed as problem restrictions.

Fig. 1.1 shows a graphical representation of the problem.

Figure 1.1: Train Control Problem.

It intends to exemplify a common journey between two consecutive stations. Being the sequence

of departure and arrival from and into stations, in a journey, controlled by a train operator, it is expected

that the train travels from an origin station (Station A) to an arrival one (Station B). It should be

noted that, while in other types of transport systems the path may be unknown, on a railway journey

the line is always known. Besides, since the railway line is known, the train operator usually has

enough information about its characteristics, such as line gradients, velocity limits and any other

constraints. More than defining stations sequence, the train operator must accomplish the timetables,

which requires being aware of line availability dependent on the type of services performed.

2

In order to get a solution for the presented problem, this thesis focused on developing a software

tool that determines speed profiles to be applied between two consecutive railway stations. Knowing

all information about the journey, as the distance to be travelled, total time available and line physical

characteristics (e.g. gradients and parts without electrical energy), speed profiles can be determined

concomitant to one or more objectives. The ones chosen as the main targets of the developed algo-

rithm was journey energy minimization constrained to the existing time table. In addition, it is also

important not to forget that, in commercial services, train load consists mainly of passengers and, for

that reason, the algorithm must be aware of maximum accelerations/decelerations allowed in order

not to compromise passengers’ comfort and security.

1.3 Objectives

As already mentioned, the aim of this work is the development of a tool with the purpose of

achieving energy efficiency improvement in the railway system. This way, its objective will be met

by developing solutions allowing both minimization of energy consumption and maximization of

energy regeneration. To reach these objectives, the development of a DAS is proposed. As the name

suggests, a DAS is a system that advices the driver about train operation in order to meet a specific

purpose. These systems are typically installed in the cabin and, through a display, information about

velocity, acceleration and braking phases are displayed. As velocities profiles generated by DAS are

usually created considering energy consumption and/or time delays reduction [2], it is intended that

the developed one should just do the same but with real time capabilities.

Based on this thesis proposal, and associated to Shift2Rail program, the following objectives were

defined :

1. To make a research on the state of the art concerning train models;

2. To develop and implement a train model for simulation purposes;

3. To do research on state of the art’s algorithms considering energy efficiency improvement in

railway systems;

4. To implement a software tool that determines the best speed profile constrained to line restric-

tions;

5. To validate the developed algorithm through real data;

3

6. To develop a tool for parameter optimization for the developed train model;

1.4 System Requirements

Considering that one of the thesis main objectives, the development of an algorithm suitable to use

on a DAS, and before presentation of the state of the art, as well as all thesis’s developments, a small

description about system requirements will be presented. The DAS has the main purpose of advising

the train driver about the speed to use in the actual journey. So, the train driver takes actions over train

controls so as to follow a specific speed profile. The determination of the speed profiles is achieved

through a TMS, which is the algorithm responsible for the dynamic representation of the vehicle. An

overview of the algorithm can be seen in Fig. 1.2

Figure 1.2: System Overview.

Starting with algorithm inputs, it must be ready to receive the position of the departure station

(xi), actual journey distance (∆x), as well as schedule time, (∆t). Total distance is defined by the

distance between two consecutive stations, defined as stops, and the available time is defined on a

timetable by the train operator. Besides time and distance, line constraints and its characteristics (line

data) must also be available and used by the algorithm, once they will constrain energy needs as well

as train maximum accelerations/decelerations and, consequently, the respective velocities. After data

acquisition or, in other words, after all inputs read, the following step is to make a speed profile (TMS)

according to all requirements initially imposed.

Depending on the system architecture, the optimal speed profile can be determined by following a

set of rules or being selected from a pool of some options. Following the second hypothesis, the algo-

rithm must include a mechanism responsible for selecting the best solution from a bunch of possible

candidates. This mechanism is known as optimization algorithm and its implementation requires the

definition of how new solutions are determined as well as how they will be evaluated. From state of

the art’s examples, DAS could determine velocity profiles with the main purpose of reducing energy

4

consumption and/or decreasing travelling time.

For the specific algorithm to be developed, another requirement was added: it is intended that

the algorithm must run in real-time DAS. This means that a solution must be determined as fast as

possible (minutes), preferably during train stop on departure station, being presented to the train driver

before its departure. This additional requirement adds some difficulties to algorithm implementation

and will be determinant in the decision about its structure.

1.5 Original thesis contributions

Based on the thesis main objectives inserted in the Shift2Rail scope, the contributions identified

for this thesis work are:

1. The development of a Simulated Annealing based real time algorithm capable of the increase

in railway system’s capacity by reducing energy consumption in each train;

2. The fact that the algorithm optimizes timetables so reducing time delays;

3. The development of an algorithm, also based on Simulated Annealing, capable of making train

parametric optimization.

1.6 Thesis Structure

This thesis is divided in six chapters. Chapter one presents a small introduction to the problem to

be solved. Chapter two exposes the state of the art. This chapter is dedicated to the main objective

of the thesis, a brief description about energy flow on a train, the actual state of the art over energy

optimization in railway systems, the parameter estimation associated to the Train Motion Simulator

and some optimization algorithms being presented. After the state of the art, the third chapter is mainly

focused on the Optimal Speed Profile (OSP) generator. The chapter starts presenting the train dynamic

model, followed by the demonstration of the way speed profiles can be determined. This is done by

following OSP generator algorithm’s timeline, starting with initial developments on simple cases,

with simple constrains, showing the algorithm evolution and solutions adopted when new constrains

appear. The chapter ends with an explanation about all developments for the last algorithm version.

Chapter four introduces the optimization algorithm. This chapter starts with a detailed explanation of

the developed algorithm, followed by the description of its implementation within OSP. Two versions

5

were implemented with different cost functions, both being both presented in detail and, for each one,

the obtained results being presented. Algorithm validation is done comparing its results with real data

results acquired in several journeys. The fifth chapter shows two techniques used to estimate the train’s

model parameters. The results for each technique are presented after each algorithm presentation and,

before the end of the chapter, are compared in order to see its performance. Chapter six presents the

main conclusions as well as some possible future developments, which can be taken into consideration

so as to improve the current work.

6

CHAPTER2
State of the Art

This chapter presents the state of the art related to the main subjects discussed in this thesis. It

starts in Section 2.1, with a brief presentation about regenerative energy flow on railway systems. The

chapter continues in Section 2.2, showing the research, found in the actual literature, associated to

the tools used to obtain the optimum speed profiles for train operation. After covering this first part

of the thesis, chapter continues in Section 2.3, with the research related to parameter estimation for

dynamic train models. Finally, Section 2.4 presents five algorithms as possible candidates associated

to the implementation of the optimization process.

2.1 Regenerative Energy Flow

The study associated to the railway system, performed throughout this thesis, started with an

analysis of the regenerative energy flow during train operation. Regenerative braking is frequently

used as a technique associated to energy regeneration. As in many other systems, this technique uses

train kinetic energy associated to decelerations, to generate electrical energy. This resulting recovered

energy can be used in the system or stored properly [3].

The recovered energy, in the railway system, has three possible destinations has described in [4–6]:

• Auxiliary systems power supply: feeding auxiliary systems installed in the train (air conditioner

or door opening system, etc.);

• This typically happens when the amount of recovered energy is higher than the train internal

auxiliary systems consumption. However, energy sent back to catenary must be consumed.

Usually, there are two different destinations:

• Grid injection, Fig. 2.1a. This energy injection, into the grid, implies that the substation

is equipped with a bidirectional power flow converter;

7

• Reused, in the catenary, in the same line section, by another train, Fig. 2.1b. This applica-

tion requires some synchronization between train departures and arrivals, to allow energy

exchanges between two lines’ ”dead zones”.

• Dissipated on braking resistors installed in the train.

On the other hand [40] is the only paper on battery-based ESS

for stationary applications available in the scientific literature. It

describes the GigacellÒ Battery Power System developed by Kawa-

saki and presents the experimental results obtained from a pilot

project carried out in 2010 to test its performance in real traffic

conditions. As shown in Table 5, this commercially available sys-

tem is based on NiMH technology. Tests conducted at the New

York City Transit network demonstrated the capability of the sys-

tem to capture and manage regenerated braking energy.

A list of the stationary ESS currently commercialised is given in

Table 5. As can be seen, only two battery-based systems are avail-

able apart from the aforementioned GigacellÒ BPS, namely: Inten-

sium Max system, developed by Saft, and B-CHOP system,

developed byHitachi. Both of them use Li-ion technology and have

been tested in urban rail systems for braking energy recuperation

purposes. Whereas the Hitachi’s system has been in regular opera-

tion in Kobe (Japan) since 2007 [140], the IntensiumMax system is

currently being tested in the Philadelphia public transport net-

work, within an innovative project launched by SEPTA in partner-

ship with Viridity Energy. This project aims at recovering the full

regenerated energy capability of the line by means of wayside stor-

age and energy return to the main grid [143,144]. The power con-

trol and conversion capabilities in that stationary ESS are provided

by the Envistore™ system, originally developed by Envitech Energy

to work with supercapacitors [131].

It can be concluded from Table 5 that EDLC is the technology se-

lected by most of the manufacturers to develop their wayside ESSs.

The SitrasÒ SES (Static Energy Storage) system marketed by Sie-

mens appears to be the most used so far, with several prototypes

and commercial units installed in different urban rail systems

worldwide such as Cologne (Germany), Madrid (Spain), Peking

(China) or Toronto (Canada). Bombardier, another major railway

manufacturer, has developed its own system based on supercapac-

itors, the EnerGstor™. In this case, no examples of real application

could be found. Adeneo, a member of Adetel Group, has developed

a stationary ESS based on supercapacitors that is commercially

known as NeoGreenÒ Power. This system is currently being tested

in line T2 of the public transport network of Lyon (TCL), where one

1 kWh bay has been in operation since March 2011 with very

promising initial results [128]. Inturn, Woojin Industrial Systems

has been contracted by the Korean Railroad Research Institute

(KRRI) to install and test an ultracapacitor-based wayside ESS in

the Seoul metro system. First results from this project showed that

the system could reduce overall energy consumption by 23.4% and

would help stabilise the network voltage [129]. Other EDLC-based

systems commercially available are Capapost, developed by Mei-

den, and the aforementioned Envistore™ system, marketed by

Envitech Energy, a member of the ABB Group. These systems have

been reported to be installed in Hong Kong andWarsawmetro sys-

tems, respectively.

As an alternative to EDLC technology, on the market one can

find stationary ESSs using flywheels, as for example Powerbridge

(by Piller Power Systems), GTR (by Kinetic Traction Systems) or Re-

genÒ (by Vycon). The Powerbridge system has been firstly tested

within a pilot project carried out inHanover (Germany) in 2004

with very promising results in terms of power peaks minimisation

and energy savings. More recently, a 1 MW unit has been installed

in the metro system of Rennes (France) with considerable energy

saving results [26]. As for the GTR system, it is interesting to men-

tion that it has been originally developed by Urenco Power Tech-

nologies (UPT), but KTSi holds exclusive license to manufacture

and commercialise the technology since 2010 [135]. Some demon-

stration projects had successfully been carried out prior to the

technology acquisition by KTSi, for instance in the London Under-

ground (2000), in the New York City Transit system (2002) or in the

metro of Lyon (2003 and 2004), see [39,136]. Lastly, the RegenÒ

system has been mainly used for braking energy storage in cranes,

Table 5

Stationary ESSs developed by international manufacturers.

Brand name Manufacturer ESS Application in urban rail Ref.

SitrasÒ SES Siemens EDLC – Madrid metro, in-service since 2003 [118,125,126]

– Cologne public transport network, in-service since 2003

– Beijing metro, in-service since 2007

– Toronto rail transit, in-service since 2011

EnerGstor™ Bombardier EDLC – [127]

NeoGreenÒ Power Adeneo (Adetel Group) EDLC – Lyon tramway, pilot project in 2011 [128]

– Woojin Industrial Systems EDLC – Gyengsan light rail system, pilot project in 2008 and 2009 [129]

Envistore™ Envitech Energy (ABB group) EDLC – Warsaw metro, to be implemented [130,131].

– Philadelphia transit system, pilot project in 2012 (battery-based)

Capapost Meiden EDLC – Hong Kong metro, to be delivered [132,133]

Powerbridge Piller Power Systems Flywheel – Hannover metro, pilot project in 2004 [26,134]

– Rennes metro, pilot project in 2010

GTR system Kinetic Traction Systems Flywheel – London metro, pilot project in 2000 [39,135,136]

– New York City transit system, pilot project in 2002

– Lyon metro, pilot project in 2003–2004

RegenÒ system Vycon Flywheel – Los Angeles metro, to be delivered [137,138]

GigacellÒ BPS Kawasaki NiMH – New York City Transit network, pilot project in 2010 [40]

B-CHOP Hitachi Li-ion – Kobe transit system, pilot project in 2005 and regular service since 2007 [41,139–141]

– Macau metro system, to be delivered

Intensium Max Saft Li-ion – Philadelphia transit system, pilot project in 2012 [142–144]

Fig. 6. Schematic of reversible substations in urban rail.

384 A. González-Gil et al. / Energy Conversion and Management 75 (2013) 374–388

(a) Grid injection

3.3.1. Main characteristics of on-board applications . 380

3.3.2. Technologies for mobile storage systems . 381

3.3.3. Overview of case studies and commercial systems for on-board applications. 381

3.4. Wayside energy storage systems . 382

3.4.1. Main characteristics of wayside applications . 382

3.4.2. Technologies for wayside storage systems . 383

3.4.3. Overview of case studies and commercial systems for wayside applications . 383

4. Reversible substations . 385

4.1. General characteristics . 385

4.2. Overview of case studies and commercial systems. 385

5. Conclusions. 386

References . 386

1. Introduction

Urban rail systems play a key role in the sustainable develop-

ment of metropolitan areas for many reasons, but mainly because

of their relatively low ratio between energy consumption and

transport capacity. Nonetheless, in order to retain their environ-

mental advantages over other transportation modes in an environ-

ment characterised by growing capacity demands and energy

costs, significant improvements in energy efficiency must be

achieved.

The conversion of kinetic energy into electricity, commonly

known as dynamic braking, is based on the capacity of electric mo-

tors to also act as generators. The use of this kind of braking is

widely spread in railway transport as, in contrast to friction brak-

ing, it does not generate wear and tear, dust, smell, heat or sound

[1]. In dynamic braking, the regenerated electricity may either be

dissipated in banks of variable resistors (rheostatic braking) or

may be reused within the transport network itself (regenerative

braking). Before the outstanding development of power electronics

in the last decades, rheostatic braking was the only available op-

tion. But with current technology regenerative braking appears to

be a very promising solution to reduce energy consumption in

electrified urban transport networks. Note that recuperation of

braking energy in these kinds of systems is remarkably interesting

as they are characterised by numerous and frequent phases of

acceleration and deceleration.

Typically in regenerative braking, the recovered energy is pri-

marily used to supply the auxiliary and comfort functions of the

vehicle itself. Then, the energy surplus may be returned into the

power supply line for use of other vehicles within the same net-

work. However, DC distribution networks, which are the most

commonly used in urban rail systems, are not always receptive;

i.e. they are not always able to admit the recovered braking energy.

Generally speaking, the recovered excess energy can only be sent

back to the supply network when a simultaneous consumption

takes place, for instance when another train is accelerating in the

same electric section. To dissipate the regenerated energy that can-

not be used within the system, vehicles are typically equipped with

on-board resistors implying not only additional weight and costs,

but also a potential risk of fire.

In order to maximise the use of the recovered energy and con-

sequently minimise the need of on-board resistors, two major

alternatives have been studied in the literature. The first one con-

sists in equipping vehicles with energy storage systems (ESSs) that

temporarily accumulate the excess regenerated energy and release

it for the next acceleration phase [2–21]. The second option con-

sists in improving the receptivity of the network. This implies

introducing additional loads in the system demanding energy at

the same time that the braking process takes place. For that, some

investigations have suggested optimising scheduled timetables so

as to synchronise acceleration and deceleration of trains as far as

possible [22–26]. Moreover, the installation of storage devices in

substations or along the track (stationary or wayside ESS) could ab-

sorb the surplus regenerated energy, delivering it when required

for other vehicles’ acceleration [3,27–41]. Another option to im-

prove the receptivity of the line is to equip substations with DC/

AC inverters (reversible or active substations) so that the regener-

ated energy can be fed back to the medium voltage distribution

network, which is naturally receptive [42–46].

Several studies have shown that application of regenerative

braking in urban rail systems could potentially reduce their net en-

ergy consumption between 10% and 45%, depending on the charac-

teristics of each system [47–53] (note that track gradients have a

notable influence on the amount of energy that can be recovered).

Additionally, regenerative braking may mitigate some problems

typically associated with electrified transport systems such as volt-

age drops at the feeder lines or high power peak consumptions

[7,31]. Interestingly, in underground applications such as metro

systems, regenerative braking might contribute also to reduce en-

ergy consumption in HVAC by lowering the thermal loads in tun-

nels and stations [54,55].

However, despite all the aforementioned advantages of regen-

erative braking, nowadays recovered braking energy is mainly dis-

sipated in electrical resistors and only a small portion of it is used

to supply the auxiliary systems of vehicles or returned to the fee-

der line. One of the possible reasons for that might be that technol-

ogies enabling an efficient management of regenerative braking in

urban rail have only been available recently. The lack of experience

feedback may be hindering operators and local authorities from

investing in regenerative energy braking systems as a measure to

increase energy efficiency in urban rail.

With the aim of covering a lack found in the literature, this paper

presents a comprehensive overview of the options currently avail-

able for an optimal management of braking energy in urban rail

STATION

Regenerative braking energy flow

Braking train Accelerating train

Feeder line

Fig. 1. Schematic representation of regenerative energy exchange between trains.

A. González-Gil et al. / Energy Conversion and Management 75 (2013) 374–388 375

(b) Between trains

Figure 2.1: Regenerative energy flow in railways [5]

Looking at all the possible paths for regenerative energy flow, it can be concluded that there

are several focuses of development in order to contribute to the optimization of the rail system. To

maximize the regenerative energy recover and efficiency in the railway system, some developments

on integration in Energy Storage System (ESS) are being taken into considerations. As already as-

sumed, this thesis will not deal with regenerative energy maximization but with algorithms capable

of minimizing the total energy consumption, thus contributing to maximize energy efficiency in the

system. This leads to the next section, related to obtaining the optimal speed profile for this energy

minimization.

8

2.2 Energy Efficiency in Railways

2.2.1 Optimal Control Theory

First developments on train speed profiles optimization started in the 70s, as mentioned in [7],

with optimal control theory. In his PhD thesis, Milroy uses Pontryagyn’s Maximum Principle (PMP)

applied to a train running between two consecutive stations. The method is applied with the pur-

pose of finding the OSP allowing minimum energy consumption [8–10]. One of the most important

outcomes of Pontryagin’s maximum principle, applied to this energy minimization problem was the

shape definition and driving regimes sequence to be applied on a train’s movement between two con-

secutive stations, which minimizes energy consumption. Four driving regimes were identified based

on traction and braking force values [7, 11]:

• Acceleration — Driving regime applied, typically at the beginning of the journey. It applies

maximum force to move the train from starting up to the so-called cruising velocity. This

regime uses the maximum available force to maximize acceleration. When cruising velocity is

reached, the train driver ends this regime.

• Cruising — After reaching cruising velocity, the next driving regime is characterized by con-

stant force, which means zero acceleration and, consequently, constant velocity. The duration

of this regime is a variable to be determined and defined by the problem’s objective (consumed

energy minimization).

• Coasting — To reduce energy consumption, a coast phase is added to the optimal speed pro-

file. During this regime, no traction force is applied and, consequently, energy consumption is

zero. The end of this period is also a variable to be determined (also constrained by problem

objectives). In fact, good choices for coasting points shortens traction regimes. However, it

tends to increase journey time, which is constrained to the schedule. So, the points in the jour-

ney where coasting should start and finish are very important in terms of minimizing energy

consumption [12–14].

• Full braking — Driving regime applied at the end of a journey to guarantee the train stops at the

scheduled time and correct position. This regime uses the maximum available braking force to

maximize deceleration.

9

Figure 2.2 shows the four driving regimes, applied between two consecutive stations, associated

with the OSP. This profile assumes a line with zero slope and no velocity constraints. As can be

seen in the figure, the train’s movement starts with a phase of maximum acceleration followed by a

cruising one. The acceleration phase starts at departure station and ends when the train reaches the

pre-defined cruising velocity. Cruising phase starts in the point where the acceleration phase ends, the

same velocity value being maintained until the end of this phase. When the cruising phase comes to

the end, the coasting one starts. This phase uses zero traction force so energy consumption is null.

As expected, minimum energy consumption is reached by longer coasting regimes. Nonetheless,

unfortunately, travelling time increases. Therefore, a period of coasting phase is determined as a

trade-off between energy consumption and total travelling time. The last phase is the braking, which

ensures station arrival at zero speed at the schedule time.

Figure 2.2: Train Trajectory

Although the optimum profile was determined considering a flat line, it can be also applied in

the presence of small gradients. Nevertheless, the searching for OSPs for real situations must use

line slopes and velocity limits. In fact, the presence of slopes and velocity constraints in the line will

cause a break in each traction regime. As an example, the existence of a maximum velocity limit can

interrupt a cruising phase and introduce a braking one. A new acceleration phase and another cruising

one will then follow. Other changes to OSPs can happen in situations where, for instance, there is no

space to apply all driving regimes, or a different sequence must be applied. This usually happens in

suburban or metro services [7, 15, 16].

Therefore, using PMP for the solution to the general problem, associated with the identification

of the points related to the four identified driving regimes, and to solve the resulting optimization

problem, is a hard task and not usually compatible with real-time use. So, other approaches must be

10

tried in order to obtain OSP. Next, some algorithms capable of solving this problem are presented.

2.2.2 Literature Review

Some search algorithms have been recently used for the OSP problem when applied to real

train pathways constrained to its velocity limits, gradients and timetables, with the purpose of en-

ergy consumption minimization. The most common applied meta-heuristics uses Artificial Neural

Network (ANN), Ants Colony Optimization (ACO), Dynamic Programming (DP), Genetic Algo-

rithms (GA), Particle Swarm Optimization (PSO) or SA.

In [12] the authors present a GA for coast point determination in a train pathway. It generates

a new solution at each train stop, and before departure, producing a coast control table. The use of

a coast control table is justified by the possibility to use it in an Automatic Train Operation (ATO)

system. It searches for the optimum solution considering a multi-objective function. Each coast

profile result is constrained to time punctuality, passenger comfort and energy consumption. The

algorithm results for two different cases, based on schedules definition, were compared with a fuzzy

logic control ATO.

The algorithm does not have a cruising phase, using several cycles of motoring and coasting, mak-

ing the trip uncomfortable. Also, nothing is said about the used TMS and the possible line constraints.

The algorithm is implemented offline with a pre-determined number of coasting points. This is so

because simple GA do not have the capability to make this selection. Each point has an associated

gene, with 10 bits, for distance discretization. This way, computation time is higher for longer trips if

spatial resolution is to be maintained. Nevertheless, a C++ implementation of the algorithm typically

runs in half a minute in an IBM 486-compatible PC. Therefore, the authors claim that it has potential

for online implementation. The gains in energy, in the two reported cases, are small and about 7% and

3%, respectively.

Another GA is presented in [13]. It also locates coast points in a train pathway. At each stop,

a new profile for the travelling distance between two consecutive stations is determined. It uses

a binary string, with a variable length, dependent on the total travelling distance, to represent the

coast point’s position. The use of a binary string intends to reduce the complexity of mutation and

crossover operations used during the optimization process. The authors also considered, beyond a

single station-to-station optimization, a multiple-station scenario. For this last scenario, a Hierarchical

Genetic Algorithm (HGA) was implemented. It uses previous string structure with an extra variable

11

representing the total coast points needed. The algorithm uses a Minimum-Allele-Reserve-Keeper

(MARK) mutation scheme, in order to reduce processing time. Solution results use a cost function

based on two parameters: schedule time and energy consumption.

The algorithm uses only one or two cycles of motoring and coasting and does not have the cruising

phase. As a simple GA lacks the capability to select the number of coasting points, an HGA is tried,

but only for two coasting points, so it does not guarantee a near optimal solution. Also, in order to

meet the request for real time, a simpler mutation scheme is used. TMS and associated constraints are

not mentioned. Presented energy gains are 30% but at the expense of 30% extra trip time, which is

not always possible. The algorithm was implemented in Visual Basic so as to achieve a good human

interface. However, Visual Basic is a proprietary programming language not easily transferred to

other operating systems.

In [14], the search for an optimum speed profile, with energy consumption minimization, uses a

GA together with an ANN. The purpose of the ANN is to substitute the train dynamic model. ANN

inputs are a sequence of coast points and its outputs are total time and energy consumption. GA

determines the best option of coast point sequence based on a cost function defined as a weighted sum

of travelling time with energy consumption. Algorithm tests on a Turkish metro line with five stations

and two lines, on a multi-train situation, proved its effectiveness.

In this case, the cruising phase is omitted once more. Train speed profiles are made with the

use of proprietary software, namely SimuX. Being aware of the problems related to GA real-time

implementation, namely the huge number of times that the TMS must be called (for the considered

population size and number of generations 10000 times), the authors, considering its replacement, use

an ANN without slope constraints. Nevertheless ANN has limitations as it is trained for a specific line

with specific constraints and, therefore, is not flexible enough, e.g., online timetables or line speed

limits change. Also, ANN training demands hundreds of offline simulations (made by SimuX) which

are extremely time-consuming. Moreover, a search for optimal coasting points is carried out with

Matlab GATool, making real-time implementation very difficult. The two simulated results show,

respectively, a 30.85% energy saving, with a 4.81% increase in travelling time, and 18.25% less

energy, associated with a 4.65% increment in travelling time.

In [17], the authors present another example with GA: speed profile determination based on a

multi-population GA. The speed profile determination uses two phases. The first one applies travelling

distance between two consecutive stations, in order to find the most economical scenario. The second

12

one considers the full trip. The searching process makes use of a multi-population scheme, which

enables time travel reduction and avoids that the algorithm is stuck in local minima. Real data from a

subway line section in Beijing with a total distance of 21 km was used to test the algorithm. The tests

considered line gradients, curve radios and velocity limits.

The aim of the work is the minimization of total energy consumption between multiple stations.

Inter-station trip time may vary but total time should be relatively constant. This is also achieved

by finding the positions for switching between acceleration, coasting and braking. As usual in GA

the cruising phase is missing. As general GA suffers from premature convergence, when associated

with these kinds of problems, a multi-population GA is proposed. This has the problem of generating

a considerable number of calls to the used TMS (20000 calls are expected for the 200 generations

and 100 individuals proposed in the paper). Therefore, this will make its real-time operation hard.

Additionally, the method assumes that times between consecutive stations can vary as much as 16%

and, this is usually not the case. Nevertheless, results for the six simulated inter-stations show that the

algorithm enables 6.16% energy reduction, keeping the total trip time.

Evolutionary Algorithm (EA) is another example of algorithms applied in railways. In [18,19] the

authors present a multi-objective one for velocity profile determination. The proposed algorithm is of

Indicator - Based Evolutionary Algorithm (IBEA) type. It focuses on minimizing energy consumption

and travelling time, on the one hand, and energy consumption minimization, total travelling time and

delays reduction, on the other hand. It divides train pathway, limited by the distance between two

consecutive stations, into several sections defined by velocity limits. For each section, it is defined a

group of values for velocities profile solution (algorithm uses input and output velocities, as well as,

the maximum and desired ones. It also uses velocity limits of next section). Two different lines in

France served for algorithm validation.

Again, the main objective is associated with minimizing energy and travel duration. It uses a

complex TMS, dividing the travel into sections according to line speed profiles. For each one, five

variables have to be determined. The solution encoding needs a vector with triple the number of

sections. The algorithm needs the ParadisEO framework and uses as termination criteria simulation

time (60 seconds). Therefore, its real-time implementation outside the referred framework will be a

challenge. However, simulation results show that energy decreases up to 54% can be achieved with

15% of increase in trip time.

A comparison between three methods is presented in [20]. The proposed problem is the search

13

for optimum speed values along the journey. Points with zero velocity and with speed limits changes

are the ones where there is a need for velocity calculation. The studied algorithms, for performance

comparison, were GA, ACO and DP, which were used in three situations with different trip times. In

both situations, DP showed a better performance at the expense of an enormous computing complex-

ity, so it cannot be used in real-time applications. Travel smoothness is poor for both the ACO and the

GA algorithms mainly for longer travelling times. Also, in some of the studied cases, both the ACO

and the GA algorithms were unable to find a solution.

Another example that uses ACO algorithm for speed profile optimization is presented in [21]. The

generated speed profiles use a cycle of acceleration, cruising, coasting and braking. The solution is

searched by means of a MAX-MIN Ant System (MMAS) in two optimization stages (the first stage

is offline and its results are the reference for second-stage optimization). For its assessment, the

algorithm used real train data acquired from a metro line in Beijing.

Algorithm simulation results show a total computing time of about one minute, being 40 s for

the first stage optimization and the remaining 20 s for the second one. Energy saving rate is 14%.

Therefore, for dwell times bigger than the second stage optimization time, the algorithm can be used

in real-time applications.

The application of other nature-inspired searching algorithms, besides GA and ACO, was also re-

cently investigated. In [22] a PSO-based algorithm, with a multi-objective function, was implemented

in order to find the Pareto front for energy and trip time. It uses a train equipped with an ATO. The

objective is the minimization of both energy consumption and running time. The algorithm generates

a population of random command sequences and searches for a set of solutions, making a Pareto front

of minimum energy and possible running times. Its parameter tuning and validation used tests on

a flat track, in combination with a simple speed limit profile, in order to reduce computation time.

Algorithm validation uses a line section of the Madrid’s subway.

Considering the 20860 possible command combinations for speed profile generation, it needs 50

minutes of computation using a TMS previously developed by the authors. The obtained Pareto front

with the multi-objective PSO-based algorithm has a computation time of about ten minutes. Therefore,

it cannot be used for real-time applications. Also, the algorithm searches for pairs of energy/trip time

so cannot be constrained to existing timetables. However, in some cases, it can reach energy savings

of 20%.

In [23], a SA-based algorithm is presented, intends to reduce energy consumption in the metro

14

line between New York and Connecticut. The algorithm considers line gradients and velocity limits

during the searching process. Energy consumption calculation, for each generated solution, uses a

dynamic model of the train, previously developed by the authors. The TMS considers four motion

regimes, accelerating, cruising, coasting, and braking. However, cruising is only applied if needed.

The SA algorithm uses a cost function based on minimization of energy consumption and schedule

travelling times. Moreover, it enables re-annealing and uses Metropolis criterion as the rule for solu-

tion acceptance. The initial value of temperature is 100 and temperature updates use an exponential

schedule. Results of the algorithm are, for each travelling regime, maximum velocity, and time and

position of each coast point.

SA-based algorithms need to define a good starting temperature but the paper does not refer to it.

Furthermore, the initial solution and the method for generation of new solutions are not presented. A

cooling schedule factor is also missing. These are very important factors required for good algorithm

output. Regarding results, nothing is stated about computation time and obtained energy savings.

In [24], the authors present an algorithm that is a combination between GA and SA, a so-called

Genetic Simulated Annealing Algorithm. The objective of joining both algorithms is to eliminate its

individual weaknesses and to enhance its advantages. So, in a first stage GA, is used to create a good

initial value solution for SA. In a second stage SA, is initiated. This is to avoid local minima that

could occur if GA was only used. Matlab is used for running the TMS. It outputs speed, position and

time vectors, and energy consumption of the obtained speed profile. Some stations of the Eskisehir

light rail served for algorithm performance tests.

As already mentioned, GA and SA algorithms need well-chosen parameter sets. This way, for

satisfactory results, a method has to be used for parameter tuning. Therefore, the authors used for this

purpose a single 2000 m straight track with gradients, and made six test runs varying GA crossover

and mutation rates, as well as selection and crossover function. The SA algorithm’s annealing and

temperature functions were also varied. Nevertheless, nothing is stated about the criteria used for

these variations. The paper concludes that GSA can provide very good solutions but it has convergence

problems, so the tuning of its parameters is crucial. Unfortunately, once again, there is no reference

the gains in energy and total computational time.

From the previous paragraphs it can be conclude that, regardless of being scarcely used for the

train energy minimization problem and only for offline solutions, the SA algorithm has showed its ef-

fectiveness in solving minimization problems. In fact, the most common limitations of current works

15

can be overcome by the use of the SA algorithm, which can solve problems with multi-constraints

(comfort, speed limits, gradients, scheduling), can use of the optimal driving strategies for a train

(acceleration, cruising, coasting and braking), is of easy implementation in a non-proprietary environ-

ment, has a reduced number of parameters, without need for any tuning, escapes from local minima,

and can converge to an optimal solution in a small number of iterations. Also, fast calculation time

enables its online use. Therefore, from the literature review, a solution for the train energy minimiza-

tion problem with a new SA-based algorithm is developed in this thesis. Following, the state of the

art in what concerns parameter estimation for TMS, needed for OSP generation, will be presented.

2.3 Parameter Estimation for the Train Model

OSP generation, as well as the estimation of total journey energy, requires the use of a train

model, responsible for train movement description, which implies the determination of train mass

and all acting forces. It also calculates the amount of energy involved during train regular operation.

Determination of forces and energy calculation depend on the train dynamic model accuracy and the

level of detail associated to the dynamic representation. This level of detail may be achieved by a

model which is able to represent train behavior as similar as its reality. The dynamic representation is

done by a set of equations, some with a physical meaning, and others that are empirical and parameter

dependent. So, a few of them use coefficients to represent some kind of behavior and/or property.

As expected, the train dynamic model results are dependent on how well the model is capable of

representing the physical process, as well as to what extent the used parameters represent the chosen

vehicle.

After analyzing the state of the art, I can conclude that dynamic models currently in use to repre-

sent train motion use a reasonable number of parameters, which can be divided in two groups: known

and unknown parameters. Examples of known parameters are the ones given by train manufacturers,

as train mass and traction and braking characteristic tables or graphs. On the other hand, coefficients

associated to train resistance forces estimation are still subject of most studies associated to their de-

termination. The model used in this thesis represents train resistance force using a quadratic function

dependent on train velocity. This quadratic function is known in the literature as Davis equation and

uses three coefficients to represent train resistance force. Two coefficients are related with train mass,

having more influence on low velocities, and the third one is related with aerodynamic characteristics,

so it has a higher weight for higher velocities. Looking at each parameter physical meaning, it is

16

expected that the value of each one is dependent on train physical characteristics. So, its determina-

tion is necessary when a change on vehicle characteristics occurs. Train modelling and its parameter

estimation will be presented in Chapters 3 and Chapter 5.

