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ABSTRACT 

In this investigation, we analyze errors due to using reduced-order models instead of full-order 
models in the examination of nonlinear flutter of variable stiffness composite laminates 
(VSCLs). These plates can be made, e.g., by Automated Tow Placement Machines, using 
composite laminates with curvilinear fibers; in our particular case, the orientation angle of the 
reference curvilinear fiber path changes linearly from T0 at the left edge to T1 at the right edge of 
the plate. A Third-order Shear Deformation Theory (TSDT) is used to model the laminate and a 
p-version finite element is applied to discretize the displacements and rotations. The plates are 
subjected to a supersonic airflow of which the aerodynamic pressure is approximated using 
linear Piston theory. The equations of motion of the full-order model of the self-excited 
vibrational system are formed using the principle of virtual displacements. In order to reduce the 
number of degrees-of-freedom of the full-order model, static condensation and/or a modal 
summation method are used. The equations of motion of the reduced-order and full-order models 
are solved using Newmark method to study the dynamic responses, focusing on limit cycle 
oscillations (LCOs). Approximation errors are discussed for LCO amplitudes of VSCL plates 
with various curvilinear fiber paths.

1. INTRODUCTION

After a small perturbation, oscillations of a plate subjected to a supersonic airflow with an 
aerodynamic pressure below a critical value (i.e., below the linear flutter pressure) become stable 
and static. The linear flutter pressure can be calculated using a linear (small amplitude) structure 
model associated with a linear aerodynamic model. If the aerodynamic pressure is greater than 
the linear flutter pressure, oscillations become unstable and a linear analysis predicts that their 
amplitude grows exponentially. However, geometrical non-linearity, coming from coupling 
between out-of-plane bending and in-plane stretching of the plate, bounds the oscillation 
amplitude into a limit cycle oscillation (LCO) [1]. 

A full-order finite element (FE) model (from now on named as full-model or FOM), including all 
the physical degrees of freedom (DOFs), predicts the non-linear flutter of a plate without 
approximations other than the ones ensuing from the theoretical hypothesis on which the model 
is based upon. However, the solution of full-models with many degrees of freedom entails a 
large computational cost. In order to reduce this cost, reduced-order models (ROMs) are 
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introduced and, very often, researchers used a limited number of DOFs - generally six to eight 
[2–9] - in the analysis of nonlinear flutter of plates. The main goal of this study is quantifying the 
degree of approximation of ROMs with respect to its associated FOM, in plates subjected to 
supersonic airflow. In this investigation, the order of FOMs will be reduced using static 
condensation, or by transferring to a reduced number of modal coordinates, or by both 
procedures.  

Mostly classical plate/laminate theory (CPT/CLT) or first-order shear deformation theory 
(FSDT) have been adopted in the literature. In the current research, the authors use a third-order 
shear deformation theory (TSDT) to include the effect of thickness to length ratio; TSDT leads to 
more accurate stress computation than lower order theories and, particularly on thicker plates, 
also to more accurate computation of deflections.  

To carry out the numerical tests, an in-house Fortran code that was developed and validated in 
the past by the authors is now updated to find the nonlinear flutter response of variable stiffness 
composite laminated (VSCL) plates. The mentioned code has been validated and used for the 
analysis of linear vibration [10], static deflection [11], stresses and failure [12], free and forced 
non-linear vibrations with or without initial imperfections [13–18], and, finally, for the analysis 
of linear flutter [19]. In the current paper, Newmark method is used for finding the solution for 
four developed models, listed as: 

1) FOM: full-order system with physical DOFs (DOFs from p-version finite element); 

2) ROM1: reduced-order system with the application of static condensation; 

3) ROM2: reduced-order system in modal coordinates, using linear structural modes of FOM; 

4) ROM3: reduced-order system, which is first statically condensed and then transferred into 
modal coordinates, using linear structural modes of ROM1; 

In order to apply the analysis on an advanced material with applications in aerospace industry, 
composite plates with curvilinear fibers (as one type of VSCLs [20]) are evaluated in this 
investigation. These laminates can be made, for example, by an Automated Fiber Placement 
machine [21]. This concept of curvilinear fibers allows re-distribution of stresses from high-
stress locations in a panel to other stiffer areas. As example of its application, curved fiber paths 
around a hole in a plate or around windows in an airplane fuselage can avoid stress 
concentrations [22]. 

