
Lúıs Alexandre Cubal dos Reis

Multitarget Compilation Techniques for
Generating Efficient OpenCL Code from

Matrix-oriented Computations

Supervisor: João Manuel Paiva Cardoso

Doctoral Program in Computer Science
of the Universities of Minho, Aveiro and Porto

February, 2020

Abstract

Modern computer systems are often heterogeneous and parallel, featuring a mix of dif-
ferent compute units, including CPUs and GPUs. To achieve high performance, these
compute units must be properly used, so programmers are often required to develop
different program versions tuned for different target processors, written in low-level lan-
guages such as C or OpenCL. The process of tuning an existing C/OpenCL program
to a new target often involves considerable restructuring of the code. However, manu-
ally performing this task is time-consuming and requires significant programming and
computer architecture expertise. A possible approach is to have a single, high-level
description of a program, and generate custom implementations according to the tar-
get processor. Not only can some high-level languages provide to the compiler more
opportunities to generate optimized code (as implementation details are omitted from
the original code), but also many programs in fields such as engineering and science are
already initially written in these languages for modeling and prototyping, the MATLAB
programming language being a well-known example of this. This thesis proposes tech-
niques to generate efficient target-aware C and OpenCL code from high-level MATLAB
functions annotated with simple and concise directives. These techniques include a large
set of transformations to process MATLAB high-level idioms into efficient low-level code,
automatically parallelize sequential code, optimize memory accesses and transfers, and
adapt the generated code to a given target device. The proposed approach is validated
with a compiler prototype based on the MATISSE compiler framework and considering
a set of representative MATLAB benchmarks. One of the tested compiler techniques –
efficient use of Shared Virtual Memory – allows the compiler to achieve geometric mean
speedups on the generated code between 9% and 126%, depending on the target device,
over no usage, and between 9% and 80% over a naive use of the technique. Another com-
piler technique – the cooperative schedule – allows for more efficient code generation on
certain benchmarks (up to 38.8× faster). Furthermore, there are representative cases
in which the proposed compiler prototype is able to generate code that outperforms
manually written code.

i

ii

Resumo

Os sistemas de computadores modernos são geralmente heterogéneos e paralelos, tendo
uma combinação de várias unidades de computação diferentes, incluindo CPUs e GPUs.
Para alcançar um desempenho elevado, estas unidades devem ser usadas adequada-
mente, pelo que frequentemente é necessário, para um dado programa, desenvolver várias
versões adaptadas para cada processador-alvo, usando linguagens de programação de
baixo ńıvel como o C e o OpenCL. O processo de adaptar um programa C/OpenCL ex-
istente para um novo alvo geralmente envolve uma reestruturação significativa do código.
No entanto, fazer esta reestruturação manualmente é demorado e requer conhecimentos
avançados de programação e de arquitetura de computadores. Uma posśıvel abordagem
é ter uma única descrição de alto ńıvel de um programa e gerar implementações adap-
tadas para cada processador-alvo. Não só podem as linguagens de alto ńıvel fornecer
aos compiladores mais opções para gerar código otimizado (visto que detalhes de im-
plementação são omitidos do código original), como também é frequente programas em
áreas de engenharia e ciência serem inicialmente modelados e prototipados nestas lin-
guagens. Uma das principais linguagens usadas neste contexto é o MATLAB. Esta tese
propõe técnicas para gerar código C e OpenCL eficiente e adaptado, com base em funções
escritas numa linguagem de programação alto-ńıvel baseada em matrizes chamada MAT-
LAB, anotadas com diretivas simples e concisas. Estas técnicas incluem um conjunto
substancial de transformações que processam idiomas de alto-ńıvel do MATLAB para
código de baixo-ńıvel, automaticamente paralelizam código sequencial, otimizam aces-
sos e transferências de memória e adaptam o código gerado a cada dispositivo-alvo. A
abordagem proposta é validada com um protótipo de compilador baseado na infraestru-
tura de compilação MATISSE, tendo em conta um conjunto representativo de testes.
Uma das técnicas de compilação testadas – uso eficiente de Memória Virtual Partilhada
(Shared Virtual Memory) – permitiu ao compilador atingir melhorias de desempenho
no código gerado em média geométrica entre 9% e 126%, dependendo do dispositivo-
alvo, em relação a não utilizar memória partilhada, e entre 9% e 80%, em relação a
um uso ingénuo da técnica. Outra das nossas otimizações – o mapeamento colabora-
tivo de tarefas – permite uma geração de código mais eficiente em certos programas de
referência (até 38.8× mais rápido). Nos nossos testes, determinamos que o código ger-
ado pelo nosso protótipo de compilador tem melhor desempenho que o código OpenCL
equivalente escrito manualmente em testes representativos.

iii

iv

Acknowledgments

This thesis has been funded by the Fundação para a Ciência e a Tecnologia (FCT),
under the PhD grant PD/BD/105804/2014.

Furthermore, this work would not have been possible without the rest of the SPeCS
group of the Faculty of Engineering of the University of Porto. I give special emphasis to
João Manuel Paiva Cardoso, the advisor of this thesis, João Bispo, the original author
of MATISSE, and Ricardo Nobre, who I have worked with to determine how to optimize
GPU kernels.

I would also like to thank my family and friends for their support.

v

vi

Contents

1 Introduction 1

1.1 Context and Motivation . 2

1.2 Thesis Goals . 3

1.3 Contributions . 3

1.4 Outline of the Thesis . 4

2 Background 5

2.1 The MATLAB Programming Language 6

2.2 The Z3 SMT Solver . 10

2.3 Parallel Devices . 10

2.3.1 Multi-core CPUs . 10

2.3.2 Graphics Processing Units (GPUs) 11

2.4 OpenCL . 12

2.5 Target-aware Performance Characteristics 15

2.5.1 Memory Coalescing . 16

2.5.2 Local Memory . 17

2.5.3 Texture Memory . 18

2.5.4 Branch Divergence . 18

2.5.5 Vector Types . 19

2.5.6 Floating-Point Precision . 20

2.5.7 Work-group Size . 21

2.5.8 Shared Virtual Memory . 22

2.5.9 Overview . 22

2.6 Target-aware Optimizations . 22

2.6.1 Tiling . 22

2.6.2 Loop Unrolling . 23

2.6.3 Task Parallelism . 25

2.6.4 Thread-Coarsening . 25

2.6.5 Overview . 26

2.7 Summary . 26

vii

CONTENTS

3 Related Work 27

3.1 The MATISSE Compiler Framework . 28

3.2 MATLAB GPU APIs . 30

3.2.1 MathWorks Parallel Computing Toolbox 30

3.2.2 GPUmat . 31

3.3 Compiling MATLAB to Non-GPU Platforms 31

3.3.1 MathWorks Coder . 32

3.3.2 FALCON . 32

3.3.3 MC2FOR . 33

3.3.4 MIX10 . 33

3.3.5 MatJuice . 34

3.3.6 MATLAB to C Targeting Application Specific Instruction Set Pro-
cessors . 35

3.4 Compiling MATLAB to GPUs . 36

3.4.1 MATLAB Execution on GPU based Heterogeneous Architectures 36

3.4.2 Chun-Yu Shei et al.’s MATLAB to CUDA compiler 38

3.4.3 Chun-Yu Shei et al.’s MATLAB to GPUmat compiler 39

3.4.4 Velociraptor . 40

3.4.5 StencilPaC . 41

3.4.6 GPU Coder . 42

3.5 MATLAB Type Inference Strategies . 43

3.6 Summary . 44

4 Compiler Prototype Architecture 45

4.1 Programming Model . 46

4.1.1 Supported MATLAB Subset . 46

4.1.2 The Directive API . 47

4.1.3 Auxiliary LARA Files . 50

4.2 Compiler Phases and Intermediate Representations 50

4.2.1 Parsing MATLAB . 50

4.2.2 AST Transformation Passes . 52

4.2.3 Matrix-Based SSA IR – The Sequential Case 53

4.2.4 Type Inference . 56

4.2.5 SSA Transformation Passes . 59

4.2.6 Parallelization . 59

4.2.7 Code Generation . 62

4.2.8 Overview . 69

4.3 Compiler Validation . 69

4.4 Summary . 71

5 Optimizations 73

5.1 Loop Conversion Passes . 74

5.1.1 Element-wise Operation Elimination 74

5.1.2 Managing and Optimizing Loop Generation 76

5.2 Bounds-checking Elimination . 80

5.2.1 Scalar Solver . 81

5.2.2 Shape Solver . 81

5.3 Matrix Preallocation . 84

5.4 Pass By Reference . 86

viii

CONTENTS

5.5 Execution Schedules . 87
5.6 The Cooperative Schedule . 89

5.6.1 Motivation . 89
5.6.2 Description of the Optimization 90

5.7 Data Transfers . 93
5.8 Shared Virtual Memory Heuristics and Optimizations 94

5.8.1 Coalesced Access Heuristic . 95
5.8.2 Sequential Access Heuristic . 96

5.9 Summary . 97

6 Experimental Results 99
6.1 Experimental Setup . 100

6.1.1 Benchmarks . 100
6.1.2 Target Devices . 102

6.2 Impact of Temporary Matrix Elimination 103
6.3 Comparison of Sequential Versions of Disparity 106
6.4 Comparison with Previous MATISSE Backend 111
6.5 Analysis of Shared Virtual Memory (SVM) 113
6.6 Impact of Parallelization . 115
6.7 Comparison with Manually Coded OpenCL 118
6.8 Impact of Cooperative Schedule . 124
6.9 Alternative Schedules on AMD’s CPU Platform 129
6.10 Summary . 130

7 Conclusion 133
7.1 Final Remarks . 134
7.2 Future Work . 134

References 137

A Compiler Usage Manual 149
A.1 Basic Usage . 150
A.2 Building Applications and Libraries . 151
A.3 Custom Phase Orders . 152

B MATISSE SSA IR Instructions 155

C MATISSE Execution Schedules 159

D SSA IR Pass Execution 161
D.1 List of Passes . 162
D.2 Default Phase Order . 167

ix

CONTENTS

x

List of Figures

2.1 A MATLAB function that computes a matrix with a constant value X on
the diagonal. Note that most matrix allocation functions, such as eye,
allocate square matrices when given a single scalar argument. 6

2.2 Demonstration of a MATLAB operator (==) operating on whole matrices,
as opposed to scalars. 6

2.3 A MATLAB expression that computes a matrix with 1 in all positions of
the diagonal, and 0 in all other positions. 7

2.4 A MATLAB function demonstrating that determining whether an iden-
tifier is a variable or a function can be performed statically. 7

2.5 A vectorized version of the function in Figure 2.3. 8

2.6 Matrix indices in the column-major order starting at 1, as used by MAT-
LAB. 8

2.7 A MATLAB segment of code showing how to use the end keyword. . . . 8

2.8 MATLAB function declaration example. 9

2.9 Z3 program that computes whether two integers x and y can be defined
such that x > y + 1. 10

2.10 OpenCL kernel that adds two vectors. 12

2.11 C code to call the OpenCL kernel in Figure 2.10. Error detection and
resource cleanup have been omitted for brevity. 13

2.12 OpenCL program with various memory access patterns. 17

2.13 OpenCL example with possible branch divergence. 19

2.14 OpenCL example computing the sum of two vectors, using explicit vector
types. 20

2.15 OpenCL matrix multiplication algorithm demonstrating how to imple-
ment tiling to coalesce memory accesses. 24

2.16 Demonstration of OpenCL loop unroll hints. 25

3.1 LARA program that adds a printing message before every loop execution,
on functions with names starting with matmul. 28

3.2 Directive-annotated MATLAB program that, when compiled with MA-
TISSE CL V1, generates OpenCL code for element-wise matrix multipli-
cation. 29

3.3 Directive-annotated MATISSE CL V1 program with 2D parallelism. . . 29

xi

LIST OF FIGURES

3.4 MATLAB program that performs an element-wise multiplication opera-
tion on a GPU. 31

3.5 MATLAB program that performs an element-wise multiplication on the
CPU in parallel, using parfor. 31

3.6 MATLAB program that performs an element-wise multiplication on the
GPU using GPUmat. 32

3.7 Example of a GPU Coder function that computes the 100th power of a
matrix. 42

3.8 Example of GPU Coder program that blurs an image, by replacing each
pixel with the average of its 3× 3 grid. 43

4.1 MATLAB program demonstrating the use of the %!parallel directives. 49

4.2 Overview of the MATISSE compiler phases, including the C and OpenCL
backends. 51

4.3 Example of MATLAB element-wise expression and equivalent loop code. 52

4.4 MATISSE SSA code for the example in Figure 4.3a, before type inference
has been applied. The code at the right side indicates which parts of the
original MATLAB code generated the given SSA code, and is not part of
the SSA representation MATISSE uses. 54

4.5 SSA code for parallel region of function computing vector add, annotated
with information about loop-carried dependences. 60

4.6 MATLAB program with two mutually exclusive parallelization strategies. 62

4.7 MATLAB function showing a variable liveness hazard in a function call
instruction. 63

4.8 MATLAB code demonstrating variable liveness hazard in loop iterations. 64

4.9 Example of outputs-as-inputs, with a call to function eye(20, 20),
returning the result in a variable named out1. 66

4.10 C IR code for a function that computes the sum of all elements of an array. 67

4.11 C code generated from the C IR code in Figure 4.10. 68

4.12 Code generated from the C IR code of Figure 4.10 after the For Simplifier
clean-up pass. 68

4.13 MATISSE-generated OpenCL code for the code in Figure 4.1, when MA-
TISSE is configured to target a generic AMD GPU and use the direct
schedule. 70

5.1 Example of MATLAB element-wise operation and equivalent loop version. 75

5.2 Generated SSA code for the y = A + B assignment after element-wise
operation elimination. 75

5.3 MATLAB program that benefits from temporary matrix elimination. . . 76

5.4 MATLAB program that benefits from Standard Loop Fusion. 78

5.5 MATLAB function that benefits from Variable Nesting Loop Fusion.
Variable declarations were omitted for brevity. 79

5.6 Example of MATLAB code and generated Z3 assertions. 82

5.7 MATLAB program demonstrating the use case of dimsSince. The first
dimsSince is always N/A because it is the same as the numel. Values
starting with # represent values that have no corresponding SSA variable. 83

5.8 MATLAB program demonstrating the use case of the shape solver’s size
matrices. 83

xii

LIST OF FIGURES

5.9 SSA function illustrating the issues of computing size group information
instruction-by-instruction without backtracking. 84

5.10 MATLAB program using an explicit direct schedule. 87

5.11 Example of a kernel computation with serialized memory accesses. In
this example, each work-item accesses a column of data and computes its
sum, which is stored in a second buffer. 89

5.12 Naive matrix-vector multiplication algorithm in MATLAB. 90

5.13 Example of a MATLAB kernel that may benefit from a cooperative sched-
ule. This function corresponds to the operation shown in Figure 5.11. . 91

5.14 Simplified generated OpenCL for the code in Figure 5.13, using two dif-
ferent types of schedules. 92

5.15 Example demonstrating MATISSE’s naive data transfer insertion. . . . 93

6.1 Speedups for optimization techniques for temporary matrix elimination. 104

6.2 Memory usage of programs depending on loop combination optimizations,
relative to the version without combined loops. The non-normalized val-
ues are presented in Table 6.2. The lower the value, the more effective
the optimization(s). 105

6.3 Average execution times for various versions of the Disparity benchmark,
running on a desktop computer (system 1). 109

6.4 Average execution times for various versions of the Disparity benchmark,
running on an Odroid XU+E (system 4). 109

6.5 Example of MATISSE directive, used in the Monte Carlo Option Pricing
benchmark . 112

6.6 Speedups for the total execution time in comparison to MATISSE CL V1. 112

6.7 Fraction of time spent on each part of the code. 114

6.8 Analysis of the impact of Shared Virtual Memory (SVM) and target-
aware heuristics, on an integrated AMD GPU (system 1). The Y axis
uses a logarithmic scale. 115

6.9 Analysis of the impact of Shared Virtual Memory (SVM) and target-
aware heuristics, on an Intel CPU, with Intel’s CPU platform (system 2).
The Y axis uses a logarithmic scale. 116

6.10 Analysis of the impact of Shared Virtual Memory (SVM) and target-
aware heuristics, on an AMD R9 Nano GPU, with HBM memory (sys-
tem 2). The Y axis uses a logarithmic scale. 117

6.11 Speedups for the generated C/OpenCL versions, compared to the sequen-
tial automatically-generated C versions. The Y axis is in a logarithmic
scale. 117

6.12 Speedup of the MATISSE-generated parallel versions over the Poly-
bench/GPU OpenCL versions, running on a discrete GPU (system 1),
without using target-aware optimizations. The Y axis uses a logarithmic
scale. 121

6.13 Speedup of the MATISSE-generated parallel versions over the Poly-
bench/GPU OpenCL versions, running on an integrated GPU (system 1),
without using target-aware optimizations. The Y axis uses a logarithmic
scale. 122

xiii

LIST OF FIGURES

6.14 Impact of using target-aware specialization for MATISSE-generated code
(speedup of specialized over non-specialized), on an integrated GPU (sys-
tem 1), when both kernel and data transfer times are considered. The Y
axis uses a logarithmic scale. 123

6.15 Speedup of the MATISSE-generated parallel versions over the Poly-
bench/GPU OpenCL versions, running on an AMD CPU (system 1),
without using target-aware optimizations. The Y axis uses a logarithmic
scale. 124

6.16 Comparison of multiple versions of the cooperative schedule, on a discrete
AMD GPU running on system 1, in terms of speedups over the direct
schedule. 126

6.17 Comparison of multiple versions of the cooperative schedule, on an inte-
grated AMD GPU running on system 1, in terms of speedups over the
direct schedule. 127

6.18 Comparison of multiple versions of the cooperative schedule, on a discrete
NVIDIA GPU running on system 3, in terms of speedups over the direct
schedule. 128

6.19 Comparison of multiple versions of the ATAX benchmark, with inter-
leaved reductions, on multiple GPUs from systems 1 and 3, in terms of
speedups over the direct schedule. The proper versions use the direct
and cooperative schedules for the appropriate kernels, whereas the forced
versions use the cooperative schedules for both ATAX kernels. 128

6.20 Comparison of multiple versions and input sizes of the ATAX benchmark,
with interleaved reductions, on multiple GPUs from systems 1 and 3, in
terms of speedups over the direct schedule. 129

6.21 Speedup of using alternative schedules, relative to schedule(direct).
Only kernel times are considered. 131

A.1 MATISSE’s Graphical User Interface for editing setup files. 150
A.2 MATISSE function used to build a library that exports functions f and g.152
A.3 Example of a custom phase order. 153

xiv

List of Tables

2.1 CUDA concepts and equivalent OpenCL terminology. 16

2.2 Factors that impact performance and their applicability to CPU and GPU
devices. 22

3.1 List of MATISSE CL v1 directives . 30

3.2 List of benchmarks used to evaluate the FALCON compiler. 33

3.3 List of benchmarks used to evaluate the MC2FOR compiler. 34

3.4 List of benchmarks used to evaluate the MIX10 compiler. 35

3.5 List of benchmarks used to evaluate the MatJuice compiler. 36

3.6 List of bechmarks used to evaluate the MEGHA compiler. 38

3.7 List of bechmarks used to evaluate Chun-Yu Shei et al.’s MATLAB to
CUDA compiler. 39

3.8 List of bechmarks used to evaluate Chun-Yu Shei et al.’s MATLAB to
GPUmat compiler. 40

3.9 List of bechmarks used to evaluate Velociraptor with the McVM frontend. 41

3.10 List of bechmarks used to evaluate the StencilPaC compiler. 42

3.11 Overview of previous approaches that compile MATLAB to GPU lan-
guages/APIs. 44

4.1 Overview of the MATLAB subset supported by MATISSE 46

4.2 List of main MATISSE directives . 48

4.3 Order in which the type inference algorithm processes blocks, and results
of some of the types inferred at the end of those blocks, for the example
in Figure 4.4. 59

4.4 Overview of main languages and IRs used in MATISSE. 71

4.5 List of MATISSE compiler stages. 72

5.1 Example of how different schedules impact the number of work-items and
which tasks a work-item processes, if 10 tasks are available and the local
size is 2. FWG refers to Fixed Work-Groups. GR refers to Global Rotation. 88

5.2 Optimizations described in this section, and their applicability 97

6.1 Input sizes used for the benchmarks to measure the impact of temporary
matrix elimination. 103

xv

LIST OF TABLES

6.2 Allocated memory, memory accesses and estimated L1 cache misses for
the combinations of benchmarks and optimizations, on an ODROID
XU+E system, as measured by Valgrind. Two optimizations are
evaluated here: Loop Fusion and Direct Combined Element-Wise Loop
(DCEWL) optimization. The units Ki, Mi and Gi refer to 210, 220

and 230, respectively, as defined by the International Electrotechnical
Commission [IEC18]. 105

6.3 Metrics of various MATLAB versions of Disparity. 107
6.4 Metrics of various C versions of Disparity. 108
6.5 Vectorization of loops in various C code versions of Disparity. 110
6.6 Comparison of current version of MATISSE with generated version from

2016. 111
6.7 Comparison of size differences between the MATLAB benchmark ver-

sions for MATISSE CL V1 and MATISSE CL V2. Empty lines and
non-directive comments are excluded. 111

6.8 Lines of code (LoC) of the hand-coded C and MATISSE versions
of the Polybench/GPU benchmarks. NIO refers to the number of
%!no_index_overlap directives. 125

B.1 List of MATISSE SSA IR instructions and their semantics 156

C.1 Description of available MATISSE execution schedules. 160

D.1 Description of available MATISSE execution schedules. 162
D.2 Default Phase Order. 167

xvi

List of Algorithms

4.1 Overview of the type inference algorithm. Many instruction types, notably
related to control-flow, have been omitted for brevity. 57

4.2 Type inference algorithm to deal with for instructions. 58
4.3 Simplified algorithm to determine final name of generated C variables. . . 65

5.1 Simplified pseudo-code describing the algorithm for matrix preallocation. 85

xvii

LIST OF ALGORITHMS

xviii

Abbreviations

ALU Arithmetic Logic Unit
AMD Advanced Micro Devices
AOT Ahead-Of-Time
API Application Programming Interface
ASIP Application-Specific Instruction Processor
AST Abstract Syntax Tree
AVX Advanced Vector Extensions
BLAS Basic Linear Algebra Subprograms
CIR C Intermediate Representation
CPU Central Processing Unit
CSSA Conventional Static Single Assignment
CUDA Compute Unified Device Architecture
DSL Domain-Specific Language
FFI Foreign Function Interface
FPGA Field-Programmable Gate Array
GCN Graphics Core Next
GLSL OpenGL Shading Language
GNU GNU’s Not Unix!
GPU Graphics Processing Unit
HIP Heterogeneous-compute Interface for Portability
HLS High-Level Synthesis
HLSL High-Level Shading Language
ILP Instruction-Level Parallelism
IR Intermediate Representation
JIT Just-in-time
LoC Lines of code
MATISSE A MATrix(MATLAB)-aware compiler InfraStructure for embedded

computing SystEms
MATLAB Matrix Laboratory
MEGHA MATLAB Execution on GPU based Heterogenous Architecture
MPI Message Passing Interface
NaN Not a Number
NUMA Non-Uniform Memory Access

xix

Abbreviations

OpenCL Open Computing Language
OpenMP Open Multi-Processing
SIMD Single Instruction, Multiple Data
SIMT Single Instruction, Multiple Threads
SMT Satisfiability Modulo Theories
SoC Systems on a Chip
SPeCS Special-Purpose Computing Systems, languages and tools
SPIR Standard Portable Intermediate Representation
SSA Static Single Assignment
SVM Shared Virtual Memory

xx

1
Introduction

Contents

1.1 Context and Motivation . 2

1.2 Thesis Goals . 3

1.3 Contributions . 3

1.4 Outline of the Thesis . 4

1

Introduction

Modern computing systems, from smartphones to supercomputers, are increasingly het-
erogeneous, with a mix of Central Processing Units (CPUs), Graphics Processing Units
(GPUs) and occasionally other hardware accelerators. GPUs are now available on com-
mon embedded Systems on a Chip (SoC) [ARM19], while FPGA vendors are aiming for
the datacenter [Int19].

Taking advantage of the processing power of these systems remains challenging, as
programmers must deal with the different characteristics of each processing unit, and
often need to develop different program variations for each combination of processing
units using low-level languages such as C and OpenCL [Khr15].

As an alternative, high-level languages can be used to describe program specifica-
tions, without platform-specific optimizations, and use fully automated or user-guided
approaches to generate efficient customized implementations that target specific plat-
forms, such as GPUs. High-level languages are often considered inefficient, but the lack
of low-level implementation details also allows for a larger set of optimization strategies
to be applied. One of these high-level languages is MATLAB [Mat13a], a matrix-oriented
programming language that is widely used for scientific, engineering and financial mod-
els.

This thesis proposes techniques for the generation of efficient C and OpenCL code
from MATLAB models annotated with simple and concise directives. Additionally, the
proposed techniques are validated with a compiler prototype based on the MATISSE
compiler framework [BPN+13].

1.1 Context and Motivation

Processor technology has improved substantially over the last years and, with it, CPU
performance has improved as well. However, as far back as 2004, indications were that
”free” single-threaded performance gains (i.e., performance improvements that require
no program modifications) were over [Sut04]. In 2012, a page on Intel’s developer zone
confirmed this trend, mentioning that “No one expects a leap forward in processors’ core
execution engines, which are already at the edge of the manufacturing envelope.” [Int12]

Instead, to take advantage of modern CPUs, programs must divide their workloads
across multiple cores – units that execute simultaneously (i.e., in parallel). Individually,
each core may not be getting much faster, but with multicore CPUs, applications can
execute more work at the same time.

Still, pure CPUs computing is not always the best choice for optimal performance.
One of the most common alternatives is to use a combination of CPUs and GPUs, as
this approach can enable significant performance speedups (in some cases of more than
10× [NVI18a]). These hybrid systems containing multiple types of processors are known
as heterogeneous systems.

GPUs are also highly parallel processors, that require program modifications to be
properly used. In order to target GPU devices, programmers typically write code using
programming languages or APIs specifically designed for that purpose.

Low-level languages such as C and OpenCL [Khr15] can enable programmers to write
high-performance parallel applications. However, these languages tend to be difficult to
use compared to high-level languages, such as MATLAB. Moreover, the implementa-
tion details specified in C/OpenCL can be overly restrictive to target the particular
performance requirements of certain devices, so when porting programs to new devices,
they may perform worse unless portions of their code are rewritten to apply manual

2

Introduction

device-specific optimizations. In other words, low-level languages are not performance
portable.

In contrast, high-level languages are very expressive in terms of program semantics,
but express relatively few implementation concerns, giving optimizers ample space to
determine how to properly optimize the code.

MATLAB [Mat13a] is a high-level matrix oriented programming that is very flexible,
and widely used by domain specialists of multiple domains. Many algorithms are first
prototyped and validated in high-level languages, such as MATLAB, and later manually
rewritten in low-level languages for optimization. Doing so is costly and error-prone, so
automatic tools to perform this conversion are highly desirable.

This thesis demonstrates techniques to automatically generate C/OpenCL code from
MATLAB code, allowing MATLAB programmers to tap into the performance benefits of
these languages, while avoiding the overhead of the MATLAB runtime and enabling the
use of this language for heterogeneous computing. Furthermore, this thesis demonstrates
how high-level languages such as MATLAB can be used to facilitate the process of tuning
programs to specific devices and assist in achieving performance portability.

1.2 Thesis Goals

The goals of this thesis are to:

� Research and develop techniques to facilitate the development of parallel software
suitable for heterogeneous systems with GPUs;

� Research and develop target-aware techniques to optimize code for GPUs, based
on representative benchmarks;

� Demonstrate that the proposed techniques are feasible to implement by developing
a compiler prototype;

1.3 Contributions

The work of this thesis lead to the following contributions:

� A directive system for MATLAB that is easy to understand, simple to use, and
enables efficient but flexible OpenCL code generation (see Section 4.1.2);

� A set of optimizations to improve the performance of the generated C and OpenCL
code, notably in the form of usage of Shared Virtual Memory (SVM) and work
schedules (see Sections 5.8, 5.5 and 5.6);

� Techniques to determine when to apply those optimizations, based on static pro-
gram properties and the target device (see Sections 5.8, 5.6 and 6.9);

� A compiler prototype that integrates the proposed techniques and can be used to
develop and test new optimizations (see Section 4.2);

� Experimental results to evaluate the impact of the approaches proposed in this
thesis, using a set of representative benchmarks (see Chapter 6).

Our approach has been mostly designed/evaluated for multi-core CPUs and GPUs.

3

Introduction

1.4 Outline of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 describes relevant back-
ground necessary to understand the work presented in this thesis. Chapter 3 describes
work that is related to the subject of this thesis. Chapter 4 explains the compiler pro-
totype, namely the programming model it targets, the general internal structure of the
compiler, and how its correctness we validated. Chapter 5 describes the optimizations
that were studied/developed during the course of this thesis. Chapter 6 presents the
experimental methodology and results for validation and the evaluation of the proposed
optimizations. Finally, Chapter 7 presents concluding remarks and describes possible
future work.

4

2
Background

Contents

2.1 The MATLAB Programming Language 6

2.2 The Z3 SMT Solver . 10

2.3 Parallel Devices . 10

2.3.1 Multi-core CPUs . 10

2.3.2 Graphics Processing Units (GPUs) . 11

2.4 OpenCL . 12

2.5 Target-aware Performance Characteristics 15

2.5.1 Memory Coalescing . 16

2.5.2 Local Memory . 17

2.5.3 Texture Memory . 18

2.5.4 Branch Divergence . 18

2.5.5 Vector Types . 19

2.5.6 Floating-Point Precision . 20

2.5.7 Work-group Size . 21

2.5.8 Shared Virtual Memory . 22

2.5.9 Overview . 22

2.6 Target-aware Optimizations . 22

2.6.1 Tiling . 22

2.6.2 Loop Unrolling . 23

2.6.3 Task Parallelism . 25

2.6.4 Thread-Coarsening . 25

2.6.5 Overview . 26

2.7 Summary . 26

5

Background

This chapter briefly describes the programming languages, third part tools, and comput-
ing architectures that are relevant to this thesis, the performance concerns that have to
be addressed and optimizations that can be applied in order to achieve parallel program
performance, and some state-of-the-art optimizations.

2.1 The MATLAB Programming Language

MATLAB [Mat13a], an acronym for Matrix Laboratory [Mat14a], is a proprietary high-
level matrix-oriented programming language developed by MathWorks [Shu16a]. MAT-
LAB is used in a variety of fields, including engineering and science, for numeric compu-
tations, simulations, models and applications. Due to the wide adoption of MATLAB,
free software environments similar to MATLAB have been proposed. One example is
GNU Octave [Oct14a], which provides a programming language very similar to MAT-
LAB [Oct14b].

MATLAB was designed to operate on matrices, so all MATLAB variables are ma-
trices. Even scalars are matrices of size 1 × 1. MATLAB is dynamically typed, so the
type and number of dimensions of a variable can change during execution of the pro-
gram. Additionally, most operations in MATLAB, including operators and functions,
can operate on matrices of any size and various types, making MATLAB particularly
well suited for array programming.

Figure 2.1 shows a MATLAB function that, given two scalar inputs N and X,
computes a matrix of size N×N where all elements in the diagonal are double-precision
scalars of value X and all elements in other positions are scalars of value 0.

1 function A = diagX(N, X)

2 A = eye(N) * X;

3 end

Figure 2.1: A MATLAB function that computes a matrix with a constant value X on
the diagonal. Note that most matrix allocation functions, such as eye, allocate square
matrices when given a single scalar argument.

With the exception of && (logical and) and ||(logical or), all MATLAB operators
support matrices. For instance, A == B performs an element-wise comparison of the
elements of A and B, as seen in Figure 2.2.

1 eye(3) == zeros(3)

(a) A MATLAB expression that compares two matrices.

1 0 1 1

2 1 0 1

3 1 1 0

(b) The output of the comparison above.

Figure 2.2: Demonstration of a MATLAB operator (==) operating on whole matrices,
as opposed to scalars.

6

Background

MATLAB also supports conventional control-flow mechanisms, such as if, while
and for loops. MATLAB for loops are different from the ones seen in languages
such as C. Figure 2.3 shows how the MATLAB eye function could be implemented for
square matrices. At line 3 of this program, 1:N creates a matrix with a single row with
N scalars, ranging from 1 to N (in sequence). The loop then iterates over each column
of the matrix, which is assigned to i. Although this syntax is the closest to the most
common for loops in C, MATLAB does not require the expression of the loop to be a
range. Any matrix, including matrices with multiple rows, can be used. Line 4 shows
how to assign a value to a single position of the matrix. Note that it uses parenthesis
to access the matrix position, like function calls use for the list of arguments.

1 function y = manual_eye(N)

2 y = zeros(N); % Allocate NxN matrix with all elements initialized to

zero.

←↩

3 for i = 1:N

4 y(i, i) = 1;

5 end

6 end

Figure 2.3: A MATLAB expression that computes a matrix with 1 in all positions of
the diagonal, and 0 in all other positions.

Identifiers can refer to both variables and functions, so distinguishing matrix ac-
cesses from function calls can be difficult. Fortunately, MATLAB imposes an important
restriction on identifiers: in any given function, an identifier that may be used to re-
fer to a variable can not refer to a function. Figure 2.4 shows this principle. Even
when use_var is false, MATLAB determines that fft is a variable, not a function,
and refuses to call the fft function on line 8. Due to this restriction, it is possible to
distinguish between variables and functions using static analysis.

1 function y = dynfft(use_var, b)

2 if use_var,

3 fft = [1 2; 3 4];

4 end

5

6 % MATLAB error if use_var is false (Undefined function or variable "fft")

7 % even though 'fft' is an existent function.

8 y = fft(b);

9 end

Figure 2.4: A MATLAB function demonstrating that determining whether an identifier
is a variable or a function can be performed statically.

Note that using a loop-based, scalar-oriented code as seen in Figure 2.3 tends to be
significantly slower than the vectorized equivalent [Mat17b]. A vectorized version of the
function in Figure 2.3 is shown in Figure 2.5. Line 3 shows a vectorized matrix access,
where the value 1 is written to multiple positions of matrix y in a single line of code.
The expression 1:N+1:N*N outputs the indices to be written (all indices starting at 1,

7

Background

1 function y = manual_eye(N)

2 y = zeros(N); % Allocate NxN matrix

3 y(1:N+1:N*N) = 1;

4 end

Figure 2.5: A vectorized version of the function in Figure 2.3.

incremented by N+1 at a time, and ending at N2). Although y is a two-dimensional
matrix, it is possible to access its positions with a single index, in column-major order1.
Figure 2.6 demonstrates how this works.

Figure 2.6: Matrix indices in the column-major order starting at 1, as used by MATLAB.

When accessing matrix positions, it is possible to use indexes and ranges relative to
the size of the matrix. Figure 2.7 shows the use of the end keyword in line 2, which
refers to the index of the last valid value of a dimension. In this context, end is 9
because that is the size of the dimension it is in. In line 3, y(1, :) is equivalent to
y(1, 1:end).

1 y = zeros(10, 9);

2 A = y(1, 2:end-1);

3 B = y(1, :);

Figure 2.7: A MATLAB segment of code showing how to use the end keyword.

MATLAB single comments start with % and block comments are delimited by %{
and %}, though some restrictions apply. Block comments may be nested.

Figure 2.8 shows an example of a MATLAB function. Note that each MATLAB
function may receive zero or more inputs, and may produce zero or more outputs.
Although each MATLAB file may have one or more functions, only the first function
in each file may be called from other files. This function is expected to have the same
name as the file where it is declared2. The remaining functions in any file can only be
called by other functions in the same file.

Function arguments are passed by value (i.e., copied), meaning that changes to
matrix arguments within a function are not visible to the caller.

1In this particular case, the function would be identical if MATLAB used row-major order, because
the identity matrix is symmetric.

2If the names are not the same, MATLAB uses the name of the file as the name of the function, and
ignores the name in the function declaration.

8

Background

1 function [a, b] = test(c, d)

2 a = c;

3 b = d;

4 end

Figure 2.8: MATLAB function declaration example.

MATLAB also supports scripts, which are files without any user-defined functions
(i.e., with MATLAB statements inserted directly in the script).

In MATLAB, variables and functions/scripts may have the same name. Moreover,
there can be multiple functions with the same name (in different files). When MATLAB
writes to a variable, it creates a new variable with that name if one does not already
exist, regardless of any functions that may already have that name (see the discussion of
Figure 2.4). For reads, the MATLAB call syntax and the MATLAB array access syntax
are the same, with parenthesis being used to denote the arguments or indices. Even
when no parenthesis are used, the referenced name can still be a function call with an
empty argument list. When MATLAB encounters a name, it resolves in the following
(simplified) order:

1. If there exists a variable in the current function with that name, use that variable;

2. Otherwise, if there exists a function in the same file with that name, call that
function;

3. Otherwise, if there exists a MATLAB file with that name, call the main (first)
function of that file;

4. Finally, if there exists a built-in MATLAB function with that name, call that
function.

MATLAB’s greatest strength comes from the extensive and highly optimized set of
built-in functions for specific operations (such as efficient matrix operations) and its wide
range of ”Toolboxes”, which are libraries that extend MATLAB with domain-specific
functions and classes. MATLAB programmers can use these functions to focus on their
particular problems instead of having to implement the building blocks of a specific
domain first.

At the same time, MATLAB has two significant issues: performance and portability.
Poor performance of MATLAB programs can often be attributed to the use of inefficient
MATLAB idioms, such as the use of loop-based, scalar-oriented code, as previously
mentioned, or the incremental dynamic resizing of a data structure [Mat17a]. In these
cases, modifying the code to rely on more efficient idioms can substantially improve
performance. Additionally, program performance can be improved by converting the
MATLAB code to C using an automatic tool such as MATLAB Coder [Mat18e]. In
order to mitigate this performance issue, MATLAB has employed the use of JIT (Just-
in-time) compilation since version R13, released in 2002, and have since then improved
performance [Shu16b]. The problem of portability is the fact that MATLAB programs
require an appropriate environment to be installed in order to run, and many systems
are unsupported (e.g. only x86 processors are supported [Mat14b]). Once again, porting
the code to C using MATLAB Coder or another equivalent tool can mitigate this issue.

9

Background

2.2 The Z3 SMT Solver

Z3 [DMB08] is a Satisfiability Modulo Theories (SMT) prover developed by Microsoft
Research. Using Z3, programmers may define assertions (i.e., boolean expressions) and
Z3 checks whether those assertions are satisfiable, that is, whether there is a model (i.e.,
an example of values) that meets all restrictions defined in the assertions.

Z3 supports a programming language called SMT-LIB2 [The18], and also features
libraries for multiple programming languages, including Java. Figure 2.9 shows an ex-
ample of a Z3 program written with SMT-LIB2 syntax. Lines 1 and 2 define two values
x and y that are integers (in the mathematical sense, not limited to any specific ranges).
Line 3 adds the assertion that x > y+1, meaning that any valid model must respect that
restriction. Line 4 instructs Z3 to check whether the given assertions can be satisfied.
The check-sat operation has three possible outcomes: satisfiable (there is at least
one valid model), unsatisfiable (there is no possible valid model), or unknown (Z3 was
unable to determine whether any valid models exist).

1 (declare-const x Int)

2 (declare-const y Int)

3 (assert (> x (+ y 1)))

4 (check-sat)

Figure 2.9: Z3 program that computes whether two integers x and y can be defined such
that x > y + 1.

Z3 also supports other use-cases, such as optimizing certain formulas (e.g., mini-
mization of an expression), but these features are not used by MATISSE, so we do not
discuss them in this thesis.

2.3 Parallel Devices

Modern software requires parallel programming in order to achieve high performance,
as improvements in sequential execution have slowed down due to thermal, power and
current leakage issues [Sut04].

There are multiple types of parallel processors. This section describes the ones that
are targeted in this thesis.

2.3.1 Multi-core CPUs

Modern CPUs support multiple forms of parallel processing, including multi-threaded
execution and support for Single Instruction Multiple Data (SIMD) instructions [Int17a].

CPU parallel programming is typically based on the concept of threads. Multiple
threads execute parts of a program simultaneously in CPU cores. Each thread has its
own execution state (including a program counter and a stack) and can generally run
independently of other threads – multiple ones can even co-exist as part of different
processes. In some modern processors, each physical core can execute more than one
thread to improve throughput [Int17c].

Multi-threaded programming enables higher performance, though at a cost. For
instance, some CPUs are unable to reach their maximum supported clock frequencies

10

Background

when running multiple cores simultaneously [Int17d].
Another approach for parallelism is the use of SIMD instructions, such as Intel

AVX [Lom11] or ARM Neon [ARM17b]. SIMD instructions allow performing the same
operation (such as addition or multiplication) to multiple pieces of data in a single in-
struction, while still preserving the sequential nature of program execution. Some SIMD
instructions also cause the processor to run at lower clock frequencies. For instance, In-
tel notes that on the Intel Xeon E5-2600 v3, vector instructions at least 128 bit wide
require additional voltage, which may reduce clock frequency, but even so recommends
AVX/AVX2 as they consider that the benefits “far outweigh the issues due to drop in
core frequency” [Kar14].

Note that multi-threading and SIMD instructions are not mutually exclusive. A
combination of both can be used for optimal performance.

2.3.2 Graphics Processing Units (GPUs)

Graphics Processing Units (GPUs) are processors designed for massively parallelizable
tasks. GPUs are used in heterogeneous systems, where compute-intensive portions of
the code are offloaded to these devices, while the remaining sections execute on the
CPU [NVI17b].

Different GPUs have different architectures, but some of the more common GPUs
are NVIDIA with its Single Instruction Multiple Thread (SIMT) model [NVI17d, Sec-
tion 4.1]. Whereas CPUs generally feature cores in the single or low double digits, these
GPUs can include thousands of smaller, individually slower, units capable of executing
threads. NVIDIA’s GPUs manage groups of 32 threads called warps. Threads in the
same warp can branch independently, but each warp can only execute one instruction at
a time (see Subsection 2.5.4). Warps, in turn, are grouped in blocks (equivalent to the
concept of work-groups in OpenCL), which are distributed by multiple Compute Units
(the closest equivalent to the CPU concept of core).

AMD Graphics Core Next (GCN) [Adv18] and ARM Bifrost GPU [Har18] architec-
tures are similar. Threads are also grouped in wavefronts of 64 threads [Adv15, Sec-
tion 1.5] or quads of 4 threads [ARM17a, Section 9.6], respectively, in which threads of
the same group can branch independently, but only one path can be executed at a time.

To improve performance, many GPUs have different memory spaces, with different
characteristics. For instance, NVIDIA describes the following memory regions usable on
their GPUs, among others:

� Global memory is shared by the entire GPU device (but it is distinct across dif-
ferent GPUs) and can be accessed by any running thread, as well as the host
CPU.

� Constant memory resides in the constant memory space and can not be modified.
It can be accessed by any running thread, as well as the host CPU.

� Shared memory resides in a memory that is private to each block and, as such,
can only be accessed by threads within that block.

� Register memory is private to each thread and accessing it consumes zero extra
clock cycles per instruction [NVI17a, Section 9.2.6].

� Local memory resides in the same memory location as global memory, but it is
accessible only by the thread that declared the variable/buffer. Local memory is

11

Background

used for thread-private data that can not be placed in register memory (e.g., due
to register spilling);

Also of note is managed memory, that can be referenced by both the device and the
host CPU and is automatically migrated as needed. It is used in the context of unified
memory [Har13].

Traditionally, GPU programming was done by mapping computations to graphics op-
erations or using shader languages [ND10, p. 58] such as HLSL [Mic14], GLSL [KBR14]
or Cg [NVI12]. As these languages were not specifically designed for GPU programming,
new languages were developed to simplify this use-case, notably CUDA [NVI14b] and
OpenCL (see Section 2.4).

2.4 OpenCL

OpenCL [Khr15], Open Computing Language, is a royalty-free standard developed and
maintained by Khronos and originally proposed by Apple [The08]. OpenCL features
an API and a C-like language for general-purpose parallel programming across multiple
types of processors, including CPUs, GPUs [NVI17c,Adv17] and FPGAs [Int17b,Xil17].

Figure 2.10 shows a simple program written in OpenCL that adds two vectors. The
first line declares the function, named float_add, with three arguments - all global
memory pointers. When a kernel is called, the programmer indicates the number of
times it should be executed. The kernel can see the index of its execution using the
get_global_id function, as seen in line 2. In this example, the result is computed
and stored in line 4.

1 kernel void float_add(global float* buffer1, global float* buffer2, global

float* result) {

←↩

2 size_t index = get_global_id(0);

3

4 result[index] = buffer1[index] + buffer2[index];

5 }

Figure 2.10: OpenCL kernel that adds two vectors.

Figure 2.11 shows the C code of a program that uses the OpenCL API. This example
is used throughout this section.

Using OpenCL, an application running on the host (the CPU) executes programs
on one or more devices (e.g., multi-core CPUs and GPUs). Devices are grouped in
platforms, which typically correspond to OpenCL implementations. Multiple platforms
can share some or all devices. In the example, line 22 is used to get an OpenCL platform,
and line 23 is used to get a device from a platform.

Programs include sets of kernels, which are functions that can be executed on
OpenCL devices. Additionally, they may also contain auxiliary functions that are used
by kernels. Programs can be built from source code files, as shown in line 31, or from
binary formats, such as SPIR-V [The17], not shown in this example. Line 33 obtains a
specific kernel from the program.

OpenCL applications submit commands to a device’s command queue. The device
may either execute the commands in-order (the commands are executed in the order

12

Background

1 #include <CL/cl.h>

2 #include <string.h>

3 #define ELEMENTS 1024

4

5 int main() {

6 cl_platform_id platform;

7 cl_device_id device;

8 float buffer[ELEMENTS];

9 cl_mem buffer1_gpu;

10 cl_mem buffer2_gpu;

11 cl_mem bufferres_gpu;

12 const char* program_src = ...

13 int src_length = strlen(program_src);

14 int global_size = ELEMENTS;

15

16 clGetPlatformIDs(1, &platform, NULL);

17 clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

18 cl_context context = clCreateContext(NULL, 1, &device, NULL, NULL,

NULL);

←↩

19 cl_command_queue queue = clCreateCommandQueue(context, device, 0, NULL);

20

21 buffer1_gpu = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(buffer), buffer, NULL);

←↩

22 ...

23 bufferres_gpu = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(buffer), NULL, NULL);

←↩

24 // buffer assignment omitted

25

26 cl_program program = clCreateProgramWithSource(context, 1, &program_src,

&src_length, NULL);

←↩

27 clBuildProgram(program, 1, &device, "", NULL, NULL);

28 cl_kernel kernel = clCreateKernel(program, "float_add", NULL);

29

30 clSetKernelArg(kernel, 0, sizeof(cl_mem), buffer1_gpu);

31 ...

32 clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global_size, NULL, 0,

NULL, NULL);

←↩

33

34 clEnqueueReadBuffer(queue, bufferres_gpu, CL_TRUE, 0, sizeof(buffer),

buffer, 0, NULL, NULL);

←↩

35

36 // Result is in the variable named 'buffer'

37 return 0;

38 }

Figure 2.11: C code to call the OpenCL kernel in Figure 2.10. Error detection and
resource cleanup have been omitted for brevity.