Coefficients used on train model to represent train resistance force must be determined. According

to CEN standards, their its determination must follow a set of methods (all requiring experimental tests

and, consequently, measurements [25–27]). These methods can be summarized in three categories:

• Tractive effort methods: These are carried out when the train is moving. Resistance to the

movement is then correlated to the energy spent on the traction.

• Coasting methods: This method uses a line with constant gradient. The train is accelerated

until a pre-defined velocity. Then traction effort is set to zero and the resistance to movement is

determined by estimating train deceleration;

• Dynamometer or draw-bar methods: These methods make use of a dynamometer to estimate

train resistance in low velocities. They are typically used on constant gradient lines.

To perform all the tests associated to these methods, imposed by CEN standards, it is necessary to

have adequate measurement equipment and a dedicated line. As so, this approach, for train parameter

determination, being resource-dependent, introduces some practical difficulties. Nevertheless, esti-

mation of these parameters is essential for developing the algorithms associated with ATO and DAS,

as already seen. The train speed control must be precise in order to optimize energy consumption as

well as to maintain passenger safety and comfort. Therefore, since the methods imposed by CEN stan-

dards required additional material and equipment, they are costly and so some alternatives, to these

standards procedures, have been proposed. These alternative approaches are focused in techniques

capable of reducing the costs associated to the typical methods coefficients determination. Also they

intend to be as simple as possible, so reducing the associated complexity related to standard CEN

methods. Thus, a brief review, of these methodologies, is presented in the following paragraphs.

A good overview to the discussion over methods to calculate train resistance force (Davis equation

coefficients), is presented in [28]. The technique presented in this paper uses empirical relations for

determination of Davis coefficients, based on physical train characteristics (such as masses, number of

bogies, area and perimeter, etc.). The used rolling stock was the British Rail at the time. The method

is compared with other approaches used by the French National Railways, SNCF, German railway

and Japan. A comparison with measure data is also presented.

17

Another approach for train running resistance determination is made in [25]. The author claims

for method simplicity, using the coasting energy technique. Nevertheless, it needs a rolling train and

measurement equipment. The presented method can be used in tracks with variable gradients being

suitable for trains operating in mountain areas.

Following the same purpose, in [26, 29] a method to determine the mass factor, representing the

contribution of the inertia of the rotating parts, as well as coefficients for Davis equation, are presented.

The technique used in the paper uses a full-scale coasting test. Authors present, as its main advantage,

the independence on railway line characteristics as well as its accuracy. The method has only, on-

board, time and position measurements. Train acceleration and velocity are determined from these

data.

In [30, 31] a new method to determine the train model parameters is presented, determining co-

efficient values for as Davis equation and for the contribution of the rotating parts inertia. A set of

tests, in more than one hundred train routes, were done in order to get experimental data. Parame-

ters were determined using a technique known as IDIM-LS (Identification Dynamic Inverse Model –

Least-Squares).

Another technique is exemplified in [32]. The method uses an Unscented Kalman Filter to estimate

train resistance force. The filter was applied on a train coasting on a flat track. Parameters associated

to the resistive force were determined only for the first and last term of Davis equation (Authors

claim that the additional term, which multiplies the velocity, is small when compared to the remaining

ones). The filter was tested using the train model with known parameters. Noise is then added to

the generated speed profiles and this velocity sequence is used as an input to the algorithm. The

results were compared with real measurements and the maximum relative error in the resistance force

equation was determined.

Another process is presented in [33] in order to find train resistive force. Main focus of the

method is the determination of the coefficients for the resistive force. These will then be used in an

ATO system. Differing from the works previously presented, in this case, data used for coefficients

estimation was acquired by the ATO system itself. So, the use of additional measurement systems,

as well as any experiment in the train, were avoided. Parameter estimation was achieved using LSM

in the acquired data. According to the authors, the use of LSM was not appropriate due to the fact

that there is no opportunity to constrain the values of the coefficients. Thus, a modified version of

the method has been implemented called multi-innovation least squares algorithm. This method is a

18

recursive one, which can be applied for on-line coefficients determination.

In [27], a new coefficients estimation method is shown using on-board telemetric system data.

The method implemented determines the resistance force coefficients in an iterative process. At each

iteration, a new solution for the coefficients is evaluated and a train model is used to estimate train

energy consumption. Then, this energy is compared with measurements from a telemetric system. The

algorithm implemented uses a formulation based on a minimization problem. The objective function

is defined so as to minimize the sum of the square differences between estimated and measured energy.

Another technique to determine the train model parameters is presented in [34]. This paper uses

a Maximum Likelihood Estimation (MLE) to determine train mass on inter stations journeys. Train

resistance force is considered as known. The method is applied only to determine train mass. The

algorithm output is analyzed by comparing its results with line measurements. Train operation data

can be successfully used to estimate parameters values for train dynamic model.

In [35], the authors suggest a method to estimate train resistance force in tunnels, using data

acquired during railway operation. Two different approaches, in order to find for train resistance pa-

rameters, were considered. The first one makes use of train acceleration. For this first approach, two

hypotheses for acceleration determination were considered: one measured and the second one deter-

mined by velocity records. The second approach uses train velocity measurements and determines

train resistive force by fitting the model output with the real measurements. In the end, comparing

both approaches, it is concluded that the second one, using minimization of the error between es-

timated and measured velocities, for resistive force parameter determination, is the one that shows

better results.

In [36], authors use acceleration measurements, from high speed trains, in order to find resistive

force parameters. The study took place on Korean high-velocity lines. The velocity measurements

were taken and, posteriorly, train acceleration was determined. Velocity measurements were carried

out during regular operation. Some specific track positions were selected as well as coast commands

between defined velocities. Due to the requirement to meet schedules, coasting phases, and conse-

quently, measurements were taken in different line sections. After collecting all measurements, train

resistance to motion was determined by fitting train acceleration to a polynomial function, in open air

as well as tunnels.

A study on resistance force in Korean high-speed trains, similar to the one presented in [36],

is found in [37]. In this study, some coasting tests are performed and resistance force coefficients

19

are determined based on a polynomial fitting curve. Results from coasting tests are compared with

coefficients determined in real conditions and some empirical methods.

Currently, the coefficient estimation for train models is an unexplored area, since the amount of

published work is not as high as expected. The problem itself can be defined generally as parameter

estimation on Ordinary Differential Equation (ODE) system. The estimation can be done by fitting

experimental data to the model. Data can be obtained during train regular operation or experimental

tests in dedicated tracks. This estimation be achieved applying some mathematical tools, as presented

previously, or by applying an optimization algorithm. The main idea is to reformulate the estimation

problem as an optimization one. Then parameters are estimated by comparing real data with the train

model output. Resulting error is then used for, iteratively, try to converge for a near optimal solution.

A review of optimization methods applied to parameters estimation for ODE models is offered

in [38]. Authors present a survey on optimization algorithms for systems biology, presenting a list of

the possible ones that can be applied to these problems. The list includes SA, GA, EA and Differential

Evolution (DE). The article describes each one of these algorithms and shows possible algorithm

definition and implementation. In the end, a comparison between all methods is made. Another

example of some algorithm as SA, PSO GA are presented in [39–43]. In all these papers, it is visible

that input data is needed and, independently to what algorithm is selected, the problem must be well

defined in concerning the way the new space of solutions is generated as well as how the cost function

is built. As this thesis uses one of the mentioned algorithms, namely SA, the next section is dedicated

to a brief review of some of these algorithms.

2.4 Optimization Algorithms

Optimization algorithms can be used to solve problems that are usually defined by a mathemat-

ical model subjected to a set of constraints. The algorithm starts by choosing the so called design

variables that will be changed during the process of optimization. Then it must formulate the associ-

ated constraints. These describe functional associations between design variables and/or other design

parameters imposed by any physical or resource limitation. The next step involves the formulation

of an objective or cost function, depending on the design variables. This objective function is then

iteratively minimized, or maximized, with the purpose of finding a solution that is optimal, in some

sense, to the problem requirements. The optimal solution, for an optimization algorithm, is consid-

ered found when a set of values for the design variables, is determined within algorithm constraints.

20

This solution must satisfy some termination criteria, such as minimum/maximum values for design

variables or maximum number or iterations [44].

From the state of the art’s analysis, and since the thesis’s objectives are related with energy ef-

ficiency optimization, some algorithms were considered, as possible candidates, to be applied in the

solution of the proposed problem. Bearing this in mind, in this section some of them will be presented.

There are two distinct types of optimization algorithms: deterministic and stochastic. Deterministic

ones use specific rules when generating new solutions. Stochastic algorithms use probabilistic rules

when moving between solutions. Most of them try to imitate some rules associated to nature. In the

following section, some of these algorithms are briefly presented, namely linear programming, GA,

SA, PSO and ACO.

2.4.1 Linear Programming

Linear programming, as the name suggests, is a technique used to find optimal solutions for linear

problems. Linear problems are defined by linear objective functions and constraints dependent on

design variables.

When the problem is defined by a low number of design variables (between 2 and 4), the optimal

solution can be determined through a graphic method. The optimal solution is obtained by a graphical

visualization of the problem, using a 2-D or 3-D reference frame.

To increase the range of applications of linear programming, a standard form can be used in order

to convert a non-linear problem into a linear one. In the standard form, the restrictions are reformulated

as equalities and the problem is converted into a minimization one. To rewrite the problem in standard

form, some transformations must be carried out. In [44], it can be found a good explanation of the

necessary steps that must be followed during problem transformation.

One well-known linear programming technique is the simplex method. This method is applied

in problems with high number of design variables. The method searches for the optimal solution by

moving, iteratively, from each feasible solution to another one. Feasible solutions are the solutions

that accomplish all the constraints imposed by the problem formulation [44].

2.4.2 Genetic Algorithms

Based on evolutionary theory, GA are searching algorithms that look for the optimal solution

through a space of solutions. The optimal solution searching process uses a group of points, instead

21

of a single one, and so GA are also known as global optimal searching algorithms. The group of

points used for the solution searching is called population. For each individual of this population, a

fitness value is iteratively determined in order to understand how the latter adjusts to the former. This

is sometimes regarded as a disadvantage since algorithm processing time increases with the number

of individuals. Furthermore, a group search does not prevent the algorithm from being trapped in a

local solution instead of searching for the optimal one [45].

Even before starting algorithm description, some definitions must be considered. The algorithm

search, as referred, runs based on a population. Each population is composed by several individuals

and each individual is structured by genes. Genes are considered the most basic elements in the

algorithm. In a GA, and before it runs, an assumption for the population must be reached. This

assumption defines the population codification, a process which happens during its construction. Each

individual is codified, being converted into a string of bits. This makes it easier to do some operations

associated to the searching process, such as mutation and gene crossover. The GA algorithm flowchart

is presented in Fig. 2.3.

Initialize Population

Optimal
Solution

Fitness

Reproduction

Crossover and
Mutation

Stop

No

Yes

Figure 2.3: Genetic algorithm flowchart (adapted from [44])

As can be seen, a GA is a hierarchical algorithm that tries to follow the rules of evolution, just

like in nature, thus, the best information, selected at each iteration, passes through generations. As

so, during the searching process, the population suffers some mutations based on best individuals,

defined by the best fitness value. The purpose is to generate the next population, used in the following

iteration, based on the best individual characteristics.

22

The algorithm starts defining initial values for the population, which is followed by the determi-

nation of its fitness value. Based on the obtained fitness values, the best individuals are identified and

selected, the remaining ones being dropped away. The next step is reproduction, where a new popu-

lation is created using the best genes from each individual. To allow for changes in new generations,

some genes exchanges must occur. This happens in the step called ”crossover”, where individuals are

randomly selected to cross genes. As result of these operations, a new population is generated and it

will be used at the next algorithm iteration.

The GA algorithm admits that the best population is generated by the best individuals. So, the

algorithm evolves by continuously mutation over best individuals. The optimal solution is found

when there are almost no variations among several individuals of the population [44, 45].

2.4.3 Simulated Annealing

The SA algorithm tries to imitate the metallurgical process of annealing, more specifically the

thermodynamics associated to the process of heating a material, above the point of recrystallization,

and then cooling it down slowly, in order to obtain perfect crystalline structures. Fig. 2.4 shows the

associated flowchart.

The SA algorithm searches for the optimal solution in an iterative process. It starts with parameter

initialization. Then, iteratively, a new solution of the problem is tried, starting with this initial set

of values. The new solutions are accepted or not, based on the value they obtain, associated to the

defined objective or cost function. If the current cost function value is better than the last one, the new

solution is accepted and stored. If not, the current solution can still be accepted based on the value

of a probabilistic function, usually associated to the Boltzmann distribution [46]. This probabilistic

function uses a parameter, called temperature, T , analog to the physical temperature of the annealing

metallurgical process. In each iteration, temperature is decreased, according to some scheme, nor-

mally a geometric progression of the type Ti+1 = αTi, where α is the so-called cooling factor, which

typically assumes a value somewhere between 0.8 and 0.9. This temperature reduction makes the

probability to accept a worst solution, this is to say a solution with higher cost value than the previous

one, higher at the beginning. This is the main feature of the algorithm that enables it to escape from

local minimum. As temperature decreases, the probability of accepting worst solutions also decreases.

23

Solution
Evaluation

Parameters

Initialization

Accepted

Update

Temperature

Decrease
Temperature

Optimal

Solution

Stop

New Set

No

No

No

Yes

Yes

Yes

Figure 2.4: Simulated Annealing flowchart (adapted from [46])

Finally, the algorithm must have a stopping criteria. Some of the possible options are:

• Maximum number of iterations;

• Minimum value of temperature;

• Optimal solution found.

The first two options are easy to define. The last one it can use some measuring criteria associated

to the evolution or value of the cost function. If, after a pre-determined number of iterations, the cost

function fails to accomplish this criterion, the algorithm stops.

24

2.4.4 Particle Swarm Optimization

Particle Swarm Optimization, PSO, is an optimization algorithm that searches for an optimal

solution in a candidate space of possible ones. This algorithm is inspired in the movement of a group

of animals, such as bird flock or fish schooling. This way, searching for solutions, inside the space

of candidates happen as a swarm behavior. Thus, the algorithm keeps tracking the best individual

positions in the population of particles. So, updating a particle position is influenced not only by its

actual position but also by the best known in the candidate solution space, of all other particles. This

will likely moves the particles in the direction of the optimal solution.

As the already presented algorithms, PSO starts with the initialization of some variables. In this

case, the definition of the number of the population particles and its individual positions are the initial

tasks to be done. The individual positions are initialized using a uniformly distributed random vector:

xi,k = xi,min +(xi,max− xi,min)ui (2.1)

Since the PSO algorithm is an iterative searching process, the evaluation of new solutions and

new particles definition is repeated until the cost function minimization is accomplished. So, at each

iteration, the position of each individual changes and is updated by:

xi+1,k = xi,k + vi+1,k (2.2)

It should be highlighted that this new position is constrained to the search space boundaries. In

(2.2), vi+1,k represents the velocity of the individual that must be updated in each iteration. The

individual velocity is characterized by three components: inertia, personal and social influence. These

parameters must be chosen by the user and are fundamental for a good behavior and efficacy of the

PSO method. Thus, the formula for velocity update is:

vi+1,k = w1vi,k +φ1 (pxik− xi,k)ui +φ2 (gxi− xi,k)ui (2.3)

In (2.3), pxik is the best individual and gxik the global fitness that are found using [44]:

pi+1,k = f (xi+1,k) (2.4)

gi+1 = min(pi+1,k) (2.5)

25

The next step is the update of the particle and swarm’s best-known positions. The termination criterion

is usually associated to a maximum number of iterations or to a pre-defined value for the objective

function.

2.4.5 Ant Colony Optimization

Just like the previous algorithm, ACO also has a nature analogy: pheromone-based trail-following

ant’s behavior in searching for food. The algorithm starts by defining the number of ants, layers and

nodes. The number of layers is associated to the design variables while nodes are related with its

values. As it happens in an ant colony, when ants are searching for food, they must pass through all

the nodes, searching for the best solution, defined by the objective function. During the searching

process, the best solution tends to get more ants. As it happens in nature, each ant leaves a trail with

the purpose to guide other ants. So, in the algorithm, the same occurs by updating a variable called

pheromone with the purpose to guide all the ants to the best solution. Defining N as the number of

ants, the probability of node j to be selected is determined by:

pk
i j =

τi j

∑ jεNk
i

τi j
(2.6)

In (2.6), τi j represents the trail. It can be determined by:

τi j = τi j +∆τ
k (2.7)

The trail is updated during the searching process by:

τi j = (1−ρ)τi j +
N

∑
k=1

φ fb

fw
(2.8)

In (2.8), ρ is known as the evaporation rate (typically equal to 0.5). fb and fw are, respectively,

the best and the worst values of the objective function.

ACO has several applications in the field of large combinatorial optimization problems, as optimal

vehicle routing and project scheduling [20, 44].

26

CHAPTER3
Optimal Speed Profile Simulator

This chapter will present the developed OSP algorithm. This procedure is responsible for the

creation of the speed profiles that will be evaluated by the optimization algorithm. The algorithm

uses, as its inputs, given values for cruising and braking velocities, vop and vbk, respectively. The

chapter starts in section 3.1, by explaining the adopted train model, followed by the presentation of

the four different dynamic driving regimes, established in section 2.2.1. Next, TMS formulation is

carried out, followed by the introduction of the three considered line constraints: gradients, velocity

limits and neutral zones. Finally, in sections 3.5 and 3.7, the TMS state machine and the construction

of the speed profile are exposed.

3.1 Train Model

The implementation of an algorithm capable of creating speed profiles requires a dynamic model

of the train. This train dynamic model has the purpose of simulating, using a mathematical model,

the vehicle behavior, concerning its speed along time. So, in agreement with the thesis objectives, a

dynamic model will be presented, allowing to compute velocity profiles, as well as, time, travelled

distance and energy needs.

In this thesis, train dynamics is modelled using the mass-point model, as presented in [47, 48].

This model assumes the motion of a train with distributed mass, as the motion of a point coincident

with the train center of mass. Despite its simplicity, this model was selected for usage because it can

be reproduced with precision train behavior. Moreover, being a less complex model, less processing

requirements, as well as time, are required, which is an advantage since it is intended to be applied in

real time simulations. The forces acting on the train are presented in Fig. 3.1. An uphill situation is

considered.

27

Figure 3.1: Train acting forces in uphill motion.

These acting forces, associated to its movement, are:

• Traction Force - Ft(v)

• Resistance Force - Fr(v)

• Gravitational Force - Fg(s).

Knowing all forces acting on train, total force can be defined as (3.1).

FTotal = Ft(v)−Fr(v)−Fg(s) (3.1)

Force Ft(v), in Equation (3.1), can represent both a traction or a braking force. When a traction

force is needed, Ft(v) assumes a positive value. When in a braking situation, its value is negative.

Three situations can occur, influencing the type of train movement:

1. Ft(v)−Fr(v)−Fg(s)> 0

2. Ft(v)−Fr(v)−Fg(s) = 0

3. Ft(v)−Fr(v)−Fg(s)< 0

Case 1, commonly happens when the traction force value exceeds resistance and gravitational

ones. The result is a positive acceleration and, consequently, the train increases its velocity. In the

second case, resulting total force is zero. This case results in a zero acceleration, causing a constant

28

velocity. Last case typically occurs when resistant forces are bigger than traction or when a negative

traction force is applied (normally associated to regenerative braking). The result is a negative accel-

eration and, accordingly, train reduces its velocity. Having all acting forces defined, it is possible, by

Newton’s second law, (3.2), to establish vehicle acceleration:

FTotal = Ma (3.2)

As it is well known, equation (3.2) states that acceleration, a, of an object, with mass M, is caused

by the sum of all applied forces it, FTotal . In the studied case, which uses the mass-point model,

train mass, in equation (3.2), is usually replaced by the so-called effective mass, Me, which allows

to take into account the mass of the train’s rotating parts. As an exact value of the influence of the

rotating parts is of difficult calculation, train effective mass is established considering total mass and

a correction factor, γ , as shown in (3.3), Me being the equivalent mass.

Me = M(1+ γ) (3.3)

The γ factor typically takes values between 0.06 and 0.11, accordingly to the type of train [49].

To properly determine train velocity, time and distance travelled, passengers’ mass, Mp, must also be

considered in the dynamic model. Bearing in mind passenger and/or load masses, the total mass to be

used in equation (3.2), is:

Mtotal = M(1+ γ)+Mp (3.4)

Forces opposing the train movement are namely resistance and gravitational ones, respectively

Fr and Fg, and we will first analyze the former. Resistance force, Fr, is commonly represented by

Davis equation (3.5). This states that this force is the sum of three terms: a constant and two others,

depending on train velocity:

Fr = A+Bv+Cv2 (3.5)

Davis equation is widely used because it simplifies the calculus of resistive forces, describing it

as a polynomial function. So, this force will change nonlinearly with train velocity. Each parameter,

A, B and C, have a different physical meaning and they are specific to each train. Parameter A is

independent of train velocity and represents the resistance at start-up. Second parameter, B represents

29

resistance dependence on velocity, influenced by the mechanical transmissions. It can be stated that A

and B are parameters which dependent directly on the trains mass. The last parameter, C, multiplies

the speed square and depends on the train’s shape. This one is due to the aerodynamic resistance. [50].

Fig. 3.2 shows representative curves of a train resistive force (black), as well as, its traction (blue)

and braking (red) ones. Finally, the gravitational force will be discussed. This is due to tracks with

nonzero slopes and will also clearly influence the train dynamics. This influence is represented by a

gravitational force, Fg, which depends on the train mass and track angle, θ . Equation (3.6) is used for

its calculus:

Fg = Mgsin(θ) (3.6)

On railways lines, slopes gradients are frequently small, and, in that case, sin(θ) is normally

estimated as θ . This approximation simplifies the train model since it avoids the nonlinearity due to

the trigonometric function. In this document, and in model implementation, a climb was defined as

a positive gradient while a descent as a negative one. In order to finish train modelling, the forces

involved in traction and braking, respectively, Ft and Fb, are now discussed. Traction and braking

forces, Ft and Fb, are also dependent on the train’s velocity. In the developed model, these forces

are both represented by Ft , since both are connected with the train motors. The only difference to

consider is that Ft is positive when has to accelerate, and Ft is negative when a deceleration is needed,

and the train’s braking occurs. If the associated braking converts the kinetic into electrical energy,

this is known as regenerative braking and contributes to energy minimization. Both forces follow the

traction and braking characteristics curve of the motors installed on the train. Traction and braking

curves can be divided in two different zones: constant force and constant power. Constant force

happens for low velocities and, in this case, the train’s traction force is limited to a maximum constant

value for any velocity. On constant power zone, as the name suggests, the train’s motors maintain

a constant power, which results on a maximum force available reduction, with increasing velocity.

Traction and braking characteristic, of the train considered in this work can be seen in Figure 3.2

30

0 50 100 150

0

50

100

150

200

F
t

F
b

F
R

Figure 3.2: Train traction, braking and resistive forces vs. train velocity.

These curves are given by the train maker. For its implementation into the model, equations (3.7)

and (3.8) were used:

Ft =

T1, if v≤Va,

Pa

v
, if v >Va.

(3.7)

Fb =

B1, if v≤Vb,

Pb

v
, if v >Vb.

(3.8)

T1, in equation (3.7), it the motor maximum available traction force applied during constant force

regime. Pa is the maximum power traction available limiting traction force, during constant power

region. Va is the boundary velocity associated to the change between both regimes. Equation (3.8) has

B1 as the maximum braking force, Pb consists of the maximum braking power, and Vb is the boundary

velocity between both regimes. Finally, mechanical power, equation (3.9), is obtained as the product

between traction force and train velocity:

Pm = Ft × v (3.9)

Mechanical energy consumption is achieved applying the usual relationship, namely equation(3.10):

Ec =
∫ T

0
Pm(t)∂ t (3.10)

Having finished model presentation, train motion simulation, determination of velocity profiles

and estimates related to the amount of energy needed in each trip will follow. First, model formulation

31

that enables calculus of acceleration, for each of the four regimes typically associated to speed profiles

will be presented, as already seen in 2.2.1.

3.2 Train Dynamics

For an optimal speed profile, four different driving regimes must be considered [8–10], [7, 11].

So, this section intends to present how acceleration may be determined in each regime. It starts with

the so-called acceleration phase.

3.2.1 Acceleration

The acceleration phase is used to speed up the train from an initial velocity to a final one. This way,

in this regime, acceleration must be positive. During this regime, the train driver shall apply enough

tractive force, Ft(v), to overcome all forces opposed to the movement. As a result, train accelerates.

Acceleration in this phase is given by equation (3.11):

a(t) =
Ft(v)−Fg(s)−Fr(v)

M(1+ γ)+Mp
(3.11)

It should be noted that equation (3.11) only results in a positive acceleration if total force, sum of

all individual forces, is greater than zero. So, Ft(v), should satisfy:

Ft(v)> Fg(s)+Fr(v) (3.12)

3.2.2 Cruising

The cruising driving regime is also known as holding speed phase. This speed maintenance is the

result of a zero train acceleration, (3.13). Zero acceleration is achieved when the train driver applies a

traction force equal to the sum of all resistive forces (3.14).

a(t) = 0 (3.13)

Ft(v) = Fg(s)+Fr(v) (3.14)

In fact, during this driving regime, both traction or braking force can be applied. If the sum of all

forces acting on the train, Fg(s)+Fr(v), is a negative number, a tractive force of equal magnitude shall

be applied. Instead, if the sum is positive, the driver must press the brake.

32

3.2.3 Coasting

During this driving regime no tractive or braking forces are applied by train motors (3.17). So, the

only applied forces are opposing to the movement and, as result, train decelerates. Since no traction

force is applied during this driving regime, it is commonly used with the purpose to reduce energy

consumption. Defining traction force equal to zero, during coasting driving regime, train acceleration

can be determined as presented in equation (3.16).

Ft(v) = 0 (3.15)

a(t) =
−Fg(s)−Fr(v)
M(1+ γ)+Mp

(3.16)

During coasting driving regime, the train is usually subjected to a slow deceleration, consequence

of a negative sign on equation (3.16). Nevertheless, although the train resistance force will always

provoke a train deceleration, track slope can change this result. In fact, although on a flat or uphill

situation train deceleration will increase, on a downhill track, when gravitational force is higher than

resistive one, the train will accelerate.

3.2.4 Braking

The last regime presented is braking, commonly applied when the train is arriving at destination,

in order to stop it safely. In this regime, train acceleration shall be negative. This is achieved applying

a braking force. Train deceleration, is determined by (3.18). During the braking regime, passengers’

safety must be guaranteed as well as the on-site halt.

Ft(v)< 0 (3.17)

a(t) =
Ft(v)−Fg(s)−Fr(v)

M(1+ γ)+Mp
(3.18)

Besides train stop, braking can also be used to reduce velocity, in case the track-imposed velocity

should be lower than the train’s actual velocity.

33

3.3 Train Motion Simulator

Having been presented and analyzed, the train model it is needs the development of a TMS al-

gorithm. As the name suggests, a TMS algorithm has the purpose to simulate the vehicle motion by

implementing and combining all model equations associated to its dynamics. Thus, the TMS algo-

rithm must be capable of determining the velocity profiles, as well as, the respective distance travelled

and time needed to do so. Moreover, the algorithm must also estimate the amount of energy needed

for train operation. Besides all these, in order to be used in real railway lines speed profiles, the algo-

rithm must have some mechanisms to consider lines constraints. Therefore, this section will present

TMS algorithm development, showing all the various iterations, that have taken place, until its final

version.

3.3.1 Formulation

The TMS algorithm implementation uses, as its base reference, for velocity profile determination,

the OSP shape. This is so because, as could be seen in the literature review, it is the one that is capable

of providing minimum energy consumptions. The OSP, and respective variables defined for algorithm

implementation purposes, are presented in Fig. 3.3.

Figure 3.3: Optimal Speed Profile

Using the OSP outline as a reference, TMS algorithm must find the duration of each driving regime

in order to be able to make speed profiles. Also, besides defining cruising and braking velocities, the

algorithm must determine, for each driving phase, the initial and the final position, as well as the time

of their occurrence.

34

3.3.2 Single Trip

The implementation of the TMS algorithm was first tried using simple cases. Having this fact in

consideration, the first development started by considering constant accelerations in all of its phases.

For this first try, and to make speed profiles determination easier, no line constraints were considered.

Thus, the algorithm just determined time duration and space needed for each driving regime. In what

concerns driving regimes, the algorithm complexity has also grown as new advances were achieved.

First, only three driving regimes were considered for the new speed profiles, namely acceleration at

beginning, followed by cruising, and, at the end of the journey, the braking regime, was applied to

stop the train. After having an algorithm capable of creating speed profiles, with these three driving

regimes, a second algorithm was implemented by introduction of a fourth one, namely the coasting

regime. This section will be dedicated to show how the algorithm for single trips speed profiles

generation was implemented. It will start with the first option, Section 3.3.2.1, with three driving

regimes, followed by the four driving regimes one, in Section 3.3.2.2.

3.3.2.1 Speed Profiles Without Coasting

First developments, as referred before, started with a speed profile that uses only three driving

regimes and railway lines without any constraint. Considering only three driving regime, namely

acceleration, cruising and braking and, in each one, constant train acceleration, the speed profile is

similar to the one presented in Fig. 3.4.

Figure 3.4: Speed profile with three driving regimes - definition of variables.

So, this speed profile uses the definition of all three driving regimes. The definition of a single

driving regime requires determination of spent time and distance travelled. Besides, train acceleration

and top velocity, need to be defined. Having obtained the speed profile, it is possible to advise the train

35

driver, concerning the moments he must start to accelerate or press the brake, and also the velocity

he must maintain in each instant of the journey. To start defining the speed profile, it is necessary,

in the first place, to write the equations associated to the motion of an object subjected to constant

acceleration. These equations are (3.19) and (3.20), allowing to relate vehicle acceleration, speed and

position.

a(t) =
∂v
∂ t
↔ a(t) ∂ t = ∂v↔

∫ tF

tI
a(t) ∂ t =

∫ vF

vI

∂v↔ ∆v =
∫ tF

tI
a(t) ∂ t (3.19)

v(t) =
∂x
∂ t
↔ v(t) ∂ t = ∂x↔

∫ tF

tI
v(t) ∂ t =

∫ xF

xI

∂x↔ ∆x =
∫ tF

tI
v(t) ∂ t (3.20)

Using equations (3.19) and (3.20), considering a constant acceleration, equation (3.21) and (3.22)

are applied to determine train velocity and position.

∆v =
∫ tF

tI
a(t) ∂ t↔ v(t) = v(t−1)+at (3.21)

∆x =
∫ tF

tI
v(t) ∂ t↔ ∆x =

∫ tF

tI
v(t−1)+at ∂ t↔ x(t) = x(t−1)+ v(t)t +

1
2

at2 (3.22)

With the equations that allow to get train velocity and position, versus time, it is necessary to

outline a strategy capable of achieving a complete speed profile generation. Keeping in mind that the

algorithm to be implemented for the DAS has the objective of energy consumption minimization, its

bottom line must consider the OSP shape and its driving regimes sequence as a reference.

The speed profile determination is divided in three zones: acceleration, speed maintenance and

braking phases. To determine each phase, for the complete speed profile, it is necessary to define the

following variables:

• t1 and t2: the time for train driver change from acceleration to cruising;

• t2: the time to start train braking;

• ∆xacc, ∆xcru, ∆xbk: distance travelled respectively for acceleration, cruising and braking driving

regimes;

• vop: cruising velocity, to maintain during the whole cruising phase;

36

• aacc and abk : acceleration considered for acceleration and braking driving regimes.

To start speed profiles determination, some of these variables must be previously allocated. So, ac-

celerations values for acceleration and braking, aacc and abk, were selected to be previously assigned.

Not to be forgotten that the TMS algorithm is used by the OSP for generating several profiles that

will be used latter by an optimization algorithm, in order to choose the one that will minimize energy

consumption. After starting the speed profile determination the TMS must receive information about

the actual journey. So, the algorithm inputs are:

• Total time available for the journey: ∆t = tF − tI;

• Total distance to travel: ∆xtotal = xF − xI .

This inputs list, for single trip speed profiles determination, is reduced since it is not taking into

account the information about line constraints. Knowing all inputs available, as well as being defined

which variables will be assigned and which will be determined, next step is related to determination

of the equations that relate the variables to each other and that describes each of the phases. The speed

profile determination starts with the acceleration phase. This phase begins at station departure with an

initial velocity. For calculations purposes, departure station is considered at position and time zero,

it means, xI and tI are equal to zero. Acceleration phase ends at cruising velocity, vop, at a certain

unknown time instant, t1, that must be determined. Besides this time instant, distance travelled must

be determined. Given equations (3.21) and (3.22), time spent to go from initial velocity to cruising

velocity, t1 can be determined by (3.23) and respective distance travelled, ∆xacc, by equation (3.24).

vop− vI

t1− tI
= aacc (3.23)

∆xacc =
1
2
(t1− tI)(vop− vI) (3.24)

To finish the determination of acceleration phase it is only needed to know cruising velocity, vop.

Second speed profile phase to be determined is braking. This phase can be analyzed following a

similar process as the one used for acceleration. Braking phase starts with cruising velocity and ends

with a final velocity, vF , at arriving station. The arrival station, in terms of calculations, is defined as

being in a position equal to the total travelled distance, xF . In addition, it is also considered that the

37

train should reach this point in the total travelling time, t4. Once more, considering equations (3.21)

and (3.22), it is possible to determine t2 and ∆xbk using equations (3.25) and (3.26) respectively.

vF − vop

tF − t2
= abk (3.25)

∆xbk =
1
2
(tF − t2)(vop− vF) (3.26)

Once more, to complete all variables determination, it is necessary to know the cruising velocity.