In recent years, some researchers have investigated on linear flutter of VSCLs where curvilinear 
fiber orientation angles change [23-26]. In what concerns nonlinear flutter of VSCLs, the effect 
of curvilinear fiber orientation angles is not studied yet. Therefore, the authors believe that this 
study is helpful for researchers who want to use ROMs in nonlinear flutter analyses of VSCLs. 
The current paper complements another investigation by the authors [27] where the degree of 
approximation of ROMs with respect to the associated FOM was studied in thick and imperfect 
VSCLs and when viscous damping was present. Furthermore, although this study specifically 
targets VSCLs with curvilinear fibers, its conclusions are of interest to plates on other materials. 

 



2. EQUATIONS OF MOTION OF NONLINEAR FLUTTER OF VSCLS 

A rectangular laminate (represented in Figure 1) and a Cartesian coordinate system (x,y), with its 
origin located in the geometric center of the undeformed plate, are considered. The laminate is 
symmetric about its middle plane, with length, width, and thickness equal to a, b, and h, 
respectively. The reference fiber path in any ply of the laminate is curvilinear and its angle θ(x) 
is changing linearly with respect to the x axis according to 𝜃𝜃(𝑥𝑥) = (𝑇𝑇1 − 𝑇𝑇0) (𝑥𝑥 + 𝑎𝑎/2) 𝑎𝑎⁄ + 𝑇𝑇0. 
The orientation in the reference fiber path changes linearly from 𝑇𝑇0 at the left edge to 𝑇𝑇1 at the 
right edge of any ply in the laminate, where each ply has its own characteristic fiber angles 
〈𝑇𝑇0,𝑇𝑇1〉. The other fiber paths on the same layer are defined by shifting the reference fiber path in 
y-direction. 

 

 

Figure 1. Geometry of a cantilever VSCL plate with a reference fiber path. 

 

A third-order shear deformation theory [28,29] is assumed to define the displacement field, 
𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑢𝑢0(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝑧𝑧𝜙𝜙𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑡𝑡) − 4𝑧𝑧3

3ℎ2
�𝜙𝜙𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝜕𝜕𝑤𝑤0(𝑥𝑥,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝜕𝜕
�, 

𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑣𝑣0(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝑧𝑧𝜙𝜙𝑦𝑦(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) − 4𝑧𝑧3

3ℎ2
�𝜙𝜙𝑦𝑦(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝜕𝜕𝑤𝑤0(𝑥𝑥,𝑦𝑦,𝑡𝑡)

𝜕𝜕𝜕𝜕
�, 

𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑤𝑤0(𝑥𝑥,𝑦𝑦, 𝑡𝑡). 
[1] 

A p-version finite element [30] is used to discretize the mid-plane displacements and rotations 
as: 
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⎩
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⎧𝑢𝑢

0(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
𝑣𝑣0(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
𝑤𝑤0(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
𝜙𝜙𝑥𝑥(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
𝜙𝜙𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑡𝑡)⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡𝐍𝐍

𝐮𝐮(𝑥𝑥,𝑦𝑦)𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐍𝐍𝐮𝐮(𝑥𝑥, 𝑦𝑦)𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐍𝐍𝐰𝐰(𝑥𝑥, 𝑦𝑦)𝑇𝑇 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐍𝐍𝛟𝛟𝐱𝐱(𝑥𝑥, 𝑦𝑦)𝑇𝑇 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐍𝐍𝛟𝛟𝐲𝐲(𝑥𝑥,𝑦𝑦)𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝐪𝐪𝐮𝐮(𝑡𝑡)
𝐪𝐪𝐯𝐯(𝑡𝑡)
𝐪𝐪𝐰𝐰(𝑡𝑡)
𝐪𝐪𝛟𝛟𝐱𝐱(𝑡𝑡)
𝐪𝐪𝛟𝛟𝐲𝐲(𝑡𝑡)⎭