13

Background

they were submitted to the command-queue) or out-of-order (each command must wait
for a set of events, called a wait-list, that is explicitly specified by the programmer). In
this example, line 25 creates a command-queue in in-order mode. Several other API
calls use this command queue.

OpenCL performance gains are due to the exploited parallelism. The primary form
of parallelism for OpenCL is data parallelism. In this model, performance gains are
obtained by performing multiple executions of a kernel at the same time. In this case,
performance gains come from applying the same operation to large chunks of data si-
multaneously. OpenCL supports this model using the clEnqueueNDRange function,
as seen in Line 38.

Each device has one or more compute units. Each simultaneous kernel execution is
a work-item. Each work-group, consisting of one or more work-items, is executed on a
single compute unit. The sizes of work-items and work-groups can be specified across
multiple dimensions as the range. When launching OpenCL kernels, programmers spec-
ify 2 sizes: the global_size (the total number of work-items) and the local_size
(the number of work-items per work-group). The local size may be NULL, in which case
the OpenCL driver automatically determines which value to use. Each kernel execution
has access to the execution ID in a work-group (local ID) or across all work-groups
(global ID) on any given dimension. Additionally, it is possible to obtain the ID of the
work-group itself (group ID). In this example, the global size is defined in a variable
that is used in line 38. The local size is not explicitly defined, so the driver automati-
cally chooses its value. OpenCL kernels can be organized in multiple dimensions. For
instance, to execute 16 work-items, a programmer may specify a global size of (16), (2,
8), (4, 4, 1) or others.

Some OpenCL kernels may rely on specific local sizes to execute correctly. When
this is the case, the kernel attribute reqd__group_size [Khr16, p. 48] can be used.
If any value is passed to the kernel enqueue API call other than the one specified in the
attribute, OpenCL refuses to execute the kernel and return an error code.

Starting in OpenCL 2.1 (or OpenCL 2.0 with the cl_khr_subgroups extension),
work-groups are further divided into sub-groups, consisting of an implementation-defined
number of work-items [Khr15, p. 22].

Synchronization mechanisms during kernel execution in OpenCL are very limited.
It is possible to force kernels to wait for other kernels in the same work-group to reach
a certain point of execution before proceeding using barriers. However, mechanisms to
synchronize kernels in different work-groups are very limited (practically non-existent).

OpenCL defines 4 distinct memory regions for devices: private, local, constant and
global [Khr15, p. 38]. Private memory is accessible only by a given work-item and must
not be accessed by other work-items, as each work-item has its own private memory.
Local memory is accessible only by work-items on a given work-group and is not visible
by other work-groups, as each work-group has its own local memory. Constant memory is
initialized by the host and remains constant during the kernel execution. Global memory
is accessible to all work-items on all work-groups. It can also be read or modified by
the host, through commands on a command-queue. Line 27 shows how global memory
allocation is performed, and line 40 copies a buffer back to the host. In addition to this,
OpenCL has image objects, which can be used to access data in textures [Khr15, p. 128].

Work-items reading local or global memory are not guaranteed to get the most recent
value if it has been modified by other work-items, although memory writes are immedi-
ately visible on the work-item they occurred in. It is possible to ensure work-items read
the most recent version of memory using memory fences, which can be specified as part

14

Background

of the barrier function (renamed to work_group_barrier in OpenCL 2.0, though
the old name is still supported) or using the separate mem_fence function (which seems
to have been removed in OpenCL 2.0). A local memory fence ensures that work-items
local memory reads provide the correct value if it was not modified since the memory
fence. Global memory fences do the same for global memory.

Since version 2.0, OpenCL supports Shared Virtual Memory (SVM) [Sof14]. This
feature provides a single address space for the host and the devices (as global memory).
Some of the use-cases for SVM include reusing the same data structures (including
pointers) for both host and device and avoiding the need for explicit data transfers. The
OpenCL specification only requires support for coarse-grained buffers [Khr15, p. 174],
in which buffers are allocated with clSVMAlloc and the host can only update memory
that has been explicitly mapped to the host (e.g., with clEnqueueSVMMap). How-
ever, OpenCL implementations can optionally implement fine-grained sharing as well,
in which memory can be read and modified by both the host and the device without the
need for any mapping operations. Note that for the host and the device to concurrently
update the same locations, atomic operations must be used, and support for atomics is
not required by the standard. OpenCL further distinguishes between fine-grained buffer
SVM and fine-grained system SVM. With fine-grained buffers, OpenCL kernels can only
use SVM memory that has been allocated with clSVMAlloc, whereas with fine-grained
system SVM any host memory can be used in the device, without requiring any specific
allocation function.

OpenCL includes a built-in profiler [The09] that can be optionally enabled by the
programmer when any command queue is created. Any OpenCL command that is asso-
ciated with an event can be profiled so that its impact on the application performance
can be measured.

One of the most widely used programming languages for GPGPU computing is
NVIDIA’s CUDA [NVI14b]. Since many GPGPU programmers are familiar with CUDA
terminology, this thesis includes Table 2.1, which shows a list of CUDA and OpenCL
terms, and how they relate to each other. Most CUDA concepts have an OpenCL
equivalent and vice-versa. This happens because OpenCL and CUDA have very sim-
ilar programming models. Note that local memory has a different meaning in CUDA
and OpenCL. In CUDA, it refers to memory that is private to each thread/work-item,
whereas OpenCL local memory refers to memory that is private to each block/work-
group.

2.5 Target-aware Performance Characteristics

When targeting accelerator devices, there are a number of considerations that can sig-
nificantly impact the performance of programs. These are generally addressed by pro-
grammers, but several of these concerns could be automatically optimized by compilers.

This section describes several of these issues, the devices they are relevant to, as well
as their cause and impact.

3The size of a sub-group is implementation-defined, whereas warps always consist of 32 threads.
Sub-groups are only part of OpenCL core since OpenCL 2.1. AMD refers to their equivalent in GCN
GPUs as wavefronts [Adv12, p. 1-2].

4Used for arrays that are indexed with non-constant values and for register spilling [NVI17d, Sec-
tion 5.3.2]. Resides in device memory.

5In CUDA, textures are always read-only, whereas in OpenCL read/write and write-only textures
exist.

15

Background

Table 2.1: CUDA concepts and equivalent OpenCL terminology.

CUDA OpenCL

Thread Work-item
Warp Sub-group3

Block Work-group
Grid N/A
Grid size Global size
Thread Index Local ID
Block Index Group ID
blockIdx * blockDim + threadIdx Global ID
Global memory (__device__) Global memory
Shared memory Local memory
Constant memory Constant memory
Local memory4 Private memory
Texture/Surface memory5 Texture memory
Unified Memory (CUDA 6) Fine-grained buffer SVM

2.5.1 Memory Coalescing

Memory coalescing refers to the property of devices (e.g., GPUs) to combine multiple
global memory accesses into fewer operations. NVIDIA describes memory coalescing
as “perhaps the single most important performance consideration in programming for
CUDA-capable GPU architectures” [NVI17a, Section 9.2.1].

On NVIDIA GPUs, memory coalescing occurs at the level of the warp. Starting
with devices with compute capability 2.x6, memory accesses to the same cache line by
threads in the same warp result in a single combined memory access. In contrast, when
threads in a warp access memory positions in different cache lines, each accessed line
requires its own memory access. Older NVIDIA GPUs have stricter requirements for
memory coalescing. As there are 32 threads per warp, non-coalesced accesses can cause
up to 32× more access operations than the coalesced equivalent.

Figure 2.12 shows an OpenCL kernel with three different access patterns. On current
NVIDIA GPUs, the L1 cache has a line size of 128 bytes. As each single-precision float
has a size of 4 bytes, each cache line has 128

4 = 32 elements. Therefore, if the L1
is enabled, a single memory operation can store the entire data of buffer1 for each
warp. As for buffer2, due to the stride, different threads of the same warp are accessing
elements in 2 cache lines, so twice as many memory operations are required to store the
data of buffer2. The buffer3 variable is accessed with a stride of 32, so each thread
is accessing a different cache line. This is the worst-case scenario for memory coalescing
of floats, as each warp accesses its own cache line, so the memory accesses are serialized.

Note that an access of stride 1 (similar to buffer1) can still require data from more
than one L1 cache line. An example of this can happen for double-precision buffers, as
each value takes 8 bytes and, therefore, each cache line contains only 128

8 = 16 elements.
In this case, two L1 cache lines are used.

Similarly, on Intel GPUs, global memory accesses to the same L3 cache line are
combined into a single memory operation [Int15].

6NVIDIA uses the term Compute Capability to indicate the available features of each GPU [NVI14a].
Compute Capability 2.0 was introduced with the Fermi GPU architecture, in 2010.

16

Background

1 kernel void coalesced_access(global float* buffer1, global float* buffer2,

global float* buffer3)

←↩

2 {

3 int index = get_global_id(0);

4

5 buffer1[index] = 0;

6 buffer2[index * 2] = 0;

7 buffer3[index * 32] = 0;

8 }

Figure 2.12: OpenCL program with various memory access patterns.

AMD GPUs can also coalesce memory accesses, albeit somewhat differently. For
instance, on AMD’s Southern Islands architecture, memory reads of 64-bit data types
are not coalesced [Adv15, p. 2-33] and neither are memory writes [Adv15, p. 2-8].

2.5.2 Local Memory

The use of local memory (shared memory in CUDA terminology) can lead to perfor-
mance improvements on some devices. GPUs typically have more than one type of
memory, with different memory access times. On many of these devices, local memory
is substantially faster than global memory. Note, however, that some GPUs do not have
local memory (e.g., ARM’s Mali [ARM17a, Section 7.3.2]).

On AMD GCN [Adv15, p. 2-9] and NVIDIA [NVI17a, Section 9.2.2.1] GPUs, local
memory accesses have significantly more bandwidth than global memory. On Intel
GPUs, local memory is allocated from the L3 cache [Int15].

However, the profitability of using local memory on GPUs depends on various factors.
For instance, on NVIDIA [NVI17a, Section 9.2.2.1], AMD GCN [Adv15, p. 2-9] and
Intel [Int15] GPUs, shared/local memory is organized on memory modules called banks
and each access is processed through these banks. Broadly speaking, when multiple
work-items in the same group of threads (a warp, in NVIDIA’s case) attempt to access
local memory in the same bank, the accesses are serialized.

Several authors have studied the impact of local memory on kernel performance.
For instance, Brodtkorb et al. [BHS13] recommend always using the fastest available
memory when attempting to optimize memory-bound programs. Intuitively they advise
that data should be kept preferably in registers, followed by the local memory when that
is not possible and finally the global memory. In contrast, Fang et al. [FSV14] argue
that the profitability of local memory can sometimes be counter-intuitive, with three
examples:

� Reusing data within a work group is not sufficient for local memory to be profitable,
since GPUs have caches that do not have the data transfer overhead associated
with local memory. Therefore, global memory may be faster than local memory.

� Additionally, even kernels that do not have data reuse might benefit from local
memory. For instance, loading global memory data to local memory could change
the global memory access order and enable memory coalescing, thus improving
the performance.

17

Background

� Finally, the fact that local memory is allocated in the main memory of CPU
implementations suggests that it should not be used on those systems. However,
in some cases, local memory can still be profitable due to better cache usage and
specialized optimizations.

Finally, Shen et al. [SFSV13] studied the impact of local memory on CPU imple-
mentations of OpenCL, but concluded that it causes slowdowns. They explain that the
use of local memory implies copying data from the global memory to the local memory
and the addition of a memory barrier, which are both expensive operations.

2.5.3 Texture Memory

Texture memory [NVI17d, Section 3.2.11.1] is an alternative method to store/access
data. Although on certain devices (e.g., NVIDIA GPUs [NVI17a, Section 5.3.2]) textures
reside in the same off-chip memory as global memory, texture memory can still exhibit
better performance due to differences in caching behavior. For instance, on NVIDIA
GPUs, the texture cache is optimized for 2D locality. Additionally, operations to access
textures can include clamping, filtering and normalization.

Du et al. [DWL+12] measured the impact of using texture memory. In the case of
OpenCL, copying data to texture memory and using the textures from the kernel can
lead to performance improvements. Although they did not test texture memory for the
SGEMM algorithm, they did observe a large performance improvement on the DGEMM
algorithm. One problem with using texture memory in OpenCL is that it is necessary
to copy the data if it is not already in texture memory, which may imply noticeable
overhead. In contrast, CUDA programs can map 1D textures to buffers, avoiding this
overhead in some cases.

According to Brodtkorb et al. [BHS13], the use of texture memory can improve
performance but only in rare cases, as the L1 cache is still faster than the texture
memory subsystem.

2.5.4 Branch Divergence

Branch divergence [NVI18b, Section 9.5], or control-flow divergence, is a performance
issue that arises on some devices (notably GPUs), when two work-items in the same
warp/wavefront have divergent behavior in control flow instructions. This can happen
on if statements (when some work-items enter the if while others enter the else case
or skip to the end of the statement), switch statements (when different work-items
enter different cases) and loops (if the number of iterations is not the same for all
work-items). In some cases, divergent control-flow can impact performance so negatively
that offloading computations to the GPU is no longer profitable [Adv15, Section 3.7.1].

Figure 2.13 shows an OpenCL kernel where divergent control-flow may occur. If
some values in the in buffer are positive and others are not, then only some work-
items will enter the if statement. In this case, it is not possible to statically determine
whether the control-flow is divergent. For instance, it is possible that all elements in the
in buffer are positive, in which case there is no divergence.

On NVIDIA pre-Volta [NVI17a, Section 12.1] and AMD AMD GCN [Adv15, Sec-
tion 1.5] GPUs, however, work-items in the same warp/wavefront share the same pro-
gram counter, so if some work-items enter the if statement, the work-items that do
not have to wait until the execution of the if is over. Similarly, the time to execute
a loop depends on the maximum number of iterations a thread in the warp/wavefront

18

Background

1 kernel void foo(global float* in, global float* out) {

2 int index = get_global_id(0);

3 if (in[index] > 0) {

4 out[index] += 1;

5 }

6 }

Figure 2.13: OpenCL example with possible branch divergence.

executes. In NVIDIA Volta [DGHS17], each work-item has its own program counter,
but each warp can still only execute code from one branch case at a time, so divergence
is still an issue.

Branch divergence is strongly connected to the concept of data divergence, in which
the same variable or expression has different values for different threads in the same warp.
In the example in Figure 2.13, index and possibly in[index] are divergent, while in
and out are not. Data divergence can not always be determined at compile-time (e.g.,
in[index] is not data divergent if all elements of in have the same value), but static
analysis can still be used to some extent. For instance, Sampaio et al. [SSCP14] use
static divergence analysis to improve a register spiller for GPUs and achieve speedups
of 26.21%.

CPU architectures are generally not based on the concept of warp, so divergent
control-flow should not be an issue. However, Shen et al. [SFSV13] measured the im-
pact of branches that depend on the work-item ID (and therefore can diverge) on the
Intel CPU implementation of OpenCL and found that they can negatively impact per-
formance. Specifically, they studied the interactions between Intel’s auto-vectorization
feature (see Subsection 2.5.5) and divergent branches. When the compiler is unable to
determine that all work-items in a thread will enter the same regions, it must mask
the SIMD operations to ensure correctness. They conclude that the presence of these
branches can cause the auto-vectorized version to perform worse than the version with-
out auto-vectorization.

2.5.5 Vector Types

OpenCL [Khr16, Section 6.1.2] and CUDA [NVI17a, Section B.3] both includes built-
in vector types and operations. Using vectors, programmers can perform the same
computation on multiple values in a single operation.

Figure 2.14 shows an OpenCL program that adds two vectors using explicit vector
types. On certain devices, such as CPUs, the vector instructions are compiled to SIMD
instructions. AMD recommends using vector types to more efficiently use the vector
Arithmetic Logic Units (ALUs) of CPUs [Adv15, p. 1-28].

However, explicitly using vector types does not guarantee performance improve-
ments. Intel’s OpenCL compiler features an optional auto-vectorizer optimization, which
packs multiple work-items (the number of work-items depends on the width of the SIMD
unit) into a single thread with SIMD operations. According to Shen et al. [SFSV13], this
feature leads to speedups of 2 times in comparison to the version without the automatic
vectorization running on the same devices. The auto-vectorizer does not always lead
to speedups, though. The authors note that for a K-means benchmark without swap-
ping, the vectorized version takes twice as much time as the non-vectorized version.

19

Background

1 kernel void vectoradd_vec4(global float8* out, global float8* a, global

float8* b) {

←↩

2 int index = get_global_id(0);

3 out[index] = a[index] + b[index];

4 }

Figure 2.14: OpenCL example computing the sum of two vectors, using explicit vector
types.

This means that the potential for performance improvements for the auto-vectorizer
depends on the order of the memory accesses. The swapped version performed better
than the non-swapped version because the former had a row-major access order and
the later had a column-major order. Auto-vectorization also caused slowdowns in the
PathFinder benchmark [MS09]. Unsurprisingly, the authors recommend turning on and
off auto-vectorization and measuring which version performs best. Manual vectoriza-
tion is in many cases an option to consider. However, Intel advises against manually
vectorizing kernels on the Xeon Phi [Int14].

Pennycook et al. [PHW+13] acknowledge that vector data types can help with op-
timization, but downplay this due to the existence of Intel’s auto-vectorizer and the
fact that AMD is capable of generating quality code for its VLIW architectures. The
authors expect auto-vectorization to further improve in the future, and as such do not
consider vector types to be very important. However, they note that Intel’s OpenCL
implementation is unable to auto-vectorize their kernels.

On AMD GPUs, vectorization is generally not desired [Adv15, Section 2.9] and
may negatively impact performance. For instance, reads to 64-bit data types are not
coalesced.

However, on some GPUs, vector types can still lead to performance improvements.
For instance, Luitjens [Lui17] notes that on NVIDIA GPUs vectorizing memory accesses
can lead to improved memory read bandwidth.

According to ARM, on Bifrost GPUs, vector types for 8-bit and 16-bit types should
be used, but scalars should be used for larger data types [ARM17a, Section 9.6]. Sim-
ilarly, on some NVIDIA GPUs, such as Tesla P100, using vector types can double the
throughput on half-precision arithmetic [Har16].

2.5.6 Floating-Point Precision

Some programs that rely on floating-point operations can tolerate inaccuracies by a
certain margin of error. In these cases, programmers may trade accuracy for perfor-
mance [BHS13].

One form of improving performance by reducing accuracy is by using floating-point
data types with less precision, such as single-precision or half-precision floating-point
types instead of double-precision types. There are multiple reasons for the performance
differences between different floating-point data types across devices:

� Certain GPUs do not coalesce memory reads to 64-bit data types, such as dou-
ble [Adv15, p. 2-33], which can significantly impact performance (see Subsec-
tion 2.5.1).

20

Background

� Smaller data types use less memory, and as such more data of smaller types can
be simultaneously loaded with the same memory bandwidth [Har15].

� Some instructions have higher throughput when lower precision types are used.
For instance, on an NVIDIA Tesla P100, half-precision arithmetic has twice the
throughput of single-precision arithmetic [Har16].

� Some GPUs are capable of computing fewer double- or half-precision operations
per clock cycle than single-precision ones. For instance, some GPUs can perform
128 32-bit floating-point add operations per cycle per multiprocessor7, but only 4
for double-precision and 2 for half-precision [NVI17d, Section 5.4.1].

� Operations with half-precision floats are more likely to result in subnormal num-
bers [Har16].

Note that support for double- and half-precision floating-point types [Khr16, p. 161]
is not required by the OpenCL standard. As such, using these types can impact porta-
bility, as not all devices support these types. For instance, Intel CPUs only introduced
instructions to convert single-precision floats to half-precision floats and vice-versa in
the 3rd generation of Intel Core CPUs [Kon12].

OpenCL exposes native and half versions of certain functions (e.g., sin). Native
functions have an implementation-defined accuracy, but tend to be faster. For example,
AMD notes that native functions can be 1.8× to 34.2× faster than their non-native coun-
terparts on AMD Evergreen and Northern Islands GPUs, respectively [Adv15, p. 3-42].
Similarly, according to NVIDIA, on CUDA the performance of __sinf is substantially
higher than that of sinf, at the cost of accuracy reduction [NVI17a, Section 11.1.5].
The half versions of functions have a specified minimum accuracy, but may still be
faster than the base versions, as those requirements are lower. According to ARM,
on their GPUs, the native versions of sin, cos, tan, divide, exp and sqrt, as
well as half_sqrt, are faster than their precise counterparts, but no other native/half
function is [ARM17a, Section 9.3].

2.5.7 Work-group Size

OpenCL and CUDA both allow tuning work-group/block size, that is, how many work-
items each work-group consists of. This decision may have a significant impact on the
performance of programs.

On NVIDIA hardware, it is best to choose a work-group size that is a multiple of
32, whereas on AMD it should be a multiple of 64 [Adv15, p. 2-29]. Intel recommends
power-of-two sizes between 64 and 256 for kernels with barriers, and 32 for kernels
without, for its GPUs [Int17e].

Agosta et al. [ABDFP15] tested the impact of the work-group size on cryptographic
benchmarks and found that on AMD and NVIDIA GPUs, increasing the work-group
size leads to improved performance except for the AMD HD 6850 GPU on the KeeLoq
benchmark, where a work-group size of 64 resulted in better performance than a work-
group size of 128. However, there is an upper limit to the work-group size that can be
chosen, due to GPU resource limits.

7Hardware units that each work-group is assigned to

21

Background

2.5.8 Shared Virtual Memory

OpenCL 2.0 introduced SVM [Khr15, p. 174], a feature that simplifies memory manage-
ment. Not only can SVM reduce the need for marshaling data structures that contain
pointers, but programs that use fine-grained sharing can omit data transfers entirely as
these are managed transparently by the implementation.

ARM Bifrost GPUs do not support OpenCL 2.0, but SVM features are still available
using the cl_arm_shared_virtual_memory extension [ARM17a, Section E.5.1].

Mukherjee et al. [MGY+15] note that using SVM provides consistent performance
benefits. These results suggest that using SVM should be considered by as a potentially
profitable optimization for compilers targeting OpenCL.

2.5.9 Overview

Different OpenCL devices have different characteristics, and non-trivial programs need
to be transformed (either manually or automatically) in a manner that is aware of these
differences for each target device.

Table 2.2 shows a number of factors that impact performance on various devices. We
can see that there are significant differences between CPUs and GPUs, but even within
each device category the best approach to optimize a program is not always clear.

Table 2.2: Factors that impact performance and their applicability to CPU and GPU
devices.

Characteristic CPU GPU

Memory Coalescing No Yes
Bank Conflicts No Yes
Dedicated Local Memory No Yes
Dedicated Texture Memory No Yes
Branch Divergence Performance Degradation Usually not8 Yes
Best floating-point type Depends Depends
Work-group size Depends Depends
Shared Virtual Memory (SVM) Profitable, if available Depends

2.6 Target-aware Optimizations

As described in the previous section, certain programming techniques and patterns have
a different impact on different types of devices. As such, many optimizations need to
be target-aware, that is, have some degree of knowledge over the target device for the
application, in order to properly improve a given program. This section describes some
of these optimizations.

2.6.1 Tiling

In certain programs, storing data in local memory (shared memory in CUDA terminol-
ogy) can be used to optimize memory accesses by reducing the redundant data transfers

8On Intel CPUs, the ability to statically determine whether branches can diverge has an impact on
auto-vectorization.

22

Background

and/or coalesce memory accesses.

NVIDIA exemplifies this technique with matrix multiplication algorithms [NVI17a,
Section 9.2.2.2]. A naive version results in wasted bandwidth, either in the form of
redundant reads or fully serialized accesses that limit performance. Instead, work-items
can load data in a coalesced manner to local memory and then load the data from the
local memory to perform the computation. If the matrix is too large to store in memory,
then this optimization can still work, by dividing the matrix in tiles and only storing a
single tile (per matrix) in shared memory at once.

Figure 2.15 shows two versions of the matrix multiplication kernel (assuming square
input matrices, have the same size and have a size that is a multiple of 16): the naive
version in Figure 2.15a and the tiled version in Figure 2.15b.

In the naive version, if a work-group size of (128, 1) is used, then all work-items in
the same work-group have the same value of y. All work-items access the same position
of A, and the access to B is coalesced. Unfortunately, the broadcast access to A wastes
bandwidth as only a single value of the entire cacheline is used. A work-group size of
(1, 128) is even worse, as the fact that all work-items in a work-group share the x value
means that the accesses to A will be fully serialized.

The version with tiling forces a work-group size of 16 × 16 (line 3) and divides the
matrix into tiles of that size. Each work-item in a group loads a single cell per tile to the
local memory, and then loads the data from the local memory to perform the compu-
tation. According to NVIDIA, on an NVIDIA Tesla K20X GPU, matrix multiplication
using tiling is ≈ 2.26× faster than the naive version [NVI17a, Section 9.2.2.2].

2.6.2 Loop Unrolling

Loop unrolling [ALSU06, p. 735] can improve performance because it increases the op-
portunities for instruction-level parallelism, reduces the overhead of having loops and
improves data locality. On GPUs, loop unrolling can be particularly profitable, be-
cause branching operations are more costly than on CPUs and they may have hardware
resources that support higher Instruction-Level Parallelism (ILP) levels. AMD recom-
mends unrolling small loops (up to 32 instructions) on Southern Island GPUs for im-
proved performance [Adv15, Section 2.8.7.3]. However, loop unrolling can also degrade
performance, by increasing register pressure and program code size.

The use of loop unrolling to optimize cryptography GPU programs was studied by
Agosta et al. [ABDFP15]. They examined the performance impact of loop unrolling and
concluded that:

� For the Data Encryption Standard algorithm, the loop should be fully unrolled,
because there are few iterations and using it results in a performance improvement;

� For the MD5-crypt algorithm, the authors tested the impact of performing un-
rolling up to a factor of 50, the maximum allowed by the compiler. For this
algorithm, they concluded that there were small speedups for small unroll fac-
tors and slowdowns for unroll factors of 10 or more, in comparison to the original
version with no unrolling.

� For the KeeLoq algorithm, they tested the impact of unrolling the main loop
up to a full unroll. In this case, unrolling presents performance improvements,
especially on platforms with an instruction cache. On AMD GPUs (R700 and
R800 architectures), loop unrolling is only beneficial if the unroll factor is up to

23

Background

1 kernel void matmul(global float* out, global float* A, global float* B) {

2 int x = get_global_id(0);

3 int y = get_global_id(1);

4 int size = get_global_size(0);

5

6 float acc = 0;

7 for (int i = 0; i < size; ++i) {

8 acc += A[y * size + i] * B[i * size + x];

9 }

10

11 out[y * size + x] = acc;

12 }

(a) Naive matrix multiplication of square matrices.

1 #define TILE_SIZE 16

2

3 __attribute__((reqd_work_group_size(TILE_SIZE, TILE_SIZE, 1)))

4 kernel void matmul(global float* out, global float* A, global float* B) {

5 int lx = get_local_id(0);

6 int x = get_global_id(0);

7 int ly = get_local_id(1);

8 int y = get_global_id(1);

9 int size = get_global_size(0);

10

11 local float tile_a[TILE_SIZE][TILE_SIZE];

12 local float tile_b[TILE_SIZE][TILE_SIZE];

13

14 float acc = 0;

15

16 for (int tile_start = 0; tile_start < size; tile_start += TILE_SIZE) {

17 tile_a[ly][lx] = A[y * size + (tile_start + lx)];

18 tile_b[ly][lx] = B[(tile_start + ly) * size + x];

19 barrier(CLK_LOCAL_MEM_FENCE);

20

21 for (int i = 0; i < TILE_SIZE; ++i) {

22 acc += tile_a[ly][i] * tile_b[i][lx];

23 }

24 }

25

26 out[y * size + x] = acc;

27 }

(b) Tile-based matrix multiplication of square matrices.

Figure 2.15: OpenCL matrix multiplication algorithm demonstrating how to implement
tiling to coalesce memory accesses.

a quarter of the loop executions. Above that point, the code no longer fits in the
cache and there is a performance loss.

24

Background

Loop unrolling was also evaluated by Du et al. [DWL+12]. They ported CUDA
programs to OpenCL in order to understand the necessary optimizations to achieve
acceptable performance across multiple platforms. The OpenCL version was only com-
petitive with the CUDA version in terms of performance after unrolling two loops. In
contrast, the CUDA compiler automatically performed this optimization.

Note that both CUDA [NVI17d, Section B.23] and OpenCL [Khr16, Section 6.11.5]
provide language mechanisms that serve as compiler hints to unroll loops. Figure 2.16
demonstrates the preferred mechanism for loop unrolling as of OpenCL 2.0. In this
example, the attribute loop_unroll_hint [The13] can be used to indicate to the
OpenCL implementation that 2 is the preferred loop unroll factor. On NVIDIA’s
OpenCL implementation, the cl_nv_pragma_unroll extension [WAG09] is avail-
able, allowing the use of #pragma unroll <FACTOR> to achieve the same result.

1 kernel void unroll_example(global float* out, global float* in, int n) {

2 size_t pos = get_global_id(0);

3 float acc = 0;

4 __attribute__((opencl_unroll_hint(2)))

5 for (int i = 0; i < n; i++) {

6 acc += in[pos * n + i];

7 }

8 out[pos] = acc;

9 }

Figure 2.16: Demonstration of OpenCL loop unroll hints.

2.6.3 Task Parallelism

Task parallelism consists of executing multiple tasks simultaneously, and it can be used
to improve the performance of some programs. Brodtkorb et al. [BHS13] suggest two
approaches to enable some instances of task parallelism:

� Simultaneous use of the CPU and the GPU. In this case, the CPU performs
operations while waiting for the GPU to finish.

� Execution of multiple different kernels on the same GPU. Albeit limited, GPUs
can indeed execute multiple kernels at the same time. This enables limited task
parallelism at the GPU level.

ARM advises avoiding function calls to clFinish, as well as synchronous functions,
to ensure that the host and the device can work in parallel [ARM17a, Section 8.2].

2.6.4 Thread-Coarsening

Thread-coarsening [MDO14] consists of grouping N work-items into a single one, so that
each thread performs more work (where N is called the coarsening factor). If N = 1,
then no coarsening is applied.

There are multiple reasons that explain the performance improvements associated
with this optimization. For instance, when each work-item recomputes certain values

25

Background

that are the same across all work-items, thread-coarsening reduces the amount of redun-
dant work. In addition, it also reduces the number of threads to be executed at runtime.
However, thread-coarsening can also lead to slowdowns if the wrong coarsening factor
is used.

Magni et al. [MDO14] developed an automated model to predict the best coarsening
factor. In their tests, they found that their model could result in speedups ranging from
1.11× to 1.33× for the evaluated architectures (i.e. NVIDIA’s Fermi and Kepler and
AMD’s Cypress and Tahiti).

Shen et al. [SFSV13] mention an optimization which they call MergeN. Although
they never specifically use the expression thread-coarsening, the two optimizations are
fundamentally the same. They studied the impact of thread-coarsening on CPUs (both
for AMD and Intel implementations of OpenCL) with coarsening factors of 4 and 16 for
the PathFinder benchmark. On the AMD platform, they obtained a speedup of 26% for
a factor of 4, with an additional speedup of 7% for a factor of 16. The Intel version has
a performance improvement of 5% for a factor of 4, but a slowdown of 2% for a factor of
16. The explanation given for the improvements, however, is different. According to the
authors, the reason for the speedup is that thread-coarsening improves cache utilization.
The slowdowns are explained by the register spills that the additional workload causes.

Pennycook et al. [PHW+13] studied the impact of work-item and work-group dis-
tribution. This technique consists of keeping the same number of work-items per work-
group, but changing the number of total work-groups (and, by extent, changing the
total number of work-items). As such, each work-item must perform more work in the
coarse-grained version than the fine-grained. If there are (imax, jmax, kmax) tasks to
perform, then the thread coarsening factor is:

Thread Coarsening Factor =
imax × jmax × kmax

SIMD width× compute units
(2.1)

On AMD’s OpenCL platform for an Intel X5550 CPU, this optimization was essen-
tial [Int09]. The coarse-grained version of the tested program completed in less than 10
minutes, whereas the fine-grained version took over one hour for the same test. However,
the authors found that the fine-grained version is better for GPUs.

2.6.5 Overview

This section discusses several optimizations that may improve the performance of
OpenCL and CUDA programs. Achieving good performance requires knowledge of
the target device, as optimizations that are profitable on some devices may degrade
performance on others. Fortunately, many of these transformations can be performed
automatically by a compiler, to reduce the number of program versions and device
knowledge that are required.

2.7 Summary

This chapter discusses the relevant background relevant to this thesis, such as the MAT-
LAB and OpenCL programming languages, and the Z3 SMT solver. Since a significant
component of this thesis is target-aware optimization, this chapter also covers the tar-
geted OpenCL-compatible devices, their performance characteristics, and related opti-
mizations.

26

3
Related Work

Contents

3.1 The MATISSE Compiler Framework . 28

3.2 MATLAB GPU APIs . 30

3.2.1 MathWorks Parallel Computing Toolbox 30

3.2.2 GPUmat . 31

3.3 Compiling MATLAB to Non-GPU Platforms 31

3.3.1 MathWorks Coder . 32

3.3.2 FALCON . 32

3.3.3 MC2FOR . 33

3.3.4 MIX10 . 33

3.3.5 MatJuice . 34

3.3.6 MATLAB to C Targeting Application Specific Instruction Set Processors 35

3.4 Compiling MATLAB to GPUs . 36

3.4.1 MATLAB Execution on GPU based Heterogeneous Architectures 36

3.4.2 Chun-Yu Shei et al.’s MATLAB to CUDA compiler 38

3.4.3 Chun-Yu Shei et al.’s MATLAB to GPUmat compiler 39

3.4.4 Velociraptor . 40

3.4.5 StencilPaC . 41

3.4.6 GPU Coder . 42

3.5 MATLAB Type Inference Strategies . 43

3.6 Summary . 44

27

Related Work

This chapter describes existing approaches that solve problems related to the work
presented in this thesis. These include MATLAB compilers and libraries for GPU pro-
gramming, as well as the MATISSE compiler framework, that was used as a starting
point for our own prototype.

3.1 The MATISSE Compiler Framework

MATISSE (A MATrix(MATLAB)-aware compiler InfraStructure for embedded comput-
ing SystEms) [BPN+13] is a framework designed to compile high-level matrix programs.
This compiler framework includes support for source-to-source MATLAB transforma-
tions, low-level C code generation and two separate OpenCL backends: an initial pro-
totype, MATISSE CL V1 [BRC15a], and the prototype developed during this thesis,
MATISSE CL V2. An overview of the architecture of MATISSE, focused on the C
backend and MATISSE CL V2, is included in Chapter 4.

MATISSE’s source-to-source MATLAB transformations are based on a Domain-
Specific Language (DSL) named LARA [BPN+13], in which programmers write scripts
to analyze and transform the input applications. Figure 3.1 shows a simple LARA
example, in which the code is modified to print a message before every execution of
functions named matmul. The most important elements of this script are the select
construct in line 2, which finds a pattern in the code (in this case, a loop inside a
function), the condition construct in line 6, which further filters the results (in this
case, by limiting the search to functions with a name starting with matmul) and the
apply section in lines 3 to 5, which lists the actions to execute for each instance of the
pattern. On the C and OpenCL backends, LARA scripts can be used to override the
inferred types of MATLAB variables.

1 aspectdef PrintOnLoopStart

2 select function.loop end

3 apply

4 $loop.insert before "fprintf('Loop Start');";

5 end

6 condition $function.name.startsWith('matmul') end

7 end

Figure 3.1: LARA program that adds a printing message before every loop execution,
on functions with names starting with matmul.

MATISSE features a highly customizable C code backend originally designed to sup-
port a wide range of C compilers, including High-level Synthesis (HLS) tools [BPN+13,
RBC16]. The original MATISSE C code backend traversed the MATLAB AST, inferring
the variable types and generating the corresponding C code for each traversed node.

The MATISSE CL V1 prototype extends MATLAB with a set of OpenACC-inspired
directives for parallelism, as shown in Figure 3.2. MATLAB loops to parallelize are anno-
tated with the %acc parallel loop directive (and a matching %acc end directive
at the end). MATISSE then analyses the copyin and copyout parameters to deter-
mine which data transfers to insert. MATISSE CL V1 can only parallelize loops, not
matrix operations. No data carried dependency testing is performed, and the kernel
is assumed to be correct. The only validation is checking that the referenced variables

28

Related Work

exist and are appropriately declared. All matrix variables must be defined/allocated
before the loop, even if they are marked as copyout, as their size information is used
to determine the memory space to allocate on the OpenCL device.

1 function Y = square_matrix(A)

2 Y = zeros(size(A, 1), size(A, 2), 'single');

3 % acc parallel loop copyin(readonly A) copyout(Y)

4 for i = 1:numel(A)

5 Y(i) = A(i) * A(i);

6 end

7 % acc end

8 end

Figure 3.2: Directive-annotated MATLAB program that, when compiled with MATISSE
CL V1, generates OpenCL code for element-wise matrix multiplication.

Figure 3.3 demonstrates a MATLAB program using 2D parallelism. In this example,
both loops are run in parallel, in a single kernel. MATISSE only parallelizes the inner
loop due to the %acc loop directive. If this directive was removed, then MATISSE
would generate a sequential inner loop.

1 function Y = square_matrix(A)

2 Y = zeros(size(A, 1), size(A, 2), 'single');

3 % acc parallel loop copyin(readonly A) copyout(Y)

4 for i = 1:size(A, 1)

5 % acc loop

6 for j = 1:size(A, 2)

7 Y(i, j) = A(i, j) * A(i, j);

8 end

9 % acc end

10 end

11 % acc end

12 end

Figure 3.3: Directive-annotated MATISSE CL V1 program with 2D parallelism.

An in-depth description of MATISSE CL V1 is presented in [Rei14]. This backend
performs the following stages to generate OpenCL code:

� Parsing of MATLAB code to generate an AST;

� Identification of directives, replacing AST comment nodes with AST directive
nodes;

� Decomposition of Complex Expressions, generating temporary variables if needed;

� Aggressive function inliner;

� Directive cleaner to move directives if required due to the expression decomposer
stage;

29

Related Work

� Outlining of directive regions, using the copyin and copyout directive parame-
ters to determine function arguments and returned values;

� OpenCL code generation for the outlined functions, and C code generation for the
remaining code.

Table 3.1 lists the directives supported by the MATISSE CL V1 backend. The most
significant of these are the parallel loop and the end directives, which mark the
beginning and the end of a parallel section, respectively. Note also that the semantics of
the directives is fairly low-level, to the point that one directive (ignore) directly maps
to an OpenCL operation.

Table 3.1: List of MATISSE CL v1 directives

Directive Description

% acc parallel loop Indicates that a for loop should be compiled to OpenCL.

% acc parallel
Indicates that an inner for loop should be executed in par-
allel.

% acc ignore

Indicates that a section of code should be ignored by the
MATISSE CL v1 backend, but still be executed by MATLAB
and the remaining MATISSE backends.

% acc end Indicates the end of a parallel loop, parallel or ignore section.

% acc barrier Marks a local or global memory barrier (see Section 2.4).

3.2 MATLAB GPU APIs

This section describes existing MATLAB APIs/toolboxes for GPU programming.

3.2.1 MathWorks Parallel Computing Toolbox

MathWorks’ Parallel Computing Toolbox [Mat13b] is an API for parallel computing, in-
cluding a set of functions developed to execute certain operations on CUDA-compatible
GPUs. Figure 3.4 shows a MATLAB program that runs a computation on the GPU,
including the necessary data transfers. MATLAB allows programs to directly allocate
memory on the GPU (e.g., with the GPUArray.ones function) or copy existing ma-
trices to the GPU (using the gpuArray function). The results of these operations are
GPU arrays. The programmer may use certain MATLAB functions/operators using
values of this type to run the operations on the GPU. Finally, the gather function
copies the results back to the CPU.

MATLAB also includes features for multi-core CPU parallelism, such as the parfor
construct [Mat18b]. Figure 3.5 shows a MATLAB program that takes advantage of
multi-core parallelism to compute an element-wise multiplication on the CPU in parallel.
The outer loop (parfor) launches distributes the iterations across multiple workers,
from a thread pool. However, MathWorks advises against using parfor on these simple
computational tasks, as the time spent on transferring data to the workers may be longer
than the time savings due to parallelization.

30

Related Work

1 % Allocate matrix of ones on GPU

2 A = parallel.gpu.GPUArray.ones(1024, 1024);

3 % Allocate random matrix on the CPU and copy it to the GPU

4 B = gpuArray(rand(1024));

5

6 % Perform Computation on the GPU

7 C = A .* B;

8

9 % Copy result to CPU

10 C = gather(C);

Figure 3.4: MATLAB program that performs an element-wise multiplication operation
on a GPU.

1 A = ones(1024);

2 B = rand(1024);

3

4 C = zeros(1024);

5

6 parfor j = 1:1024,

7 C(:, j) = A(:, j) .* B(:, j);

8 end

Figure 3.5: MATLAB program that performs an element-wise multiplication on the
CPU in parallel, using parfor.

The Parallel Computing Toolbox also includes features designed to support cluster
parallelism. However, these features are out of the scope of this thesis.

3.2.2 GPUmat

GPUmat [GP-15] is an open-source library enabling GPU (CUDA) computations from
MATLAB1. An in-depth description of how to use it can be found in [GP-12].

Figure 3.6 presents a program that computes an element-wise matrix multiplication
on the GPU using the GPUmat API. As seen in this example, this API is very similar
to the GPU capabilities of the Parallel Computing Toolbox, as both include functions to
explicitly allocate or copy data between the CPU and the GPU, and reuses MATLAB
functions/operators (e.g., .*) to perform GPU computations on GPU buffers.

3.3 Compiling MATLAB to Non-GPU Platforms

This section describes other tools that compile the MATLAB language (or similar) to
low level programming languages such as C and FORTRAN, but without a focus on
GPUs.

1 As of the time of writing, GPUmat only supports CUDA 5.0 and has not been updated since 2015.

31

Related Work

1 % Explicitly allocate data on the CPU and copy it to the CPU

2 A = GPUdouble(ones(1024));

3 % Or directly allocate the matrix on the GPU

4 B = rand(1024, 1024, GPUdouble);

5

6 % Compute data on the GPU

7 C = A .* B;

8

9 % Copy it back to the CPU

10 C = double(C);

Figure 3.6: MATLAB program that performs an element-wise multiplication on the
GPU using GPUmat.

3.3.1 MathWorks Coder

MATLAB Coder [Mat18e] is a tool developed by MathWorks designed to compile MAT-
LAB to C/C++. The generated code can be used as a library, integrated in C applica-
tions, compiled to an executable, or packaged as MEX files (native code libraries that can
be called from MATLAB programs). Embedded Coder extends MATLAB Coder with
features for embedded systems, such as an improved ability to customize the generated
code and target-specific optimizations.

GPU Coder, an extension to Coder that generates CUDA code from MATLAB, is
described in Section 3.4.6.

3.3.2 FALCON

DeRose et al. developed FALCON [DRP99], a MATLAB to FORTRAN 90 compiler.
FALCON consists of three main systems: Program Analysis, Interactive Restructuring
and Code Generation.

The Program Analysis System reads the MATLAB program and generates an SSA-
based internal representation. The type/shape inference algorithm is applied on the
SSA code. The Interactive Restructuring System performs transformations on the in-
termediate code. The Code Generation System generates the final Fortran 90 code.

FALCON deals with type/shape inference in two phases: static and dynamic. In
the static phase, the types of variables are determined based on the semantics of state-
ments and information about input variables. For variables of unknown type or shape,
FALCON emits various code versions for each type possibility (FALCON considers only
two, for simplicity: real and complex), and selects the code to execute at runtime.

To evaluate the compiler, the authors used 12 MATLAB benchmarks (listed in Ta-
ble 3.2), and compared the generated FORTRAN 90 code with other versions, notably
C code generated by the MATLAB Compiler2. The generated FORTRAN 90 outper-
formed the C code on 11 of the 12 benchmarks, with speedups from 1.8× to 179.7×
(and a geometric mean of 6.87×).

2According to the MathWorks Support Team [Mat16], code generated by the MATLAB Compiler
has the same performance as MATLAB, but the authors’ results show that the generated C is clearly
faster than MATLAB.

32

Related Work

Table 3.2: List of benchmarks used to evaluate the FALCON compiler.

Short Name Description

SOR Successive Overrelaxation method
CG Preconditioned Conjugate Gradient method
3D Generation of a 3D-Surface

QMR Quasi-Minimal Residual method
AQ Adaptive Quadrature Using Simpson’s Rule
IC Incomplete Cholesky Factorization
Ga Galerkin method to solve the Poisson equation
CN Crank-Nicholson solution to the heat equation
RK Two body problem using 4th order Runge-Kutta
EC Two body problem using Euler-Cromer method
Di Dirichlet solution to Laplace’s equation
FD Finite Difference solution to the wave equation

3.3.3 MC2FOR

MC2FOR [LH14] is a MATLAB to FORTRAN compiler integrated in the McLab um-
brella project [Sab18].

MC2FOR uses the McLab front end to obtain an AST representation of all reachable
functions, which is then processed by McSAF [DH12a], a code transformation engine
designed specifically for MATLAB. McSAF outputs a lower-level AST and performs
some initial analyses, such as distinguishing identifiers that refer to variables from those
that refer to functions. After that, MATLAB Tamer [DH12b] translates this AST into
a three-address code IR called TamerIR, which is used by the Fortran IR Generator.
MC2FOR reuses Tamer’s pre-existent analyses, but the authors also created new ones,
such as shape analysis. Because TamerIR’s representation produces several temporary
variables, the authors consider that direct code generation would result in unreadable
code. For this reason, they introduced Tamer+, a component that converts the TamerIR
back to an AST representation, aggregating temporary variables in the process. The
compiler then generates Fortran from the AST, which is passed to a pretty printer to
produce the final code.

To evaluate MC2FOR, the authors used 11 benchmarks, listed in Table 3.3, and
compared the execution time of the Fortran code compiled with GFortran of GCC
4.6.3 versus the original MATLAB running on MATLAB R2013a. The authors found
that, aside from the clos benchmark, the Fortran version was 2.9× to 34.3× faster
than the MATLAB version. The clos benchmark, however, performed 25× worse
than the original MATLAB, due to GFortran’s inefficient implementation of matrix
multiplication. Overall, MC2FOR-generated code was 6.27× faster (geometric mean)
than the original MATLAB.

3.3.4 MIX10

MIX10 [KH14] is a compiler, integrated in the McLab umbrella project [Sab18], that
converts MATLAB programs into X10 [IBM18], a statically typed language designed for
high-performance computing that can be compiled to C++ or Java.

MIX10 reuses the McLab front-end, McSAF [DH12a] and MATLAB Tamer [DH12b]

33

Related Work

Table 3.3: List of benchmarks used to evaluate the MC2FOR compiler.

Short Name Description

adpt Adaptive Quadrature using Simpson’s rule
bbai Babai algorithm
bubl Standard bubble sort algorithm
capr Capacitance of transmission line
clos Transitive closure of a directed graph
crni Crank-Nicholson solution to the heat equation
dich Dirichlet solution to Laplace’s Equation
diff Diffraction Pattern of monochromatic light
fiff Finite-difference solution to the wave equation

mbrt Mandelbrot set
nb1d N-Body simulation

components, but extends them by adding concurrency constructs and X10-specific anal-
yses. The TameIR code and analyses results are passed to the X10 code generator to
generate the final code.