Last phase to be considered is cruising. During this phase, the train driver is expected to maintain

acceleration equal to zero, which results on velocity maintenance. Once acceleration is known, by

cruising phase definition, the distance travelled during this phase is determined. Using equation (3.22),

it is possible to determine the travelling distance with (3.27). Time instants where cruising velocity

starts and finishes are already known, since they are coincident with the end of the acceleration phase

and the braking starting point, respectively.

∆xcru = vop(t2− t1) (3.27)

Considering these equations, the last one provides the total travelled distance. There are two

options for this equation, which will lead to the same result, as expected. The first one is the sum of

the whole distance travelled in each driving regime, in equations (3.24), (3.26) and (3.27). The second

option considers all areas inside of each driving regime. On a time versus velocity figure, as Fig. 3.4,

the area is the travelling distance. If acceleration and braking phases are considered as triangles, and

the cruising one as a rectangle, the total travelling distance can be obtained by the sum of the three

areas. This can be confirmed by analyzing the expressions obtained for each travelling distance, which

can be determined by the following equation (3.28).

∆xtotal = ∆xacc +∆xcru +∆xbk

∆xtotal = 1
2(t1− tI)(vop− vI)+

1
2(tF − t2)(vop− vF)+ vop(t2− t1)

(3.28)

Having all equations that allow each phase characterization, a strategy was defined for the se-

quence of operations, in order to get all variables. This strategy was also implemented thinking of the

38

future integration of this algorithm, with the optimization algorithm that iteratively searches for an

optimal solution. The sequence of operations is the following:

1. Defining values for aacc and abk;

2. Reading algorithm inputs: total travelling time ∆t and distance to travel ∆xtotal;

3. Determining time instants to switch between each phase, dependent on acceleration values:

(a) Solving (3.23) in order to t1, (3.29), and (3.25) in order to t2, (3.30);

t1 =
vop

aacc
(3.29)

t2 = t3−
aacc

abk
t1 (3.30)

(b) Substituting (3.29) and (3.30) in (3.28), a second order polynomial is obtained, the inde-

pendent variable being t1, (3.31);

xtotal = ∆xacc +∆xcru +∆xbk ↔

0 =
[

1
2 aacc− a2

acc
abk
−aacc +

1
2

a2
acc

abk

]
t2
1 +
[
aacct3 + 1

2 t2aacc− 1
2 t3aacc

]
t1− xtotal

(3.31)

(c) Determining t1 using (3.31) followed by t2 determination, (3.30), and finally vop, (3.29).

4. Once all variables are known, the whole speed profile can be established from the departure to

the arriving stations.

Having defined the order of operations in this first algorithm, several alternatives have been tested

in order to realize its potential. This algorithm started with searches for speed profiles with equal

accelerations and evolved to the search for the best acceleration values, in acceleration and braking

phases, which results in minimum energy consumption.

Therefore, the algorithm described during this section is the beginning of several ones and had the

purpose of introducing some base concepts and present the complexity and dynamics of the problem

to be solved. As expected, this algorithm rapidly evolved, as it is next presented.

39

3.3.2.2 Speed Profiles With Coasting

Focused on the energy consumption minimization, a fourth driving regime was added to the algo-

rithm previously developed. As it is expected, adding a new phase to the driving regime, will increase

algorithm complexity and the level of difficulty to its solution. The fourth traction regime added to

speed profiles determination, was coasting, resulting on a shape involving all four phases. The use

of a coasting regime on a railway speed profile has the purpose of a further reduction of energy con-

sumption. As already stated, this regime is characterized by not applying any traction force. This

results in train deceleration due to the resistive forces, which causes a slow braking. Once more, since

the algorithm was first applied on ideal railway lines, there are no line constraints in this analysis.

Besides, train acceleration was taken constant in all speed profile phases.

Considering all four traction regimes, the final speed profile will be similar to the one presented

in Fig. 3.5.

Figure 3.5: Speed profile with four driving regimes - definition of variables.

Getting speed profiles with these four phases requires the determination of a higher number of

variables when compared with the previous case. These variables are:

• t1, t2 and t3: time instants to switch between speed profile phases;

• ∆xacc, ∆xcru, ∆xcoa and ∆xbk : distances travelled during acceleration, cruising, coasting and

braking phases, respectively;

• vop and vbk: cruising and braking velocities;

• aacc, abk and acoa: acceleration and braking values for acceleration and braking phases. Coast-

ing acceleration is also included.

40

Due to the large number of variables to be determined, it was first necessary to define which ones

would be assigned to the initial condition values. So, to determine speed profiles, with these four

driving regimes, it was chosen to assign initial values for the acceleration, aacc, and braking phases,

abk. Since the number of variables increased, cruising velocity, vop, was also selected as one of the

variables for which an initial value is assigned. With these three variables allocated, the algorithm was

implemented in order to determine the values referring to the rest of the variables. As it will be seen,

the initial values to be assigned to these three variables will be, on the final version, one of the tasks

of the DAS algorithm, as a part of the generation mechanism included it the optimization algorithm.

Before starting the generation of a speed profile, the algorithm must read the available inputs. At

this stage of implementation, the available inputs are:

• Time available for journey: T = tF − tI;

• Distance to travel: ∆xtotal .

The first phase on the speed profile determination is acceleration, which starts at the departure

station and goes until the train reaches cruising speed. The initial point of the journey, coincident with

the departure station, is defined as position zero, xI , at initial time instant, tI , also defined as zero. On

this algorithm version, the acceleration phase can be immediately determined, since acceleration and

cruising velocity are both known. Considering a constant acceleration, and having already presented

how the train’s velocity and position can be determined, (3.21) and (3.22), it is possible to write the

equations to determine the time instant to change between acceleration and cruising phases, t1 (3.32),

as well as the travelled distance from the initial, vI , up to cruising vop velocity, (3.33).

vop− vI

t1− tI
= aacc (3.32)

∆xacc =
1
2
(t1− tI)(vop− vI) (3.33)

The second phase is braking. Comparing this second implementation, composed of four driving

phases, with the previous one, there are some changes to be mentioned. The braking phase, in this

situation, starts at a different point, characterized by the braking velocity. The braking velocity was

added to the speed profile, with the purpose of defining when the train driver must start braking.

This phase goes on until the train reaches its final destination, the arrival station. The station, in the

41

algorithm, is defined as being at a position equal to total travelling distance, xF , and it is supposed

that the trip ends in accordance with schedule, tF . Once again, and similar to the acceleration phase,

it is possible to write the equations that determine this time instant, when the braking phase starts, t3

(3.34), as well as, the space needed to completely stop the train, ∆xbk (3.35).

vF − vbk

tF − t3
= abk (3.34)

∆xbk =
1
2
(tF − t3)(vbk− vF) (3.35)

The coasting phase, the new driving regime added to the speed profile, must also be defined. This

driving regime is applied between cruising and braking phases, providing a smooth train braking.

Train movement during this phase is due to its inertia, and should be determined. If the acceleration

is approximated by a constant value, equations can be written to determine the time to start coasting,

t2 (3.36), as well as the distance to travel, ∆xcoa (3.37).

vbk− vop

t3− t2
= acoa (3.36)

∆xcoa =
1
2
(t3− t2)(vop− vbk) (3.37)

The last phase concerning the driving regime is cruising. In this phase train acceleration is main-

tained constant and equal to zero. At the moment that the algorithm makes calculations for this phase,

all important time instants, main velocities values (vop and vbk) and accelerations are known. It is only

necessary to determine the travelling distance, knowing cruising velocity and the available time, ∆xcru

(3.38).

∆xcru = vop(t2− t1) (3.38)

Finally, an equation is written in order to verify if the distance between departure and arrival

stations is covered by the achieved speed profile. This equation sums all the travelling distances

associated to the driving regimes. They can also be determined by the area of the speed profile shape.

42

∆xtotal = ∆xacc +∆xcru +∆xcoa +∆xbk ↔

1
2(t1− tI)(vop− vI)

∆xtotal = +vop(t2− t1)+ 1
2(vbk− vop)(t3− t2)

+vbk(t3− t2)+ 1
2(vbk− vF)(tF − t3)

(3.39)

In possession of the equations that allow to achieve each one of the variables, associated to the

speed profile, a methodology has to be defined in order to implement an algorithm that is able to

automatically make its determination. This algorithm will only have as inputs the current train trip.

As before, the methodology was designed considering the possibility that, at a later phase, it will be

integrated into a structure with an optimization algorithm that iteratively determines speed profiles.

The considered methodology was:

1. Defining initial values for aacc, abk and vop;

2. Reading inputs: information about distance to travel, xI = 0, xtotal = xF , and available time,

∆t = tF ;

3. Determineing coasting phase acceleration using equation (3.16):

(a) Gravitational force is set to zero, since it is not considered, Fg = 0;

(b) Resistance force changes with velocity. For this purpose it is considered constant acceler-

ation determined with velocity equal to vop, Fr(vop), resulting on the maximum value of

deceleration on this phase.

4. Determination of time instant between acceleration and cruising, t1 equation (3.40) and ∆xacc

(3.33);

t1 =
aacctI− vop + vI

aacc
(3.40)

43

5. Determination of time instant at which the train driver must finish the cruising phase and must

start the coasting one, t2, by considering the equation (3.39) with some substitutions of variables

(a) Starting by equation (3.34), and rewriting it in order to vbk;

vbk =−abktF +abkt3 + vF (3.41)

(b) In the following an expression is written in order to t3. For this, equation (3.36) is used,

together with equation (3.41), resulting in:

t3 =
acoat2−abktF + vF − vop

acoa−abk
(3.42)

(c) Considering equation (3.39), which relates each distance travelled per phase to the total

distance, and using the expressions (3.41) and (3.42), a second order polynomial, using t2

as independent variable, is written.

d = 1
2

1
acoa−abk

−v2
op + v2

F − vopt1acoa + vopt1abk− voptIacoa

+voptIabk− vIt1acoa + vIt1abk + vItIacoa− vIt0abk +2vopt2acoa

−abkacoat2
2 −2vopabktF −abkt2

Facoa +2t2abktFacoa

(3.43)

6. Solving properly (3.43), the value of t2 is known, it follows t3, known using (3.42), and finally,

braking velocity is determined (3.41);

7. Having all variables determined, a speed profile starting at the departure station until the arrival

one is determined, respecting all time instants as well as distances travelled in each driving

regime.

The methodology just described allows for getting a speed profile, starting by the estimation of

time and space needed in each driving regime. The algorithm, at this moment, does not dynamically

represent a train, neither estimates traction force needs or the energy consumption in one trip. It

actually only determines speed profiles based in some values of acceleration and cruising velocity.

44

In fact, coasting phase considers train characteristics to determine train deceleration, but the other

driving phases do not consider the train dynamic model. So, an integration with a dynamic model is

needed, as next presented.

3.3.3 Model Integration

Having a structure able to generate possible solutions for train speed profiles, an integration with

a dynamic model is needed. This integration has two implementation objectives:

• To validate an executable speed profile;

• To estimate energy needs.

The first objective aims to establish if the proposed speed profile can be met considering train

physical limitations. These limitations refer to the maximum available tractive and braking forces.

The second objective has an important role in the algorithm used, which is to determine the speed

profile associated to the minimization of energy consumption. The integration of train dynamic model

in the previous algorithm, leading to each speed profile phase, uses the equations shown on section

3.1. The algorithm implemented to determine speed profiles, as presented before, was maintained,

being the train model equations implemented as shown in Fig. 3.6.

Figure 3.6: Sequence of operations to determine speed profiles.

The algorithm implemented to determine speed profiles is responsible for the calculation of the

time instants when the train driver must exchange between driving regimes. It also gets the line

position where each change happens. In order to accomplish this goal, the algorithm receives trip in-

formation, values for train acceleration on acceleration and braking phases, aacc and abk respectively,

as well as a cruising velocity value, vop. Having all this information, the algorithm determines the

45

time and space needed to run each speed profile phase. Following Fig. 3.6, the speed profile determi-

nation step ends, and knowing this first result, the algorithm considers journey available time. Then,

discretizing numerical calculations with a sample time of 1 s, the resultant acceleration, velocity and

position are determined. As a consequence, total traction and resistance forces are also determined

and the energy consumption is estimated, defining the end of this operations’ sequence. Since the

vectors of accelerations, velocities and positions, as well as all determined forces, only consider val-

ues received in the algorithm, it is important to know how feasible those speed profiles are. At the

moment, it is significant to understand how far can train acceleration be approximated by constant

values. So, in order to validate the obtained speed profiles some tests were made. This validation

came out after analyses of train traction and braking curves. It should be reminded that train traction

and braking force were always considered as constant, the train’s real path being ignored. To verify

the accuracy of these approximations, the following test, represented in Fig 3.7 was implemented.

Figure 3.7: Train Model Integration.

The test is quite simple. Basically, it uses the algorithm associated to the speed profiles as imple-

mented, and the obtained result is introduced into the train model. The algorithm determines time and

space associated to each speed profile phase. Next, train acceleration in each time instant, velocity and

46

position is determined. With train acceleration, and knowing the mass of the train, the algorithm gets

train forces. It starts by resistive forces, Fr, followed by the total force of the train, Ftotal , the last one

being traction/braking force, Ft . At this moment, the algorithm changed. Until now, the train’s trac-

tion force was only compared with its maximum force, being considered constant. After an analysis

of traction curves, it was quite obvious that the maximum force reduces with train acceleration, being

necessary to include this in the algorithm. This way, as a test, after getting the train’s total force, the

traction force was the next to be achieved, however, the maximum value determined was compared

with train traction curve. After finding out the train’s traction force, the reverse process was done. It

means, having a new traction force vector, the train’s total force was again determined, as well as train

acceleration. Finally, looking for a better estimation of the train’s acceleration, its velocity was again

calculated and posteriorly compared with the one determined by considering constant acceleration.

The results of these tests are presented in Fig. 3.8.

0 100 200 300 400 500 600
0

5

10

15

20

25

V
ref

V
model

(a) Low cruising velocity.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

V
ref

V
model

(b) High cruising velocity.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

V
ref

V
model

(c) High cruising velocity.

Figure 3.8: Constant acceleration with low and high velocity - algorithm results with train model.

Figure 3.8 shows an example of a speed profile. The journey used in the test is not a real one.

In fact, it was only defined with the purpose of generating one situation with low cruising velocity,

Fig. 3.8a, and two with high cruising velocities, Fig. 3.8b and Fig. 3.8c. It can be seen that the

approximation of train acceleration by a constant value is valid only for low velocities. As the velocity

increases, the model output is moving further and further from the intended velocity profile. Looking

at the traction force characteristic, Fig. 3.2, this result was already expected.

So, the solution to this problem involves changing the way velocity profiles are calculated. The

constant acceleration approach was abandoned to include the actual train acceleration curves. In the

next section, these algorithm changes will be further explained.

47

3.3.4 Non constant accelerations

Aiming for the correction of the speed profile algorithm so that it can be used with the dynamic

train model for higher velocities, its update with non-constant accelerations was carried out, which

required new equations to determine time and space allocated to each driving phase. The result will

be a more complex and computationally demanding algorithm.

Starting with the acceleration phase, the traction force is limited by dynamic characteristics pre-

sented in equation (3.7). During this phase, the train is under influence of traction, gravitational and

resistive forces. The total train acting force is the sum of each individual force. Acceleration is calcu-

lated as previously presented, in equation (3.11). Equations to determine space and time, needed on

this phase, to drive the train from an initial velocity vI up to cruising vop are:

∆tacc =
∫ vop

vI

1
aacc

∂v (3.44)

∆xacc =
∫ vop

vI

v
aacc

∂v (3.45)

In equations (3.44) and (3.45) aacc represents train acceleration, characterized by two equations,

due to the fact that the train’s traction curve is divided into a zone of constant force and a zone of

constant power.

The second phase of speed profile determination after acceleration, is the braking phase. The train

dynamics is represented in a similar way as acceleration. This phase, as already explained before, it

is used in the train’s braking process from an initial velocity, defined as braking velocity, vbk, until the

final velocity, vF , usually when the train stops at one destination. Changing from constant acceleration

approximation to train real dynamics, time and space needed to stop the train can be determined by

equations (3.46) and (3.47).

∆tbk =
∫ vF

vbk

1
abk

∂v (3.46)

∆xbk =
∫ vF

vvk

v
abk

∂v (3.47)

Once more, to determine time and space needed for the braking phase, the operation must be

divided in two phases, since the train’s braking characteristic is also divided in constant force and

constant power regions.

48

After the braking phase, the algorithm calculates the coasting phase. In this phase, traction force

is not applied and acceleration is determined by (3.16). On the velocity profile, the coasting phase

appears between the cruising and braking ones, which means, that it starts at cruising velocity and

finishes with braking velocity.

∆tcoa =
∫ vbk

vop

1
acoa

∂v (3.48)

∆xcoa =
∫ vbk

vop

v
acoa

∂v (3.49)

The last phase to be considered is cruising. In this one, train acceleration is constant and equal to

zero, being possible to apply the equations already presented. It was only added an equation for the

space needed in cruising phase, (3.50), since all important time instants on speed profile already have

an alternative way to be calculated.

∆xcru = vop (t2− t1) (3.50)

Given the equations to determine time and space needed in each driving regime, a methodology

was designed to calculate the velocity profiles. The algorithm is supposed to be running iteratively

and some variables must be determined externally, with values assigned to them. In this version of

the algorithm, a more realistic behavior of the train is considered, concerning the time and space

needed for each phase, and being represented by non-constant acceleration due to train traction and

braking characteristics. Because of that, train acceleration for acceleration and braking phases is no

longer assigned to a constant value as previously determined. Instead, cruising and braking velocities,

vop and vbk respectively, are assigned to externally generated values. The algorithm for the main

operations and the latter’s respective order are:

1. Value assignment to vop and vbk;

2. Speed profile determination:

(a) Determination of space needed for acceleration (3.45), coasting (3.49), braking (3.47) and

cruising phase (3.50);

(b) Time spent in each phase, equations (3.44), (3.48) and (3.46);

49

(c) Speed profile determination, using the result of 2a to change between driving phases. Time

and position are determined each second, using (3.19) and (3.20), respectively;

3. Train model:

(a) Resistive and traction force determination;

(b) Energy estimation.

4. Results presentation:

(a) Full speed profile;

(b) Time and position to change between driving regimes;

(c) Energy consumption estimation.

After evaluation of the algorithm results, and having now the possibility to determine velocity

profiles considering non-constant accelerations, it was decided to add more information to it, namely

line constraints. This extra information is related to line velocity limits and line gradients. The

next section will show how these line constraints are used as algorithm inputs, and the way they are

integrated into it.

3.4 Line Constraints

On real railway lines, there are some constraints which may interfere with normal train driving.

This study, as described so far, considered ideal railway lines, that is to say flat lines without any ve-

locity limits. Since it is intended to use the DAS on real railways lines, it is very important to consider

these restrictions associated to velocity profiles determination. So, the following line constraints will

have be considered:

• Line gradients;

• Velocity limits;

• Neutral zones.

50

3.4.1 Gradients

The first considered additional constraint is line gradients. Line gradients influence energy con-

sumption on train operations and, for this reason, they must be used for the speed profiles determina-

tion. Therefore, gradients must be available, as to be used as an algorithm inputs, together with the

journey information (schedule time and trip distance).

In terms of structure, information on line gradients information is given as a two-column table.

The first column comprises the kilometer points and the second one equals grade angles. As an

example, Table 3.1 presents a sample of a gradient vector.

Table 3.1: Example of a gradients vector’s input

pk(m) grad (mils)

0.00 0

39.10 -0.0105

444.10 0

799.10 -0.014

884.10 -0.013386

1046.96 -0.0134

1201.44 -0.012199

1337.51 0

1700.00 0.015579

2071.99 0

2232.21 0.000158

Starting with first column, containing kilometer points, it should be mentioned that they are not

uniformly distributed. Indeed, they are presented where a gradient change appears. The values are

recorded using the meter as the unit, and using as reference the kilometer point of the departure station.

It means that, for each journey, between two consecutive stops, the algorithm must receive an input

vector associated to the considered line section.

The second column has gradient values. These gradient values represent the angle measured

between a horizontal line and the train surface. The value is presented in mils. Besides the angle

value, it also presents the angles signal. Bearing this in mind, a positive angle is associated to an

51

uphill path, whereas a negative angle corresponds to a downhill one.

Slopes effect on speed profiles determination is accounted for using gravitational force on train

model. This is achieved by using the right angle value on equation (3.6). In order to know the grav-

itational force to which train is subjected, a search over input data should be carried out concerning

the correct value. This is accomplished using the train’s position and a lookup on the corresponding

column of the table.

To determine actual value for gradient, based on previous train position, two searching algorithms

were implemented. In the end, looking at the algorithm’s final version, it is concluded that only one

function would be enough, but at this time of implementation, this was the best solution found. The

use of two functions is related to how actual train position is searched on the kilometers table column.

One function was implemented to search using the departure station as reference, and a second one

for a search on the kilometers column, considering the arrival station as the reference. Later on, the

use of both functions will be clarified as the new version of the algorithm is explained.

Algorithm 1 shows the structure of the function implemented for gradient determination. This

function was the first one implemented and is used to search for the gradient value, given the actual

train position, and considering the departure station as reference. To simplify the function’s objective,

this searching method was called as forward search, since it starts at the journey’s initial position and

finishes at the arrival station.

52

Algorithm 1: Gradient forward determination
grad vector = [pk, θ]K × 2; . Gradient vector - dimension k variable

Grad determination (grad vector, xi−1, xF)

for k=1:1:K do

if xi−1 > pki[k,1] then

return k;

else
continues searching

end

end

θi = grad vector[k,2];

θi+1 = grad vector[k+1,2];

pki+1 = grad vector[k+1,1];

returns θi, θi+1, pki+1

The second function implemented is presented in Algorithm 2. The function is similar to the first

one, the major difference being the way the search is carried out. The search uses the departure station

as the reference point and the algorithm starts the kilometers points column, from the last up to the

first line. That is why this function is called backwards function.

The idea to implement two functions, to search for kilometer points, is fundamentally due to the

use of only one input file. This means that when a backwards search is needed, instead of changing

the kilometers column, the algorithm launches the search by the end of the column and subtracts the

arrival station position to the train’s actual position. This way, the algorithm keeps input data which

can used again.

53

Algorithm 2: Gradient backwards determination
grad vector = [pk, θ]K × 2; . Gradients vector - dimension k variable

Grad determination backwards (grad vector, xi−1, xF)

for k=1:1:K do

if xi−1 > xF − pki[k,1] then

return k;

else
continues searching

end

end

θi = grad vector[k,2];

θi+1 = grad vector[k+1,2];

pki+1 = grad vector[k+1,1];

returns θi, θi+1, pki+1

3.4.2 Velocity Limits

The second line constraint considered the speed profile determination algorithm, is velocity limits.

As it happened with gradients, velocity limits also correspond to an algorithm input presented as a two-

column table. The first column contains kilometer points where a velocity limit change happens and

the second column shows the associated limit value. Once more, kilometer points are not uniformly

distributed. Only points where there are changes to be registered are presented. An example of the

input vector is shown in Table 3.2.

Table 3.2: Example of velocity limits input

pk(m) Vmax (km/h)

0 50

334 45

1017 70

2030 120

54

Input table interpretation is quite simple. Each journey to be made has a different table where

velocity limits are presented. Kilometer points measurements use the departure station as the refer-

ence. Looking at the table, the first kilometer point is coincident with the location of the departure

station, and first velocity limit is valid from the beginning of the journey up to the kilometer point

of the following consecutive change. Profiling the maximum speeds on the line, represented in Table

3.2, gives the scheme presented in Fig. 3.9.

0 500 1000 1500 2000
0

50

100

150

Figure 3.9: Example of velocity limits - data representation.

It is important to mention that the input table with velocity limit information is unique for each

line section considered on speed profile determination. Kilometer points are presented in meters, and

maximum velocities values in km/h. The function used to read velocity limits before returning the

result applies the conversion from km/h to m/s. This is done with the purpose of using only SI units

inside the algorithm, avoiding any error that may be caused by the use of improper ones.

Following the same logic applied to the calculation of gradients, two searching functions were

implemented with the purpose of determining line velocity limits. These functions have been im-

plemented whenever necessary, returning the current speed limit to the train position as well as the

following one. The major difference between both routines is the way the input vector is analyzed.

The first one starts at the first position of the vector and makes a forward search, while the second

function makes a backwards search from the last position up to the first one.

Algorithm 3 presents the first function implemented. This one implements a forward search, that

is to say, in the same direction as the train’s movement.

55

Algorithm 3: Velocity limit determination
V vector = [pk, Vmax]K × 2; . Velocity limits- dimension k variable

kmh2ms = 0.2778; . km/h to m/s conversion

Vmax determination (V vector, xi−1, xF)

for k=K:1:1 do

if xi−1 > pki[k,1] then

return k;

else
continues searching

end

end

Vmaxi =V vector[k,2]× kmh2ms;

Vmaxi+1 =V vector[k+1,2]× kmh2ms;

pki+1 = grad vector[k+1,1];

returns Vmaxi , Vmaxi+1 , pki+1

Given train actual position, the function implemented starts by verifying the kilometer column

from the last position up to the first one. In each routine call, train position is compared to vector

kilometer points in order to find the imposed speed limit. Besides actual velocity limit, information

about next limit and the position at which that change happens are also taken into consideration. In

the end, routine Vmax determination returns the actual and next velocity limit as output, as well as

the kilometer point where the velocity limits change occurs.

The second function implemented determines velocity limit using a backwards search. The im-

plemented function does the same but, instead of starting the search from the end of the table, it starts

at its first position. Algorithm 4 presents the routine outline.

56

Algorithm 4: Velocity limits determination
V vector = [pk, Vmax]K × 2; . Velocity limits- dimension k variable

kmh2ms = 0.2778; . km/h to m/s conversion

Vmax determination backwards (V vector, xi−1, xF)

for k=1:1:K do

if xi−1 > xF − pki[k,1] then

return k;

else
continues searching

end

end

Vmaxi =V vector[k,2]× kmh2ms;

Vmaxi+1 =V vector[k+1,2]× kmh2ms;

pki+1 = grad vector[k+1,1];

returns Vmaxi , Vmaxi+1 , pki+1

The first conclusion achieved is the similarity with the function presented in Algorithm 3, con-

cluding that one function should be enough. As it happens with gradients, at the moment when the al-

gorithm was developed, both routines were implemented and are in use nowadays. In fact, both could

be replaced by an unique function, changing at least, inputs values. Vmax determination backwards

function works following same rules of previous function and gives same outputs to the main algo-

rithm.

3.4.3 Neutral Zones

Neutral zones are common on electrified railway lines due to power line topology. The extent of

these zones goes from few up to tens of meters and they typically occur in the connection between two

phases of a substation or in the connection between two substations. These zones serve to electrically

separate power sources, which results in areas where the train has no traction force since there is no

power to do it [51]. As expected, the presence of neutral zone will influence the determination of the

optimal speed profile.

The train operator knows the railway structure very well and, for this reason, he is acquainted

57

with all neutral zones in the line. The operator knows gradient and velocity limits, the kilometers

points where a neutral zone starts and ends. So, that information must be available to be used in the

algorithm as an input.

The received information given by train operator, related with neutral zones, was analyzed and

posteriorly processed in order to define an input data form to be used on the TMS algorithm. The

information given by the train operator only indicates the kilometers points where a neutral zone

happens. Considering this, an input vector is generated, as presented in Table 3.3.

Table 3.3: Example of neutral zones location input

pk(m) Notch

0 0

290 1

940 0

As usual, the first column shows kilometer points (in meters) and all values are given by con-

sidering the departure station as the reference. The second column correspond to the value of a flag

created for neutral zones. The idea of this flag is to identify the zones without energy forcing the flag

value to 1, while zones powered by substations are represented with a 0. To interpret the vector, the

algorithm must search on kilometer points to decide if the train is inside or outside of a neutral zone.

In the example presented, from the initial point to kilometer point 290 the train is in a non-neutral

zone. From point 290 up to 940, the train is in a dead zone, and from this last point until the end of the

journey, no more neutral points occur. Dead zones determination followed a line of implementation

similar to that used in the previous cases. Two different searching algorithms were implemented with

the purpose to search for neutral zones in the accelerating and cruising phase as well as in the braking

and coasting ones. Once more, the implementation of two routines could be reduced to merely one,

being only necessary at the beginning to define what kind of search in the vector would be done. In

both cases, the routines implemented only returns the flag value corresponding to the train position.

Algorithm 5 shows the first routine implemented, used in acceleration and cruising phases. The

structure of the searching routine is quite simple: it only looks at the train’s previous position and

returns the flag corresponding value, according to neutral zone positions.

58

Algorithm 5: Neutral zone determination
NZ vector = [pk, Flag NZ]K × 2; . Neutral Zones vector - dimension k variable

NotchRestriction(NZ vector, xi−1, xF)

for k=2:1:K do

if (xi−1 < NZ vector[k,1]) && (xi−1 > NZ vector[k−1,1]) then
Flag NZi = NZ vector[k−1,2];

else
Flag NZi = NZ vector[k,2];

end

end

returns Flag NZi

A similar approach to identify neutral zones in braking and coasting phase was adopted. Algo-

rithm 6 shows routine NotchRestriction backwards.

Algorithm 6: Neutral zones determination
NZ vector = [pk, Flag NZ]K × 2; . Neutral Zones vector - dimension k variable

NotchRestriction backwards(NZ vector, xi−1, xF)

for k=K:-1:2 do

if (k == K && xi−1 < xF −NZ vector[k,1]) then
Flag NZi = NZ vector[k,2];

else if k > 2 && xi−1 > xF −NZ vector[k,1] && xi−1 6 xF −NZ vector[k,1] then
Flag NZi = NZ vector[k−1,2];

else if k == 2 && xi−1 < xF −NZ vector[k,1] then
Flag NZi = NZ vector[k−1,2];

else
Flag NZi = 0;

end

end

returns Flag NZi

Routine NotchRestriction backwards was implemented to search for neutral zones, concerning

59

the input vector, in driving phases where speed profiles are determined from the end to the beginning.

The output is the corresponding flag value, to be used posteriorly on TMS algorithm.

3.5 Train Model State Machine

The introduction of line constraints on the TMS algorithm makes a change in its structure neces-

sary. As the number of line constraints increases, it will be more difficult to determine new velocity

profiles. In some cases, with the actual structure, the algorithm is not able to produce solutions, being

stuck, without giving any feedback. The reason for this problem to happen has its origin in the algo-

rithm formulation, and consequently it must change somehow. So far, velocity profiles are determined

using the sequence of driving regimes proposed by the optimal control theory. This means an accel-

eration phase, in the beginning of the journey is always applied, followed by cruising, coasting and

braking phases. When line constraints are included, into the speed profiles determination, depending

on the case, strictly following this driving regimes sequence may not be the most appropriate strategy.

So, there was a need to change the way that calculations of new profiles are carried out. Driven by

the need to have more freedom of choices, at a driving regime sequence, the train dynamic model im-

plementation was changed. As an alternative to the work already done, the implementation of a train

model based on a state machine was proposed. The state machine has four states, one for each driving

regime. State selection is dependent on line actual constraints, and in each one, forces applied to the

train, as well as resultant acceleration, are calculated. The new train dynamic model was implemented

as exposed in Algorithm 7.

60

Algorithm 7: Train dynamics algorithm
train dynamics (state, xi−1, vi−1, θ)

Fgi = Mgθ

Fri = A+Bvi−1 +Cv2
i−1

switch state do

case 1 do
. Acceleration Regime

Determine Fti max with Fti ≥ 0;

Determine FTotal1 and ai;

end

case 2 do
. Cruising Regime

Fti = Fgi +Fri

Determine FTotal1 and ai;

end

case 3 do
. Coasting Regime

Fti = 0

Determine FTotal1 and ai;

end

case 4 do
. Braking Regime

Determine Fti = 0 max with Fti ≤ 0

Determine FTotal1 and ai;

end

end

returns Fti , Fri , Fgi , FTotali , ai

Basically, each state defines a driving regime and, dependent on it, the train traction force and

all acting forces are determined. With this implementation, the speed profiles calculation has more

freedom of choice in what concerns the order of driving regimes. As an example, considering a

line with velocity restrictions, more precisely, when the maximum allowed velocity decreases, the

algorithm is able to switch between an acceleration to a braking phase in order to accomplish the

61

imposed line restrictions.

State transitions are defined by several parameters / variables. The train’s actual velocity, actual

and next velocity limits, as well as initial and final velocity, are cases of variables considered for state

machine selection of the actual state. The state machine implementation will be better explained in

the algorithm’s final version.

3.6 Train Motion Simulator with Line Constraints

The implementation of train dynamics as a state machine leads to the inclusion of a new algorithm.

This new approach considers non-constant accelerations together with associated line constraints. The

use of the state machine allows for greater flexibility in the driving regimes choice, which can be

applied along the journey. The implemented algorithm follows the flowchart presented in Fig. 3.10.

Figure 3.10: TMS algorithm using the train model state machine.

So, the algorithm starts by reading all inputs available and needed for the speed profiles determi-

nation. The first part is related to train parameters. The second one is linked to line constraints, as

62

well as journey information. The information about train parameters is required to set up the right

train dynamic model for the vehicle in use. The line information contains information about line con-

straints, needed to determine speed profiles with all restrictions and journey information that is used

to the initialization of the variables. The latter, more specifically vectors to store all train dynamics’

information, happens after knowing the total available travelling time. This is so because the devel-

oped train model considers time as the independent variable and new values are determined at each

new time instant. To start the speed profiles generation, the algorithm waits for values which define

cruising and braking velocities, vop and vbk respectively. The next step, after reading and initializing

all algorithm variables, is an estimation of time and space needed for each phase. This estimation is

made by applying the equations presented in Section 3.3.4. Thus, given an initial and final value for

velocities for each speed profile phase, the respective time and space associated to the current phase

are determined. Time and space needed for the acceleration phase are the first ones to be estimated,

equations (3.44) and (3.45). Braking, (3.46) and (3.47), and coasting, (3.48) and (3.49), come in sec-

ond place. Calculation of time and space for cruising uses results from the already made calculations,

acceleration, braking and coasting, as well as total journey time and space (3.50).

Once the estimation of each speed profile phase is made, the algorithm jumps to train dynamics.