⎪
⎬

⎪
⎫

 

[2] 

The stress-strain relation in an orthotropic lamina is valid in each arbitrary point of any ply made 
of curvilinear fibers [31]. This relation can be transformed to global coordinates (x and y in 
Figure 1) using a transformation matrix [31]. A strain-displacement relation retaining von 
Kármán non-linear terms is considered in this study. Air is considered to flow on the top surface 
of the VSCL and constant pressure equal to the undisturbed air pressure is set at the lower 
surface. The pressure difference between the top and the lower surfaces of the plate due to an 
unsteady supersonic flow, in x direction, can be written using linear Piston theory [32] as 

∆𝑃𝑃(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −
2𝑞𝑞
𝛽𝛽 �

𝑀𝑀2 − 2
𝑀𝑀2 − 1

𝑤𝑤,𝑡𝑡(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝑤𝑤,𝑥𝑥(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)� [3] 

in which a comma before x or t means partial derivative with respect to that parameter. Other 
parameters on equation [3] are 𝑞𝑞 = 𝜌𝜌∞𝑈𝑈∞2

2
 as dynamic pressure; 𝛽𝛽 = �(𝑀𝑀2 − 1); 𝜌𝜌∞ as ambient 

density of air; 𝑈𝑈∞ as free-stream velocity, and 𝑀𝑀 as Mach number. Based on virtual works of 
inertia, internal and external aerodynamic forces and using the principle of virtual displacements, 
the equations of motion of self-excitation vibration (in full order) are in the form of 



⎣
⎢
⎢
⎢
⎡𝐌𝐌

11 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝐌𝐌22 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝐌𝐌33 𝐌𝐌34 𝐌𝐌35

𝐌𝐌44 𝟎𝟎
𝑠𝑠𝑠𝑠𝑠𝑠 𝐌𝐌55⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝐪̈𝐪𝑢𝑢(𝑡𝑡)
𝐪̈𝐪𝑣𝑣(𝑡𝑡)
𝐪̈𝐪𝑤𝑤(𝑡𝑡)
𝐪̈𝐪𝜙𝜙𝑥𝑥(𝑡𝑡)
𝐪̈𝐪𝜙𝜙𝑦𝑦(𝑡𝑡)⎭

⎪
⎬

⎪
⎫

+

⎣
⎢
⎢
⎢
⎡
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝐅𝐅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢33 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎
𝑠𝑠𝑠𝑠𝑠𝑠 𝟎𝟎⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝐪̇𝐪𝑢𝑢(𝑡𝑡)
𝐪̇𝐪𝑣𝑣(𝑡𝑡)
𝐪̇𝐪𝑤𝑤(𝑡𝑡)
𝐪̇𝐪𝜙𝜙𝑥𝑥(𝑡𝑡)
𝐪̇𝐪𝜙𝜙𝑦𝑦(𝑡𝑡)⎭

⎪
⎬

⎪
⎫

+

⎝

⎜⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎡𝐊𝐊𝐋𝐋

11 𝐊𝐊𝐋𝐋
12 𝐊𝐊𝐋𝐋

13 𝟎𝟎 𝟎𝟎
𝐊𝐊𝐋𝐋
22 𝐊𝐊𝐋𝐋

23 𝟎𝟎 𝟎𝟎
𝐊𝐊𝐋𝐋
33 𝐊𝐊𝐋𝐋

34 𝐊𝐊𝐋𝐋
35

𝐊𝐊𝐋𝐋
44 𝐊𝐊𝐋𝐋

45

𝑠𝑠𝑠𝑠𝑠𝑠 𝐊𝐊𝐋𝐋
55⎦
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡ 𝟎𝟎 𝟎𝟎 𝐊𝐊𝐍𝐍𝐍𝐍

