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Abstract

The investigation of new magnetic compounds of the R5(SixGe1−x)4 family

(where R represents a rare-earth) is promoting an increasing interest for their

scientific and technological applications, due to their great potentialities as

magnetic sensors or materials for magnetorefrigeration. The compounds with

x ∼ 0.5 display a combination of giant magnetocaloric, magnetostrictive and

magnetoresistivity effects, because of the strong interplay between the crystal

lattice, magnetic moments and electronic fluid.

Here we study the Tb5Si2Ge2 compound that presents an incomplete magneto-

structural coupling responsible for its magnetocaloric effect, with the magnetic

transition occurring first (at 105 K), followed by the structural transition (at 100

K) upon cooling. This compound also exhibits a second-order spin reorientation

transition between 40 and 65 K, which originates important magnetocrystalline

anisotropy effects.

In this Thesis, it was studied the microscopic origin of the magnetocrys-

talline anisotropy of the Tb5Si2Ge2 compound, its crystalline and magnetic

structures and the indirect-exchange interaction responsible for the appearance

of ferromagnetism using the mean-field approximation. To study the magnetic

anisotropy it was necessary to introduce the crystal field interaction. We studied

its effects in two limiting cases: weak and strong interactions. Our numerical

results show that magnetic and thermodynamic properties dependent largely on

crystal field parameters. Also our numerical results shows that we can predicted

the easy direction of magnetization and described the evolution of the crystal

field interaction with change on temperature.

Detailed transport and magnetic measurements were performed and compa-

red with the numerical results. The interconnection between microscopic and
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macroscopic properties (namely the free energy) is also performed, based on

a simple phenomenological treatment, based on an approximate model of the

magnetic structure of Tb5Si2Ge2 at low temperatures.

The obtained results gave a satisfactory description of the main features oh

the spin reorientation process.
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Resumo

A investigação de novos compostos magnéticos da família R5(SixGe1−x)4 (onde

R representa um terra-rara), tem suscitado um interesse crescente pelas suas

aplicações científicas e tecnológicas, devido às suas grandes potencialidades

como por exemplo em sensores magnéticos e materiais para magnetorefrigeração.

Os compostos com x ∼ 0.5 apresentam uma combinação de efeitos magne-

tocalóricos, magnetostrictivos e magnetorresistivos gigantes, devidos às fortes

interacções da rede cristalina, dos momentos magnéticos e do fluido electrónico.

O composto em estudo é o Tb5Si2Ge2, que apresenta um acoplamento

magneto-estrutural incompleto responsável pelo efeito magnetocalórico, ocor-

rendo primeiro a transição magnética (a 105 K) seguida da transição estrutural

(a 100 K), em arrefecimento. Este composto apresenta também uma transição

magnética do tipo reorientação de spin de segunda ordem entre 40 e 65 K, que

origina importantes efeitos de anisotropia magnetocristalina.

Nesta tese de dissertação estudou-se a origem microscópica da anisotropia

magnetocristalina do Tb5Si2Ge2 descrevendo-se a sua estrutura cristalina e

magnética, assim como a interacção de troca indirecta responsável pelo apare-

cimento do ferromagnetismo usando uma aproximação de campo médio. Para o

estudo da anisotropia magnética foi necessário introduzir a interacção do campo

de cristal. Nós estudamos o seu efeito em dois casos limites: interacção fraca e

interacção forte. Os nossos resultados numéricos mostram que as propriedades

magnéticas e termodinâmicas dependem largamente dos parâmetros do campo

de cristal. Os resultados numéricos podem também prever a direcção do eixo

fácil da magnetização e descrever a evolução da interacção do campo de cristal

com a alteração da temperatura.

Um estudo detalhado das propriedades magnéticas e de transporte foi tam-
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bém realizado comparando-se posteriormente com os resultados numéricos. A

interconexão entre propriedades microscópicas e macroscópicas foram feitas, ba-

seado num tratamento fenómenologico onde se construí um modelo aproximado

da estrutura magnética do Tb5Si2Ge2.