Train dynamics was implemented as a state machine which runs inside a while statement. The im-

plemented state machine represents line train dynamics and is used to determine train forces as well

as acceleration, velocity and position in each time instant. The while statement uses the total time

available for actual journey as control variable. Thus, it runs considering train initial velocity and

position equal to zero, coincident with the departure state. It ends when train reaches zero velocity,

at a position near the arrival station. During the while statement execution, state machine transitions

are based on train actual velocity, actual and next velocity limits and space needed in each phase. The

state machine starts with the acceleration phase, defined as its initial state. The state machine’s natural

flow, which can be applied to a line without any velocity limits changes, is acceleration followed by

cruising, coasting and the last braking. The natural state machine’s flow happens activating the tran-

sitions between states, based on the distance travelled. On the other hand, in railway lines or journeys

with velocity limits changes, the algorithm switches between the four speed profile phases, depending

on line conditions. Independently of the speed profiles phases sequence, they all always start with an

acceleration and end with a braking phase.

After running train dynamics, the algorithm ends returning to the determined speed profile. The

63

speed profile is graphically represented. Also, the difference between available and travelled time is

calculated, as well as travelled distance. These last two are called time and distance errors. Both errors,

considering future developments, were introduced in order to be used in cost functions associated to

the energy minimization.

Unfortunately, and after several tests, this TMS algorithm implementation had to be abandoned

due to multiple reasons for that. In fact, and especially after the introduction of the velocity limits

several drawbacks emerged. The first one was the processing time needed to find a set of optimal

speed profiles solutions to be analyzed by the energy consumption optimization algorithm. It proved

to be quite high, making its use into a real time application impossible. Besides processing time,

the introduction of speed limits, together with in-line slopes, led to the conclusion that the algorithm

was somehow inefficient in speed calculation, according to travel specifications. The problem was

associated to the implementation of the estimation of each driving regime. Basically, space/ time

estimation needed for each speed profile phase was implemented considering an ideal line. In other

words, the estimation only considered train traction force characteristics as well as resistive force, as

presented in (3.51) and (3.52), thus ignoring velocity limits.

∆tcoa =
∫ v f

vi

1
acoa

∂v =
∫ v f

vi

1
Ft(v)−Fr(v)

M(1+σ)+Mp

∂v (3.51)

∆xcoa =
∫ v f

vi

v
acoa

∂v =
∫ v f

vi

v
Ft(v)−Fr(v)

M(1+σ)+Mp

∂v (3.52)

The estimation of each speed profile phase was posteriorly used, in train dynamics, as a velocity

reference to follow. With the introduction of velocity limits, the final velocity profile calculated with

train dynamics exhibited a distance error not considered by the estimation. This distance error in-

creased with maximum velocity limits changes as well as with the line gradients. When first exposed,

this problem led to a tentative solution, regarding the introduction of a cost function, posteriorly im-

plemented into the optimization algorithm. On the other hand, this solution solved somehow the

problem; on the other hand, the number of bad solutions associated increased. Therefore, considering

all these problems, the algorithm implementation was abandoned and has undergone several changes

in order to be operational. These changes are presented in the next section.

64

3.7 Speed Profiles Generator

The TMS algorithm’s final structure resulted from the analysis of the previous versions and the

correction of all revealed limitations. The path from the first to the final algorithm version was a

complex work, which required considerable dedication and study time. This development implied

new research work necessary to achieve a final solution able to determine speed profiles regardless of

line conditions, and usable in real time. Comparing the last version of the algorithm flowchart with

earlier versions, it can be seen that important changes occurred. In fact, this last version keeps the

implementation of train dynamics as a state machine. The use of the train dynamics state machine

is advantageous since it gives great algorithm flexibility associated to the driving regimes selection.

Concerning the changes, the first to be performed was the removal of the initial estimation of the time

and space needed to complete each one of the speed profile phases. Removing this first estimation,

the algorithm starts with train movement determination as soon as it receives new values for cruising

and braking velocities. The train movement determination uses train model equations, train forces,

acceleration, velocity and the corresponding position to calculate space for each time instant. To

determine train movement as well as velocity profiles, the algorithm was divided and organized by

phases. The first decision to be made was the definition of the best sequence of speed profile driving

phases. After looking at all possible sequences, it was chosen to follow the one presented in Fig. 3.11.

Figure 3.11: TMS algorithm - driving regimes sequence.

As can be seen, the algorithm structure for speed profiles determination is divided into four stages,

corresponding to the four driving regimes, defined by control theory. These stages are acceleration,

cruising, coasting and braking. Each stage is separately calculated. Inside of each speed profile phase,

one or more driving regimes can be applied. As an example, the acceleration phase is defined as the

stage applied at the beginning of the journey. Its purpose is train acceleration from the initial velocity

to the cruising one. As expected, to accomplish its main purpose, the acceleration driving regime is

continuously applied. However, when line characteristics do not allow to do that, the acceleration

65

regime must be interrupted either by braking or by applying another regime. Hereupon, it is up to

the algorithm to choose the correct sequence of driving regimes that best fits the current journey. The

use of train dynamics implemented as a state machine allows for an easy switch between driving

arrangements within each phase, in order to meet the purpose of the journey as well as the limits

imposed by the line.

Using the sequences of speed profiles phases presented in Fig. 3.11, the algorithm used to select

the appropriate driving regimes sequence was implemented following the flowchart presented in Fig.

3.12.

Figure 3.12: TMS algorithm flowchart.

The algorithm flowchart uses the following steps. The first task performed is reading the train pa-

rameters, usually given by the train operator. Train parameters are read from input files and assigned

to the corresponding algorithm variables in order to introduce the correct vehicle characteristics into

the dynamic model. Having all parameters of the train model, the algorithm continues to read in-

formation about the actual journey. At this point, information about velocity limits, gradients values

and neutral zones position is received. Besides that, information related with the actual journey, as

distance to be travelled and corresponding available time, are also at disposal. Having uploaded all

available information about the train model, line and journey, the algorithm makes the variables and

vectors initialization to store the final results as well as some intermediate operations.

The determination of velocity profiles starts only after the algorithm receives new values for cruis-

ing and braking velocity. The mechanism implemented to generate new velocity values will be ex-

plained in the next chapter. Once having a model which uses time as independent variable, the al-

gorithm determines all forces, train acceleration, velocity and position for each time interval defined.

The first speed profile phase to be considered is braking, which is followed by acceleration and then

66

coasting. The braking phase was selected to be the first one in order to assure the correct train stop

at the arrival station. The second speed profile phase to be determined is acceleration, used to figure

out how much time and space the train needs to achieve cruising velocity. Having both phases de-

termined, the algorithm determines the coasting phase to connect cruising to braking velocity. Each

driving phase was implemented as a new function, and in each function a time series with a length

equal to total traveling time is created together with some temporary variables to store intermediate

values. The definition of a time series equal to total travelling time is due to the fact that at the in-

stant when each phase is determined, the needed time and distance are unknown. In each function,

as soon as it is called, the algorithm enters into a cycle of operations that ends as soon as the phase

boundary conditions are fulfilled. If they are not met, the function returns to the main algorithm with

a result which indicates the impossibility of calculating a profile under the actual journey conditions.

Boundary conditions are identified during each phase calculation.

Returning to the algorithm’s flowchart description, once the first three phases are calculated, a

first solution verification is carried out. This first verification consists in verifying if it is possible

to determine all three phases, using the given cruising and braking velocity values, within the time

and distance set for actual trip. This verification just subtracts the distance and time travelled to

the available time and distance for the actual journey. This means that it is verified if there is any

remaining time and distance. If remaining time or distance are negative, the algorithm drops the

actual solution and waits for new velocity values. If the remaining time and distance are positive,

the algorithm starts to calculate the last phase, cruising. This phase is used to travel the remaining

distance, maintaining a constant velocity. The implementation is similar to the first three phases,

where a new time series is defined and the algorithm runs train dynamic model to determine the time

and space travelled. When the end condition of the cruising phase is reached, the algorithm re-checks

the time and distance travelled. Once velocity values are given, the total traveling distance and time

needed for train travel between the initial and the final station are compared with time and space

defined for the trip. If traveling values are within an acceptable range, the current solution is accepted

as a possible candidate. If it falls out of the speeds acceptable range, the algorithm returns to the

starting position and receives new cruising and braking velocity values, and the whole process starts

over. When the solution is accepted, outputs of all phases are reorganized in one single result, and

the resulting speed profile is saved to posterior spent energy evaluation. The algorithm structure was

developed considering the previous train model’s implementation as well as the future integration with

67

an optimization algorithm.

3.7.1 Speed Profile Phases

3.7.1.1 Braking

The algorithm starts the speed profile determination with the braking phase. As mentioned before,

this is the first phase on speed profiles determination to ensure a safe train arrival at destination with

zero speed. On a speed profile, the braking phase can be defined as the one where the train deceler-

ates, following train braking characteristics, from braking velocity to the final one (commonly zero

velocity). This phase happens at the end of the journey, matching the final speed with the position of

the arrival station.

To completely define the braking phase, it is necessary to determine how much time and space

are needed to stop the train. Having information about the initial and final the velocity as well as

final position for braking phase, the determination of this phase is quite challenging since the position

where it must start is unknown. So, for calculations associated to the braking phase, it is necessary

to apply a strategy that allows to know where it should start. Analyzing all the information, the

idea of making braking phase calculations backwards, this is, starting from the end station, comes

to mind. This means that the braking phase will be analyzed as an acceleration one. Fig. 3.13

shows the assumed strategy, demonstrating that the braking phase, instead of being determined to

starting at vbk, at unknown initial position, and decelerating the train to final velocity at arrival station,

xF , it is determined as an acceleration phase considering zero velocity as initial and ending at vbk.

Determining the braking phase as an acceleration allows to get around the problem of not knowing

the starting braking position.

Figure 3.13: Braking phase - graphical representation of the phase determination.

68

The braking phase backwards requires some changes concerning the train dynamic model. The

algorithm implements the train dynamic model as a state machine (which was already seen in function

train dynamics , presented in Algorithm 7). So, all driving regimes were kept unchanged except for

the braking one. Whit this purpose in mind, some changes were introduced, more precisely in the

way the acceleration value is returned. All forces acting on train as well as traction force needs are

determined in the same manner as presented, and only the returned acceleration value is changed.

This means that after determining all forces and train acceleration, the algorithm receives a positive

acceleration value instead of a negative one. In each phase of speed profile, any of the four driving

regimes can be chosen, depending on line constraints. The driving regime selection considers the

train’s actual and final velocity as well as current and next velocity limits. Depending on current and

following velocity limits, the algorithm determines which driving regime is the most appropriate to

accomplish it. The determination of current and following speed limits determination is carried out

using the function previously presented in Section 3.4. In each time instant train forces, accelerations

and respective velocity and position are calculated. The train’s current position is used to locate where

train is at the actual journey and analyze the line constraints. The determination of line restrictions, at

braking phase uses a backward search on its input vectors. This is so due to the fact that the braking

phase also uses a backward calculation.

As already seen, the driving regimes selection is dependent on the line’s current and following

velocity conditions. Before defining the driving regime to be applied at the following time instant, the

final velocity for braking (vbk) is compared with current and following velocity limits, and a decision

is made. Considering these three variables as decision variables, a set of cases can be anticipated to

be posteriorly implemented. Figure 3.14 shows all anticipated cases.

69

(a) (b) (c)

(d) (e) (f)

Figure 3.14: Braking phase: comparison between vbk, current and following velocity limit, VMAX .

All presented cases in Fig. 3.14 were considered during algorithm implementation as possible

situations that may occur in real railway lines. In a first analysis, some cases do not represent a real

problem to speed profile determination while some of them requires a special attention. The first two

cases, Fig. 3.14a and Fig. 3.14b, present the simplest situations. In both cases, velocity limits are

always above braking velocity, which results on a braking phase without any exchange concerning

the driving regime. Case c, Fig. 3.14a, is more complex since it represents a situation where, at a

certain position, the velocity limit changes, the actual limit being higher than the following one. The

velocity limit’s drop can occur to values above or below the braking speed. When braking velocity

is still lower than following velocity limit, the case does not represent a real line constraint since a

braking phase can be determined without any exchange of driving regime. So, this first scenario is the

same than the one in the first two cases. On the other hand, when the following velocity limit falls

below braking velocity, some additional operations must be carried out in order to calculate the speed

profile within line constraints. A more detailed image representing what happens when the following

limit drops below braking velocity is presented in Fig. 3.15.

70

Figure 3.15: Braking phase: acceleration regime estimation.

The determination of a braking phase when the following velocity limit falls below braking ve-

locity is now divided into two stages. The first stage goes from the initial position, with the initial

velocity, to the moment when the train reaches the following velocity limit value, at position x1. At

this position, the algorithm starts the second stage of the braking phase determination. Once train

velocity exceeds the following limit, an acceleration must be estimated between the train’s current

velocity and the following limit value. It is necessary to determine if there is enough space to go

from the following velocity limit to the train’s current velocity. On the braking phase, the use of an

acceleration regime can be quite controversial as this phase is used to stop the train. Nonetheless,

after analyzing all journeys, in some of them the travelling time available was short or appeared to

be tight to complete the journey successfully. Thus, the braking phase was implemented considering

the hypothesis of integrating an acceleration between the following limit value and the train’s final

velocity, at position x2. So, after reaching the following limit value, position x1, the algorithm starts

to estimate an acceleration between the following limit value and the train’s current velocity. In each

time step, the algorithm determines the current velocity on left side, it means decelerating the train,

and at same time, after updating the velocity on deceleration, the acceleration estimation is updated.

Furthermore, it is verified if there is enough space to complete both deceleration and acceleration.

This process occurs iteratively until vbk is reached, or at a lower speed value after acceleration and

deceleration intersect at a single point, at x2.

After having completed the analysis of the first row of Fig. 3.14 it is now examined the second

one. This row represents all cases where the current velocity limit is lower than the final velocity

for braking phase, vbk. All cases now represented require, at the outset, some attention as there is a

high probability that it will not be possible to calculate a velocity profile from the initial to the final

velocity without any driving regime change. For the cases presented in Fig. 3.14d and Fig. 3.14e, the

71

algorithm is arranged to determine train velocity from the initial to the limit value, and while the train

is within the limit zone, its velocity is maintained. As the speed limit increases, train velocity also

increases to the lowest value between the following velocity limit or the final value for braking phase.

The last case, Fig. 3.14f, is the most critical case, since it represents the case where current limit is

lower than braking velocity as well as the following limit, after the occurrence of a limit drop. For this

purpose, the algorithm makes an approach similar to the one developed for case 3.14c, the acceleration

estimation being made between velocity limits. In all cases, when braking velocity is higher than any

velocity limit imposed on the line, the braking phase is not determined and the algorithm waits for a

new braking velocity value input.

In addition to speed limits, the braking phase also considers neutral zones location, which may

appear on the line, as a decision variable to determine which driving regimes must be used. Since these

zones are characterized by locations where there is no catenary, as soon as the algorithm detects that

train is inside it, the current driving regime is automatically switched to the coasting regime. As soon

as the train passes the dead zone, the coasting regime switches back to braking, to safely complete the

braking phase.

The implementation of this braking phase, was, at the beginning, quite problematic, having be-

come easier when the way it is calculated was changed. After being defined, the speed profile repre-

sentation was some kind messy since braking was represented as accelerations and vice-versa. At the

end, its calculation, as an acceleration phase shows that it could solve the problem at hand.

Before going into another driving regime phase implementation, some tests were carried out so as

to verify the algorithm response, the results being presented in Fig. 3.16. Algorithm tests consists in

using the data related to a line and it is expected that they will be able to calculate a braking profile.

In order to test the maximum number of anticipated cases, the speed limits on the line were forced

because at this time there is no actual travel record that can be used to do this kind of tests.

72

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

v(t)

V
max

(a) vbk = 13.1 m/s

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

v(t)

V
max

(b) vbk = 19.4 m/s

0 100 200 300 400 500 600
0

5

10

15

20

25

30

v(t)

V
max

(c) vbk = 15.8 m/s

Figure 3.16: Results for braking phase determination.

The first result, Fig. 3.16a, represents an example of a braking phase with velocity limits above

vbk. When this happens, a braking phase can be determined without any driving regime exchange,

resulting in a continuous braking from vop to final speed. Recalling Fig. 3.14, this first image is an

example of the first two anticipated cases presented in Fig. 3.14a and Fig. 3.14b, respectively.

Fig. 3.16b represents an example of a braking phase on a line with more than one velocity limit.

A tight velocity limit near to arrival station was introduced to force an exchange of driving regimes

inside the braking phase. The journey has a velocity limit of 28 m/s and in the last 700 journey

meters a limit to 8 m/s is imposed. The reduced speed zone lasts 400 m, and in the lasts 300 m the

maximum speed goes back to 28 m/s. The speed profile calculation, for this journey, combines two

of the anticipated cases presented in Fig. 3.14. For its analysis the figure is divided in two parts.

The first part involves the first 500 m and the second part the remaining 500 m. Starting with the

first five hundred meters, the speed profile determination follows the methodology presented in Fig.

3.15. As already explained, the calculation is made in two stages. The first one begins at 0 m, with

initial velocity, and ends when the train reaches the following velocity limit value, approximately at

180 m. During this first stage, the braking phase is calculated without any problem, a braking regime

is applied. After this calculation for the velocity profile, from the initial to the following limit value,

the algorithm starts the second stage. During this stage, an acceleration between the train’s current

velocity and the following limit value is estimated and the maximum velocity reached, before the

reduced speed zone is also determined. Once the maximum before the start of acceleration regime

velocity is calculated an iterative process is defined. During this stage, the algorithm, at each time

step, increases braking velocity and, at same time, starts to determine the space needed to accelerate

between the following limit and the train’s current velocity. This process ends when both profiles,

73

acceleration and braking, intersect and this point corresponds to the maximum velocity value. Having

calculated the maximum velocity value, the sequence of driving regimes applied to determine braking

phase is the following: braking, from zero to maximum; acceleration, between maximum velocity

and limit value; and cruising, throughout limit length. The last 500 meters represents a second case,

similar to the one shown in the following figure, Fig. 3.23c. Both will be examined in the next lines.

The last result studied, Fig. 3.23c, represents a new case, already anticipated, implemented in the

algorithm, Fig. 3.14e. This characterizes a case where current velocity limit is lower than braking

velocity value, and at a certain kilometer point, a limit increase happens. The resultant speed profile

is at first a braking from initial velocity to velocity limit, being selected cruising regime to maintain a

velocity equal to the limit during its length. In the kilometer point where limit changes, the algorithm

switches again the braking regime until train reaches braking velocity.

In conclusion, analyzing all the results presented in the figures, it can be realized that the algorithm

presents a good performance in all tested situations. The calculated speed profiles are as expected,

once they follow the rules imposed during implementation. The only detail missing is that, in some

of the calculated speed profiles, the recommended speed value for train slightly exceeds the limits.

This little detail is visible in one of the presented results. Even so, this result is accepted as the train

cannot be driven with this level of accuracy. After analyzing the results, this appears to be caused by

approximations made during calculations.

3.7.1.2 Acceleration

The second speed profile phase to be determined is acceleration. The determination of this phase

starts after braking calculations. This phase of speed profile is used to accelerate the train from an

initial velocity to a cruising one, defined as vop. Train acceleration happens in the beginning of the

journey, starting with zero velocity at departure stations and ending at the moment when the train

reaches vop. During this phase, train traction’s characteristics are considered, avoiding the determina-

tion of speed profiles impossible to be achieved. Since cruising velocity is given to the TMS algorithm

as input, the determination of the acceleration phase includes the time and space needed as well as the

entire velocity profile representation.

The acceleration phase is determined from the initial point, coincident with the departure station,

to the moment when the train reaches cruising velocity, previously unknown. Once this phase is used

in train acceleration, the default driving regime applied is acceleration. Since there are some con-

74

straints on the line, the driving regime can be changed during each acceleration phase. Following the

same methodology used at the braking phase, the algorithm implementation included some anticipated

cases which can occur in real railway lines. Those cases are presented in Fig. 3.17.

(a) (b) (c)

(d) (e) (f)

Figure 3.17: Acceleration phase: comparison between vop, current and following velocity limit.

The first two cases, Fig. 3.17a and Fig. 3.17b, are the simplest ones since they cannot be seen

as real constraints for speed profile determination. Velocity limits are always higher than the final

velocity for the acceleration phase (vop). So, the train driver will be advised to accelerate the vehicle

throughout the phase without any concern. On the other hand, the third case, Fig. 3.17c, represents all

lines where the current velocity limit is higher than vop, and at a determined kilometer point, the limit

falls down to a value lower than cruising velocity. The determination of an acceleration phase under

these conditions is carried out in two stages, as presented in Fig. 3.18, and is next explained.

Figure 3.18: Acceleration phase: braking estimation.

75

Figure 3.18 shows a graphic representation about the acceleration phase determination on lines

where the following velocity limit drops below cruising velocity. As stated before, the determination

is carried out in two stages. The first one is the velocity calculation from the initial point to the moment

when the train reaches the following velocity limit value, identified with x1. Then the algorithm

launches the second stage. Knowing that the following limit will require a reduction in the train speed

to be met, the train driver should be warned in advance, to start the braking process. This means that

the second stage consists of an estimation of the braking regime to meet the following limit value.

Knowing the train’s current position and velocity as well as the following limit value and position

in each time step, train actual velocity in the acceleration phase is determined and, at same time,

the space needed to brake the train between the current velocity and the following limit is estimated.

When space needed to brake between both velocities is higher than the distance between train’s current

position and the one at which the velocity limit changes, the train driver is advised to start a braking

regime. The velocity reached by the train may be the cruising speed or any speed which may be

safely reduced within limits. In fact, in this case, if cruising velocity is reached, acceleration phase

is considered done. In the event that, at position x2, train velocity is lower than vop, the acceleration

phase should include, in addition to the braking phase, a speed maintenance along the limit. As soon

as the limit increases, the train will accelerate again until cruising velocity is reached.

In the second line of Fig. 3.18 first row, the remaining represented cases are lines where the

current limit is lower than cruising velocity. These will now be examined. Case (d), Fig. 3.17d, is the

one where the current and the following limits are always lower than cruising velocity. This results

in a small acceleration from the initial point to the limit value. Once the train has reached the line

limit, a cruising regime is used to maintain a constant velocity. In the presence of a similar case, the

algorithm will maintain the train velocity equal to the limit value, and the train driver will be advised

to accelerate when an increase in the limit happens. Case (e), Fig. 3.17e, is an extension of case

d), showing the point where velocity limit increases and exceeds cruising velocity. For this case, the

algorithm is ready to determine a speed profile. The train driver is advised to start with an acceleration

from the initial point to the instant at which the train speed matches the velocity limit. As soon as

the train speed equals the limit within the reduced speed zone, the algorithm shifts from the driving

regime to cruising one. After crossing the slow speed zone, the driving regime is changed back to

acceleration so as to complete the acceleration phase. The last case, Fig. 3.17f is similar to the one

presented in Fig. 3.17c. The algorithm is ready to estimate braking between velocity limits values. In

76

this last case, the train driver is advised to press the brake between velocity limits at an appropriate

position, and is advised to accelerate only when a velocity limit increase happens.

As happens with braking, neutral zones location is also revelant at this phase. This line character-

istic is considered since it is intended to use the algorithm in real railway lines, where these zones are

quite probable to appear. The algorithm uses function NotchRestriction, presented on Section 3.4, to

search in the input files where neutral zones appear, and as soon as one is detected, the driving regime

is automatically switched to coasting. This driving regime is the most appropriate since it causes a

train deceleration affected by train mass because there is no applied traction force. As soon as the

train completes the dead zone, the algorithm switches back to acceleration, or to any other driving

regime if there are other line constraints requiring it.

The implementation of the acceleration regime was easier than braking since the driving regimes

selection had a better agreement with real train profiles. The implementation of braking regime cal-

culations required some attention related with how braking is determined and how the information

should be stored in order to reduce the processing time. In the end, the implementation of the acceler-

ation phase exhibited appropriate results in accordance with line constraints and algorithm objectives.

After implementing the acceleration phase, the algorithm was subjected to some tests, with the

purpose of understanding if it met the purposed requirements. These tests were done considering a

railway line with some imposed limits in order to have a good number of diverse situations. The

results are presented in Fig. 3.19, and since velocity limits where manually introduced, there is no

real data to be compared with the algorithm outputs.

0 50 100 150 200 250
0

5

10

15

20

25

30

35

v(t)

V
max

(a) vop = 16.6 m/s

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

40

45

v(t)

V
max

(b) vop = 23.8 m/s

0 100 200 300 400 500 600
0

5

10

15

20

25

30

v(t)

V
max

(c) vop = 15.8 m/s

Figure 3.19: Acceleration phase: examples of speed profiles.

The first result presented, Fig. 3.19a, shows an acceleration phase determination without any con-

straints since velocity limits are, in the whole acceleration phase length, always above train velocity.

77

As can be seen, the speed profile resultant is a continuous acceleration from the initial velocity to the

cruising one, vop.

Figure 3.19b shows the second result obtained. It exemplifies an acceleration phase with more than

one driving regime, caused by changes on speed limits. Following the explanation given before, this

result can be divided in two parts. Defining the speed profile division at kilometer point 800 m, it can

be seen that this first part represents an example of acceleration phase determination considering case

(c), shown in Fig. 3.17c. As it has been explained, in this situation, the speed profile is determined in

two stages. The first stage is used to determine first acceleration, from initial velocity to the following

velocity limit value. When train achieves a velocity equal to the following limit value, the algorithm

starts the second stage, where braking between the train’s current velocity and the following limit

is estimated. The maximum velocity value is also determined, through an iterative process. Train

velocity for acceleration regime (left side) is updated in each time step. At same time, the braking

regime (right side) between train actual velocity and next limit value is updated. When both profiles

intersect, the maximum velocity is found, which can be any value between the following speed limit

and the cruising speed. Since the maximum velocity reached is inferior to the cruising speed, the

algorithm continues to calculate the acceleration phase after the speed limit. As a result, in this first

part, the resultant speed profile is defined as an initial acceleration, followed by a braking one, with

a final cruising regime to maintain the train’s velocity at the reduced velocity limit zone. The second

part of the figure represents a similar case to the result presented in Fig. 3.19c, and both will be

discussed together in the next paragraphs.

The third result is an acceleration phase on a railway line with velocity limits, as presented in

Fig. 3.17e. In this example, a speed limit was introduced in the beginning of the journey, forcing the

algorithm to calculate an acceleration stage that includes a first acceleration phase, finished when vop

is reached. This is followed by a velocity maintenance and finally the train accelerates as soon as the

speed limit finishes.

In the end, it can be concluded that the acceleration phase determination matches what would be

expected. As happened at acceleration phase, in some cases there are some approximation errors,

when velocity limits are imposed, but these are somewhat neglected as the train driver will not have

the required level of precision in speed control.

78

3.7.1.3 Coasting

Reminding the algorithm flowchart, Fig. 3.12, and having concluded the analyses of braking and

acceleration phases, the next phase to be determined is coasting. This phase, as explained before, is

used to reduce energy consumption since no traction force is applied. This phase of the speed profile

starts at the end of the cruising and ends in the beginning of the braking one. In terms of velocities, the

coasting phase starts with an initial velocity equal to cruising, vop, and ends with braking velocity, vbk.

Following the flowchart, at the moment the coasting phase is calculated, it is only known the point

where it should end as well as its initial and final velocities. Since the initial point to start coasting

is unknown, this phase is also determined from the end to the beginning, similarly to braking. This

means that the coasting phase is determined as another acceleration. Fig. 3.20 shows graphically how

the coasting phase is calculated. The final position and the velocity of braking phase are considered

as initial points for coasting. This way, following coasting phase properties, the corresponding speed

profile is determined as an acceleration until cruising velocity is reached.

Figure 3.20: Coasting phase - graphical representation of the phase determination.

The change from a deceleration phase to an acceleration happens in the same way as it was done

for the braking case. All train acting forces are determined considering the coasting phase as deceler-

ation but at the moment when train dynamics function returns train acceleration, it gives an opposite

value. To search for line constraints, functions which implement a backward search are used, consid-

ering the correct initial position. In addition to these details, coasting phase is calculated in a similar

manner to the other two phases.

Once more, speed profiles for coasting phase are limited to line constraints. The driving regime

selection is based in the comparison of velocity limits imposed by the railway line together with the

train’s current and cruising velocity. One of the advantages of braking determination and coasting

79

phases as accelerations is the possibility to adapt all cases considered for the acceleration phase. Fig.

3.21 presents all cases contemplated at the coasting phase, and posteriorly implemented.

(a) (b) (c)

(d) (e) (f)

Figure 3.21: Coasting phase: comparison between vop and velocity limits.

Looking at Fig. 3.21, it can be seen that all cases considered for coasting are the same as those

considered at acceleration and braking phases. Since an explanation of each of those was previously

presented, they will not be explained again. Comparing with acceleration phase, the difference con-

sists in the considered driving regime. Instead of using acceleration as the default driving regime,

coasting is the selected one. Another change is that braking estimations are changed to acceleration

estimations, Fig. 3.21c, as at the braking phase. Although the initial speed of this phase is always set

to a non-zero value, it does not fit into these comparisons since coasting always starts with cruising

velocity and ends with the braking one. That is to say, that somehow this speed is guaranteed by the

braking phase.

In terms of neutral zone locations, on coasting phase, when they are detected, the algorithm forces

changes the current driving regime to coasting. In most of the cases, this action is not needed, but the

algorithm is prepared so that, whenever necessary, the coasting regime is forced.

Figure 3.22 represents two examples of cruising phase determination. Both results were taken

from a railway line where some velocity limits were imposed.

80

0 500 1000 1500
0

5

10

15

20

25

30

35

v(t)

V
max

(a) vop = 18.5 m/s

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

v(t)

V
max

(b) vop = 16.8 m/s

Figure 3.22: Coasting phase: examples of speed profiles.

The examples here presented show two different cases of coasting phase determination. The first

one considers a line without any speed restriction while the second one a line with a speed limit

zone. Starting with first result, Fig. 3.22a presents the case without any restriction. As explained, the

algorithm starts coasting phase determination from the end, considering as initial conditions the ones

defined at the braking phase. In the first result, as can be seen, the algorithm determines a coasting

phase where the train is coasting from the beginning until the end. This happens since velocity limits

on the line are always above train velocity.

The second figure, Fig. 3.22b, shows an example of a coasting phase determination with a speed

limit. To force this result, a speed limit drop, from 33 m/s to 14 m/s was introduced in the position

where the coasting phase was likely to occur. The result obtained, looking at the algorithm imple-

mentation’s, goes as expected. This phase, as stated, is determined considering the final position as

the initial point, which results in a slow speed increase, until the train reaches cruising velocity. As

soon as speed limit is reached, a small acceleration phase is estimated in order to force a train velocity

within the limit. The estimation of an acceleration is made once travelling time must be met. It should

be noted that the coasting phase is usually used to reduce energy consumption, but it increases trav-

elling time, which makes the introduction of this phase a trade-off between energy consumption and

travelling time. Considering both variables, the algorithm imposes a slight acceleration before enter-

ing a speed limit zone. During the limit zone, train velocity is maintained at the maximum permitted

and then the coasting regime is again selected.

Both results presented show that the algorithm is calculating coasting phases as expected. Al-

though there is no associated image, another test was carried out, where a low velocity limit (under

81

8 m/s) was introduced into the line. This test was done several times, but in all runs the algorithm

returned a speed profile where the coasting phase was out of the limit zone. The results obtained

are quite expected, since the coasting phase is only used when it is possible. The introduction of a

low speed limit condition into the speed profile results in the limit, which is covered by a braking or

cruising phase. In conclusion, it can be stated that the coasting phase determination correctly answers

line restrictions.

3.7.1.4 Cruising

The speed profile determination ends with cruising phase. This last phase is used to complete the

remaining distance between the departure and the arrival station, which is still not covered by the other

three phases. All other phases are determined considering final velocity, calculating the corresponding

time and space needed. Before starting the determination of the cruising phase, the remaining space

is determined and the algorithm imposes that cruising phase must cover all of it.

Cruising starts at the point where the acceleration phase ends, with an initial velocity equal to the

cruising speed, vop. It ends with the same velocity at the point where the train driver is advised to

start coasting. During this phase, advices are given to the train driver to maintain a constant speed.

This is valid in all cases where there are no line constraints. In the presence of line constraints, the

algorithm must be able to determine a speed profile with the purpose to advise the train driver on how

to drive without violating any restrictions as well as compromising passenger’s safety. During the

cruising phase, is expected the use of the corresponding driving regime: cruising. When a velocity

limit change happens, this driving regime may not be the most appropriate, being necessary to switch

to another one. As it happens in all other driving phases, the algorithm was developed anticipating

possible cases, as presented in Fig. 3.23.

82

(a) (b) (c)

(d) (e) (f)

Figure 3.23: Cruising phase: comparison between vop and velocity limits.

Considering cruising velocity and speed limits in the line, some cases may happen, being neces-

sary to determine the speed profiles determination in these situations. Although this phase is already

started with cruising speed, its implementation also considers cases where the current limit is lower

than the cruising speed.

The handling of all cases considered is very similar to what was carried out at all other phases.

Starting with case (a) and (b), presented in Fig. 3.23a and Fig. 3.23b, the speed profile can be de-

termined without any exchange considering the riving regime, since limits are above train velocity.

Fig. 3.23c represents a more delicate case, the change into a braking to make the train driver accom-

plish velocity limits being necessary. The process is similar to the one presented in acceleration, only

being necessary to determine the point where braking must start, once maximum velocity is already

known. Second line represent cases where actual velocity limit is lower than cruising. In all cases,

the algorithm is ready to use the cruising regime to maintain the minimum velocity possible (limit

or cruising). Once speed limit zone is crossed and train velocity is below cruising, the acceleration

regime is selected in order to achieve maintain it.

Related with neutral zones, the algorithm is prepared to switch from the cruising regime to coast-

ing, when they are detected. Once the train finishes the neutral zone, the algorithm returns to the

cruising regime, or probably to an acceleration phase, to resume cruising speed.

After implementation, the algorithm with the purpose of analysing its performance. The algorithm

tests were done forcing some particular situation, as tight velocity limits. Some algorithm results are

83

presented in Fig. 3.24.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

v(t)

V
max

(a) vop = 15.5 m/s

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

v(t)

V
max

(b) vop = 23.8 m/s

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

v(t)

V
max

(c) vop = 20.3 m/s

Figure 3.24: Cruising phase: examples of speed profiles.