13 �𝐪𝐪𝐰𝐰(𝑡𝑡)� 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐊𝐊𝐍𝐍𝐍𝐍

23�𝐪𝐪𝐰𝐰(𝑡𝑡)� 𝟎𝟎 𝟎𝟎
𝐊𝐊𝐍𝐍𝐍𝐍
31�𝐪𝐪𝐰𝐰(𝑡𝑡)� 𝐊𝐊𝐍𝐍𝐍𝐍

32�𝐪𝐪𝐰𝐰(𝑡𝑡)� 𝐊𝐊𝐍𝐍𝐍𝐍
33�𝐪𝐪𝐰𝐰(𝑡𝑡)� 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝐅𝐅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠33 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎
𝑠𝑠𝑠𝑠𝑠𝑠 𝟎𝟎⎦

⎥
⎥
⎥
⎤

⎠

⎟⎟
⎞

⎩
⎪
⎨

⎪
⎧
𝐪𝐪𝑢𝑢(𝑡𝑡)
𝐪𝐪𝑣𝑣(𝑡𝑡)
𝐪𝐪𝑤𝑤(𝑡𝑡)
𝐪𝐪𝜙𝜙𝑥𝑥(𝑡𝑡)
𝐪𝐪𝜙𝜙𝑦𝑦(𝑡𝑡)⎭

⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧𝟎𝟎𝟎𝟎
𝟎𝟎
𝟎𝟎
𝟎𝟎⎭
⎪
⎬

⎪
⎫

 

 

[4] 

Mass, linear and non-linear stiffness sub-matrices, 𝐌𝐌, 𝐊𝐊𝐋𝐋 and 𝐊𝐊𝐍𝐍𝐍𝐍, are given, for instance, in 
Ref. [31]. The expressions of the submatrices due to aerodynamic loading are 

𝐅𝐅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠33 =
2𝑞𝑞
𝛽𝛽
� 𝐍𝐍𝑤𝑤𝐍𝐍,𝑥𝑥

𝑤𝑤𝑇𝑇 𝑑𝑑𝑑𝑑
𝛺𝛺

 

𝐅𝐅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢33 =
2𝑞𝑞
𝛽𝛽
𝑀𝑀2 − 2
𝑀𝑀2 − 1

1
𝑈𝑈∞

� 𝐍𝐍𝑤𝑤𝐍𝐍𝑤𝑤𝑇𝑇 𝑑𝑑𝑑𝑑
𝛺𝛺

 

[5] 

In an abridged form, the equations of motion of a plate under the action of supersonic flow are 
𝐌𝐌𝐪̈𝐪(𝑡𝑡) + 𝐅𝐅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐪̇𝐪(𝑡𝑡) + �𝐊𝐊𝐋𝐋 +  𝐊𝐊𝐍𝐍𝐍𝐍 + 𝐅𝐅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝐪𝐪(𝑡𝑡) = 𝟎𝟎 

[6] 



2.1 Full-Order Model (FOM) 

After some convergence tests, it was decided to use seven one-dimensional shape functions in x 
and y coordinates (leading to 49 two-dimensional shape functions in 𝐍𝐍𝐢𝐢(𝑥𝑥, 𝑦𝑦)𝑇𝑇) for the 
discretization of each variable in Equation [2]. The resulting FOM is a system of 5×72=245 
equations (DOFs). 

2.2 Reduced-Order Model using Static Condensation (ROM1) 

Static condensation [33] is useful when in-plane inertia is not noticeable. Putting the in-plane 
inertia equal to zero, one obtains the in-plane generalized coordinates as a function of the out-of-
plane coordinates (from Equation [4]). The resulting equations of motion are 

 

�
𝐌𝐌33 𝐌𝐌34 𝐌𝐌35

𝐌𝐌44 𝟎𝟎
sym 𝐌𝐌55

� �
𝐪̈𝐪𝐰𝐰(𝑡𝑡)
𝐪̈𝐪𝛟𝛟𝐱𝐱(𝑡𝑡)
𝐪̈𝐪𝛟𝛟𝐲𝐲(𝑡𝑡)