The authors found it challenging to generate X10 code with performance competitive
with that of MATLAB Coder-generated C code (see Subsection 3.3.1) or MC2FOR-
generated FORTRAN code (see Subsection 3.3.3). Notably, X10 supports two different
types of arrays with different trade-offs between flexibility and performance, and the
compiler must determine which one to use. Moreover, the authors found that casts of
double-precision floating point values to integer types are extremely slow on the C++
backend of X10, because the C++ backend adds a value range check before every cast,
and these casts are commonly injected to deal with situations where MATLAB allows
double-precision values but X10 requires integer types. To deal with this issue, the
authors developed an analysis to determine whether a double variable can be safely
treated as an integer (specifically Long) type, i.e., if declaring a variable as an integer
does not change program semantics. Finally, MIX10 implements MATLAB’s parfor
loops (parallel for loop execution) using X10’s concurrency features.

To evaluate their compiler, the authors used a set of 17 MATLAB benchmarks (listed
in Table 3.4), and compared the performance of the X10 code compiled with the C++
backend with the Java backend, the MATLAB runtime and MC2FOR. All static code
generators outperformed MATLAB in most cases (except for clos, where it outper-
forms all but MATLAB Coder, and mcpi and optstop, where it outperforms Coder).
Using the X10 C++ backend, the authors obtained a geometric mean speedup of 6.8×
over MATLAB, above the 6.3× speedup of Coder over MATLAB, but below the 10.2×
speedup of MC2FOR over MATLAB. Two benchmarks are problematic for MIX10:
clos and lgdr. The clos benchmark heavily relies on matrix multiplication and
MIX10 uses a näıve matrix multiplication algorithm, and lgdr repeatedly transposes
a row vector to a column vector – an operation that is highly optimized on MATLAB
and Fortran, but slow on MIX10.

3.3.5 MatJuice

MatJuice [FBH16] is a MATLAB to JavaScript compiler integrated in the McLab um-
brella project [Sab18].

34

Related Work

Table 3.4: List of benchmarks used to evaluate the MIX10 compiler.

Short Name Description

bbai Babai algorithm
bubl Standard bubble sort algorithm
capr Capacitance of transmission line
clos Transitive closure of a directed graph
crni Crank-Nicholson solution to the heat equation
dich Dirichlet solution to Laplace’s Equation
diff Diffraction Pattern of monochromatic light
edit Edit distance between two strings
fiff Finite-difference solution to the wave equation

lgdr Compute Legendre Polynomials up to a degree, and some derivatives
mbrt Mandelbrot set
nb1d N-Body simulation

matmul Näıve matrix multiplication
mcpi Calculate π using Monte Carlo method

numprime Count the number of primes up to a given integer
optstop Solution to the optimal stopping problem

quadrature Quadrature approach for calculating integral

The compiler uses the McLab and Tamer [DH12b] projects to convert MATLAB
source code into an IR called TameIR. The authors then perform analyses and transfor-
mations on TameIR before generating the final JavaScript code.

To implement matrices in JavaScript, the authors used typed arrays. However, op-
erations on typed arrays, like ordinary JavaScript arrays but unlike MATLAB matrices,
follow pass by reference semantics, rather than pass by value semantics. This issue can
be resolved by inserting copies on every array assignment, but this comes at a perfor-
mance and memory cost. A better approach is to only insert copies when needed. The
authors developed an intra-procedural approach for this that injects copies only when
needed, and is capable of detecting that copies are only necessary when the program
enters certain branches of the code.

The authors compared MatJuice with the MATLAB runtime using 16 benchmarks,
listed in Table 3.5. The authors found that MatJuice outperforms MATLAB on 10 of
the tested benchmarks, but MATLAB is, on average, 20% faster than MatJuice. The
authors attribute this difference to MATLAB’s highly optimized matrix libraries.

3.3.6 MATLAB to C Targeting Application Specific Instruction Set
Processors

Latifis et al. [LPD+16] present a MATLAB to C compiler that generates C code with
function calls to intrinsics that represent custom instructions, notably SIMD operations,
in Application Specific Instruction Set Processors (ASIP). The compiler takes as input
an XML file with information about the available intrinsics and a MATLAB file with
annotations (in the form of function calls) to indicate type and shape information of
variables, as well as preferred vector sizes of SIMD operations in blocks of code.

The compiler parses the MATLAB code, constructs the AST, then performs type
inference, instruction selection, conversion to a low-level IR (by decomposing complex

35

Related Work

Table 3.5: List of benchmarks used to evaluate the MatJuice compiler.

Short Name Description

babai Babai algorithm
bubble Standard bubble sort algorithm
capr Capacitance of transmission line
clos Transitive closure of a directed graph

collatz Test the Collatz conjecture up to a given integer
dich Dirichlet solution to Laplace’s Equation
fdtd Finite Difference Time Domain
fft Fast Fourier Transform
fiff Finite-difference solution to the wave equation

lgdr Compute Legendre Polynomials up to a degree, and some derivatives
makechange Compute the ways to make change for

matmul Näıve matrix multiplication
mcpi Calculate π using Monte Carlo method
nb1d N-Body simulation

numprime Count the number of primes up to a given integer

matrix expressions to simpler ones) and finally C code generation.
The authors evaluated their compiler on an ADRES ASIP (BoT template) with a

set of 6 six fixed-point DSP algorithms with varying input sizes, comparing their result
with the output of MathWorks Coder, and achieved speedups between 2× and 30×.

In [LPD+17], the authors presented an improved version of the compiler, that in-
cludes a dataflow analysis step after the low-level IR conversion and before code gen-
eration, designed to remove packing/unpacking operations. The authors evaluated this
version with six benchmarks (FFT, CFO, FIR, mean, CORDIC and QR decomposi-
tion), and were able to achieve speedups between 2× and 97× over the MathWorks
Coder compiler.

3.4 Compiling MATLAB to GPUs

This section describes tools that compile the MATLAB language (or Octave [Oct14a])
and output code in GPU programming languages or using GPU APIs. The MATISSE
OpenCL backend MATISSE CL V1 has already been described in Section 3.1.

3.4.1 MATLAB Execution on GPU based Heterogeneous Architec-
tures

MATLAB Execution on GPU based Heterogeneous Architectures (MEGHA) [PAG11,
PG12] is a MATLAB to CUDA compiler proposed by members of the Indian Institute of
Science in 2011. MEGHA incorporates a number of optimizations, including heuristics
to determine when to offload code to the GPU and when to keep it running on the CPU.
The authors implemented MEGHA using GNU Octave [Oct14a].

MEGHA implements the following compiler stages:

� Code Simplification: The compiler replaces complex expressions with simpler
equivalent ones. This transformation does not fully simplify array accesses when

36

Related Work

: and end-containing indices are used.

� Semantics Preserving Transformations: Replaces : and end-based indices into a
simpler equivalent. For instance, A(:) becomes A(1:length(A))3. Addition-
ally, MEGHA transforms MATLAB loops, so that the iteration variable is never
modified in the loop body.

� Static Single Assignment Construction: Converts the transformed code into an
SSA-based IR. Note that in this SSA representation, matrix assignments do not
produce new SSA variables.

� Type and Shape Inference: Determines the intrinsic type (e.g., integer), shape
(e.g., 3D-array) and size (eg., 2× 3× 4) of each program variable. It is possible
for the programmer to override types of variables.

� Kernel Identification: MEGHA identifies kernels, blocks of code on which the
scheduling (i.e., CPU vs GPU execution) decisions will be made. MEGHA identi-
fies and groups sets of statements that are GPU friendly, tries to eliminate arrays
by converting them to scalars when possible, and finally converts kernels into
parallel loop nests.

� Parallel Loop Reordering : Determines the most efficient way to execute a given
parallel loop nest (similar to determining the most efficient loop nest), in terms of
memory locality (for CPUs) and memory coalescence (for GPUs). Since the most
efficient iteration traversals for CPUs and GPUs are different and at this stage
the compiler has not yet determined which kernels should be offloaded, this stage
computes and returns the order for both cases.

� Mapping and Scheduling : MEGHA attempts to minimize the total execution time
(including time spent on data transfers) using a scheduling heuristic.

� Global Data Transfer Insertion: The compiler inserts the necessary data transfers
between the CPU and the GPU.

� Code Generation: MEGHA generates C++ code for the program sections mapped
to the CPU and CUDA code for GPU kernels.

MEGHA only supports a subset of MATLAB. In particular, user-defined functions
are not supported unless the compiler frontend is extended, not all data types are sup-
ported, the type inference algorithm is limited and auto-growing matrices are not sup-
ported.

To evaluate MEGHA, the authors selected a set of 10 benchmarks, listed in Ta-
ble 3.6, with varying input sizes, and compared the execution time of the generated
C++ code (with and without CUDA) with the MATLAB runtime on a quad-core Intel
Xeon 2.83GHz with a GeForce 8800 GTS GPU and a Tesla S1070.

On the data parallel benchmarks, the MEGHA-generated pure CPU version out-
performed the MATLAB version on the fdtd, nb1d and nb3d benchmarks, but was

3Usually, this would be an incorrect program transformation on matrices with more than one dimen-
sion (e.g., on 2×2 matrices, the length is 2 but all 4 elements should be included), even when the matrix
access expression itself only has a single index, and the numel function should be used instead. The au-
thors do not specify if and how they deal with matrices of more than 1 dimension on this transformation,
particularly since at this stage type and shape inference has not yet been executed.

37

Related Work

Table 3.6: List of bechmarks used to evaluate the MEGHA compiler.

Short Name Description Data Parallel

bscholes Stock Option Pricing Yes
capr Line Capacitance No
clos Transitive Closure Yes
crni Heat Equation Solver No
dich Laplace Equation Solver No
edit Edit Distance No
fdtd EM Field Computation Yes
fiff Wave Equation Solver No

nb1d 1D N-Body Simulation Yes
nb3d 3D N-Body Simulation Yes

slower than MATLAB on the bscholes benchmark (they did not present results for
their CPU version of clos). On the 8800 GPU, they were able to achieve speedups
over MATLAB from 2.7× to 172×, though some benchmarks/inputs failed to run due to
lack of memory. On the Tesla GPU, they were able to achieve speedups over MATLAB
from 2.7× to 191×, with a geometric mean speedup of 19.8×.

On the remaining benchmarks, the MEGHA-generated pure CPU version outper-
formed MATLAB in all cases, but the GPU-accelerated version performed roughly the
same as the pure CPU version (performance variations < 1%).

The authors also compared their GPU version with GPUmat, running the data
parallel benchmarks on the Tesla S1070 (with only a single input size for each). MEGHA
was able to consistently outperform GPUmat, with speedups ranging from 1.5× to 90×,
geometric mean of 7.98×.

3.4.2 Chun-Yu Shei et al.’s MATLAB to CUDA compiler

Chun-Yu Shei et al. developed a MATLAB to C++ and CUDA compiler [SYRC11] as
part of the HLLC/ParaM project [Cha13].

The authors focus on optimizing array statements by scalarizing them (i.e., con-
verting array expressions to scalar loops) when converting to C++. The compiler only
optimizes certain segments of code to C++/CUDA, leaving the rest of the code to be
executed by the MATLAB runtime.

Their compiler stages are as follows:

� Parsing : The authors use the Octave parser to obtain an AST;

� Conversion to the RubyWrite AST format : As they use a Ruby-based DSL to
perform AST manipulation (RubyWrite), the Octave-given AST is converted into
a representation compatible with this language;

� Expression Flattening : All expressions are simplified by introducing temporary
variables to store the results of subexpressions;

� Type Inference: This stage consists of the following steps:

1. Variables are placed in the program representing the type of each variable at
that point of the program (e.g., iType_x stores the type of x). These types

38

Related Work

are modified when the variables they refer to are modified. The new type is
based on the new value (e.g., given a statement c = a + b, the compiler
injects the statement iType_c = IXF_sum(iType_a, iType_b);.

2. Conversion of the code to SSA form;

3. The compiler runs an aggressive partial evaluator that, whenever possible,
computes the results of the type variables. According to the authors, the
”vast majority” of types are evaluated by this mechanism. However, some
types are only known at runtime.

� Advanced Optimizations: Now that most variable types are available, the compiler
performs code sequence optimization and type-based specialization.

� Backend : The compiler selects the functions to use from available libraries and
then generates C++ and CUDA code.

To evaluate their compiler, the authors performed two groups of experiments. One
based on applications and kernels, described in Table 3.7. On three of the applica-
tions/kernels, by generating C++ with OpenMP, they were able to achieve speedups
between 1.5× (for NBody3D, one thread) to nearly 17× (NASMG eight threads). On
the remaining thee applications, however, they were unable to achieve speedups, due to
data movement costs (either due to the copy-on-write semantics of array arguments on
the CPU, or the data transfers between CPU and GPU).

Table 3.7: List of bechmarks used to evaluate Chun-Yu Shei et al.’s MATLAB to CUDA
compiler.

Short Name Description

N-Body 3D N-Body Simulation
NASMG Multigrid benchmark from the NAS benchmark suite
FDTD Finite Difference Time Domain

Heated Plate Thermal simulation
Forward Analyze stock market data (part of Black Scholes)

Shallow Water 1D Solver for shallow water equations

3.4.3 Chun-Yu Shei et al.’s MATLAB to GPUmat compiler

The HLLC/ParaM project also includes an additional MATLAB compiler by Chun-
Yu Shei et al. [SRC11] that performs MATLAB-to-MATLAB compilation to output
code using the GPUmat library. Their approach attempts to predict CPU and GPU
performance and tries to balance workloads and minimize data transfers.

Their compiler first performs type inference, using the same approach described
in Subsection 3.4.2. The compiler then processes each MATLAB function, using the
following steps:

� Identification of schedulable statements: A schedulable statement is a statement
that may be executed on the GPU. Only functions supported by GPUmat may be
offloaded to the GPU.

39

Related Work

� Cost estimation: Estimate how long each schedulable statement would take to run
on the CPU and GPU as well as data communication costs associated with each
operand, based on previously obtained empirical data.

� Partitioning : Determine which type of processor (CPU or GPU) should run each
schedulable statement, using heuristics to determine the most efficient mapping.

� Reordering : The compiler attempts to make CPU and GPU computations execute
simultaneously by reordering the schedulable statements.

� Code Generation: The compiler generates MATLAB code with the additional
operations and checks. It also performs a final partial evaluation and dead-code
elimination pass.

To evaluate this compiler, the authors used the benchmarks listed in Table 3.8. The
authors evaluated two approaches: greedy, that selects every schedulable statement to
run on the GPU, and heuristic, that attempts to determine when to offload statements
to the GPU. Their greedy approach can achieve speedups on certain benchmarks (more
than 7× on high input sizes on FDTD), but also significant slowdowns on others (con-
sistently more than 100× slower on Shallow Water, regardless of input size). With
their heuristic-based approach, they were able to eliminate the worst slowdowns, while
still achieving speedups very close to those of the greedy approach. Using the heuristic
approach, the authors were able to achieve a worst-case slowdown of around 20%.

Table 3.8: List of bechmarks used to evaluate Chun-Yu Shei et al.’s MATLAB to
GPUmat compiler.

Short Name Description

Arnoldi Find the eigenvalues of general matrices
Shallow Water (1D) Solver for shallow water equations

Heated Plate Thermal simulation
Krylov Construct a Krylov matrix with columns normalized

N-body (1D) 1D N-Body Simulation
N-body (3D) 3D N-Body Simulation

NASMG Multigrid benchmark from the NAS benchmark suite
Forward Part of Black Scholes, a finance application
Binomial Part of Black Scholes, a finance application
FDTD Finite Difference Time Domain

3.4.4 Velociraptor

Velociraptor [GH14] is a compiler toolkit that aims to provide a reusable approach to
compile array-based languages (e.g., MATLAB) to CPUs and GPUs. In order to achieve
this, the authors developed:

� A high-level IR called VRIR;

� An optimizer and LLVM+OpenCL code generator for VRIR;

� A high-level task-graph API called VRRuntime, to manage task dispatch and data
transfers to the GPU;

40

Related Work

� An extension for a MATLAB JIT named McVM [CBHV10] (part of the McLab
project [Sab18]) allowing MATLAB to GPU compilation;

� An add-on to CPython allowing Python to GPU compilation. Python is out of
the scope of this thesis, so we do not focus on this frontend.

Velociraptor can parallelize multiple types of VRIR constructs, including parallel-
for loops (but not nested parallel-fors, as inner loops are always executed sequentially),
parallel map (i.e., element-wise operations), parallel operators (e.g., matrix multiply)
and accelerated sections. In accelerated sections, multiple statements can be executed
on the GPU, enabling optimizations that Velociraptor would not be able to perform
when parallelizing each parallel statement individually.

To evaluate the McVM frontend of Velociraptor, the authors used 4 benchmarks,
presented in Table 3.9, and added GPU annotations. For the GPU version, the Ve-
lociraptor runtime was up to 15% faster than the Velociraptor CPU version, and up to
the 3.62× faster than the MATLAB JIT. The authors found that runtime asynchronous
dispatch adds overhead that is significant for small kernels. The compiler optimiza-
tions have no impact in these benchmarks because the optimizations are designed for
for-loops, and the benchmarks are written using vectorized operations.

Table 3.9: List of bechmarks used to evaluate Velociraptor with the McVM frontend.

Short Name Description

clos Transitive Closure
nb1d 1D N-Body Simulation
nb3d 3D N-Body Simulation
fdtd EM Field Computation

3.4.5 StencilPaC

StencilPaC [SCS16] is a compiler that is capable of automatically generating parallel
code for stencil computations written in a subset of MATLAB. StencilPaC generates C
code that executes in parallel using OpenMP [Ope15] for multi-core CPUs, MPI [Mes15]
for distributed systems, or OpenACC [Ope17] for GPUs. Since this thesis is focused on
execution of code in accelerators (particularly GPUs), their OpenMP and MPI code
generators4 are not discussed here.

The supported subset includes booleans and numeric operations, ranges, vectors,
matrices with up to 2 dimensions, control structures, user-defined functions and some
MATLAB built-in functions. StencilPaC traverses an AST annotated with type at-
tributes. Each node has an associated code template that is instantiated to build the
final C code. As an optimization, the compiler combines matrix assignments into a
single loop if possible.

StencilPaC can parallelize element-wise matrix expressions and calls to arrayfun.
Other operations (notably reductions and user loops) are never parallelized. The com-
piler inserts the appropriate OpenACC directives for parallelization and data transfers.

The authors used two benchmarks, described in Table 3.10 to evaluate their compiler.
Their OpenACC version of EasyWave was 187× faster than the MATLAB version, and

4OpenMP supports accelerators [Li17], but the authors use OpenMP specifically for multi-threaded
CPU parallelism. OpenMP directives for GPU parallelism are distinct from those for CPU parallelism.

41

Related Work

17% slower than a handwritten CUDA version. Using OpenACC, they were able to
improve the performance of Celular Automaton by 69185× (no handwritten CUDA
version was available).

Table 3.10: List of bechmarks used to evaluate the StencilPaC compiler.

Short Name Description

EasyWave Shallow water equations for tsunami early warnings
Celullar Automaton 2D grid of cells, updated based on state of adjacent cells

3.4.6 GPU Coder

GPU Coder [Mat18d] is a compiler developed by MathWorks and introduced in MAT-
LAB R2017b [Edd17] that generates CUDA code from MATLAB programs. GPU Coder
can be used alongside Embedded Coder (see Subsection 3.3.1).

Figure 3.7 shows a simple MATLAB function that can be compiled to CUDA by
GPU Coder. The coder.gpu.kernelfun() command functions as a directive that
indicates that the GPU Coder should compile this function, and the rest of the code
is common MATLAB code. GPU Coder supports a subset of the MATLAB language,
based on the subset supported by MATLAB Coder [Mat18c]. The %#codegen direc-
tive is optional: its usage allows the MATLAB Code Analyzer to properly understand
the context where the function is used and produce more relevant diagnostics, but is
otherwise ignored by the compiler [Mat18a]. It is possible to specifically indicate to the
GPU Coder that a loop should be mapped to the GPU using the coder.gpu.kernel
operation.

1 function acc = gpufunc(A) %#codegen

2 coder.gpu.kernelfun();

3

4 acc = A;

5

6 for i = 0:98,

7 acc = acc .* A;

8 end

9 end

Figure 3.7: Example of a GPU Coder function that computes the 100th power of a
matrix.

Another parallelization approach supported by GPU Coder is shown in Figure 3.8.
This example does not use coder.gpu.kernelfun. Instead, the inner function
computeAverage is executed on the GPU. Stencil kernels receive as input a win-
dow of the passed matrix and are executed once per element, with the scalar result of
each execution constituting an element of the output matrix.

42

Related Work

1 function result = gpufunc2(image) %#codegen

2 result = gpu.coder.stencilKernel(@computeAverage, image, [3, 3],

'same');

←↩

3

4 function out = computeAverage(window)

5 out = 0;

6 for i = 1:5,

7 for j = 1:5,

8 out = out + window(j, i);

9 end

10 end

11 out = out / 25;

12 end

13 end

Figure 3.8: Example of GPU Coder program that blurs an image, by replacing each
pixel with the average of its 3× 3 grid.

3.5 MATLAB Type Inference Strategies

As MATLAB is a dynamically typed programming language, in order to translate code
to statically typed languages, a scheme for determining the types of variables is required.
This section reviews some of the approaches used by existent MATLAB compilers.

The FALCON [DRP99] type inference (static phase) algorithm is based on two
phases: first, FALCON performs a simple forward-only type inference based on the
types of constants, expressions and built-in functions, that leaves most types as un-
known and treats variables within loops as having the same types as before those loops
(but marks them for later refinement). It then repeatedly traverses the statements of
as-of-yet unclear type (i.e., marked) and iteratively refines the types until a stable point
is reached. Variables that still have unknown type after this second phase are handled
at runtime. The FALCON type inference assumes that all MATLAB values can be
considered complex double-precision foating point values, and that treating logical and
integer types as complex would be purely a performance issue, not one of correctness.
The MEGHA [PAG11] and Latifis et al. [LPD+16] compilers use similar approaches.

Chun-Yu Shei et al. [SYRC11] developed a type inference mechanism based on giving
each program variable a secondary type variable (i.e., a x_Type for every x) that gets
updated every time the type of the program variable changes. The type inference itself
consists of performing an aggressive partial evaluation, that turns a significant number
of these variables into constant values.

The McLab [DH12b] framework includes an interprocedural analysis framework that
can be used for many purposes, including type inference. The analysis supports function
contexts (i.e., representations of the received function arguments). The authors devel-
oped a value analysis on top of the interprocedural analysis, to determine which values
and kinds (i.e., MATLAB class) each program variable can have, by performing a
forward propagation of MATLAB values. The MC2FOR [LH14] compiler extends this
value analysis to also cover shape inference.

43

Related Work

3.6 Summary

This chapter discusses relevant work that is related to the work presented in this thesis.
The most important related work is MATISSE [BPN+13], the MATLAB compiler

framework used to build the compiler prototype presented in this thesis. Although
MATISSE already featured a MATLAB to C/OpenCL compiler, this thesis proposes a
new, substantially improved, C/OpenCL backend.

It is possible to perform GPU computations directly in MATLAB, using APIs such
as the Parallel Computing Toolbox [Mat13b] or GPUmat [GP-15]. An alternative is to
use tools that compile MATLAB programs to run on the GPU. Table 3.11 compares
some of these tools.

Table 3.11: Overview of previous approaches that compile MATLAB to GPU lan-
guages/APIs.

Name Output Parallelization Approach

MEGHA [PAG11] C++/CUDA Fully automatic
Chun-Yu Shei et al. [SYRC11] C++/CUDA Fully automatic
Chun-Yu Shei et al. [SRC11] MATLAB + GPUmat Fully automatic

Velociraptor [GH14] LLVM/OpenCL Fully automatic5

StencilPaC [SCS16] C/OpenACC Fully automatic
GPU Coder [Mat18e] C/C++/CUDA Directive-driven

MATISSE [Rei14] C/OpenCL Directive-driven

Most of the covered approaches are fully automatic, using heuristics to determine the
components to offload. The exception is GPU Coder [Mat18e], which opts for a more
user-controlled mechanism based on directives (e.g., coder.gpu.kernelfun). All
four approaches target CUDA directly or indirectly (since GPUmat is based on CUDA
as well).

5Accelerated sections require manually placing begin/end markers.

44

4
Compiler Prototype Architecture

Contents

4.1 Programming Model . 46

4.1.1 Supported MATLAB Subset . 46

4.1.2 The Directive API . 47

4.1.3 Auxiliary LARA Files . 50

4.2 Compiler Phases and Intermediate Representations 50

4.2.1 Parsing MATLAB . 50

4.2.2 AST Transformation Passes . 52

4.2.3 Matrix-Based SSA IR – The Sequential Case 53

4.2.4 Type Inference . 56

4.2.5 SSA Transformation Passes . 59

4.2.6 Parallelization . 59

4.2.7 Code Generation . 62

4.2.8 Overview . 69

4.3 Compiler Validation . 69

4.4 Summary . 71

45

Compiler Prototype Architecture

This chapter describes the architecture of the MATISSE-based compiler prototype, in-
cluding the parallel programming model, main compiler phases, algorithms and Inter-
mediate Representations (IRs).

4.1 Programming Model

This section describes the language features exposed by MATISSE for the programmer
to build sequential and parallel programs.

4.1.1 Supported MATLAB Subset

MATISSE supports a non-trivial subset of MATLAB, but some features are only sup-
ported for sequential code generation.

The main limitation of the MATISSE compiler, both for C and OpenCL code gen-
eration, is related to type inference. MATISSE needs to know the types of all program
variables in order to successfully compile the program. It can do this by receiving the
explicit types from the programmer, by reading an example input file with definitions
for those variables and by propagating types using type inference. However, the type
inference algorithm has limitations and may be unable to determine the type of all vari-
ables. In those cases, MATISSE requires the user to either manually specify the types
of those variables, or change the program to be amenable to type inference.

Table 4.1 lists an overview of several MATLAB features and current MATISSE
support. Note that some features, such as memory allocation functions, are supported
only in sequential code (i.e., column Support - C). The missing features were generally
not implemented either due to their dynamic nature (e.g., eval) or because they require
substantial engineering efforts that are out of the scope of this thesis.

Table 4.1: Overview of the MATLAB subset supported by MATISSE

Feature Description
Support

C OpenCL

Basic Control Flow Such as if, while and for statements Yes Yes
Function Calls Incl. multiple outputs, optional arguments Yes Yes
Matrix Operations Such as addition, multiplication and division Yes Parts
Matrix Indexation Access matrix positions, incl. logical indices Yes Parts
Complex Numbers Numbers with a non-zero imaginary part No No
Test of arguments Use of nargin and nargout Yes Yes
Globals Variables shared by the entire program Parts No
Exceptions Such as try/catch statements No No
Advanced Features Incl. classes, function handles No No
Core Functions Simple built-in functions (e.g., sin, numel) Yes Yes
Matrix Allocation Built-in functions that allocate memory Yes No
Advanced Functions Such as padarray, sort, conv2 and fft Parts No
Input/Output File handling and console I/O Parts No
Toolboxes Packages of MATLAB code No No
Classes Object-oriented programming No No

Despite these limitations, the supported subset covers the most relevant parts of

46

Compiler Prototype Architecture

MATLAB, is sufficient for research purposes, and can be extended in the future if
needed.

Some code features, such as lambda functions, cause compile errors even if they
are in unreachable code regions, as MATISSE is unable to even generate IR for those
features.

4.1.2 The Directive API

MATISSE uses directives to control several processes, including parallelization and op-
timization control. Some of these directives are exposed to enable certain MATISSE
features (e.g., parallelization), while others are designed to facilitate debugging and ex-
perimenting with MATISSE (e.g., measure the impact of disabling certain optimization
passes).

Let us start by describing the parallelization directive system. The goals when
designing this approach were the following:

1. Preservation of MATLAB semantics: MATLAB (or MATLAB-compatible) run-
times shall be able to execute code annotated with directives, ignore them and
still output the correct results.

2. Ease of use: The directive-based approach shall be as simple as possible, to assist
the process of parallelizing legacy applications, to allow MATLAB programmers
to understand annotated code even if they did not learn how to use our compiler,
and to ensure the process of learning the directives is as simple as possible.

3. Ability to control which code is offloaded : Advanced users and other tools shall
be able to modify the code to prevent certain regions from being parallelized.
Similarly, there shall be compiler hints to allow MATISSE to parallelize code
when it can not determine that doing so is correct. These hints may be provided
by analysis tools.

4. Integration with common MATLAB idioms: The directive system is designed to
extend, not replace, existent MATLAB idioms. MATLAB code can both be very
high-level (matrix-based computations), very close to the equivalent C (loop-based
computations) or a mix of both. The compiler shall be compatible with all of these
code styles.

At first, an OpenMP/OpenACC-style directive system, where users annotate loops to
parallelize (see Subsection 3.1), was considered. While this style fits properly with loop-
based code, it was difficult to adapt it to matrix-based code styles, where no explicit loops
exist. An API-based approach such as GPUmat [GP-12] would be similarly difficult to
adapt to loop-based computations. As both programming styles are common among
MATLAB programmers, neither approach would be optimal.

Instead, this thesis opts to use directives to identify code sections that contain code to
parallelize, even if mixed with sequential code. The compiler searches for %!parallel
and %!end comments and conservatively attempts to parallelize code within those re-
gions. If a %!parallel directive is added on top of a function, then the entire function
body is considered for parallelization. Code within these annotated regions that can not
be parallelized, either because there is no parallel implementation or because the com-
piler could not determine the correctness of the parallelization strategy, is still executed
sequentially, in C code.

47

Compiler Prototype Architecture

Table 4.2: List of main MATISSE directives

Directive Applies to Description

%!parallel Function,
Section

Indicate that a section or function
should be parallelized.

%!end Section
Mark the end of a %!parallel sec-
tion.

%!serial_dimension Loop
Indicates that the loop should not be
a kernel’s parallel dimension.

%!no_index_overlap Loop
Indicates that the loop may be par-
allelized, even if MATISSE could not
prove lack of data dependencies.

%!by_ref <arg> Function
Indicates that an argument should be
passed by reference.

%!assume_indices_in_range Function
MATISSE may assume that all matrix
accesses are in-range.

%!assume_matrix_sizes_match Function

MATISSE may assume that all func-
tions with matrices have matching
(non-scalar) sizes for both operands.

%!export <name> Function

Indicates the final C name of the func-
tion, and disables any name man-
gling. On Windows, MATISSE also
marks export-annotated functions as
DLL exports. If name is not speci-
fied, then MATISSE uses the MAT-
LAB name as the final C name.

%!disable <opt> Function
Disable an optimization or optimiza-
tion setting on a given function.

%!infusible Loop
Prevent loop from being fused with
other loops.

A summary of the directives supported by MATISSE is presented in Table 4.2.

Figure 4.1 shows how to use the %!parallel/%!end directives. In this example,
MATISSE attempts to offload the t1 (matrix-based) and t2 (loop-based) computations
on the GPU, but the final y computation is executed on the CPU, since it is outside
the parallel region.

Programmers can further control the parallelization of the program by using the
%!serial_dimension directive. The directive can be applied to loops (generally
nested) and indicates that the annotated loop level does not correspond to a parallelized
kernel dimension. That is, either the loop is executed sequentially, or it appears as an
explicit loop in the OpenCL kernel. The %!no_index_overlap indicates that no loop
iteration modifies a matrix position that is accessed by any other loop iteration. This
is generally best used to deal with limitations of MATISSE’s loop carried dependency
analysis, and allows the compiler to offload code it would otherwise not be able to.

The compiler currently makes no attempt to determine the profitability of the par-
allelization of code sections and assumes that any loops it finds within a parallel region

48

Compiler Prototype Architecture

1 function y = directive_example(A)

2 %!parallel

3 t1 = A .* 2;

4 t2 = zeros(1, numel(A));

5 for i = 2:numel(t2),

6 t2(i) = t1(i - 1);

7 end

8 %!end

9

10 y = t2 .* 2;

11 end

Figure 4.1: MATLAB program demonstrating the use of the %!parallel directives.

should be offloaded. Additionally, the compiler does not currently parallelize any built-in
matrix functions that are not converted into a loop by optimization passes.

The %!parallel directive may take the following optional parameters:

� local_size: controls the homonymous OpenCL parameter.

� schedule: enables the programmer to force certain mappings between loop iter-
ations and OpenCL work-items. A more in-depth description of schedules is given
in Section 5.5.

Although the %!parallel directive supports a few more optional parameters, they
are currently only used for testing/benchmarking purposes.

A fully automated approach where no directives are specified would also meet most
of the requirements. However, the ability to control which code regions are offloaded
is important to allow experiments with multiple options. A second reason for choosing
directives is that this thesis does not propose schemes heuristics to determine which
sections to offload. For this reason, a fully automated approach would likely result
in substantial slowdowns across multiple benchmarks. As an alternative, the compiler
relies on the MATLAB programmer to do so manually.

MATISSE also includes directives unrelated to parallelization. The most important
is %!by_ref. Using this directive, programmers identify which function arguments
should be passed by reference (see Section 5.4).

Additionally, directives such as %!assume_matrices_in_range and
%!assume_matrix_sizes_match improve program performance by allowing
MATISSE to ignore certain MATLAB edge cases. Combined, these two directives form
what is herein called the Unchecked Mode.

Finally, certain optimizations can be disabled using %!disable. Although it is
not expected that MATISSE users rely on this directive, it proved to be very valuable
for debugging and to measure the impact of certain optimizations. On a similar note,
the %!infusible directive indicates that the specified loop should never be fused (see
Subsection 5.1.2) with any other loop.

49

Compiler Prototype Architecture

4.1.3 Auxiliary LARA Files

As mentioned in Section 3.1, MATISSE supports MATLAB-to-MATLAB compilation
using a domain-specific programming language called LARA [BPN+13, CBP+16]. Al-
though MATLAB-to-MATLAB compilation is outside the scope of this thesis, the pro-
posed MATLAB-to-OpenCL compiler is still compatible with LARA and this DSL is
used internally, for two purposes:

� Its MATLAB-to-MATLAB capabilities are integrated with the OpenCL generation
framework: LARA can be used to generate a modified MATLAB program (e.g.,
with added directives) and compile the LARA-generated MATLAB instead of the
original source code. This use-case has been mostly used to automate certain parts
of the tests.

� LARA is used to specify target-aware properties of each target device, such as
conditions for certain optimizations to be considered profitable. This use-case is
transparent to users of MATISSE, though it does allow advanced users to create
custom recipes to target devices MATISSE does not know about.

However, users of MATISSE can safely ignore LARA, unless they specifically need
its features.

4.2 Compiler Phases and Intermediate Representations

The MATISSE C and OpenCL backends are split into multiple phases, and most of
them are shared by the two backends. This section describes these phases, as well as
the Intermediate Representations (IRs) used.

Figure 4.2 shows the simplified compilation pipeline of the OpenCL backend. The
only difference for the C backend is that the OpenCL code generation is missing, so the
C code generator handles all the typed IR. The compiler starts by parsing the MATLAB
source code to produce the Abstract Syntax Tree (AST), then converts it to a Static
Single Assignment (SSA) IR that the compiler uses for type inference, optimization and
finally code generation. Not shown in Figure 4.2 is a short set of transformation passes
that are applied to the AST before SSA IR construction, and a final IR called the C IR, a
final AST that maps C language constructs. Rather than generating C code directly, the
C/OpenCL code generators produce this C IR representation. The compiler performs a
series of final cleanup passes on the C IR and finally translate it to C/OpenCL code.

Note that the previous MATISSE version described in Section 3.1 (including MA-
TISSE CL V1) does not follow the same flow. This thesis extends the original MATISSE
with the SSA-based IR, type inference and optimization framework [RBC16] described
in this section. However, the parser and some other components (e.g., parts of the C
code generator) have been reused.

4.2.1 Parsing MATLAB

MATLAB is a programming language that tends to be very difficult to parse correctly,
and the inexistence of a formal MATLAB grammar contributes to some of the difficulties.
MATISSE’s parser [BPN+13] has been in development since before this work started,
and it has been gradually improved over time.

50

Compiler Prototype Architecture

Figure 4.2: Overview of the MATISSE compiler phases, including the C and OpenCL
backends.

At the moment, the parser is already capable of handling a wide range of difficult
cases, including distinguishing matrix transposal operations (e.g., A') from character
arrays (e.g., 'A'), and being able to properly process matrix elements (e.g., [1 + 2]
is a matrix with a single element 3, but [1 +2] has two elements, 1 and +2) and
recognition of escaped single quotes in character arrays (e.g., 'a''b').

The MATISSE parser generates a custom AST that can be then analyzed and ma-
nipulated. Figure 4.3 shows a simple MATLAB program and its equivalent AST repre-
sentation. Every MATLAB file has a File root node. In this case, this is a file containing
user functions, so the root node is a FunctionFile. The first child of every function node
is the function declaration, which includes information about the function name, inputs
and outputs. The remaining children are the top-level (i.e., excluding those contained in
other blocks) statements, in the program order. Statements such as loops and branches
are represented as a block node. The first child of the block is the block header, which
indicates the type of block (a for statement, in this case) and associated data. The
remaining children of the block are the block statements. Note also that comments are
treated as statements for AST purposes, and as such remain in the tree.

51

Compiler Prototype Architecture

1 function y = f(x)

2 y = zeros(1, x);

3 for i = 1:x,

4 y(i) = i * i;

5 end

6 end

(a) Simple MATLAB program.

1 FunctionFile

2 Function

3 Statement: FunctionDeclaration (line 1)

4 Outputs

5 Identifier: y

6 Identifier: f

7 FunctionInputs

8 Identifier: x

9 Statement: Assignment (line 2;)

10 Identifier: y

11 SimpleAccessCall

12 Identifier: zeros

13 MatlabNumber: 1

14 Identifier: x

15 Statement: Block (line 5)

16 Statement: SimpleFor (line 3)

17 Identifier: i

18 Operator: :

19 MatlabNumber: 1

20 Identifier: x

21 Statement: Assignment (line 4;)

22 SimpleAccessCall

23 Identifier: y

24 Identifier: i

25 Operator: *

26 Identifier: i

27 Identifier: i

(b) Equivalent AST representation, in textual form.

Figure 4.3: Example of MATLAB element-wise expression and equivalent loop code.

4.2.2 AST Transformation Passes

Once the program AST has been built, MATISSE performs a number of transformations
to simplify the next phases, particularly the SSA construction.

The transformations include:

� Return Removal : MATISSE’s SSA IR does not use return statements, and every
function returns only once, at the end. To deal with this discrepancy, we transform
the AST of programs with return statements into the equivalent without returns.

52

Compiler Prototype Architecture

� Operator Replacement : MATLAB defines a set of operators that have equivalent
function calls (e.g., plus(A, B) for A + B). To avoid redundancy in later phases,
both formats are normalized to use the function call form. The short-circuiting
operators (i.e., || and &&) are not converted, as there does not appear to be a
function that replicates these semantics, and there does not seem to be a way to
implement short-circuiting logic in function arguments.

� Matrix Replacement : Normalizes matrix construction by replacing matrix expres-
sions into the equivalent horzcat/vertcat function calls1.

� While Loop Simplification: Simplifies while loops, so that the loop condition is
always 1, and instead code is injected at the beginning of the loop to check the
condition and break the loop if it is false.

After these passes have been executed, the AST is in a normalized form, ready to
be converted to the SSA IR.

4.2.3 Matrix-Based SSA IR – The Sequential Case

Between the AST and the code generation stage, an SSA-based IR is used by MATISSE
to perform most transformations.

This section describes this IR in detail, including how MATISSE constructs it, and
the parallelism-specific extensions.

SSA IR Description

Previous versions of MATISSE [BRC15b] had two intermediate representations: the
MATLAB-based AST described in Subsection 4.2.1 and the C IR described in Subsec-
tion 4.2.7. The MATLAB IR was directly converted to C IR statement by statement, and
type and shape inference occurred during this process. This limited the scope of many
analysis and transformations, including type and shape inference. This is undesirable
because one often wants to apply function-wide optimizations or code transformations
that rely on type information but for which the C IR is too low-level.

To solve this problem, this thesis proposes a new IR for MATISSE [RBC16], with
SSA semantics [RWZ88]. This SSA IR is used between the MATLAB IR and the C IR.
The type inference mechanism, the optimizations and the C IR generator are now based
on the SSA IR. Since it is built before type inference, it has both typed and untyped
variants.

Figure 4.4 demonstrates the SSA code for the MATLAB function in Figure 4.3a,
as generated by MATISSE before type inference has been executed. For simplicity, the
code shown already has been processed by some initial transformation passes, notably
dead code elimination, to remove unnecessary boilerplate code that is generated by
MATISSE.

In this SSA representation, each function is divided into blocks. A block is a sequence
of instructions that are executed one at a time. Blocks are identified by a block ID, with
the # prefix. Transformations may safely assume that no control flow occurs within a

1There is an exception to this. If an empty matrix expression (i.e., []), optionally inside parenthesis,
is the right-hand side of an assignment, MATISSE does not perform the replacement. These are removal
statements and replacing the [] literal with an expression returning an empty matrix changes the
behavior of the program. MATISSE does not currently support removal statements, but it was still
decided to disable the transformation in those cases, as it would be incorrect.

53

Compiler Prototype Architecture

1 Function f % function y = f(x)

2 block #0:

3 line 1

4 x$1+2+3 = arg 0

5 line 2

6 $zeros_arg1$1 = 1 % y = zeros(1, x);

7 y$2 = untyped_call zeros $zeros_arg1$1, x$1+2+3

8 line 3

9 $start$1 = 1 % for i = 1:x,

10 $interval$1 = 1

11 for $start$1, $interval$1, x$1+2+3, #1, #2

12 block #1:

13 line 3

14 y$3 = phi #0:y$2, #1:y$4

15 i$2 = iter

16 line 4

17 $mtimes$1 = untyped_call mtimes i$2, i$2 % i * i

18 y$4 = set y$3, i$2, $mtimes$1 % y(i) = ...

19 block #2:

20 line 5

21 y$ret = phi #0:y$2, #1:y$4 % end

22 line 6

Figure 4.4: MATISSE SSA code for the example in Figure 4.3a, before type inference has
been applied. The code at the right side indicates which parts of the original MATLAB
code generated the given SSA code, and is not part of the SSA representation MATISSE
uses.

block, as all control-flow-related instructions (e.g., for and break) can only be present
as the very last instruction of their block.

In this IR, control flow is still fairly high-level, as concepts such as if statements
and for loops still exist (with the branch and for instructions, respectively). An
instruction such as for A, B, C, #D, #E (line 11 of Figure 4.4) means: perform a
ranged for loop (with the MATLAB semantics for the interval A:B:C, so starting at
A, ending at C, with an interval B). The body of this loop starts at block #D, and after
the loop is completed proceed by executing block #E. The iteration variable of the loop
is given by the iter instruction (line 15 of Figure 4.4).

At the end of a block, control-flow does not automatically proceed to the next block.
Instead, the current control flow context (e.g., for loop body) ends. If there are no
control flow contexts pending (as is the case at the end of block #2), the execution of
the function ends and the function returns the variables ending with $ret.

As with any SSA representation, every variable can only be assigned at one point
of each function [SJGS99], so every MATLAB variable assignment must result in a
new SSA variable being created. The proposed IR goes one step further: even indexed
assignments (e.g., A(1) = 2;) result in a new SSA variable being created.

If a variable’s value diverges in a branch or loop, the appropriate value can be
obtained with a φ (phi) operation. For instance, in $out = phi #1:$value1,
#2:$value2, the value of $out is $value1 if the control flow came from block #1,

54

Compiler Prototype Architecture

and value2 if the control flow came from block #2.

The proposal attempts to make the instructions very simple, so complex expressions
(such as A + B .* C) must be dealt with by introducing temporary variables. By
convention, SSA variables starting with a $ (e.g., A1) are compiler temporaries,
whereas SSA variables starting with an identifier (e.g., A$1) correspond to variables
that exist in the original MATLAB program.

There are no dedicated operators for && and ||. Instead, MATISSE injects an if/else
statement (as a branch instruction) to implement the semantics of the short-circuited
operators.

Appendix B presents the list of MATISSE SSA instructions and their semantics.

The proposed SSA representation includes both high-level instructions and low-level
ones. The reason for this is that this SSA IR is produced from a nearly 1-to-1 rep-
resentation of MATLAB (the AST), but is used all the way to a level very close to
C.

Functions and for loop instructions can be annotated with properties to store ad-
ditional information. Some directives (e.g., %!serial_dimension) are implemented
using this feature.

Construction of the SSA Representation

As previously mentioned, the SSA IR is constructed from a transformed AST represen-
tation. This is performed one function at a time, even in files with multiple functions.
It is also in this stage that MATISSE processes directives (see Subsection 4.1.2).

MATISSE starts by traversing the AST to determine which identifiers refer to vari-
ables are which are functions. In MATLAB, functions can be called without using
parentheses (when the function call takes no arguments) and variables can have the
same name as functions, so this step is fundamental to properly process the code. MA-
TISSE determines that if an identifier is a variable at any point of the function, then
it is a variable at all points of the function, and any identifier that does not refer to
a variable must refer to a function. In order to perform name resolution, the compiler
uses the following queries:

� Is it an argument or returned value of the function that is currently being pro-
cessed? If so, then it is a variable.

� Is it used to store the result of an assignment (such as A = B, A(i) = B or
for i = 1:N)? If so, then it is a variable.

� Is it used in a global declaration statement? If so, then it is a global variable.
However, global variables are outside the scope of this thesis.

� All other identifiers refer to functions.

Notably, identifiers referenced by directives are not recognized as variables unless
they are defined somewhere else in the function, because in the AST directives appear
as normal comments.

Given this, MATISSE generates, at the start of block #0, a stub definition for
all variables. Arguments are assigned using the ARG$1 = arg <N> instruction, and
other variables are given undefined values using the VAR$1 = !undefined instruc-
tion. Many of these stub definitions are later removed by dead code elimination.

55

Compiler Prototype Architecture

The compiler then constructs the initial block context. Block contexts store informa-
tion necessary for SSA construction that may change at multiple points of the program,
such as:

� Which SSA variables contain the most recent values of each MATLAB variable
at that point of the program (initially, the compiler uses the aforementioned stub
definitions);

� Current program line;

� Information about the matrix accesses that the SSA builder is currently traversing
(e.g., to know that in A(sqrt(end)), end is used as the only index of an access
to A);

� Information necessary to determine the target of break and continue state-
ments;

� Active SSA block (initially, it refers to block #0).

MATISSE processes the tree nodes in depth-first order to generate the equivalent
IR statements. At the end of each branching point (i.e., if, while or for blocks),
MATISSE reads the data from the block contexts resulting from each possible source
and produces φ nodes, if necessary.

When a comment is processed, MATISSE analyses it to determine whether it matches
any known directive, and generates code as appropriate for it.

Finally, when MATISSE reaches the end of a function, it produces the $ret SSA
variables, which contain the final values of all returned MATLAB variables.

4.2.4 Type Inference

MATLAB is a dynamically typed language. However, both C and OpenCL are statically
typed. This means that, to convert MATLAB to C/OpenCL, MATISSE has to discover
the types and shapes of MATLAB variables. This operation is known as type and shape
inference.

Accurate and precise type and shape inference is important because many MATLAB
operations have different semantics depending on the types of the inputs, so knowing
which one should be used helps reducing the number of runtime validity checks or
generating specialized optimized versions of MATLAB functions. For instance, the
operation sum(X) can be implemented without memory allocations if X is known to
be a row or column matrix.

