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Resumo

São vários os fatores que determinam a ocorrência de doenças neurológicas. Para melhor com-
preender estes fatores, células neurais são estudadas, nomeadamente oligodendrócitos. Falhas
de funcionamento no citoesqueleto destas células poderão estar correlacionadas com a ocorrên-
cia de doença. Para ganhar uma melhor compreenção destas estruturas e potencialmente iden-
tificar padrões que as relacionem com certas doenças, exploramos o estado atual da área da
bioinformática com o objectivo de encontrar uma ferramenta apropriada a resolver este problema.
Deparamo-nos com uma ferramenta que apresenta grande potencial: Seurat, um pacote de R. Este
pacote especializa-se no tratamento de dados obtidos através de sequenciação RNA de uma célula
singular. Usamos um grupo de dados de um artigo particularmente inovador e analisamo-lo com
o Seurat. Adicionalmente, realizamos uma análise de enriquecimento genético com DAVID, um
recurso web que fornece um conjunto de ferramentas de anotação funcional. Construímos ainda
uma aplicação web que visa centralizar todas as ferramente previamente mencionadas num re-
curso único que seja acessível e fácil de usar. Apesar de os nossos resultados não terem conduzido
à descoberta de novos padrões no citoesqueleto de oligodendrócitos, este estudo serve como um
sumário do estado de arte atual ao brevemente explorar as ferramentas mais predominantes e como
um exercício de exploração do Seurat, exibindo a sua flexibilidade e potencial de aplicação em fu-
turas experiências.

Keywords: Data Mining, RNA Sequencing, Oligodendrocyte, Cytoskeleton, Bioinformatics, Clus-
tering, Biological Patterns, Central Nervous System, Neurology, Neurological Disease
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Abstract

There are many factors that determine the occurrence of neurological disease. To try to understand
these factors, neural cells are studied, namely oligodendrocytes. Malfunctions in the cytoskeleton
of these cells may be connected to the occurrence of disease. To gain a better understanding of
these structures and potentially identify patterns that relate them with certain diseases, we explore
the current state of the art regarding bioinformatic research in order to find the correct tools to
tackle this issue. We find one tool that presents great potential: Seurat, a package for R. This
package is specialized in treating data obtained from single-cell RNA sequencing. We use a dataset
from a breakthrough paper and analyse it with Seurat. Additionally, we perform a gene enrichment
analysis with DAVID, a web resource that provides a set of functional annotation tools. We also
built a web application that aims to centralize all the previously mentioned tools together in a
single user friendly, accessible resource. While our results didn’t provide much insight regarding
new patterns in the cytoskeleton of oligodendrocytes, this paper serves as a summary of the current
state of the art by briefly exploring the more predominante tools in the area and as an exercise of
exploration of the Seurat tool, showcasing its flexibility and potential for further research.

Keywords: Data Mining, RNA Sequencing, Oligodendrocyte, Cytoskeleton, Bioinformatics, Clus-
tering, Biological Patterns, Central Nervous System, Neurology, Neurological Disease
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Chapter 1

Introduction

Neurological disorder occurrence and the burden it implies has increased substantially over the

past 25 years. This might be due to the correlated increase of life expectancy throughout the years,

which results in expanding population numbers and prolonged ageing.

As such, cases of neurological disorders such as Multiple Sclerosis, Parkinson’s disease,

Alzheimer’s disease and Dementia are expected to increase in the next few decades along with

the associated need for new therapeutic solutions. One of the possible approaches when facing

this issue is a multidisciplinary one, where Neuroscience research comes together with the latest

technological developments in Data Mining and Bioinformatics, in order to arrive at new solutions.

A variable of particular interest to take into account when attempting to predict the occurrence

of neurological disease is the cytoskeleton of a cell. This structure is a network of subcellular fila-

ments that provide the ability to resist and react to applied external stress. Defaults and mutations

in this structure are associated with the incidence of neurological disease. Thus, the possibility to

accurately analyse patterns in this structure is extremely valuable for the successful prediction of

neurological disease occurrence.

To address the aforementioned problems, the International Iberian Nanotechnology Labora-

tory focuses in applying bioinformatics tools in order to decipher biological patterns in cellular

structures of interest, such as oligodendrocytes and neurons. With that being said, the aim of this

project is to expand on the already conducted research, by utilizing the gathered available data,

analyze it and process it with Data Mining and Bioinformatics tools and through these generate

new knowledge.

Are the proposed goals to be achieved and valuable, ground-breaking data will be generated,

which will prove itself of great use in future Neuroscience research. A much needed deeper under-

standing in how Data Mining and Bioinformatics tools can be applied to this area of knowledge

will also be potentially achieved.
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2 Introduction

Thesis hypothesis

This project bases itself on the premise that through the application of Data Mining tools on the

available data bases, it is possible to generate new useful knowledge regarding neurological disease

occurrence and prediction.

We will assess if Data Mining tools are useful to help medical practitioners in the prediction

of diseases caused by malfunction of neural cells.

In order to test this, we intend to use Data Mining tools, information from repositories and

previously conducted research.

1.1 Document Structure

In this report, we first contextualize this topic, detailing the bridge between the two areas of knowl-

edge this study is concerned with: Neurology and Bioinformatics (chapter 2, sections 2.1 and 2.2).

We then explore the state of the art of the two main scientific areas this study is concerned

with. Regarding Neurology, we briefly explore some of the studies form the last few years that

provided some of the more breakthrough conclusions related to this topic (chapter 2, section 2.3).

Regarding Bioinformatics, we compile an explore some of the more relevant tools in recent years,

having a few of them been used in studies related to this topic (chapter 2, sections 2.4 and 2.5).

Through the exploration of the state of the art, we aim at deepening the contextual basis.

Following this analysis we explain the methodology used for this study and the rationale be-

hind it (chapter 3).

We then present a case study where we take a dataset and analyse it through the aforementioned

methodology (chapter 4).

The next part lists the obtained results and discusses them (chapter 5).

We end this document with the reached conclusions and suggestions for future improvements

(chapter 6).



Chapter 2

State of the Art

2.1 Introduction

In this chapter we contextualize in further detail the topic at hand. Additionally, to deepen com-

prehension, we address the current state of academic development of the two distinct sciences in

which this paper is inserted in: Data Science and Neuroscience. This is achieved by analysing

conducted research that presents itself as relevant to this topic, or that contributed to any kind of

technological, theoretical or practical advances within specific areas of knowledge from which

data can be extracted and used in the context of this paper.

2.2 Context

In the study of neurological diseases, there is a cell that is particularly relevant: oligodendrocytes

(OL). These cells, present in the central nervous system (CNS), originate from the spinal cord and

emigrate to various regions of the brain. Their role is to produce a myelin sheath around axons, in

a process called myelination. An illustration of this process and of the strucuture of OLs can be

seen in Figure 2.1.

This sheath improves the velocity of transmission of an electronic impulse throughout the

axon, and therefore is essential to the development of motor capabilities [Pfeiffer et al., 1993].

Malfunction in oligodendrocytes is associated with occurrence of neurological disease [Falcão et al., 2018].

One of the causes for malfunction in these cells might have its origins in the cytoskeleton. The

cytoskeleton of a cell is a structure consisting of microtubules, found in the cytoplasm (the liquid

surrounding the cell’s organelles) and has various functions, namely providing a form to the cell,

organize the cell’s organelles and is involved in various celular processes. An illustration of the

strucutre of the cytoskeleton of a generic cell can be seen in Figure 2.2.

Since their inception up until their emigration to a specific region of the brain, OLs go through

a process of maturation called differentiation. They go through various states in an uniform and

3



4 State of the Art

Figure 2.1: Illustration of the myelination process and the structure of an oligodendrocyte, as seen
in [Aitamurto, 2015].

continuous manner until reaching a mature state. Upon reaching their mature state, OLs special-

ized in certain tasks and finally emigrate to a region of the brain where those specialized cells are

needed [Marques et al., 2016].