� + �
𝐅𝐅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢33 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎
𝑠𝑠𝑠𝑠𝑠𝑠 𝟎𝟎

��
𝐪̇𝐪𝐰𝐰(𝑡𝑡)
𝐪̇𝐪𝛟𝛟𝐱𝐱(𝑡𝑡)
𝐪̇𝐪𝛟𝛟𝐲𝐲(𝑡𝑡)

�

+ �
𝐊𝐊𝐋𝐋𝐋𝐋
33 + 𝐊𝐊𝐍𝐍𝐍𝐍𝐍𝐍

33 �𝐪𝐪𝐰𝐰(𝑡𝑡)� + 𝐅𝐅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠33 𝐊𝐊𝐋𝐋
34 𝐊𝐊𝐋𝐋

35

𝐊𝐊𝐋𝐋
44 𝐊𝐊𝐋𝐋

45
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[7] 

Linear term 𝐊𝐊𝐋𝐋𝐋𝐋
33 and non-linear term 𝐊𝐊𝐍𝐍𝐍𝐍𝐍𝐍

33  can be found for example in Ref. [31]. This technique 
reduces the number of DOFs, but tends to increase the bandwidth of the stiffness matrix. The in-
plane displacements are still taken into account, just the in-plane inertia is neglected. In this 
particular study, the set of equations of motion has 3×72=147 DOFs. 

2.3 Reduced-Order Model using Modal Summation Method (ROM2) 

In the modal summation method employed here, the vibration is assumed to be given by a 
superposition of selected modes of the system, in the absence of airflow. Structural normal mode 
shapes are given by the eigenvectors of the linear problem extracted from Equation [4]. 
Considering a reduced modal matrix composed of m normal modes, the generalized 
displacements 𝐪𝐪 can be related to modal displacements 𝐪𝐪𝐦𝐦 by 

𝐪𝐪(𝑡𝑡) = 𝚽𝚽𝐪𝐪𝐦𝐦(𝑡𝑡). [8] 

Pre-multiplying the full-order system of Equation [4] by the transpose of the modal matrix, 𝚽𝚽𝑻𝑻 
and substituting Equation [8] in it, gives m modal equations of motion as following 

𝐌𝐌�𝐪̈𝐪𝐦𝐦(𝑡𝑡) + 𝐅𝐅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐪̇𝐪𝐦𝐦(𝑡𝑡) + �𝐊𝐊�𝐋𝐋 + 𝐊𝐊�𝐍𝐍𝐍𝐍 + 𝐅𝐅�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝐪𝐪𝐦𝐦(𝑡𝑡) = 𝟎𝟎 [9] 

where the modal mass matrix 𝐌𝐌�  and the linear stiffness matrix 𝐊𝐊�𝐋𝐋 are diagonal, but the modal 
non-linear stiffness matrix 𝐊𝐊�𝐍𝐍𝐍𝐍 and the modal aerodynamics matrices 𝐅𝐅𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝐅𝐅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are 



not. Naturally, ROM2 has m DOFs. 

2.4 Reduced-Order Model by Static Condensation and Modal Summation Method 
(ROM3) 

Here, modal summation method is applied on an initially statically condensed model or ROM1. 
Normal modes are calculated from an already statically condensed linear problem, where airflow 
velocity is equal to zero. The rest of the procedure is as explained in the previous section. The 
number of DOFs is again equal to the number of normal modes used. 

3. EVALUATION OF THE DEVELOPED MODELS 

In the beginning of this section, nonlinear flutter of a simple plate by FOM system is validated 
against the results published in the literature. Then, amplitudes of nonlinear flutter LCOs by 
either FOM and associated ROMs are compared. This comparison gives us a criterion to choose 
an appropriate ROM considering cost of computation and accuracy of results. At the end, the 
selected ROM will be examined against the number of modes used in its modal reduction 
method. 

