Resumo

Neste trabalho estudou-se a sincronização de um sistema acoplado de duas equações do tipo Hodgkin-Huxley. Estas equações descrevem o comportamento elétrico de determinadas células nervosas. O sistema acoplado estudado é constituído por duas equações idênticas, com assimetria somente nas constantes de acoplamento, k_1 e k_2, e nos parâmetros de controle I_j, intensidade do estímulo elétrico.

A sincronização foi testada com base em dois critérios, um dos quais consistiu no estudo do comportamento de uma função, $w(t) = u(t) - v(t)$, função diferença entre as órbitas das duas células; e o outro envolveu a análise dos vários tipos de órbitas. Quando $w(t)$ estabilizou num valor, ou num intervalo, e as duas células apresentaram, no limite, o mesmo tipo de órbita, interpretou-se como havendo sincronização.

Pela análise dos dados numéricos, concluiu-se:
- não haver dependência da sincronização relativamente à variação das condições iniciais, u_0 e v_0, y_1 e z_1, das duas equações, para determinados valores de parâmetros.
- existir sincronização para valores das constantes de acoplamento cuja soma é superior a 0.02. O aumento dos valores destas constantes induziu intervalos maiores de sincronização entre as duas células.
- haver relação entre a sincronização e a variação da intensidade I, com efeito, quando I_1 e I_2 tiveram valores mais próximos, a velocidade de sincronização aumentou.

Foi, ainda, determinado o intervalo das órbitas periódicas do sistema acoplado, i.e., foram calculados os pontos de bifurcação de Hopf, para valores iguais das constantes de acoplamento. Estudou-se a variação desses pontos para constantes de acoplamento superiores e inferiores a zero, bem como para dois valores distintos da temperatura: $T = 6.3^\circ C$ e $T = 26.0^\circ C$. Concluiu-se que os pontos de bifurcação de Hopf se aproximaram quando se aumentou as constantes de acoplamento. E que os intervalos das órbitas periódicas tinham maior amplitude para valores de temperatura mais baixo. Esta análise envolveu, em pormenor, o estudo do sistema desacoplado, o cálculo dos seus pontos de bifurcação, valores próprios.
Abstract

In this work we studied the synchronization of coupled Hodgkin-Huxley equations. These equations describe the activity of certain nerve cells. The system studied has two similar equations with asymmetry in the coupling constants and in the control parameters I_j (intensity of the electrical stimulus).

Tests for synchronization followed two criteria: the first was the study of $w(t) = u(t) - v(t)$, the difference between the voltage of the two cells. The second criterion was the analysis of the different types of orbits. When $w(t)$ stabilized in a value or in an interval and the two cells had the same type of orbit (periodic or equilibrium point) this was interpreted as synchronization.

From the numerical study of solutions we concluded that:

- synchronization didn’t depend on choice of initial conditions of the two equations, for certain parameters values;

- synchronization was observed for some parameter values when $k_1 + k_2 \geq 0.02$. For larger coupling constants synchronization occurred for larger intervals in the stimulus intensity I_j;

- synchronization and the variation of electrical stimulus I_j were related. Values of I_1 and I_2 very similar induced an increase in the velocity of synchronization.

It was also determined the intervals for periodic orbits of the coupled system, by computing the points of Hopf bifurcation, for equal values of the two coupling constants. The dependence of these points on the coupling constants was studied both for positive and negative values and for two different temperatures: $T = 6.3^\circ C$ and $T = 26^\circ C$. The conclusion was that for larger values of the coupling constants, bifurcation points came together. The intervals of periodic orbits had bigger amplitude for the smaller value of the temperature. This analysis involved the detailed study of the decoupled system, its bifurcation points and eigenvalues.