The various states an OL goes through, in order, are listed above:

1. VLMC: vascular leptomeningeal cell

2. OPC: oligodendrocyte percursor cell

3. COP: differentiation-committed oligodendrocyte percursor cell

4. NFOL1/NFOL2: newly formed oligodendrocyte

5. MFOL1/MFOL2: myelin-forming oligodendrocyte

6. MOL1...MOL6: mature oligodendrocyte

An illustration of the OL differentiation process can be seen in Figure 2.3.

This process of specialization is achieved through the selective expression of genes. Through

the analysis of the expression of certain specific genes, called marker genes, we can infer in what

step of the differentiation process an OL is currently at, and through the analysis of the cellular

strucutres and biological processes associated with those genes we can infer what functions the

OL has [Marques et al., 2016]. An example of the variation of certain marker genes and their

associated OL differentiation state can be seen in Figure 2.4.
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Figure 2.2: Structure of the cytoskeleton of a generic cell, as seen in [Mokobi, 2020].

The study of cells is done through analysis of the genetic information. This information is

stored in DNA molecules. These molecules are replicated into RNA molecules, through a process

called transcription. Each RNA molecule is constituted by genes. Each gene codifies a protein,

that can be produced through a process called translation. These processes are the basis of cel-

lular functioning [Clancy and Brown, 2008]. The complete set of genetic information of a cell

(or a number of cells) is called transcriptome. It is through the analysis of transcriptomes that

knowledge is obtained, regarding the inner workings of cells [Wang et al., 2010].

A transcriptome can be obtained through a process called Single Cell RNA-Sequencing (scRNA-

seq) [Wang et al., 2010]. This processes generates a gene expression matrix containing the infor-

mation of the cell. This matrix is constituted by columns, representing cells and rows, representing

genes. Each cell of the matrix represents the expression of a certain gene, in a certain cell. An

example of a gene expression matrix can be seen in Figure 2.5

In study of genes, one type of analysis is particularly important: Gene Ontology (GO) analysis,

also referred to as gene enrichment analysis. This process consists of identifying genes that might

present expression values higher than usual by comparing them with known expression values

that are considered normal for those genes. Subsequently, a report is done identifying the cellular

structures and biological processes associated with the enriched genes of a dataset. Researchers

can then analyse these reports in an explorative manner in order to draw conclusions that might be

relevant for their studies. This analysis is done resorting to specialized GO tools, and is a crucial

step when attempting to gain a deeper understanding of a cell’s working [Harris et al., 2008].

As such, through the analysis of genes related to the cytokeleton of OLs, we hope to identify

certain patterns that might be related with the occurrence of specific neurological diseases.
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Figure 2.3: The various states an oligodendrocyte goes through in the differentiation process
[Marques et al., 2016].

2.3 Neuroscience

2.3.1 Introduction

This section addresses the current developments in Neuroscience research which contribute to

the current, consolidated state of knowledge regarding the topic of this paper. This is achieved

through the listing of some of the more relevant conclusions reached regarding related studies that

are relevant to this topic.

The collected knowledge is then utilized and extrapolated to the context of the cytoskeleton of

the aforementioned cell types. Two studies in particular have provided the basis for this report.

2.3.2 Marques et al., 2016

In the first study, OL cells from ten distinct regions of the anterior-posterior and dorsal-ventral

axis of the mouse juvenile and adult CNS, including grey matter (spinal cord/dorsal horn, sub-

stantia nigra and ventral tegmental area (SN-VTA), amygdala, hypothalamic nuclei, zona incerta,

hippocampus/dentate gyrus and CA1, and somatosensory cortex), white matter (corpus callosum)

or both (striatum), and also adult CNS (somatosensory cortex, corpus callosum and dentate gyrus)

were isolated and treated, and a gene expression matrix was obtained through scRNA-seq. This

matrix consisted of 5072 cells and about 23,500 genes. The dataset was then analysed, and through

clustering 13 groups were identified. Additionally, a cluster tree, which is a dendogram illustrating

the descendecy relationship between cluster groups was built. By analysing the dataset, namely

through GO analysis, and the aforementioned cluster tree, each group was identified as a OL

population in a specific state of the differentiation process. This breakthrough study provided

a deep comprehension of the various states OLs go through during the differentiation process

[Marques et al., 2016].

The gene expression matrix used in this study was used as the basis of the analysis conducted

in this report. This dataset was taken from the GSE75330, the repository hosting the datasets used

in this study, in the Gene Expression Omnibus (GEO) website, a public functional genomics data

repository related to the National Center for Biotechnology Information (NCBI).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75330
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Figure 2.4: Expression of marker genes for oligodendrocytes. [Marques et al., 2016].

Additionally, the tool used in this study for GO analysis, DAVID, was used in this report.

An illustration of the summarization of the results of this study can be seen in Figures 2.6 and

2.7.

2.3.3 Falcão et al., 2018

The second study focused on the roles of OLs in the context of disease, namely Multiple Sclerosis

(MS). Mice were induced with experimental autoimmune encephalo-myelitis (EAE), which mim-

ics several aspects of MS. Through a similar process as seen in [Marques et al., 2016], OLs were

isolated from these mice and a gene expression matrix was obtained through scRNA-seq. Analysis

to this dataset showed that in the context of EAE, OLs went through a re-transcription process;

more specifically, genes associated with immunoprotection and innate and adaptive immunity were

given priority of expression. This immunoprotective and adaptive response was correlated with

malfunctions in the myelination process, thus causing some of the symptons seen in EAE and MS

like loss of motor capabilities [Falcão et al., 2018]. This study provided breakthrough knowledge

on the role of the myelination process in the context of neurological disease. Clustering was done

with GeneFocus, a personalized pipeline based on the R language, and the Seurat package, which

specialized in the treatmen of data obtained thorugh scRNA-seq. This language and package were

thus used in the analysis conducted and described in this report.
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Figure 2.5: Example of a gene expression matrix. The columns represent cells and the rows
represent genes. Each matrix cell represents the expression of a certain gene, in a certain cell.

2.3.4 Other Studies

An also recently conducted analysis showed that the heterogeneity of OLs in mice is wider than

previously stipulated. This analysis showed that progenitor OL cells with different temporal and

spatial origins in the central nervous system converge into similar OPC transcriptionals states.

This process of convergence is correlated with electrophysiological responses and leads to the

differentiation of OLs into six mature cells states, which implies that the differentiation process

may not be cell intrinsic but rather be induced by various forms of stimulus derived from the local

cellular environment [Marques et al., 2018].

Another relevant study focused on the gene expression profile of human microglia and its com-

parison with mice models, and how these two differentiate from each other regarding aging pro-
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Figure 2.6: Dendogram, heat map and dot plot showcasing, respectively, the different oligodendro-
cyte populations, their progression through the oligodendrocyte maturation process and the zones
from where they were extracted, as seen in [Marques et al., 2016].

cesses. This is relevant since human microglia are primarily implicated in host defense and in

the modulation of immune responses. This study concluded that there are critical differences

between human and mouse microglia, especially in the aging process, which highlight the ne-

cessity to independently study human microglia instead of basing knowledge from mouse mod-

els [Galatro et al., 2017].

Lastly, two more recent studies provided extremely useful insights about the inner workings of

the process of oligodendrocyte differentiation.

In the first, the mechanical plasticity of oligodendrocytes during differentiation was analysed.

The authors reported how cytoskeleton-based mechanosensors and mechanotransducers partake

in the differentiation process, and how certain bilayer-associated proteins (MBP, PLP and CNP)

are essential in stabilizing and maintaining the myelin structures built by differentiated oligoden-

drocytes [Domingues et al., 2018].

In the second, the authors studied the role of the regulatory protein Jmy in the differentiation

process. This protein is upregulated during myelination and is required for the assembly of actin

filaments and protusion formation during differentiation, allowing oligodendrocyttes to acquire an

arborized morphology. This mechanisms are closely tied to interactions in the cytoskeleton of the

cells question.