3.1 Validation of FOM 

For this validation, a comparison between the LCO amplitudes, of an isotropic simply-supported 
(with immovable edges) square plate, by the current FOM (with 245 DOFs) and by a ROM (with 
6 aeroelastic modes by Guo and Mei [2]) is carried out in Figure 2. Based on classical plate 
theory, Ref. [2] used a ROM with both static condensation and transformation to modal 
coordinates (aeroelastic). The critical flutter pressure given in [2] and the one by the current 
method are respectively, λ=512 and λ =514. The small difference between two flutter pressures 
can be due to the facts that neither the structural theories (TSDT vs. CPT) nor the orders of the 
systems (FOM with 245 DOFs vs. ROM with 6 DOFs) are equal. This comparison on the 
nonlinear flutter verifies the correctness and exactness of the present FOM. 
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Figure 2. Comparison of LCO amplitudes between the present FOM and the ROM from Guo 
and Mei [2]. 

3.2 Comparison Between FOM and Its Associated ROMS 

In this comparison study, amplitudes of the nonlinear flutter of a 12-layer VSCL laminate with 
fiber configurations [45°+〈𝑇𝑇0,𝑇𝑇1〉,-45°-〈𝑇𝑇0,𝑇𝑇1〉,〈𝑇𝑇0,𝑇𝑇1〉,-〈𝑇𝑇0,𝑇𝑇1〉,90°+〈𝑇𝑇0,𝑇𝑇1〉,-90°-〈𝑇𝑇0,𝑇𝑇1〉]sym, 
where 〈𝑇𝑇0,𝑇𝑇1〉=〈0°,45°〉, are calculated based on developed FOM and ROMs. The mechanical 
properties of the studied laminate are as follows: E1 = 126:3 GPa and E2 = 8:765 GPa, G12 = G13 
= 4:92 GPa and G23 = 3:35 GPa, 𝜈𝜈12 = 0.27, and 𝜌𝜌 = 1580 Kg 𝑚𝑚3⁄  [31]. Thickness ratio is 
h/a=0.01 and μ/M is fixed at 0.01. The plate is square, a/b=1, and all the plies have equal 
thickness. The plate is a cantilever laminate with the edge y=-b/2 clamped and the results are 
calculated at (x,y)=(0, b/2). 

FOM (with 245 physical DOFs), ROM1 (with 147 physical DOFs), ROM2 (with 20 DOFs due 
to the first 20 normal modes of FOM), and ROM3 (again with 20 DOFs, but now using the first 
20 normal modes of ROM1) are evaluated in this comparison. The relative errors, given in the 
following comparison, measure the accuracy of the ROM approximations taking FOM results as 
reference. 

Table 1. Comparison of LCO amplitudes W/h, by FOM and associated ROMs, of the VSCL 
against different aerodynamic pressures. 

 

Model (DOF) λ 
11.72 11.73 11.75 11.79 11.82 11.87 11.93 11.99 12.07 12.15 

FOM  245 0.000 0.152 0.306 0.456 0.569 0.703 0.853 0.963 1.105 1.225 
ROM1 147 0.085 0.151 0.305 0.456 0.568 0.701 0.852 0.961 1.103 1.223 
Error %   - -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
ROM2 20 0.004 0.013 0.027 0.040 0.050 0.061 0.075 0.084 0.096 0.106 
Error %   - -91.5 -91.2 -91.2 -91.2 -91.2 -91.3 -91.3 -91.3 -91.3 
ROM3  20 0.005 0.066 0.304 0.455 0.567 0.701 0.851 0.961 1.103 1.222 
Error %   - -56.3 -0.6 -0.4 -0.3 -0.3 -0.2 -0.2 -0.2 -0.2 

 