An analysis of Fig. 3.24 examples for cruising phase are presented. The first example, Fig. 3.24a,

shows a cruising phase without any driving regime change. It represents all cruising phases where

speed limits are always above cruising velocity, resulting in a cruising phase without any restriction.

As it can be seen, the cruising phase starts in the end of the acceleration phase with a velocity equal

to vop, and for that reason, speed profiles displayed do not start at the axis origin.

The second example, Fig. 3.24b, shows a railway line with a velocity limit coincident with the

cruising phase, which represents case (c) and (e) from Fig. 3.23. The resulting speed profile includes

driving regimes changes necessary to advise the train driver within line constraints. The cruising

phase starts with vop and the cruising regime was maintained during the first meters. As soon as the

algorithm detects a drop in velocity limits, an estimation of the space required to decelerate the train

starts. Having the point where deceleration must start, the algorithm changes from the cruising to the

braking regime, and after the point where the train achieves a velocity equal to the speed limit, the

cruising regime is again selected. Cruising regime is maintained until there is a further change in the

speed limit, and since it increases, the acceleration regime is applied in order for the train to reach the

cruising speed once more. Cruising velocity is then maintained until train travels the whole distance

defined for this phase.

The last example, is similar to the previous one, the only difference being the introduction of

a second velocity limit, lower than the former. In this case, the speed profile determination for the

cruising phase requires the estimation of a second braking stage. The final velocity profile will include

a sequence of cruising and braking regimes, being applied in the end an acceleration to finish the speed

profile phase at cruising velocity.

84

As a conclusion, the algorithm seems to perform well for cruising phase determination. In all

results, the algorithm shows velocity profiles which maintain cruising velocity during the whole phase,

and accomplishes velocity limits imposed by the railway line. As happened in other phases, there are

some errors on velocities, which are neglected by the reasons already presented.

3.7.2 Solution Construction

The previous section, Section 3.7.1, presented how each driving phase is determined for a given

trip. Before presenting the algorithm’s final solution, one last operation must be done. For a better

explanation, an example of a speed profile determination will be presented.

The algorithm implemented has the purpose to make speed profiles to be used on a DAS. Given

information about the actual journey, the algorithm receives possible values for cruising and braking

velocities, which are posteriorly used on speed profile determination. As explained before, speed

profile phases are calculated separately, and as consequence, after being all successfully determined,

the result obtained consists of a set of vectors corresponding to each of the phases. Vector sets includes

information about train position and velocity as well as acceleration and forces acting on the train in

all journey, discretized in time. In addition, time spent as well as distance required in each phase are

also provided at each phase result. All this information is useful to build the complete velocity profile

in order to provide the train driver with it. To concatenate all information spread over several variables

and vectors, the algorithm uses the time and space needed in each phase. Based on time spent for each

speed profile phase, a new vector is filled in order to have only one result, which will be posteriorly

presented. To accomplish this task, a function following the pseudo code presented in Algorithm 8

was implemented.

85

Algorithm 8: Speed Profile Construction
solution construction (∆tacc, ∆tcru, ∆tcoa, ∆tbk)

first step=∆tacc;

second step=∆tacc +∆tcru;

third step=∆tacc +∆tcru +∆tcoa;

fourth step=∆tacc +∆tcru +∆tcoa +∆tbk:

for i=1:1:first step do
Ft(i) = Ftacc(i);

a(i) = aacc(i);

v(i) = vacc(i);

x(i) = xacc(i);

end

for i=first step+1:1:second step do
Ft(i) = Ftcru(i− f irst step);

a(i) = acru(i− f irst step);

v(i) = vcru(i− f irst step);

x(i) = xcru(i− f irst step);

end

for i=second step+1:1:third step do
Ft(i) = Ftcoa(third step+1− i);

a(i) =−1×acoa(third step+1− i);

v(i) = vcoa(third step+1− i);

x(i) = xF − xcoa(third step+1− i);

end

for i=third step+1:1:fourth step do
Ft(i) = Ftbk(f ourth step+1− i);

a(i) =−1×abk(f ourth step+1− i);

v(i) = vbk(f ourth step+1− i);

x(i) = xF − xbk(f ourth step+1− i);

end

returns Ft(t), a(t), v(t) and x(t);

86

The information, as shown in the algorithm, is concatenated based on time spent in each phase.

The reason to use time spent in each phase to fill new vectors is associated to the fact that the im-

plemented train model uses time as an independent variable, which makes the algorithm determine,

in each time interval, a new value for all train dynamics variables. Since in each time instant, a new

value is determined, and knowing that all information stored have a time stamp associated with each

value, a new routine was easy to implement with the purpose of introducing all determined values is a

new vector, depending on time spent in each phase. The implemented function starts by defining new

vectors to store the result for traction force, train acceleration, velocity and position. The vectors size

is defined by the time spent to end the actual journey, that is to say the result is the sum of each indi-

vidual time spent in each phase, affected by the time step size. After being initialized all vectors, the

total travelling time is divided in all three phases, by determining the variables which control where

the routine must copy individual results. Those variables used to control copying routines are defined

as first step, second step, third step and fourth step, corresponding to the final position for acceler-

ation, cruising, coasting and braking, respectively. Filling in the new vectors begins with copying

information related with acceleration and cruising phases, being the easiest ones, since there are no

additional operations. The last two phases to be copied are coasting and braking. For these, a more

complex operation is used. Since both phases are determined in a reverse way, the introduction of

each value into final vectors must also be carried out from the last to the initial position. Besides that,

the train position in both phases is determined considering the arrival station as the initial position. To

introduce the correct value of the train’s position in the final result, the position determined in these

two phases must be subtracted to the arrival station location (xF).

As an example of how this function works, a simple journey with a travelling distance of 1710 m to

be accomplish in 120 s was considered. The algorithm received as input cruising and braking velocity

values, 20.3 m/s and 11,8 m/s, respectively. The results obtained for each driving phase are presented

in Table 3.4.

87

Table 3.4: Results for speed profile phases

∆t

(s)

∆x

(m)

Acceleration 30 392.88

Cruising 16 317

Coasting 58 911.09

Braking 13 88.79

The obtained values are the result for each of the driving phases. The first phase presented in this

case is acceleration, Fig. 3.25. The result obtained here is in accordance with journey needs and time

and space shown.

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

v(t)

(a) Train velocity

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

x(t)

(b) Train position

Figure 3.25: Acceleration phase: train velocity and position

Figure 3.26 presents train velocity and position during the cruising phase, for the considered

journey.

88

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

v(t)

(a) Train velocity

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

800

x(t)

(b) Train position

Figure 3.26: Cruising phase: train velocity and position

Following the sequence of speed profile phases used by optimal control, after cruising there will

be a coasting phase. Train velocity and position in each time instant of this phase are presented in Fig.

3.27.

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

v(t)

(a) Train velocity

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

800

900

1000

x(t)

(b) Train position

Figure 3.27: Coasting phase: train velocity and position

The last result is braking phase, Fig. 3.28. As can be seen, braking phase starts the determination

of train velocity from the end. In the same way, the position is calculated from an initial point,

defined as 0. The algorithm that concatenates all this information into one makes the proper change

of variable.

89

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

v(t)

(a) Train velocity

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

x(t)

(b) Train position

Figure 3.28: Braking phase: train velocity and position

Combining the information given in the table with the journey’s total time spent, the algorithm

determines final velocity profile, as presented in Fig. 3.29. Acceleration and cruising phase are the

easiest phases, since it is only needed to know the initial and the final time for each phase, and the

information contained in each phase output vectors is copied to final result vectors. On the other hand,

for coasting and braking phases, in addition to determining the beginning and end of each phase, it

is also necessary to copy the results in reverse. As can be seen, the routine implemented correctly

accomplishes what is expected.

0 50 100 150
0

20

40

60

80

v(t)

Figure 3.29: Train velocity vs. time graphic.

Regarding train position, presented in Fig. 3.30, it is also visible the good performance of the

implemented function. Acceleration and cruising are once again easy to integrate in the final result;

however, coasting and braking phases, as presented in the algorithm pseudo-code, are slightly more

complex. The final position of the journey is used to determine the train’s real position on the line,

and, as it can be seen, it is combined without errors.

90

0 50 100 150
0

500

1000

1500

2000

x(t)

Figure 3.30: Train position vs. time graphic.

In the end, having train velocity in each time instant of the journey and the respective train position,

also related with time instant, it is easy to plot the final result of the algorithm, which is a velocity

versus position profile. The presentation of the final velocity profile in a graphic velocity versus time

is in accordance to DAS, where the train driver must be advised in the right position about what action

must be performed.

0 200 400 600 800 1000 1200 1400 1600 1800
0

20

40

60

80

v(t)

Figure 3.31: Train velocity vs. distance graphic.

91

CHAPTER4
Optimization Algorithm

4.1 Introduction

This thesis, as presented before, envisages the development of an algorithm to work on a DAS.

The algorithm must be able to determine velocity profiles following a defined objective function. The

determination of a speed profile must be constraint to the train dynamic model, to line characteristics,

and to time and distance requirements.

The optimization problem proposed during this thesis, is a large combinatorial one, associated

to decisions about time and velocities, for each of the four considered traction regimes, constrained

to line slopes and velocity limits. To solve this problem, a meta-heuristic approach called SA was

adopted.

This chapter will start by presenting the SA algorithm. A short introduction about the algorithm

and how it works will be given. After that, algorithm implementation for DAS will be presented and

discussed. In the end of each section, the obtained results will be shown followed by a short analysis

and discussion.

4.2 Simulated Annealing

The SA algorithm was created by Kirkpatrick in 1983, inspired by a metallurgical process used

to organize material structures. The process name is annealing and it has the purpose to increase

material ductility and to reduce its hardness. It starts by heating a material up to a certain temperature

that allows free atoms movement inside of its structure. The atom movement is due to the amount

of energy contained inside the material, caused by temperature increase. After being heated up, the

material starts to cool slowly and, as a consequence, the atom movement starts to slow down. The

atoms movement naturally will tend to become stable at a minimum energy structure. In the end, after

93

following a slowly cool down, the formed material will present a structure where atoms will be as

aligned as possible. The material final structure, as expected, will tend to have a minimum energy

possible, considering material initial conditions. From the physical process, some concepts must be

taken, since they are highly important to the SA algorithm implementation. These concepts are:

• At higher temperature, atoms have higher movement;

• A slowly cool down scheme is highly important for a strong structure;

• Material final structure is dependent on initial temperature and a slow-down scheme.

Bearing this in mind, it can be concluded that the final structure of the material is dependent on

its initial temperature, as well as how temperature decreases during all the process. In order to be

able to solve combinatorial optimization problems, the SA algorithm emulates the annealing process,

finding an optimal solution. The optimal solution presents the lowest value of the cost function. So,

the algorithm implementation considers some operations which may be clearly defined and tuned:

• The generation mechanism;

• The temperature scheme;

• The cost function;

• The solution acceptance probability;

• The stop criteria.

Each one of these operations requires some knowledge about the system on which the SA will

be implemented. The definitions of all the functions needs parameter tuning, constants determination

and implementation rules. The process of tuning all functions is commonly an iterative process, being

the best option defined after multiple iterations, after analyzing the algorithm’s performance and the

results’ quality. Each one of those functions will be explored throughout this section.

The SA algorithm is used to find the optimal solution for a given problem. The algorithm’s

implementation lies on annealing process, used to find the minimum energy structure of materials. The

algorithm will be used later for minimization. Because of that reason, it will be presented considering

a minimization of the cost function. With the purpose of understand the similarity of annealing with

SA and to make explanations easier, it is common to establish some parallelism between annealing

processes and algorithm’s operations and definitions:

94

• Each solution can be called a system state;

• The cost value is the corresponding energy of a state;

• The algorithm uses a control variable which represents temperature.

Based on the parallelism presented, algorithm implementation becomes easier. The algorithm here

described is used to find an optimal solution for a given problem. In other words, optimal solution

can be defined as the one with the lowest cost function value, which means the one with minimum

value of energy. The SA starts by generating an initial guess, being posteriorly evaluated by the cost

function. The generation of new values occurs through the generation mechanism. Once a solution

is defined and there is enough material for objective function determination, the cost value associated

is calculated. Depending on the cost value, and comparing with previous states, one of two possible

hypotheses can happen, defining the algorithm’s flow. From the comparison between actual energy

and the best obtained solution, the algorithm can decide if the current solution must be accepted as

a better solution or, on the contrary, rejected. If accepted, the algorithm follows for the following

iteration, saving the current result as the best one, and generating a new solution in its neighborhood.

The second option is to reject the current solution. The algorithm continues the search of solutions

in the same manner as for the current solution. In fact, the SA algorithm is a little more complex. In

the case of a solution being rejected, there is a probability that this worst solution will be accepted.

This chance decreases when the number of iterations increases. This is so because using only a direct

comparison between solution and following the first two hypotheses here described, the algorithm

only accepts solutions which successively bring improvements to the cost function. Regardless of the

gain between iterations, the algorithm only verifies if it progresses and thus accepts all the solutions

fulfilling it. It turns out that following this, the algorithm could be unaware of the convergence to a

global optimum, being stuck in a local one. This way, in order to circumvent this problem, the SA

may also accept solutions that do not bring improvements to the cost function. It turns out that when

a solution is not accepted by direct comparison, a probability of acceptance value is determined and

compared to a random one. Then, depending on this comparison, the solution can still be accepted,

even degrading the cost function [46, 52–56].

Figure 4.1 presents the generic flowchart of SA algorithm. Being a general SA flowchart, it

presents an extra loop that corresponds to the so-called re-annealing process. In this thesis, the imple-

mentation of the re-annealing process was not considered.

95

Figure 4.1: Simulated Annealing flowchart [46].

Throughout next sections, a description of all SA operation will be given. It will start with the

generation mechanism on Section 4.2.1, followed by temperature scheme and cost function imple-

mentation in Section 4.2.2 and Section 4.2.3 respectively. The last part, concerning how acceptance

criteria works, is discussed in Section 4.2.4 and the last operation is stop criteria, in Section 4.2.5.

4.2.1 Generation Mechanism

Generation mechanism on SA is responsible for determining new solutions. It specifies how a new

solution must be generated. This mechanism is used in each algorithm iteration, to generate a new

solution, considering the previous result as a reference point. The algorithm does a random search

over the whole solution space. The most common practice, and also used here, is the generation of a

new value, using a random Gaussian number with zero mean and considering a controlled deviation.

To generate new values, in the first place the solutions space is defined. These solutions’ space is

limited by values which conduct to feasible solutions. After well defining the solutions space, the

function that generates random values is used to perturb actual solution inside of all possible values.

To perturb a solution, expression (4.1) is used. Basically, a new value generated for next algorithm

iteration, xi+1, depends on the actual value used, xi. At a previous value, the algorithm uses a function

that generates randomly values between 0 to 1 to select how much will be added, considering an

96

admissible value range, ∆X .

xi+1 = xi +∆X (4.1)

In this thesis, the generation mechanism considers two different rules. These two rules will be

later explained, as well as and how they are used. Basically, those rules were implemented to define

two different search types, local and global. Local search is implemented by applying (4.1), which

represents a small disturbance of an actual solution. The second rule implements a global search

within the whole solution space. This second rule is used when a big random jump is desired with the

purpose to explore other parts of the solutions space.

4.2.2 Temperature Scheme

Temperature is a critical parameter on SA algorithm, used to control one of the main algorithm

features. This parameter is essential for algorithm mechanism to escape to local minimums, since it

directly affects the acceptance probability of a bad solution. Some authors denominate this variable as

control loop, but sin it commonly represents temperature effect on material, temperature is the most

appropriate name.

Since this is a critical parameter, it must be exposed properly. To determine temperature, two

different stages must be defined in a first phase. These different stages can be a part of temperature

scheme on the SA algorithm:

• Initial temperature value;

• Cool-down rate.

Starting with the initial value, temperature must start as high as possible since it happens with the

annealing process, which starts with the heating of the material up to a high value of temperature in

order to produce a free movement of its atoms’ structure. In the SA algorithm, a similar behavior

is desired. The initial temperature must also be high enough to allow bigger jumps in the solution

space. This happens because temperature affects the acceptance probability of worst solutions, this

being directly proportional to it. This means that the higher the temperature, the more chances a bad

solution has to be accepted. So, the algorithm needs to have a good initial temperature estimation.

Temperature which is too high can lead to instability, causing too many jumps inside the solution

space, while a too small initial value can result in a local minimum convergence.

97

There are many approaches for initial temperature determination. One option, and the simplest, is

setting a constant value as initial temperature. The exact value to be defined can result from several

algorithm runs, in order to understand which one produces better results, [57,58]. Another alternative

is to determine initial value by a relationship between the maximum amplitude value admitted for a

bad cost function move with acceptance probability, as presented in [59]. Equation (4.2) shows how

initial temperature can be determined.

T0 =
∆Ci

ln(p0)
(4.2)

In (4.2), ∆Ci represents the maximum amplitude allowed for a bad move in the algorithm and p0 is

the corresponding probability of being accepted. ∆Ci can be determined after several algorithm runs,

applying the average value of all bad moves, or can be simplified by using a unique example.

The second part of temperature scheme is the cooling rate definition. Regardless to the scheme

choice, it is important to ensure a slow gradient of the temperature parameter. Looking once more

at the annealing process, a fast cooling down results in a poor organization of material structure

while a very slow one will consume more time for almost the same result. In the SA algorithm the

right cooling rate also needs to achieve a good convergence, [60]. Some examples of cooling rates

are [61, 62]:

• Linear function as Ti = sTi−1;

• Dynamic cooling rate.

Using cooling rate as a linear function, the first option is one simple way to implement it and it

is the most applied. Cooling rate can be adjusted by parameter s, which is typically selected from

a range between 0.8 and 0.99. The second option is more complex to be defined and implemented.

Typically, it is used as a function dependent on initial and final values (estimated) for temperature,

and, in some cases, it uses a number of iterations. An example of this type of cooling rate is the

logarithmic cooling [63].

During the developments of this thesis, linear cooling rate was adopted as the most appropriate

for decreasing temperature. Parameter s was tuned iteratively, several possibilities being defined. It

was tested for several cases, and in the next sections, in the results demonstration, the applied s value

will also be presented.

98

4.2.3 Cost Function

Cost function, often called objective function, is used by the SA to qualify solutions. The con-

struction of cost function highly depends on the algorithm’s objective, as well as the methodology

adopted. The first thing to define when cost function is determined, is if a minimization or a max-

imization problem ins intended. After that, the variables which better represent the problem, or the

most important for the main objective, must be selected. The cost function type, after these two steps,

must be adjusted to the problem itself.

The way each solution will be qualified must also be defined. The cost function value can be,

for instance, the result of an error or root square error. As an example, if the algorithm is used to

determine parameters for a model that emulates a real physical behavior, the cost function can be the

minimization of the difference between real measurements and the model output.

Later, in this chapter, the implemented cost functions will be presented.

4.2.4 Acceptance Probability

As mentioned several times before, one of SA main advantages is its capability of escaping from

local minimums. This advantage is possible once algorithm can accept solutions that are worst then

the selected last better one. The acceptance of bad solutions is based on a probabilistic method,

determined by (4.3).

p = e
−∆C

Ti (4.3)

So, the algorithm uses a Maxwell-Boltzmann distribution to determine if a bad solution must be

accepted. This happens once the SA algorithm is based on Metropolis procedure. In Metropolis pro-

cedure, Maxwell-Boltzmann distribution is also used to determine if a small random perturbation on

a multibody system is accepted, when system energy increases, [64]. In the SA algorithm, the accep-

tance probability is a function of cost function difference, ∆C, and the actual system temperature Ti.

∆C represents the difference between the current cost function value and the previous better solution,

∆C =Ci−Ci−1. In accordance to the acceptance probability function, two different cases can happen,

based on ∆C result. These cases are:

• ∆C ≤ 0, corresponds to solutions in accordance with cost function, which means the actual

solution has a smaller cost function than the previous one;

99

• ∆C > 0 happens when the actual solution is worse than the previous one.

The first situation relates to cases where the actual solution has improvements on cost function

when compared with the previous one. This case is in accordance with cost function, which means

that actual solution must be accepted. For all these cases, the acceptance probability is always higher

than 1. The second case, corresponds to all scenarios where the current solution is worse than the

previous one. These are all cases where the acceptance probability must be determined to define if it

must be accepted or not.

When a worse solution appears, the acceptance probability is determined. After being determined,

a function that generates random values between 0 and 1 is used to decide if the current solution must

be accepted as better or, on the contrary, rejected. So, to decide that, the acceptance probability is

compared with a random generated value, and in the event of being higher, the actual solution is

accepted as better. If not, the SA considers that the actual solution must be rejected.

Another particularity of using (4.3) as acceptance probability is the fact that it is directly pro-

portional to temperature. The acceptance probability decreases when temperature decreases, which

means that a bad solution has higher changes to be accepted in the algorithm’s first iterations than in

the last ones. As ∆C increases, the acceptance probability decreases, which means the probability of

a worst solution being accepted decreases with the distance from the solution to the main objective.

The acceptance probability was implemented in the developed algorithm as described in this sec-

tion.

4.2.5 Stop Criteria

The SA algorithm searches for the solutions space for possible answers that introduce some gain

on cost function. This search process is carried out iteratively, so as there is not any information

about the time when it must stop, it never ends. Thus, before running the algorithm, a stop criterion

must be set with the purpose of defining when the search must finish. Only after this stop criterion

is satisfied, the algorithm is ready to present the best solution found. As it happens in all algorithm

operations, there are also some possible options. The criterion choice depends on the algorithm’s

developer, which may define one without compromising algorithm convergence and implement the

option which better meets the proposed objective. The stop criteria options can be:

100

• Maximum number of iterations;

• Cost function accepted value;

• Minimum temperature value;

• Maximum cost function gain between two consecutive iterations.

In this thesis, and in all SA algorithm implementations, the maximum number of iterations was

used as stop criteria. Most of the applications carried out had the ultimate purpose of being executable

in real time, hence the number of iterations was limited, to guarantee a minimum execution time.

4.3 Driving Assistant Algorithm

One of the main objectives of this thesis is the implementation of a real time algorithm suitable

for a DAS. The development of this algorithm must consider the possibility of its use in a portable

platform running side by side with a user interface. Typically, the portable platform goes near the train

driver with the purpose of advising him about how to do the actual journey, in scheduled time and

with minimum energy costs. During the course of algorithm development, new ideas were emerging,

resulting in two possible implementations for it. Both implementations follow a similar methodology

focused in solving most of actual railway system concerns, presenting solutions to reduce operations

costs and maximize line capacity. The first methodology implemented follows the main focus of the

thesis, which is the reduction of energy needs for train operation. The second approach is concerned

with system punctuality, presenting solutions for reducing delays. Both approaches will be presented

and subject to analysis throughout this section.

4.3.1 Energy Consumption

The first algorithm developed is aligned with the main objective of the thesis, which is the reduc-

tion of energy consumption during train operation. Most of the actual railway systems are near their

full capacity, which requires careful management of the resources currently available. This resource

management can be carried out in several perspectives, one possibility being the use of the algorithm

developed within this thesis.

The developed algorithm aims to help train the driver to make decisions about the better way to run

the train in order to comply with the schedule time, passengers’ comfort, line constraints and minimum

101

energy consumption. The algorithm is not intended to make automatic driving of the vehicle, nor to

replace actual drivers. Its main function is to advise them, being the driver’s function to comply

with the given advice. Obviously, the success of the algorithm will largely depend on the driver’s

compliance with it. So, the algorithm’s main idea is, whenever a particular trip is intended to be made,

that a solution must be completed during the time stopped at the departure station, after collecting the

most accurate available information concerning trip constraints. Furthermore, it is clearly intended

that the obtained solution has minimum energy consumption for current conditions.

4.3.1.1 Problem Formulation

The optimization algorithm will be applied to minimize energy consumption during train opera-

tion, as stated in (4.4). Since it is intend to test the algorithm on real railway lines, there are some

limitations that must be imposed on speed profile determination. Also, there are some physical lim-

itations, as explained previously, in Chapter 3, which should be accomplished to avoid any accident.

These limitations should be expressed as algorithm constraints. The first constraint, (4.5), is used to

guarantee that maximum velocity is never exceeded at any point of the journey. The second constraint

limits total travelling time, (4.6), to the maximum allowed one. It is expected that all determined speed

profiles will respect the schedule, defined by the train operator. This is important, since the amount

of energy needed for a trip is highly dependent on travelling time. Considering a simple journey

with fixed distance, consumed energy will decrease as the journey time increases. The last constraint,

(4.7), was defined thinking of passenger security and comfort. It is important to have a controlled

acceleration within security limits. This last constraint requires that for each value of the proposed

train acceleration, it must be analyze and consequently verify if limit values are violated. If some of

them surpass the maximum limit, or the maximum figure permitted by traction characteristics, it is

automatically reduced to a minimum of two.

Minimize

T =
T

∑
i=1

eci + | et | (4.4)

102

Constrained to

vt 6VM for 1≤ t ≤ J (4.5)

t4 6 T for 1≤ t ≤ J (4.6)

at 6 min
[

amax,
Ft −Fr−Fg

MTotal

]
for 1≤ t ≤ J (4.7)

4.3.1.2 Algorithm Implementation

The implementation of the new algorithm started by deciding how TMS results can be used to-

gether with an optimization algorithm, with the purpose of helping the train driver with the task of

reducing energy consumption during train operation. The selected optimization algorithm to accom-

plish this task was the SA. TheTMS algorithm’s main role is the representation of the train dynamic

model, determining speed profiles considering initial values given, as well as line conditions and jour-

ney requirements. The SA must evaluate each solution proposed and find the one that better fits all

objectives. A flowchart representing all steps and operations carried out in the algorithm is presented

in Fig. 4.2.

Figure 4.2: Algorithm Flowchart.

103

Before presenting an extensive explanation about how the algorithm works, the main operations

are listed in order to make the following description easier:

• Generating random values for cruising, vop, and braking, vbk, velocities;

• Reading input data: distance, available time and line constraints;

• Using the TMS algorithm to determine the corresponding velocity profile;

• Verifying if the velocity profile respects initial requirements;

• Determining energy needs and the respective cost function value;

• Identifying whether the solution should be maintained or excluded (SA algorithm).

Following the order imposed by the algorithm, the first step is initialization. At initialization step,

all inputs as train and line characteristics, and journey requirements are read. In addition to variables’

reading, some variables are also initialized. SA needs to be initialized. In addition, the cooling rate

and the maximum number of iterations must be defined. For the whole algorithm, in general, vectors

and variables to store all intermediate and final operations are also defined and initialized. To record

all done calculations and trying to avoid problems, it was decided to define the vectors’ length based

on the journey’s available time. This is so because the TMS algorithm was implemented using time

as an independent variable. This decision was based on the fact that the available trip time received

as an input is known by the railway operator as being enough to travel from the departure to the

destination station. Whenever the TMS runs, all variables related to train movement are updated at

each considered time instant. Since this time was set to 1 s, as earlier explained, the vector dimension

is based on the available total time divided by the step time size.

After finishing the initialization step, the algorithm jumps to the generation mechanism, which

is responsible for generating new values for cruising and braking velocities, vop and vbk respectively.

The generation of new values, as stated by the SA, is a random search inside the solution space. This

means that, initially, a range of feasible values is defined by setting boundaries in order to create the

solutions space. Once the latter is defined, a function that generates random values is used in order to

search for a new set of solutions to be tested by the SA.

Inside the generation mechanism, a range of possible values was first defined, limiting the total

number of feasible options for cruising and braking velocities, vop and vbk. The defined limits were

the following:

104

1. Cruising velocity: From zero km/h up to maximum value allowed by train;

2. Braking velocity: From zero km/h and can goes up to cruising velocity.

More than limiting the solutions space, the generation mechanism also defines how new values

must be determined. Those rules are highly important for the optimization algorithm, since they

interfere in how new solutions perform and, consequently, in algorithm convergence. The process of

tuning and rule adjustment was iterative, resulting from the performance of the algorithm, together

with the sensitivity and perception of the problem. The result was the implementation of two ways,

both based on random generation. Those ways can be regarded as rules, and the selection process of

each one is dependent on the SA’s previous result. Those generation rules are:

1. Local search: generating a new random value from the previous result neighborhood.

2. Global search: generating a new random value within the whole solution area.

Rule number 1 is used to introduce small disturbances to actual solution, thus generating a new

one in a close neighborhood. This rule is used to verify if the actual solution can be improved in the

near neighbor, before a big jump is taken in the solutions space. The purpose of this idea is to be used

in the two following situations:

1. When the actual solution is accepted;

2. When a pre-defined number of solutions was tried without any of them being accepted.

Rule number 2 makes the use of a function that randomly generates numbers, following a normal

distribution. The function in use generates random numbers on the range [0,1] and can be easily es-

calated. The result is the generation of a new value inside the problem’s boundaries, corresponding

to big and random jumps in the solutions space. This second rule is used in two different situations:

generating the SA’s initial solution and after that declining a fixed number of tried solutions. These

two algorithm steps, the generation mechanism and the TMS algorithm, together form the algorithm’s

first loop, which is controlled by time and distance errors produced by the TMS algorithm, and it can

be known as a control loop. As previously explained, the TMS algorithm simulates the train’s dy-

namic behavior, and after defining cruising and braking velocities, a speed profile is determined and

presented as a result. Once the TMS is obtained, it is possible to know how much time was needed

105

to go from the initial to the final velocity as well as the distance travelled. This means that the TMS

algorithm somehow does not guarantee that the train travels a minimum distance in a defined time

period. In fact, it only determines speed profiles from an initial to final velocity, accomplishing two

intermediate velocities: cruising and braking. So, in order to reduce processing time and unnecessary

operations, the following operation in the main algorithm, immediately after the TMS is the determi-

nation of time and distance errors. Errors are used to control if the algorithm must jump to the next

operation, which is to determine energy needs. In fact, small errors for time and distance are allowed

in order to ignore some approximations done during some numerical operations. In case of a distance

or time error being higher than expected, the algorithm jumps back to the generation mechanism, with

the purpose of finding another pair of velocities leading to a possible solution. When a new pair of

velocities is needed, the algorithm applies the same rule used to generate the current solution, in order

not to change SA algorithm’s result.

Once a speed profile is determined, and according to initial time and distance requirements, the

following step is the estimation of the spent train energy. Together with the estimation of energy

consumption, a cost value is also determined, following a defined cost function. This step was the

one that suffered more changes during the algorithm’s developments, since the TMS algorithm also

changed. All changes made were based on which variables should be considered as well as the change

of some used penalty factors. The cost function tune was also an iterative process, requiring a lot of

time spent on the running optimization algorithm and analyzing the results. Having a cost value

associated to a speed profile determined by the TMS, the algorithm launches SA to analyze if actual

solution brought some improvement to the current one. If it does it, the algorithm saves the current

solution as the best obtained until that moment; if not, the acceptance mechanism described in the

beginning of this chapter is used.

The algorithm here described runs until a maximum number of iterations is reached. After that,

the solution representing the lowest cost function value is presented as the optimal solution for the

problem, considering the actual conditions. After being identified as the best option, the algorithm

presents the speed profile on a time vs velocity as well as a distance vs velocity plot.

The SA algorithm also required some attention. Some variables needed to be defined and some

parameters had to be properly determined. First of all, the maximum number of iterations was set to

250. This number was defined based on a tradeoff between algorithm’s convergence and the needed

processing time. After a maximum number of iterations, all attention was directed to temperature

106

structure. Initial temperature as well as cooling scheme may be defined. Starting with the cooling

pattern, a linear scheme was defined as being the most appropriate since the beginning. This lin-

ear scheme shows a good compromise between the algorithm’s processing time and the difficulty of

implementation. For this arrangement, is required to define the cooling rate factor. Bearing this in

mind, and analyzing the literature review, it was defined as 0.8, thereby providing a slow cooling

down. Also related with temperature structure, initial temperature should also be determined, and

to reach this goal, the algorithm follows equation (4.2). Recalling the expression for the calculation

of the initial temperature, it is necessary to define the maximum allowed amplitude for a bad move

(cost function related) and respective probability. The maximum amplitude allowed for a bad move

is not trivial to define, as it requires high knowledge about the system. A solution found to this prob-

lem was to make use of an initial estimation to determine this maximum amplitude. So, the process

implemented to determine initial temperature is:

1. Defining random values for vop and vbk and run the algorithm’s first iteration;

2. Determining the speed profile, energy needs and respective cost function;

3. Defining the first solution as the best cost achieved and generating another set of random values

for vop and vbk.

4. Determining speed profile, energy needs and respective cost function for the second iteration;

5. Deciding the maximum amplitude allowed defined by the difference between the first and sec-

ond iteration cost;

6. Determining the initial temperature, using (4.2) and attributing an acceptance probability of 0.8;

7. Continuing the algorithm, running naturally.

The results obtained with the optimization algorithm will be presented in the next section.

4.3.1.3 Results

The implemented algorithm was subjected to several tests with the purpose of verifying if is ca-

pable to meet all proposed requirements. Several results were obtained with the various versions of

the TMS algorithm, but in this section, only the results found in the last version are presented. The

implemented tests consisted in the simulation of a train on a railway line in the north of Portugal, used

107

mainly for commercial services of passengers. The algorithm results were compared with the acquired

data, at the same line, in terms of speed values as well as time spent and energy consumption. In order

to draw some conclusions about the algorithm’s performance, based on the results’ comparison with

real measurements, train model parameters were defined according to the vehicle used in the trips.

Before running the algorithm, in order to look for new results, some parameters and configurations

were set and maintained in all journeys. Table 4.1 presents the used SA parametrization.

Table 4.1: Algorithm configurations

Parameter Value

Initial Temperature Eq. (4.2)

s 0.8

Max iterations 250

Acceptance Probability Maxwell-Boltzmann distribution

As already known, the most relevant algorithm configurations for the SA are: maximum number of

iterations, initial temperature, cooling scheduling scheme, cooling factor and acceptance probability.

With the purpose of improving the algorithm’s search for new solutions, an acceptable error was

defined for travelling time and distance, at the time when a solution is accepted. The introduction of

error ranges in the acceptance of new solutions was made in order to help the algorithm search over

the solution space. The idea is to avoid the non-acceptance of new solutions which may be classified

as bad, but can be in an area of possible ones. On the other hand, the introduction of errors was made

thinking of numerical approximations, which can happen during calculations. So, acceptable errors

are 5 s for time and 750 m for distance, and both are constant for all journeys.