MATISSE currently performs type inference at the SSA level, so each MATLAB
variable can have different inferred types at different points of the program, as long as
each SSA variable only has one. Algorithm 4.1 shows an overview of the type inference
algorithm and its handling of some simple instructions. For cases without control flow,
the type inference functions in a very straightforward manner, by visiting one instruction
at a time.

Branching instructions are also relatively simple. MATISSE first inspects the condi-
tion to determine whether it is known to be true, known to be false, or neither. Based
on this, MATISSE may avoid having to visit the then or the else case. If all possible
taken branches intercept executions (i.e., markUnreachable), then the branch it-
self intercepts the point after the branches and type inference does not run on the end

56

Compiler Prototype Architecture

function inferFunctionTypes:
Input: currentFunction, argumentTypes
Output: types
rootContext ← newRootContext(argumentTypes)
inferBlockTypes(rootContext, currentFunction, 0)
types ← rootContext.types

end
function inferBlockTypes:

Input: context, function, blockId
instructions ← getFunctionBlock(function, blockId)
foreach instruction ∈ instructions do

inferInstructionTypes(instruction, context, function)
if ¬isReachable(context) then

break foreach
end

end

end
function inferInstructionTypes:

Input: instruction, context, function
if instruction.type = assignment then

type ← getVariableType(context, instruction.input)
addVariableType(context, instruction.output, type)

else if instruction.type = φ then
if hasPhiSource(context) then

sourceVarName ← getSourceFrom(instruction,
getPhiSource(context))

type ← getVariableType(context, sourceVarName)

else
type ← getCombinedType(getAllSourceTypes(context, instruction))

end
addVariableType(context, instruction.output, type)

else if instruction.type = continue then
markContinuePoint(context, instruction.location.blockId)
/* Statements after continue (not in the same block)

are not executed. */
markUnreachable(context)

else
/* Rules for other instruction types */
...

end

end
Algorithm 4.1: Overview of the type inference algorithm. Many instruction types,
notably related to control-flow, have been omitted for brevity.

block. Otherwise, type inference proceeds to the end block. Note that if only one of the
cases reaches the end without being intercepted, then the type inference takes that into
account when inferring the types of the phi nodes that merge the if/else values.

The most complicated case for type inference occurs in loops, shown in Algorithm 4.2.

57

Compiler Prototype Architecture

The concern that MATISSE deals with is that the types of variables may change each
iteration, so MATISSE repeatedly performs type inference on the loop body until the
inferred types stabilize. The compiler does this by storing the partial inferred informa-
tion in an object called the loop information sink. Every time a continue statement is
found, this information is added to the sink, which combines the inferred types and,
if any change is found, takes note of the need to rerun the type inference algorithm.
To start the algorithm, MATISSE treats the beginning of the loop as a continue point,
coming from the block containing the for/while instruction.

function inferForInstructionTypes:
Input: instruction, context, function
loopSink ← new LoopInformationSink(LoopType.For)
doContinue(loopSink, instruction.location.blockId, ∅)
while hasPendingBlocks(loopSink) do

sourceBlock ← nextPendingBlock(loopSink)
types ← getVariablesStartingFrom(loopSink, sourceBlock)
loopContext ← newWhileContext(context, sourceBlock, loopSink, types)
inferBlockTypes(loopContext, instruction.loopBody)

end
if isReachable(context) then

addBreakPointTypesToContext(loopSink, context)
inferBlockTypes(context, instruction.endBody)

else
/* Infinite loop. */
markUnreachable(context)

end

end
function doContinue:

Input: loopSink, sourceBlockId, newTypes
currentTypes ← getVariablesStartingFrom(loopSink, sourceBlockId)
changedTypes ← combineTypes(currentTypes, newTypes)
if changedTypes then

addPendingBlock(sourceBlockId)
end
setVariablesStartingFrom(loopSink, sourceBlockId, changedTypes)
if loopSink.loopType = LoopType.For then

/* For loops may end at any continue. */
doBreak(newTypes)

end

end
Algorithm 4.2: Type inference algorithm to deal with for instructions.

This type inference mechanism has some limitations. Most notably, because type
inference for each function call is performed by inferring the types of the function (based
on the input arguments), MATISSE does not support recursive functions.

In practice, this approach was sufficient for solving most of the considered MATLAB
code.

As an example, consider the SSA function presented in Figure 4.4, which represents
a computation in a simple for loop. Table 4.3 indicates the order the blocks are

58

Compiler Prototype Architecture

processed, and displays the resulting types of some function variables as an example.
MATISSE first processes the entirety of block #0, until it reaches the loop. Once it
reaches the loop, it uses the types of block #0 as some of the possible types of block
#2 (as the loop may have 0 iterations), and processes block #1 as coming from #0.
Since, at this point, block #1 can only have come from #0, the y$3 = phi #0:y$2,
#1:y$4 instruction copies the type of y$2 to y$3 and ignores y$4. The rest of the
loop is processed normally until the end is reached. At the end of the loop, an implicit
continue statement is passed, meaning that MATISSE will use the types at the end
of the first loop iteration as some of the possible types of block #2, and repeat the type
inference for the loop, this time as coming from #1. MATISSE infers the types for block
#1 once again, but this time when it reaches y$3 = phi #0:y$2, #1:y$4, it uses
the type of y$4 (inferred from the previous iteration) instead of the y$2. At the end
of the loop, MATISSE once again uses the inferred types as some of the possible types
of block #2 and compare the results of the type inference with those obtained in the
previous iterations. Since they are the same, MATISSE stops inference for block #1,
and proceeds to block #2. Finally, MATISSE performs type inference on block #2.

Table 4.3: Order in which the type inference algorithm processes blocks, and results of
some of the types inferred at the end of those blocks, for the example in Figure 4.4.

Block Iteration Source Block y$2 y$3 y$ret

#0 N/A N/A double[1, ?] undefined undefined
#1 1st #0 double[1, ?] double[1, ?] undefined
#1 2nd #1 double[1, ?] double[1, ?] undefined
#2 N/A N/A double[1, ?] double[1, ?] double[1, ?]

4.2.5 SSA Transformation Passes

MATISSE uses its SSA IR to run a wide range of transformation passes. In total, more
than 100 passes are executed, though some of these are repeated. Most of the passes are
applied after type inference, as type information is critical for high-quality optimization,
and some passes are applied multiple times.

Before the compiler passes are executed, the SSA IR code very closely resembles the
original MATLAB code, using high-level instructions such as matrix-operations. Many
of these passes translate the high-level unoptimized operations into gradually more low-
level optimized equivalent. By the end of the compilation stage, the IR instructions are
very close to the C equivalent.

It is also in the SSA transformation stage that the code patterns for parallelization
are detected, and computations are offloaded to one or more kernels.

Specific SSA passes are discussed in more detail in Subsection 4.2.6 and in Chapter 5.
A list of all available SSA passes and their default order of execution is available in
Appendix D.

4.2.6 Parallelization

MATISSE is capable of performing auto-parallelization, based on instructions provided
by directives. Overall, this is done by the following stages:

59

Compiler Prototype Architecture

� Parallel Region Identification: Identifies sections marked by the user as paral-
lel (either function-wide, or ending in a %!end directive) and moves them to a
custom code block. It is executed before most other passes, including sequential
optimizations.

� Parallel Section Extraction: Extracts the parallel regions to a separate IR con-
tainer, in a manner similar to outlining. It is executed before most other passes,
including sequential optimizations.

� Parallel Section Analysis: Analyzes parallel sections and extracts loops that should
be offloaded to kernels. When doing so, MATISSE also naively introduces data
transfers to ensure correctness, without concern for efficiency. Because this phase
only applies to parallel sections, all identified loops are known to be in a section
marked as %!parallel.

� Recombination: MATISSE moves the code from the parallel section back to the
containing function, now without the offloaded loops but instead with kernel calls
and data transfers, in a manner similar to inlining.

MATISSE’s parallelization strategies are based on for loops. The compiler searches
for for loops within parallel sections, verifies whether they follow a certain set of criteria
and, if so, offloads them. It also supports parallelization along multiple loops (i.e., loop
nests).

Consider the example in Figure 4.5. To determine whether a group of loops can be
offloaded to OpenCL, the tool searches for potential loop-carried dependences in phi
instructions (e.g., y$3 is used to build y$4).

1 block #0:

2 % y$2, A$1, B$1 defined outside parallel region

3 $start$1 = 1

4 $interval$1 = 1

5 end1 = call numel [INT] X$1

6 for $start$1, $interval$1, end1, #1, #2

7 block #1:

8 y$3 = phi #0:y$2, #1:y$4

9 % y$3 used to build y$4

10 % No other loop-carried dependences.

11 i2 = iter

12 A_value1 = simple_get A$1, i2

13 B_value1 = simple_get B$1, i2

14 y_value1 = call plus [DOUBLE] A_value1, B_value1

15 y$4 = simple_set y$3, i2, y_value1

16 % y$4 constructed safely

17 block #2:

18 y$5 = phi #0:y$2, #1:y$4

Figure 4.5: SSA code for parallel region of function computing vector add, annotated
with information about loop-carried dependences.

For each potential dependence, the compiler tracks how it is used and checks if it
meets the requirements of known safe reductions. A loop can only be parallelized if all

60

Compiler Prototype Architecture

potential loop-carried dependences can be safely handled. In addition, if there is any
operation that is unsupported by the OpenCL backend (such as a matrix allocation),
then the loop is not offloaded. The compiler treats matrix set operations as a form of
reduction. For a matrix set reduction to be valid, an additional number of conditions
must be met:

1. All matrix access operations within the loop must be known to be in-bounds. No-
tably, this means that there can be no matrix resizes. In practice, this means
that all matrix accesses must be through the simple_set, simple_get or
get_or_first SSA instructions (see Appendix B).

2. The matrix can only be used for size operations (e.g., numel), gets or sets;

3. The final reduction variable must be constructed from the initial reduction vari-
able. A is constructed from B as A = simple_set B, ..., possibly with other
intermediate variables. Once a variable is used to construct another variable, it
must no longer be referenced (though in a branch, both cases can each reference
the same variables). One of the implications of this is that all SSA variables for a
matrix reduction can be combined into the same final matrix variable.

4. There must be no read-after-write, write-after-read or write-after-write depen-
dences across loop iterations between any accesses to the matrix.

Other forms of reductions must also fit a condition equivalent to 3 (but with different
formats of construction).

In order to evaluate whether any data dependence described in (4) occurs, the com-
piler uses the Z3 SMT solver (see Section 2.2). For every pair of potentially problematic
accesses, it verifies if the following condition is possible:

∨
i

Li 6= Mi ∧
∧
i

Ai = Bi (4.1)

Where L and M represent the list of loop nest indices for two iterations and A
and B are the lists of access indices. If the condition is true, then there is a data
carried dependence. If A and B are not the same size, then the compiler conservatively
assumes that there might be a data dependence. In other words, two different loop
iterations cannot access the same position of the matrix, unless both are matrix reads.
The programmer may add the %!no_index_overlap directive to a loop to explicitly
indicate that no iteration writes to a position accessed by another iteration, in which
case MATISSE assumes that the parallelization is correct without using Z3. Note that if
multiple nested loops are intended to be parallelized as dimensions of a kernel, then the
directive must be added to all of them. Similarly, the %!serial_dimension prevents
a loop nest from being parallelized along that specific dimension. Thus, if all loops in a
loop nest are marked with this directive, MATISSE does not parallelize that nest.

Currently, the only forms of reductions MATISSE supports are matrix sets and loop
carried sums/subtractions, but the compiler has been designed so that it is simple to
add other forms of reductions and patterns (e.g., min, max).

61

Compiler Prototype Architecture

The parallelization of loop nests often has the problem that some parallelization
options are mutually exclusive. For instance, consider the program in Figure 4.6. Both
loops can be parallelized: the outer loop has no loop-carried dependences, the inner
loop has a trivial reduction. However, parallelizing one prevents the parallelization of
the other. In these scenarios, MATISSE prefers to parallelize the outermost loop nest.

1 %!parallel

2 function y = f(A)

3 y = zeros(1, size(A, 2));

4 for i = 1:size(A, 2),

5 acc = 0.0;

6 for j = 1:size(A, 1),

7 acc = acc + A(j, i);

8 end

9 y(i) = acc;

10 end

11 end

Figure 4.6: MATLAB program with two mutually exclusive parallelization strategies.

Once MATISSE has obtained a list of loop nests to parallelize, it verifies which of
those loop nests (if any) consist of a single loop that perform a matrix set with the
loop iteration as the access index and a constant value (e.g., A(1:x) = k;). If this
is the case, MATISSE treats this as a parallel ranged set, as OpenCL has functions to
implement this specific operation. Otherwise, the compiler treats this as a kernel, and
generates the IR code accordingly.

After these operations are completed, MATISSE performs additional transforma-
tions, mostly in the form of data transfer optimizations.

4.2.7 Code Generation

In order to generate C/OpenCL code from its SSA IR, MATISSE first converts the
SSA IR (at this point using only fairly low-level instructions, because high-level idioms
have been transformed in the previous stages) to a custom C-like AST structure (the C
IR), and then generates the C code from the C IR. This subsection describes how this
conversion is done.

Final Variable Allocation

There are two main difficulties in translating the SSA IR code to C: C variables are not
single-assignment, and in fact directly expressing them as such can be highly inefficient
(e.g., matrix variables would need to be repeatedly copied on each assignment), and C
has no equivalent to φ nodes.

To solve these issues, the compiler uses a standard out-of-SSA algorithm by Boissinot
et al. [BDR+09], adapted to fit MATISSE’s needs. The implementation skipped the
parts of the algorithm designed to improve compilation performance because this stage
is not the bottleneck of MATISSE.

In order to convert code out of the SSA representation, the compiler executes the
following operations:

62

Compiler Prototype Architecture

1. Convert the IR to Conventional SSA (CSSA) form, by adding parallel copy in-
structions, as described in Method I of Sreedhar et al. [SJGS99];

2. Determine which SSA variables should be grouped into a single C variable;

3. Generate the C variable name for each group of SSA variables;

An SSA program is said to be in CSSA form if, and only if, for all φ nodes, all
φ inputs and the output can be assigned to the same final variable without changing
program semantics. The CSSA property is important because, when all SSA variables in
φ nodes are assigned to the same final variable, that φ node can be deleted (it becomes
a no-op instruction).

In order to determine which SSA variables should be grouped together, the compiler
computes each variable’s liveness set and builds the interference graph, as described by
Boissinot et al. [BDR+09], but with a key difference: their variable liveness analysis
algorithm does not work for MATISSE. The outputs of an instruction may interfere
with its inputs, and some variables are alive in points beyond their last usage.

In order to clarify the first problem, consider the MATLAB function in Figure 4.7.
Assume that MATISSE correctly detects that the assignment is fully in-range and that
X is a vector variable. The compiler implements these functions in C by passing the
outputs as function arguments (pointers). So if X is passed as an argument of a given
type T, Y is passed as an argument of type T*. Calls to hazard1 are implemented in C
as hazard1(X, &Y). Any call to hazard1 must assign X and Y to separate variables.
If not, MATISSE would dynamically detect that the variable for Y is already large
enough and refuse to allocate memory at the call to zeros (line 3). Writes to Y (line 4)
would therefore also modify the elements of X, in violation of MATLAB semantics. In
order to prevent this issue, on any call to a function implemented with outputs passed
as function arguments, MATISSE considers that the lifetime of the input variables lasts
for at least as long as the instruction, unless they are scalars or they are marked as
%!by_ref (see Section 5.4).

1 % Assume that X is a vector (e.g., row matrix)

2 function Y = hazard1(X),

3 Y = zeros(1, numel(X));

4 Y(2:end) = X(1:end-1);

5 end

Figure 4.7: MATLAB function showing a variable liveness hazard in a function call
instruction.

A second issue occurs in the iter instruction, used to obtain the current iteration
of a for loop. MATISSE uses the output variable of the iter instruction to determine
the name of the variable to use to store the loop iteration. Consider the example in
Figure 4.8. Standard MATLAB semantics dictate that the loop must have 10 iterations,
so the final value of y should be 10. However, in the equivalent C code, if i is used as
the iteration value and j is assigned to the same C variable, then the loop will execute
only once, producing incorrect results. To fix this issue, the lifetime of the iter output
variable must last at least as long as the entire loop body.

From the interference graph, the compiler creates groups of SSA variables that should
be assigned together. The primary concerns here are (1) to ensure that all variables in

63

Compiler Prototype Architecture

1 function y = hazard2()

2 y = 0;

3 for i = 1:10,

4 j = i + 10;

5 y = y + 1;

6 end

7 end

Figure 4.8: MATLAB code demonstrating variable liveness hazard in loop iterations.

φ nodes are assigned to the same final C variable and (2) if possible, reduce the number
of matrix copies. MATISSE uses the following approach:

� First, it assigns all variables in each φ node to a single group, because this is
required for correctness per Boissinot et al.’s algorithm [BDR+09];

� Then, it visits all instructions, and tries to assign the input and output SSA
variables to the same C variable in assignments, parallel copies and simple_set
instructions;

� It visits all instructions again, and tries to group together %!by_ref arguments
and the corresponding output, the input and output of complete_reduction
MATRIX_SET and set instructions, and the input and output Shared Virtual
Memory variables of invoke_kernel and set_gpu_range instructions;

Grouping matrix variables is important because any matrix assignment instruction
with different input and output matrices must be implemented with a matrix copy first.
Grouping scalar variables is not a concern, because C compilers will perform their own
highly-efficient register allocations [ALSU06].

Finally, MATISSE determines the name of final C variables based on the matching
SSA variables. The mechanism to do so is shown in Algorithm 4.3.

SSA variables are split into two categories: user SSA variables that start with a
letter character (e.g., A$1), representing SSA variables that were obtained from the
MATLAB source code, and temporary SSA variables that start with a $ character (e.g.,
A1), that were generated by transformation passes. If a variable group has both user
and temporary variables, MATISSE ignores the temporary variables and use only the
user variables to determine the name of the final C variable. MATISSE obtains the base
names (e.g., A for A1) of each variable, and combine them to produce the final name.
As a special exception, for groups of temporary variables, MATISSE gives preference to
more informative names, by prioritizing them over names that are known to be of little
relevance (e.g., one).

C IR

The final compiler stages of MATISSE are performed on a custom C-like AST IR – the C
IR. This representation supports the subset of C functionality that MATISSE requires,
but with certain concepts that are still higher-level than C concepts. For any given C
IR code, there is a direct C equivalent.

64

Compiler Prototype Architecture

function chooseFinalName:
Input: ssaVariables, allocatedNames
Output: name
candidates ← ∅
hasUserVariable ← ∃var ∈ ssaV ariables : isUserV ariable(var)
foreach ssaName ∈ ssaVariables do

baseName ← getBaseName(ssaName)
if isUserV ariable(portion) ∨ ¬hasUserV ariable then

candidates ← candidates ∪ {baseName}
end

end
hasGoodStrengthPortions
← ∃candidate ∈ candidates : ¬isLowStrength(candidate)
if ¬hasUserV ariable ∧ hasGoodStrengthPortions then

candidates ← {candidate ∈ candidates|¬isLowStrength(candidate)}
end
/* At this point, candidates is never empty */
name ← join(candidates, ” ”)
if startsWithDigit(name) then

/* Ensure names do not start with digits */
name ← concat(”x”, name)

end

end
Algorithm 4.3: Simplified algorithm to determine final name of generated C vari-
ables.

The representation is divided into top-level instances (e.g., functions, structs, and
typedefs). Each instance can have a declaration, which is placed in a header file, and
an implementation, which is placed in a C source file. Some instances have neither dec-
larations nor implementations – they are the inline functions. An example of an inline
function is the operator ”A + B”, which is represented in C IR as a function call with
two arguments. Each instance can also have implementation, definition and call depen-
dences. For instance, given a function void func(tensor d* arg), the instance
that defines tensor d is a declaration dependency of func, because if tensor d is
not included first then the declaration of the function is invalid.

Function definitions include:

1. A C function name, which is usually not the same as the name of the MATLAB
function – we perform name mangling to allow each MATLAB function to be
instanced multiple times (once per combination of input types and number of
output variables);

2. The file, a string indicating the file name that contains the function, not applicable
for inline functions;

3. A return type. For functions with no returned values or returning a single scalar
value, the return type is clear: it is void or the type of the returned value. On
other functions it is more complicated, as C does not support multiple returns
and we want to let the function dynamically know if memory for its outputs has

65

Compiler Prototype Architecture

already been allocated. To account for these cases, C IR includes the concept of
outputs-as-inputs, function arguments that are pointers where MATISSE will store
the results of the function. Figure 4.9 shows an example of using outputs-as-inputs
to implement the MATLAB function eye.

4. Zero or more arguments. These include the inputs of the function, as well as any
outputs-as-inputs.

5. The documentation comment is a /** ... */ comment that appears before
the function declaration, meant to be used by documentation parsers.

6. A statement list, containing the body of the function.

1 // Definition

2 tensor_d* eye_d_2(int dim_1, int dim_2, tensor_d** restrict t);

3

4 ...

5

6 // Call

7 eye_d_2(20, 20, &out1);

Figure 4.9: Example of outputs-as-inputs, with a call to function eye(20, 20), re-
turning the result in a variable named out1.

Figure 4.10 shows an example of a C IR representation. The function shown com-
putes the sum of all elements of a matrix, and the C equivalent can be seen in Figure 4.11.

All C statements correspond to InstructionNode nodes, containing a single child:
the specific type of statement, or a block node. Statements such as if branches are
implemented as blocks (MATISSE always generates brackets on branches and loops).
These blocks are statements with children statements. The first child of the block is the
block header, which indicates the type of block and condition or expressions. C com-
ments can be represented in one of two forms: documentation comments that are part
of the function signature, or comments in the body that appear as if they were C state-
ments. Note that functions such as numel_alloc_d and get_tensor_inline_d_1
do not appear to be called in the C code, because they are C IR inline functions. The
corresponding C expressions are X->length and X->data[iter], respectively.

Code Clean-up

Once MATISSE has constructed the full C IR code, it performs a few simple clean-
up operations on this IR to make the generated C code appear closer to what a C
programmer would usually write:

� Constant Propagation: Finds cases where constant variables are given literal values
and replaces uses of those variables. Useful because MATISSE generates variables
for all numeric constants;

� For Simplifier : Attempts to change MATLAB-style loops (which typically start at
1) into C-style loops (which typically start at 0) by finding loops with the format
for (INT_TYPE i = 1; i <= N; ++i), where i is only used in expressions

66

Compiler Prototype Architecture

1 Function test_tdd_undef_1:

2 InstructionNode

3 AssignmentNode

4 VariableNode: X_numel

5 FunctionCallNode numel_alloc_d

6 FunctionInputsNode

7 VariableNode: X

8 InstructionNode

9 AssignmentNode

10 VariableNode: y

11 CNumberNode: 0.0

12 InstructionNode

13 BlockNode

14 InstructionNode

15 ReservedWordNode: for

16 AssignmentNode

17 VariableNode: iter

18 CNumberNode: 1

19 FunctionCallNode LessThanOrEqual

20 FunctionInputsNode

21 VariableNode: iter

22 VariableNode: X_numel

23 AssignmentNode

24 VariableNode: iter

25 FunctionCallNode Addition

26 FunctionInputsNode

27 VariableNode: iter

28 CNumberNode: 1

29 InstructionNode

30 AssignmentNode

31 VariableNode: y

32 FunctionCallNode Addition

33 FunctionInputsNode

34 VariableNode: y

35 FunctionCallNode get_tensor_inline_d_1

36 FunctionInputsNode

37 VariableNode: X

38 FunctionCallNode Subtraction

39 FunctionInputsNode

40 VariableNode: iter

41 CNumberNode: 1

42 InstructionNode

43 ReturnNode

44 VariableNode: y

Figure 4.10: C IR code for a function that computes the sum of all elements of an array.

i - 1 and modifying the loop so that i starts 1 value before. Figure 4.12 shows

67

Compiler Prototype Architecture

1 double test_tdd_undef_1(tensor_d* X){

2 int X_numel;

3 int iter;

4 double y;

5

6 X_numel = X->length;

7 y = 0.0;

8 for(iter = 1; iter <= X_numel; ++iter){

9 y += X->data[iter - 1];

10 }

11

12 return y;

13 }

Figure 4.11: C code generated from the C IR code in Figure 4.10.

1 double test_tdd_undef_1(tensor_d* X){

2 int X_numel;

3 int iter;

4 double y;

5

6 X_numel = X->length;

7 y = 0.0;

8 for(iter = 0; iter < X_numel; ++iter){

9 y += X->data[iter];

10 }

11

12 return y;

13 }

Figure 4.12: Code generated from the C IR code of Figure 4.10 after the For Simplifier
clean-up pass.

C code generated after this pass has been applied to the code in Figure 4.10.

� Short-Circuited Expression Builder : Converts simple if/else statements with
certain patterns of variable assignments into equivalent short-circuited logical op-
erations.

� While Condition Builder : The code generator only produces while(1) conditions
(the loop condition is checked with if-break statements). While this is valid, it
is better to instead place the loop condition directly in the while, so this pass
performs that conversion.

� Elseif Builder : Converts else regions consisting solely on an if statement into
else if regions. In other words, it replaces else { if (cond) body } con-
structs with else if (cond) body.

� Redundant Return Removal : Removes empty return statements (i.e., return;)

68

Compiler Prototype Architecture

at the end of functions.

� Empty Else Elimination: Eliminates empty else blocks.

In combination, these passes make the generated C code closer to what hand-coded
C looks like.

C and OpenCL Code Generation

MATISSE generates C code by first converting its SSA IR into the C IR, and then
converting the C IR to the C source code and header files. The compiler performs C IR
generation on a per-function basis, one instruction at a time. After all C IR functions
have been constructed, MATISSE creates the C project, by determining which files each
function belongs to and adding the #include dependences, as necessary. This is a
simple stage because the C IR has been designed to be trivially convertible to C.

OpenCL code generation uses the same strategy, except that it does not generate
header files and writes to separate .cl source files. Figure 4.13 shows the generated
OpenCL code for the example in Figure 4.1. The directive in line 3 is necessary to
use double precision on older OpenCL versions, but causes warnings in recent versions.
Thus, MATISSE adds lines 1 and 4 to conditionally determine when to add the directive.
In this example, MATISSE generates two kernels: one for the t1 = A * 2; kernel,
and one for the explicit for loop. The call to zeros(1, numel(A)) could cause the
generation of a third kernel (to fill the output matrix with zeros), but on AMD GPUs,
MATISSE is configured to use the clEnqueueFillBuffer function instead. In this
example, MATISSE is able to eliminate all bounds checking without any additional
directives or compiler settings.

4.2.8 Overview

MATISSE uses multiple compilation stages to process the input MATLAB code and to
generate the resulting C/OpenCL program. Figure 4.4 lists the main representations
of code used by the compiler. It parses a subset of MATLAB and generates standard
C/OpenCL code, but all the main IRs were designed and built specifically for MATISSE.
MATISSE parses MATLAB code to an AST representation, from which an SSA IR is
constructed. It is on this IR that type inference is executed. MATISSE then performs
the bulk of the optimizations, before generating a C-like AST called C IR. Finally,
MATISSE cleans the obtained C IR and generates the final C and OpenCL code.

4.3 Compiler Validation

In order to test MATISSE, a combination of manual and automated testing was used.
The automated testing approach is primarily composed of 3 components:

1. A set of small unit tests designed to test specific features, in as much isolation as
practical.

2. A set of larger tests (e.g., benchmarks) that test the compiler. These tests con-
sist of MATLAB programs along with respective inputs and expected outputs.
The programs are compiled with MATISSE and executed, and their results are
compared with the expected values, to verify that MATISSE generates correct
code.

69

Compiler Prototype Architecture

1 #if __OPENCL_VERSION__ < 120

2 // Since OpenCL 1.2, the pragma is no longer necessary and in fact may

trigger warnings.

←↩

3 #pragma OPENCL EXTENSION cl_khr_fp64 : enable

4 #endif

5

6 __attribute__((reqd_work_group_size(128, 1, 1)))

7 __kernel void directive_hello_world_1_2(global double* t1, global double*
t2, uint N_1)

←↩

8 {

9 size_t global_id0_1;

10 size_t global_size0_1;

11 size_t group_id0_1;

12 size_t local_id0_1;

13 size_t local_size0_1;

14

15 global_id0_1 = get_global_id(0U);

16 global_size0_1 = get_global_size(0U);

17 local_id0_1 = get_local_id(0U);

18 local_size0_1 = get_local_size(0U);

19 group_id0_1 = get_group_id(0U);

20 if(global_id0_1 < N_1){

21 int i;

22 i = global_id0_1 + 1 + 1;

23 t2[i - 1] = t1[i - 1 - 1];

24 }

25

26 }

27

28 __attribute__((reqd_work_group_size(128, 1, 1)))

29 __kernel void directive_hello_world_1_1(global double* A, global double* t1,

uint N_1)

←↩

30 {

31 // Variable declarations/initializations omitted for brevity,

32 // as they are the same as the ones used in the previous kernel.

33

34 if(global_id0_1 < N_1){

35 int iter;

36 iter = global_id0_1 + 1;

37 t1[iter - 1] = A[iter - 1] * 2;

38 }

39

40 }

Figure 4.13: MATISSE-generated OpenCL code for the code in Figure 4.1, when MA-
TISSE is configured to target a generic AMD GPU and use the direct schedule.

3. A tool that automatically builds MATISSE and runs the relevant tests whenever

70

Compiler Prototype Architecture

Table 4.4: Overview of main languages and IRs used in MATISSE.

Code Representation Type MATISSE-specific Operations

MATLAB Source Code Code Custom Subset Parsing

MATLAB-based AST AST Yes Pre-processing
SSA IR construction

Untyped SSA IR Block-based Yes Type Inference
Transformations

Typed SSA IR Block-based Yes Optimizations
Parallelization
C IR construction

C IR AST Yes Clean-up
Code generation

C / OpenCL Source Code Code No MATISSE output

changes are committed to the source code repository, as well as periodically. This
tool only covers the sequential C code generation.

In combination, these components help improve MATISSE by signaling regressions
in the compiler.

4.4 Summary

In this chapter, the overall architecture of the MATISSE compiler was discussed, in-
cluding the programming model users are expected to use, the supported features and
directives, the main stages and IRs of the compiler and the validation of the compiler.

The compiler was built to process MATLAB code with as few modifications as
possible, using a lightweight directive system for parallelization. Directives were added
for advanced features, such as the ability to disable optimizations on specific functions,
but MATISSE can be used without resorting to these features.

Table 4.5 lists the stages of the compiler, as well as their inputs and outputs. MA-
TISSE parses MATLAB code to generate an AST, converts it into an SSA IR that is used
for type inference and optimization, then converts the SSA IR into another tree-based
representation called CIR and finally generates C/OpenCL code.

In order to validate the compiler, multiple small test cases were automatically exe-
cuted whenever changes have been committed to the source code repository. In addition,
the compiler was also validated using larger test cases, such as benchmarks.

71

Compiler Prototype Architecture

Table 4.5: List of MATISSE compiler stages.

Compilation Stage Input Output

Parsing MATLAB Code AST
AST Transformation Passes AST AST
SSA IR Construction and untyped SSA passes AST Untyped SSA IR
Type Inference Untyped SSA IR Typed SSA IR
Transformation Passes Typed SSA IR Typed SSA IR
CIR Generation Typed SSA IR CIR
Cleanup Passes CIR CIR
Code Generation CIR C/OpenCL

72

5
Optimizations

Contents

5.1 Loop Conversion Passes . 74

5.1.1 Element-wise Operation Elimination . 74

5.1.2 Managing and Optimizing Loop Generation 76

5.2 Bounds-checking Elimination . 80

5.2.1 Scalar Solver . 81

5.2.2 Shape Solver . 81

5.3 Matrix Preallocation . 84

5.4 Pass By Reference . 86

5.5 Execution Schedules . 87

5.6 The Cooperative Schedule . 89

5.6.1 Motivation . 89

5.6.2 Description of the Optimization . 90

5.7 Data Transfers . 93

5.8 Shared Virtual Memory Heuristics and Optimizations 94

5.8.1 Coalesced Access Heuristic . 95

5.8.2 Sequential Access Heuristic . 96

5.9 Summary . 97

73

Optimizations

This chapter describes the optimizations proposed and implemented in MATISSE in
order to generate efficient code. This includes standard optimizations such as loop
fusion, as well as several optimizations to deal with MATLAB semantics, and finally
parallelization-related transformations.

5.1 Loop Conversion Passes

MATISSE includes a set of optimization passes designed to convert matrix operations
into optimized loops. The advantages of these optimizations are twofold: generate
efficient code with better cache locality and few branches and, more importantly, produce
fewer auxiliary matrices, e.g., by not generating them at all, or by eliminating them
with subsequent optimizations. Eliminating auxiliary matrices is important as it can
substantially reduce memory usage of the programs, and reduce the number of memory
access operations.

5.1.1 Element-wise Operation Elimination

The element-wise operation elimination consists of identifying element-wise operations
and replacing them with the equivalent for loops.

A function call or operator is considered element-wise if it meets all the following
requirements:

1. It has no side effects;

2. It has a single output variable R;

3. It receives input variables A1, A2...An that are all matrices, where a scalar is
considered a 1× 1 matrix;

4. All non-scalar input matrices have the exact same size/shape, which is the
size/shape of the returned variable. If all inputs are scalars, then the output is
also a scalar;

5. The value of Ri is computed solely based on the value of the scalar inputs and
the value at the same index of the non-scalar inputs. The function/operation to
do so is the same as the operation to compute the entire matrix. For instance, in
A = B + C, A(i) = B(i) + C(i). The operation + is a function call because
these operators have equivalent function calls in MATLAB.

Figure 5.1a shows a MATLAB function with a computation that could be performed
in a single loop (see Figure 5.1b) instead of the shown matrix expression. If we consider
the operation to be a function call, then the element-wise operation elimination pass
has effect similar to inlining, albeit for a more targeted purpose.

The optimization searches for function calls that are known to be element-wise (e.g.,
sin) by traversing every SSA instruction in order and replaces them with:

� A memory allocation for the operation result;

� A loop iterating through all input elements, with its body reading the input ele-
ments, performing the same function call on the obtained scalars, and storing the
result in the output matrix.

74

Optimizations

1 y = sin(A);

(a) Element-wise operation.

1 y = zeros(size(A));

2

3 for i = 1:numel(A),

4 y(i) = sin(A(i));

5 end

(b) Equivalent loop version.

Figure 5.1: Example of MATLAB element-wise operation and equivalent loop version.

For element-wise operations involving more than one matrix, determining if one of
them is a scalar at compile time can be a difficult problem. This issue is avoided by using
the get or first SSA instruction (see Subsection 4.2.3). This instruction receives 2
inputs (a matrix A and an index i), and return A if the matrix is a scalar, or Ai if it is
a non-scalar (in this case, i is assumed to be in range of the matrix). The loop code to
access the matrix then just uses this instruction, without checking for size.

Figure 5.2 illustrates the result of the element-wise operation elimination pass (ex-
cluding code to verify that A and B have compatible sizes, at runtime).

1 block #0:

2 % Omitted: Code to compute the size of y

3 y1 = call matisse_new_array [DynamicMatrixType(DOUBLE, shape=[Matrix

Shape: [], Dims: -1])] $size$1

←↩

4 $numel_result$1 = call numel [INT] y1

5 $start$1 = 1

6 $step$1 = 1

7 for $start$1, $step$1, $numel_result$1, #1, #2

8 block #1:

9 y3 = phi #0:y1, #1:y2

10 $iter$1 = iter

11 A_value1 = get_or_first A$1, $iter$1

12 B_value1 = get_or_first B$1, $iter$1

13 y_value1 = call plus [DOUBLE] A_value1, B_value1

14 y2 = simple_set y3, $iter$1, y_value1

15 block #2:

16 y$2 = phi #0:$y$1, #1:$y$2

Figure 5.2: Generated SSA code for the y = A + B assignment after element-wise
operation elimination.

Note that operations such as sum(A) are not element-wise operations, as they use
multiple input values (i.e., matrix elements) to produce a single output scalar.

75

Optimizations

5.1.2 Managing and Optimizing Loop Generation

This subsection describes two techniques for managing and optimizing loop generation
which impact the use of temporary matrices: Loop Fusion and Direct Combined Element-
Wise Loop Generation.

Figure 5.3 shows a MATLAB function with a computation that could be performed
in a single loop instead of the shown matrix expression. The translation of each sub-
expression (e.g., A(:)) to a loop is trivial, as these expressions are all element-wise (see
Subsection 5.1.1). However, a direct translation results in 6 loops being generated in
the final code and 5 temporary matrices are needed to store the results of the subex-
pressions. A more efficient code generation scheme would recognize that the example
can be compiled to a single efficient loop without any memory allocation. In order to
achieve this, the element-wise operation elimination pass can be modified to directly
combine multiple subexpressions when transforming the code (this approach was named
the Direct Combined Element-Wise Loop Generation), or the compiler can later combine
multiple generated loops into a single one using Loop Fusion. In MATISSE, a mix of
both approaches is used to achieve the best results.

1 %!assume_matrix_sizes_match

2 function y = example(A, B, C)

3 y = sum(A(:) .* B(:) .* C(:));

4 end

Figure 5.3: MATLAB program that benefits from temporary matrix elimination.

Loop Fusion

Loop Fusion [KA01], also known as Loop Merging, is an optimization that combines
multiple loops into a single one. Although loop fusion itself does not eliminate temporary
matrices (i.e., there is no single explicit scalar replacement pass), it exposes opportunities
for a subsequent optimization passes (notably read after write elimination and dead code
elimination) that are capable of doing that.

The MATISSE Loop Fusion pass has two separate modes of operation:

1. Standard Loop Fusion: Detects two loops with the same number of iterations and
fuses them, if certain conditions are met (see below);

2. Variable Nesting Fusion: Detects two loops where one is a loop nest and another
is a simple one (nesting = 1), such that the product of the number of iterations
of the loop nest is equal to the number of iterations of the simple loop and certain
other conditions are met (see below).

Given two loops L1 and L2, MATISSE imposes the following restrictions on the
fusion of L1 with L2, for the standard loop fusion:

� L1 and L2 have the same start, interval and end values, so by extension they must
have the same number of iterations;

� Neither L1 nor L2 have break or continue operations (note that, at this stage,
MATISSE no longer includes the concept of return statements);

76

Optimizations

� If L1 and L2 both have operations with side-effects, the loops can not be fused;

� Instructions between the two loops (the middle block) must be movable to either
before L1 or after L2;

� For any matrix M modified in L1 that is accessed in L2, each iteration i of L1 and
L2 must only access Mi;

� The two loops must be related, that is, they must access (i.e., read or write) at
least one common matrix.

Given two loop nests L1 (with iteration variables i1,1...i1,N and L2 (with iteration
variable i2), MATISSE imposes the following restricts for variable nesting fusion:

� MATISSE only attempts Variable Nesting Fusion if Standard Loop Fusion is not
valid;

� L1 is the loop nest, and L2 is a single loop (i.e., the loop nest must be executed
before the single loop);

� All start and interval values must be 1.

� L2 must consist of a single basic block (i.e., no break, continue, branch or
loop instructions);

� i2 can only be used as part of simple_get or simple_set instructions with a
single index;

� There must be at least one matrix get in L2 referencing i2;

� The size of the matrices accessed with i2 must match the end values of the loop nest
in L1, in the correct order such that replacing the access M(i2) with M(i1,1, i1,2, ...)
should refer to the same value;

� The same side effect and middle block instruction restrictions that apply to Stan-
dard Loop Fusion also apply to Variable Nesting Loop Fusion.

To perform Variable Nesting Loop Fusion, MATISSE converts L2 into a loop nest
with the same number of loops as L1, and then performs Standard Loop Fusion.

Figure 5.4a shows a MATLAB example that benefits from Standard Loop Fusion.
Without loop fusion (see Figure 5.4b), MATISSE generates two loops: one for the
X(:) computation, and another for the sum(...) computation. With loop fusion (see
Figure 5.4c), MATISSE can generate a single loop, and avoid the allocation for the
temporary matrix sum_arg1, that stores the result of X(:).

In contrast, Figure 5.5a shows a MATLAB example that benefits from Variable
Nesting Loop Fusion. Without loop fusion (see Figure 5.5b), MATISSE gener-
ates two loop nestings: a 2D nesting for the X(2:end, 3:end) computation,
and a simple loop for the sqrt(...) computation. Standard loop fusion does
not fuse the nestings, as they have different depths and number of iterations.
However, the Variable Nesting Loop Fusion proposed in this thesis detects that
range_size_1 * range_size == numel_result and is able to combine the
two nests into a single one, as shown in Figure 5.5c.

77

Optimizations

1 function y = loop_fusion_test(X)

2 y = sum(X(:));

3 end

(a) MATLAB source code

1 int X_numel;

2 int iter;

3 int iter_1;

4 tensor_d* sum_arg1 = NULL;

5 int sum_arg1_numel;

6 double y;

7

8 X_numel = X->length;

9 create_td_2(X_numel, 1, &sum_arg1);

10 for(iter_1 = 0; iter_1 < X_numel; ++iter_1){

11 sum_arg1->data[iter_1] = X->data[iter_1];

12 }

13

14 sum_arg1_numel = sum_arg1->length;

15 y = 0.0;

16 for(iter = 0; iter < sum_arg1_numel; ++iter){

17 y += sum_arg1->data[iter];

18 }

19

20 tensor_free_d(&sum_arg1);

21

22 return y;

(b) Generated C source code, without loop fusion.

1 int X_numel;

2 int iter;

3 double y;

4

5 X_numel = X->length;

6 y = 0.0;

7 for(iter = 0; iter < X_numel; ++iter){

8 y += X->data[iter];

9 }

10

11 return y;

(c) Generated C source code, with loop fusion.

Figure 5.4: MATLAB program that benefits from Standard Loop Fusion.

However, there are circumstances in which both variants of loop fusion fail to
combine two consecutive loop nests. Consider the example in Figure 5.3. If the
%!assume_matrix_sizes_match directive is removed, there is no longer any guar-

78

Optimizations

1 function y = loop_fusion_test2(X)

2 y = sqrt(X(2:end, 2:end));

3 end

(a) MATLAB source code

1 range_size = X->shape[0] - 2 + 1;

2 range_size_1 = X->shape[1] - 2 + 1;

3 create_td_2(range_size, range_size_1, y);

4 for(iter_2 = 1; iter_2 <= range_size_1; ++iter_2){ // X(2:end, 2:end)

5 X_index_1 = iter_2 + 2 - 1;

6 for(iter_1 = 1; iter_1 <= range_size; ++iter_1){

7 (*y)->data[(iter_1 - 1) + (iter_2 - 1) * (*y)->shape[0]] =

X->data[(iter_1 + 2 - 1 - 1) + (X_index_1 - 1) * X->shape[0]];

←↩

8 }

9 }

10 numel_result = (*y)->length;

11 for(iter = 0; iter < numel_result; ++iter){ // y = sqrt(...)

12 (*y)->data[iter] = sqrt((*y)->data[iter]);

13 }

14 return *y;

(b) Generated C source code, without loop fusion.

1 range_size = X->shape[0] - 2 + 1;

2 range_size_1 = X->shape[1] - 2 + 1;

3 create_td_2(range_size, range_size_1, y);

4 for(iter_1 = 1; iter_1 <= range_size_1; ++iter_1){

5 X_index_1 = iter_1 + 2 - 1;

6 for(iter = 1; iter <= range_size; ++iter){

7 (*y)->data[(iter - 1) + (iter_1 - 1) * (*y)->shape[0]] =

sqrt(X->data[(iter + 2 - 1 - 1) + (X_index_1 - 1) *
X->shape[0]]);

←↩

←↩

8 }

9 }

10 return *y;

(c) Generated C source code, with loop fusion.

Figure 5.5: MATLAB function that benefits from Variable Nesting Loop Fusion. Vari-
able declarations were omitted for brevity.

antee that the loops constructed to compute A(:) and B(:), or B(:) and C(:), have
the same number of iterations, as one of the matrices may be a scalar. Thus, in this
example, only 2 loops are fused: the one for the C(:) operation and the one for the final
sum operation. However, MATISSE can still generate a single loop for this example by
also using the Direct Combined Element-Wise Loop Generation optimization, described
in the next section.

79

Optimizations

Direct Combined Element-Wise Loop Generation

The Direct Combined Element-Wise Loop Generation optimization is an extension of the
Element-wise Operation Elimination described in Subsection 5.1.1 to recognize chains
of element-wise operations (i.e., element-wise operations that are used only as operands
of other element-wise operations). The goal is to directly generate a single loop for the
entire chain without temporary matrices.

This optimization can be disabled by using the %!disable
element_wise_combine_loops directive.

The optimization is applied as follows:

1. Identify element-wise computations (see Subsection 5.1.1);

2. Identify which of these operations should be embedded in other element-wise com-
putations. If this optimization is disabled, then this set is empty, otherwise a
matrix should be embedded if all of these conditions apply:

(a) It is never referenced in a non-element-wise instruction;

(b) It is only used once;

(c) It is not a return variable.

3. Compute the data dependence graph for these computations;

4. When an element-wise operation that should be embedded is found, remove it and
generates no replacement code;

5. When an element-wise operation that should not be embedded is found, replace it
with the equivalent element-wise loop code.

The main limitation of this optimization is that it only works on element-wise opera-
tions. In particular, operations such as sum and A(:) are not considered element-wise,
the former because sum uses multiple values to compute a single one (so the shape of
the output is not the same as that of the input) and the latter because (:) is not a
function. These limitations explain why this optimization alone is insufficient to gener-
ate highly efficient loops. For better code generation, Loop Fusion is still executed after
this pass.

5.2 Bounds-checking Elimination

A significant number of MATLAB operations have edge cases that are costly to deal with.
For instance, every write to a matrix can potentially trigger a matrix resize so MATISSE
must check whether any index is out-of-range. Even if those resizes never happen at
runtime, the mere presence of the checks in the generated code can incur a significant
overhead inhibit valuable compiler optimizations, including automatic parallelization.

MATISSE handles these situations in two ways:

1. MATISSE features an Unchecked mode that turns off most of these checks on
a per-function or per-program basis, at the cost of compatibility (the supported
MATLAB subset naturally becomes smaller). For an overview of how to use the
per-function unchecked mode, see Subsection 4.1.2.

80

Optimizations

2. Static analysis to determine whether these checks are actually necessary, using a
solver.

The static analysis attempts to determine whether complex and inefficient SSA in-
structions (e.g., set) can be translated into fast simpler ones (e.g., simple_set)1.

The solver code consists of two components: the shape solver and the scalar solver.
The scalar solver receives function-wide information such as i = a - 2; to determine
whether statements about scalar values (e.g., i < a) are necessarily true. The shape
solver keeps track of the relative shapes of variables and finds statements such as A =
zeros(N, M); to discover facts such as size(A, 1) == N. However, this compo-
nent is unable to determine how scalar values relate to each other (e.g., N > N - 1)
without relying on the scalar solver.

5.2.1 Scalar Solver

MATISSE features two different scalar solvers: a fast naive one that is mostly used
for test purposes, and a second advanced solver based on a third-party library.
Symja [Sym16] was initially considered for this purpose, but it was found unsuitable
for the purposes of this thesis. For instance, it failed to identify that a < a + 1, or
that a < b && b < c implies a < c.