Based on the comparison performed in Table 1, the best approximations to the results of FOM 
are those obtained using ROM1. Between ROMs with 20 DOFs, ROM3 predicts more exact 
results than ROM2. The error between the amplitudes calculated by ROMs and FOM, in the 
largest deflection ratio, is 0.2 %, 91.3 % and 0.2 % for ROM1, ROM2, and ROM3, respectively. 
One may expect these approximations since, in this analysis, lower frequencies (so their normal 
modes) are associated with out-of-plane deflection and higher frequencies (so their normal 
modes) are connected with in-plane displacements. In the case of ROM2, the first 20 modes do 
not necessarily include in-plane modes (in-plane and out-of-plane modes are uncoupled). But in 
the case of ROM3, coupling between in-plane and out-of-plane modes exists and consequently 



the first 20 modes include membrane effects. This explains the fact that in this case, ROM3 gives 
a better approximation than ROM2. It is obvious that ROM2 leads to the worst approximation. It 
should be noted that all ROMs predict the (critical) linear flutter at lower dynamic pressure and 
underestimate the deflection results in nonlinear flutter, in comparison with FOM. Naturally, a 
ROM2 with all normal modes included predicts results equal to its associated FOM. In case of 
ROM3, this model with all modes predicts results equal to ROM1. 

Regarding the expense of computation seen during calculation of Table 1, FOM had the highest 
computational cost; ROM1 had a computational cost just slightly lower than the one of FOM; 
ROM2 and ROM3 had the lowest computational cost. Based on the comparison in this table, 
ROM3 can be considered as the fastest model with acceptable deflection results, among the three 
methods to reduce the order here considered. 

3.3 Convergence of ROM3 

Considering selection of ROM3 from the previous sub-section, based on its cost of computation 
and its exactness, the mentioned model is investigated against the number of modes (DOFs), here 
in Table 2. This table demonstrates that LCO amplitudes in the nonlinear flutter of the VSCL 
predicted by ROM3 with 14 modes (DOFs) are less than 1 % away from those calculated by 
FOM. 

Table 2. LCO amplitudes W/h of the VSCL against different aerodynamic pressures, calculated 
using FOM and predicted by ROM3 with different number of modes. 

 

Model DOF λ 
11.72 11.73 11.75 11.79 11.82 11.87 11.93 11.99 12.07 12.15 

FOM 245 0.000 0.152 0.306 0.456 0.569 0.703 0.853 0.963 1.105 1.225 
ROM3 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.769 0.928 1.057 
Error %  - -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -20.1 -16.0 -13.7 
ROM3 6 0.000 0.000 0.000 0.384 0.517 0.666 0.828 0.944 1.093 1.218 
Error %  - -100.0 -100.0 -15.8 -9.1 -5.3 -3.0 -2.0 -1.1 -0.6 
ROM3 8 0.002 0.008 0.288 0.444 0.559 0.694 0.846 0.957 1.099 1.219 
Error %  - -94.9 -5.8 -2.6 -1.7 -1.2 -0.8 -0.7 -0.5 -0.5 
ROM3 10 0.000 0.000 0.226 0.426 0.544 0.682 0.835 0.947 1.090 1.210 
Error %  - -99.9 -26.2 -6.7 -4.4 -3.0 -2.1 -1.7 -1.4 -1.2 
ROM3 12 0.003 0.024 0.296 0.449 0.563 0.697 0.848 0.958 1.100 1.219 
Error %  - -83.9 -3.2 -1.6 -1.1 -0.8 -0.7 -0.6 -0.5 -0.5 
ROM3 14 0.005 0.067 0.304 0.455 0.567 0.700 0.851 0.961 1.103 1.222 
Error %  - -55.5 -0.6 -0.4 -0.4 -0.3 -0.3 -0.3 -0.2 -0.3 
ROM3  16 0.005 0.067 0.304 0.455 0.567 0.701 0.851 0.961 1.103 1.222 
Error %  - -55.9 -0.6 -0.4 -0.3 -0.3 -0.2 -0.2 -0.2 -0.2 
ROM3 18 0.005 0.068 0.304 0.455 0.567 0.701 0.851 0.961 1.103 1.222 
Error %    - -55.0 -0.6 -0.3 -0.3 -0.2 -0.2 -0.2 -0.2 -0.2 