For this study, the authors designed a tool called OligoMacro. This tool is a semi-automated,

open source macro-toolset for ImageJ (a Java image processing program [Rasband, ]) that aimed

at analyzing OL morphology during differentiation, in a spatiotemporal scale.
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Figure 2.7: t-Distributed stochastic neighbor embedding projection showing the trajectory from
OPCs to mature oligodendrocytes [Marques et al., 2016].

This tool, the first of its kind, is an example of a recent breakthrough in Bioinformatics that

showcases great potential for future research in this topic [Azevedo et al., 2018].

Two very recent studies provide important insight into the role of OLs in neurological disease.

The first study focused on the heterogeneity of these cells in the context of Multiple Sclerosis.

A novel technique, single-nucleus RNA sequencing, was employed. This technique is similar

to scRNA-seq but focuses only on the nucleus of cells. This approach was made resorting to

tissue from white matter areas of postmortem human brain from patients with MS (tissue from

unaffected areas was used as control).

Through the results obtained, the authors reached some important conclusions that defy the

current default approaches for interpreting regenerative therapies in Multiple Sclerosis. Namely,

the assumption that enhancing the differentiation of OPCs to OLs that express myelinating genes

and proteins directly leads to enhanced remyelination in progressive MS isn’t always correct.

The authors observed that MS doesn’t happen due to a failure of OPCs differentiation into OLs

expressing myelin genes and that the observed loss of a specific population of OLs in MS might

play a significant role.

Their results also suggest that subsets of mature OLs contribute to remyelination [Jäkel et al., 2019].

The second study aimed at analysing the role of OLs and the myelination process on age-related

deficits in memory.

The authors observed, through studied conducted on mice, that the inhibition of myelination



2.4 Data Science 11

in OPCs impaired spatial memory in young mice, while the enhance of myelination in OPCs or

promotion of OL differentiation recovers spatial memory decline during aging. Such recover-

ing is possible due to the fact that OPCs populate the aged CNS and maintain their potential to

differentiate and myelinate.

These observations are aligned with the current understanding that memory deficits are cor-

related with reduced myelination activity and corresponding decrease in white matter volume in

ageing brains.

The authors end up by concluding that rejuvenating myelination can rescue synaptic loss in the

hippocampus and improve memory function in aging mice, that spatial memory function requires

dynamic myelination in mature adult brains and that diminished myelination in aging tissues can

be partly responsible for declines in memory [Wang et al., 2020].

Yet another study that presents itself as relevant to this topic is an older one that focused on the

diversity of brain cell types, transcriptomes and the mechanisms responsible for the maintenance

of adult differentiated cell types in mice.

The authors resorted to data mining techniques to identify a total of 47 distinct cell subclasses,

comprising all known major cell types in the cortex, along with various marker genes, allowing

for a correlation of known cell types with morphological characteristics and their location.

One of the more interesting data mining techniques used in this study is the specifically de-

veloped BackSPIN, a divisive biclustering method based on sorting point into neighbourhoods,

which was essential to filter data noise and identify cell subclasses [Zeisel et al., 2015].

2.4 Data Science

This section addresses the current state of development of Data Science technologies, as well as

relevant conducted research that resorted to Data Science methods in order to produce new knowl-

edge within Neuroscience.

The Data Mining process can usually be divided into 4 principal stages: Pre-Processing (cleaning

of irrelevant data, selection and transformation of the to be analyzed data), Data Mining (applica-

tion of methods to the data), Result Validation and Knowledge Presentation.

Regarding the Data Mining stage, there is a wide variety of approaches that can be used. Some

relevant ones include:

• Classification: tries to find a model that allows to group elements into a group of data.

There are various algorithms that can be used for this process, such as C4.5 (builds decision

trees where each node is the attribute that better fits a data group), Support Vector Machine

(non-probabilistic, linear, binary classifier), Random Forest (based on the combination of

various decision trees) and Naive Bayes (uses the Bayes theorem and probability to classify

data). The validation of this process can be done resorting to different models, like Cross



12 State of the Art

Validation (when the main objective is prevision) and Bootstrap (re-utilization of data used

in training)

• Regression: analyzes elements according to the relations between each other and tries to

predict the value of a variable or at what group a certain element belong to.

• Association: tries to estimate the probability of occurrence of a certain element according

to any existing similarities.

• Clustering: a concept of particular interest for this project, this technique consists in the

grouping of various elements into distinct groups, according the the similarities they possess

between them. Some of the more prominent clustering algorithms are k-Means (uses the

average mean of all elements of a cluster to group them), Farthest First (uses centroids i.e.

points that are the furthest apart from each other), Expectation-Maximization (calculates the

probability of each element belonging to each one of the clusters) and Density Based Spatial

Clustering of Application with Noise (based on the density of the clusters, can identify and

filter noise), among others [Miguel and Natividade, 2017].

Recent technologies have allowed the birth of single-cell RNA sequencing (scRNA-seq), a

process to analyse in a detailed manner the transcriptional activities of a cell. It is an extremely

useful method that allows comparisons between strains of cells and the analysis of the progress of

a disease, for example. More specifically, it allows the analysis of the transcriptome of a single-

cell, which in turn provides new possibilities of in-depth comparison between cells.

More specifically, in a recent study, a single-cell latent variable model (scLVM) was constructed in

order to better understand hidden variables in single-cell RNA-sequencing studies. Such variables,

like cell cycle, lend to an increase in heterogeneity in gene expression and lead to confusion in the

interpretation of results. This created approach can thus be used to counter the negative effects of

these variables [Buettner et al., 2015].

One of the main challenges in single-cell transcriptome analysis is the grouping of cells that be-

long to the same cell types, based on gene expression patterns. Due to the amount of noise and

the sheer dimension of the data in question, as well as the stochastic nature of the biochemical

processes of a cell, this clustering process is often difficult and costly.

A recently developed clustering algorithm, called Shared Nearest Neighbour (SNN-Cliq) tack-

les this problem. This algorithm automatically determines the number of clusters in a data set,

while being able to identify clusters of different densities and shapes and avoiding the disregard

of data points in regions of low graphical density.

Regarding its efficiency, SNN-Cliq outperforms the other available methods, such as K-Means

and Density-Based Spatial Clustering of Applications with Noise, without sacrificing ease of

use [Xu and Su, 2015].
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Such developments offer new possibilities for future research, data analysis and interpretation

of results.

The appearance of new scRNA-seq methodologies raises questions regarding the way in which

the resulting data of these processes can be analysed. Normalization of scRNA-seq data must

properly account for differences in the amount of RNA transcribed within a cell and in sequencing

depth. Additionally, more methods like SNN-Cliq that remove confusing variables and noise from

data are needed, in order to better improve the fidelity of results and avoid the compromise of

downstream interpretation.

Another problem inherent to scRNA-seq is the integrated or comparative analysis between dif-

ferent data sets consisting of multiple transcriptomic populations.

To address this issue, a strategy that aims to integrate scRNA-seq data sets by identifying

shared sources of variation between two data sets was recently developed. This strategy, consisting

in a number of steps within a Seurat workflow, was tested with an experiment, where it successfully

aligned cell types between human and mouse pancreatic islets, identifying a shared population of

beta cells responding to ER protein misfolding stress [Stegle et al., 2015].

As such, we can group the aforementioned methodology with others of its kind that have been

recently birthed and have been tackling issues withing Neuroscience, providing answers and the

possibility of future research developments.

With scRNA-seq, researchers have for the first time the ability to obtain snapshots of individual

cell states with unprecedented resolution, which is a valuable asset for the characterization and

study of the cell lineage of oligodendrocytes.

A key point of scRNA-seq studies is what is the biological relevance of the identified cell

clusters and what differentiates a cell type from a cell state [van Bruggen et al., 2017].