For these reasons, MATISSE uses Z3 [DMB08], a full-fledged theorem prover by
Microsoft Research that can be used to check theorems for satisfiability. MATISSE
needs to determine whether certain expressions are necessary, not satisfiable (possible).
Testing the necessity of an expression X is equivalent to testing the non-satisfiability
¬X. MATISSE only uses a small subset of Z3’s features. Notably, it does not currently
use any of Z3’s array or bitvector operations. In addition, MATISSE relies on Z3’s soft
timeouts to prevent excessive compilation times.

In order to use Z3 for bounds-checking, MATISSE first builds Z3 assertions for each
function. To do so, the compiler iterates through SSA IR instructions, and generates the
proper assertions, if possible. For instance, given the example in Figure 5.6a, MATISSE
builds the assertions specified in Figure 5.6b. Currently, MATISSE instructs Z3 to
process floating-point values as real numbers, by declaring floating-point variables as
Real.

In order to deal with for loops, MATISSE adds the assertion that, if the interval is
known to not be negative, the iteration variable must be less or equal to the end of the
loop range. MATISSE does not produce code to conditionally deal with branches, so
MATISSE does not detect that, in if(A <= 0) y = A;, y is necessarily positive.

5.2.2 Shape Solver

The shape solver uses the chosen scalar solver as a base and adds features intended to
determine how matrix sizes relate to each other.

Each matrix A has a size category, which includes the following information:

� numel: the value returned by the numel(A) function;

� dimsx: value returned by the size(A, x) function;

� dimsSincex: The result of
∏N

i=x dimsi, where N is the number of dimensions.

1A list of MATISSE SSA IR instructions is presented in Appendix B.

81

Optimizations

1 A = 4;

2 B = user_function(A);

3 C = A + B;

(a) MATLAB code

1 ; Assuming that A is an integer, and B and C are double-precision values.

2 (declare-const A$1 Int)

3 (assert (= A$1 4))

4 (declare-const B$1 Real)

5 ; No assertion is built for B = user_function(A)

6 ; As the Z3 scalar solver does not know how to deal with user functions

7 (declare-const C$1 Real)

8 (assert (= C$1 (+ A$1 B$1)))

(b) Generated Z3 assertions

Figure 5.6: Example of MATLAB code and generated Z3 assertions.

The number of dimensions N is determined by the type and shape inferencer which
is executed before the shape solver. As the shape solver does not compute N , it is not
part of size categories. Also of note is that since the shape solver is executed at the level
of the SSA IR, there is no need to deal with the case of matrices that change size (as
each resized matrix has a separate SSA variable).

In order to understand the reason for dimsSincei, consider the example in Figure 5.7.
In this example, A is a matrix with 3 dimensions, but only 2 are used in line 4. This
means that the value of end is n * n, and that is the number of elements of A(1, 1 :
end). The two matrices A(1, 1:end) can be computed separately, and have a size
given by two temporary variables. The dimsSince information allows MATISSE to
determine that those two variables must necessarily have the same value.

The numel, dims and dimsSince information is grouped in a size category. When
two matrices are known to have the same size, they share the same size category.

This information alone is, however, not sufficient to determine the size of certain
common cases. To understand why, consider the example in Figure 5.8. In this example,
A and y have the same size, since the size of y is directly obtained from A. However, the
existence of an intermediate step makes it difficult to determine that these two variables
should have the same size category. MATISSE deals with this problem by keeping track
of size matrices (x → A in this example). When a new matrix is constructed with a
function such as zeros(matrix), MATISSE searches the size matrices and reuses size
categories, as appropriate.

In order to use this information, MATISSE first has to compute it. In code with-
out loops, analyzing code instruction-by-instruction is sufficient to obtain the necessary
information, but in code with loops that is not the case.

In programs that do have loops, such as the one in Figure 5.9, this becomes more
complex. If A$1, A$2, A$3 and y$ret have the same size, MATISSE should be able
to discover this fact. This is the case if and only if A$2 and A$3 have the same
size. Consider the first highlighted instruction. In order to determine that A$2 has
the same size as A$1, MATISSE must first determine that A$1 has the same size as
A$3. However, A$3 has the size of A$2, which MATISSE does not know about at this

82

Optimizations

1 function y = f(n)

2 A = zeros(2, n, n);

3 B = A + 1;

4 % ...

5 y = A(1, 1:end) + A(1, 1:end);

6 end

(a) MATLAB code

1 Variables:

2 A: [category A]

3 B: [category A]

4 tmp1: [category tmp1]

5 tmp2: [category tmp2]

6 y: [category y]

7 Categories:

8 A: numel=#1, dims=[2, n, n], dimsSince=[N/A, #2, n]

9 tmp1: numel=#2, dims=[1, #2], dimsSince=[N/A, #2]

10 tmp2: numel=#2, dims=[1, #2], dimsSince=[N/A, #2]

11 y: numel=#2, dims=[1, #2], dimsSince=[N/A, #2]

(b) Size categories

Figure 5.7: MATLAB program demonstrating the use case of dimsSince. The first
dimsSince is always N/A because it is the same as the numel. Values starting with #
represent values that have no corresponding SSA variable.

1 function y = f(A)

2 x = size(A);

3 y = zeros(x);

4 end

Figure 5.8: MATLAB program demonstrating the use case of the shape solver’s size
matrices.

point. If MATISSE assumes that A$3 has the same size as A$1, then there is the risk
that this is not the case (e.g., if the second highlighted instruction instead accesses an
out-of-bounds position), but if MATISSE does not assume that, then this important
fact about sizes is not discovered, hindering important optimizations (such as bounds-
checking elimination).

MATISSE deals with this case by speculatively assuming that variables in loops are
in fact not going to be resized, and verifying that the assumption is correct at the
end of the loop. If it is not, then MATISSE rolls back and re-analyses the loop more
conservatively.

As computing the size categories of matrices is expensive, compiler passes explicitly
indicate whether previously computed size information becomes invalid after they are
executed. Thus, MATISSE only recomputes this information when it needs to.

83

Optimizations

1 block #0:

2 A$1 = arg 0

3 one1 = 1

4 end1 = call numel [INT] A$1

5 for one1, one1, end1, #1, #2

6 block #1:

7 A$2 = phi #0:A$1, #1:A$3 % <-- 1

8 i$2 = iter

9 A$3 = set A$2, i$2, one1 % <-- 2

10 block #2:

11 y$ret = phi #0:A$1, #1:A$3

Figure 5.9: SSA function illustrating the issues of computing size group information
instruction-by-instruction without backtracking.

5.3 Matrix Preallocation

MATLAB does not require programmers to initialize matrices before writing values to
them, but doing so can still be tremendously beneficial for performance reasons. If a
matrix set refers to a position out of index, then a resize operation is triggered. If this
happens inside a loop, this can have a substantial negative impact on performance.

The MathWorks Code Analyzer identifies and warns against this performance anti-
pattern [Shu12] but, nevertheless, it still appears in many examples.

MATISSE analyses each loop nest N where matrices are resized and preallocates
them as appropriate. Note that this optimization has some restrictions:

� Only loops starting at 1 and with an increment of 1 are supported;

� For a given matrix access A(x) and given a variable x that may vary in each
iteration, it must be possible to determine the maximum value of x within the
loop nest:

– Value x must grow (xnew ≥ xold) with each new iteration;

– All variables defined within the loop nest that are necessary to compute the
value of x and are not loop iteration variables of N must be possible to copy
to just before N . In other words, they must not have side-effects.

� Matrices to preallocate must not be used inside the loop in SSA statements other
than the set instructions. They must not be used in, e.g., numel expressions;

� Given a loop iteration i with a matrix set X(expr), expr must grow with i (i.e.,
i2 > i1 =⇒ expr2 > expr1).

For loop nests that comply with these restrictions, MATISSE injects the appropriate
preallocation before the loop nest, either by allocating the matrix (if it was not allocated
already), or by adding the resizing operations once before the loop (if it was). Even if
MATISSE fails to optimize a full loop nest, it still tries to perform the optimization on
its contents (i.e., inner loop nests).

Note that when MATISSE runs in Unchecked mode (see Section 5.2), all indices are
assumed to be in-range so MATISSE assumes that no resizes may happen. For this

84

Optimizations

reason, matrix preallocation fails in unchecked mode and users must manually allocate
the matrices instead.

The mechanism matrix pre-allocation can be seen in Algorithm 5.1.

function Prealloc:
Input: function
loopHierarchy ← getLoopHierarchy(function)
undefVars ← getUndefinedVars(function)
loops ← getLoops(loopHierarchy)
foreach loop ∈ loops do

convVars[loop] ← getConventionalVariables(function, loop)
end
usages ← getVariableUsageCounts(function)
foreach loop ∈ loops (reverse order) do

if getStart(loop) 6= 1 ∨ getIncrement(loop) 6= 1 then
continue

end
foreach convVar ∈ convVars[loop] do

/* Ensure that the variables are only being used
in phi instruction, or in matrix set
instructions */

if 6 hasCorrectNumberOfUses(convVar, loop) then
continue

end
/* Traverse the loop nest upwards, as long as we

find matching loop variables, to find the
outermost loop that applies to the loop
variable. */

nesting ← chooseNesting(loopHierarchy, loop, loopvar)
optimized ← true
while nesting 6= [] ∧ optimized do

/* Find matrix set instructions, and inject the
corresponding matrix allocation operation
before the loop. */

optimized ← visitInstructions(function, loop, convVar)
removeLast(nesting)

end

end

end

end
Algorithm 5.1: Simplified pseudo-code describing the algorithm for matrix preal-
location.

A loop variable is a tuple [Initial, LoopStart, LoopEnd, AfterLoop]),
with after loop being optional, that meets the following constraints:

� There are ”initial” and ”loop end” SSA variables that appear in a phi instructions
at the start of the loop, and, optionally, in the block following the loop. The two
phi instructions use the same variables. The output of the former phi instruction

85

Optimizations

is the ”loop start” variable, and the output of the phi instruction following the
loop, if it exists, is the ”after loop” variable;

� The has no continue or break instructions;

� No phi instructions in the block following the loop reference any conventional
variables, other than the phi instruction outputting the ”after loop” SSA variable.

� The four variables (initial, loop start, loop end, and after loop) must have the
same type, with the exception of the initial variable, which can have an undefined
type, and after loop, which may not exist.

5.4 Pass By Reference

In MATLAB, function arguments are passed by value, copied as necessary. Effectively,
this means that there is an implicit copy of every matrix argument.

MATISSE can automatically eliminate matrix copies in functions that use an argu-
ment without modifying it. But, on certain programs, in order to achieve performance
comparable to C, there is a need for a mechanism to eliminate copies even in cases
where the matrix argument is, in fact, modified by the called function. For these cases,
MATISSE supports the %!by_ref VarName directive, that indicates that certain argu-
ments should be passed by reference. This approach was intended to both be compatible
with MATLAB, consistent with our SSA IR semantics and resilient to user errors. Based
on these constraints, the directive was designed to work as follows:

� If a function input X is passed by reference, then there must be a function output
with the same name (the order of the inputs/outputs does not matter). Further-
more, the called function must not have more than one output named X;

� If a function has a %!by_ref output, then whenever it is called, its nargouts
must be large enough to cover that output;

� The inferred type of the output must be compatible (in terms of C signature) with
the type of the corresponding input;

� Arguments passed by reference must be simple variables, not complex expressions.
For instance, if f(X) has X as a by-ref input, then f([1, 2, 3]) is not a valid
expression and instead X = [1, 2, 3]; f(X); must be used;

� In the caller, the inputs passed by reference and their matching outputs must
correspond to the same MATLAB variable;

� Currently, only matrix types are supported by the directive, as pass by reference
does not yield performance improvements for scalars.

Even then, it is not always possible to avoid the use of a separate matrix. The
compiler emits a performance warning when the variable allocator is unable to properly
handle %!by_ref, and ensures that the generated code is still correct in these cases.

86

Optimizations

5.5 Execution Schedules

As mentioned in Subsection 4.2.6, MATISSE parallelization mechanism is based on loop
nests, with loop iterations being executed in parallel. There is, however, more than one
way to map loop iterations to OpenCL work-items.

Given a parallel loop nest with N dimensions and IT = I1×...×IN iterations, each of
the IT parallel iterations is herein referred to as a task. A mapping of tasks to work-items
is called a schedule, based on the OpenMP concept with the same name [Ope15, Table
2.5]. MATISSE schedules differ from OpenMP in some significant aspects:

� In MATISSE, the schedule is an entirely static loop property (i.e., the schedule of
the loop must be known at compile-time, and constant at run-time);

� The list of supported schedules of MATISSE and OpenMP are different. In partic-
ular, in OpenMP, the number of threads is controlled separately from the schedule,
whereas in MATISSE the number of work-items and the schedule are intrinsically
linked.

Figure 5.10 demonstrates a MATLAB program with an explicit user-specified execu-
tion schedule (i.e., direct). Without the schedule(direct) parameter, MATISSE
would be free to assign tasks to work-items in any manner it found suitable, as it would
if schedule(auto) was used. The explicit direct schedule forces a strict one-to-one
mapping between tasks and work-items, where task i is processed by the work-item with
global ID i.

1 %!parallel schedule(direct)

2 function y = f(X)

3 y = zeros(1, numel(X));

4 for i = 1:numel(X),

5 y(i) = X(i) * 2;

6 end

7 end

Figure 5.10: MATLAB program using an explicit direct schedule.

A full list of supported schedules is presented in Appendix C. Schedules can be
grouped in 5 categories:

� The automatic schedule (i.e., schedule(auto)): The MATISSE is free to assign
tasks to work-items in any manner. This is the default.

� The direct schedule (i.e., schedule(direct)): MATISSE uses a trivial one-to-
one mapping of tasks to work-items. In general, schedule(auto) tends to select
this schedule in the absence of reasons to select other schedules, as it is considered
a safe default.

� Thread coarsening schedules (e.g., schedule(coarse, N)): Each work-item
processes N tasks;

87

Optimizations

� Fixed work-groups schedules (e.g., schedule(fixed_work_groups, N)):
MATISSE launches N work-groups (and, by extension, N × L work-items, with
L being the local size), and tasks are evenly distributed across work-items. These
schedules are similar to OpenMP’s static schedule.

� Cooperative schedules (e.g., schedule(cooperative)): These schedules are
discussed in Section 5.6.

The thread coarsening and fixed work-groups schedules are available in two differ-
ent variants: the sequential schedules2, where each work-item processes a contiguous
chunk of tasks, and global rotation schedules, where consecutive tasks are assigned
to consecutive work-items, up to the available work-items, after which the next task
is assigned again to work-item 0. Global rotation schedules are recommended on de-
vices that benefit from coalesced memory accesses, and sequential schedules are recom-
mended for the remaining devices. However, sequential schedules may still be viable
on GPUs, for loops with memory accesses that would not be coalesced anyway. If the
specific schedule is not specified (e.g., when schedule(coarse, 2) is used instead of
schedule(coarse_sequential, 2)), MATISSE chooses the appropriate variant
based on target device information, which is currently schedule(direct) in most
cases.

Table 5.1 demonstrates how different schedules impact the number of work-items
and processed tasks, in an example where 10 tasks are processed and the local size is 2.
When the automatic schedule is used, MATISSE makes no assurances whatsoever about
the number of work-items, work-groups or tasks processed by each work-item. When
the direct schedule is used, the number of work-items, work-groups and processed tasks
is trivial to determine. When the coarse schedule (with a coarsening factor of 2) is used,
the program launches 6 work-items instead of 5, because MATISSE requires the number
of work-items to be the product of the local size and the number of work-groups.

Table 5.1: Example of how different schedules impact the number of work-items and
which tasks a work-item processes, if 10 tasks are available and the local size is 2. FWG
refers to Fixed Work-Groups. GR refers to Global Rotation.

Schedule Variant
Number of Tasks processed by

Work-item #0Work-items Work-groups

Automatic N/A Depends Depends Depends
Direct N/A 10 5 [0]
Coarse Sequential (F=2) 6 3 [0, 1]
Coarse Sequential (F=4) 4 2 [0, 1, 2, 3]
Coarse GR (F=2) 6 3 [0, 6]
Coarse GR (F=4) 4 2 [0, 4, 8]
FWG Sequential (N=2) 4 2 [0, 1, 2]
FWG GR (N=2) 4 2 [0, 4, 8]

2The sequential in the schedule names is not in opposition to parallelism, but rather to the way tasks
are mapped. These schedules launch as many work-items as the global rotation variants.

88

Optimizations

Figure 5.11: Example of a kernel computation with serialized memory accesses. In this
example, each work-item accesses a column of data and computes its sum, which is
stored in a second buffer.

5.6 The Cooperative Schedule

Section 5.5 discussed the concept of schedules – the mapping of threads to work-items.
This section describes in detail a group of schedules herein called the cooperative sched-
ules.

5.6.1 Motivation

As previously discussed, one of the most important aspects of GPU code optimization
is memory coalescing, to the point where GPU kernels with serialized memory accesses
can be slower than the CPU equivalent.

Unfortunately, it is not always trivial to write programs in a way that enables memory
coalescing, and some algorithms tend to be particularly hostile to this optimization.
Moreover, not all devices benefit from memory coalescing (e.g., CPUs typically do not)
and some programmers may prefer to share one single program version across all devices.

For this reason, approaches that automatically optimize programs with serialized
accesses into the equivalent with coalesced accesses are important, even if they are only
capable of optimizing a subset of all programs.

One common example of non-coalesced accesses occur when a 2D column-major
structure is traversed vertically, where each thread processes a column to perform some
computation, such as MATLAB’s sum. A visual representation of this computation is
presented in Figure 5.11 (though in a more realistic case, the buffers involved would be
significantly larger). At a glance, it would seem that the computation should be efficient
– after all, each work-item processes a contiguous chunk of data in a highly predictable
manner. However, on a typical GPU device, multiple work-items are executed in tandem,
so the memory accesses to 1, 5, 9 and 13 are performed simultaneously, and these accesses
are (for a sufficiently large buffer) not on the same cache line, so the accesses are not
coalesced.

Another example of this problem occurs on naive matrix-vector multiplications, as
presented in Figure 5.12. Once again, at a glance, the code seems to be efficient, as
both the matrix and the vector are accessed in the order the elements are laid out in
memory. However, consider that, when MATISSE parallelizes the code, the loop with
i will be executed in parallel but the loop with j will be executed sequentially, so the
access to M(j, i) is not coalesced (thread A accesses M(j, A) while the next thread
accesses M(j, A+1)).

89

Optimizations

1 %!parallel schedule(direct)

2 %!assume_indices_in_range

3 function y = matvec_mult(M, V)

4 y = zeros(1, size(M, 2));

5 for i = 1:size(M, 2),

6 acc = 0.0;

7 for j = 1:size(M, 1),

8 acc = acc + M(j, i) * V(j);

9 end

10 y(i) = acc;

11 end

12 end

Figure 5.12: Naive matrix-vector multiplication algorithm in MATLAB.

5.6.2 Description of the Optimization

This thesis proposes to fix these inefficiencies by introducing a new category of sched-
ules: cooperative schedules. In a cooperative schedule, there is a many-to-many mapping
between tasks and work-items, as each task is processed by multiple work-items coop-
eratively, but each work-item also processes multiple tasks. The host code itself only
requires minimal modifications, and often works without any modifications whatsoever.

The total number of tasks processed by a work-group is the same as in the direct
schedule (N , where N is the local size of the kernel), but each work-group processes each
task one at a time, so all work-items in a work-group concurrently process the same
task and, once that task is completed, they all move on to the same next task. Parts of
the kernel can be executed:

� Redundantly: All work-items compute the same operation independently (used
for simple computations);

� By a ”leader work-item”: A single work-item performs the operation, while the
other work-items perform no operations (used for e.g., memory operations);

� By distributing the work across the work-items: Used in certain inner for loops
(which is called the cooperative execution loops), with each work-item processing
a separate iteration.

It is clear that the use of the cooperative schedule has an overhead. All work per-
formed redundantly or by a single leader thread is effectively wasted compared to the
direct schedule. The cooperative schedule becomes more relevant when the kernel con-
tains inner loops with certain properties.

Consider the example in Figure 5.13. In this example, the outer loop (with iteration
variable i) is parallelized, but the inner loop (with iteration variable j) is not, because
MATISSE’s multi-dimensional parallelization requires perfect nesting. However, the in-
ner loop can still be parallelized at the local level. It is this property that the cooperative
schedule exploits to achieve speedups. Loops that can not be parallelized must still be
executed redundantly or by a leader work-item.

90

Optimizations

1 %!parallel

2 %!assume_indices_in_range

3 function y = f(W, n)

4 y = zeros(1, n);

5 for i = 1:n,

6 acc = 0.0;

7 for j = 1:n,

8 acc = acc + W(j, i);

9 end

10 y(i) = acc;

11 end

12 end

Figure 5.13: Example of a MATLAB kernel that may benefit from a cooperative sched-
ule. This function corresponds to the operation shown in Figure 5.11.

Figure 5.14 shows the simplified generated code for the MATLAB code in Figure 5.13,
with the direct and cooperative schedules. Note that the cooperative schedule introduces
an outer loop (so that each work-item processes multiple tasks) and changes the itera-
tions of the inner loop.

Not all loops can be cooperatively executed. For the most part, the mechanism to
determine whether a loop can be cooperatively executed is the same that MATISSE
uses to determine whether a loop can be offloaded to the GPU. The only exceptions are
that the %!serial_dimension directive is ignored and that the supported reduction
types are not necessarily the same.

When the MATLAB code does not manually specify the schedule, MATISSE at-
tempts to determine which schedule is the most efficient based on static program anal-
ysis and information about the target device. MATISSE uses the following heuristic to
determine when to use the cooperative schedule:

� The MATISSE target-aware information about the device must indicate that it is
known to benefit from this schedule (e.g., CPUs are always excluded);

� One or more memory accesses in the kernel region are statically predicted to be
serialized if the direct schedule is used;

� All memory accesses in the kernel region are statically predicted to be coalesced
if the cooperative schedule is used;

� No non-trivial instructions are executed in the kernel outside cooperative execu-
tion loops. The instructions that are considered trivial are those in a white-list.
Notably, this excludes kernels with any loops that are not cooperatively executed.

MATISSE only uses the cooperative schedule if all of the aforementioned conditions
are met.

MATISSE also implements subgroup_cooperative, a variant of the cooperative
schedule. The only difference between the two approaches is that this alternative version
performs the cooperation on the level of OpenCL subgroups instead of work-groups. The
reason for this variant is that, on many OpenCL-capable devices, memory coalescing

91

Optimizations

1 __kernel void f_1_1(double n, global double* W_data, uint W_dim1, global

double* y)

←↩

2 {

3 // Variable declarations and initializations omitted

4

5 if (global_size0_1 < N_1) {

6 i = global_id0_1 + 1;

7 acc_1 = ((double)0.0);

8 for(j = 1; j <= n; ++j){

9 acc_1 += W.data[j - 1 + (i - 1) * W.dim1];

10 }

11

12 y[i - 1] = acc_1;

13 }

14 }

(a) Direct Schedule

1 __kernel void f_1_1(double n, global double* W_data, uint W_dim1, global

double* y)

←↩

2 {

3 // Variable declarations and initializations omitted

4

5 for(task_id0_1 = group_id0_1 * local_size0_1; task_id0_1 < (group_id0_1

+ 1) * local_size0_1 && task_id0_1 < N_1; ++task_id0_1){

←↩

6 i = task_id0_1 + 1;

7 acc_1 = ((double)0.0);

8 if(local_id0_1 != 0){

9 acc_1 = ((double)0);

10 }

11

12 for(j = 1 + local_id0_1; j <= n; j += local_size0_1){

13 acc_1 += W.data[j - 1 + (i - 1) * W.dim1];

14 }

15

16 // Reduction computation omitted

17

18 if(local_id0_1 == 0){

19 y[i - 1] = acc_1;

20 }

21

22 barrier(CLK_GLOBAL_MEM_FENCE);

23 }

24 }

(b) Cooperative Schedule

Figure 5.14: Simplified generated OpenCL for the code in Figure 5.13, using two different
types of schedules.

92

Optimizations

occurs on a level that is more fine-grained than work-groups (see Subsection 2.5.1). If the
implementation chooses to map subgroups to this level, then the subgroup variant may
exhibit better performance, as the overhead is lowered (i.e., there is less redundant or
leader-only work on the subgroup variant) while the advantages are preserved. However,
subgroups are only supported since OpenCL 2.0, and even when available, the two
approaches should be compared and measured on a per-device basis, as the OpenCL
specification does not in any way require memory coalescing and subgroups to be related.

On devices that do not support subgroups, but are still known to have a warp-like
behavior, MATISSE implements sub-groups as warps fallback, a mode in which MA-
TISSE simulates sub-group operations by explicitly dividing the local size in chunks of
a constant size (the warp/wave-front size). This approach, however, has limitations due
to the difficulty of emulating the semantics of sub_group_barrier using the stricter
barrier function and, in practice, should be seen as a proof-of-concept workaround
until high-quality sub-group implementations are available.

5.7 Data Transfers

When generating OpenCL without Shared Virtual Memory (see Section 2.4), MATISSE
generates device data buffers and adds data transfers naively, meaning that the code
is highly inefficient. Figure 5.15 shows a simple MATLAB program that can be paral-
lelized by MATISSE and demonstrates where the data transfers would be inserted by
MATISSE. As we can see, each loop iteration contains 3 data transfers, which could
have easily been moved out of the loop – X is not changed between iterations, and y
could be copied to the device in the beginning of the program and back to the host after
the end of the loop.

1 %!parallel

2 function y = f(X, a)

3 y = zeros(size(X));

4 for i = 1:a,

5 % Data transfer of y and X to the device

6 y = y + X;

7 % Data transfer of y back to the host

8 end

9 end

Figure 5.15: Example demonstrating MATISSE’s naive data transfer insertion.

To reduce the number of unnecessary data transfers, after the sequential optimiza-
tions and basic parallelization operations are performed, MATISSE applies a set of data
transfer optimizations:

� If a buffer is copied from the device to the host, and then back to the device as
a new buffer, after which the old buffer is never used again, MATISSE optimizes
away the creation of the new buffer and reuses the old buffer instead (note that a
later optimization often eliminates the copy to the host as well);

� If MATISSE detects that there are two constant buffers C1 and C2 that refer to
the same data (i.e., they are created from the same host SSA variable), and that

93

Optimizations

C2 is created in a code location that is in scope of C1 (i.e., it is not possible to
reach the instruction that creates C2 without first passing through the instruction
that creates C1), then MATISSE eliminates the creation of C2 and modifies all
instructions that use it to use C1 instead;

� If a device buffer is created from a host matrix that contains only uninitialized
data, then MATISSE does not copy the data to the GPU and just allocates the
buffer;

� If a device buffer is copied to the host, but used only to determine the size of a
matrix (e.g., as an argument to a function like numel), then MATISSE eliminates
the copy and uses the outdated host matrix instead, as the device will never change
the shape of the matrix;

� MATISSE detects patterns of matrices that are copied to the host before a loop
Abefore and after each loop iteration Aloop, where the host is used only in phi
instructions, and replaces the final phi instruction with a new copy to host opera-
tion, so that a subsequent dead code elimination pass can eliminate copies Abefore

and Aloop.

� If a matrix is copied to the device, only for the entire buffer to be overwritten (by
a set_gpu_range instruction), then MATISSE replaces that copy with a simple
allocation;

� Within a loop body, when a matrix B is a loop variable (i.e., defined with B =
phi A, C), copied to the device at the beginning of the loop, never used in the
loop (aside from the copy, the phi and potentially calls to size-related functions),
its buffer is copied back to the CPU as matrix C and C is also never used in the
loop (aside from the copy, the phi and potentially calls to size-related functions),
then replace references to B with references to A, delete the initial phi, move the
copy to the device to before the loop and the copy back to the host to after the
loop replacing a possible final phi (if this phi does not exist, then do not insert
this final copy);

� Within a loop body, when a read-only buffer is copied to the device or any buffer
is allocated on the device, MATISSE attempts to move the copy or allocation to
the position immediately before the loop.

5.8 Shared Virtual Memory Heuristics and Optimizations

In addition to the explicit data buffers, MATISSE is able to generate code that takes
advantage of SVM fine-grained buffers (see Section 2.4), which allow the host to access
data in device buffers without any explicit data transfers or memory mapping operations.

This thesis is focused on fine-grained buffers for performance reasons, as data trans-
fers can represent a very significant portion of the total execution time, and fine-grained
buffers can eliminate them. However, using SVM is not always profitable. For example,
on AMD R9 Nano, a discrete GPU, unconditional use of SVM may lead to slowdowns.

Another instance where SVM is not profitable is the mechanism to store a re-
peated pattern of data on a buffer. OpenCL features the clEnqueueSVMMemFill
and clEnqueueFillBuffer for this purpose, for SVM and non-SVM buffers, respec-
tively. However, the former is much slower than the latter on the tested devices. In the

94

Optimizations

context of this thesis, this function is typically used to replace all elements of a buffer
with a constant.

Based on MATISSE experiments, this thesis proposes the following heuristics and
optimizations, that are selectively applied based on the target device:

1. Instead of clEnqueueSVMMemFill, generate an OpenCL kernel that performs
the equivalent operations, effectively ignoring the built-in OpenCL function alto-
gether;

2. Replace SVM buffers with dedicated buffers if doing so does not lead to any data
transfers (e.g., a buffer is always used by the device, never the host);

3. Replace SVM buffers with dedicated buffers if all generated data transfers are out
of a loop with kernel invocations;

4. Do not use SVM buffers if a kernel accesses that buffer in a non-coalesced manner
(see Subsection 5.8.1);

5. Do not use SVM buffers if a kernel accesses that buffer in a non-sequential manner
(see Subsection 5.8.2).

This thesis proposes the following set of target-aware guidelines, that allow the com-
piler to obtain performance improvements in most benchmarks evaluated (see Subsec-
tion 6.5):

� On an Intel CPU, use optimizations 1 and 2. This allows the compiler to call the
clEnqueueFillBuffer function for non-SVM buffers (i.e., buffers that are only
accessed by OpenCL code) and eliminate the remaining clEnqueueSVMMemFill
function calls. Optimization 1 is responsible for most of the performance gains on
this device.

� On an AMD integrated GPU (”Spectre” architecture, available in the AMD A10-
7850K APU), use optimizations 1, 2, 3 and 4;

� On an AMD R9 Nano GPU (a discrete GPU with HBM memory), use optimiza-
tions 1, 2, 3, 4 and 5;

As of the time of writing, AMD’s OpenCL platform does not support SVM on
CPUs and some GPUs. Moreover, NVIDIA’s OpenCL platform does not implement
fine-grained buffers, so no heuristics were developed for those targets.

5.8.1 Coalesced Access Heuristic

Our most important heuristic is the one that determines whether all memory accesses to
a buffer are coalesced. Our algorithm to do this is fairly simple, and it works by trying
to check whether all work-items in a work-group either access the same matrix index,
or access consecutive indices. In particular, A(2 * i) and A(100 - i) are treated
as non-coalesced. If any matrix access is detected as non-coalesced, then that matrix is
considered non-coalesced, regardless of any other accesses to the same matrix.

The algorithm keeps track of 3 sets: The set of locally constant (LC) variables, the set
of locally sequential (LS) variables and the set of non-coalesced accesses. The compiler
traverses each IR instruction exactly once (even instructions in loops or branches), in

95

Optimizations

the order that they are executed, to build these sets. A variable is locally constant if it
is expected to have the same value across all items in a work-group. A variable is locally
sequential if two consecutive work-items in the same work-group are expected to have
consecutive values for the variable. On kernels with a single dimension, that dimension
is the work-group variable dimension. On kernels with a local size of (1, 1, 1), the first
dimension is the work-group variable dimension. Kernels with other local sizes have no
work-group variable dimension. The variables are classified as follows:

� Iteration variables for the work-group variable dimension are locally se-
quential if and only if the schedule is coalescence-friendly (i.e., direct,
coarse_global_rotation or fixed_work_groups_global_rotation),
and locally constant in a cooperative schedule (see Section 5.6);

� Iteration variables for dimensions that are not work-group variable are locally
constant if and only if the local size of that dimension is 1;

� Iteration variables for kernel for loops with start s and interval i are locally
constant if and only if:

s ∈ LC
∧
i ∈ LC (5.1)

� Iterations variables for kernel for loops are locally sequential if and only if:

s ∈ LS
∧
i = 1 (5.2)

� Constants and variables that are assigned out of the kernel are locally constant;

� On assignments, the assigned variable is locally constant if and only if the assigned
variable is as well, and the same for locally sequential variables;

� On any function (including operators) with inputs I and outputs O, the outputs
are locally-constant if all of the function inputs are locally constant:∧

i

Ii ∈ LC =⇒
∧
i

Oi ∈ LC (5.3)

� If A = B+C
∨
A = B−C, where B ∈ LS

∧
C ∈ LC, then A is locally sequential;

� If A = B + C, where B ∈ LC
∧
C ∈ LS, then A is locally sequential;

� If A = B − C, where B ∈ LS
∧
C ∈ LS, then A is locally constant;

Matrix accesses (gets or sets) are considered coalesced if their first dimension is in-
dexed with a locally constant or locally sequential variable and all remaining dimensions
are indexed with a locally constant variable.

5.8.2 Sequential Access Heuristic

The purpose of this heuristic is to examine loops in the body of a kernel and determine
whether memory accesses within them are sequential (i.e., each iteration accesses a
consecutive position). This heuristic is particularly useful when combined with the
coalesced access heuristic, because the accesses that pass both conditions have good
spatial locality both from a work-item and from a work-group perspective. Since accesses

96

Optimizations

where the same position is repeatedly addressed also have good spatial locality, these
accesses are treated as if they were sequential.

This thesis classifies all variables in three groups: loop-constant, loop-sequential and
random-access. A matrix access in a loop is determined to be sequential if the first
index (i.e. the one that is contiguous in memory) is loop-sequential or loop-constant and
all remaining indices are loop-constant. If an outer loop has an iteration variable out
with an inner loop with an iteration variable in, an access in the inner loop to A(in),
A(in + 1) or A(in + out) is determined to be sequential, whereas an access to
A(out), A(1) or A(1, in) is not. If any access to a matrix is not sequential, then
the entire matrix is considered to be non-sequential. Matrix accesses outside of loops
are ignored.

Our compiler categorizes variables in the following way:

� If a variable is assigned outside of a loop, then it is necessarily loop-constant (even
if it was considered random-access in the outer block);

� A loop iteration variable is loop-sequential ;

� The result of a sum of a loop-sequential and a loop-constant (in any order) is
loop-sequential ;

� Any constant is considered a loop-constant ;

� The result of a subtraction of two loop-sequential values is loop-constant

� The result of a subtraction of a loop-sequential with a loop-constant is loop-
sequential ;

� The results of any function where all inputs are loop-constant are loop-constant ;

� All other variables are considered random-access.

5.9 Summary

In this chapter, we described various optimizations we implemented in MATISSE to
improve the performance of the generated code. Table 5.2 lists the optimizations, and
describes which ones are general and which ones are specific to parallel code. Most of
the optimizations work without user input of any sort, the exceptions being pass by
reference and some of the execution schedules.

Table 5.2: Optimizations described in this section, and their applicability

Optimization Name
Applicable To Programmer

Seq. Code Par. Code Intervention

Loop Conversion Yes Assists parallelization No
Bounds-checking Elimination Yes Assists parallelization No

By-ref directive Yes No Yes
Schedules No Yes Optional

Data Transfer Optimization No Yes No
Shared Virtual Memory No Yes No

97

Optimizations

98

6
Experimental Results

Contents

6.1 Experimental Setup . 100

6.1.1 Benchmarks . 100

6.1.2 Target Devices . 102

6.2 Impact of Temporary Matrix Elimination 103

6.3 Comparison of Sequential Versions of Disparity 106

6.4 Comparison with Previous MATISSE Backend 111

6.5 Analysis of Shared Virtual Memory (SVM) 113

6.6 Impact of Parallelization . 115

6.7 Comparison with Manually Coded OpenCL 118

6.8 Impact of Cooperative Schedule . 124

6.9 Alternative Schedules on AMD’s CPU Platform 129

6.10 Summary . 130

99

Experimental Results

This chapter describes the benchmarks and test devices used to validate the prototype
of MATISSE and the proposed techniques, as well as the obtained results.

6.1 Experimental Setup

In order to determine the effectiveness of the proposed optimizations, we evaluated
MATISSE with a number of benchmarks on different devices. In this section, we briefly
describe each of those benchmarks and devices.

6.1.1 Benchmarks

MATISSE was evaluated using the following benchmarks:

� Complex Product [CDCP13]: A benchmark that computes the element-wise prod-
uct of two complex matrices (single-precision). The real and imaginary compo-
nents are stored in separate matrices. This benchmark has two equivalent variants:
one in a loop-oriented code style, and another in a matrix-oriented code style. Dif-
ferent input sizes are used in different sections.

� Dilate [CDCP13]: A function from a stereo navigation application, with single-
precision inputs. Different input sizes are used in different sections.

� Hypotenuse [BC17]: A benchmark that computes the length of the hypotenuse of
triangles, from the lengths of their catheti. Operates with single-precision values.
This benchmark is only used in Section 6.2.

� Matrix Multiplication [BRC15a]: Single-precision näıve matrix multiplication al-
gorithm, with square matrices of size 1024× 1024.

� Monte Carlo Option Pricing [BRC15a]: Monte Carlo simulation based on an ex-
ample from MathWorks [Mat14c], to calculate prices for financial options, based
on 100 096 simulations each with 50 time steps.

� N-Body 1D [JB07]: Performs an N-Body double-precision simulation of a gravita-
tional system. The benchmark is referred to as ”1D” because there are separate
matrices for each spatial dimension (i.e., all matrices are 1D, storing X, Y or Z
data). This benchmark is only used in Section 6.2.

� RGB to YUV [BRC15a]: Performs a conversion of three uint8 matrices (of size
2048× 2048, unless stated otherwise), each with a color component, from RGB to
YUV color formats.

� Sub-band Coding [CDCP13]: Component of a MPEG2 encoder originally written
in C, translated to MATLAB and generalized to work on multiple input sizes. The
inputs are single-precision matrices, of varying size. Different input sizes are used
in different sections.

� Disparity (Various versions) [VAJ+09]: Disparity Map benchmark extracted from
the San Diego Vision Benchmark Suite (MATLAB version). The algorithm es-
timates the depth of each position of a scene, based on two stereo images. A
discussion of the changed made to produce the various sequential versions of this
benchmark can be found in Section 6.3. All MATLAB versions of this benchmark

100

Experimental Results

use double-precision matrices representing two Full HD images. For the parallel
versions, the following variants were used:

– Disparity (V1): Based on Disparity (Modified 1), but with manual function
inlining and parallelization-related directives.

– Disparity (V2): Based on Disparity (V1), but with selective parallelization,
so certain unprofitable sections are still executed on the host;

– Disparity (V3): Based on Disparity (V2), but with a parallel implementation
of padarray.

� Tracking [VAJ+09]: Feature Tracking benchmark extracted from the San Diego
Vision Benchmark Suite (MATLAB version). The algorithm extracts motion in-
formation from a sequence of double-precision matrices representing images. The
benchmark was modified to fit in the benchmark system used in this thesis. In
addition, the original benchmark depends on MATLAB features that MATISSE
does not support (e.g., cell arrays), so the necessary changes for Tracking to run on
MATISSE were performed. Finally, the original benchmark used the sort func-
tion to extract the N first elements of a given matrix (where N is much smaller
than the size of the matrix). This function call was replaced with an explicit
MATLAB loop to perform the same more efficiently, as MATLAB loops are not
inefficient in MATISSE the way they are in MATLAB. The benchmark was tested
to track the features across 4 Full HD (1920× 1080) images.

� Transpose (1 and 2): Benchmarks designed to serve as a program with coalesced
writes and serialized reads or serialized writes and coalesced reads, respectively.
Both use single-precision matrices of size 1024× 1024.

� Sum Vertical: A benchmark designed to test the cooperative schedule. Computes
the sum of each column of a single-precision 4096× 4096 matrix.

Moreover, MATISSE was also tested using the Polybench/GPU [GGXS+12],
a benchmark suite with multiple GPU implementations (including OpenCL) of 15
algorithms:

� 2DCONV: 2D convolution kernel (input matrix size 4096× 4096);

� 3CONV: 3D convolution kernel (input matrix size 256× 256× 256);

� 2MM: 2 Matrix Multiplications (input matrix size 2048× 2048);

� 3MM: 3 Matrix Multiplications (input matrix size 512× 512);

� ATAX: Matrix Transpose and vector multiplication (input matrix size 4096×4096);

� BICG: BiCG Sub Kernel of BiCGStab Linear Solver (input matrix size 4096 ×
4096);

� CORR: Correlation computation (input matrix size 2049× 2049);

� COVAR: Covariance computation (input matrix size 2049× 2049);

� FDTD-2D: 2-D Finite Different Time Domain kernel (input matrix sizes of around
2048× 2048, 500 iterations);

101

Experimental Results

� GEMM: Matrix-multiply C = αAB + βC (input matrix size 512× 512);

� GESUMMV: Scalar, Vector and Matrix Multiplication (input matrix size 4096×
4096);

� GRAMSCHM: Gram-Schmidt decomposition (input matrix size 1024× 1024);

� MVT: Matrix Vector Product and Transpose (input matrix size 4096× 4096);

� SYR2K: Symmetric rank-2k operations (input matrix size 2048× 2048);

� SYRK: Symmetric rank-k operations (input matrix size 1024× 1024);

To run these benchmarks with MATISSE, they were ported to loop-based MATLAB
code annotated with directives and executed in unchecked mode. Although these bench-
marks are designed to be able to run on various precision levels, they were all configured
to all with single-precision.

Some of the benchmarks are designed to test MATISSE heuristics, namely those
related to data patterns. In these cases, benchmark variants were used, taking a base
benchmark, and modifying it to have a different parallelization strategy or data access
patterns:

� No Interchange: The loop interchange optimization is disabled for these bench-
marks, so the memory access patterns are entirely different. Notably, many coa-
lesced accesses become serialized;

� Outer: Instead of 2D range kernel execution (i.e., nested loop parallelism), only the
outermost loop is parallelized, and the inner loop is executed sequentially by each
work-item. Again, the memory accesses patterns become substantially different.

The source code of these benchmarks is available at http://specs.fe.up.pt/
matisse-cl2-benchmarks.zip.

6.1.2 Target Devices

The code generated by MATISSE was evaluated on the following computing systems:

1. A desktop computer running Windows 10 Enterprise (64-bits) with an AMD A10-
7850K APU (@4.10 GHz), 8 GB of DDR3 RAM and 2 GPUs: an integrated Radeon
R7 GPU (codenamed Spectre) that uses the system’s DDR3 RAM, and a discrete
AMD Radeon R9 280X GPU with 3GB of GDDR5 RAM (codenamed Tahiti).

2. A high-performance computer node running Windows 10 Education (64-bits), with
two Intel Xeon E5-2630 v3 CPUs (@2.40 GHz), with 128 GB of DDR4 RAM and
a discrete AMD R9 Nano GPU with 4GB of HBM memory.

3. A desktop computer running Kubuntu 18.04 (64-bits), with an Intel Xeon E5-1650
CPU (@3.6 GHz), 64 GB of DDR4 RAM and a NVIDIA GTX 1070 GPU.

4. An embedded Odroid XU+E [Hc14] containing an Exynos5 Octa CPU, with 4
Cortex A15 cores at 1.6 Ghz and 4 Cortex A7 cores at 1.2 GHz and 2 GB of
LPDDR3 RAM, running Ubuntu 14.04.2 LTS.

102

http://specs.fe.up.pt/matisse-cl2-benchmarks.zip
http://specs.fe.up.pt/matisse-cl2-benchmarks.zip

Experimental Results

6.2 Impact of Temporary Matrix Elimination

In order to demonstrate the impact of the proposed approaches for temporary ma-
trix elimination (see Subsection 5.1.2), 5 MATLAB benchmarks were used that include
temporary matrices when they are not optimized properly: Hypotenuse, N-Body 1D,
Complex Product, Disparity and Tracking.

The results in this section are relative to sequential C code. Impact on parallelism
is not evaluated on this section. Table 6.1 lists the input sizes used for the benchmarks
in this section, some of which are different from those used in other sections.

Table 6.1: Input sizes used for the benchmarks to measure the impact of temporary
matrix elimination.

Benchmark Input Size

Complex Product 1024× 1024× 10
Hypotenuse 512× 1024
N-Body 1D 512 bodies, 15 iterations
Disparity Full HD
Tracking Full HD

The results are shown in Figure 6.1a. In general, both optimizations tend to improve
(or at least not decrease) the performance of benchmarks, but their impact depends
on the patterns used on each benchmark. Complex Product and Hypotenuse mostly
benefit from the direct combined element-wise loop optimization, as they use patterns
that are not easily handled by the loop fusion pass. In contrast, Tracking heavily
relies on patterns that are optimized to loops but are not considered ”element-wise”.
In the Disparity benchmark, the element-wise operations are not the bottleneck and
use patterns where MATISSE can identify that the intermediate matrices have the
same sizes, so loop fusion works reliably without the assistance of direct combined loop
generation. The N-Body benchmark benefits from loop fusion. It is not clear why the
direct combined element-wise loop optimization causes slowdowns.

The Complex Product benchmark benefits from using both the direct combined loop
generator, as it exposes opportunities that the Loop Fusion pass would otherwise not
detect.

These benchmarks were also tested on an embedded system: an ODROID XU+E de-
vice [Hc14], with an Exynos 5 Octa Cortex-A15 (1.6 GHz) and Cortex A7 (big.LITTLE),
and 2GiB of LPDDR3 RAM, running Ubuntu 14.04.2 LTS. The results are shown in
Figure 6.1b. In general, the results are similar, as benchmarks that show speedups,
slowdowns or roughly the same results on one platform tend to do so on the other as
well. The exception is the N-Body benchmark, that shows improved performance on
the direct combined loop generation version.

The memory consumption and estimated memory accesses and L1 cache misses were
also measured, using Valgrind/Cachegrind [Val18]. Cachegrind was unable to automat-
ically determine the parameters for the system, so they were manually set based on
publicly available information about the processor. These tests assume that the total
available cache size is 32 KiB and that the cache line size is 128 bytes. The results are
presented in Table 6.2. A visual representation of the memory consumption reductions
is presented in Figure 6.2.

103

Experimental Results

Direct Combined Loops Only Loop Fusion Only Full Loop Combination

1

2

4

1
.9
2

0.
9
9

2.
4
9

3
.1
6

1.
0
0

3.
20

0.
85

1.
37

1.
24

1.
05

2.
7
2

2.
72

1.
00

1.
7
4

1.
7
5

1.
40 1.
4
5

2.
16

S
p
ee
d
u
p

Complex Product (Matrix Oriented) Hypotenuse

N-Body 1D Disparity (V1)

Tracking (V1) Geometric Mean

(a) Results on a desktop system (computing system 1).

Direct Combined Loops Only Loop Fusion Only Full Loop Combination

1

2

4

1
.4
9

0.
90

1.
771
.8
8

0.
8
8

1.
90

1.
26

1.
2
0 1.

49

0.
96

4.
06

4.
08

1.
00

1.
9
6

1.
97

1.
2
8 1.
50

2.
09

S
p
ee
d
u
p

(b) Results on an ODROID XU+E system (computing system 4).

Figure 6.1: Speedups for optimization techniques for temporary matrix elimination.

Note that the allocated memory is the total for an entire program execution, and
does not necessarily mean that all that memory needs to be available at the same time.
For instance, the disparity benchmark can allocate up to 9 GiB, yet it can run on a
device with only 2 GiB of RAM.