Each solution must be evaluated and posteriorly qualified in order to be defined as a good or

bad one. This evaluation is made using the cost value, which is the result of applying the cost func-

tion, aiming to quantify the quality of a solution, based on some previously defined parameters. The

cost function construction is directly related with algorithm’s main objectives, and for the case here

presented, the function presented in (4.8), is:

Minimize

Ec =
T

∑
i=1

eci + | et | (4.8)

Looking at the cost function, the first term consists in energy consumption. Associated with each

108

velocity profile determined, an energy consumption estimation is done in order to be used in the cost

function. In addition to the energy consumption estimation, the cost function contains a second term.

This second term is related with the journey time needed, more precisely the difference between the

total available time, set by scheduling, and the time needed by the train with the current solution. As

explained previously, each determined solution for velocity profile is achieved within some tolerance

errors. This way, only solutions inside an admissible range are accepted. The TMS algorithm itself,

during speed profiles determination, has no concern with travelling time. Driving phases are deter-

mined following one sequence starting with braking, followed by acceleration, coasting and finishing

with cruising. In each speed profile period, the necessary time and space are determined, and after

the cruising phase is calculated, the remaining time and space for the actual journey are known. The

calculation of the cruising phase considers the remaining distance as a control variable, only being

completed when this distance is totally covered. The journey remaining time is not allocated to the

cruising phase, only determining the time needed to travel the remaining distance at vcru velocity.

Once the cruising phase comes to an end, the time needed is determined and the algorithm confirms

if the journey travelling time is in accordance with scheduling. Because of that, the difference be-

tween the time available for the actual journey and the time spent with the actual velocity profile is

considered in cost function. After some algorithm tests, the inverse proportionality relation between

travelling time and energy consumption was confirmed. So, considering a journey, the energy con-

sumption estimation reduces with the increase of travelling time, having as result a positive time error

when a journey is faster than expected but with higher energy consumption. To consider the travelling

time error as a penalty factor its module is in use.

The first algorithm test considered a journey with 1710 m of distance between two consecutive

stations with a travelling time of 120 s, defined on scheduling by the train operator. The profile for

this first journey’s, gradients and velocity limits values is presented in Fig. 4.3.

109

0 200 400 600 800 1000 1200 1400 1600

-0.05

-0.025

0

0.025

0.05

0

25

50

75

100

125

150

V
max

Figure 4.3: Line profile - gradients and velocity limits values.

Looking at line characteristics for the first journey, it can be seen that no restrictions are introduced

in speed profile determinations. The velocity limit is defined as 120 km/h in all line extension, which

is higher than the cruising velocity needed to accomplish the journey within scheduling. The line

gradient is almost constant, being positive in most of the journey. This means that actual journey

is situated on an uphill line. The optimization algorithm, as projected, uses an iterative process as

methodology in order to find the best solution for each case which is the one presenting the minimum

or maximum value for the cost function, depending on the algorithm’s main objective, selected from

a bunch of possible solutions. After running all algorithm iterations and before the best solution

is identified, a set of possible candidate solutions that accomplish the journey’s initial conditions

are presented. Fig. 4.4a shows all velocity profiles determined during the algorithm’s execution.

Associated with each velocity profile, a cost value is determined, consisting of a measure of the

solution’s quality. The representation of the cost function’s evolution associated to the algorithm’s

iterations is presented in Fig. 4.4b.

110

0 50 100 150
0

10

20

30

40

50

60

70

80

(a)

0 50 100 150 200 250

it

11

12

13

14

15

16

17

18

19

20

c
o
s
t

(b)

Figure 4.4: Algorithm solutions - Speed profiles and cost function values.

Figure 4.4a shows all velocity profiles calculated during the algorithm’s execution. As already

stated, line characteristics in these tests are almost constant during all journey extension, so they do

not impose constraints on velocity profile determination. Therefore, it is expected that all determined

velocity profiles follow the same sequence of driving regimes, as seen in the figure above. The big

difference between the various profiles is the choice of cruising and braking speeds. Changing those

velocity values implies that each driving regime needs a space and time change, resulting in different

total travelling times and energy needs.

Figure 4.4b shows the evolution of cost function during algorithm’s iterations. An important detail

is that the minimum cost is reached during the first 100 iterations. This trend also occurred during

several executions of this algorithm, using the same trip, which allows to conclude that the maximum

number of iterations can be reduced, without bringing major changes to the final result. The advantage

of reducing the maximum number of iterations is the decrease of the execution time, increasing the

chances that the algorithm runs at real time. The algorithm’s main objective is to determine the best

solution, considering the actual trip as well as initial conditions. The determination of a best solution

is made after several possible candidates being calculated, selecting the one with the lowest cost

function value. From the algorithm’s output, Fig. 4.4a, the lowest cost solution value was selected,

and presented in Fig. 4.5.

111

0 50 100 150
0

20

40

60

80

100

v(t)

v
real
(x)

(a)

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

v
max

v(x)
v
real
(x)

(b)

Figure 4.5: Algorithm solutions – Calculated speed profiles and cost function value.

Figure 4.5 presents the algorithm output for this first journey. This figure is divided in two sub-

figures, where calculated speed profiles are presented in a velocity versus time graphic, Fig. 4.5a,

and a second sub-figure where train velocity is represented considering train position, Fig. 4.5b. In

both figures, the algorithm result is compared with the current applied speed profile, acquired during

a regular service and represented by a black line. The train was operating without any DAS, so the

driver was only concerned with schedule accomplishment without violating velocity limits. In what

concerns velocity limits, both velocity profiles are always below velocity limits, as can be seen in

Fig. 4.5b. The acquired data shows, for this journey, a total traction energy of 14.78 kWh. To make

a fair comparison, a train model in the algorithm was initialized with a train mass equal to real train

measurements, together with speed velocity. The algorithm result proposes, as the best option, the

speed profile represented in blue, estimating an energy consumption of 11.86 kWh. Comparing both

speed profiles in terms of journey time, the algorithm results estimates a train arrival on time, while

real measurements show a 1 s delay. The algorithm needed 2.1 seconds to output the solution, so it

112

enables its use in real-time applications, as intended. Table 4.2 compares the most important results

of the algorithm with data received from measurements (first column is train weight).

Table 4.2: Results comparison for case 1

P(ton) ∆T (s) Ec(kWh) Texe(s)

Real 118 121 14.79 −−

Algorithm 118 120 11.86 2.1

A second journey was used as another test for the algorithm. This second journey’s line profile is

shown in Fig. 4.6.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-0.05

-0.025

0

0.025

0.05

0

25

50

75

100

125

150

V
max

Figure 4.6: Line profile - gradients and velocity limits values.

As can be observed, this second journey has a distance to be travelled of approximately 2000 m.

The train operator defined on scheduling an available time of 120 s. Throughout the journey, velocity

limits are constant and equal to 120 km/h during all line extension. With velocity limits of this mag-

nitude and without any changes, they can be seen as non-constraint to velocity profile determination.

Related to line gradients, this second journey is on a line with some variations between zero and neg-

ative values. Although there are variations between downhill and flat zones, it can be said that all the

length of the trip the profile is favorable to vehicle driving with minimum energy.

Once again, the algorithm was defined to run 250 iterations to look for a speed profile which

can be able to minimize the energy consumption in the actual journey. After reaching the maximum

number of iterations the algorithm presents a set of speed profiles as possible candidates to the best

solution. Figure 4.7a presents all velocity profiles calculated for this journey. All determined speed

profiles follow the same driving regimes sequence, the major differences concerning cruising and

113

braking velocity values. The second sub-figure, Fig. 4.7b, presents cost function values during the

algorithm’s iterations. The lowest value for cost function, as happened in the previous journey, was

determined during the first 100 iterations. Following iterations were used to explore other regions

within the solution space, but without any improvements on cost function. The algorithm was tested

more than once for this journey, and in all tests, cost function minimum value was always determined

during the first 100 iterations. As a first conclusion, the maximum number of iterations can be reduced

with the purpose of decreasing the algorithm time response without compromising its quality.

0 50 100 150
0

10

20

30

40

50

60

70

80

90

(a)

0 50 100 150 200 250

it

7

8

9

10

11

12

13

14

c
o
s
t

(b)

Figure 4.7: Algorithm solutions - Speed profiles determined and cost function value

Considering all velocity profiles presented in Fig. 4.7, the algorithm identified the solution pre-

sented in Fig. 4.8 as the best. The best solution result is represented in a blue line.

114

0 50 100 150
0

20

40

60

80

100

v(t)

v
real
(x)

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

v
max

v(x)
v
real
(x)

(b)

Figure 4.8: Algorithm’s solutions – Calculated speed profiles and cost function value.

Figure 4.8 presents the algorithm result, represented as the blue line, together with the current

applied speed profile, corresponding to the black line. In Fig. 4.8a, both speed profiles are presented

in a velocity versus time plot, while in Fig. 4.8b velocity profiles are presented in a velocity versus

train position. The speed profile calculated by the algorithm advises the train driver to achieve cruising

velocity in the shortest time. Reaching cruising velocity fast leads to a reduced speed to be achieved.

A lower value of vop enables a consumed energy decrease due to a reduction of motion resistance

forces. Comparing both velocity profiles, the current measurements showed an energy consumption of

11.43 kWh, while the algorithm’s output estimates a consumption of 7.14 kWh. Related with journey

time, the algorithm purposes a speed profile within scheduling, while real measurements shown a 1 s

delay. Since it is intended to run this algorithm on a real time application, the processing time was

also registered to prove the feasibility of its implementation. The output was produced after 4.3 s.

Table 4.3 presents a summary of the most important analysis criteria considered (first column is train

weigh).

115

Table 4.3: Results comparison for case 2

P(ton) ∆T (s) Ec(kWh) Texe(s)

Real 121 121 11.43 −−

Algorithm 121 120 07.14 4.3

The third test considers a railway line with characteristics presented in Fig. 4.9.

0 500 1000 1500 2000 2500 3000

-0.05

-0.025

0

0.025

0.05

0

25

50

75

100

125

150

V
max

Figure 4.9: Line profile - gradients and velocity limits values.

This journey has a 45 km/h velocity limit during approximately the first 500 m. The velocity

limit location is coincident with the position of the departure station. With this velocity constraint at

the departure station, it is expected that the train will be accelerate until the 45 km/h velocity limit is

achieved. At kilometric point 500 m, velocity limit increases and is established at 100 km/h. Although

this line section has a speed limit, the travelling time defined by scheduling for this journey is not

tight, since most of the journey length is covered by the highest velocity limit. In fact, this velocity

limit will only affect the acceleration phase, bringing some freedom to the remaining speed profile

phases. Nevertheless, speed profile determination for this journey is more complex, when compared

with previous cases. The algorithm must be able to identify the reduced velocity limit zone, and to

determine a profile within constraints. Regarding the gradient profile, this trip is on a line section with

a variable gradient. Along the trip, there are some uphill, downhill as well and flat zones. The line

information transmitted to the TMS algorithm, and after defining a maximum number of iterations

equal to 250, the latter determines several speed profiles within initial constraints and aligned with the

algorithm’s main objective. Figure 4.10 presents all speed profiles and cost function values calculated

by the TMS algorithm.

116

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

(a)

0 50 100 150 200 250

it

8

9

10

11

12

13

14

c
o
s
t

(b)

Figure 4.10: Algorithm’s solutions – Calculated speed profiles and cost function values.

All calculated speed profiles, as presented in Fig. 4.10a, are within the initial velocity limit. In

the acceleration phase, the initial acceleration is interrupted by a cruising regime before the train

reaches cruising velocity. At this point, the determined speed profile follows the same structure as

the one presented for the optimal speed profile. Even though there is a speed limit at the beginning

of the journey, the algorithm determines velocity profiles within the four phases, occupying the total

available travelling time. This happens because the available time to travel between the two stations

that are part of this third trip is more than enough to introduce a coasting phase. Figure 4.10b presents

the cost function evolution, the minimum cost being determined during the initial 100 iterations. The

solution with the best cost function is presented in Fig. 4.11.

117

0 50 100 150 200 250
0

20

40

60

80

100

v(t)

v
real
(x)

(a)

0 500 1000 1500 2000 2500 3000
0

50

100

150

v
max

v(x)
v
real
(x)

(b)

Figure 4.11: Coasting phase: train velocity and position

The algorithm solution, when compared with the current applied speed profile, shows a faster

acceleration at the beginning of the journey, with the purpose of reaching cruising velocity as fast as

possible. The output is lower cruising velocity, resulting on less energy spent in motion resistance

forces. The data acquired for this journey show a late arrival to the destination, 10 seconds after,

with an energy consumption of 10.83 kWh. The speed profile determined by the algorithm estimates

an arrival on-time, suggesting at the same time a sequence of driving regimes and velocities values

leading to an energy consumption reduction of about 1.5 kWh, which results in a total consumption

of 8.43 kWh. The algorithm calculates the solution in 10 s. Since line constraints for this journey

are more complex, the increase of the processing time was already expected. Even so, the algorithm

solution can be considered to have been determined in real time. Table 4.4 shows the values obtained

by real measurements and algorithm outputs.

118

Table 4.4: Results comparison for case 3

P(ton) ∆T (s) Ec(kWh) Texe(s)

Real 117 220 10.83 −−

Algorithm 117 210 08.43 10.0

The first three tests being completed, a new line has been introduced in the input data to perform

a new test. The line profile is presented in Fig. 4.12.

0 500 1000 1500 2000 2500 3000 3500

-0.05

-0.025

0

0.025

0.05

0

25

50

75

100

125

150

V
max

Figure 4.12: Line profile - gradients and velocity limits values.

This fourth test considers a journey with 4000 m of distance between stations, to be travelled in

180 s. This journey is located in a line section where speed limits are set at 110 km/h for the most

of the journey length. In the end of the journey, velocity limits suffer a small drop, from 110 km/h to

80 km/h, near the arrival station. The limit in question will not cause major constraints in calculating

speed profiles as it is close to the arrival station, where the train is likely to going through the process

of braking or at least driven at a lower speed. Related with line gradients, the first kilometers occur in

an uphill zone, while the last occurs downhill, as most of the journey length. Between both, a small

flat zone appears. The line gradient is more or less constant inside each region, not being difficult for

the train to overcome it.

Following the initial configurations and given all information about the line and the actual journey,

a set of possible solutions is determined, as presented in Fig. 4.13.

119

0 50 100 150 200 250
0

20

40

60

80

100

120

(a)

0 50 100 150 200 250

it

18

19

20

21

22

23

24

25

26

27

28

c
o
s
t

(b)

Figure 4.13: Algorithm’s solutions - Speed profiles determined and cost function values

This figure (4.13a) shows all calculated speed profiles after 250 iterations, beneath journey con-

straints. Looking at all the determined speed profiles, it can be verified that the velocity limit near

the arrival station does not affect the driving regime sequence. All follows the same driving regime

sequence, the major differences concerning cruising and braking velocity values. Even though it has

no influence in the calculated profiles, the algorithm tries to make sure that this same limit is never

exceeded. The second image presented, Fig.4.13b, shows the cost function value in each algorithm

iteration. As happened in previous journeys, the algorithm found the minimum cost function value

during the first 100 iterations, which is good in a way, since this maximum number of iterations can

be reduced, without changing the algorithm’s result, and thus allowing for the generation of solutions

in a shorter time. After searching for new solutions, the algorithm selects the one with the lowest

cost function value. The presented algorithm’s speed profile is the one that has minimum energy

consumption associated, presented in Fig. 4.14.

120

0 50 100 150 200 250
0

20

40

60

80

100

v(t)

v
real
(x)

(a)

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

v
max

v(x)
v
real
(x)

(b)

Figure 4.14: Coasting phase: train velocity and position

In figure 4.14, it can be seen the algorithm’s output, together with the actual applied speed profile.

The actual speed profile in use was acquired in a train without any DAS system. In Fig. 4.14a, both

speed profiles are presented in a time versus velocity graphic, while in Fig. 4.14b speed profiles are

represented in a train velocity versus position graphic, together with line velocity limits. Comparing

the algorithm’s output with the current applied speed profile, it can be seen that the algorithm output

presents a profile where the journey’s total time is shorter than real measurements. This happens due to

the fact that the algorithm determined all speed profiles within scheduling, while real measurements

were made on a journey where train arrived more than 30 s later than expected. Even though it is

possible to calculate the velocity profile within the time defined by scheduling, it is clear that the time

available for this journey is tight, since the algorithm did not introduce a coasting phase in the final

solution.

The comparison between both speed profiles in terms of energy consumption could not be con-

sidered fair. In fact, the algorithm’s output has a higher energy consumption. An energy consumption

121

of 18.70 kWh is estimate, while real measurements showed a consumption of 15.10 kWh. Even with

a higher consumption, the result of the algorithm remains the most correct, since it complies with the

established time. In fact, as already known, the longer travelling time, the less energy consumption.

This result was calculated in 6.1 s.

Since the travelling time difference between the algorithm’s result and the train’s measurements is

high, about 30 s, the algorithm was again tested using this journey, considering the journey’s available

time equal to measurements, 214 s. The goal associated to doing this second test was to get a fairer

comparison with this journey, and to reach some conclusions about algorithm’s performance related

with energy consumption reduction. The algorithm’s results are presented in Fig. 4.15.

0 50 100 150 200 250
0

20

40

60

80

100

v(t)

v
real
(x)

(a)

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

v
max

v(x)
v
real
(x)

(b)

Figure 4.15: Coasting phase: train velocity and position

Comparing both results, the increase of the journey time allowed for the introduction of a coasting

phase between cruising and braking, something that did not happen in previous results. As it can

be seen, the algorithm responds again with a velocity profile capable of finishing the trip within

122

the time defined in the inputs. Comparing these results with the actual speed profile measured in

terms of energy consumption, it can be seen that the algorithm estimates a reduction of approximately

2 kWh. The algorithm’s output was calculated in 9.2 s after being initialized, which allows a real time

implementation. Table 4.5 presents numerical results obtained for the fourth journey, comparing real

measurements with both algorithm runs.

Table 4.5: Results comparison for case 4

P(ton) ∆T (s) Ec(kWh) Texe(s)

Real 119 214 15.10 −−

Algorithm 119 180 18.70 6.1

Algorithm 119 214 12.97 9.2

To verify the algorithm behavior in different situations, one more journey was introduced into its

tests, Fig .4.16.

0 500 1000 1500 2000 2500 3000

-0.05

-0.025

0

0.025

0.05

0

25

50

75

100

125

150

V
max

Figure 4.16: Line profile - gradients and velocity limits values.

This last journey is on a railway line with some gradient variation together with restricted velocity

limit and a small neutral zone. The velocity limit in this journey appears some meters after the

departure station, and it only lasts a few dozen meters. In spite of having a small extension, this

speed limit zone cannot be ignored, leading to the calculation of speed profiles taking into account

its location as well as the maximum allowed value. Line gradients in this journey alternate between

flat zones and positive gradients, associated to uphill sections. The neutral zone appears at kilometric

point 300 m. It has a length of 600 m and will be noticeable on speed profiles determination, since the

algorithm will force a coasting driving regime when a dead zone is detected.

123

Following the same structure as presented in previous cases, the first result presents the speed

profiles determined after the algorithm runs all iterations, Fig. 4.17.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

(a)

0 50 100 150 200 250

it

17

18

19

20

21

22

23

24

25

26

c
o
s
t

(b)

Figure 4.17: Coasting phase: train velocity and position

The first figure, Fig. 4.17a, shows all calculated speed profiles. In all of them, the neutral zone is

well identified since it affects all speed profile determination. After the train’s departure, an accelera-

tion phase is initiated, starting with an acceleration driving regime. As soon as the train reaches a neu-

tral zone, the algorithm changes from acceleration to the coasting driving regime, which is changed

back to acceleration when the neutral zone is over. Once this zone is crossed, the algorithm deter-

mines the remaining speed profile, following the sequence of optimal speed profile acceleration until

the train reaches vop, followed by cruising, coasting and in the end, near the arrival station, braking.

The second figure, Fig. 4.17b, shows cost function values during the speed profile determination. In

this journey, the algorithm took more than 100 iterations to find the lowest cost solution. The solution

selected, the one with the lowest value for the cost function, is presented in Fig. 4.18.

124

0 50 100 150 200 250
0

20

40

60

80

100

v(t)

v
real
(x)

(a)

0 500 1000 1500 2000 2500 3000
0

50

100

150

v
max

v(x)
v
real
(x)

(b)

Figure 4.18: Coasting phase: train velocity and position

Figure 4.18a presents the calculated speed profile, in blue, together with the train’s measured pro-

file, in black. The biggest difference between them refers to cruising velocity. The algorithm adopts

the methodology of applying stronger acceleration and braking to minimize cruising speed, thereby

reducing some of the energy that is wasted to overcome forces against movement, which increase with

velocity. The real profile shows an early arrival and an energy consumption of 23.57 kWh while the

algorithm proposes a profile which estimates an arrival on-time with a reduction in consumption of

about 5 kWh. Table 4.6 summarizes the results obtained by the algorithm, comparing them with the

actual data.

Table 4.6: Results comparison for case 5

P(ton) ∆T (s) Ec(kWh) Texe(s)

Real 128 178 23.57 −−

Algorithm 128 180 17.72 3.6

125

Reviewing all the results presented during this section, some conclusions about the algorithm’s

performance can be drawn. This section presented the algorithm implemented with the purpose of

determining speed profiles focused on accomplishing the scheduling imposed by the train operator

as well as reducing energy consumption during normal operation. It is intended that the algorithm

will be integrated on a DAS so as to advise the train driver on how he should drive the vehicle in

each journey. In each departure station, the algorithm must determine a speed profile for the actual

journey before the train driver starts acceleration. Looking at all the results, it can be seen a good

algorithm performance within the initially proposed objectives. Algorithm results shows velocity

profiles according to the time available by the operator as well as an estimation of energy consumption

reduction in each trip, according to the journey’s actual conditions. Another important aspect in the

results is the time required to calculate each solution. Looking at the processing times obtained during

the algorithm’s tests, it can be concluded that time is considerably short and that it shows ability to be

used into a real time application. In conclusion, it can be said that the algorithm acts according to the

initially defined specifications.

4.3.2 Travelling Time

In addition to the development of the algorithm presented in previous section, a second one was

also developed with the purpose of minimizing time delays on train operation. These delays, can

happen naturally in non-regular operations, which can be divided in two different categories:

• Late delays

• Line works

Both cases consider unforeseen situations that can occur in every railway system. A very common

problem is delayed departures, which may represent a major problem since they increase the chances

of a delayed departure also delaying the arrival.

Starting with the first category, there are many factors that can cause system delays, such as

entrance and exit of passengers, the vehicle or the driver not being ready to leave on time, or some

any other factor that obstructs the passage on the line. The second category considers line works as

a possible source of a non-regular train operation. Line works can happen any time at railway lines,

caused by maintenance works or the removal of an external object that compromises the system’s

safety. Jobs on the line are usually carried out by workers. To ensure the latter’s safety, the railway

126

operator defines tight speed limits for corresponding line sections. As a result, these line sections’

average velocity must be reduced, thus requiring a longer time interval to travel the same distance.

Looking at both categories, it can easily be seen that they will introduce delays in every rail-

way system. The solution to this problem is linked to train drivers, who, without compromising the

passengers and the railway’s system safety, seek to make the journey at the highest speed in order to

reduce or even eliminate these delays. This means that any driver will not try to carry out energetically

economic trips in order to reduce any delay. This implies running the train with the fastest velocity

possible, to arrive as soon as possible at the next station.

Without compromising system security, it is necessary to take into account that this system arises

from the necessity of transporting goods and people. Hence a great need to meet established schedules

is required to maintain a high degree of satisfaction as well as confidence. On the other hand, if all

train drivers meet the established schedules, it will be possible to maximize the use of railway lines,

therefore also increasing the system’s capacity.

4.3.2.1 Problem Formulation

Aiming at the development of a DAS capable of determining the OSP for real railway systems, it is

necessary to offer options that cover all system needs. The train driver, may be able to choose between

being advised about an economic driving or minimizing travelling time delays. In the development of

this thesis, a second algorithm was developed in order to cover the new needs imposed by the system.

The idea of this second algorithm is to be available at the DAS in order to be chosen, after the latter

receives some feedback from the driver. This second algorithm is not supposed to replace the previous

one. In fact, they are supposed to operate side by side.

Aligned with the objective of reducing time delays, problem formulation was revised before being

implemented. Now, the problem to be solved, is how to determine an OSP that minimizes time delays

or in other words, reduces the journey’s total time, T , that is:

Minimize

T = ∆x+
N

∑
t=1

∆ti (4.9)

Constrained to

vt 6VM for 1≤ t ≤ J (4.10)

127

at 6 min
[

amax,
Ft −Fr−Fg

MTotal

]
for 1≤ t ≤ J (4.11)

The algorithm will continue to be implemented in order to minimize the main subject. The en-

ergy consumption as cost function was abandoned and total travelling time took place, (4.9). Total

travelling time will be determined as the result of all steps associated to time, used for the OSP de-

termination, which will be better explained during this section. The distance error was added to total

travelling time between the travelling distance and the distance between stations. This second term

was added to the cost function in order to improve the algorithm’s results based on how this is struc-

tured.

In terms of constraints, the problem was defined with the same restrictions, one being removed.

The decision of maintaining some constraints was already expected, since the algorithm works over

the same system. Anyway, all speed profiles determined must not exceed the maximum speed allowed

at any point of the journey, (4.10). The second and the last restriction are used to set a limit to train

acceleration, (4.11). Limits are related with train traction’s characteristics and considering passengers

comfort.

4.3.2.2 Algorithm Implementation

The implementation of an algorithm to determine speed profiles with the purpose of reducing

time delays, requires an algorithm capable of estimating travelling time. So, algorithm developments

started by integrating the TMS algorithm developed. TMS, as explained before, uses time as an

independent variable on the train dynamic model, which means that for each variable present in the

train dynamic model, it is necessary to determine the respective value for each time step defined. As

it happened in previous developments, the time step was defined as 1 s, since train acceleration can

be considered as constant during that period of time and due to this, TMS equations are still valid. To

store all values, the previous DAS algorithm started by looking at the available time for the trip. Once

the step time size was known, it was possible to define a fixed dimension for all vectors. A previous

implementation was made considering the time available for the trip as enough to carry out the current

journey. This step concerning variables definition was a drawback in adapting the algorithm to the

case of non-regular operations. In some cases, more precisely, in the occurrence of works on the line,

the algorithm does not have enough information to predict the delay that will be caused. To overcome

this, the algorithm initializes all vectors with a pré-defined size, big enough to store all determined

128

values. After that, the algorithm receives one of two possible available times:

• In case of late delays, the algorithm receives the remaining time available;

• For line works, it receives the time available from scheduling.

After receiving a possible available time for actual trip, the algorithm starts to determine an OSP

which intends to reduce time delays. Figure 4.19 presents the algorithm flowchart.

Figure 4.19: Algorithm Flowchart.

Summarizing all operations performed in the algorithm and following the sequence imposed, it

can be described as:

• Generating values for cruising, vop, and braking. vbk, velocities;

• Reading input data: distance, time available and line constraints;

129

• Using TMS algorithm to determine associated velocity profile;

• Determining energy needs and respective cost function value;

• Identifying whether the solution should be maintained or excluded (SA algorithm);

• Before presenting the OSP, checking the feasibility of calculated speed profiles.

After presenting all operations, a more detailed algorithm description will be given. Looking at

the algorithm’s flowchart, two loops can be identified:

• Control loop: it contains generation mechanism, TMS algorithm and a mechanism to verify if

it is possible to determine speed profiles, given the initial conditions. It is a part of the external

loop. For each execution of the external loop it can be executed more than once. It appears after

variable initialization and before cost function determination;

• External loop: this loop contains the remaining algorithm operations. Those operations are

cost function determination and the SA algorithm. At the end of the execution, the external

loop also verifies the feasibility of all calculated solutions.

The algorithm starts with the initialization step, used to define variables and vectors required to

store all intermediate and final calculations. Besides variables to be used to store all calculations, SA

parameters as well as other constants and parameters for the main algorithm are also initialized. In

this algorithm step, the generation mechanism, which is responsible for generating new values for vop

and vbk, to be used on TMS, can also be included.

Once initialization is carried out, the algorithm starts the control loop. With information about the

actual trip and values for both velocities, the TMS algorithm runs and presents one velocity profile as

a possible solution. The result is analyzed and it is verified if time and distance have been fulfilled

with the initial requirements imposed by the algorithm’s inputs. This analysis consists of time and

distance’s error determination, with the purpose of understanding if the train has enough time to travel

between the departure and the arrival station with the calculated speed profile. The calculation of

these errors allows the algorithm to move forward, since both variables manage control loop. At the

end of control loop iteration, there are possible situations based on time and distance errors:

130

1. If both errors are within the acceptable range, control loop ends its execution;

2. If any of the errors exceeds the maximum allowed range, control loop runs one more iteration.

Situation 1 is, in fact, the most desired one. It means, only one try was necessary to determine

a valid speed profile. At same time, once it happens, the algorithm automatically discovers that it is

not necessary to increase the available time for the actual trip, since at least one speed profile was

determined in accordance with all the algorithm’s requirements and constraints.

Second situation, number 2, happens when a velocity profile within initial requirements was not

determined, with values generated for cruising and braking velocities. When this happens, the al-

gorithm jumps back to the initial point of control loop. Again, a new generation of values for both

velocities is achieved, and TMS algorithm runs again. This situation is repeated until the control

loop’s maximum number of iterations is reached. To prevent the algorithm from being stuck when

there is no solution for actual conditions, an extra control variable was defined to determine how many

trials can occur. When the maximum number of attempts is reached, and if it has not yet been possible

to determine a velocity profile, a dummy profile is generated associated with a high cost. The idea to

associate a high cost is to guarantee that a bad solution will not be selected by optimization algorithm

as a good solution.

Once control loop iterations end, the algorithm returns to the external one, where cost value is

determined. The cost value is saved and the SA starts to verify if the actual solution must be saved

or not. After a decision over the actual solution is made, the algorithm performs the last step within

the external loop. This last step is the generation of a new set of velocities, vop and vbk, to be tested at

the next algorithm iteration. The external loop runs until the maximum number of iterations defined

before its starting.

The end of the algorithm is the OSP presentation, which starts by verifying if a feasible solution

was found. As explained, considering initial conditions, if there is no solution, the algorithm deter-

mines hypothetical speed profiles. This happens when, after a maximum number of the control loop’s

maximum iterations is achieved without any solution. To confirm it, before presenting the algorithm’s

solution, it is necessary to check how many times the control loop reached the maximum number of

iterations. Comparing it with the maximum number of iterations of the external loop, two situations

can happen:

131

1. The control loop reaches the maximum number of iterations in every external loop iterations,

meaning that a speed profile was not determined;

2. The control loop finds a solution, at least once, during external loop iterations. If the control

loop fails at least once, the maximum number of iterations means that a speed profile was

determined, regarding time and distance requirements.

In the first case, case number 1, the algorithm does not find a solution, which means there is no

feasible speed profile. The reason is the fact that the time available for the trip is quite short, and for

this reason the algorithm increases the time available in 5 s and restarts the iterations number. In case

number 2 if in one iteration at least a speed profile is found, it means that it is a possible solution,

presented as the best option.

As happened with the previous algorithm, for this second implementation the SA also required

some attention on parameters’ tuning.

4.3.2.3 Results

The algorithm implemented with the purpose of reducing travelling time was tested in order to

analyze if its implementation was in accordance with the algorithm’s main objective. A railway line

in the north of Portugal, the same line used in previous tests, was used as a test line. From this line,

distance between stations, gradients profile and velocity limits are used in the algorithm’s tests. Con-

trarily to what was presented in the previous section, the results obtained with this second algorithm

were not compared to real measurements. Since this section is dedicated to an algorithm implemented

to reduce time travelling delays, some possible velocity limits were introduced in real line’s informa-

tion, simulating temporary velocity limits which commonly affect time scheduling. Looking at all

data available to be used in this thesis, there is no information whether the journey was made with

the purpose of reducing travelling time, or if the train was driven with a focus on reducing journey

time delay. So, the analysis of these results is based on train accelerations, the resultant speed profile,

travelling time and distance, being very difficult to make a direct comparison between the algorithm’s

results and real measurements.

Before presenting the algorithm’s results, the needed initializations will be described in the first

place. For this second implementation, beyond SA parameters, it is also necessary to initialize some

control variables which define the algorithm’s flow. Starting with SA configurations, initial tempera-

132

ture was defined as 100, s being the cooling factor, equal to 0.8. The acceptance probability follows

Maxwell - Boltzmann distribution, again. During the algorithm’s implementation, it was defined that

it would run until a maximum number of iterations was reached. Looking at the algorithm’s flowchart,

it is clear that when a solution is not found, the algorithm reinitializes the maximum time available fort

he actual trip and starts again from iteration one. Because of this, the maximum number of iterations

was reduced to 50 in order to find an algorithm result in real time. In cases where no solution is found,

a maximum number of 10 trials was defined near the actual solution in order to verify if determining

a solution is really impossible. Bearing this in mind, in the worst case, when a solution is not found,

the algorithm will run at least 50× 10 iterations. Table 4.7 presents a summary of SA parameters

initialization.

Table 4.7: Algorithm initializations.

Parameter Value

Initial Temperature 100

s 0.8

Max iterations 50

Max iterations per round 10

Acceptance Probability Maxwell-Boltzmann distribution

The algorithm’s results, presented in this section, are organized by journey, and in each one, three

different examples are presented. The main idea of this thesis section, is to present the algorithm’s

results when temporary velocity limits are considered on real railway lines and late departures are

simulated. In all journeys, three possible scenarios were simulated as described:

1. A velocity limit was introduced in the line, without changing the journey’s available time;

2. A tight velocity limit was introduced with the purpose of increasing the journey’s time;

3. Train departure with delay occurred and, consequently, the time available was not be enough.

Considering those different scenarios in each journey, it is expected to have enough material to

draw some conclusions about the algorithm’s response.