Comparison between different clustering algorithms is an approach that is increasingly used

to verify the robustness of the clusters.

Through the methods, studies and developments in Data Mining and Bioinformatics tools men-

tioned above, researchers have been increasing the amount of data collected, regarding the study

of neural cells.

With this gathered data, new databases have been created, which can be utilized for further

research.

For example, in a recently conducted study that aimed to answer the question of how many genes

are alternatively spliced in the mouse cortex, a high quality database was generated, containing

information regarding the transcriptome of neurons, astrocytes, oligodendrocyte percursor cells,

newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells and

pericytes from mice.

This database was built using scRNA-seq and an algorithm to detect alternative splicing events

in each of the eight analysed cell types.
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Through this study, important conclusions were reached. A large number of cell type-enriched

genes that had not yet been described previously as cell type-specific was discovered.

It was also discovered numerous cell type-specific or enriched transcription factors, including

well known factors and a large number of factors that were not recognized previously to be cell-

type specific.

Additionally, the enrichment of the inhibition of matrix metalloproteases and intrinsic pro-

thrombin activation pathways in oligodendrocyte percursor cells (OPCs) was detected, suggesting

that OPCs have unique properties in their interactions with the extracellular matrix compared with

other cell types of the brain [Zhang et al., 2014].

Another breakthrough tool that has been developed recently and used in the bioinformatic pro-

cesses of some of the above mentioned papers is Seurat [Lab, 2020]. Released in 2015 and reg-

ularly updated, Seurat is an R package designed for quality control, analysis and exploration of

single-cell RNA-seq data [Butler et al., 2018].

This tool’s pipeline provides various operations for processing single-cell RNA-seq data, such

as cell filtering, normalization, feature selection, data scaling, linear dimensional reduction (such

as Principal Component Analysis), dimensionality determination, clustering, non-linear dimen-

sional reduction (t-SNE and Uniform Manifold Approximation and Projection for Dimension Re-

duction - UMAP) as well as various methods for finding differentially expressed features and

cluster biomarkers and assigning cell types to clusters [Butler et al., 2018].

With this tool and the operations it provides, it is possible to tackle a problem that was previ-

ously very predominant in the area of genome analysis: the lack of existing methods that enable

integrate or comparative analysis of different scRNA-seq datasets consisting of multiple transcrip-

tomic subpopulations, either to compare heterogeneous tissues across different conditions, or to

integrate measurements produced by different technologies.

A recent paper on this tool explores in detail this issue, creating a successful solution and

proving its efficacy through various different analysis. It serves as a quality demonstration on the

limits of this tool and its potential for future research applications [Butler et al., 2018].

Still regarding this tool, another study explores how it is possible to use it for comprehen-

sive integration of single-cell data. A method for integrate and compare single cell measurements

through the anchoring of various different datasets was developed. More specifically, by identify-

ing cell pairwise correspondences between single cells across datasets, it is possible to transform

said datasets into a shared space, even in the presence of extensive technical and/or biological

differences. This technique enables the transcriptome-wide prediction of spatial expression pat-

terns, and the harmonization of scRNA-seq derived cell-type labels with in situ gene expression

datasets [Stuart et al., 2019]. An illustration of this technique can be seen in Figure 2.8.

2.5 Tools

The evolution of the above analysed areas in the last decade wouldn’t be possible without the

associated advent of new tools that allowed the pushing of knowledge boundaries. In this section
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Figure 2.8: Overview of the Seurat dataset integration method [Stuart et al., 2019]. (A) Two
different datasets from the same single cell experiment, with a unique population (in black).
(B) Canonical correlation analysis and L2-normalization are applied. (C) Pairs of mutual near-
est neighbours are identified in the space shred between the two datasets. (D) A consistency
score is applied to each pair. (E) Scores are used to create correction vectors for each query
cell [Stuart et al., 2019].

we study the more prominent and widely used tools in these areas. We divided this section in two

parts, Data Mining tools and Databases.

2.5.1 Data Mining Tools

The more prominent tools used for Data Mining are the following:

• Rapidminer: a data science software platform that provides an integrated environment

for data preparation, machine learning, deep learning, text mining, and predictive ana-

lytics. One of the more complete available solutions currently available, with graphical

analysis, availability of extensions, among other features. Its advanced graphical inter-

face allows users to perform data mining operations without any prior programming knowl-

edge [Jović et al., 2014].

• WEKA (Waikato Environment for Knowledge Analysis): a open source collection of

visualization tools and algorithms for data analysis and predictive modeling, together with

graphical user interfaces for easy access to these functions. Since it is written in Java, it has

great integration potential and versatility [Jović et al., 2014].

• R: an open source tool and programming language, mostly optimized for matrix based cal-

culations and statistics. It presents plenty of versatility through the available extensions.
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It is not, however, a user-friendly tool, offering just a simple graphical interface and a

command line for input, requiring the user to learn the R language in order to use it. Be-

cause of this, the language’s full potential is difficult to master and the learning curve is

steep [Jović et al., 2014]. There are various packages available that focus on bioinformatics

and related data. Of particular interest is the Seurat package [Lab, 2020], specialized in

single-cell RNA-seq data treatment and analysis, one of the most relevant and innovative

tools recently developed in the area [Jović et al., 2014].

Other relevant and widely used tools are:

• Orange: a tool based on Python that can be used as a plug-in, through scripting or through

its graphical user interface. Among other features, it offers data operations, classification,

analysis and unsupervised learning. One of its downsides is the lack of integration with

WEKA [Jović et al., 2014].

• KNIME (Kontaz Information Miner): a tool based on the Eclipse IDE that provides a

graphical interface similar and workflow similar to Rapidminer. It is highly extendable and

can be integrated with WEKA and R, among other possibilities [Jović et al., 2014].

• scikit-learn (Python): a Python package that provides various Data Mining algorithms.

Since it is a community based tool, it is constantly improving and gaining new features. One

of its advantages is its function-based methods and performance. However, this tool requires

the user to be profficient in the Python language in order to use it [Jović et al., 2014].

• Keras (Python): a high-level API for neural networks, written in Python. It allows the

development and evaluation of deep learning models [Jović et al., 2014].

Along the aforementioned tools, some recent breakthroughs allowed the creation of some

specialized tools, such as:

• OligoMacro: an ImageJ macro-toolset aimed at isolating oligodendrocytes from wide-field

images, tracking isolated cells, characterizing processes morphology along time, outputting

numerical data and plotting them [Azevedo et al., 2018].

2.5.2 Databases and Web Repositories

Conducted research from various studies provided various databases, web repositories and as-

sorted tools containing relevant information related to this topic. Some of these resources rep-

resent major efforts in archiving gene data collected through the years, or novel ways to analyse

existing data. Others serve as valuable tools that aid in the process of gen enrichment analysis i.e.

the biological characterization of a set of genes or proteins, by searching for functional categories,

classes, attributes and any other types of data that are over-represented in the set, and may have an

association with disease phenotypes.

Bellow are some relevant examples:
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• Gene Ontology: one of the main available resources for enrichment analysis on gene sets.

A platform that allows the consultation regarding genes and their functions, attributes, prod-

ucts, cataloguing, etc. It provides tools for easy access, search and consulting of the infor-

mation of a gene, as well as a personalized annotation system [Harris et al., 2008].

• DAVID (Database for Annotation, Visualization and Integrated Discovery): a group of

tools, including a custom algorithm to measure similarity between genes. The aim of this

platform is to condense a list of genes or associated biological terms into organized classes

of related genes or biology, called biological modules [Huang et al., 2007]. It agglomerates

species-specific gene/protein identifiers from a variety of public genimic resources including

NCBI, PIR and Uniprot/SwissProt [Marques et al., 2016].

• KEGG (Kyoto Encyclopedia of Genes and Genomes): collects data regarding genomes,

diseases, chemical components and biological pathways at a molecular-level. Deals spe-

cially with data generated by genome sequencing and other high-throughput experimental

technologies [Khatri et al., 2004].