In general, the reductions to memory allocations, memory accesses, cache misses
and execution times are correlated, with a few noteworthy exceptions. In the Tracking
and Hypotenuse benchmarks, the loop fusion transformation actually increases the total
allocated memory, despite reducing memory accesses. The reason for this is that the
optimization eliminates some temporaries from the SSA IR and corresponding memory
accesses, but these temporary matrices do not always correspond to C variables, as
MATISSE attempts to combine multiple SSA matrices into a single C matrix.

104

Experimental Results

Table 6.2: Allocated memory, memory accesses and estimated L1 cache misses for the
combinations of benchmarks and optimizations, on an ODROID XU+E system, as mea-
sured by Valgrind. Two optimizations are evaluated here: Loop Fusion and Direct
Combined Element-Wise Loop (DCEWL) optimization. The units Ki, Mi and Gi re-
fer to 210, 220 and 230, respectively, as defined by the International Electrotechnical
Commission [IEC18].

Benchmark Variant Allocated Accesses L1 Cache Misses

Complex Product

None 320 MiB 242 M 7 M
DCEWL Only 240 MiB 158 M 5 M
Loop Fusion Only 320 MiB 242 M 7 M
Both 240 MiB 116 M 3 M

Hypotenuse

None 8 MiB 6,893 K 149 K
DCEWL Only 6 MiB 4,271 K 84 K
Loop Fusion Only 10 MiB 7,942 K 149 K
Both 6 MiB 4,271 K 84 K

N-Body 1D

None 119 KiB 264,255 K 2,228 K
DCEWL Only 96 KiB 184,055 K 1,235 K
Loop Fusion Only 101 KiB 216,069 K 1,257 K
Both 85 KiB 128,108 K 145 K

Disparity

None 9 GiB 8,591 M 679 M
DCEWL Only 9 GiB 8,060 M 663 M
Loop Fusion Only 2 GiB 2,938 M 112 M
Both 2 GiB 2,938 M 112 M

Tracking

None 610 MiB 4,599 M 59 M
DCEWL Only 610 MiB 4,559 M 59 M
Loop Fusion Only 705 MiB 797 M 60 M
Both 705 MiB 797 M 60 M

Complex Product Hypotenuse N-Body 1D Disparity Tracking
0

20

40

60

80

100

120

140

75% 75%
81%

100% 100%100%

125%

85%

22%

116%

75% 75% 71%

22%

116%

R
el
at
iv
e
M
em

or
y
U
sa
ge

DCEWL Only
Loop Fusion Only
Both

Figure 6.2: Memory usage of programs depending on loop combination optimizations,
relative to the version without combined loops. The non-normalized values are presented
in Table 6.2. The lower the value, the more effective the optimization(s).

105

Experimental Results

6.3 Comparison of Sequential Versions of Disparity

The performance of MATISSE-compiled programs is heavily dependent on the effective-
ness of transformations designed to optimize sequential code, even when parallelization
is involved. The reasons for this are that even when code is parallelized, there are often
sections that are still executed sequentially and those sections can be bottlenecks, and
that many optimizations for sequential code (e.g., dead code elimination) also end up
improving the performance of parallel code or even the ability for MATISSE to deter-
mine that a section can be parallelized. Thus, before evaluating the performance of the
generated parallel code, this section measures the performance of the sequential code,
including the various variants that MATISSE supports.

MATISSE is evaluated on two systems: a desktop AMD PC (system 1) and an
Odroid XU+E (system 4). The experiments are focused on Disparity from the San
Diego Vision Benchmark Suite [VAJ+09], as the original benchmark features both C
and MATLAB versions, allowing for a comparison of MATISSE’s code generation with
C code written by humans. These results were published in [RBC16].

There are two significant differences between the original MATLAB and C versions:
the C version uses single-precision floating point and integer values for computations for
which the MATLAB version uses double-precision, and the MATLAB version stores the
results of each iteration of the algorithm in a 3D matrix, to later convert to a 2D matrix
using the min function, whereas the C version directly stores the partial results in a 2D
matrix and performs a partial min operation after each iteration of the algorithm.

The MATLAB version of the Disparity benchmark is composed of three files,
namely: script_run_profile.m, a function that behaves as an entry point for
the program, getDisparity.m, that contains the actual algorithm implementation,
and refineDisparity.m. This last file does not appear to be used by the entry
point directly or indirectly and as such was excluded from further analysis. The
script_run_profile.m file was modified to be better integrated with the testing
environment used for this thesis, but no other code was modified, except in the code
versions explicitly labelled as such. The original getDisparity.m file has a total of
47 non-empty lines of code, of which 3 are comments. This file relies on only a few
built-in MATLAB functions. Aside from matrix allocation, type casting and built-in
operators, only padarray, min, and size are used.

The multiple C versions and variants of the Disparity benchmark are the following:

� Handwritten Original : Original C version, as it appears in the San Diego Vision
Benchmark Suite, with only minimal changes for integration with the benchmark-
ing system;

� Handwritten Double: Same as Handwritten Original, but modified to use double-
precision data types (instead of single-precision and integer types), for a fair com-
parison with MATLAB;

� Original MATLAB (w/o Z3): Generated C code for the original MATLAB, with
only minor changes to fit into our benchmark system (e.g., by removing file I/O),
with runtime checks enabled and using a näıve solver (see Subsection 5.2.1);

� Original MATLAB (w/ Z3): Same as Original MATLAB (w/o Z3), but using the
Z3-based scalar solver (see Subsection 5.2.1);

106

Experimental Results

� Original MATLAB (Unchecked): Same as Original MATLAB (w/ Z3), but with
some runtime checks disabled for faster performance (the Unchecked Mode men-
tioned in Section 5.2);

� Modified 1 : Based on Original MATLAB (Unchecked), but with some changes
in the MATLAB code for improved efficiency: replacement of a 2D loop with
the equivalent 1D loop, code modifications to MATLAB to more closely resemble
the C version (including the min-related difference described above), and remove
calculations for outputs that are known to be unused;

� Modified 2 : Based on Modified 1, but using the %!by_ref directive (see Sec-
tion 5.4);

� Manually Improved A: Based on Modified 2, but the generated C code was manu-
ally modified to remove 6 unnecessary matrix allocations;

� Manually Improved B : Based on Manually Improved A, but with a manual appli-
cation of a loop interchange.

Table 6.3 presents code metrics for the MATLAB versions of Disparity (i.e., Original,
Modified 1 and Modified 2). The total number of lines that were modified is more than
half of the lines of code, but most of those can be attributed to a single change: the
replacement of the min function call with partial operations.

Table 6.3: Metrics of various MATLAB versions of Disparity.

Metric Original MATLAB Modified 1 Modified 2

Total Lines of Code
(excluding comments and empty lines)

44 52 57

Number of Lines of Code that were
added, removed or modified

0 32 45

Directives 0 0 2

Total Functions (in getDisparity.m) 3 3 3

Table 6.4 presents code metrics for the C versions of Disparity. The difference be-
tween the two handwritten versions is that the double precision replaces single-precision
and integer functions with the double-precision equivalent, meaning that the number
of allocation-related support functions is halved (from 6 to 3). Support functions that
are not related to allocations (padarray2 and padarray4) remain in the same num-
ber. The MATISSE-generated versions include a substantially higher number of support
functions. The reason for this is that even simple MATLAB operations such as size
are often implemented as functions, whereas this does not happen in the handwritten
versions. Moreover, matrix allocation in MATISSE causes the generation of several
C functions (16 in Modified 2), whereas Handwritten Original uses only 6 allocation
functions.

The handwritten version also uses fewer lines of code for the computation parts of
the program. The main reasons for this are:

� MATISSE-generated variable declarations consist of a single variable per line. In
contrast, the handwritten versions declare multiple variables of the same type in
a single line.

107

Experimental Results

Table 6.4: Metrics of various C versions of Disparity.

Version
Functions Lines of Code

Computation Support (*.c Computation Files)

Handwritten Original 6 8 166
Handwritten Double 6 5 166
Original MATLAB (w/o Z3) 5 43 826
Original MATLAB (w/ Z3) 5 42 514
Original MATLAB (Unchecked) 5 42 481
Modified 1 4 33 300
Modified 2 4 28 301
Manually Improved A 4 21 258
Manually Improved B 4 21 258

� Several subexpressions are assigned to temporary variables in MATISSE, whereas
in the handwritten version they tend to be part of more complex expressions.

Figure 6.3 shows the results for Disparity running on a desktop computer (system 1).
Each benchmark was compiled with GCC 4.9.2 (both with -O2 and -O3) 30 times and
computed the average and standard deviation of the execution time. In these tests,
the 95% confidence estimated error is negligible. The code generated from the original
MATLAB achieved execution times around 72% slower than the handwritten version
with double-precision. However, the MATLAB code can be manually optimized so
that MATISSE achieves performance very close to that of the handwritten C. The only
advantage of the handwritten C over the best manually improved MATISSE version
is related to data-types. When the handwritten C is used to use the same types (i.e.,
double-precision floating point) as the MATLAB versions, then the manually improved
versions can outperform the C versions (3.98s for handwritten compared to 2.75s for
the manually improved). With few exceptions, there the differences between using -O2
and -O3, suggesting that the additional optimizations of -O3 (e.g., vectorization) have
little impact on the overall performance.

Similar results apply to Odroid XU+E with GCC 4.8.2, as seen in Figure 6.4. The
original MATLAB-generated version without Z3 could not be executed on this device,
due to lack of memory (as this version uses more temporary matrix variables). The main
differences being that execution times in general are higher (as Odroid XU+E is less
computationally capable than desktop systems), and that -O3 makes an even smaller
difference. Other than that, the same conclusions apply.

Now, it is analyzed whether the C compiler was able to vectorize the loops of the best
4 generated versions, as well as the handwritten one, using GCC’s -fopt-info-vec di-
agnostics. Table 6.5 shows the results for vectorization of the loops of multiple functions
(computeSAD, finalSAD, and integralImage2D). There is not a direct mapping
of MATLAB and handwritten C functions, so the table was built based on rough corre-
spondences. For multi-dimensional loops, the vectorization results refer to the innermost
loops. All results are relative to GCC’s -O3, as -O2 does not vectorize by default.

GCC is able to vectorize the MATISSE-generated equivalent of finalSAD, even
though it could not vectorize the handwritten version. The loops seem very similar,
with the most significant difference being that the generated versions use double instead
of single-precision floats and that some values are computed outside the innermost loop

108

Experimental Results

3.43
4.52

14.84

9.35

7.10

5.50
4.30

3.52 2.84
2.70

3.98

13.88

9.12

6.86

5.36

4.19
3.44

2.75

0

2

4

6

8

10

12

14

16

H
an

d
w

ri
tt

en
O

ri
gi

n
al

H
an

d
w

ri
tt

en
D

o
u

b
le

O
ri

gi
n

al
 M

A
TL

A
B

(w
/o

 Z
3

)

O
ri

gi
n

al
 M

A
TL

A
B

(w
/

Z3
)

O
ri

gi
n

al
 M

A
TL

A
B

(U
n

ch
ec

ke
d

)

M
o

d
if

ie
d

 1

M
o

d
if

ie
d

 2

M
an

u
al

ly
Im

p
ro

ve
d

 A

M
an

u
al

ly
Im

p
ro

ve
d

 B

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
(i

n
 s

ec
o

n
d

s) -O2 -O3

Figure 6.3: Average execution times for various versions of the Disparity benchmark,
running on a desktop computer (system 1).

10.59

17.29

42.43

24.60

21.53

14.25
12.19

6.879.88

16.68

42.27

24.45
21.52

14.21
12.20

6.87

0

5

10

15

20

25

30

35

40

45

H
an

d
w

ri
tt

en
O

ri
gi

n
al

H
an

d
w

ri
tt

en
D

o
u

b
le

O
ri

gi
n

al
 M

A
TL

A
B

(w
/

Z3
)

O
ri

gi
n

al
 M

A
TL

A
B

(U
n

ch
ec

ke
d

)

M
o

d
if

ie
d

 1

M
o

d
if

ie
d

 2

M
an

u
al

ly
Im

p
ro

ve
d

 A

M
an

u
al

ly
Im

p
ro

ve
d

 B

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
(i

n
 s

ec
o

n
d

s) -O2 -O3

Figure 6.4: Average execution times for various versions of the Disparity benchmark,
running on an Odroid XU+E (system 4).

(though loop invariant code motion should be able to do the same), so it is not clear
what prevents GCC from vectorizing the loop.

The first loop in integralImage2D has no equivalent in the last 3 versions as it
was made redundant due to changes introduced by %!by_ref. The reason the loops
in integralImage2D that are vectorized in the generated versions are different from
the handwritten versions is because MATLAB is column-major, whereas the C version
is row-major. Since each of the loops reads values along a dimension, the two loops
effectively swap places in the generated versions.

We also measured the execution time of the original version with MATLAB R2015a

109

Experimental Results

Table 6.5: Vectorization of loops in various C code versions of Disparity.

SAD integralImage2D

Compute Final #1 #2 #3

Handwritten Original Yes No Yes Yes No
Handwritten Double Yes No Yes Yes No
Modified 1 Yes Yes Yes No Yes
Modified 2 Yes Yes N/A No Yes
Manually Improved A Yes Yes N/A No Yes
Manually Improved B Yes Yes N/A No Yes

on the desktop system 1, using the built-in profiler. According to the profiler, the
MATLAB version takes approximately 261.8s to complete. Nearly all of that time
(91.5%) is spent on a single line of code, a matrix set in a 2D loop (corresponding to the
C function computeSAD). This happens because the matrix was not allocated before
the loop, so the matrix is continuously resized (see Section 5.3).

To solve this issue, a single line of code was added to allocate the entire matrix
before the loop. This new version takes approximately 28.0s to run. Other approaches
to reduce the execution time in MATLAB were attempted, and it was found that the best
approach was to remove the computeSAD loop altogether and use matrix operations
instead. This last version takes about 12.2s to run.

As previously noted, these results were published in 2016 [RBC16], and MATISSE
has changed since then. One of these changes is a difference in semantics in unchecked
mode. At the time these results were published, matrices implicitly created inside matrix
loops were automatically allocated by MATISSE using the matrix pre-allocator (see
Section 5.3). However, our current semantics of unchecked mode are that MATISSE
may assume that all matrix accesses are in-range. Because of this, matrices implicitly
created in loops are undefined behavior in unchecked mode, and the pre-allocator only
has an impact in checked mode. As a result of this change, the Original MATLAB
(Unchecked) version no longer runs, by design. Instead, an explicit matrix allocation
should be manually inserted in order to obtain the new equivalent of this version.

Another issue of interest to this thesis was to see how a current version of MATISSE
performed, as used of our findings were used to guide optimizations in MATISSE. The
current version of MATISSE was evaluated on the desktop computer (system 1), with
the generated C being compiled with GCC 6.3.0 (-O3). Table 6.6 presents the new re-
sults, compared to recompiled versions of the code from 2016. MATISSE now performs
fewer unnecessary matrix copies and allocations, and automatically performs loop inter-
change in some cases, resulting in some improvements to the Original MATLAB (w/ Z3)
version. However, not all unnecessary copies were eliminated. One notable unnecessary
matrix prevents the new Modified 2 version from performing equivalently to Manually
Improved B but, in general, fewer changes are required to achieve the performance of
Manually Improved B from the new Modified 2. Overall, the newer version of MATISSE
outperforms the older version from 1.16× to 1.50×.

110

Experimental Results

Table 6.6: Comparison of current version of MATISSE with generated version from
2016.

Version
Execution Time (in seconds)

Speedup
MATISSE 2016 MATISSE 2018

Original MATLAB (w/ Z3) 9.58 6.39 1.50×
Original MATLAB (Unchecked) 7.41 6.40 1.16×
Modified 2 4.65 3.57 1.30×

6.4 Comparison with Previous MATISSE Backend

MATISSE featured a previous OpenCL backend (see Section 3.1), albeit one with some
significant limitations. This section presents the results of a comparison between the
two approaches. Note that this does not include any of the proposed work regarding
target specialization (e.g., SVM or schedules).

Because the directive systems are different, so is the code that is compiled. Table 6.7
shows the difference in size between the two versions. In general, the differences between
the two versions can be attributed mostly to the differences between directive systems.
The more compact style of code using matrix operations that MATISSE CL V2 supports
was not used, to keep the two versions as close as possible. The simpler style of directives
of MATISSE CL V2 is generally not noticeable in these statistics, as they cover lines
of code, not size of those lines. The exception being the Monte Carlo Option Pricing
benchmark, where the original directives were so long, that they had to be split into
multiple lines (using a multi-line comment) for readability.

Table 6.7: Comparison of size differences between the MATLAB benchmark versions for
MATISSE CL V1 and MATISSE CL V2. Empty lines and non-directive comments are
excluded.

Benchmark
MATISSE CL V1 MATISSE CL V2

Total Directives Total Directives

Complex Product 15 2 15 1
Dilate 26 4 24 2
Matrix Multiplication 16 4 14 2
Monte Carlo Option Pricing 82 7 78 2
RGB to YUV Conversion 33 4 30 1
Sub-band Coding 23 2 23 2

Figure 6.5 shows two directives (one for MATISSE CL V1 and one for MATISSE
CL V2), to demonstrate the difference between the two approaches. The copyin and
copyout parameters are absent from the newer approach, as they can be automatically
inferred by the compiler.

Figure 6.6 shows the speedups of the MATISSE CL V2 over MATISSE CL V1, with
the same local size. The Complex Product benchmark operates on matrices of size
2048× 2048× 20, Dilate operates on matrices of size 2048× 2048 and Sub-band Coding
operates on a matrix of size 128× 65536. The proposed compiler prototype was able to
achieve speedups in most benchmarks, though the reasons for this differ. An explanation

111

Experimental Results

1 %{

2 acc parallel loop

3 copyin(initial_seed, riskFreeRate, dividend, volatility, timeToExpiry,

sampleRate, stockPrice, strike, N)

←↩

4 copyout(finalStockPrices, optionPrices)

5 local_size(128)

6 %}

(a) Example of MATISSE CL V1 directive.

1 %!parallel local_size(128)

(b) Equivalent MATISSE CL V2 directive.

Figure 6.5: Example of MATISSE directive, used in the Monte Carlo Option Pricing
benchmark

1

2

2.5

1.5 1.5

0.97

1.8 1.8
1.6

1

2

Discrete GPU (Tahiti)

S
p
ee
d
u
p
ov
er

M
A
T
IS
S
E
C
L
V
1

1.7
1.6

1.1
1

1.7
1.6

1.4

Integrated GPU (w/o SVM)

Complex Product Dilate Matrix Multiplication Monte Carlo Option Pricing
RGB to YUV conversion Sub-band coding Geometric Mean

Figure 6.6: Speedups for the total execution time in comparison to MATISSE CL V1.

of these differences follows:

� On the Complex Product and the Sub-band Coding benchmarks, our previous back-
end performs unnecessary initializations and copies on the outputs. Effectively,
each output buffer is traversed three times by the host – once to initialize it with
zeros, once to copy data from the device to the host and once to copy the data
from an intermediate buffer to the output. In contrast, MATISSE CL V2 gener-
ates efficient initialization code that does not fill the buffer with zeros on allocation
because it statically detects that doing so is unnecessary. Additionally, it does not
fill the output buffers (as all positions are overwritten) and copies the results from
the device to the final buffer directly.

� On the Dilate benchmark, the previous backend once again performs a copy of the
outputs to the intermediate buffer that the new backend does not. In addition,
the new backend performs two loop interchanges.

� The previous versions of the Matrix Multiplication and RGB to YUV Conversion
benchmarks also feature unnecessary copies of the output matrices and missing

112

Experimental Results

loop interchange opportunities.

� The Monte Carlo Option Pricing has few data transfers, so the differences between
the two backends are less important. The generated OpenCL code is very different,
because the previous version performs aggressive inlining which the new one does
not, but this does not seem to have an impact on performance. Moreover, the
previous version copies its outputs to a buffer and computes the sum of that
buffer on the CPU. In contrast, the new backend features a simple per-work-group
sum reduction to reduce the number of data transfers and CPU computations.
This, too, has little impact on performance as the reduction represents only a very
small part of the benchmark execution time. It is noted, however, that there is
potential for further improvement of sum reductions.

The proposed prototype was able to outperform the older MATISSE OpenCL back-
end by 1.6× (geometric mean) on a discrete GPU, and by 1.4× on an integrated GPU.

6.5 Analysis of Shared Virtual Memory (SVM)

On devices that share their memory with the host (e.g., integrated GPUs that use the
same memory as the CPU), Shared Virtual Memory (SVM) can be used to eliminate
potentially costly data transfers. This section examines the impact of using SVM. All
benchmarks in this section were tested using the direct schedule (see Section 5.5).

Figure 6.7a shows the fractions of execution time spent on each part of the code, on
the integrated GPU without using SVM, measured using OpenCL’s profiling capabili-
ties, from the start to end of each command (ignoring queue times). This figure shows
that the data transfer times represent a substantial portion of the total time on most
benchmarks. In particular, the benchmarks with the most significant slowdowns (Com-
plex Product and Sub-band Coding) spend more time performing data transfers than
computing data. For instance, the Complex Product benchmark has a speedup of 5.44×
when only kernel times are considered. The ”Others” part represents the remaining
time, which corresponds to time spent in sequential C code and also the overhead of
the OpenCL driver. However, when OpenCL code is executed asynchronously, the CPU
portions that are executed simultaneously with the parallel portions are excluded.

Figure 6.7b shows the fractions of time for a discrete GPU (AMD R9 Nano), also
without SVM. Since this GPU has more computing power than the aforementioned inte-
grated GPU, kernel computation times represent shorter portions of the total execution
time.

Despite improving data transfer times (by eliminating most of them), SVM also
appears to degrade performance for the kernel computations themselves. In some cases,
the additional kernel computation time is greater than the removed data transfer times,
which is why some benchmarks are slower with SVM. The loss of performance appears
to be related to the memory accesses in the kernel itself. As described in Section 5.8, a
set of heuristics and optimizations is used to improve the use of SVM in the compiler.

The heuristics were evaluated with a set of benchmarks from various sources, includ-
ing some developed or modified for this thesis. Monte Carlo Option Pricing was not
evaluated, because memory transfers/memory accesses represent a negligible portion of
this benchmark. We tested our heuristics on multiple OpenCL devices. The Complex
Product benchmark was tested with matrices of input size 1024×1024×10, Dilate with
4096× 4096 and Sub-band Coding with 256× 131072.

113

Experimental Results

C
om
pl
ex
P
ro
du
ct
(L
oo
p
B
as
ed
)

D
ila
te

M
at
ri
x
M
ul
ti
pl
ic
at
io
n

M
on
te
C
ar
lo
O
pt
io
n
P
ri
ci
ng

R
G
B
to
Y
U
V
co
nv
er
si
on

Su
b-
ba
nd

co
di
ng

D
is
pa
ri
ty
(V
1)

D
is
pa
ri
ty
(V
2)

D
is
pa
ri
ty
(V
3)

T
ra
ck
in
g
(V
1)

T
ra
ck
in
g
(N
o
In
te
rc
ha
ng
e)

0

0.2

0.4

0.6

0.8

1
F
ra
ct
io
n
o
f
ex
ec
u
ti
o
n
ti
m
e

Kernel Host to Device Device to Host Others

(a) Integrated GPU (system 1)

C
om
pl
ex
P
ro
du
ct
(L
oo
p
B
as
ed
)

D
ila
te

M
at
ri
x
M
ul
ti
pl
ic
at
io
n

R
G
B
to
Y
U
V
co
nv
er
si
on

Su
b-
ba
nd

co
di
ng

D
is
pa
ri
ty
(V
1)

D
is
pa
ri
ty
(V
2)

D
is
pa
ri
ty
(V
3)

T
ra
ck
in
g
(V
1)

T
ra
ck
in
g
(N
o
In
te
rc
ha
ng
e)

0

0.2

0.4

0.6

0.8

1

F
ra
ct
io
n
o
f
ex
ec
u
ti
o
n
ti
m
e

Kernel Host to Device Device to Host Others

(b) AMD R9 Nano (Discrete GPU in system 2)

Figure 6.7: Fraction of time spent on each part of the code.

The ODroid XU+E (system 4) and the discrete Tahiti GPU in system 1 were ex-
cluded because they do not support SVM, while the NVIDIA GPU of system 3 was
excluded because at the time of this thesis the NVIDIA drivers do not support fine-
grained buffers.

Figure 6.8 shows the impact of different memory strategies (no SVM, aggressive
SVM, aggressive SVM without clEnqueueSVMMemFill and target-aware optimized
use of SVM), on an integrated AMD GPU (Spectre). The proposed target-aware ap-
proach is able to retain the speedups associated with SVM while avoiding most slow-
downs. As such, MATISSE was able to achieve geometric mean speedups of 1.54× over
the aggressive SVM version and 1.09× over the version without SVM. Only one bench-
mark (Matrix Multiplication (Outer)) showed slowdowns, and even there the heuristics
were able to mitigate the impact of SVM.

Figure 6.9 shows the equivalent results for an Intel CPU. As expected, SVM is
nearly always profitable, but MATISSE can still achieve speedups using the heuristics by
avoiding clEnqueueSVMMemFill and using clEnqueueFillBuffer when possible.
The SVM heuristics allow MATISSE to achieve speedups of 9% (geometric mean) over
the aggressive SVM approach, with no significant slowdowns on any benchmark.

Figure 6.10 shows the impact of SVM on an AMD R9 Nano GPU. Using the heuris-
tics, MATISSE is able to eliminate the slowdowns associated with using SVM, while
retaining nearly all speedups. Overall, MATISSE was able to achieve geometric mean
speedups of 1.8× over aggressive SVM and 1.19× over the versions without SVM.

On this last device, our heuristics were unable to predict the best performance for
Transpose (1) and Matrix Multiplication (Outer) on an integrated GPU, Matrix Multi-
plication (Outer) on an Intel CPU and Transpose (1) on a Discrete AMD Nano GPU.
This suggests that there is potential for further improvement. However, the current
heuristics were still able to achieve geometric mean speedups both over no SVM and
over aggressive use of SVM, while also preventing all instances with significant slow-

114

Experimental Results

0.58

1.06

2.94

2.28

0.96

2
2.25

0.58

1.611.55

0.82

2.6

1.46

0.98

1.33
1.2

2.6

1.41

0.5

1

2

Integrated AMD GPU (No SVM)

S
p
ee
d
u
p
ov
er
a
g
g
re
ss
iv
e
S
V
M

1.01

1.52

3.09

2.29

1.02
1.08

2.15

1

1.65
1.56

0.93

2.67

1.49

1.15

1.84

1.19

2.5

1.54

Integrated AMD GPU (Target-AwareSVM)

Complex Product (Loop Based) Dilate Dilate (Outer) Dilate (No Interchange)

Matrix Multiplication Matrix Multiplication (Outer) Matrix Multiplication (No Interchange) RGB to YUV conversion

RGB to YUV conversion (No Interchange) Sub-band coding Transpose (1) Transpose (2)

Disparity (V1) Disparity (V2) Disparity (V3) Tracking

Tracking (No Interchange) Geometric Mean

(a) Speedup over aggressive use of SVM.

1.72

0.94

0.34

0.44

1.04

0.5

0.44

1.72

0.620.65

1.22

0.38

0.68

1.02

0.75
0.83

0.38

0.71

0.5

1

2

Integrated AMD GPU (AggressiveSVM)

S
p
ee
d
u
p
ov
er
n
o
S
V
M

1.75

1.43

1.051.011.06

0.54

0.95

1.72

1.021.01
1.13

1.031.02

1.16

1.39

0.990.96

1.09

Integrated AMD GPU (Target-AwareSVM)

(b) Speedup over no SVM.

Figure 6.8: Analysis of the impact of Shared Virtual Memory (SVM) and target-aware
heuristics, on an integrated AMD GPU (system 1). The Y axis uses a logarithmic scale.

downs, all while using fairly simple heuristics.

6.6 Impact of Parallelization

Although parallelization has the potential to improve performance, it is not guaran-
teed to do so. This section compares the performance of MATISSE-generated C and
OpenCL code with that of MATISSE-generated C code (i.e., parallel MATISSE versus
sequential MATISSE) and sequential MATLAB, on the San Diego Vision Benchmark
Suite benchmarks (Disparity and Tracking). These two benchmarks contain code that
is best executed on the GPU along with code that is best executed on the CPU, and as
such allows for an exploration of the implications of parallelization. The Disparity V1
and V2 versions were compared with the same sequential version, as the only differences
between the two versions are related to which sections are offloaded to the GPU.

This section only evaluates the benchmarks using the direct schedule, but it does
measure the impact of SVM. Three OpenCL devices were tested: two GPUs and a CPU,
all running on the same computer (system 1).

Figure 6.11 shows the results, when all execution time (i.e., kernel, data transfers
and host computations) is considered. In general, offloading is not profitable on the
CPU. The added data transfers eliminate any speedups gained by the somewhat limited
parallelism of the CPU, but on other devices, parallelization can and often is effective.
Of the multiple benchmark variants, only Disparity (V1) has consistent slowdowns, as
this variant offloads code that would be best executed on the GPU (loops that have very

115

Experimental Results

0.23

0.47
0.550.61

1

0.7

1.15

0.31

0.6

0.04

0.25

0.35

1.05

0.78

0.55
0.680.69

0.48

0.0313

0.0625

0.125

0.25

0.5

1

2

Intel CPU (No SVM)

S
p
ee
d
u
p
ov
er
a
g
g
re
ss
iv
e
S
V
M

1
1.241.161.11 1 1.02 1 1.021.02

0.98

1.011.04
1.26

1.01

1.38
1.211.161.09

Intel CPU (Target-Aware)

Complex Product (Loop Based) Dilate Dilate (Outer) Dilate (No Interchange)

Matrix Multiplication Matrix Multiplication (Outer) Matrix Multiplication (No Interchange) RGB to YUV conversion

RGB to YUV conversion (No Interchange) Sub-band coding Transpose (1) Transpose (2)

Disparity (V1) Disparity (V2) Disparity (V3) Tracking (V1)

Tracking (No Interchange) Geometric Mean

(a) Speedup over aggressive use of SVM.

4.35

2.13
1.83

1.64

1

1.42

0.87

3.19

1.66

24.4

4.01

2.85

0.95

1.28

1.81
1.481.45

2.07

1

2

4

8

16

32

Intel CPU (AggressiveSVM)

S
p
ee
d
u
p
ov
er
n
o
S
V
M

4.36

2.63
2.13

1.83

1

1.45

0.87

3.27

1.7

24

4.04

2.96

1.2 1.29

2.5

1.781.68

2.26

Intel CPU (Target-AwareSVM)

(b) Speedup over no SVM.

Figure 6.9: Analysis of the impact of Shared Virtual Memory (SVM) and target-aware
heuristics, on an Intel CPU, with Intel’s CPU platform (system 2). The Y axis uses a
logarithmic scale.

limited parallelism and in one case non-coalesced memory accesses) In this benchmark,
SVM does not help performance, as data transfers are not the main issue to begin with
– the improved versions (Disparity (V2 and V3)) actually have more data transfers.
The improved performance of Disparity (V2) is caused by the more selective offloading
of sections, and Disparity (V3) further improves performance since sections of the code
were rewritten to now be recognized by MATISSE as parallelizable. In combination,
MATISSE can achieve speedups of more than 2× on both the integrated and the discrete
GPU. On the Tracking benchmark, MATISSE can achieve speedups on both the discrete
and integrated GPU, but use of SVM is not profitable. When loop interchange is
disabled, the Tracking benchmark performs worse in general, but the sequential version
seems to be more severely impacted than the GPU version, which is why the speedups
are greater. SVM in general becomes unprofitable as the kernel memory accesses are no
longer coalesced.

The execution times include measurements of the OpenCL kernel for the discrete
GPU, as well as data transfer times. These results can be used to estimate the maximum
theoretical speedup over the current generated C/OpenCL code for these benchmarks.
The maximum theoretical speedup without any data transfers is defined as:

STheoretical =
TTotal

TTotal − TDataTransfers − TKernel
(6.1)

116

Experimental Results

0.69

1.57

3.05

1.11

0.98

1.73

10.4

0.44

2.03

3.75

0.65

1.11

1.47

1.05

2.15

1.26

1.71
1.51

0.5

1

2

4

8

16

AMD R9Nano (No SVM)

S
p
ee
d
u
p
ov
er
a
g
g
re
ss
iv
e
S
V
M

1

1.97

3.1

1.1 1.19

1.73

10.5

0.99

2.06

3.83

0.85

1.481.47 1.4

3.19

1.28

1.8 1.8

AMD R9Nano (Target-AwareSVM)

Complex Product (Loop Based) Dilate Dilate (Outer) Dilate (No Interchange)

Matrix Multiplication Matrix Multiplication (Outer) Matrix Multiplication (No Interchange) RGB to YUV conversion

RGB to YUV conversion (No Interchange) Sub-band coding Transpose (1) Transpose (2)

Disparity (V1) Disparity (V2) Disparity (V3) Tracking (V1)

Tracking (No Interchange) Geometric Mean

(a) Speedup over aggressive use of SVM.

1.45

0.64

0.33

0.9

1.03

0.58

0.1

2.27

0.49

0.27

1.54

0.9

0.68

0.95

0.47

0.79

0.59
0.66

0.125

0.25

0.5

1

2

AMD R9Nano (AggressiveSVM)

S
p
ee
d
u
p
ov
er
n
o
S
V
M

1.45
1.25

1.02

0.99

1.22
1 1.01

2.24

1.011.02

1.311.34

1

1.33
1.48

1.011.06
1.19

AMD R9Nano (Target-AwareSVM)

(b) Speedup over no SVM.

Figure 6.10: Analysis of the impact of Shared Virtual Memory (SVM) and target-aware
heuristics, on an AMD R9 Nano GPU, with HBM memory (system 2). The Y axis uses
a logarithmic scale.

0.47

0.59

0.41

0.6

0.740.74

1.27 1.29
1.48

1.21

0.55

1.56

1.17

2.16 2.2

0.57

1.2

0.99

1.19

1.47

0.77

1.88

0.72

1.81

2.63

CPU (AMD
platform)

Integrated AMD
GPU (No SVM)

Integrated AMD
GPU (Aggres-
sive SVM)

Integrated AMD
GPU (Target-
Aware SVM)

Discrete GPU
(Tahiti)

0.5

1

2

S
p
ee
d
u
p
ov
er
se
q
u
en
ti
a
l
C

Disparity (V1) Disparity (V2) Disparity (V3)

Tracking Tracking (No Interchange)

Figure 6.11: Speedups for the generated C/OpenCL versions, compared to the sequential
automatically-generated C versions. The Y axis is in a logarithmic scale.

The theoretical speedup with data transfers is defined as:

STheoretical(w/DataTransfers) =
TTotal

TTotal − TKernel
(6.2)

For the Disparity (V1, V2 and V3) benchmarks, the maximum theoretical speedups

117

Experimental Results

without any data transfers1 are 1.14×, 1.20× and 1.54×, respectively. With data trans-
fers, the maximum theoretical speedups are 1.07×, 1.01× and 1.04×, respectively. For
the Tracking (V1 and No Interchange) benchmark, the maximum theoretical speedups
without data transfers are 1.17× and 1.24×, respectively. With data transfers, the
maximum theoretical speedups are 1.01× and 1.07×, respectively. This means that our
results are close-to-optimal, and improvements to the generated kernel code are un-
likely to lead to significant performance improvements. However, there is potential for
improvements by optimizing data transfers.

We also compared the performance of the sequential and parallel versions with the
original MATLAB. The performance of MATISSE-compiled programs varies substan-
tially across benchmarks, as matrix operations and built-in functions tend to be rela-
tively fast in MATLAB, whereas explicit loops operating on matrices tend to be very
slow. For instance, Complex Product (Loop Based) and Complex Product (Matrix Ori-
ented) benchmarks (with inputs of size 1024 × 1024 × 10) have practically the same
performance on MATISSE, but the later is around 6.3× faster than the former in MAT-
LAB, though even the idiomatic version is around 1.15× faster on MATISSE C. The
Disparity and Tracking benchmarks combine both approaches. The original Disparity
benchmark takes on average 17.7 seconds to run. The fastest MATISSE version is Dis-
parity (V3) both for sequential C and parallel OpenCL code generation, taking 2.94
and 1.34 seconds on average, in C and OpenCL (Discrete GPU) mode, respectively. For
comparison, the best Disparity version for MATLAB runs in approximately 12.2 seconds
(see Section 6.3). For the Tracking benchmark, the sort removal optimization results
in code that runs slower in MATLAB, so it is compared the Tracking (V1) benchmark
running on MATISSE with the MATLAB equivalent using the original sort function.
On MATLAB, Tracking takes on average 387.65 seconds to run. The code generated
by MATISSE takes 0.93 and 0.63 seconds to run in sequential C and parallel OpenCL
(Discrete GPU) modes, respectively.

6.7 Comparison with Manually Coded OpenCL

In order to test the quality of the proposed OpenCL code generator, the generated code
was compared with manually coded OpenCL using the Polybench/GPU benchmark
suite [GGXS+12], which implements OpenCL versions of simple algorithms that were
rewritten in MATLAB using the MATISSE directives. The performance of the resulting
MATISSE programs was compared with the PolyBench/GPU originals. The list of
benchmarks in this suite is presented in Subsection 6.1.1.

There are some difficulties in comparing the MATISSE and original versions of the
benchmarks, notably in the manner that the benchmarks are structured, as the orig-
inal Polybench/GPU versions initialize GPU buffer data outside of the timed region,
whereas MATISSE includes all data transfers. For improved homogeneity, the Poly-
bench/GPU benchmarks were modified to use OpenCL profiling capabilities in the same
manner MATISSE does, but this has the side-effect that CPU-only computations are
not timed. Fortunately, there are very few CPU-side computations on all benchmark
versions. MATISSE was explicitly instructed to use the same local sizes as the original
Polybench/GPU version, and always use the direct schedule. All Polybench/GPU

1Measured using OpenCL’s event profiling info (from CL_PROFILING_COMMAND_START). Time
waited until a submitted command is actually executed on the device is excluded. Note also that
MATISSE’s support for asynchronous OpenCL command execution is very limited.

118

Experimental Results

buffers were initialized to zero (instead of leaving them with undefined data), but these
initializations were performed on the CPU-side, which were not measured.

For each benchmark, there are multiple ways to offload computations to the OpenCL
device. The MATLAB versions were written in an manner that attempted to preserve
the ”spirit” of each benchmark, but some parallelization strategies simply do not map
well to MATISSE. Regardless, even when the MATLAB sources imitates the C++ code
closely, MATISSE optimizations can lead to different OpenCL being generated. Notably,
MATISSE is capable of optimizing repeated assignments to a matrix position in a loop
to assignments to a scalar accumulator variable that is only assigned to the matrix at
the end of the loop, in a simple form of scalar replacement.

A comparison of the generated source code between the original and MATISSE
versions follows:

� 2DCONV and 3DCONV: These benchmarks contain a single kernel invocation
(and respective data transfers) each. The MATISSE versions were programmed
as the equivalent loops and added the parallelization directives but, due to au-
tomated transformations (i.e., the loop-start-normal pass mentioned in Ap-
pendix D.1), the generated OpenCL is not exactly equivalent. Additionally, in
2DCONV, MATISSE initializes a GPU buffer to zeros by generating a kernel to
do so or performing an OpenCL range set (it does not remove the initialization
because the kernel does not modify the border of the buffer), whereas the original
Polybench/GPU keeps the buffer uninitialized due to the domain knowledge that
the contents of the border of that buffer after the kernel call are irrelevant. This
is not the case in 3DCONV, where the border is set to 0 in the body of the kernel,
so MATISSE can safely remove the initialization. Curiously, on 3DCONV, the
Polybench/GPU does unnecessarily copy the contents of the buffer to the GPU.

� 2MM and 3MM: A series of kernels, each with a sequential inner loop, the last
of which depends on the results of the others. The MATISSE implementation is
equivalent to the Polybench/GPU versions.

� ATAX, BICG and MVT: Each benchmark features two kernels performing matrix-
vector multiplications, or transpose matrix-vector multiplications. The MATISSE
versions are implemented as the equivalent loops. In this version, the cooperative
schedule optimization described in Section 5.6 are not being considered – in other
words, only the direct schedule is used. MATISSE performs scalar replacement on
this benchmark.

� CORR: The MATISSE and Polybench/GPU versions are very similar, with two
notably differences: MATISSE performs scalar replacement, and Polybench/GPU
implements CPU writes to individual elements of a GPU buffer by calling the
clEnqueueWriteBuffer function on a single position, whereas MATISSE inef-
ficiently copies the whole buffer to the CPU to write the single position.

� COVAR, GEMM, GESUMMV, SYR2K and SYRK: The MATISSE and Poly-
bench/GPU versions are very similar, but MATISSE performs scalar replacement.

� FDTD: The MATISSE and Polybench/GPU versions are very similar.

� GESUMMV: The MATISSE and Polybench/GPU versions are very similar, but
MATISSE allocates a buffer on the GPU without copying data and then zero-

119

Experimental Results

initializes it on the GPU, whereas in Polybench/GPU this buffer is copied from
the CPU to the GPU.

� GRAMSCHM: The benchmark consists of 3 kernels, two of which are very similar
in MATISSE and Polybench/GPU (and MATISSE was unable to fully perform
scalar replacement). However, one of the kernels performs a dot product and
computes the square root of a single scalar that is written to a matrix position.
Polybench/GPU implements this operation as a kernel where the first work-item
performs all the work and all other work-items perform no work whatsoever (256
work-items are launched for this kernel in the Polybench/GPU version). In the
MATISSE version, however, this was implemented a simple loop with a sum re-
duction and relied on MATISSE’s built-in handling of reductions, with the result
that all work-items perform some work, but the final square root is performed on
the host CPU. Unfortunately, MATISSE does not support writing to a single GPU
matrix position from the host, so the entire matrix is unnecessarily copied to the
host for the square root, and back to the device afterwards.

An additional difference is that MATISSE generates the reqd_work_group_size
attribute in all Polybench/GPU kernels, whereas the original version does not include
this attribute in any version.

All execution times (kernel times both with and without data transfer times) had a
95% confidence margin of error of less than 3% of the average execution time, and often
less than 1% of the average execution time.

Figure 6.12 shows the speedup of the MATISSE versions over the Polybench/GPU
counterparts, without any target specialization, running on a discrete GPU on system 1.
Both the results for kernel times and the results with the total of kernel and data transfer
times are presented.

The MATISSE versions were up to 2.01× faster than the hand-coded originals con-
sidering both kernel and data transfer times, and 1.21× faster than the original when
only kernel times are considered. The generated kernels were 26% faster than the hand-
coded ones, on geometric mean.

The 2DCONV benchmark has notorious slowdowns in kernel times due to the addi-
tional generated kernel (for zero-initialization). However, this benchmark is bottlenecked
by data transfers, so it has roughly the same overall performance as the Polybench/GPU
version. The GESUMMV benchmark kernels take longer to execute in MATISSE be-
cause a Polybench/GPU data transfer is implemented as a kernel in MATISSE. When
total times are considered, this difference is eliminated and, in fact, MATISSE has a
small advantage. The main disadvantage for MATISSE is the GRAMSCHM bench-
mark, for a reason previously noted: MATISSE generates unnecessary data transfers
of an entire buffer in a loop, whereas Polybench/GPU performs a single element copy.
The 3DCONV benchmark performs better in MATISSE as the compiler can eliminate
an unnecessary buffer initialization/copy. However, in most benchmarks, the speedups
of MATISSE can be attributed to a single optimization: scalar replacement.

On this device, target specialization has very little impact on performance, as the
only used target property is the detection that this specific GPU supports OpenCL 1.2,
so the clEnqueueFillBuffer can and should be used. This has an impact on the
kernel times of 2DCONV (in fact, it suffices to make the MATISSE version outperform
the Polybench/GPU version by approximately 1.69×), but otherwise has no impact on
total performance, as the benchmark continues to be bottlenecked by data transfers.

120

Experimental Results

2
d
co
n
v

2
m
m

3
d
co
n
v

3
m
m

a
ta
x

b
ic
g

co
rr

co
va
r

fd
td

g
em

m

ge
su
m
m
v

gr
a
m
sc
h
m

m
v
t

sy
r2
k

sy
rk

ge
o
m
ea
n

0.
5

1
2

0.37

2.20

1.05

1.41
1.62 1.63 1.67 1.66

1.00

1.57

0.91

1.30
1.53

1.01

1.32 1.26

S
p
ee
d
u
p

(a) Kernel times only

2d
co
n
v

2m
m

3d
co
n
v

3m
m

a
ta
x

b
ic
g

co
rr

co
va
r

fd
td

ge
m
m

ge
su
m
m
v

gr
am

sc
h
m

m
v
t

sy
r2
k

sy
rk

ge
om

ea
n

0.
5

1
2

1.04

2.01

1.57 1.48

1.17 1.19

1.67 1.66

1.00

1.35
1.10

0.41

1.21
1.01

1.29 1.21

S
p
ee
d
u
p

(b) Kernel and data transfer times

Figure 6.12: Speedup of the MATISSE-generated parallel versions over the Poly-
bench/GPU OpenCL versions, running on a discrete GPU (system 1), without using
target-aware optimizations. The Y axis uses a logarithmic scale.

When both kernel and data transfer times are considered, the geometric mean of the
difference in performance between the specialized and non-specialized versions on this
GPU is less than 1%.

Figure 6.13 shows the speedup of the MATISSE versions over the Polybench/GPU
counterparts, without any target specialization, running on an integrated GPU on sys-
tem 1. Both the results for kernel times and the results with the total of kernel and
data transfer times are presented.

On this GPU, MATISSE’s kernel time advantages seem to no longer exist (geometric
mean speedup of approximately 5%). The fact that the GESUMMV benchmark is now
faster on MATISSE than on the hand-coded version is interesting, as MATISSE still
generates code with an additional kernel. Possibly, on this GPU and benchmark, the
impact of scalar replacement is sufficient to compensate for the additional kernel call.
The main difference are the 3MM and MVT benchmarks, in which the MATISSE-

121

Experimental Results

2
d
co
n
v

2
m
m

3
d
co
n
v

3
m
m

a
ta
x

b
ic
g

co
rr

co
va
r

fd
td

ge
m
m

g
es
u
m
m
v

g
ra
m
sc
h
m

m
v
t

sy
r2
k

sy
rk

g
eo
m
ea
n

0.
5

1
2

0.65

1.36

0.79
0.67

1.15
1.06

1.42 1.40

0.99

1.25 1.19 1.21

0.82

1.05
1.25

1.05

S
p
ee
d
u
p

(a) Kernel times only

2d
co
n
v

2
m
m

3d
co
n
v

3
m
m

a
ta
x

b
ic
g

co
rr

co
va
r

fd
td

ge
m
m

ge
su
m
m
v

gr
am

sc
h
m

m
v
t

sy
r2
k

sy
rk

ge
om

ea
n

0.
5

1
2

0.89

1.36 1.36

0.69

1.10 1.04

1.42 1.40

0.99

1.18
1.28

0.52

0.93

1.05
1.24

1.06

S
p
ee
d
u
p

(b) Kernel and data transfer times

Figure 6.13: Speedup of the MATISSE-generated parallel versions over the Poly-
bench/GPU OpenCL versions, running on an integrated GPU (system 1), without using
target-aware optimizations. The Y axis uses a logarithmic scale.

generated code is faster than the PolyBench/GPU equivalent on the Discrete GPU, but
slower on the Integrated GPU. In these benchmarks, MATISSE generates kernels that
Polybench/GPU implements as copies.