Starting with the first journey, it is considered the same first journey previously taken into consid-

eration. The distance between the departure and the arrival station is 1710 m and, according to the

133

scheduling, the time available for this journey is 120 s. Considering line conditions, the following

scenarios were implemented:

1. Two velocity limits were introduced in the line: between 300 m−350 m and 1200 m−1250 m.

Both limits were set at 50 km/h;

2. A 30 km/h velocity limit between kilometric points 900 m−1200 m was added to the journey;

3. The time available for the journey was reduced from 120 s to 90 s.

The results obtained for this first journey with the new algorithm are presented in Fig. 4.20

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

v
max

v(x)

(a)

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

v
max

v(x)

(b)

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

v
max

v(x)

(c)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

1800

x(t)

(d)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

1800

x(t)

(e)

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

x(t)

(f)

Figure 4.20: Algorithm results for all scenarios simulated in journey 1.

The results are divided in two figures. For each simulated scenario, a figure is shown, where

the speed profile is represented according to the train’s position; the second figure shows the train’s

position related to the journey’s time. First of all, the idea of presenting both figures per scenario shows

that the algorithm is capable of determining speed profiles following line and journey constraints and

of showing that the defined time is accomplished.

The first calculated speed profile scenario is presented in Fig. 4.20a, while the train’s position

appears in Fig. 4.20d. With these results, it is possible to conclude that the algorithm is able to de-

termine velocity profiles within velocity limits. This case simulates two temporary velocity limits

134

introduced in the line. Since there was no change concerning the journey’s time, the algorithm de-

termined a speed profile within scheduling. The second scenario, represented in Fig. 4.20b and Fig.

4.20e, simulates the introduction of a temporary velocity limit on the line, which causes an increase

of the journey’s time. The search for a solution starts considering the time available equal to 120 s,

and after running all 100 iterations, discovering that it is impossible to find one. In face of this, the

algorithm restarts the search and increases the total available time. This process is repeated again,

being discovered that the journey’s time increased almost 10 s. The third scenario is presented in

Fig. 4.20c and Fig. 4.20f representing a late departure, the algorithm being run with the objective of

determining a solution that reduces the actual delay. The algorithm was initialized with an available

time of 90 s, 30 s less than scheduling, and was expected the algorithm expected to have the need to

increase the available time in order to find a solution. Curiously, the time available was sufficient and

the algorithm did not have to add extra time to the search. This is confirmed by analyzing Fig. 4.20f,

where it can be seen the train arrival at station 90 s after initializing acceleration. Given this, and in

order to reproduce the expected result, travelling time was reduced by an additional 5 s, resulting in a

total of 85 s. With these conditions, the algorithm added twice the travelling time (in 5 s each), and

the solution found goes in accordance with the previous one. For this second example of scenario 3,

there are no figures representing the result once speed profiles were very similar. As a conclusion,

for the first journey, all important numerical results are presented in Table 4.8, where time needed by

the algorithm to determine a solution is presented in the last column. As can be seen, the algorithm

presents processing times within initial requirements, showing real time capabilities. In the table it

is presented the initial time defined as the total available for actual journey, t fini , and the following

column shows the final value for the total available time for the journey, t f f in , obtained in the end of

the algorithm run. After these first two columns, two more values are presented, both determined in

the algorithm. These are the error in time resulting from the profile chosen as optimal and the error

in distance. The determination of time and distance errors occurs by following (4.12) and (4.13),

respectively.

∆t = t f f in− tF (4.12)

∆x = xtotal− xF (4.13)

Both errors can admit a positive or negative value in what concerns the total journey available

135

time. Considering t f f in as the central value for all determined speed profiles, the algorithm’s journey

takes a time variation between −5 s up to 5 s. This happens since it is the admissible value for time

errors, considered also in previous algorithm implementation. The last column on the table shows the

algorithm’s processing time.

Table 4.8: Results for journey 1

t fini t f f in ∆t ∆x Texe(s)

Scenario 1 120 120 0 −1.59 5

Scenario 2 120 130 −3 −14.44 12

Scenario 3 90 90 −5 −7.92 7

Scenario 3 85 95 0 −7.17 9

In the second journey, similar scenarios were created with the purpose to test the algorithm once

more. This journey consists of a travelling distance of 2000 m between stations, scheduling a time

interval of 120 s being defined.

1. A low velocity limit zone was introduced between kilometric points 800 m− 900 m. Velocity

limit during this 100 m was set as 50 km/h;

2. A temporary velocity limit of about 20 km/h was introduced between kilometric point 400 m−

700 m;

3. The time available for the journey was reduced from 120 s to 80 s, simulating a late departure.

The results obtained for all three scenarios created on the second journey’s line are presented in

Fig. 4.21.

136

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

v
max

v(x)

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

v
max

v(x)

(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

v
max

v(x)

(c)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

1800

2000

x(t)

(d)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

1800

2000

x(t)

(e)

0 20 40 60 80 100 120 140 160 180
0

200

400

600

800

1000

1200

1400

1600

1800

2000

x(t)

(f)

Figure 4.21: Algorithm results for all scenarios simulated on journey 2.

The first results’ analysis, obtained with second journey’s data shows everything as expected. The

first scenario presented in Fig. 4.21a and Fig. 4.21d, which simulates a temporary velocity limit not

leading to increased travelling time, shows that the algorithm follows all imposed constraints, and

since there was not any change concerning the journey’s time, the determined speed profile is within

the available time. The second scenario, Fig. 4.21b and Fig. 4.21e, shows the introduction of a limit

speed zone with a low limit value. The introduced speed limit, being particularly small, makes an

increase in the average speed to travel the distance. Since, as expected, this time will not be sufficient,

the algorithm should be able to look for new solutions by increasing the total travelling time. The

algorithm was initialized with 120 s, as defined by scheduling, but this time was not enough. After

being confirmed, the algorithm is internally prepared to increase travelling time in 5 s and reinitialize

the solution determination. That said, after several attempts increases in travelling time, a solution

was found near 160 s. Looking at the speed profile, Fig. 4.21b, it can be concluded that the algorithm

follows the objective, since the velocity profile is calculated without overcoming the physical imposed

limitations. From the analysis of the results, it is possible to see that the distance is fully met and that

the algorithm always advises acceleration and braking within the defined limit. The last scenario

presents a late delay, the algorithm being used to determine the fastest speed profile in order to try to

137

annul the delay. For this scenario, the time available for the actual journey was reduced from 120 s

to 80 s, initializing the journey with less 40 s than usual. The algorithm started to determine a speed

profile considering the remaining time, and after the first run it was confirmed that this amount of time

was not enough. Increasing travelling time, the algorithm, after some runs, discovered a speed profile

which can be used in 105 s, which is 25 s more than the available time and allows a delay reduction

in 15 s. The result, presented in Fig. 4.21c and Fig. 4.21f, shows that all distance was covered by

the speed profile, and the latter reduced the coasting phase with the purpose of decreasing travelling

time. Table 4.9 shows the numerical results of the algorithm. For each scenario, time needed by the

algorithm to return a solution was also accounted for. The average value is around 16 s, which allows,

for its real time implementation within a DAS.

Table 4.9: Results for journey 2

t fini t f f in ∆t ∆x Texe(s)

Scenario 1 120 120 −1 −4.33 10

Scenario 2 120 160 −5 −22.67 23

Scenario 3 80 100 −5 −0.49 16

After analyzing the results presented in this chapter, we can conclude that the algorithm meets

the proposed objective. This second implementation, as explained before, is not intended to replace

the previous algorithm presented, which was developed with the purpose of working side by side to

offer the DAS the most different options concerning speed profiles determination. Since the previous

algorithm was focused in determining speed profiles which lead to reduce energy consumption, this

second implementation searches for a solution that only fulfills the trip within the time available or,

if there is no solution, looks for a possible time, at least. This is quite noticeable from the results, as

well as the concern with the train’s physical limitations and limits accepted for passenger comfort.

Another indicator about the algorithm’s response within the main objective is coasting phase

times. In fact, in all speed profiles determined, constrained to tight journey times, coasting phases

are shot, which leads to the conclusion that there was not enough time space to introduce one. In the

beginning of this thesis, it was explained that the introduction of cruising phases is one of the tools

applied to reduce the energy consumption in a journey, whenever there is room for it. Since time

available was quite thigh, and the increase of coasting phases reduces energy but at the same time

138

increases journey time, the algorithm determined speed profiles with a shot coasting phase or even

none.

Even with low processing times, during these tests, some points were exposed that may help to

reduce the response time. One example of improvement is related with the initial generated value. The

algorithm initializes the searching point by generating a random value for cruising velocity between

0 and maximum allowed by train traction characteristics. After running the algorithm, changing the

initial cruising velocity equal to the maximum allowed train velocity, it was quite noticeable that the

algorithm found the solution a little faster. This makes sense because calculating the velocity profile

to meet the shortest possible time requires the use of a higher velocity to travel the same distance

faster. Therefore, and initializing the algorithm with higher speeds, it would have been a little help in

the first few attempts, since before randomly jumping to another zone of the solution space, iterations

would walk around the initial generation. The second improvement identified is also related with

new velocities values generation, used during the whole algorithm’s execution. The second idea of

improvement is related to the narrowing of the solutions space. When a new cruising velocity is

generated, any value between 0 and the train’s maximum speed value is considered, which opens a lot

the number of possible combinations. After any algorithm runs, it is possible to conclude that only

cruising velocities higher than the average are the ones that produce speed profiles, as expected. Based

on this, the searching can be reduced, thus eliminating calculations about values that will possibly

result in profiles that do not fall within specifications.

In conclusion, the algorithm here presented, with the objective of minimizing travelling time,

proves to be able to produce results according to the spectra, and even though it is already in an ad-

vanced development phase, the addition of these small improvements will make it even more efficient,

turning into a considerable contribution considering the optimization of the railway system operation.

139

CHAPTER5
Parameters Estimation

5.1 Introduction

As already seen, OSP determination for the DAS use occurs using a TMS algorithm. The TMS

algorithm, besides speed profile determination, is also used to estimate energy needs for a specific

journey. Also, these operations are performed using a dynamic train model. The model is composed

of a set of equations that mathematically emulate the train’s dynamic behavior. Although the model

is composed of a set of mathematical equations, the latter follow a certain physical meaning, as they

are used to determine applied vehicle forces, and as a consequence, respective acceleration, velocity

and position.

In an earlier chapter, namely Chapter 3 Section 3.1, it was presented a model to characterize train

dynamic behavior. As it happens in any other model, its equations make use of particular parameters

to emulate a specific behavior. Normally, these parameters have a physical meaning associated, as the

case of Davis equation, (3.5). These parametric values must be in accordance with the train in use in

order to find a model as accurate as possible. The TMS output accuracy is obviously dependent on

train’s model parameters. So, it is important to have a good parametric representation of the reality

inside the algorithm.

The developed model can be used to characterize any train as well as different train topologies.

To change train topology, or the particular train being used, it is only necessary to change parameters

values or, in other cases, some forces representations. Looking at railway applications, a specific train

representation is based on Davis equation constants, train mass and mass correction factor. Selecting

a train topology to be represented in the algorithm, the needed information is sometimes available

on manufacturers’ official documents as white papers, technical documents and data sheets. In cases

where this information is not accessible from manufacturers, or in the impossibility of obtaining it,

it must be determined. The determination of this kind of information needs some field tests which

141

demand specific methodologies. Field tests also require a train, an available railway line, specialized

technicians and some specific equipment. As a result, the development of new DAS, considering

different running vehicles, is strongly conditioned by these field tests related with the acquisition of

the needed parameters.

So, some trains have multiple sensors and are equipped with acquisition systems that allow data

acquisition during regular operation. Dependent on the train’s manufacturer, data collected includes

several information from traction units, throttle position, energy meters and information about doors

and auxiliary systems operational state. The data acquired is sent by a train communication system

and is made available for line operator.

As an alternative to field tests, some research and developments are being carried out so as to

decrease the operational complexity and costs associated with parametric determination. Those al-

ternatives are based on parameter estimation. Having acquired data, related to train journeys, some

algorithmic approach can be done allowing the determination of train parameters. These are used

to run the model and obtained results are compared to the ones acquired with real measurements.

So, in order to complete all the work already done, this chapter is dedicated to the development of a

parameter estimation algorithm, to be effectively used in the established train model.

5.2 Methodology

With the aim of smoothing the DAS algorithm’ development, as well as reducing the complexity

of adapting a DAS to different train topologies, it is proposed an algorithm capable of a train model’s

parameters calculation. The proposed algorithm uses data collect on-board, during train operation. It

is important to note that a real time solution for this train parameter calculation is not a requirement to

the proposed algorithm. The use of train data requires, in the first place, data collection followed by the

respective processing and analysis. Data collection is out of this thesis scope, having been provided

by a train operator. The handling and analysis of the received data is still necessary since it is needed

to understand and interpret all variables available in the dataset. This is a crucial step because it will

condition the methodology to be adopted as well as the algorithm’s results. An incorrect interpretation

will conduct to bad results or even to none .

The accessed dataset contained information acquired in a group of trains, that operating in the

north of Portugal and that carries out commercial passenger services. The data available was collected

in two vehicles of the same model. The information stored in dataset is related to one month of

142

operation, and each variable was acquired with a sampling time of 2 s, approximately. Although both

trains operate on the same railway line, saved data refers to different commercial services, which

means a diverse sequence of stops as well as diverse journey times between consecutive stations. This

data was acquired from the train’s communications system, using all sensors and acquisition systems

available from the train’s manufacturer. The original dataset file has a huge amount of information,

some variables, such as train total applied force, velocity, position, energy counters and journey times,

being identified as the most important for the developments shown in this chapter. After selecting the

variables for the train model parameter estimation, a data analysis was carried out in order to better

understand the given information.

The new algorithm for parameter determination, was motivated by the already established TMS

algorithm. Developments concerning the TMS algorithm were presented with detail in Chapter 3.

Next, a short description of its operations is made. The developed TMS algorithm uses time as an

independent variable concerning model equations, and starts the speed profiles determination with

the train’s gravitational force, based on the previous position. Then, resistance force is immediately

calculated, the sequence of operations finishing with the determination of forces opposed to train

movement. Once this task is accomplished, the next step associated to the TMS algorithm is the

traction force calculation, which is dependent on the train’s characteristics, the final velocity intended

and the actual driving regime. Once all forces are determined, train acceleration, velocity and the

resultant position are calculated. At implementation level, each train model variable is determined at

each time instant. To make all calculations, TMS algorithm starts by reading the available time for the

actual journey. Diving it by the sampling time, defined at 1 s, a time vector is built, as well as some

other vectors with the same length so as to store the results. Figure 5.1 summarizes, in a diagram

block, all operations performed in the TMS algorithm.

Figure 5.1: TMS basic operations.

Considering the TMS algorithm’s operation as well as expressions, the proposed methodology

143

consists in the use of real available measurements in order to try to approximate the train model to

acquired data. The chosen variables from the dataset, which are considered as the most important and

to be posteriorly used in the algorithm, are:

• Traction force;

• Train velocity;

• Train position;

• Travelling time;

• Information on energy meters.

With the identification of all dataset variables that will be used, a methodology to develop the

algorithm for the estimation of train model parameters started to be designed. Before starting the al-

gorithm’s implementation, it is necessary to define which train parameters will be estimated. Looking

at dataset information and the TMS algorithm’s operation, it was decided that the algorithm to be

implemented will estimate:

• Davis equation constants: A, B and C;

• Mass correction factor, γ .

Taking the TMS algorithm as a starting point, the changes occurred are related to how traction

force may be calculated. Instead of determining the train traction force dependent on the actual driving

regime, this step was changed to a function that reads the input vector from the dataset. The use of the

measured traction force at the train model will result in a velocity output that will be compared with

the real velocity measurements. Based on this, the algorithm must be able to approximate the model

to real measurements adjusting the parameters to be estimated. Figure 5.2 presents a block diagram

showing the adopted methodology for the parameter estimation algorithm.

144

Figure 5.2: Parameters estimation methodology block diagram.

To achieve the algorithm main’s objective, two different methods were studied and implemented.

Both will be explained during this chapter, which also presents some conclusions drawn about this

subject.

5.3 Least Square Methods Approach

The first applied method was the LSM. This is a well-known technique used to represent datasets

through a function. This method can be used in applications like those presented in this thesis: datasets

containing data from multiple experiments collected in the same phenomenon. One drawback of using

the LSM is the need to define, a priori, the function to be used in order to characterize the dataset. In

other words, the LSM is not used to determine the function itself but to estimate parameters that better

fit some function to the dataset.

5.3.1 Theoretical demonstration

Before showing how the LSM was implemented for the determination of train model parame-

ters, a brief theoretical review of the method will be given. The method here applied follows the one

presented in [65], but a small description will be given for a better understanding about its implemen-

tation. LSM implementation expects a dataset that has good information about the system/process

that is being analyzed. For this thesis, the plant and the system where data was acquired are known as

well as the function that represents the system. Considering a dataset, defined by pairs (xri , yri) with a

total of m samples, it can be characterized as a polynomial equation with degree n. So, (5.1) will be

used to show how the LSM is implemented.

ye(x) = pnxn + pn−1xn−1 + ...+ p1x+ p0 =
n

∑
j=0

p jx j (5.1)

145

Having access to input data and respective function, the LSM is responsible for determining the

best function parameters. Best parameters are understood as the ones that better approximates esti-

mated to real measurements. Following this definition of best parameters, a function to measure its

quality is needed. Since it is expected to find parameters that better approximate the model to reality,

the distance from an estimation to the respective real data can be used as that measure. This difference

may be called as deviation, represented as d, and can be calculated as (5.2).

di = yri− ye(xri) = yri−
n

∑
j=0

p jx j
ri

(5.2)

The use of deviations as quality measurement may be useful but in some case, can hide a bad

algorithm performance. Looking at expression (5.2), deviation result can be a positive or a negative

value. This is only dependent on the position of the estimated point when compared to its real mea-

surement. If all points are considered and by some reason they are equally spaced in magnitude, total

deviation can be zero. In an ideal situation, a zero deviation should represent a well-defined dataset

by the approximation point; however, in this case, it can signify a case where each individual error is

nullified. A method to avoid this kind of situations is to use the quadratic value, (5.3), instead of the

deviation itself.

ee =
m

∑
i=1

d2
i =

m

∑
i=1

[yri− ye(xri)]
2 =

m

∑
i=1

[
yri−

n

∑
j=0

p jx j
ri

]2

(5.3)

Analyzing the quadratic value of deviations, it is possible to conclude that only ideal situations

could produce a zero result. Another advantage of using the quadratic error is the fact that the more

distant an estimation is from its corresponding measured point, the greater the penalty will be. Con-

sidering (5.3) as quality measurement, the LSM is implemented focused on minimizing this value.

The minimization of deviation implies ∆ee = 0, or, considering all degrees on polynomial ye(x) from

k = 0, ...,n:

∂ee

∂ pk
= 0 (5.4)

Solving partial derivative, (5.4), in order to pk:

∂ee

∂ pk
=−2

m

∑
i=1

[(
yri−

n

∑
j=0

p jx j
ri

)(
xk

ri

)]
=−2

m

∑
i=1

yrix
k
ri
+2

n

∑
j=0

p j

m

∑
i=1

x j+k
ri

= 0 (5.5)

146

Extending the partial derivatives to all pk will result in a n+ 1 system of equations with n+ 1

unknown variables. These unknown variables are the parameters, p j, and they can be calculated

making each partial derivatives to 0 and solving the resultant system of equations. Taking the result

of (5.5), it will be zero when:

n

∑
j=0

p j

m

∑
i=1

x j+k
ri

=
m

∑
i=1

yrix
k
ri

(5.6)

Expanding (5.6) results of the system of equations (5.7).

p0 ∑
m
i=1 x0

ri
+p1 ∑

m
i=1 x1

ri
+... +pn ∑

m
i=1 xn

ri
= ∑

m
i=1 yrix

0
ri

p0 ∑
m
i=1 x1

ri
+p1 ∑

m
i=1 x2

ri
+... +pn ∑

m
i=1 xn+1

ri
= ∑

m
i=1 yrix

1
ri

...
...

...

p0 ∑
m
i=1 xn

ri
+p1 ∑

m
i=1 xn+1

ri
+... +pn ∑

m
i=1 xn+n

ri
= ∑

m
i=1 yrix

n
ri

(5.7)

To simplify method implementation, the set of equations (5.7) can be reduced to a matrix form,

(5.8).

[
A
][

x
]
=
[
B
]
≡

∑

m
i=1 x0

ri
x0

ri ∑
m
i=1 x0

ri
x1

ri
... ∑

m
i=1 x0

ri
xn

ri

∑
m
i=1 x1

ri
x0

ri ∑
m
i=1 x1

ri
x1

ri
... ∑

m
i=1 x1

ri
xn

ri

...
...

. . .
...

∑
m
i=1 xn

ri
x0

ri ∑
m
i=1 xn

ri
x2

ri
... ∑

m
i=1 x1

ri
xn

ri

×

p0

p1
...

pn

=

∑

m
i=1 yrix

0
ri

∑
m
i=1 yrix

1
ri

...

∑
m
i=1 yrix

n
ri

 (5.8)

The first matrix, A, is a symmetric one, including all input sums, presented in (5.7). Matrix x, is

a column matrix that contains all parameters to be determined. The last matrix contains the right part

of (5.6), sums of products between system outputs and their corresponding inputs. To calculate the

parameters, it is necessary to invert matrix A and multiply it by B, as shown in (5.9).

[
x
]
=
[
A
]−1 [

B
]

(5.9)

147

5.3.2 Method Application

Selecting a random journey, recorded in a given dataset, and plotting data relative to measured

velocity on a velocity vs. time graphic, a plot as presented on Fig. 5.3 is obtained.

0 20 40 60 80 100 120

0

5

10

15

20

25

30

v
r

Figure 5.3: Input data - velocity vs. time.

As shown on Fig. 5.3, records on dataset consist of a group of measurements with an associated

timestamp. The timestamp associated to each line of the dataset allows to trace and relate the various

variables to each other. After some time spent on data analyses, a first problem was detected, related

with the acquisition rate. In some journeys, without any explanation some consecutive samples ap-

pear with a sampling time higher than the expected one. This fault may be caused by failure in the

communication line and it may cause some difficulties in the implementation of the LSM. Later on, it

will be explained how this problem was avoided.

As mentioned before, the LSM implementation requires some knowledge about the system in-

tended to be represented by a function. In this thesis, it is proposed to determine parameters for a

train model, based in some data acquired in a real vehicle. Plotted data, as presented in Fig. 5.3, can

help in function selection. In this case, and looking to Fig. 5.3, it is possible to conclude, that this

set of points can be characterized by TMS equations. So, the parameter estimation considering the

algorithm’s measured input will use train traction force, and by applying TMS equations, a velocity

profile will be estimated and posteriorly compared with corresponding measurements. Equations used

in the algorithm were presented at Chapter 3 Section 3.1, but an explanation about how they were ma-

nipulated will still given, starting with Newton’s second law, (5.10), which relates train movement

with its mass and total force applied.

FTotal = Ma (5.10)

148

Equation (5.10) can also be written as (5.11). The change of M to M (1+ γ) was presented on a

previous chapter.

FTotal = M (1+ γ)
∂v
∂ t

(5.11)

The total force, represented on (5.11) by FTotal , is the sum of all forces, for and against movement,

applied to the train. Expanding total force results from the sum of traction, braking, gravitational and

resistance force, (5.12).

FTotal = Ft − (Fr +Fg) = Ft − (A+Bv+Cv2 +Msen(θ)) (5.12)

The replacement of FTotal expression, (5.12) in equation (5.11) results in (5.13), which combines

all forces with train acceleration.

Ft = M (1+ γ)
∂v
∂ t

+A+Bv+Cv2 +Msen(θ) (5.13)

(5.13) represents train motion in a continuous time scenario. It happens that the dataset describes

train movement in a sequence of measurements periodically acquired, representing a discrete move-

ment. So, discretizing (5.13) to adjust the function in use to input data results in equation (5.14).

Fti = M (1+ γ)
vi− vi−1

Ts
+A+Bvi +Cv2

i +Msen(θi) (5.14)

In equation (5.14), Ts is the time interval between two consecutive data records, better known as

sampling time. M corresponds to train mass, acquired after train departure. These parameters are

kept constant on the trip (between two consecutive stations), since there is no change concerning the

number of passengers or loads. vi is the velocity value recorded for instant i and vi−1 is the value

acquired in the previous instant. θi is the gradient the train is subject to, at instant i. This last variable

is not directly accessible, but it is determined considering data related with the train’s position. (5.15)

represents the function selected for LSM.

Ts (Fti−Fgi) = Mi (1+ γ)(vi− vi−1)+ATs +BTsvi +CTsv2
i (5.15)

On the left part of this equation, can be find Fti which represents traction force, and it is a value

given as input. Gravitational force, Fgi , is subtracted from this traction force. It was defined this way

since gravitational force can be interpreted as an input. The value for the gravitational force value

149

is not given nor directly accessible from the dataset, but it is previously determined and stored as an

input vector. The function polynomials were divided into 1, vi, v2
i and finally Mi (vi− vi−1). Table 5.1

shows how LSM polynomial and parameters were defined.

Table 5.1: LSM function organization

Parameters Functions

p1 ATs g1 1

y Ts (Ft −Fg)
p2 BTs g2 vi

p3 CTs g3 v2
i

p4 (1+ γ) g4 Mi (vi− vi−1)

The application of LSM to (5.15) allows the determination of train model parameters. Davis

parameters, A, B and C, are given by the first 3 results in the second column, as presented in Table

5.1, after their division by the sample time. The last column’s result gives information about the mass

correction factor, γ .

5.3.3 Method Implementation

Fig. 5.4 presents the algorithm structure in order to show how LSM was implemented.

Figure 5.4: Algorithm flowchart for LSM.

150

Initial algorithm developments were made considering a single journey between two consecutive

stations, which is enough to apply the LSM method. This approach was quickly abandoned, since

the use of a single trip as input data would not be enough to extract parameters for a robust model.

In fact, this would lead to a model that would representing the train in a specific condition, the trip

for that gathered the input data. In other words, the use of a single journey would lead to a local

optimization. Since a global optimization is expected, the algorithm’s implementation was made with

the possibility of considering one or more trips as input. For this reason, the first algorithm step is trip

selection, where the definition of how many and which journeys are considered as inputs can be find.

The information related with each trip, before its availability to be used as input, should be, in the

first place, analyzed and accordingly processed accordingly. The algorithm receives as input some

vectors as input:

• Line characteristics: velocity limits and gradients;

• Total time available and corresponding distance to be travelled;

• Speed and positions logs;

• Train mass;

• Traction force applied by the train driver;

• Sampling time.

Input vectors are organized and saved as several files inside of different folders, divided by trips.

This step required an extra work, since the information contained in the dataset was analyzed and

divided into different files.

After defining the number of trips, the algorithm builds a time vector, which will be used as a base

for all calculations. To perform this task, the algorithm reads all inputs related to time spent per trip.

After reading all information about journey time, the size of the time vector is defined, being equal to

the sum of the time interval of each individual trip. Certainly, beyond time of all trips, the size of the

time vector is also constraint to defined time step. To reduce the algorithm’s complexity, only integer

values are accepted. For this reason, the minimum possible step time is 1 s, which does not present

itself as a problem, since it will bring no gain to solve the motion equations at a higher frequency.

The next stage, after defining the time vector, is input reading. This way, the algorithm reads the

information about each considered trip. That reading process is controlled by a statement defined by

151

the number of input trips considered and, in each run, train velocity, position, as well as, traction force

and train mass are uploaded to be later used. The information of each individual trip is stored in an

unique vector. The process to read and store input information can be described as:

1. Reading traction force, train mass, velocity and position;

2. Reading the sampling time and defining the time step;

3. Dividing the sampling time by the time step to determine how many positions must be filled;

4. Interpolating values between the initial and the final point (between the previous and the current

sampling time);

After reading all inputs and properly storing all variables, the algorithm jumps to the LSM. Having

all inputs available and each one of the variables on a vector, matrix A starts to be built, (5.8). All sums

present on the matrix are determined and matrix A is fulfilled, element by element. Matrix B is also

built, following the same order defined to matrix A. After that, the inverse of matrix A is determined

so as to obtain the parameters matrix, x, (5.1).

In the end, the obtained result, by applying (5.9), is taken and Davis parameters A, B and C, as

well as the mass correction factor are obtained by applying the relations presented on Table 5.2.

Table 5.2: Train model parameters

Model

Parameters

A
x(1,1)

Ts

B
x(2,1)

Ts

C
x(2,1)

Ts

γ x(4,1)−1

152

5.3.4 Results

Finally, the LSM algorithm was tested to verify the method performance. During this section,

the algorithm’s results will be presented as well as some conclusions. Before starting the algorithm’s

tests, data available was analyzed. As previously mentioned, data acquisition rate by communication

system default is 2 s. It happens that sometimes this acquisition rate is not uniform in all data records.

In some cases, perhaps due to communication failures, the acquisition rate changes. This detail can

be considered as a problem concerning the LSM; to avoid that, the acquisition rate was changed

to 1 s. Although an extra operation is required, this change in input data is advantageous for data

estimation. The number of points per trip increases, which can be helpful for parameters estimation.

Another change applied to input data was the synchronization between variables. In some trips, a

desynchronization between train velocity and traction force was noticeable. To synchronize train

velocity with traction force it was necessary to analyze each trip, one by one, and adjust both input

vectors manually. This has demanded a huge effort as well as enormous time consumption.

The algorithm was tested in four different line sections. To increase the number of input cases, for

each line section, four different trip records were considered. Figure 5.5 shows all velocity records

used in algorithm tests.

0 500 1000 1500 2000 2500
-20

0

20

40

60

80

100

120

Figure 5.5: Velocity records for LSM algorithm tests

153

After running the algorithm, its output results can be seen on Table 5.3.

Table 5.3: LSM result

Parameters Result

A −7295.73

B 1117.30

C −20.61

γ −0.12

To verify the effectiveness of the estimation of the LSM’s train model parameters, the TMS al-

gorithm was configured with LSM results and all journeys have been simulated once again. The

procedure was quite simple and alike the one used for parameter estimation. Basically, TMS algo-

rithm was used to run once more, considering the measured traction force. The expected result would

be to find velocity profiles most identical to the measurements performed. Figure 5.6 shows the mea-

sured speed profile in dashed black line while the determined profile is presented in blue. Figure 5.7

shows the train’s position results compared with real measurements.

154

0 50 100 150 200 250
0

5

10

15

20

25

30

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

35

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

TMS
Real

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

35

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

TMS
Real

Figure 5.6: Velocity results using parameters from Table 5.3 - Measurements in red dashed line, TMS in blue line

155

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

TMS
Real

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

TMS
Real

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

TMS
Real

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

TMS
Real

Figure 5.7: Position results using parameters from Table 5.3 - Measurements in red dashed line, TMS in blue line

156

This results were satisfactory but maybe another method would lead to even better ones. This new

approach is described in the following section.

5.4 Simulated Annealing Approach

In order to try to improve LSM results, a second algorithm to estimate train model parameters was

implemented. This second algorithm uses a heuristic optimization approach. The SA was again the

selected one. The algorithm flowchart is shown in Fig. 5.8.

Figure 5.8: SA algorithm for parameters estimation.

Algorithm structure is based on two loops. For a better understanding, one loop was called the

inner loop and the second one was denominated the external loop.

First, the inner loop, as the name suggests, runs inside the external one. This means that for each

external loop run, an inner loop can run from one up to a maximum number of iterations which is

defined by the number of input trips used to determine train model parameters. This internal loop is

responsible for opening two main operations:

• Reading all information contained at input files;

• Using the TMS algorithm’s operations to determine train dynamics.

The inner loop starts with the definition pf the time vector. As it happened with the LSM-based

algorithm, the train model was implemented using time as an independent variable, so train dynamics

157

must be calculated at each defined time instant. In this algorithm, the definition of the time vector

started by opening all input files to check for the longest journey. Once the most time-consuming trip

is identified, the algorithm assigns this time as the maximum length of the time vector. After the time

vector is defined, the inner loop starts to read and use all input available, and so train dynamics is

determined in order to obtain a velocity profile as well as the resultant positions and energy needs.

These calculations are divided by journey, and in the end, we have a group of tables presenting results

concerning velocities, positions, forces and energy needs, divided by trip. The result of the inner loop

is then used by the external one.

The main operations of the external loop are:

• Generating values for all parameters;

• Qualifying generated solutions;

• Running the optimization algorithm.

The SA algorithm’s approach to determine train model parameters is essentially based on an al-

gorithm that considers possible parameters values, runs train model dynamics and evaluates how far

is the current result from the real solution. So, the initial stage of the external loop is the generation

of a possible solution for all parameters. After defining a new generation set, the algorithm runs all

inner loop iterations and generates a result to be used on the external loop. At this point, the second

main operation of this loop is performed. Based on a well-defined function, the inner loop results are

quantified as how good or bad, depending on the quality of the generated results. To determine this

solution’s quality, a cost function is used, constructed on the basis of what is intended to be analyzed.

Considering the cost function value, the algorithm launches the SA algorithm to determine if the so-

lution must be accepted. Then the algorithm launches a new set of parameters and the external loop

runs once more, until reaching a maximum number of iterations, which is defined at beginning of the

algorithm without following any criteria. In fact, this algorithm is to be run in an offline mode, thus

there are no time restrictions, and a high number of iterations can be defined. When the maximum

number of iterations is reached, the generated set with the best cost function value is presented as the

best solution.

158

5.4.1 Generation mechanism

The generation mechanism is responsible for generating new solutions to be posteriorly tested.

This is a crucial part of algorithms because, besides defining new solutions, it also controls the way

how they are generated. A narrow search area may lead the algorithm to determine a solution that

represents a local minimum, whereas a very large area will require a large number of iterations until

the desired solution is found. The first defined point was to fix the boundaries for all variables.

This restriction of variable boundary values keeps them within its physical meaning. In fact, without

any boundaries, there will be no control over the searching area, which may lead to a value search

that, in spite of fulfilling the searching criteria, does not have any practical meaning. Following this

methodology, boundaries were defined, as presented in Table 5.4. Nevertheless, the algorithm is

compatible with other value definition.

Table 5.4: Searching area for each parameter.