• GenBank: a publicly available database of nucleotide sequences from various species, up-

dated every two months [Khatri et al., 2004].

• ENSEMBL: a group of various resources that come together to characterize the human

genome. These resources include comparative genomics, genetic trees, various information

regarding nucleotide sequences, among others [Khatri et al., 2004].

• ArrayExpress: an online repository of functional genomics data [Khatri et al., 2004].

2.6 Summary

As we can see through the aforementioned referenced studies and collected data, a multidisci-

plinary approach between the areas of Neuroscience, Data Mining and Bioinformatics is encour-

aged, in order to fully take advantage of the latest technological developments and enhance future

contributions to academic research.

In fact, advancements in the two areas complement each other. Breakthroughs in Data Min-

ing allow for different approaches and more in-depth analysis to Neuroscience data, while these

processes present themselves as opportunities to test the practical limits and reach of Data Mining

and Bioinformatics tools, and further augment them.
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Chapter 3

Methodologies and Architecture

3.1 Introduction

This chapter addresses all the tools and methods employed and attempts to explain their inner

workings, reason of use and the way they were applied, as well as the structure of the created

solution.

3.2 Methodologies

The methodologies applied in this paper were largely inspired by the two previously mentioned

papers this report was based on. Additionally, some of the tools mentioned in section 2.5 were

utilized. More specifically, Python, R and its interface RStudio and various packages such as

Seurat and Clustree and the Flask framework along with the Flask What The Forms package.

Among these tools, one appeared to be particularly promising: Seurat [Lab, 2020]. This is due

to its previous use in the papers mentioned above.

Through RStudio, the default scRNA-seq data processing pipeline provided by Seurat was ap-

plied to the dataset produced in [Marques et al., 2016] with the aim of reproducing the results in

this paper so that further analysis regarding genes relevant to the cytoskeleton of oligodendrocytes

could be conducted. More precisely, we aimed at replicating the same number of clusters and the

cluster tree seen in [Marques et al., 2016]. By defining a group of genes that results in a similar

cluster tree, we can conduct further analysis on the dataset while guaranteeing continuity between

this study and the [Marques et al., 2016] study.

Additionally, a web application was developed so that users with no previous knowledge of these

tools can use them and visualize results. This tool’s value resides in the centralization of two re-

sources: the Seurat pipeline, allowing for data processing of datasets originated by scRNA-seq and

gene enrichment/GO analysis, the exploratory analysis of gene sets. This app applies the default

19
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Seurat pipeline to a gene expression matrix according to the configurations provided by the user,

and allows the user to originate GO analysis reports through the DAVID tool.

3.2.1 Seurat Pipeline

The versions of the software used in this project can be seen in Table 3.1.

Table 3.1: Versions of the tools used.

Software Version

Python 3.8.2
R 3.6.3

RStudio 1.2.5042
Seurat 3.1.5

clustree 0.4.3
rpy2 3.3.3

RapidMiner Studio 9.6.0
DAVID 6.7
Flask 1.1.2

Firefox Browser 77.0.1

Seurat takes a gene expression matrix that can be in various formats, including 10xGenomics

matrices. A default pipeline was used. This serves as a generic way of treating scRNA-seq data

allowing for a general visualization and of the data and possible more specific treatment. A gene

expression matrix was used, taken from GSE75330. This gene expression matrix was obtained

through cells isolated from ten distinct regions of the anterior-posterior and dorsal-ventral axis

of the mouse juvenile and adult CNS, including grey matter (spinal cord/dorsal horn, substantia

nigra and ventral tegmental area (SN-VTA), amygdala, hypothalamic nuclei, zona incerta, hip-

pocampus/dentate gyrus and CA1, and somatosensory cortex), white matter (corpus callosum) or

both (striatum), and also adult CNS (somatosensory cortex, corpus callosum and dentate gyrus).

After being isolated and treated, the cells were FACS sorted, analysed through a microscope and

subject to quality control tests. Clustering of the cells was made with BackSpinV2. After further

processing and filtering, 5072 cells grouped in 13 clusters were obtained [Marques et al., 2016].

The different populations of OLs found in the dataset can be seen in Figure 2.6.

Seurat revolves around the SeuratObject class. This object is created from a gene expression

matrix. Every time a certain method is applied to the data, information is generated and stored

in the object. This allows flexible application of successive operations and for easily saving the

object produced in a session for later use.

Firstly, the data is read and the SeuratObject is created. Then a normalization operation is ap-

plied. The default method normalizes the feature expression measurements for each cell by the

total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75330
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Afterwards, a process of feature selection is performed. This aims to calculate a subset of genes

(referred to as "features") that exhibit high cell-to-cell variation in the dataset. Seurat’s default

feature selection method is described in [Stuart et al., 2019] At this point, the top most highly

variable genes can be selected and saved and plots for the most expressed genes can be computed.

After feature selection, operations for scaling the data are applied to remove variation in the

dataset. More specifically, a linear transformation method is applied, more specifically Princi-

pal Component Analysis (PCA). PCA is a dimensionality-reduction method that is often used to

reduce the dimensionality of large data sets, by transforming a large set of variables into a smaller

one that still contains most of the information in the large set. Reducing the number of variables

of a data set comes at the expense of accuracy; it enhances, however, simplicity of the dataset,

making it easier to explore, visualize and conduct further analysis [Jaadi, 2020].

Seurat’s default PCA method shifts the expression of each gene, making the mean expression

across cells equal to 0 and scales the expression of each gene, making the variance across cells

equal to 1. Scaling can be performed on all features or only on previously selected features. The

results are stored in the SeuratObject.

The next step is the application of a linear dimensional reduction method. This is achieved through

Seurat’s principal component analysis function. Each PC essentially representing a ’metafeature’

that combines information across a correlated feature set, and thus represent a compression of the

dataset. The results are stored in the SeuratObject. To visualize the resulting principal compo-

nents, various options are available: dot plots to compare two or multiple components and heat

maps to visualize a singular or multiple components.

This step is usually followed by the determination of the dimensionality of the dataset. Seurat

offers three ways to achieve this. The first focuses on supervision, determining sources of het-

erogeneity through PC analysis. The second, more time-consuming, is based on a statistical test

on a random null model. The third, a heuristic method. Depending on the needs of the user or

the nature of his dataset, the most appropriate method can be applied. Additionally, Seurat uses

a custom algorithm based on the JackStraw method. It randomly permutes a subset of the data,

re-applies PCA, computes a distribution of feature scores, and repeats this procedure. The results

are stored in the SeuratObject. A method to visualize the results of this operation is provided.

Alternatively, a method to view a ranking of the PCs based on the percentage of variance is also

available.

Thus we reach a crucial phase: clustering the cells of the dataset. Seurat has a custom approach

to clustering, based on graphs. Starting from a group of preciously specified number of features,

cells are embedded in a graph (i.e. KNN) and edges are drawn between cells with a similar fea-

ture expression pattern. The weight of the edges is calculated through the overlap between the



22 Methodologies and Architecture

surroundings of each cell. The graph is then divided into small groups.

Modularity optimization techniques such as the Louvain algorithm are then applied to itera-

tively group cells together. In this step, it is possible to adapt the resolution of the operation in

order to calculate a decreased or increased number of clusters. Clustering information, including

number of clusters and resolution of each application of the algorithm is saved in the SeuratObject

and can be consulted anytime.

After the clustering process, non-linear dimensional reduction is applied. This process maps the

high-dimensional space into a low-dimensional embedding in order to facilitate visualization of

the dataset.

Seurat offers two main methods: tSNE and UMAP, among others. Both these methods aim to

achieve similar results, tSNE being the older, more standard method.

The role of tSNE is to help the visualization of high-dimensional data by projecting it into

a low-dimensional space [Kurita, 2018], mainly through utilizing the local relationships between

points to create a low-dimensional mapping.