Let us consider the impact of using target specialization on the Integrated GPU.
Target specialization is more meaningful on the Integrated GPU due to its support for
SVM. Note that schedules other than direct have not been used in this experiment.
The results are presented in Figure 6.14.

Most Polybench/GPU benchmarks are not impacted by the proposed target-aware
specialization. The coalescence heuristics have been designed for kernels with a single
non-1 local size, so on Polybench/GPU very few benchmarks end up using SVM. The
speedup of 2DCONV is caused by the use of the clEnqueueFillBuffer function
instead of a dedicated kernel. The BICG and GRAMSCHM benchmarks, however,
use SVM and are faster for it, though SVM does not eliminate entirely the slowdown

122

Experimental Results

2
d
co
n
v

2
m
m

3
d
co
n
v

3
m
m

a
ta
x

b
ic
g

co
rr

co
va
r

fd
td

ge
m
m

g
es
u
m
m
v

g
ra
m
sc
h
m

m
v
t

sy
r2
k

sy
rk

g
eo
m
ea
n

0.
5

1
2

1.40

1.00

1.00

1.00

1.01
1.12

1.00 1.00

1.00 1.01 1.02
1.11

0.99

1.01

1.00

1.04

S
p
ee
d
u
p

Figure 6.14: Impact of using target-aware specialization for MATISSE-generated code
(speedup of specialized over non-specialized), on an integrated GPU (system 1), when
both kernel and data transfer times are considered. The Y axis uses a logarithmic scale.

in GRAMSCHM. The ATAX benchmark uses SVM, but it does not seem to have a
significant impact.

Finally, let us consider evaluated the performance of the MATISSE-generated
OpenCl code on an AMD CPU. The results are presented in Figure 6.15.

In general, the AMD CPU platform seems to be less impacted by data transfers,
as the kernels themselves take longer to execute. This difference explains why GRAM-
SCHM is no longer the worst-case scenario for MATISSE – the GRAMSCHM kernels
now take almost 11× longer to execute than the data transfers. Other than that, most
of the conclusions for the discrete GPU apply to the AMD CPU.

As for target specialization, AMD’s OpenCL implementation for CPUs does not
support SVM and it was forced the use of the direct schedule on all benchmarks, so
the only specialized property is the support for clEnqueueFillBuffer. The end-
result is similar to that of target specialization for discrete GPUs, this time with a
geometric mean speedup of around 1.5%. Notably, however, since the generated kernels
are much slower on the CPU than on GPUs, the impact of the fill buffer function is larger
on the 2DCONV benchmark. Due to this difference alone, the target-aware version is
almost 20% faster than the non-target-aware version, when both kernel and data transfer
times are considered.

In order to determine the impact of using MATISSE on code readability, an anal-
ysis of each of the benchmarks is presented in terms of lines of code of original Poly-
bench/GPU C and OpenCL, lines of code of MATISSE OpenCL, number of directives,
and how many of those directives are %!no_index_overlap. For the purposes of
the number of lines of code of the original Polybench/GPU, the lines of code that were
added for profiling purposes were excluded, as those were not in the original version.
Comments and empty lines were also excluded. These results are presented in Table 6.8.

Part of the cause for the higher number of lines in the C version is the presence of
validation code, including an implementation version of the same algorithms as sequen-
tial C code. But even without these, the C code is substantially larger than MATLAB,
as C with OpenCL is substantially lower-level than MATLAB with MATISSE directives.
For instance, the MATLAB version omits the data transfer and OpenCL initialization

123

Experimental Results

2
d
co
n
v

2
m
m

3
d
co
n
v

3
m
m

a
ta
x

b
ic
g

co
rr

co
va
r

fd
td

ge
m
m

g
es
u
m
m
v

g
ra
m
sc
h
m

m
v
t

sy
r2
k

sy
rk

g
eo
m
ea
n

0.
5

1
2

0.50

1.66

0.76

1.49 1.44 1.42

1.03 1.07

0.94

2.69

0.98

1.21
1.51

0.85

1.03
1.21

S
p
ee
d
u
p

(a) Kernel times only

2d
co
n
v

2
m
m

3d
co
n
v

3
m
m

a
ta
x

b
ic
g

co
rr

co
va
r

fd
td

ge
m
m

ge
su
m
m
v

gr
am

sc
h
m

m
v
t

sy
r2
k

sy
rk

ge
om

ea
n

0.
5

1
2

0.60

1.66

0.95

1.49 1.38 1.36

1.03 1.07

0.94

2.65

1.54

0.90

1.44

0.85

1.03
1.19

S
p
ee
d
u
p

(b) Kernel and data transfer times

Figure 6.15: Speedup of the MATISSE-generated parallel versions over the Poly-
bench/GPU OpenCL versions, running on an AMD CPU (system 1), without using
target-aware optimizations. The Y axis uses a logarithmic scale.

code entirely. Keep in mind that the MATLAB versions were written in a loop-oriented
code style. A vectorized approach would be even more compact.

In general, the results show that MATISSE is competitive with hand-coded
C/OpenCL code, at least when the MATLAB code is written to be similar to the
low-level equivalent. However, for improved performance, MATISSE should be modified
to account for cases where only small segments of a matrix need to be copied, as that
would fix the significant slowdowns present in the GRAMSCHM benchmark.

6.8 Impact of Cooperative Schedule

The schedule(cooperative) was developed to optimize three similar benchmarks:
ATAX, BICG and Sub-band Coding, which all perform what is effectively a matrix-
vector multiplication. However, to ensure that the optimization was applicable to other

124

Experimental Results

Table 6.8: Lines of code (LoC) of the hand-coded C and MATISSE versions of the
Polybench/GPU benchmarks. NIO refers to the number of %!no_index_overlap
directives.

Name
Hand-Coded #LoC MATLAB #LoC

C OpenCL Total Directives (NIO)

2DCONV 207 21 28 1 (0)
2MM 278 32 18 1 (0)
3DCONV 219 30 28 2 (0)
3MM 325 45 27 1 (0)
ATAX 241 28 16 1 (0)
BICG 261 32 18 1 (0)
CORR 325 66 50 7 (1)
COVAR 273 46 39 9 (1)
FDTD 279 41 26 3 (0)
GEMM 235 20 12 2 (0)
GESUMMV 229 20 11 1 (0)
GRAMSCHM 265 45 26 3 (0)
MVT 248 30 15 1 (0)
SYR2K 232 20 14 2 (0)
SYRK 220 20 12 2 (0)

use-cases as well, a different artificial benchmark was developed (i.e., Sum Vertical).
This benchmark also exhibits the traits that the optimization is designed to apply to,
despite not being a matrix-vector multiplication.

This section attempts to answer the following questions:

1. Which variants of schedule(cooperative) work best;

2. What speedup can be expected when the schedule(cooperative) is used
selectively, in comparison to not using it at all;

3. What slowdown can be expected when the schedule(cooperative) is used
improperly, in comparison to not using it at all;

4. Whether the profitability of schedule(cooperative) varies with input sizes.

To answer the first three questions, the ATAX, BICG and Sum Vertical benchmarks
were executed with single-precision matrices of shape 4096 × 4096 (and vectors of size
4096, when applicable). For the Sub-band Coding benchmark, a single-precision matrix
of size 256 × 131072 (and a secondary matrix of size 32 × 256 that is only used in
sequential code) was used.

The variants of the schedule that were measured are:

� Level of cooperation: Work-group cooperation (i.e., cooperative), sub-group
cooperation (i.e., subgroup_cooperative, required OpenCL 2.0) or emulated
sub-group cooperation (i.e., subgroup_cooperative with the sub-groups as
warps fallback).

125

Experimental Results

� Different forms of performing the reductions of the cooperative execution loops:
the kernel can aggregate all partial results in a local buffer and then have the
leader work-item aggregate the results in a simple for loop (the simple variant),
the kernel can aggregate the results in a hierarchical manner, where an work-item
combines two partial results, and on the next iteration only half as many work-
items aggregate the result, until a single work-item (the leader work-item) has the
final value (the interleaved variant), or finally the kernel can use OpenCL’s built-in
reduction functions (the native variant, only available in OpenCL 2.0).

Therefore, on devices without OpenCL 2.0, 4 variants are tested (simple and inter-
leaved reduction variants, multiplied by two levels of cooperation), and on devices with
OpenCL 2.0, 8 variants are tested (the three reduction approaches, multiplied by the
three levels of cooperation, minus the invalid combination of native reductions with sub-
groups as warps fallback). All measured times refer to kernel times, with data transfers
and host-side computations excluded, as the cooperative schedule requires few to no
changes to the host side.

Figure 6.16 shows the results for a discrete AMD GPU (system 1, with OpenCL
1.2). The results show that the interleaved version was consistently faster than the
simple version. In geometric mean, the interleaved version was around 29% faster than
the simple version (for the work-group variants). The difference for the sub-groups
as warps fallback is not as significant, as warps are smaller than work-groups, so the
difference in processed work between the simple and interleaved versions is lessened. The
warp fallback versions were found to be somewhat faster than the work-group versions,
especially among the non-interleaved versions. Regardless, on these benchmarks, even
the less efficient versions of the cooperative schedule resulted in significant speedups
over the direct schedule (6.0 to 8.5×).

atax bicg sumvertsubband geomean
1

2

4

8

16

32

2.
3

2
.4

7.
4

30
.8

6
.0

3.
5

3.
6

9.
0

31
.0

7.
7

3
.6 3.
7

9
.4

29
.9

7.
8

3.
6

3
.8

9.
7

38
.8

8
.5

S
p
ee
d
u
p
ov
er

s
c
h
e
d
u
l
e
(
d
i
r
e
c
t
)

Work-Group Simple
Work-Group Interleaved
Warp Fallback Simple
Warp Fallback Interleaved

Figure 6.16: Comparison of multiple versions of the cooperative schedule, on a discrete
AMD GPU running on system 1, in terms of speedups over the direct schedule.

Figure 6.17 shows the results for an integrated AMD GPU (system 1, with OpenCL
2.0). The results show that the performance of the native implementations of reduc-
tions (e.g., work_group_reduce_add) is extremely disappointing, as even the simple
implementation was able to outperform it nearly always. The interleaved versions are
still the best approaches for the work-group and sub-group variants. The results also
show that the sub-group variants are slower than expected, particularly since significant

126

Experimental Results

speedups were achieved with the sub-group as warps fallback. This suggests that either
AMD’s sub-group implementation has margin for further optimization, and/or some
hard-coded information that was provided to the warp fallback variant (e.g., the warp
size, or the knowledge that the global size is always a multiple of the local size2) can be
used to generate more efficient code. Once again, even the less efficient versions of the
cooperative schedule are faster than the direct schedule for these benchmarks.

atax bicg subband sumvert geomean
1

2

4

8

16

4
.9

4
.6

1
5
.0

6
.2 6
.8

5
.2

4
.8

1
5
.1

7
.6

7
.3

4
.1

3
.8

1
3
.7

4
.9 5
.7

5
.3

4
.9

1
0
.5

6
.7

6
.5

5
.6

5
.2

1
4
.3

8
.1

7
.6

5
.2

4
.9

7
.2

6
.2

5
.8

5
.8

5
.3

1
4
.8

8
.2

7
.8

5
.8

5
.3

1
4
.5

8
.4

7
.8

S
p
ee
d
u
p
ov
er

s
c
h
e
d
u
l
e
(
d
i
r
e
c
t
)

Work-Group Simple Work-Group Interleaved Work-Group Native
Sub-Group Simple Sub-Group Interleaved Sub-Group Native
Warp Fallback Simple Warp Fallback Interleaved

Figure 6.17: Comparison of multiple versions of the cooperative schedule, on an inte-
grated AMD GPU running on system 1, in terms of speedups over the direct schedule.

On an AMD CPU OpenCL platform (system 1, with OpenCL 1.2), the re-
sults show that the cooperative schedules consistently perform worse than the
schedule(direct) versions, so it was not determined which variant is best – the
optimization should be disabled altogether.

Figure 6.17 shows the results for a discrete NVIDIA GPU (system 3, with OpenCL
1.2). It was found that the work-group cooperative schedule with simple reductions
caused slowdowns, and the interleaved reduction, while better, was insufficient to con-
sistently result in speedups. The sub-groups as warps fallback, on the other hand, did
produce significant speedups (geometric mean of 2.06× faster). The reduction type to
use (simple or interleaved) with the warp approach seems to matter very little, as the
performance difference is below 2%.

It was also attempted to determine the impact of using the cooperative schedule in
circumstances in which doing so is not appropriate. For instance, the ATAX benchmark
consists of two kernels, but only one benefits from the cooperative schedule, as the other
already has coalesced memory accesses. For this experiment, MATISSE was forced to
use the cooperative schedule (using interleaved reductions) for both kernels, and the
impact of doing so was measured. Figure 6.19 shows the results. As seen, the forced
variants (i.e., where the cooperative schedule is used regardless of whether it makes
sense) consistently perform worse than the proper version, and nearly always perform

2This is true for MATISSE-generated code, but no longer true in the general case in OpenCL since
version 2.0.

127

Experimental Results

atax bicg sumvertsubband geomean

0.5

1

2

4
0
.5
5

0.
54

0
.4
6

2.
19

0.
74

1.
0
0

1
.0
3

0.
70

2.
19

1
.1
2

1.
74

1.
7
5

1.
93

2
.8
4

2.
0
2

1
.7
5

1.
7
4 2
.0
82.

8
3

2.
06

S
p
ee
d
u
p
ov
er

s
c
h
e
d
u
l
e
(
d
i
r
e
c
t
) Work-Group Simple Work-Group Interleaved

Warp Fallback Simple Warp Fallback Interleaved

Figure 6.18: Comparison of multiple versions of the cooperative schedule, on a discrete
NVIDIA GPU running on system 3, in terms of speedups over the direct schedule.

worse than if no optimization had been done at all. These results suggest that the
penalty for using the cooperative schedule when it is unprofitable to do so is generally
greater than the benefit of using the cooperative schedule when it is profitable. On the
AMD GPUs, the three proper versions perform roughly the same, so the difference in
performance between the forced versions implies that the penalty for improperly using
the cooperative schedule is lessened with the sub-group variants. This makes sense, as
each sub-group is smaller than a work-group, so the redundant/leader-only workload is
reduced.

Discrete AMD GPU Integrated AMD GPU NVIDIA GPU

0.25

0.5

1

2

4

8

3
.5
2

5
.2
2

1
.0
0

0
.9
5

0
.3
4

0
.2
6

5
.6
1

0
.7
0

3
.6
4

5
.8
2

1
.7
5

1
.4
5

0
.7
0

0
.5
0

S
p
ee
d
u
p
ov
er

s
c
h
e
d
u
l
e
(
d
i
r
e
c
t
)

Work-Group Proper Work-Group Forced
Sub-Group Proper Sub-Group Forced
Warp Fallback Proper Warp Fallback Forced

Figure 6.19: Comparison of multiple versions of the ATAX benchmark, with interleaved
reductions, on multiple GPUs from systems 1 and 3, in terms of speedups over the
direct schedule. The proper versions use the direct and cooperative schedules for the
appropriate kernels, whereas the forced versions use the cooperative schedules for both
ATAX kernels.

128

Experimental Results

Finally this section explores whether the profitability of the cooperative schedule
varies with input sizes, using the ATAX benchmark (see Figure 6.20). The profitability
of the cooperative schedule does indeed depend on the input size, as well as the specific
variant used. The results show that, for matrices of size 1024 × 1024, the cooperative
schedule is already profitable, provided that the proper variant is used.

105 106 107

0.25

0.5

1

2

4

Discrete AMD GPU

S
p
ee
d
u
p
ov
er

s
c
h
e
d
u
l
e
(
d
i
r
e
c
t
)

105 106 107

Integrated AMD GPU

Work-Group Interleaved Sub-Group Interleaved Warp Fallback Interleaved

105 106 107

NVIDIA GPU

Figure 6.20: Comparison of multiple versions and input sizes of the ATAX bench-
mark, with interleaved reductions, on multiple GPUs from systems 1 and 3, in terms of
speedups over the direct schedule.

MATISSE was configured to automatically use the cooperative schedule on the tested
GPUs, specifically with the sub-groups as warps variant with interleaved reductions,
when no schedule is explicitly specified (i.e., the schedule(auto) mode). MATISSE
does not check the input sizes of the kernels (as these are often dynamic properties and
the choice of schedule uses pure static analysis), but it does check whether the kernels
are suitable for the cooperative schedule (i.e., it does not use the aforementioned Forced
mode).

On CPUs, MATISSE does not use the cooperative schedule unless it is explicitly
instructed to do so by the user, because there are performance improvements on any of
the variants.

6.9 Alternative Schedules on AMD’s CPU Platform

Although CPUs do not benefit from the cooperative schedule, it is conceivable that they
could still benefit from other schedules. This section explores this topic, specifically
on AMD’s CPU platform (system 1), as Intel’s auto-vectorization has implications for
scheduling. This section is relative to kernel times only, as the schedule does not impact
data transfer times or CPU times. All execution times are the average of 10 benchmark
executions. The Complex Product benchmark uses matrices of input size 1024×1024×2,
Dilate uses 4096× 4096 and Sub-band Coding 128× 65536.

It was found that, in general, the sequential variants of schedules outperform the
global rotation variants, and generally by a significant margin (up to 19.8× faster).
In one case (the FDTD benchmark), the global rotation fixed work-groups schedule ex-
ceeded the specified timeout of 90 seconds (the real execution time is around 3 minutes),

129

Experimental Results

whereas the other versions all had an average execution time under 30s. For the pur-
poses of this section, this case is treated as if it had taken 90 seconds to execute. The
sequential variant of the coarse schedule (with a coarsening factor of 4) is 22% faster
(geometric mean) than the global rotation variant. The sequential variant of the fixed
work-groups (with 16 work-groups) schedule is 2× faster than the global rotation vari-
ant. These results indicate that the sequential variants are a better default for CPUs
than the global rotation variants. The exception being some examples with memory
access patterns with poor locality (notably the artificial No Interchange benchmarks).

Next, it was attempted to determine which schedule category (direct, coarse or
global rotation) is more suitable for the CPU. Figure 6.21 shows the speedups associated
with using alternative schedules over the schedule(direct) version. In general,
better results were obtained with the fixed work-groups versions (geometric mean of
1.41×) than with the coarse versions (geometric mean of 1.22×), though there were
some benchmarks where the thread coarsened version outperformed the fixed work-
groups version (notably the No Interchange and Transpose benchmarks).

Overall, between schedule(direct), schedule(coarse_sequential), and
schedule(fixed_work_groups_sequential), fixed work-groups tends to per-
form better on AMD’s CPU platform. Based on these results, MATISSE’s target-aware
settings for AMD’s CPU platform were modified to use the fixed work-groups by de-
fault.

6.10 Summary

This section presents the set of benchmarks, respective input sizes, and experiments
that were used to evaluate the MATISSE prototype and techniques. The benchmarks
were taken from a variety of sources, including previous work in MATISSE, the San
Diego Vision Benchmark Suite and the Polybench/GPU benchmark suite. For some
techniques, artificial benchmarks were also used.

The results include tests to measure the impact of specific subsystems of MA-
TISSE, including temporary matrix elimination, parallelization, SVM and the execution
schedules. Additionally, this section includes comparisons with the previous MATISSE
OpenCL backend, sequential code, and manually-coded OpenCL.

Overall, these results suggest that the MATISSE techniques can help achieve signif-
icant speedups on a variety of cases, though in some cases there is margin for further
improvement.

130

Experimental Results

0.25

0.5

1

2

4

1
.6
1

1
.1
7

1
.2
0

2
.2
4

0
.9
5

0
.6
2

0
.9
9

0
.9
8

1
.0
1

3
.2
6

1
.1
0 1
.4
9

1
.4
0

1
.5
7

1
.5
6

1
.5
6 2
.1
1 2
.8
1

1
.0
0

1
.4
9

1
.3
7

1
.0
2

1
.0
6

0
.6
1

1
.1
3

1
.1
5

1
.0
3

1
.0
4

0
.6
2

0
.9
4

1
.0
0

0
.9
8 1
.2
2

0.25

0.5

1

2

4

AMD CPU, Thread Coarsening (N=4, sequential)

S
p
ee
d
u
p
ov
er

sc
h
ed

u
le
(d
ir
ec
t)

Complex Product (Loop Based) Dilate Dilate (Outer)

Dilate (No Interchange) Matrix Multiplication Matrix Multiplication (Outer)

Matrix Multiplication (No Interchange) Monte Carlo Option Pricing RGB to YUV conversion

RGB to YUV conversion (No Interchange) Sub-band coding Disparity (V1)

Disparity (V2) Disparity (V3) Tracking

Tracking (No Interchange) Transpose (V1) Transpose (V2)
3MM 2DCONV 3DCONV
ATAX BICG CORR
COVAR FDTD GEMM
GESUMMV GRAMSCHM MVT
SYR2K SYRK Geometric Mean

0.25

0.5

1

2

4

1
.8
4

1
.5
7

1
.3
4

1
.1
6

1
.0
1

1
.0
2

0
.8
0

1
.0
0

2
.0
3

1
.5
6

1
.3
0 1
.6
0

2
.7
1

2
.5
4

2
.6
4

2
.3
0

1
.3
3

0
.8
0

1
.0
0

4
.5
2

1
.9
4

0
.9
8

1
.0
3

0
.9
9

1
.8
3

3
.5
5

0
.9
6

0
.9
8

1
.0
0

0
.9
7

0
.9
8

0
.9
8

1
.4
1

0.25

0.5

1

2

4

AMD CPU, Fixed Work Groups (N=16, sequential)

S
p
ee
d
u
p
ov
er

sc
h
ed

u
le
(d
ir
ec
t)

Figure 6.21: Speedup of using alternative schedules, relative to schedule(direct).
Only kernel times are considered.

131

Experimental Results

132

7
Conclusion

Contents

7.1 Final Remarks . 134

7.2 Future Work . 134

133

Conclusion

This chapter summarizes the contents of this thesis, its main contributions, and presents
possible future work.

7.1 Final Remarks

This thesis proposed compiler techniques to support the mapping of matrix-oriented
computations to heterogeneous systems, mainly consisting of a CPU and a GPU. The
proposed techniques simplify the development of efficient parallel programs, by design-
ing a simple directive system for MATLAB and techniques to use those directives to
parallelize the source code. The work done involved the research and development
of target-aware optimizations to generate higher-quality OpenCL code for CPUs and
GPUs. The viability and efficiency of those compiler optimizations were demonstrated
by implementing them with a compiler prototype based on the MATISSE compiler
framework [BPN+13], and evaluated on a set of various representative benchmarks,
such as Disparity and Tracking from the San Diego Vision Benchmark Suite [VAJ+09],
and Polybench/GPU [GGXS+12]. The optimizations are complemented by heuristics
based on static program properties and information about the target device and target
toolchain, in order to determine when to apply them. All of these techniques were inte-
grated in a working compiler prototype that can be used to research and evaluate future
optimizations and heuristics.

Among the researched compiler optimizations targeting CPUs and GPUs are the
use of Shared Virtual Memory (SVM) and associated heuristics, as well as the use of
alternative mappings of parallel loop iterations to work-items (i.e., schedules). Using
SVM on a set of representative benchmarks allowed MATISSE to achieve geometric
mean speedups on the generated code from 9% to 126%, depending on the target device,
over no SVM usage, and from 9% to 80% over a naive use of SVM. Moreover, using
the cooperative schedule optimization, MATISSE can generate more efficient code for
GPUs, up to 38.8× faster in some cases. On AMD’s CPU platform, MATISSE achieved
a geometric mean speedup of 1.41 by using an alternative schedule by default (fixed
work groups). This thesis also discusses how the Z3 SMT solver [DMB08] can be used
to remove unnecessary bounds checking, identify loop carried dependences, and assist
in determining when two or more matrices have the same size and shape.

The proposed techniques allow MATISSE to generate OpenCL code, from MATLAB
that resembles a C coding style, that outperforms manually coded OpenCL code, with
a geometric mean speedup of 1.19× in the Polybench/GPU benchmark suite when both
kernel and data transfers are considered, MATISSE-generated code could outperform
manually-coded OpenCL in 10 out of 15 benchmarks.

Compared to the previous MATISSE OpenCL backend, the new backend is able to
generate code with significantly fewer data transfers, being able to achieve speedups of
up to 2.5× compared to the previous backend even without target-aware optimizations
being considered, while requiring significantly fewer and simpler directives.

7.2 Future Work

There are multiple avenues of research that could be explored with MATISSE, in order
to further improve the efficiency of the generated code, and reduce the difficulty of
producing efficient parallel code.

134

Conclusion

One of the most important features that MATISSE is missing is profitability analysis,
in which a compiler automatically determines whether offloading certain sections of code
to a co-processor (e.g., a GPU) would lead to speedups. Implementing profitability
analysis techniques could lead to a further simplification of the directive system, as some
of the directives (e.g., the %!parallel directives without parameters) could become
unnecessary. As the decision to offload code to the GPU may depend on the size of the
inputs, generating multiple versions might be necessary.

Moreover, the parallelization work in this thesis is based on parallel loops, as even
element-wise vector computations are converted into loops. However, there are other
mechanisms of parallelization that fit well in MATLAB and could be used. Many MAT-
LAB parallelization approaches are based on matrix operations for which loop generation
is unsuitable. For instance, although efficient code generation for matrix multiplication
algorithms is difficult, high-quality BLAS (Basic Linear Algebra Subprograms) imple-
mentations already exist, so these can and should be leveraged for high-performance
computing. The vectorized approach can be less flexible than our loop-based approach,
but these two solutions are most likely not mutually exclusive. A hybrid approach that
combines loop-based parallelization with specialized parallel implementations of certain
built-in functions could be explored.

Another possible extension of this work include adding support for FPGAs through
OpenCL High-Level Synthesis, as FPGAs have their own challenges and are still diffi-
cult to develop for. High-performance FPGA support would most likely require addi-
tional target-aware optimizations and heuristics, as indicated by our preliminary anal-
ysis [PRC17].

OpenMP generation is interesting not only because of its suitability for CPU par-
allelism, but also due to its support for offloading directives. This would enable a
comparison between direct OpenCL generation and GPU OpenMP code generation.
Furthermore, some programs benefit from running some kernels on the CPU and others
on the GPU. OpenMP support could allow users to parallelize some of the CPU kernels,
further improving performance.

Initial experiments [RNC18] suggest that support for half-precision data types with
vectorization could improve the performance of the generated OpenCL on certain GPUs,
but vectorization and half-precision types have not yet been integrated in MATISSE.
Unfortunately, MATLAB code is generally written using single/double-precision floating
point types, so adding support for half-precision could be of limited use without a means
to automatically reduce the precision of certain variables or expressions and of analyzing
the impact of reducing precision in the overall functionality.

Finally, an interesting topic of research would be automatizing the Foreign Func-
tion Interface (FFI) management, to facilitate calls to functions in external third-party
C/OpenCL libraries. Integration of third-party libraries poses challenges, as the format
of data structures of MATISSE-generated code and custom C libraries can and often
does differ, so FFI management requires mechanisms to specify interfaces. Moreover,
the differences in semantics between C and MATLAB introduce memory lifetime-related
issues that are complex to address. Finally, the interoperability code itself can add over-
head.

135

Conclusion

136

References

[ABDFP15] Giovanni Agosta, Alessandro Barenghi, Alessandro Di Federico, and Ger-
ardo Pelosi. OpenCL performance portability for general-purpose computa-
tion on graphics processor units: an exploration on cryptographic primitives.
Concurrency and Computation: Practice and Experience, 27(14):3633–3660,
2015.

[Adv12] Advanced Micro Devices, Inc. Southern Islands Series Instruction Set Archi-
tecture, December 2012. https://developer.amd.com/wordpress/
media/2012/12/AMD_Southern_Islands_Instruction_Set_
Architecture.pdf.

[Adv15] Advanced Micro Devices, Inc. AMD OpenCL� Optimization Guide, Au-
gust 2015. http://developer.amd.com/wordpress/media/2013/
12/AMD_OpenCL_Programming_Optimization_Guide2.pdf.

[Adv17] Advanced Micro Devices, Inc. The AMD OpenCL� Zone. http://
developer.amd.com/tools-and-sdks/opencl-zone/, 2017. Ac-
cessed: November 9th, 2017.

[Adv18] Advanced Micro Devices, Inc. GN Architecture — AMD. https://www.
amd.com/en/technologies/gcn, 2018. Accessed: September 24th,
2018.

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compil-
ers: Principles, Techniques, and Tools. Addison Wesley, 2 edition, 2006.

[ARM17a] ARM Limited. ARM® Mali� GPU OpenCL Developer Guide, February
2017. http://infocenter.arm.com/help/topic/com.arm.doc.
100614_0303_00_en/arm_mali_gpu_opencl_developer_guide_
100614_0303_00_en.pdf.

[ARM17b] ARM Limited. Technologies — NEON - Arm Developer. https://
developer.arm.com/technologies/neon, 2017. Accessed: Novem-
ber 13th, 2017.

[ARM19] ARM. Graphics and Multimedia Processors — Mali GPUs – Arm De-
veloper. https://developer.arm.com/ip-products/graphics-
and-multimedia/mali-gpus, 2019. Accessed: April 27th, 2019.

137

https://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf
https://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf
https://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://developer.amd.com/tools-and-sdks/opencl-zone/
https://www.amd.com/en/technologies/gcn
https://www.amd.com/en/technologies/gcn
http://infocenter.arm.com/help/topic/com.arm.doc.100614_0303_00_en/arm_mali_gpu_opencl_developer_guide_100614_0303_00_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100614_0303_00_en/arm_mali_gpu_opencl_developer_guide_100614_0303_00_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100614_0303_00_en/arm_mali_gpu_opencl_developer_guide_100614_0303_00_en.pdf
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus

REFERENCES

[BC17] João Bispo and João M. P. Cardoso. A MATLAB subset to C compiler
targeting embedded systems. Software: Practice and Experience, 47(2):249–
272, 2017.

[BDR+09] Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin,
and Christophe Guillon. Revisiting Out-of-SSA Translation for Correctness,
Code Quality and Efficiency. In Proceedings of the 7th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO ’09,
pages 114–125, Washington, DC, USA, 2009. IEEE Computer Society.

[BHS13] André R. Brodtkorb, Trond R. Hagen, and Martin L. Sætra. Graphics pro-
cessing unit (GPU) programming strategies and trends in GPU computing.
Journal of Parallel and Distributed Computing, 73(1):4 – 13, 2013.

[BPN+13] João Bispo, Pedro Pinto, Ricardo Nobre, Tiago Carvalho, João M.P. Car-
doso, and Pedro C. Diniz. The MATISSE MATLAB compiler. In 2013 11th
IEEE International Conference on Industrial Informatics (INDIN), pages
602–608, July 2013.

[BRC15a] João Bispo, Lúıs Reis, and João M. P. Cardoso. C and OpenCL Generation
from MATLAB. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, SAC ’15, pages 1315–1320, New York, NY, USA, 2015.
ACM.

[BRC15b] João Bispo, Lúıs Reis, and João M. P. Cardoso. Techniques for Efficient
MATLAB-to-C Compilation. In Proceedings of the 2Nd ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array
Programming, ARRAY 2015, pages 7–12, New York, NY, USA, 2015. ACM.

[CBHV10] Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge. Opti-
mizing matlab through just-in-time specialization. In Rajiv Gupta, edi-
tor, Compiler Construction, pages 46–65, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[CBP+16] Tiago Carvalho, João Bispo, Pedro Pinto, Lúıs Reis, Ricardo Nobre, and
João M. P. Cardoso. The lara-based compiler toolsuite. In ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, Tools and Theory
for Embedded Systems (LCTES’16), Santa Barbara, California, USA, 2016.

[CDCP13] João M. P. Cardoso, Pedro C. Diniz, José G. F. Coutinho, and Zlatko Petrov,
editors. Compilation and Synthesis for Embedded Reconfigurable Systems:
An Aspect-Oriented Approach. Springer, 2013.

[Cha13] Arun Chauhan. HLLC / ParaM. http://www.cs.indiana.edu/

˜achauhan/Software/hllc.html, April 2013. Accessed: February
28th, 2018.

[DGHS17] Luke Durant, Olivier Giroux, Mark Harris, and Nick Stam. Inside Volta:
The World’s Most Advanced Data Center GPU — Parallel Forall. https:
//devblogs.nvidia.com/parallelforall/inside-volta/, May
2017. Accessed: November 11th, 2017.

138

http://www.cs.indiana.edu/~achauhan/Software/hllc.html
http://www.cs.indiana.edu/~achauhan/Software/hllc.html
https://devblogs.nvidia.com/parallelforall/inside-volta/
https://devblogs.nvidia.com/parallelforall/inside-volta/

REFERENCES

[DH12a] Jesse Doherty and Laurie Hendren. Mcsaf: A static analysis framework for
matlab. In James Noble, editor, ECOOP 2012 – Object-Oriented Program-
ming, pages 132–155, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[DH12b] Anton Willy Dubrau and Laurie Jane Hendren. Taming matlab. In Proceed-
ings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’12, pages 503–522, New
York, NY, USA, 2012. ACM.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008.
Springer-Verlag.

[DRP99] Luiz De Rose and David Padua. Techniques for the translation of matlab
programs into fortran 90. ACM Trans. Program. Lang. Syst., 21(2):286–323,
March 1999.

[DWL+12] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peter-
son, and Jack Dongarra. From CUDA to OpenCL: Towards a Performance-
portable Solution for Multi-platform GPU Programming. Parallel Comput.,
38(8):391–407, August 2012.

[Edd17] Steve Eddins. Deep Learning with MATLAB R2017b - Deep Learning
- MATLAB & Simulink. https://blogs.mathworks.com/deep-
learning/2017/10/06/deep-learning-with-matlab-r2017b/,
2017. Accessed: July 28th, 2018.

[FBH16] Vincent Foley-Bourgon and Laurie Hendren. Efficiently Implementing the
Copy Semantics of MATLAB’s Arrays in JavaScript. SIGPLAN Not.,
52(2):72–83, November 2016.

[FSV14] Jianbin Fang, Henk Sips, and Ana Varbanescu. Aristotle: A performance Im-
pact Indicator for the OpenCL Kernels Using Local Memory. Sci. Program.,
22:239–257, 01 2014.

[GGXS+12] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula,
and John Cavazos. Auto-tuning a high-level language targeted to gpu codes.
In Innovative Parallel Computing (InPar), 2012, pages 1–10. IEEE, 2012.

[GH14] Rahul Garg and Laurie Hendren. Velociraptor: An Embedded Compiler
Toolkit for Numerical Programs Targeting CPUs and GPUs. In Proceedings
of the 23rd International Conference on Parallel Architectures and Compi-
lation, PACT ’14, pages 317–330, New York, NY, USA, 2014. ACM.

[GP-12] GP-you Group. GPUmat User Guide. GP-you Group, January 2012. Ver-
sion 0.28. Available at http://svn.code.sf.net/p/gpumat/code/
trunk/doc/GPUmat_User_Guide.pdf. Accessed: February 28th, 2018.

[GP-15] GP-you Group. GPUmat download — SourceForge. http://
sourceforge.net/projects/gpumat/, 2015. Accessed: February
28th, 2018.

139

https://blogs.mathworks.com/deep-learning/2017/10/06/deep-learning-with-matlab-r2017b/
https://blogs.mathworks.com/deep-learning/2017/10/06/deep-learning-with-matlab-r2017b/
http://svn.code.sf.net/p/gpumat/code/trunk/doc/GPUmat_User_Guide.pdf
http://svn.code.sf.net/p/gpumat/code/trunk/doc/GPUmat_User_Guide.pdf
http://sourceforge.net/projects/gpumat/
http://sourceforge.net/projects/gpumat/

REFERENCES

[Har13] Mark Harris. Unified Memory in CUDA 6 — Parallel Forall.
https://devblogs.nvidia.com/parallelforall/unified-
memory-in-cuda-6/, November 2013. Accessed: November 8th, 2017.

[Har15] Mark Harris. New Features in CUDA 7.5 — Parallel Forall. https:
//devblogs.nvidia.com/parallelforall/new-features-
cuda-7-5/, July 2015. Accessed: November 11th, 2017.

[Har16] Mark Harris. Mixed-Precision Programming with CUDA 8 — Parallel
Forall. https://devblogs.nvidia.com/parallelforall/mixed-
precision-programming-cuda-8/, December 2016. Accessed: Novem-
ber 11th, 2017.

[Har18] Peter Harris. Graphics and Multimedia Development — The Bifrost Shader
Core – Arm Developer. https://developer.arm.com/graphics/
developer-guides/the-bifrost-shader-core, March 2018. Ac-
cessed: September 24th, 2018.

[Hc14] Ltd. Hardkernel co. ODROID-XU+E. http://www.hardkernel.com/
main/products/prdt_info.php?g_code=G137463363079, 2014.
Accessed: April 10th, 2017.

[IBM18] IBM. The X10 Parallel Programming Language. http://x10-lang.
org/, 2018. Accessed: November 19th, 2018.

[IEC18] IEC. IEC – SI Zone ¿ Prefixes for binary multiples. https://www.iec.
ch/si/binary.htm, 2018. Accessed: November, 6th 2018.

[Int09] Intel Corporation. Intel® Xeon® Processor X5550. https:
//ark.intel.com/products/37106/Intel-Xeon-Processor-
X5550-8M-Cache-2_66-GHz-6_40-GTs-Intel-QPI, 2009. Accessed:
September 26th, 2018.

[Int12] Intel Corporation. Multi-core Introduction. https://software.intel.
com/en-us/articles/multi-core-introduction, March 2012. Ac-
cessed: October 1st, 2018.

[Int14] Intel Corporation. OpenCL Design and Programming Guide for the
Intel® Xeon Phi� Coprocessor. https://software.intel.com/en-
us/articles/opencl-design-and-programming-guide-for-
the-intel-xeon-phi- coprocessor , January 2014. Accessed:
November 12th, 2017.

[Int15] Intel Corporation. Memory Access Overview — Intel® Software. https://
software.intel.com/en-us/node/540444, February 2015. Accessed:
November 8th, 2018.

[Int17a] Intel Corporation. Improve Performance Using Vectorization and Intel®

Xeon® Scalable Processors. https://software.intel.com/en-
us/articles/improve-performance-using-vectorization-
and-intel-xeon-scalable-processors, October 2017. Accessed:
September 24th, 2018.

140

https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/new-features-cuda-7-5/
https://devblogs.nvidia.com/parallelforall/new-features-cuda-7-5/
https://devblogs.nvidia.com/parallelforall/new-features-cuda-7-5/
https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/
https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/
https://developer.arm.com/graphics/developer-guides/the-bifrost-shader-core
https://developer.arm.com/graphics/developer-guides/the-bifrost-shader-core
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137463363079
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137463363079
http://x10-lang.org/
http://x10-lang.org/
https://www.iec.ch/si/binary.htm
https://www.iec.ch/si/binary.htm
https://ark.intel.com/products/37106/Intel-Xeon-Processor-X5550-8M-Cache-2_66-GHz-6_40-GTs-Intel-QPI
https://ark.intel.com/products/37106/Intel-Xeon-Processor-X5550-8M-Cache-2_66-GHz-6_40-GTs-Intel-QPI
https://ark.intel.com/products/37106/Intel-Xeon-Processor-X5550-8M-Cache-2_66-GHz-6_40-GTs-Intel-QPI
https://software.intel.com/en-us/articles/multi-core-introduction
https://software.intel.com/en-us/articles/multi-core-introduction
https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
https://software.intel.com/en-us/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor
https://software.intel.com/en-us/node/540444
https://software.intel.com/en-us/node/540444
https://software.intel.com/en-us/articles/improve-performance-using-vectorization-and-intel-xeon-scalable-processors
https://software.intel.com/en-us/articles/improve-performance-using-vectorization-and-intel-xeon-scalable-processors
https://software.intel.com/en-us/articles/improve-performance-using-vectorization-and-intel-xeon-scalable-processors

REFERENCES

[Int17b] Intel Corporation. Intel FPGA SDK for OpenCL - Overview. https:
//www.altera.com/products/design-software/embedded-
software-developers/opencl/overview.html, November 2017.
Accessed: November 9th, 2017.

[Int17c] Intel Corporation. Intel® Hyper-Threading Technology. https:
//www.intel.com/content/www/us/en/architecture-and-
technology/hyper-threading/hyper-threading-technology.
html, September 2017. Accessed: November 13th, 2017.

[Int17d] Intel Corporation. Intel® Turbo Boost Technology 2.0. https:
//www.intel.com/content/www/us/en/architecture-and-
technology/turbo-boost/turbo-boost-technology.html,
September 2017. Accessed: November 13th, 2017.

[Int17e] Intel Corporation. Work-Group Size Recommendations Summary — Intel®

Software. https://software.intel.com/en-us/node/540442 Ver-
sion 3.3, 2017. Accessed: November 11th, 2017.

[Int19] Intel Corporation. Unleash Your Data Center - For Intel Xeon CPU
with FPGAs. https://www.intel.com/content/www/us/en/data-
center/products/programmable/overview.html, 2019. Accessed:
April 27th, 2019.

[JB07] Pramod G Joisha and Prithviraj Banerjee. A translator system for the MAT-
LAB language. Software: Practice and Experience, 37(5):535–578, 2007.

[KA01] Ken Kennedy and John R Allen. Optimizing compilers for modern archi-
tectures: a dependence-based approach, pages 302–304. Morgan Kaufmann
Publishers Inc., 2001.

[Kar14] Rama Karedla. Intel Xeon E5-2600 v3 (Haswell) Architecture & Features.
http://repnop.org/pd/slides/PD_Haswell_Architecture.
pdf, 2014. Accessed: February 20th, 2018.

[KBR14] John Kessenich, Dave Baldwin, and Randi Rost. The OpenGL® Shading
Language. http://www.opengl.org/registry/doc/GLSLangSpec.
4.40.pdf, 2014. Accessed: July 7th, 2014.

[KH14] Vineet Kumar and Laurie Hendren. MIX10: Compiling MATLAB to X10
for High Performance. In Proceedings of the 2014 ACM International Con-
ference on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, pages 617–636, New York, NY, USA, 2014. ACM.

[Khr15] Khronos OpenCL Working Group. The OpenCL Specification. The Khronos
Group Inc., November 2015. http://www.khronos.org/registry/
cl/specs/opencl-2.1.pdf Version: 2.1, Document Revision: 23.

[Khr16] Khronos OpenCL Working Group. The OpenCL C Specification.
The Khronos Group Inc., April 2016. https://www.khronos.org/
registry/OpenCL/specs/opencl-2.0-openclc.pdf Version: 2.0,
Document Revision: 33.

141

https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://software.intel.com/en-us/node/540442
https://www.intel.com/content/www/us/en/data-center/products/programmable/overview.html
https://www.intel.com/content/www/us/en/data-center/products/programmable/overview.html
http://repnop.org/pd/slides/PD_Haswell_Architecture.pdf
http://repnop.org/pd/slides/PD_Haswell_Architecture.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.4.40.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.4.40.pdf
http://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf

REFERENCES

[Kon12] Patrick Konsor. Performance Benefits of Half Precision Floats —
Intel® Software. https://software.intel.com/en-us/articles/
performance-benefits-of-half-precision-floats, August
2012. Accessed: September 11th, 2017.

[LH14] Xu Li and Laurie Hendren. Mc2FOR: A tool for automatically translating
MATLAB to FORTRAN 95. pages 234–243. IEEE, 2014.

[Li17] Kelvin Li. OpenMP Accelerator Support for GPUs, September 2017. Ac-
cessed: November 9th, 2017.

[Lom11] Chris Lomont. Introduction to Intel® Advanced Vector Extensions. https:
//software.intel.com/en-us/articles/introduction-to-
intel-advanced-vector-extensions, June 2011. Accessed: Novem-
ber 13th, 2017.

[LPD+16] Ioannis Latifis, Karthick Parashar, Grigoris Dimitroulakos, Hans Cappelle,
Christakis Lezos, Konstantinos Masselos, and Francky Catthoor. Matlab to c
compilation targeting application specific instruction set processors. In 2016
Design, Automation and Test in Europe Conference Exhibition (DATE),
pages 1453–1456, March 2016.

[LPD+17] Ioannis Latifis, Karthick Parashar, Grigoris Dimitroulakos, Hans Cappelle,
Christakis Lezos, Konstantinos Masselos, and Francky Catthoor. A MAT-
LAB Vectorizing Compiler Targeting Application-Specific Instruction Set
Processors. ACM Trans. Des. Autom. Electron. Syst., 22(2):32:1–32:28, Jan-
uary 2017.

[Lui17] Justin Luitjens. CUDA Pro Tip: Increase Performance with Vectorized
Memory Access — Parallel Forall. https://devblogs.nvidia.com/
parallelforall/cuda-pro-tip-increase-performance-with-
vectorized-memory-access/, May 2017. Accessed: November 11th,
2017.

[Mat13a] MathWorks. MATLAB - the language of technical computing. http://
www.mathworks.com/products/matlab/, 2013. Accessed: November
20th, 2013.

[Mat13b] MathWorks. MATLAB GPU computing support for NVIDIA CUDA-
enabled GPUs. http://www.mathworks.com/discovery/matlab-
gpu.html, 2013. Accessed: February 26th, 2018.

[Mat14a] MathWorks. Matrices and Arrays - MATLAB & Simulink. http:
//www.mathworks.com/help/matlab/learn_matlab/matrices-
and-arrays.html, 2014. Accessed: June 26th, 2014.

[Mat14b] MathWorks. System Requirements - Release R2017b. http:
//www.mathworks.com/support/sysreq/current_release/
index.html, 2014. Accessed: November, 8th 2017.

[Mat14c] MathWorks. Using GPU ARRAYFUN for monte-carlo simulations -
MATLAB & simulink example. http://www.mathworks.com/help/
distcomp/examples/using-gpu-arrayfun-for-monte-carlo-
simulations.html, 2014. Accessed: Feb 13th, 2017.

142

https://software.intel.com/en-us/articles/performance-benefits-of-half-precision-floats
https://software.intel.com/en-us/articles/performance-benefits-of-half-precision-floats
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/discovery/matlab-gpu.html
http://www.mathworks.com/discovery/matlab-gpu.html
http://www.mathworks.com/help/matlab/learn_matlab/matrices-and-arrays.html
http://www.mathworks.com/help/matlab/learn_matlab/matrices-and-arrays.html
http://www.mathworks.com/help/matlab/learn_matlab/matrices-and-arrays.html
http://www.mathworks.com/support/sysreq/current_release/index.html
http://www.mathworks.com/support/sysreq/current_release/index.html
http://www.mathworks.com/support/sysreq/current_release/index.html
http://www.mathworks.com/help/distcomp/examples/using-gpu-arrayfun-for-monte-carlo-simulations.html
http://www.mathworks.com/help/distcomp/examples/using-gpu-arrayfun-for-monte-carlo-simulations.html
http://www.mathworks.com/help/distcomp/examples/using-gpu-arrayfun-for-monte-carlo-simulations.html

REFERENCES

[Mat16] MathWorks Support Team. Should I use MATLAB Compiler SDK, or
MATLAB Coder to integrate my MATLAB applications with C/C++?
https://www.mathworks.com/matlabcentral/answers/223937-
should-i-use-matlab-compiler-sdk-or-matlab-coder-
to-integrate-my-matlab-applications-with-c-c#answer_
182772, 2016. Accessed: November, 15th 2018.