Variable Min Max

Ar 1300.00 1700.00

Br 30.00 100.00

Cr 0.00 20.00

γ 0.05 0.10

The parameters that the SA algorithm’s implementation searches for are the same as the ones

estimated by the LSM. The first three are known as Davis equation parameters and the last one is the

mass correction factor. Additionally, this algorithm allows for a search for a scalar factor, which can

be applied to traction and braking forces. After being tested, this scalar factor was defined to be 1.

Boundaries for Ar, Br and Cr as well as γ where defined bellow the values found in literature.

The generation mechanism was built under two main rules. Both rules define how new values

must be generated, rule selection being dependent on the SA algorithm’s previous result. The defined

rules are:

1. New values within boundaries;

2. New values in a last one generated neighborhood.

Rule 1 defines a new generation inside of the whole allowed range. The new value is generated

159

randomly, using a function that generates a random value between 0 and 1, which can be scalable to

a corresponding value inside of the allowed range. The implementation of rule 2 forces the search

at a restricted space (contained inside of maximum boundaries). This is used to perturb a sample, in

order to verify if there are, in its neighborhood, new solution values that allow for the algorithm to

obtain a better result. Considering searching boundaries for one variable, Xmax and Xmin, and defining

the amplitude between them as ∆X , the perturbation step was defined as 2% of ∆X . A new value is

determined as (5.16), where rand() represents a function that generates a random value between 0

and 1.

xnew = xold±0.01X (5.16)

In the generation mechanism, besides being necessary to define how new values are generated, it

is also compulsory to know when each one of the rules is used. Throughout the parameters’ search,

the optimization algorithm can return one from two possible results. The returned result can be the

acceptance or non-acceptance of actual solution. The following rules were created with the purpose

of defining how new solutions must be generated.

• Rule 1.:

• At the first algorithm’s iteration, a random value is generated;

• After ten consecutive iterations, without accepting any solution.

• Rule 2.:

• Generating a new value after accepting a solution;

• If the solution was not accepted (up to nine consecutive iterations).

In conclusion, rule 1 is used when there is no information to generate a new set of values, or to

run away from a bad neighborhood. On the other hand, rule 2 keeps previous value in order to search

for a better nearby solution or to test a limited number of new values before jumping to another region

inside the solutions space.

160

5.4.2 Cost Function

The result of an optimization algorithm depends, as expected, on how a solution is evaluated.

This evaluation is made through a cost function, which is based on some statements, quantified as a

number: the quality of the solution.

The choice of an appropriate cost function is a task which requires some care once the algorithm’s

results depends on it. To select the most appropriated one, several cases were tested, being selected,

at the end, the one with the best results. As a methodology to select the appropriate cost function, the

algorithm’s objective was defined and was analyzed which variables must be available.

As presented before, the main objective of implementing this algorithm is to have a tool to deter-

mine parameters for the train model. The results, after applying this tool, must be able to reproduce

train motion as similar as it gets to a real one. Bearing this in mind, it is quite obvious that a compari-

son between real measurements and simulated values must be make so as to determine how alike both

values are. The comparison between these values will be made by Root Mean Square Error (RMSE),

calculated with (5.17). In this equation x represents one possible variable as, for instance, velocity or

position.

exRMS =

√
∑

M
i=1 (xsi− xri)

2

M
(5.17)

RMSE gives the square root of mean square error. Mean square error is the average value of

square errors between an estimated point, xsi , and its respective real value acquired xri . The use of

RMSE as a quality measurement enables for a higher penalization in solutions that are far from the

objective than those that are closer. As a result, a faster algorithm convergence is expected.

After deciding how a solution will be evaluated, it is necessary to define how this evaluation will

happen. Looking at the algorithm structure, Figure 5.8, the cost value is determined in each iteration,

in the end of the inner loop. Depending on the number of considered trips, and analyzing the RMSE

in each one, a vector with dimension equal to number of trips will come as a result. In order to

have a single value per iteration, it was defined that the cost value will be the sum of all individual

determined RMSE. Considering a total number of N trips, for each j iteration, the cost function will

be determined as (5.18):

C j =
N

∑
n=1

exRMSn
(5.18)

161

Cost function tested:

• Minimizing the train’s velocity:

C1 = min∑
N
n=1 evRMSn

= min∑
N
n=1

√∑
M
i=1

(
vsi,n−vri,n

)2

M

 (5.19)

• Minimizing the sum of the train velocity’s with position:

C2 = min
[
∑

N
n=1 evRMSn

+∑
N
n=1 esRMSn

]

= min∑
N
n=1

√∑
M
i=1

(
vsi,n−vri,n

)2

M +

√
∑

M
i=1

(
ssi,n−sri,n

)2

M

 (5.20)

• Minimizing the sum of the train’s velocity, position and energy consumption:

C3 = min
[
∑

N
n=1 evRMSn

+∑
N
n=1 esRMSn

+∑
N
n=1 eEcn

]

= min∑
N
n=1

√∑
M
i=1

(
vsi,n−vri,n

)2

M +

√
∑

M
i=1

(
ssi,n−sri,n

)2

M +
(

eEcsn
− eEcrn

)2

 (5.21)

5.4.3 Results

This algorithm was tested in order to validate its performance in solving this type of problems.

More than verifying the algorithm’s convergence, it is also analyzed the quality of the TMS algorithm

with the calculated parameters. The input data was the same as the one used before. Four journeys

were used, and for each of them, 4 different records, taken in different days, were considered.

To run the SA algorithm, it is necessary to define some initial configurations. The maximum

number of iterations is one of the parameters to be defined, and was chose 1000. The selection of

a high number of iterations occurred since a real time solution is not a requirement. To assure the

algorithm convergence, setting a high number of iterations increases the chances of more cases being

tested, and by this, the probability of finding a global minimum is higher. Another definition for the

SA algorithm is related to the way the algorithm decides if it must save or not a bad solution. This

mechanism is known as acceptance probability and in this implementation Boltzmann distribution

162

was selected. The last parameter to be defined before running the SA was the cooling factor. As stated

before, the cooling factor helps the algorithm search for a good solution. So, this parameter must be

well defined. In this algorithm implementation, the cooling factor was set as 0.85, which corresponds

to a slow temperature decreasing. Table 5.5 resumes all configurations defined, and posteriorly used.

Table 5.5: SA initial configurations.

Variable Min

Max iteration 1000

Trips 16

Cooling factor 0.85

Acceptance

Probability
p = e(

−1×(∆E)
Tk

Cost functions presented on Section 5.4.2 were all tested to see which one got the best results.

Following the order presented in the previous chapter, the first cost function tested was (5.19). The

algorithm must start with an initial solution for all parameters to be searched. Instead of starting with

a random initial guess, a set of initial points has been defined to start the algorithm search. Table 5.6

shows initial guesses for all parameters.

Table 5.6: Initial points for the SA algorithm using cost function (5.19)

Variable Initial Point

Arinit 2000.00

Brinit 100.00

Crinit 20.00

γinit 0.10

After running the maximum number of iterations, the algorithm returned the following results,

Table 5.7.

163

Table 5.7: SA results for cost function (5.19)

Variable Min

Ar f 1060.08

Br f 60.69

Cr f 5.12

γ f 0.05

Using the parameters given for the TMS algorithm, and considering the measured traction train

force as input, the algorithm returns velocity profiles that can be compared to real velocity measure-

ments. Fig. 5.9 shows TMS output and corresponding velocity, measured for all sixteen cases. The

train’s position, presented in Fig. 5.10, was also analyzed and compared with real measurements.

164

0 50 100 150 200 250
0

5

10

15

20

25

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

35

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

TMS
Real

Figure 5.9: Velocity results using parameters from Table 5.7 - Measurements in red dashed line, TMS in blue line

165

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

4500

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

TMS
Real

Figure 5.10: Position results using parameters from Table 5.7 - Measurements in red dashed line, TMS in blue line

166

The result presented last is the evolution of the cost function value over algorithm iterations, Fig

.5.11. As it can be seen, the algorithm started with a bad initial solution, but it has evolved in order to

improve the final result. It is also visible that some generated parameters produce worst solutions that

allow to avoid the local minimum. The algorithm reached the minimum cost during the first half of

iterations, and this behavior was common in other runs. Even so, the maximum number of iterations

will be kept.

0 100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

70

cost

best

Figure 5.11: SA cost function (5.19).

The algorithm tests continued by using a second cost function, (5.20). This cost function considers

a sum of velocity and position errors. The performance of the algorithm using this second cost function

option was analyzed. The search for parameter values uses, as a starting point, the same values

presented in Table 5.6. After the algorithm reaches its maximum number of iterations, the result with

the lowest cost function value is the one presented in Table 5.8.

Table 5.8: SA results using cost function (5.20)

Variable Min

Ar f 1104.96

Br f 22.65

Cr f 5.38

γ f 0.07

Using the given parameters, Table 5.8, in the TMS algorithm, we reach the speed profiles shown

in Fig. 5.12. in an overall analysis, it seems that this is a good approximation. Beyond speed, train

position is presented on Fig. 5.13, and it is compared with real measurements.

167

0 50 100 150 200 250
0

5

10

15

20

25

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

35

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

TMS
Real

Figure 5.12: Velocity results using parameters from Table 5.8 - Measurements in red dashed line, TMS in blue line

168

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

4500

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

TMS
Real

Figure 5.13: Position results using parameters from Table 5.8 - Measurements in red dashed line, TMS in blue line

169

To understand the algorithm convergence, the cost function evolution must be analyze. Fig .5.14

shows the cost function value at each iteration, and even though there are some jumps to areas with

worse solutions, the algorithm converged to a minimum cost, which was obtained after a few runs of

the algorithm.

0 100 200 300 400 500 600 700 800 900 1000

0

1000

2000

3000

4000

5000

6000

cost

best

Figure 5.14: SA cost function (5.20).

The last cost function tested was (5.21). This cost function considers velocity and position errors

as well as energy consumption. The inclusion of energy consumption in cost function is intends

to help with the parameters’ determination adjustment. Since energy consumption is influenced by

opposing movement forces, a closer model to reality is expected.

Starting once more with the same initial points, Table 5.6, the algorithm returned, in the end, the

parameters presented in Table 5.9

Table 5.9: SA results using cost function (5.21)

Variable Min

Ar f 1169.50

Br f 19.46

Cr f 5.71

γ f 0.07

Comparing this last result with the previous one, it seems that the inclusion of energy consump-

tion in cost function did not bring major changes to the parameter search. When both solutions are

compared, it is clear that the results are close.

Using this result, the TMS algorithm was used to see the how it performs in speed profiles deter-

170

mination. The outputs of the TMS algorithm were compared to real measurements, as presented in

Fig. 5.15. The train’s position was also determined and compared with the train’s data, Fig. 5.16.

171

0 50 100 150 200 250
0

5

10

15

20

25

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120
0

5

10

15

20

25

30

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

TMS
Real

0 50 100 150 200 250
0

5

10

15

20

25

30

35

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

TMS
Real

Figure 5.15: Velocity results using parameters from Table 5.8 - Measurements in red dashed line, TMS in blue line

172

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

TMS
Real

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

TMS
Real

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

4500

TMS
Real

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

TMS
Real

Figure 5.16: Positions results using parameters from Table 5.9 - Measurements in red dashed line, TMS in blue line

173

In spite of using a different cost function, the SA algorithm has a similar behavior, as can be seen

by the analysis of the cost function evolution along iterations. Fig 5.17 shows cost function values.

0 100 200 300 400 500 600 700 800 900 1000

0

1000

2000

3000

4000

5000

6000

cost

best

Figure 5.17: SA cost function (5.21).

5.5 Methodology Comparison

After performing all tests and analyzing all the results, a comparison between all approaches has

been carried out. This comparison was made to understand which approach best meets the objective.

In order to use the same comparison for each of the solutions, the quadratic error was calculated

for the determined speed, as well as for the position of the train and the consumed energy. Fig. 5.18

shows a bar plot where each quadratic error is represented.

LSM C1 C2 C3
0

1000

2000

3000

4000

5000

e
v

RMS

e
s

RMS

e
E

c
RMS

Figure 5.18: Results comparison.

The bar plot is composed of four groups and each one contains three bars. The first group repre-

sents LSM’s results. The second group is related to the SA algorithm, using the first cost function.

174

The third and fourth groups are related to the second and third cost functions, respectively. In each

group, the first bar corresponds to the quadratic error of velocity, the second to position and the last

one to energy consumption. Looking at Fig. 5.18, the first thing that stands out is the low performance

of LSM. Besides the first group, it is not possible, from the analyses of the figure, to decide which is

the best cost function. So, to reach a better understanding of the results’ analyses, a summary table

was created, Table 5.10.

Table 5.10: Summary table of results

Method evRMS esRMS eEcRMS

LSM 54.11 4.74e3 235.58

C1 15.66 859.40 64.36

C2 15.50 850.90 63.28

C3 15.44 847.34 63.39

From that, it can be seen that there are no great differences between the various cost functions

implemented. In fact, cost function three has lower velocity and position errors, which may lead to

conclude that it would be the best option, but the difference is not so substantial.

175

CHAPTER6
Conclusion

Before the end of this thesis, this last chapter shows the main conclusions. In addition, some

suggestions for future work are presented.

6.1 Main Conclusions

During the development of this thesis, an algorithm was established, to be integrated into a DAS.

The algorithm had several requirements, which orientated the developments of this thesis in order

to accomplish all of them. The implemented algorithm searches for speed profiles, constraint to

scheduling and line gradients, with the purpose of reducing energy consumption. So, the algorithm

must receive line information about velocity limits, gradients values and dead zones locations, and

before train departure, a new solution for the actual journey must be available for the train driver to

be advised. In other words, it is expected that the algorithm is able to produce a real time solution in

order to determine, at each train stop, a speed profile for the next journey.

The algorithm development started with the study of a dynamic model of the train, used to simulate

the vehicle’s behavior. The choice of the dynamic model to use was made taking into account some

factors, such as complexity and vehicle simulation capability. Before starting the implementation of

a dynamic model, a deep study on the state of the art was done, and it was verified that, unanimously,

a large part of the studied works was using the same dynamic model. This model stands out for its

low complexity in representing train movement, without losing much detail. Since this model has

been widely used and train behavior is represented with considerable accuracy, it was selected for the

implementation. Besides, since the algorithm is expected to run as a real time application, the low

complexity was seen as an advantage of its use.

Following the thesis developments, after having a train model studied and implemented, the devel-

opment of a TMS algorithm started. This was the task with the highest devoted time. In fact, putting

into practice the TMS algorithm led to several implementation methodologies, starting by speed pro-

177

file determination for simple lines. Furthermore, after introducing restrictions to the algorithm, it

finished on a stage that was able to determine a solution for any journey. The train model was defined

as a state machine, each driving regime being defined as a state. With the used methodology, the

algorithm, with its line constraints, follows a sequence of state transitions in order to define the best

driving regime sequence. After looking at the algorithm’s results, it can be realized that it follows the

initial proposed requirements. The results are very good, which allowed the thesis progress towards

the main objectives.

The TMS algorithm was combined with an OSP generator with the purpose of determining the

speed profile which best fits the algorithm’s objectives. The best solution determination is a task of

the optimization algorithm, the SA algorithm being the one selected due to its advantages and poten-

tialities, such as the ability to escape to local minima. The first implementation of the algorithm was

in accordance with thesis main objective, which is the reduction of energy consumption. Through-

out the thesis developments, a second trend of advances appeared. On actual railway lines, a very

common problem is late train arrivals at destinations. Focused on a positive contribution to this sec-

ond objective, a second algorithm version, aiming at reducing these delays, was implemented. Both

optimization algorithms, after being tested, presented very good results, showing convergence to cost

function minimum values. Since these algorithms are to be implemented in a real time application, the

time needed to process each solution was also controlled, and both algorithms showed a high potential

for this purpose. The implemented algorithms are ready to determine velocity profiles for real railway

lines, with permanent and transitory constraints and are highly configurable.

The last development of this thesis was the implementation of an algorithm to determine train

model parameters. This last development was carried out with the purpose of making the DAS algo-

rithm more versatile with the possibility of being used in different types of trains. The algorithm’s

objectives were focused on its ability to correctly estimate values from train model parameters, with-

out any restriction concerning the execution time. Two different approaches were applied in order to

solve the problem. The first approach uses the nonlinear least square method, which showed a low

performance, since the estimated parameters where quite far from the optimal values. The second

approach uses an optimization algorithm to search for parameters values. The optimization algorithm

used was similar to the one developed for the OSP algorithm, and this one showed a much better

performance. Several cost functions were tested, showing no major differences, the cost function

with less operations being selected. The results, as exposed, are very convincing, showing that the

178

algorithm using simulated annealing potentialities is able to solve the problem.

6.2 Future Work

In the end, after successfully achieving the thesis main objectives and looking at obtained re-

sults, there are some points which can be targeted for improvements. Some of the improvements

here referred were introduced during the thesis development, but somehow were removed from the

algorithm’s last version. Starting with the OSP algorithm, some changes can be applied in order to

improve the algorithm’s performance, resulting in reducing the time needed to determine each solu-

tion. One improvement may be the determination of the average value of each journey before starting

the speed profile determination. Knowing the velocity average value for the actual journey, and once

in all journeys a cruising velocity higher than average is necessary, a new generation mechanism for

cruising velocity can be obtained with limits between the maximum train velocity and its average

value. With this modification, a faster algorithm convergence is expected, since it will reduce the

number of impossible solutions tested in the actual algorithm’s version. This algorithm change can be

applied to both versions, energy and time minimization.

Still looking at the OSP algorithm, the second proposed point as future work, is related with

the algorithm’s implementation on a mobile platform. A first version of the algorithm was already

converted from Matlab to other programming language. Since it is expected that it runs on a mobile

platform, an android one was selected, and by this, the programming language to use on OSP was

restricted to compatible ones. From some possible compatible languages, C++ was selected. At the

moment, the algorithm was converted to be compatible with C++ language, the code translation being

successfully obtained. Since some changes were applied to the algorithm after this translation, as

future work, we also propose the final version conversion.

To conclude the algorithm analysis, as future work is also suggested the introduction of speed

profiles on real railway lines. The algorithm’s outputs were only analyzed by comparison with real

data, showing great potential to help minimize energy consumption. In addition, the results were also

analyzed by individuals linked to the development of railway systems, and it has been able to satisfy

their demands. This way, the algorithm’s first version is currently under tests at a Danish train track.

As a final test, we proposed the use of this algorithm on other real train tracks, in its DAS, in order

to have real data acquired on train, following the advices given by the algorithm. This is presented

as future work because requesting the use of this algorithm on real trains is a lengthy process, as the

179

approval by multiple entities is required.

Finally, the algorithm implemented to determine train model parameters can also suffer some

modifications. With satisfactory results, it would also be interesting to change the algorithm’s imple-

mentation programming language. For the implementation of this algorithm on a portable interface

to be possible, C++ programming language may be an option. In addition, the routines separately

used to pre-process the available data could also be added to the algorithm, making the parameter

estimation completely autonomous between the moment when raw data is received up to the moment

when output is presented

180

References
[1] shift2rail.org, “Infrastructure innovation programme 3 shift2rail,” June 2016. [Online].

Available: http://shift2rail.org/research-development/ip3/

[2] A. Fernández-Rodrı́guez, A. Fernández-Cardador, and A. P. Cucala, “Energy efficiency in high

speed railway traffic operation: a real-time ecodriving algorithm,” in IEEE 15th International

Conference on Environment and Electrical Engineering (EEEIC), June 2015, pp. 325–330.

[3] Y. Jiang, J. Liu, W. Tian, M. Shahidehpour, and M. Krishnamurthy, “Energy harvesting for the

electrification of railway stations: Getting a charge from the regenerative braking of trains.a,”

IEEE Electrification Magazine, vol. 2, no. 3, pp. 39–48, Sept 2014.

[4] S. de la Torre, A. J. Sánchez-Racero, J. A. Aguado, M. Reyes, and O. Martı́nez, “Optimal sizing

of energy storage for regenerative braking in electric railway systems,” IEEE Transactions on

Power Systems, vol. 30, no. 3, pp. 1492–1500, May 2015.

[5] A. Gonzalez-Gil, R. Palacin, and P. Batty, “Sustainable urban rail systems: Strategies and tech-

nologies for optimal management of regenerative braking energy,” Energy Conversion and Man-

agement, vol. 75, pp. 374 – 388, 2013.

[6] M. Dominguez, A. Fernandez-Cardador, A. P. Cucala, and R. R. Pecharroman, “Energy savings

in metropolitan railway substations through regenerative energy recovery and optimal design of

ato speed profiles,” IEEE Transactions on Automation Science and Engineering, vol. 9, no. 3,

pp. 496–504, July 2012.

[7] G. M. Scheepmaker, R. M. Goverde, and L. G. Kroon, “Review of energy-efficient train control

and timetabling,” European Journal of Operational Research, vol. 257, no. 2, pp. 355 – 376,

2017.

[8] P. Howlett, I. Milroy, and P. Pudney, “Energy-efficient train control,” Control Engineering Prac-

tice, vol. 2, no. 2, pp. 193 – 200, 1994.

181

http://shift2rail.org/research-development/ip3/

[9] J. Qu, X. Feng, and Q. Wang, “Real-time trajectory planning for rail transit train considering re-

generative energy,” in 17th International IEEE Conference on Intelligent Transportation Systems

(ITSC), Oct 2014, pp. 2738–2742.

[10] I. P. Milroy, “Aspects of automatic train control,” Ph.D. dissertation, c© Ian Peter Milroy, 1980.

[11] R. R. Liu and I. M. Golovitcher, “Energy-efficient operation of rail vehicles,” Transportation

Research Part A: Policy and Practice, vol. 37, no. 10, pp. 917 – 932, 2003.

[12] C. S. Chang and S. S. Sim, “Optimising train movements through coast control using genetic

algorithms,” IEE Proceedings - Electric Power Applications, vol. 144, no. 1, pp. 65–73, Jan

1997.

[13] K. K. Wong and T. K. Ho, “Dynamic coast control of train movement with genetic algorithm,”

International Journal of Systems Science, vol. 35, no. 13-14, pp. 835–846, 2004.

[14] S. Acikbas and M. T. Soylemez, “Coasting point optimisation for mass rail transit lines using

artificial neural networks and genetic algorithms,” IET Electric Power Applications, vol. 2, no. 3,

pp. 172–182, May 2008.

[15] P. G. Howlett and P. J. Pudney, Practical Strategy Optimisation. Springer London, 1995, pp.

285–297.

[16] S. Su, T. Tang, L. Chen, and B. Liu, “Energy-efficient train control in urban rail transit systems,”

Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Tran-

sit, vol. 229, no. 4, pp. 446–454, 2015.

[17] Y. Huang, X. Ma, S. Su, and T. Tang, “Optimization of train operation in multiple interstations

with multi-population genetic algorithm,” Energies, vol. 8, no. 12, pp. 14 311–14 329, 2015.

[18] R. Chevrier, G. Marliere, B. Vulturescu, and J. Rodriguez, “Multi-objective evolutionary algo-

rithm for speed tuning optimization with energy saving in railway: Application and case study,”

in RailRome 2011, Rome, 2011.

[19] R. Chevrier, P. Pellegrini, and J. Rodriguez, “Energy saving in railway timetabling: A bi-

objective evolutionary approach for computing alternative running times,” Transportation Re-

search Part C: Emerging Technologies, vol. 37, pp. 20 – 41, 2013.

182

[20] S. Lu, S. Hillmansen, T. K. Ho, and C. Roberts, “Single-train trajectory optimization,” IEEE

Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp. 743–750, June 2013.

[21] Y. Huang, C. Yang, and S. Gong, “Energy optimization for train operation based on an improved

ant colony optimization methodology,” Energies, vol. 9, no. 8, 2016.

[22] M. Domı́nguez, A. Fernández-Cardador, A. P. Cucala, T. Gonsalves, and A. Fernández, “Multi

objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in

metro lines,” Engineering Applications of Artificial Intelligence, vol. 29, pp. 43 – 53, 2014.

[23] K. Kim and S. I.-J. Chien, “Optimal train operation for minimum energy consumption consider-

ing track alignment, speed limit, and schedule adherence,” Journal of Transportation Engineer-

ing, vol. 137, no. 9, pp. 665–674, 2011.

[24] K. Keskin and A. Karamancioglu, “Energy-efficient train operation using nature-inspired algo-

rithms,” Journal of Advanced Transportation, vol. 2017, 2017.

[25] P. Lukaszewicz, “A simple method to determine train running resistance from full-scale mea-

surements,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and

Rapid Transit, vol. 221, no. 3, pp. 331–337, 2007.

[26] C. Somaschini, T. Argentini, D. Rocchi, P. Schito, and G. Tomasini, “A new methodology for

the assessment of the running resistance of trains without knowing the characteristics of the

track: Application to full-scale experimental data,” Proceedings of the Institution of Mechanical

Engineers, Part F: Journal of Rail and Rapid Transit, vol. 232, no. 6, pp. 1814–1827, 2018.

[27] S. Aradi, T. Becsi, and P. Gaspar, “Estimation of running resistance of electric trains based on on-

board telematics system,” International Journal of Heavy Vehicle Systems, vol. 22, pp. 277–291,

01 2015.

[28] B. P. Rochard and F. Schmid, “A review of methods to measure and calculate train resistances,”

Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Tran-

sit, vol. 214, no. 4, pp. 185–199, 2000.

[29] C. Somaschini, D. Rocchi, G. Tomasini, and P. Schito, “Simplified estimation of train resistance

parameters: Full scale experimental tests and analysis,” 04 2016.

183

[30] R. BOSQUET, P. O. Vandanjon, A. Coiret, and T. Lorino, “Model of high-speed train energy

consumption,” in International Conference on Railway Engineering and Management, Den-

mark, Jun. 2013, pp. 5p, graphiques, tabl., bibliogr.

[31] P. O. VANDANJON, R. BOSQUET, A. Coiret, and M. Gautier, “Model of High-Speed train en-

ergy consumption,” in 15th MINI CONFERENCE ON VEHICLE SYSTEM DYNAMICS, IDEN-

TIFICATION AND ANOMALIES (VSDIA 2016), BUDAPEST, Hungary, Nov. 2016, pp. pp. 47–

53.

[32] P. Howlett, P. Pudney, and X. Vu, “Estimating train parameters with an unscented kalman filter,”

Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Confer-

ence, 01 2004.

[33] X. Liu, B. Ning, J. Xun, C. Wang, X. Xiao, and T. Liu, “Parameter identification of train basic

resistance using multi-innovation theory,” IFAC-PapersOnLine, vol. 51, no. 18, pp. 637 – 642,

2018, 10th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2018.

[34] N. Jaoua, P. Vanheeghe, N. Navarro, O. Langlois, and M. Iordache, “A bayesian approach for

parameter estimation in railway systems,” in 2018 4th International Conference on Advanced

Technologies for Signal and Image Processing (ATSIP), March 2018, pp. 1–6.

[35] H. S. Hansen, M. U. Nawaz, and N. Olsson, “Using operational data to estimate the running

resistance of trains. estimation of the resistance in a set of norwegian tunnels,” Journal of Rail

Transport Planning & Management, vol. 7, no. 1, pp. 62 – 76, 2017.

[36] S.-W. Kim, H.-B. Kwon, Y.-G. Kim, and T.-W. Park, “Calculation of resistance to motion of a

high-speed train using acceleration measurements in irregular coasting conditions,” Proceedings

of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 220,

no. 4, pp. 449–459, 2006.

[37] H. Kwon, “A study on the resistance force and the aerodynamic drag of korean high-speed

trains,” Vehicle System Dynamics, vol. 56, no. 8, pp. 1250–1268, 2018.

[38] J. Sun, J. M. Garibaldi, and C. Hodgman, “Parameter estimation using metaheuristics in systems

biology: A comprehensive review,” IEEE/ACM Transactions on Computational Biology and

Bioinformatics, vol. 9, no. 1, pp. 185–202, Jan 2012.

184

[39] D. Akman, O. Akman, and E. Schaefer, “Parameter estimation in ordinary differential equations

modeling via particle swarm optimization,” Journal of Applied Mathematics, vol. 2018, 2018.

[40] C. Zhan, W. Situ, L. F. Yeung, P. W. Tsang, and G. Yang, “A parameter estimation method

for biological systems modelled by ode/dde models using spline approximation and differential

evolution algorithm,” IEEE/ACM Transactions on Computational Biology and Bioinformatics,

vol. 11, no. 6, pp. 1066–1076, Nov 2014.

[41] O. Gonzalez, C. Kuper, K. Jung, P. Naval, and E. Mendoza, “Parameter estimation using sim-

ulated annealing for s-system models of biochemical networks,” Bioinformatics (Oxford, Eng-

land), vol. 23, pp. 480–6, 03 2007.

[42] M. Ali, M. Pant, A. Abraham, and V. Snasel, “Modified differential evolution algorithm for pa-

rameter estimation in mathematical models,” in 2010 IEEE International Conference on Systems,

Man and Cybernetics, Oct 2010, pp. 2767–2772.

[43] Z. Dai and L. Lai, “Differential simulated annealing: a robust and efficient global optimization

algorithm for parameter estimation of biological networks,” Mol. BioSyst., vol. 10, pp. 1385–

1392, 2014.

[44] R. K. Arora, OPTIMIZATION - Algorithms and Applications, 2015.

[45] B. Wang, Z. Yang, F. Lin, and W. Zhao, “An improved genetic algorithm for optimal stationary

energy storage system locating and sizing,” Energies, vol. 7, no. 10, p. 6434, 2014.

[46] R. Chibante, A. Araujo, and A. Carvalho, “Parameter identification of power semiconductor

device models using metaheuristics,” in Simulated Annealing, R. Chibante, Ed. Rijeka: Inte-

chOpen, 2010, ch. 1.

[47] P. G. Howlett and P. J. Pudney, Energy-Efficient Train Control. London:Springer, 1995.

[48] H. Douglas, P. Weston, D. Kirkwood, S. Hillmansen, and C. Roberts, “Method for validating the

train motion equations used for passenger rail vehicle simulation,” Proceedings of the Institution

of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 231, no. 4, pp. 455–

469, 2017.

[49] S. Yi, “Chapter 2 - traction calculation,” in Principles of Railway Location and Design, S. Yi,

Ed. Academic Press, 2018, pp. 73 – 157.

185

[50] M. U. Nawaz, “Estimation of running resistance in train tunnels,” Master’s thesis, NTNU, 2015.

[51] IP, “Léxico | infraestruturas de portugal,” April 2019. [Online]. Available: https:

//www.infraestruturasdeportugal.pt/negocios-e-servicos/lexico/z

[52] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization by simulated

annealing: An experimental evaluation. part i, graph partitioning,” Oper. Res., vol. 37, no. 6, pp.

865–892, Oct. 1989.

[53] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science,

vol. 220, no. 4598, pp. 671–680, 1983.

[54] B. Chopard and M. Tomassini, Simulated Annealing. Cham: Springer International Publishing,

2018, pp. 59–79.

[55] E. Aarts and J. Korst, Simulated annealing and Boltzmann machines. New York, NY; John

Wiley and Sons Inc., 1988.

[56] Z. Michalewicz and D. B. Fogel, How to solve it: modern heuristics. Springer Science &

Business Media, 2013.

[57] M. T. Outeiro, “A new high power efficient electronic converter for fuel cell applications,” Ph.D.

dissertation, FEUP, 2012.

[58] I. The MathWorks, “Simulated annealing options,” Jul. 2019. [Online]. Available:

https://www.mathworks.com/help/gads/simulated-annealing-options.html#bq26ky -1

[59] W. Ben-Ameur, “Computing the initial temperature of simulated annealing,” Computational Op-

timization and Applications, vol. 29, no. 3, pp. 369–385, Dec 2004.

[60] S. Ledesma, G. Aviña, and R. Sanchez, “Practical considerations for simulated annealing imple-

mentation,” Simulated annealing, vol. 20, pp. 401–420, 2008.

[61] R. F. Chibante, “Desenvolvimento de um modelo para igbts optimizado por um metodo de base

experimental,” Ph.D. dissertation, FEUP, 2005.

[62] T. F. Gonzalez, Handbook of approximation algorithms and metaheuristics. Chapman and

Hall/CRC, 2007.

186

https://www.infraestruturasdeportugal.pt/negocios-e-servicos/lexico/z
https://www.infraestruturasdeportugal.pt/negocios-e-servicos/lexico/z
https://www.mathworks.com/help/gads/simulated-annealing-options.html#bq26ky_-1

[63] Y. Nourani and B. Andresen, “A comparison of simulated annealing cooling strategies,” Journal

of Physics A: Mathematical and General, vol. 31, no. 41, p. 8373, 1998.

[64] A. Y. Zomaya and R. Kazman, “Algorithms and theory of computation handbook,” M. J. Atallah

and M. Blanton, Eds. Chapman & Hall/CRC, 2010, ch. Simulated Annealing Techniques, pp.

33–33.

[65] R. L. Burden and J. D. Faires, Numerical analysis, 7th ed. Australia Brooks/Cole, 2001.

187

	Title
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Contextualization
	Problem Description
	Objectives
	System Requirements
	Original thesis contributions
	Thesis Structure

	State of the Art
	Regenerative Energy Flow
	Energy Efficiency in Railways
	Optimal Control Theory
	Literature Review

	Parameter Estimation for the Train Model
	Optimization Algorithms
	Linear Programming
	Genetic Algorithms
	Simulated Annealing
	Particle Swarm Optimization
	Ant Colony Optimization

	Optimal Speed Profile Simulator
	Train Model
	Train Dynamics
	Acceleration
	Cruising
	Coasting
	Braking

	Train Motion Simulator
	Formulation
	Single Trip
	Model Integration
	Non constant accelerations

	Line Constraints
	Gradients
	Velocity Limits
	Neutral Zones

	Train Model State Machine
	Train Motion Simulator with Line Constraints
	Speed Profiles Generator
	Speed Profile Phases
	Solution Construction

	Optimization Algorithm
	Introduction
	Simulated Annealing
	Generation Mechanism
	Temperature Scheme
	Cost Function
	Acceptance Probability
	Stop Criteria

	Driving Assistant Algorithm
	Energy Consumption
	Travelling Time

	Parameters Estimation
	Introduction
	Methodology
	Least Square Methods Approach
	Theoretical demonstration
	Method Application
	Method Implementation
	Results

	Simulated Annealing Approach
	Generation mechanism
	Cost Function
	Results

	Methodology Comparison

	Conclusion
	Main Conclusions
	Future Work

	References