The more recent UMAP has, however, a few advantages that make it a great new way to

map data. Not only it has a superior performance, it also does a better job at preserving the

global structure of the dataset and the relations between clusters while having no restrictions on

the dimensions of the dataset. Though being mostly an improvement, UMAP also has its limits,

namely being unable to separate two nested clusters in a scenario where a dense, smaller cluster is

inside a larger, sparser cluster [Andy Coenen, ].

Users can thus change their preferred algorithm and tune the method by specifying certain

input variables like dimensionality, subset of genes, number of neighboring points to use, etc. The

results are stored in the SeuratObject and can be visualized through the available plotting methods.

For further analysis, Seurat allows users to find gene markers that define clusters through ex-

pression. It allows for the identification of positive or negative markers in a single cluster, in all

clusters, or in different groups of clusters or cells, compared against each other. With this method

an user can, for example, identify the genes that lead to differentiate two clusters, or identify genes

that are common to all clusters [Butler et al., 2018]. It is also possible to visualize markers through

violin, dot, ridge and scatter plots, among other formats. Regarding this paper, the gene marker

methods were not used.

After treating the data in Seurat and replicating the results in [Marques et al., 2016], the data

was introduced in DAVID for a GO analysis, in order to identify genes specific to the cytoskeleton

and associated characteristics that could be of interest to the topic of this paper.

Through DAVID, a functional annotation chart, clustering sheet and table with detailed infor-

mation about certain genes of interest was obtained.
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3.2.2 DAVID

Due to its use in [Marques et al., 2016] for gene enrichment analysis, providing an Application

Programming Interface (API) for Web integration and being on of the most complete GO analysis

tools available, this tool was chosen in order to apply GO analysis to the dataset in this report.

DAVID (Database for Annotation, Visualization and Integrated Discovery) consists of an inte-

grated biological knowledgebase and analytic tools aimed at systematically extracting biological

meaning from large gene/protein lists.

With DAVID, an user can identify the genes in a dataset that are enriched, i.e. present abnor-

mal, usually higher than normal expression values. By identifying these genes and the associated

cellular components and processes, the user can withdraw knowledge and conclusions regarding

the dataset.

This detection is made through a background comparison with known expression for the genes

in question that are considered normal [Huang et al., 2007].

To use this tool, the user uploads a gene expression matrix (the genes can be under any official

format), chooses what type of report is to be generated and analysis the provided report in an

explorative manner.

The available reports are:

• DAVID gene functional classification: provides the distinct ability for investigators to

explore and view functionally related genes together, as a unit, to concentrate on the larger

biological network rather than at the level of an individual gene

• DAVID functional annotation chart: provides typical gene–term enrichment (overrepre-

sented) analysis

• DAVID functional annotation clustering: uses a similar fuzzy clustering concept as func-

tional classification by measuring relationships among the annotation terms on the basis

of the degree of their co-association with genes within the user’s list to cluster somewhat

heterogeneous, yet highly similar annotation into functional annotation groups

• DAVID functional annotation table: a query engine for the DAVID knowledgebase, with-

out statistical calculations; for a given gene list, the tool can quickly query corresponding

annotation for each gene and present them in a table format; thus, users are able to explore

annotation in a gene-by-gene manner [Huang et al., 2007]

An illustration of the DAVID workflow and available features can be seen in Figure 3.1.

3.2.3 Web Application

A small web application was developed. With this tool, a user can upload a configuration file

in the JSON format that specifies which steps of the previously explore Seurat pipeline are to be

applied to the data, saves the produced charts and additional information and displays them in a

user-friendly manner. DAVID analysis reports can also be generated and saved locally.
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Figure 3.1: DAVID workflow and features [Huang et al., 2007].

3.3 Architecture

The web application was made with Python. The bridge between Python and R was accomplished

through rpy2, a pyhton package running embbeded R that serves and an interface between the

two languages, providing access to R methods through Python objects. The Seurat R script was

converted and adapted into a Python script that accepts a JSON file, where the user defines what

steps of the Seurat workflow are to be applied to the data. Afterwards, a small website was creating

using Flask, a micro web framework written in Python that provides a easy way to bridge Python

code and HTML. Form validation and rendering was made resorting to the tools provided by by the

WTForms library, through the intermediary package Flask WTF. DAVID integration is achieved

through the former’s Python Web API. An illustration of the architecture of the web app can be

seen in Figure 3.2.

The actions the user can take are illustrated in Table 3.2 and Figure 3.3.

Table 3.2: Web application User Story table.

As... I want... So that...
a User to upload a JSON configuration file I can define the data to be analysed, according to my preferences
a User select the type of analysis to be done I can search for a specific kind of information regarding the data I have
a User view the results of the conducted analysis I can identify and obtain useful information regarding the data I have
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Figure 3.2: System architecture diagram.
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Figure 3.3: Use cases diagram.



Chapter 4

Case Study

4.1 Introduction

This chapter details how, through the aforementioned methods, our results were achieved.

4.2 Seurat

The aim of this analysis was to replicate the results in this paper using methods from the Seurat

library, testing its limits, and from those results conduct further analysis, in the search for new

knowledge regarding the cytoskeleton of neural cells and related genes.

As previously mentioned, the Seurat pipeline was used on data taken from [Marques et al., 2016].

This dataset consists of a gene expression matrix in the TAB format was used (taken from GSE75330).

This data consists of 5069 transcriptomes of single oligodendrocyte cells from spinal cord, sub-

stantia nigra-ventral tegmental area, striatum, amygdala, hypothalamic nuclei, zona incerta, hip-

pocampus, and somatosensory cortex of male and female mice between post-natal day 21 and 90.

Cells were sampled from CNS regions of mice of various strains.

The SeuratObject is created with this data (CreateSeuratObject method), with all the parame-

ters set to their respective default values. This object is the core of this tool. With every operation

made, metadata is produced and stored in the object. This mechanic facilitates saving the chain of

operations applied, by saving the SeuratObject and uploading it in order to continue the analysis.

Since the dataset is already pre-processed, no further methods are applied. A representation of

the data in this state can be viewed in Figures 4.1 and 4.2.

Data is normalized logarithmically (NormalizeData method) with a scale factor equal to 10,000,

with all the other parameters set to their respective defaults. Normalizaed data is represented in

Figure 4.3.

Scaling is then applied (ScaleData method) to all genes of the dataset and other parameters set

to their defaults.
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Figure 4.1: Violin plot showing the relationship between features and RNA counts.

Linear dimensional reduction is performed resorting to PCA (RunPCA method), with all the

parameters set to their defaults. Plots were produced to visualize some of the PCs of the dataset,

displayed in Figures 4.4, 4.5 and 4.6.

To determine the dimensionality of the dataset, Seurat’s custom version of the Jackstraw algo-

rithm is applied (JackStraw and ScoreJackStraw methods), with the number of replicate samplings

to perform (num.replicate) set to 500, in order to increase accuracy. It’s possible to increase per-

formance by decreasing this number. This method assigns a p-value for each gene’s relation with

eac PC. A PC is considered to have a strong enrichment when the associated p-values have low

values. This information is stored in the SeuratObject, and can be visualized in Figures 4.7 and

4.8.

Cell clustering was made with resorting to Seurat’s FindNeighbors and FindClusters methods,

with the k number (k.param parameter of the FindNeighbors method) set to 66 in order to reach the

13 clusters found in [Marques et al., 2016]. This number was reached through trial and error, and

is noticeably high. This is because clustering is applied 5 times with 5 different resolution values

(0, 0.1, 0.5, 0.8 and 1 with the k.scale parameter set to 25) in order to gather enough metadata

to generate a cluster tree through the Clustree library methods. The information regarding each

clustering application is saved in the SeuratObject, where a column with each resolution is added

to the meta data.