[Mat17a] MathWorks. Preallocation - MATLAB & Simulink. https://www.
mathworks.com/help/matlab/matlab_prog/preallocating-
arrays.html, 2017. Accessed: November 8th, 2017.

[Mat17b] MathWorks. Vectorization - MATLAB & Simulink. https://www.
mathworks.com/help/matlab/matlab_prog/vectorization.
html, 2017. Accessed: November 8th, 2017.

[Mat18a] MathWorks. Compilation Directive %#codegen - MATLAB & Simulink.
https://www.mathworks.com/help/simulink/ug/adding-the-
compilation-directive-codegen.html, 2018. Accessed: July 27th,
2018.

[Mat18b] MathWorks. Decide when to use parfor - MATLAB & Simulink.
https://www.mathworks.com/help/distcomp/decide-when-
to-use-parfor.html, 2018. Accessed: February 27th, 2018.

[Mat18c] MathWorks. GPU Coder – Supported Functions. https:
//www.mathworks.com/content/dam/mathworks/tag-team/
Objects/g/GPU_Coder_Supported_Functions.pdf, 2018. Ac-
cessed: July 27th, 2018.

[Mat18d] MathWorks. GPU Coder - MATLAB & Simulink. https://www.
mathworks.com/products/gpu-coder.html, 2018. Accessed: July
27th, 2018.

[Mat18e] MathWorks. MATLAB Coder - MATLAB. http://www.mathworks.
com/products/matlab-coder/, 2018. Accessed: July 25th, 2018.

[MDO14] Alberto Magni, Christophe Dubach, and Michael O’Boyle. Automatic opti-
mization of thread-coarsening for graphics processors. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation,
PACT ’14, pages 455–466, New York, NY, USA, 2014. ACM.

[Mes15] Message Passing Interface Forum. MPI: A Message Passing Interface
Standard. https://www.mpi-forum.org/docs/mpi-3.1/mpi31-
report.pdf Version: 3.1, June 2015. Accessed: September 27th, 2018.

[MGY+15] Saoni Mukherjee, Xiang Gong, Leiming Yu, Carter McCardwell, Yash Uki-
dave, Tuan Dao, Fanny Nina Paravecino, and David Kaeli. Exploring the
Features of OpenCL 2.0. In Proceedings of the 3rd International Workshop
on OpenCL, IWOCL ’15, pages 5:1–5:5, New York, NY, USA, 2015. ACM.

[Mic14] Microsoft. HLSL (Windows). http://msdn.microsoft.com/en-us/
library/windows/desktop/bb509561%28v=vs.85%29.aspx, 2014.
Accessed: July 7th, 2014.

143

https://www.mathworks.com/matlabcentral/answers/223937-should-i-use-matlab-compiler-sdk-or-matlab-coder-to-integrate-my-matlab-applications-with-c-c#answer_182772
https://www.mathworks.com/matlabcentral/answers/223937-should-i-use-matlab-compiler-sdk-or-matlab-coder-to-integrate-my-matlab-applications-with-c-c#answer_182772
https://www.mathworks.com/matlabcentral/answers/223937-should-i-use-matlab-compiler-sdk-or-matlab-coder-to-integrate-my-matlab-applications-with-c-c#answer_182772
https://www.mathworks.com/matlabcentral/answers/223937-should-i-use-matlab-compiler-sdk-or-matlab-coder-to-integrate-my-matlab-applications-with-c-c#answer_182772
https://www.mathworks.com/help/matlab/matlab_prog/preallocating-arrays.html
https://www.mathworks.com/help/matlab/matlab_prog/preallocating-arrays.html
https://www.mathworks.com/help/matlab/matlab_prog/preallocating-arrays.html
https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
https://www.mathworks.com/help/simulink/ug/adding-the-compilation-directive-codegen.html
https://www.mathworks.com/help/simulink/ug/adding-the-compilation-directive-codegen.html
https://www.mathworks.com/help/distcomp/decide-when-to-use-parfor.html
https://www.mathworks.com/help/distcomp/decide-when-to-use-parfor.html
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/g/GPU_Coder_Supported_Functions.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/g/GPU_Coder_Supported_Functions.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/g/GPU_Coder_Supported_Functions.pdf
https://www.mathworks.com/products/gpu-coder.html
https://www.mathworks.com/products/gpu-coder.html
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/bb509561%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb509561%28v=vs.85%29.aspx

REFERENCES

[MS09] Jiayuan Meng and Kevin Skadron. Performance Modeling and Automatic
Ghost Zone Optimization for Iterative Stencil Loops on GPUs. In Proceed-
ings of the 23rd International Conference on Supercomputing, ICS ’09, pages
256–265, New York, NY, USA, 2009. ACM.

[ND10] J. Nickolls and W.J. Dally. The GPU Computing Era. Micro, IEEE,
30(2):56–69, March 2010.

[NVI12] NVIDIA Corporation. The Cg Toolkit. https://developer.nvidia.
com/cg-toolkit, 2012. Accessed: July 7th, 2014.

[NVI14a] NVIDIA Corporation. CUDA FAQ. https://developer.nvidia.com/
cuda-faq, 2014. Accessed: June 20th, 2014.

[NVI14b] NVIDIA Corporation. Parallel programming and computing platform —
CUDA — NVIDIA — NVIDIA. http://www.nvidia.com/object/
cuda_home_new.html, 2014. Accessed: June 20th, 2014.

[NVI17a] NVIDIA Corporation. Best Practices Guide :: CUDA Toolkit Documenta-
tion. http://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html, September 2017. v9.0.176, Accessed: November 10th,
2017.

[NVI17b] NVIDIA Corporation. GPU vs CPU? What is GPU Comput-
ing? — NVIDIA. http://www.nvidia.com/object/what-is-gpu-
computing.html, 2017. Accessed: November 13th, 2017.

[NVI17c] NVIDIA Corporation. OpenCL — NVIDIA Developer. https://
developer.nvidia.com/opencl, 2017. Accessed: November 9th, 2017.

[NVI17d] NVIDIA Corporation. Programming Guide :: CUDA Toolkit Documen-
tation. http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html, September 2017. v9.0.176, Accessed: November 8th,
2017.

[NVI18a] NVIDIA. CUDA Parallel Computing - GPU Computing on the CUDA Ar-
chitecture. http://www.nvidia.co.uk/object/cuda-parallel-
computing-uk.html, 2018. Accessed: October 1st, 2018.

[NVI18b] NVIDIA Corporation. PTX ISA :: CUDA Toolkit Documenta-
tion. https://docs.nvidia.com/cuda/parallel-thread-
execution/index.html, September 2018. v10.0.130, Accessed:
September 25th, 2018.

[Oct14a] Octave community. GNU octave. http://www.gnu.org/software/
octave/, 2014. Accessed: June 28th, 2014.

[Oct14b] Octave community. How is Octave different from Matlab? - FAQ -
Octave. http://wiki.octave.org/FAQ#Porting_programs_from_
Matlab_to_Octave, 2014. Accessed: June 28th, 2014.

[Ope15] OpenMP Architecture Review Board. OpenMP Application Program
Interface, November 2015. http://www.openmp.org/wp-content/
uploads/openmp-4.5.pdf Version: 4.5.

144

https://developer.nvidia.com/cg-toolkit
https://developer.nvidia.com/cg-toolkit
https://developer.nvidia.com/cuda-faq
https://developer.nvidia.com/cuda-faq
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html
http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://wiki.octave.org/FAQ#Porting_programs_from_Matlab_to_Octave
http://wiki.octave.org/FAQ#Porting_programs_from_Matlab_to_Octave
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

REFERENCES

[Ope17] OpenACC. The OpenACC® Application Program Interface, Novem-
ber 2017. https://www.openacc.org/sites/default/files/
inline-files/OpenACC.2.6.final.pdf Version: 2.6.

[PAG11] Ashwin Prasad, Jayvant Anantpur, and R. Govindarajan. Automatic Com-
pilation of MATLAB Programs for Synergistic Execution on Heterogeneous
Processors. ACM SIGPLAN Not., 46(6):152–163, June 2011.

[PG12] Ashwin Prasad and R. Govindarajan. Compiler optimizations to execute
MATLAB programs on memory constrained GPUs. In First Asia-Pacific
Programming Languages and Compilers Workshop (APPLC 2012), 2012.

[PHW+13] Simon J. Pennycook, Simon D. Hammond, Steven A. Wright, J. A. Herd-
man, Iain Miller, and Stephen A. Jarvis. An investigation of the perfor-
mance portability of OpenCL. Journal of Parallel and Distributed Com-
puting, 73(11):1439 – 1450, 2013. Novel architectures for high-performance
computing.

[PRC17] Nuno Paulino, Lúıs Reis, and João M. P. Cardoso. On Coding Techniques
for Targeting FPGAs via OpenCL. In Proceedings of the conference Parallel
Computing 2017, 2017.

[RBC16] Lúıs Reis, João Bispo, and João M. P. Cardoso. SSA-based MATLAB-to-C
Compilation and Optimization. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array
Programming, ARRAY 2016, pages 55–62, New York, NY, USA, 2016. ACM.

[Rei14] Lúıs Reis. Optimization and Generation of OpenCL Code for Embedded
Computing. Master’s thesis, MIEIC, Faculty of Engineering of the University
of Porto, July 2014.

[RNC18] Lúıs Reis, Ricardo Nobre, and João M. P. Cardoso. Impact of Vectorization
Over 16-bit Data-Types on GPUs. In Proceedings of the 9th Workshop and
7th Workshop on Parallel Programming and RunTime Management Tech-
niques for Manycore Architectures and Design Tools and Architectures for
Multicore Embedded Computing Platforms, PARMA-DITAM ’18, pages 32–
38, New York, NY, USA, 2018. ACM.

[RWZ88] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. Global value
numbers and redundant computations. In Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 12–27. ACM, 1988.

[Sab18] Sable Research Group. The McLab Project. http://www.sable.
mcgill.ca/mclab/, 2018. Accessed: November, 13th 2018.

[SCS16] Johannes Spazier, Steffen Christgau, and Bettina Schnor. Automatic Gen-
eration of Parallel C Code for Stencil Applications Written in MATLAB.
In Proceedings of the 3rd ACM SIGPLAN International Workshop on Li-
braries, Languages, and Compilers for Array Programming, ARRAY 2016,
pages 47–54, New York, NY, USA, 2016. ACM.

145

https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
http://www.sable.mcgill.ca/mclab/
http://www.sable.mcgill.ca/mclab/

REFERENCES

[SFSV13] Jie Shen, Jianbin Fang, Henk Sips, and Ana Lucia Varbanescu. An
application-centric evaluation of OpenCL on multi-core CPUs. Parallel Com-
puting, 39(12):834 – 850, 2013.

[Shu12] Loren Shure. Understanding Array Preallocation - Loren on the Art
of MATLAB. http://blogs.mathworks.com/loren/2012/11/29/
understanding-array-preallocation/, 2012. Accessed: March
23rd, 2016.

[Shu16a] Loren Shure. MathWorks - MATLAB and SimuLink for Technical Com-
puting - B. http://www.mathworks.com/, 2016. Accessed: July 4th,
2014.

[Shu16b] Loren Shure. Run Code Faster With the New MATLAB Execution
Engine - MATLAB & Simulink. https://blogs.mathworks.com/
loren/2016/02/12/run-code-faster-with-the-new-matlab-
execution-engine, 2016. Accessed: October 24th, 2018.

[SJGS99] Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies, and Vatsa San-
thanam. Translating Out of Static Single Assignment Form. In Agostino
Cortesi and Gilberto Filé, editors, Static Analysis, pages 194–210, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

[Sof14] Intel Software. Opencl� 2.0 shared virtual memory overview.
https://software.intel.com/en-us/articles/opencl-20-
shared-virtual-memory-overview, 2014. Accessed: June 15th, 2017.

[SRC11] Chun-Yu Shei, Pushkar Ratnalikar, and Arun Chauhan. Automating GPU
Computing in MATLAB. In Proceedings of the International Conference on
Supercomputing, ICS ’11, pages 245–254, New York, NY, USA, 2011. ACM.

[SSCP14] Diogo Sampaio, Rafael Martins de Souza, Sylvain Collange, and Fernando
Magno Quintão Pereira. Divergence analysis. ACM Trans. Program. Lang.
Syst., 35(4):13:1–13:36, January 2014.

[Sut04] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn To-
ward Concurrency in Software. http://www.gotw.ca/publications/
concurrency-ddj.htm, December 2004. Accessed: September 13th,
2017.

[Sym16] Symja. Symja - Java Computer Algebra Library. https://bitbucket.
org/axelclk/symja_android_library/wiki/Home, 2016. Accessed:
March 23rd, 2016.

[SYRC11] Chun-Yu Shei, Adarsh Yoga, Madhav Ramesh, and Arun Chauhan. MAT-
LAB Parallelization through Scalarization. In 2011 15th Workshop on In-
teraction between Compilers and Computer Architectures, pages 44–53, Feb
2011.

[The08] The Khronos Group Inc. The Khronos Group Releases OpenCL 1.0 Spec-
ification. http://www.khronos.org/news/press/the_khronos_
group_releases_opencl_1.0_specification, December 2008. Ac-
cessed February 7th, 2014.

146

http://blogs.mathworks.com/loren/2012/11/29/understanding-array-preallocation/
http://blogs.mathworks.com/loren/2012/11/29/understanding-array-preallocation/
http://www.mathworks.com/
https://blogs.mathworks.com/loren/2016/02/12/run-code-faster-with-the-new-matlab-execution-engine
https://blogs.mathworks.com/loren/2016/02/12/run-code-faster-with-the-new-matlab-execution-engine
https://blogs.mathworks.com/loren/2016/02/12/run-code-faster-with-the-new-matlab-execution-engine
https://software.intel.com/en-us/articles/opencl-20-shared-virtual-memory-overview
https://software.intel.com/en-us/articles/opencl-20-shared-virtual-memory-overview
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
https://bitbucket.org/axelclk/symja_android_library/wiki/Home
https://bitbucket.org/axelclk/symja_android_library/wiki/Home
http://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification
http://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification

REFERENCES

[The09] The Khronos Group Inc. clGetEventProfilingInfo – OpenCL 1.0 Ref-
erence Pages. https://www.khronos.org/registry/OpenCL/sdk/
1.0/docs/man/xhtml/clGetEventProfilingInfo.html, 2009. Ac-
cessed: October 29th, 2018.

[The13] The Khronos Group Inc. Specifying Attribute For Unrolling Loops – OpenCL
2.0 Reference Pages. https://www.khronos.org/registry/OpenCL/
sdk/2.0/docs/man/xhtml/attributes-loopUnroll.html, 2013.
Accessed: October 29th, 2018.

[The17] The Khronos Group Inc. SPIR Overview - The Khronos Group Inc. https:
//www.khronos.org/spir/, 2017. Accessed: November 9th, 2017.

[The18] The SMT-LIB Initiative. SMT-LIB The Satisfiability Modulo Theories Li-
brary. http://smtlib.cs.uiowa.edu/index.shtml, 2018. Accessed:
November, 8th 2018.

[VAJ+09] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta,
Christopher Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford
Taylor. SD-VBS: The San Diego Vision Benchmark Suite. In Proceedings
of the 2009 IEEE International Symposium on Workload Characterization
(IISWC), IISWC ’09, pages 55–64, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[Val18] Valgrind�. Cachegrind: a cache and branch-prediction profiler. http:
//valgrind.org/docs/manual/cg-manual.html, 2018. Accessed:
November, 6th 2018.

[WAG09] Jian-Zhong Wang, Bastiaan Aarts, and Vinod Grover. Loop unroll
pragma extension. https://www.khronos.org/registry/OpenCL/
extensions/nv/cl_nv_pragma_unroll.txt, 2009. Accessed: Octo-
ber 29th, 2018.

[Xil17] Xilinx Inc. SDAccel Development Environment. https://www.xilinx.
com/products/design-tools/software-zone/sdaccel.html,
2017. Accessed: November 9th, 2017.

147

https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clGetEventProfilingInfo.html
https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clGetEventProfilingInfo.html
https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/attributes-loopUnroll.html
https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/attributes-loopUnroll.html
https://www.khronos.org/spir/
https://www.khronos.org/spir/
http://smtlib.cs.uiowa.edu/index.shtml
http://valgrind.org/docs/manual/cg-manual.html
http://valgrind.org/docs/manual/cg-manual.html
https://www.khronos.org/registry/OpenCL/extensions/nv/cl_nv_pragma_unroll.txt
https://www.khronos.org/registry/OpenCL/extensions/nv/cl_nv_pragma_unroll.txt
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

REFERENCES

148

Appendix

A
Compiler Usage Manual

Contents

A.1 Basic Usage . 150

A.2 Building Applications and Libraries . 151

A.3 Custom Phase Orders . 152

149

Compiler Usage Manual

This appendix describes how to use the MATISSE compiler. Currently, the compiler
is designed around the execution of benchmark and validation test files, and compiling
full applications or libraries is more complex. Regardless, this section shows how to do
so as well.

A.1 Basic Usage

The behavior of MATISSE is controlled by setup files, files that describe which files
should be compiled, the types of each variable, which LARA aspects should be used,
etc. The preferred mechanism to create these setup files is to use MATISSE’s visual
interface, shown in Figure A.1. Users can edit each property and then save the setup
file. All folder paths are relative to the location of the setup file.

Figure A.1: MATISSE’s Graphical User Interface for editing setup files.

Among the most important properties to set are:

Source Files Directory The location of the main source code files to compile. Each
file represents a different benchmark or test.

Input Files Directory The location of the input files (in *.mat or *.m files). MA-
TISSE searches for input files in the <input files directory>/<test name>/
directory, and generates a separate source code project and binary for each test file.
These files are used as the program inputs, as well as to determine the types of the
inputs of the main MATLAB function.

Aspect File Path Path of the LARA aspect file to execute. If empty, no user aspect
file is executed. MATISSE assumes that each LARA aspect file contains an aspect with
the same name as the file, and that is the one to be executed.

150

Compiler Usage Manual

Auxiliar Files Directory The source files directory stores the location of MATLAB
files, but only those that should be directly executed as a benchmark/test. MATLAB
files that are used by other functions, but are not meant to be called directly, are placed
in this directory, in <auxiliar files directory>/<test name>.

Run Only One Test If only a single file in the source files directory should be
compiled, that file should be specified here.

Target Specialization The OpenCL device to target.

Output Files Directory Directory containing the correct results of each test, if
validation is desired.

Disable Parallelism Indicates whether MATISSE can generate parallel code, as op-
posed to sequential code only.

Compiler The compiler to use to generate the final binary from the source code files.
Usually gcc.

Enable Z3 If true, MATISSE uses Z3 for its scalar solver. See Section 5.2.

Assume Matrix Indices In Range True if all matrix accesses can be assumed to
be in range. Equivalent to adding %!assume_indices_in_range directory to all
functions.

Assume Matrix Sizes Match True if all matrices in matrix operations can be as-
sumed to have the same sizes (e.g., in A + B, A and B have the same size). Equivalent
to adding %!assume_matrix_sizes_match directory to all functions.

Once the setup file has been generated, MATISSE can compile the MATLAB files,
either in graphical mode, or in command line mode. It is possible to run MATISSE in
command-line mode, using the command java -jar matisse.jar <setupfile>.

A.2 Building Applications and Libraries

MATISSE does not feature any dedicated application or library building mode, but it
is still possible to create one nevertheless. For applications, the developer can create
a main MATLAB function without arguments/outputs and an empty input file. For
libraries with a single externally visible function, the following is the recommended
approach to use:

� Annotate the externally visible function with the %!export directive (see Sub-
section 4.1.2);

� Create an input file containing an example of each of the arguments (e.g., matrices
with the proper number of dimensions);

� Create an aspect file with the types of arguments if more specific type/shape
information is wanted (e.g., if the matrices always have a fixed shape);

151

Compiler Usage Manual

� Delete main_test.c, MATISSE_init.c and associated headers from the gen-
erated C files (as they are not relevant to this use case);

� Use the remaining C files to build the library.

Note that if OpenCL code generation is enabled, programs using the compiled li-
brary should call the MATISSE_cl_initialize before any other MATISSE-generated
functions.

For libraries with multiple externally visible functions:

� Annotated every externally visible function with the %!export directive.

� Create an input file containing an example of each of the arguments that the
exported function uses.

� Create a glue function taking all of the example inputs, invoking every exported
function, and returning all of the outputs. An example of this function can be seen
in Figure A.2. Note that it does not need to be annotated with the %!export
directive. Returning the outputs of each function call is important, as otherwise
MATISSE may eliminate these functions

� Delete main_test.c, MATISSE_init.c, the glue function and associated head-
ers from the generated C files.

� Use the remaining C files to build the library.

1 function [f_out1, f_out2, g_out] = glue(f_in, g_in1, g_in2)

2 [f_out1, f_out2] = f(f_in);

3 [g_out] = g(g_in1, g_in2);

4 end

Figure A.2: MATISSE function used to build a library that exports functions f and g.

A.3 Custom Phase Orders

The MATISSE compiler is designed to support custom phase orders of the SSA IR passes
executed after type inference, enabling the user to tune the compiler.

Some SSA IR passes, such as conversion to CSSA and the transformation of some
SSA IR instructions into simpler operations, are necessary for the proper functioning of
the compiler. These passes are executed at the end of the user-specified phase order,
regardless of user input.

The recommended mechanism for using custom phase orders is:

1. Compile a MATLAB program with the default phase order.

2. Copy the post-type-passes.recipe file from the MATISSE output folder to
the folder containing the setup file. This file contains the default phase order.

3. Modify the contents of the new file to contain the intended phase order;

152

Compiler Usage Manual

4. Modify the setup file to specify the new file as the Custom Recipe File.

Figure A.3 presents an example of a file specifying a custom phase order. In this
example, the following passes are executed: constant branch elimination, dead code
elimination, and SSA validation. The validator-name parameter of the validation
pass indicates a label that MATISSE should print should the validation fail. This is
useful when this pass is executed multiple times, to determine which execution failed.

1 !typed-ssa v2

2

3 ConstantBranchEliminationPass

4 DeadCodeEliminationPass

5 SsaValidatorPass: validator-name="after-pass"

6 # some passes are always applied after this and can't be disabled.

Figure A.3: Example of a custom phase order.

153

Compiler Usage Manual

154

Appendix

B
MATISSE SSA IR Instructions

155

MATISSE SSA IR Instructions

This appendix lists the main MATISSE SSA IR instructions and their semantics. Ta-
ble B.1 includes the instructions used for sequential code, as well as the ones used for
parallelism.

A description of the MATISSE SSA IR itself is presented in Subsection 4.2.3.

Table B.1: List of MATISSE SSA IR instructions and their semantics

Name Description

General

line <NUM> Original line of the next instructions
% comment Program comment (can be safely ignored)
$out = phi <SOURCED_INPUTS> SSA-standard φ node.

Inputs in format #blockId:$varName.
$out = $in Assign a variable to another variable.
$out = <NUM> Assign a number literal to a variable.
$out = str '<STR>' Assign a string literal to a variable.
$out = !undefined Define a variable with an undefined value.
$out = init Initialize variable in OpenCL kernel.

The SSA IR is unaware of how this
is done.

<OUTS> = parallel_copy <INPUTS> Used only for out-of-SSA translation, as
described by Boissinot et al. [BDR+09].

Control Flow

branch $c, #if, #else, #end Conditional program execution (condition c)
while #body, #end A repeated (while 1) loop
for $s, $i, $e, #body, #end Range for loop (s:i:e)
iter Obtain the current for loop iteration
break Breaks the current loop
continue Continue to the next loop iteration

Function Calls

$out = arg <ID> Obtain value of function argument
<OUTS> = untyped_call f <IN> Call function f (before type inference)
<OUTS> = call f [R] <IN> Call function f (returns a value of type R)

Matrix Accesses

$out = get $m, <IDXS> Equivalent to MATLAB’s matrix get.
$out = simple_get $m, <IDXS> An in-range matrix access with scalar indices.
$out = get_or_first $m, $i If $m is a scalar, then do $out = $m

Otherwise, do a simple_get $m, $i.
$m2 = set $m1, <IDXS>, $v Equivalent to MATLAB’s matrix set.
$m2 = simple_set $m1, <IDXS>, $v An in-range matrix set with scalar indices.
$m2 = multi_set $m1, <VALS> Sets multiple (consecutive, starting at 1)
positions.
$out = range_get $m, <IDXS> Similar to get, but indices can be ranges

instead of SSA variables.
$m2 = range_set $m1, <IDXS>, $v Similar to set, but indices can be ranges

instead of SSA variables.
$m2 = set_all $m1, $v Sets all elements of a matrix to a given scalar

value.

156

MATISSE SSA IR Instructions

Name Description

$out = relative_get $m, $dims

<IDXS>

Accesses a matrix using the dimensions of
another matrix. Used to implement statements
such as A(:, :) = matrix;.

Matrix Sizing

$out = end $m, <IDX>, <NUM_IDXS> Gets the value of end in MATLAB, for the
<IDX>’th index of an access to $m with
<NUM_IDXS> indices.

$out = combine_size <INS> Obtain the size matrix for the element-wise
combination of the given matrices.

$out = vertical_flatten $in Equivalent to out = in(:);.
$out = access_size $m, $i Equivalent to out = size(B(I));.

Validation

val_boolean $in Raise an error if X can not be used as a
boolean.

val_at_least_one_empty_matrix

<INS>

Raise an error if none of the inputs are empty.

val_same_size <INS> Raise an error if the inputs do not all have the
same size.
val_true $in Raise an error if $in is not true.

Host/Device Data Management

$out = allocate_on_gpu $in Allocate a buffer on the GPU, given the size
of $in.

$out = copy_to_gpu $in Copy a matrix to the GPU, creating a new
buffer.

$buffer =

allocate_global_reduction_buffer

DataType, $numElements

Allocate a buffer to be used to compute a
reduction.

$out = complete_reduction Type

$buffer, $numGroups, $initial

Completes a reduction, given a reduction
type, reduction buffer, number of work-groups
and initial host (CPU) value.

Work-item/Work-group Counting

$o = compute_group_size $n, $b Computes how many work-groups are
necessary, for a kernel with n tasks with a
work-group size of b.

$o = use_group_size $i Cast a number to a work-group size.
Used for the fixed work-groups schedules (see
Section 5.5).

$o = compute_global_size $b, $n Computes the global size of the kernel, with
work-group size b and n work-groups.

Parallel Execution

parallel_block [s] #c, #e Identifies a block #c where MATISSE should
search for parallelizable code, given settings s.
Afterwards, executing proceeds to block #e

set_gpu_range $i, $b, $e, $v Fill buffer i (positions b to e) with the given
value v. Has an output when using Shared
Virtual Memory.

157

MATISSE SSA IR Instructions

Name Description

<OUTS> = invoke_parallel s <INS> Invoke a parallel section s.
<OUTS> = invoke_kernel k S <INS> Invoke kernel k, with S work-items and the

given arguments. Outputs are only used for
Shared Virtual Memory.

158

Appendix

C
MATISSE Execution Schedules

159

MATISSE Execution Schedules

This appendix lists the full set of execution schedules supported by MATISSE in Ta-
ble C.1. A more in-depth discussion of the purpose and impact of schedules is presented
in Sections 5.5 and 5.6.

Table C.1: Description of available MATISSE execution schedules.

Name Description

Main

auto MATISSE automatically determines which schedule should be
used, depending on the target device, and loop to parallelize.
This is the default schedule.

direct Each work-item processes exactly 1 task, in order.
The total number of work-items is the number of tasks.

coarse MATISSE automatically chooses between the sequential
and global_rotation coarse schedules, depending on the
target device.

fixed_work_groups MATISSE automatically chooses between the sequential
and global_rotation fixed work group schedules,
depending on the target device.

Cooperative schedules

cooperative Work-items in each work-group cooperatively perform
computations.

subgroup_

cooperative
Work-items in each sub-group cooperatively perform
computations.

Fixed Work Groups

(Common) The total number of work-groups is manually specified, and
tasks are evenly distributed across the work-items.
The exact number of work-items depends on the local size.

fixed_work_groups_

sequential

Each work-item processes a chunk of consecutive tasks.

fixed_work_groups_

global_rotation

Consecutive work-items process consecutive tasks, to
promote memory coalescing.

Coarse Schedules

(Common) Each work-item processes a multiple tasks.
coarse_

sequential

Each work-item processes a chunk of consecutive tasks.

coarse_

global_rotation

Consecutive work-items process consecutive tasks, to
promote memory coalescing.

160

Appendix

D
SSA IR Pass Execution

Contents

D.1 List of Passes . 162

D.2 Default Phase Order . 167

161

SSA IR Pass Execution

This appendix lists the full set of SSA passes used by MATISSE and the order they are
executed in.

D.1 List of Passes

This section lists the full set of SSA passes in Table D.1 Functions marked with (*) are
only executed when MATISSE is in parallel code generation mode.

Table D.1: Description of available MATISSE execution schedules.

Name Description

Can Be Executed In Any Stage (Before or After Type Inference)

ssa-validator Verifies that certain IR properties are respected.
assume-in-range Adds the indices in range directive to all functions.

Applied when MATISSE is in unchecked mode.
assume-size-match Adds the matrix sizes match directive to all functions.

Applied when MATISSE is in unchecked mode.
redun-assign-elim Eliminates assignments (i.e., A = B), by replacing all

references to A with references to B. In typed mode, the
transformation is only applied if both variables have the
same type.

dead-code-elim Eliminates code that is dead or unreachable.
empty-branch-elim Eliminates branches where both the then and else blocks

are empty.
block-reorder Ensures that blocks are in a canonical order and removes

unreachable blocks.
assume-builder Converts %!assume_* directives into SSA IR function

properties.
reorder-phi Ensure that phi instructions come before other

instructions on any given block.
ssa-printer Debug pass that prints the SSA IR code. Unused by default.

Can Only Be Executed After Type Inference

logical-access Converts A(L) matrix accesses into A(find(A, L)),
when L is a logical value.

scalar-val-bool Removes val_boolean X instructions when X is a
scalar (as scalars are always valid to use as booleans in
MATLAB).

redun-output-elim In each typed function instantiation, rename unused
return variables from Name$ret to a temporary variable
name. Dead code elimination can then remove those
variables entirely if they are unused in the body of the
function.

remove-type-str Removes the type parameter of calls to e.g., zeros since,
after type inference, they are not necessary anymore.

const-branch-elim Removes if(true)/if(false) branches, and replaces
them with the body of the then/else cases, respectively.

redun-cast-elim Eliminates redundant casts (i.e., casts to the same type).

162

SSA IR Pass Execution

Name Description

table-simplify Replaces simple horzcat/vertcat calls (implicitly
used by matrix construction expressions [...]) by
replacing them with the corresponding allocation and
matrix sets.

conv-matx-access On functions with the assume indices in range
property, replaces accesses with scalar numeric indices
with the simple_* equivalent.

horzcat-elim Similar to table-simplify, but deals only with
horzcat calls, and is capable of combining multiple
rows (e.g., [[1, 2], [3, 4]]).

conv-range-access Converts accesses with multiple indices into
range_get/range_set instructions, for use in
subsequent passes.

conv-set-all Replaces set $m2, $idx $scalar_value
instructions, where $idx = 1:<numel of $m2>, into
set_all instructions, for use in subsequent passes.

full-range-elim Replaces range_* instructions with the equivalent
validation, allocation, and construction loop nest.

set-all-elim Replaces set_all instructions with the equivalent loop
nest.

colon-elim Replaces colon(a, b) or colon(a, 1, b) calls with
the equivalent allocations and loops.

multi-get-elim Removes get instructions where the indices are matrices,
replacing them by the equivalent allocations and loops.

simple-m-set-elim Removes set instructions where exactly indices are
matrices, replacing them with the equivalent loops.

trivial-loop-elim Eliminates loops with 0 or 1 iterations.
basic-access-simp Replaces get/set instructions with the simple_*

equivalent, if valid. See Section 5.2.
matrix-prealloc Preallocate matrices that are declared and dynamically

grown inside loops. See Section 5.3.
vert-flatten-elim Replaces vertical_flatten instructions with explicit

allocations and loops.
element-wise Replaces element-wise operations with the equivalent loop

operations. See Subsection 5.1.1.
redun-size-check Remove redundant val_same_size and

combine_size instructions.
val-size-simpl Simplifies redundant or partially redundant

val_same_size instructions, by reducing the number of
checks even in instructions that can not be fully
eliminated.

dot-reduct-elim Replaces calls to dot with the equivalent loop construct.
cumul-reduct-elim Replaces calls to sum and mean with the equivalent loop

construct.
minmax3-rdct-elim Replaces calls to min and max that have 3 arguments

with the equivalent allocations and loop nests.

163

SSA IR Pass Execution

Name Description

alloc-val-elim Replaces valued allocation functions such as zeros where
the result is entirely overwritten before being read with
calls that do not set the allocated data to any particular
value.

alloc-to-set-all Replaces valued allocation functions with calls to
set_all instructions, for subsequent passes to optimize.

get-index-simpl Removes redundant indices (of constant value 1) from get,
simple_get and relative_get instructions. All
relative_get instructions with a single non-redundant
index are converted to simple_get instructions.

get-or-first-simp Finds cases where the index of a get_or_first
instruction is an iteration variable of a loop. If that loop
is of the form 1:1:N where N ≤ size of the matrix that
was obtained, then the get_or_first can be converted
into the simple_get equivalent.

redun-trans-elim Eliminates calls to transpose and ctranspose that
apply to 1D matrices, when the output of those functions
is only used for single-index accesses.

shape-propagation Identifies cases where a matrix is unnecessarily copied due
to shape mismatch (generally caused by the
redun-trans-elim pass), and fixes the shape.

loop-acc-extract Detects matrix positions that are repeatedly modified in a
loop, and rewrites the loop so that a scalar accumulator
variable is used instead.

triv-ac-size-elim Replaces A = access_size B, I instructions with a
call to A = size(B, I) function, when B is a 1D
matrix and I is a scalar.

loop-start-normal Normalizes loop ranges into 1:X:Y form.
loop-icm Loop Invariant Code Motion. It was developed purely to

assist the loop-interchange pass, so certain valid cases
are disabled.

loop-interchange Reorders loop nests to promote efficient memory accesses.
loop-fusion Combines loop nests when possible. See Subsection 5.1.2.
dup-read-elim Eliminates duplicated reads to the same matrix position.
get-set-simplify Identifies simple_get instructions that access a

matrix position that has been modified with simple_set,
and replaces the get with an assignment to the set value.

useless-mat-elim In cases where a matrix constructed inside a loop is never
used after the loop, remove the phi nodes and reference
the starting matrix instead, so that dead-code-elim
can remove more uses of it.

alloc-simplify In X = zeros(A); Y = zeros(size(X));,
converts the second call into Y = zeros(A); (also works
with other allocation functions), to make
dead-code-elim more effective.

164

SSA IR Pass Execution

Name Description

alloc-size-simpl Removes calls to the allocation function (without data
initialization) with a size given by a size matrix, with calls
to another allocation function that copies the original
matrix shape, to make dead-code-elim more effective.

loop-mat-cp-elim When a matrix is allocated (with unitialized values) with
the shape of another matrix (the source), and afterwards
there is a for loop that sets all elements of the new
matrix, replace references to the new matrix with
references to the source matrix (i.e., reuse the source
matrix instead of allocating a new one).

access-size-elim Replaces access_size instructions with simpler
operations.

bounds-check-mot Identifies checked get instructions and converts them to
simple_get instructions, by adding explicit bounds
check instructions before the loop is executed.

unnec-val-elim Eliminates val_true $in instructions where $in is
known to be true.

fxd-access-prop Replaces $out = simple_get $x, <IDXS>, where $x
is the output of zeros or ones, and replaces it with an
$x = 0 or $x = 1 instruction, respectively.

redun-alloc-elim Removes allocations that are only used to compute size
(e.g., numel(zeros(4, 4)), and replace the size
function calls with the corresponding computation.

loop-dep-elim In loops where a matrix is modified, but the original
version of the SSA matrix is still referenced, replace
references to the original SSA matrix with references to
the in-loop SSA version, if doing so is valid.

set-output-prop In x = f(...); A(...) = x;, sets the type of x to
match A.

symja-const-bld Uses Symja [Sym16] to discover the constant value of
variables constructed with arithmetic expressions.

end-elim Replace end instructions with simpler instructions.
comb-size-elim Replace combine_size instructions with simpler

instructions.
loop-iter-simpl Reverts the changes of loop-start-normal.
multi-set-const Converts chains of simple_set instructions into a

combined multi_set instruction.
opt-reporter Reports a missed optimization opportunity related to

sum calls.
no-dupl-exports Validate that there are no multiple function instances with

the same explicit ABI name.

165

SSA IR Pass Execution

Name Description

ref-arg-dupl In functions with %!by_ref arguments, it is possible
for the initial and the final variables to have colliding
lifetimes. This pass solves this problem by duplicating
reference arguments. If the lifetimes did not intercept,
then the assignment will be eliminated by the final
variable allocator. If they do, this fixes it by allowing the
final variable allocator to safely assign var$1 and
var$ret to the same group.

conv-to-cssa Converts the IR to CSSA form, as described by Boissinot
et al. [BDR+09].

par-block-ext (*) Extracts parallel block sections.
invk-par-impl (*) Performs the parallelization itself, on parallel blocks.
s-redc-buf-opt (*) Optimize cases where a buffer is copied to

the CPU, then back to the GPU, by reusing the GPU
buffer. See Section 5.7.

const-buf-opt (*) Combine buffers that contain to the same data if they are
not modified. See Section 5.7.

undef-cp-elim (*) Eliminate copies of uninitialized data, by replacing
copy_to_gpu instructions with the allocate_on_gpu
equivalent. See Section 5.7.

redun-cp-size (*) Eliminate copies that are only used to compute the size
of a matrix. GPU code does not modify the shape of
matrices, so using the outdated CPU matrix is correct.
See Section 5.7.

del-reduc-cp (*) Detects a pattern of matrix copies in a loop and
replaces a phi instruction with a new copy.
Counter-intuitively, adding this new copy actually
reduces the total quantity of data transfers, as it allows
dead-code-elim to eliminate the copies before the loop
and at the end of each iteration. See Section 5.7.

gpu-svm-elim (*) Converts SVM variables into explicit buffers, in certain
cases. See Section 5.8.

copy-ovwr-elim (*) Finds copy_to_gpu instructions followed by
set_gpu_range instructions that cover the entire buffer
and replaces the copy with a simple allocation. See
Section 5.7.

lp-mut-buf-cp (*) Finds matrices copied to the device within a loop, and
back to the host at the end of each iteration, and
rewrites the loop so that fewer copies are used. See
Section 5.7.

lp-ro-buf-cp (*) Extracts copy_to_gpu from loop bodies, for read-only
buffers. See Section 5.7.

svm-srg-elim (*) On certain devices, replaces set_gpu_range instructions
with the equivalent OpenCL kernel call. See Section 5.8.

166

SSA IR Pass Execution

D.2 Default Phase Order

This section describes the default phase order used by MATISSE, in Table D.2.

Table D.2: Default Phase Order.

Pass Name

Before Type Inference

1. ssa-validator
2. assume-in-range (depending on compiler setup options)

3. assume-size-match (depending on compiler setup options)
4. redun-assign-elim 5. dead-code-elim
6. empty-branch-elim 7. block-reorder

8. assume-builder 9. ssa-validator

After Type Inference

10. logical-access 11. scalar-val-bool
12. redun-output-elim 13. remove-type-str
14. const-branch-elim 15. redun-cast-elim
16. redun-assign-elim 17. table-simplify

18. dead-code-elim 19. conv-matx-access
20. horzcat-elim 21. conv-range-access
22. conv-set-all 23. dead-code-elim

24. full-range-elim 25. set-all-elim
26. colon-elim 27. multi-get-elim

28. simple-m-set-elim 29. conv-matx-access
30. trivial-loop-elim 31. basic-access-simp

32. matrix-prealloc 33. vert-flatten-elim
34. element-wise 35. redun-size-check

36. val-size-simpl 37. dot-reduct-elim
38. cumul-reduct-elim 39. minmax3-rdct-elim

40. dead-code-elim 41. alloc-val-elim
42. alloc-to-set-all 43. set-all-elim

44. ssa-validator 45. horzcat-elim
46. trivial-loop-elim 47. get-index-simpl
48. get-or-first-simp 49. redun-assign-elim
50. redun-trans-elim 51. shape-propagation
52. loop-acc-extract 53. ssa-validator

54. block-reorder 55. triv-ac-size-elim
56. loop-start-normal 57. loop-icm
58. loop-interchange 59. loop-fusion

60. ssa-validator 61. dup-read-elim
62. get-set-simplify 63. useless-mat-elim

64. alloc-simplify 65. alloc-size-simpl
66. loop-mat-cp-elim 67. access-size-elim
68. bounds-check-mot 69. unnec-val-elim
70. fxd-access-prop 71. dead-code-elim

72. redun-alloc-elim 73. dead-code-elim
74. loop-dep-elim 75. dead-code-elim

167

SSA IR Pass Execution

Pass Name

76. redun-size-check 77. redun-assign-elim
78. loop-icm 79. loop-interchange

80. set-output-prop 81. symja-const-bld
82. ssa-validator

Additional Passes for Parallel Code Generation Mode

At this point, MATISSE executes most of the mandatory final passes, but only
when in parallel mode. The reason for this is to ensure that certain instructions

are eliminated from the IR, so that the parallelization code does not need to
consider them.

It is likely that some of these passes are unnecessary and could be removed.
83. ssa-validator 84. const-branch-elim

85. multi-get-elim 86. logical-access
87. vert-flatten-elim 88. full-range-elim

89. set-all-elim 90. end-elim
91. access-size-elim 92. comb-size-elim

93. dead-code-elim 94. multi-set-const
95. dead-code-elim 96. opt-reporter

97. reorder-phi 98. block-reorder
99. no-dupl-exports

At this point, MATISSE is ready to parallelize the code
100. par-block-ext 101. invk-par-impl

102. s-redc-buf-opt 103. const-buf-opt
104. undef-cp-elim 105. redun-cp-size
106. del-reduc-cp 107. redun-cp-size

108. dead-code-elim 109. gpu-svm-elim
110. copy-ovwr-elim

SVM elimination may insert new data transfer instructions, so MATISSE
re-applies several data transfer optimization passes.

111. s-redc-buf-opt 112. const-buf-opt
113. undef-cp-elim 114. redun-cp-size
115. del-reduc-cp 116. redun-cp-size

117. lp-mut-buf-cp 118. lp-ro-buf-cp
119. svm-srg-elim 120. dead-code-elim

121. ssa-validator

Mandatory Final SSA Passes

122. ssa-validator 123. const-branch-elim
124. multi-get-elim 125. logical-access

126. vert-flatten-elim 127. full-range-elim
128. set-all-elim 129. end-elim

130. access-size-elim 131. comb-size-elim
132. loop-iter-simpl 133. dead-code-elim
134. multi-set-const 135. dead-code-elim

136. opt-reporter 137. reorder-phi
138. block-reorder 139. no-dupl-exports
140. ssa-validator 141. ref-arg-dupl
142. conv-to-cssa

168

SSA IR Pass Execution

169

	Front Page
	Abstract
	Resumo
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	1. Introduction
	1.1. Context and Motivation
	1.2. Thesis Goals
	1.3. Contributions
	1.4. Outline of the Thesis

	2. Background
	2.1. The MATLAB Programming Language
	2.2. The Z3 SMT Solver
	2.3. Parallel Devices
	2.3.1. Multi-core CPUs
	2.3.2. Graphics Processing Units (GPUs)

	2.4. OpenCL
	2.5. Target-aware Performance Characteristics
	2.5.1. Memory Coalescing
	2.5.2. Local Memory
	2.5.3. Texture Memory
	2.5.4. Branch Divergence
	2.5.5. Vector Types
	2.5.6. Floating-Point Precision
	2.5.7. Work-group Size
	2.5.8. Shared Virtual Memory
	2.5.9. Overview

	2.6. Target-aware Optimizations
	2.6.1. Tiling
	2.6.2. Loop Unrolling
	2.6.3. Task Parallelism
	2.6.4. Thread-Coarsening
	2.6.5. Overview

	2.7. Summary

	3. Related Work
	3.1. The MATISSE Compiler Framework
	3.2. MATLAB GPU APIs
	3.2.1. MathWorks Parallel Computing Toolbox
	3.2.2. GPUmat

	3.3. Compiling MATLAB to Non-GPU Platforms
	3.3.1. MathWorks Coder
	3.3.2. FALCON
	3.3.3. MC2FOR
	3.3.4. MIX10
	3.3.5. MatJuice
	3.3.6. MATLAB to C Targeting Application Specific Instruction Set Processors

	3.4. Compiling MATLAB to GPUs
	3.4.1. MATLAB Execution on GPU based Heterogeneous Architectures
	3.4.2. Chun-Yu Shei et al.'s MATLAB to CUDA compiler
	3.4.3. Chun-Yu Shei et al.'s MATLAB to GPUmat compiler
	3.4.4. Velociraptor
	3.4.5. StencilPaC
	3.4.6. GPU Coder

	3.5. MATLAB Type Inference Strategies
	3.6. Summary

	4. Compiler Prototype Architecture
	4.1. Programming Model
	4.1.1. Supported MATLAB Subset
	4.1.2. The Directive API
	4.1.3. Auxiliary LARA Files

	4.2. Compiler Phases and Intermediate Representations
	4.2.1. Parsing MATLAB
	4.2.2. AST Transformation Passes
	4.2.3. Matrix-Based SSA IR – The Sequential Case
	4.2.4. Type Inference
	4.2.5. SSA Transformation Passes
	4.2.6. Parallelization
	4.2.7. Code Generation
	4.2.8. Overview

	4.3. Compiler Validation
	4.4. Summary

	5. Optimizations
	5.1. Loop Conversion Passes
	5.1.1. Element-wise Operation Elimination
	5.1.2. Managing and Optimizing Loop Generation

	5.2. Bounds-checking Elimination
	5.2.1. Scalar Solver
	5.2.2. Shape Solver

	5.3. Matrix Preallocation
	5.4. Pass By Reference
	5.5. Execution Schedules
	5.6. The Cooperative Schedule
	5.6.1. Motivation
	5.6.2. Description of the Optimization

	5.7. Data Transfers
	5.8. Shared Virtual Memory Heuristics and Optimizations
	5.8.1. Coalesced Access Heuristic
	5.8.2. Sequential Access Heuristic

	5.9. Summary

	6. Experimental Results
	6.1. Experimental Setup
	6.1.1. Benchmarks
	6.1.2. Target Devices

	6.2. Impact of Temporary Matrix Elimination
	6.3. Comparison of Sequential Versions of Disparity
	6.4. Comparison with Previous MATISSE Backend
	6.5. Analysis of Shared Virtual Memory (SVM)
	6.6. Impact of Parallelization
	6.7. Comparison with Manually Coded OpenCL
	6.8. Impact of Cooperative Schedule
	6.9. Alternative Schedules on AMD's CPU Platform
	6.10. Summary

	7. Conclusion
	7.1. Final Remarks
	7.2. Future Work

	References
	A. Compiler Usage Manual
	A.1. Basic Usage
	A.2. Building Applications and Libraries
	A.3. Custom Phase Orders

	B. MATISSE SSA IR Instructions
	C. MATISSE Execution Schedules
	D. SSA IR Pass Execution
	D.1. List of Passes
	D.2. Default Phase Order