 

 

4. RESULTS 

Based on the convergence and comparison demonstrated in this paper, ROM3 with 14 modes 
(DOFs) is employed in the analyses below. Table 3 and Figure 3 present the critical flutter 
pressure and LCO amplitudes, respectively, of VSCL plates where 𝑇𝑇0 and 𝑇𝑇1 are changing. The 
VSCL has fiber configuration like [45°+〈𝑇𝑇0,𝑇𝑇1〉, -45°-〈𝑇𝑇0,𝑇𝑇1〉,〈𝑇𝑇0,𝑇𝑇1〉,-〈𝑇𝑇0,𝑇𝑇1〉,90°+〈𝑇𝑇0,𝑇𝑇1〉,-90°-
〈𝑇𝑇0,𝑇𝑇1〉]sym and mechanical properties as defined in section 3.2. It is seen that increasing the fiber 
angle at the right edge, 𝑇𝑇1, from 0° to 45° increases the critical flutter pressure by around 1.2 
times. Contrary to the right edge, increasing the fiber angle at the left edge, 𝑇𝑇0, from 0° to 45° 
decreases the critical flutter pressure by around 0.7 times. 

Figure 3 displays amplitudes of LCOs against relative aerodynamic pressure, where the 
nonlinear flutter of the VSCL plates are analyzed. The relative aerodynamic pressure is 
calculated as λ λ𝑙𝑙⁄ , where λ𝑙𝑙 is the critical aerodynamic pressure. Based on this figure, hardening 
effect happens in all the VSCLs studied. By increasing the fiber angle at the left edge, 𝑇𝑇0, 
hardening effect intensifies and, therefore, a VSCL with larger 𝑇𝑇0 experiences less deflection. 
Figure 3b implies that the hardening effect does not change meaningfully with the fiber angle at 
the right edge, 𝑇𝑇1, especially when it is less than 30°. If the fiber angle at the right edge, 𝑇𝑇1, 
increases to 45°, hardening decreases and the VSCL plate experiences less LCO amplitudes. 

Table 3. Critical flutter pressure of VSCL plates against fiber angle at the left edge 𝑇𝑇0 and at the 
right edge 𝑇𝑇1. 

 
𝑇𝑇0=0°  𝑇𝑇1 

 0° 10° 20° 30° 45° 
λ  1304.9 1339.0 1392.1 1462.9 1588.2 

𝑇𝑇1=0°  𝑇𝑇0 

 0° 10° 20° 30° 45° 
λ  1304.9 1283.2 1206.2 1091.8 938.6 

 



a)  

b)  

 

Figure 3. LCO amplitudes W/h against different aerodynamic pressures λ, for VSCLs with 
various fiber angle parameters; a) change of 𝑇𝑇0 (𝑇𝑇1 = 0°), and b) change of 𝑇𝑇1 (𝑇𝑇0 = 0°). 

 

5. CONCLUSIONS 

Rectangular composite laminates with curvilinear fiber paths, defined as one type of VSCL 
plates, were studied in this paper. The curvilinear fiber orientation changed linearly from the left 
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edge to the right one. Nonlinear flutter of the studied VSCLs was investigated using full-order 
and reduced-order models. Full-order model obtained based on a third-order shear deformation 
theory coupled with p-version finite element method. Reduced-order models calculated on the 
basis of static condensation and modal summation techniques applied on the full-order model. It 
was shown that reduced-order model using both static condensation and modal summation 
method with at least 14 structural modes can predict the deflection results with an approximation 
less than 1 % with respect to the results by the full-order model. Finally, linear (critical) flutter 
pressure as well as LCO amplitudes of self-oscillation in nonlinear flutter of VSCL plates were 
analyzed against different fiber angle parameters. Also, it was shown that fiber angles in left or 
right edges of the plate have different effect on the aerodynamic properties of VSCL plates. 
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