Despite having reached a similar number of clusters as in [Marques et al., 2016], pairing

each OL population from this paper to a corresponding cluster from the Seurat results is yet to

be done. A suggested method to achieve this is through the search for potential patterns in the

levels of expression of relevant marker genes from each population that could also be found in the

anonymous clusters.
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Figure 4.2: Scatter plot showing the relationship between features and RNA counts.

Non-linear dimensional reduction is performed with Seurat’s RunUMAP method, which em-

ploys the UMAP algorithm, with all parameters set for their default values. The result of this

operation can be seen in figure 4.9.

To further explore the dataset, the gene markers which were common to all clusters were calcu-

lated. To achieve this, first the markers of each cluster were calculated with Seurat’s FindMarkers

method. Afterwards, they were re-organized in a decreasing order, according to their gene expres-

sion and stored in tables. The resulting matrices were then intersected and plots computed. The

results from this process can be seen in Figures 4.10 and 4.11.

Additionally, two cluster trees using two different methods were computed, for comparing

purposes. The aim here was to match the cluster tree after processing the data in Seurat to the one

obtained in [Marques et al., 2016].

In order to build a cluster tree, a subset of genes from the dataset was obtained. The process

employed to achieved this was the following:

• Calculate the Average Gene Expression of the dataset; this was achieved through Seurat’s

AverageExpression method

• Find the differentially expressed genes of each cluster (i.e. the gene markers that define the

cluster); this was achieved through Seurat’s FindMarkers method



30 Case Study

Figure 4.3: Top 10 most expressed features.

• Select the top 100 genes with highest expression, for each cluster

The first cluster tree was computed using Seurat’s native BuildClusterTree function, with all

parameters set to their default. The result can be seen in Figure A.1.

The second tree was built resorting to the Clustree R package, which offers a more in depth

way to visualize cluster trees. The result obtained was the same and can be seen in Figure A.2.

After processing the data with Seurat, DAVID was used for further processing. More specif-

ically, this tool was used to obtain information regarding GO and assorted enriched genes in the

clusters. The version 6.7 was used. Starting from the previously saved ordered gene expression

tables for each cluster, the top 500 most expressed genes for each clusters were selected and intro-

duced in DAVID’s Functional Annotation tool, with the identifier parameter set to "Official Gene

Symbol" and the List Type parameter set to "Gene List". This number of genes was chosen since

it is within the limits of this tool (it limits the number of genes to 3000 per analysis) while still

covering the number of markers available in each cluster (only clusters 4, 8 and 11 fall short of

500 genes, having 416, 257 and 375 markers, respectively).

Additional filtering is applied to include only results regarding the Mus Musculus species.

To analyse the results computed by DAVID, special attention is given to the Functional Anno-

tation Clustering data. This tab provides provides ordered enrichment scores for similar GOs.

Through the study of the enrichment data it is possible to better understand the cellular functions

associated to the more genes which are more expressed and enriched, for each cluster.
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Figure 4.4: Top 10 most expressed genes for 4 PCs.

By searching in the data for certain keywords associated with the cytoskeleton (i.e. micro-

tubule, tubulin, actin, myosin, etc.) it’s possible to study specific information regarding this struc-

ture.

4.3 Web App

A simple web application was built, with the aim of creating a user friendly and immediate way to

use Seurat and visualizing results.

The Seurat code is embedded in Python through rp2, a crossover package for the latter.

Flask was used as a easy way to build a web interface that could communicate with the Python

scripts, with form validation being made with the Flask WTForms package.

The application takes as input a gene expression matrix and a JSON file with the user’s prefer-

ences.

The gene expression matrix can be in any format that can be processed by Seurat (i.e. CSV,

TAB, 10xGenomics, etc.)

The JSON file dictates what operations will be applied to the data and/or what information

will be displayed. The format of the JSON input file can be seen in Figure A.3. The application

uses Seurat to produce images similar to the ones that can be seen in this article.

To increasing this tool’s utility, we intended to integrate it with DAVID’s available web ser-

vices. If this goal could be achieved, the process of scRNA-seq data treatment and gene enrichment
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Figure 4.5: Comparison of the resulting dimensionality reduction between 2 PCs. Cells are colored
by their identity class.

through GO could be centralized in the same application, a feature that could potentially be useful

for researchers that are not familiarized with these tools.
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Figure 4.6: Heatmap comparing 500 genes of 1 PC.

Figure 4.7: Data post Jackstraw application, showing the p-values for 15 PCs.
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Figure 4.8: Elbow plot representing a ranking of PCs based on the percentage of variance.

Figure 4.9: Visualization of the data post UMAP application. Comparison between 2 PCs. Each
cluster is represented with a different color.
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Figure 4.10: Violin plots representing the expression of each of the genes common to all clusters
by cluster.

Figure 4.11: Plot comparing the average expression of each of the genes common to all clusters.
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Chapter 5

Results

5.1 Introduction

In this chapter the results of this project are listed and discussed.

5.2 Overview

The initial goal of extracting new knowledge regarding the specific genes that differentiate each

oligodendrocyte population was not achieved. The creation of an application that centralizes in a

single resource scRNA-seq data analysis tools and GO tools was achieved.

5.3 Seurat

The Seurat package for Python was one of the main tools used in this project. The first task was to

replicate the results observed in [Marques et al., 2016]. More specifically, we aimed to achieve a

similar number of clusters and a similar cluster tree, starting from the same dataset, using the tools

offered by Seurat.

Pre-processing, normalization, scaling, dimensional reduction and clustering were conducted

successfully. The obtained number of clusters was the same as in [Marques et al., 2016].

However, the cluster tree could not be successfully replicated. While the obtained cluster tree

presents similarities to the tree in [Marques et al., 2016], namely an accurate correspondence of

the VLMC and OPC populations (matched to clusters 10 and 9, respectively), it isn’t a total replica

and therefore compromised, to some extent, the rest of the results. This is because the relation

between the resulting clusters isn’t guaranteed to be the same as seen in [Marques et al., 2016],

and therefore the matching of oligodendrocyte populations can’t be accurately done. Since we

can’t identify what state of the differentiation process each clusters corresponds, we can’t draw

accurate conclusions regarding the genes markers of each clusters.

It is notable, however, how the two approaches used to build the cluster tree (Seurat native

methods and the Clustree methods) achieved the exact same results, as seen in Figures A.1 and
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A.2. This implies that source of discrepancy in our results might be related to the genes that were

selected to build the cluster tree, or in the way they were processed.

A comparison between the obtained tree and the tree originally obtained by [Marques et al., 2016]

can be seen in Figure 5.1.

5.4 DAVID

Since the originated cluster tree wasn’t a perfect replica of the tree seen in [Marques et al., 2016],

no accurate analysis could be done. However, DAVID analysis of the genes used to originate the

cluster tree in this report resulted in the identification of some proteins and structures associated

with the cytoskeleton.

5.5 Web App

Although the developed web application is still in an embrionary state, it demonstrates how spe-

cialized tools such has Seurat and DAVID can be centralized in the form of a single, accessible

resource. By connecting these two tools through Python, we preserve some of the flexibility re-

quired for future integration in other types of applications.

Additionally, since GO analysis is a very common method of analysis that is usually followed

by the processing of RNA sequencing (as seen in [Marques et al., 2016] and [Falcão et al., 2018])

and these methods have been growing increasingly more important in RNA studies, the centraliza-

tion of the two can potentially facilitate the work of researchers by streamlining the data analysis

process as a whole.

An overview of the web app’s interface can be seen in Figures 5.2 and 5.3.
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(a) Original tree, where for each cluster a oligodendrocyte populations was iden-
tified.

(b) Obtained tree without any identified oligodendrocyte populations for the clus-
ters.

Figure 5.1: Comparison between the structure of the obtained cluster tree and the original tree
from [Marques et al., 2016].
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Figure 5.2: Overview of the web application interface. (A) Button to select and upload a JSON
configuration file. (B) Button to run the Seurat analysis pipeline. (C) Button to run the DAVID
analysis. (D) Button to see the images produced by the Seurat analysis.

Figure 5.3: Overview of the plot display screen. (A) Example of a plot produced by Seurat. (B)
Return button that takes the user back to the main interface page.



Chapter 6

Conclusions

6.1 Introduction

This chapter ends the study by listing the conclusions drawn from the obtained results and leaves

suggestions for future enhancements.

6.1.1 Conclusions

We have provided an overview of the current state of the art regarding the area of bioinformatic by

exploring some of the more relevant articles and tools in recent years. Due to its previous usage in

groundbreaking research, one tool in particular stood out as being relevant for this topic: Seurat.

Using this tool, the results from a specific paper on the topic were attempted to be replicated.

Although this goal hasn’t been reached with complete accuracy, Seurat presented itself as a potent,

flexible tool, and we believe that with a deeper understanding of the dataset, more theoretical

knowledge and further tuning this goal could be properly achieved.

From the results obtained with Seurat, GO was conducted using DAVID, a set of functional

annotation tools for gene enrichment, useful for extracting detailed information from lists of genes.

More specifically, information regarding the cytoskeleton of OLs was collected. Further studies

need to be conducted on this information in order to detect potential patterns that could lead to

useful knowledge on the importance of this structure in the neurological cell behavior.

Additionally, a simple web application was built. This application aimed at providing an

accessible, user friendly interface for the use of Seurat. It also serves as a bridge between this tool,

the Python language and the web. This application demonstrates how a powerful GO tool, DAVID,

can be integrated in a web resource along scRNA-seq data analysis tools, providing substantial

value for future research.

Although the objectives that were initially defined weren’t completely achieved, this paper

serves nonetheless as a summary of the current state of the art and an exercise with one of the

more promising tools.
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6.2 Future Work

Due to the available amount of time, the web application could not be fully developed, and is left

in a rudimentary state.

There is, therefore, plenty of room for improvement left. Numerous aesthetic improvements

could be made in the interface and a form could be created to facilitate the input of the user’s

preferences.

Regarding the DAVID features, they aren’t ready to take a specific groups of genes, other

report analysis types could be made implemented (only a chart report analysis is available in the

current version) and an option to save the generated data needs to be created.

Regarding the Seurat script, it needs further improvements on it’s flexibility, stability and

overall the web application.
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[Jović et al., 2014] Jović, A., Brkić, K., and Bogunović, N. (2014). An overview of free software
tools for general data mining. 2014 37th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics, MIPRO 2014 - Proceedings, pages
1112–1117.

[Khatri et al., 2004] Khatri, P., Bhavsar, P., Bawa, G., and Draghici, S. (2004). Onto-Tools: An
ensemble of web-accessible ontology-based tools for the functional design and interpretation
of high-throughput gene expression experiments. Nucleic Acids Research, 32(WEB SERVER
ISS.):449–456.

[Kurita, 2018] Kurita, K. (2018). Paper dissected: “visualizing data us-
ing t-sne” explained. https://mlexplained.com/2018/09/14/
paper-dissected-visualizing-data-using-t-sne-explained/.

[Lab, 2020] Lab, S. (2020). Seurat: R toolkit for cell genomics. https://satijalab.org/
seurat/.

[Marques et al., 2018] Marques, S., van Bruggen, D., Vanichkina, D. P., Floriddia, E. M.,
Munguba, H., Väremo, L., Giacomello, S., Falcão, A. M., Meijer, M., Björklund, Å. K.,
Hjerling-Leffler, J., Taft, R. J., and Castelo-Branco, G. (2018). Transcriptional Convergence of
Oligodendrocyte Lineage Progenitors during Development. Developmental Cell, 46(4):504–
517.e7.

[Marques et al., 2016] Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Fal-
cão, A., Xiao, L., Li, H., Häring, M., Hochgerner, H., Romanov, R. A., Gyllborg, D., Muñoz-
Manchado, A. B., La Manno, G., Lönnerberg, P., Floriddia, E. M., Rezayee, F., Ernfors, P.,
Arenas, E., Hjerling-Leffler, J., Harkany, T., Richardson, W. D., Linnarsson, S., and Castelo-
Branco, G. (2016). Oligodendrocyte heterogeneity in the mouse juvenile and adult central
nervous system. Science, 352(6291):1326–1329.

https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://mlexplained.com/2018/09/14/paper-dissected-visualizing-data-using-t-sne-explained/
https://mlexplained.com/2018/09/14/paper-dissected-visualizing-data-using-t-sne-explained/
https://satijalab.org/seurat/
https://satijalab.org/seurat/


REFERENCES 45

[Miguel and Natividade, 2017] Miguel, L. and Natividade, B. (2017). Data Mining para análise
dos resultados de Gene Expression.

[Mokobi, 2020] Mokobi, F. (2020). Myelination assay. https://microbenotes.com/
plant-cell/.

[Pfeiffer et al., 1993] Pfeiffer, S. E., Warrington, A. E., and Bansal, R. (1993). The oligodendro-
cyte and its many cellular processes. Trends in Cell Biology, 3(6):191–197.

[Rasband, ] Rasband, W. Imagej homepage. https://imagej.nih.gov/ij/features.
html.

[Stegle et al., 2015] Stegle, O., Teichmann, S. A., and Marioni, J. C. (2015). Computational and
analytical challenges in single-cell transcriptomics. Nature Reviews Genetics, 16(3):133–145.

[Stuart et al., 2019] Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck,
W. M., Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration
of Single-Cell Data. Cell, 177(7):1888–1902.e21.

[van Bruggen et al., 2017] van Bruggen, D., Agirre, E., and Castelo-Branco, G. (2017). Single-
cell transcriptomic analysis of oligodendrocyte lineage cells. Current Opinion in Neurobiology,
47:168–175.

[Wang et al., 2020] Wang, F., Ren, S. Y., Chen, J. F., Liu, K., Li, R. X., Li, Z. F., Hu, B., Niu,
J. Q., Xiao, L., Chan, J. R., and Mei, F. (2020). Myelin degeneration and diminished myelin
renewal contribute to age-related deficits in memory. Nature Neuroscience.

[Wang et al., 2010] Wang, Z., Gerstein, M., and Snyder, M. (2010). Nihms229948. 10(1):57–63.

[Xu and Su, 2015] Xu, C. and Su, Z. (2015). Identification of cell types from single-cell tran-
scriptomes using a novel clustering method. Bioinformatics, 31(12):1974–1980.

[Zeisel et al., 2015] Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., Manno,
G. L., Juréus, A., Marques, S., Munguba, H., He, L., Betsholtz, C., Rolny, C., Castelo-Branco,
G., Hjerling-Leffler, J., and Linnarsson, S. (2015). Cell types in the mouse cortex and hip-
pocampus revealed by single-cell RNA-seq. Science, 347(6226):1138–1142.

[Zhang et al., 2014] Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O’Keeffe,
S., Phatnani, H. P., Guarnieri, P., Caneda, C., Ruderisch, N., Deng, S., Liddelow, S. A., Zhang,
C., Daneman, R., Maniatis, T., Barres, B. A., and Wu, J. Q. (2014). An RNA-sequencing
transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex.
Journal of Neuroscience, 34(36):11929–11947.

https://microbenotes.com/plant-cell/
https://microbenotes.com/plant-cell/
https://imagej.nih.gov/ij/features.html
https://imagej.nih.gov/ij/features.html


46 REFERENCES



Appendix A

Appendix

Figure A.1: Cluster tree obtained using Seurat’s native methods.
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Figure A.2: Cluster tree obtained using the exterior package clustree.
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Figure A.3: Structure of the input configuration JSON file. In "setup", the "datapath" attribute
defines the localization of the dataset, the "savepath" attribute defines the folder where any images
produced by the analysis will be locally stored and the "saverob" attribute defines if the R object
with the session data is to be saved. In "options", each attribute represents a step of the Seurat
pipeline, along with the definition of some variable values. In "david", each attribute represents
a type of analysis.
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