Os resultados obtidos dão-nos uma satisfactória descrição dos principais

processos das transições de reorientação de spin.
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Chapter 1

Introduction

The magnetocaloric effect (MCE) emerges as a competitive technology for re-

frigeration down to helium liquefaction temperature, offering the prospect of an

energy-efficient and environment friendly alternative to common vapour-cycle

technology. The MCE consists in a temperature variation (cooling or heating)

of a magnetic material due to the application/removal of a external magnetic

field ( ~H) [1, 2, 3]. This effect was discovered in 1881, in an iron sample [4]. The

origin of this effect was investigated independently by Debye and Giauque who

suggested a first technological application - adiabatic demagnetization, which

is used to obtain temperatures lower than those of liquid helium (4.2 K). The

R5(SixGe1−x)4 compounds with R = Gd, Tb, Nd, Er have shown promising

MCE results, specially for R = Gd, Tb and for x ∼ 0.5 [2, 4, 5, 6, 7, 8, 9].

Besides, these compounds exhibit a number of unique properties due to their

layered structure, namely a 1st-order magneto-structural transition (at T=TS ,

martensitic-like) driven by the electronic fluid. The stratification results in

a sequence of parallel rigid slabs of five atomic layers of Si, Ge and R. At

low temperatures, covalent pairs of Si (or Ge) atoms produce strong interslab

bonding, but upon heating the 1st-order transition at TS produces the sliding

of neighboring slabs with total or partial breaking of the referred bonds, dras-

tically changing the electronic bands. Under cooling through TS the reverse

effects occur but with thermal hysteresis. The microscopic effects associated

to such magneto-structural transition are very sensitive to thermal cycling,
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2 CHAPTER 1. INTRODUCTION

magnetic field, pressure and Si/Ge ratio, producing important effects like giant

MCE, colossal magnetostriction and giant magnetoresistance. Our recent work

on thermal cycling effects revealed the onset of a new premartensitic phase

displaying a universal electrical resistivity behavior near TS [10]. Intensive

research is in progress on these new phenomena, namely using magnetization,

X-ray, neutron diffraction, pressure and magnetostriction [11, 12, 13]. Scarce

information still exists on the theory of magnetism and anisotropy that will be

considered in the present work. Also the transport properties (resistivity, ther-

mopower), which are highly sensitive both to the electronic band features and

to electron scattering (lattice and spin) will be considered. A recent innovative

approach on Gd5(Si0.5Ge0.5)4 showed that the substitution of a small amount

of Ge (5 %) by Fe drastically reduced the hysteretic losses, greatly improving

the magnetic refrigeration efficiency [9]. The magnetic entropy peak was also

shifted to higher temperatures, which is a desirable feature. Fe-substitution in

different compounds, as well as other transition metal substitutions, are still

lacking. The Tb5(SixGe1−x)4 system similarly displays a large magnetocaloric

effect. Compounds with 0.4 ≤ x ≤ 0.6 are paramagnetic (PM)- monoclinic

(M) at room temperature and ferromagnetic (FM) - orthorhombic (O) at low

temperatures [13]. Under cooling from room temperature, cooperative (or

granular-like) ferromagnetism seems to occur a few degrees before the structural

transition temperature rising the interesting question of the possible decoupling

of such transitions [14, 13]. This was inferred from recent neutron diffraction

data, magnetization, thermal expansion, as well as thermopower and electrical

resistivity. Interestingly, the fully coupled magneto-structural transition may

be induced by pressure, revealing a tricritical point at ∼ 8.6 kbar with a

colossal magnetocaloric effect [11]. At low temperatures, the x=0.5 compound

exhibits a spin reorientation transition detected by well defined anomalies in

the thermopower and electrical resistivity, and confirmed by neutron diffraction

[13, 15].

In this work we will focus on the Tb5Si2Ge2 compound which has great

importance because of its considerable MCE [16]. The purpose of this study

is to investigate the structural and magnetic properties of this compound, in

order to understand the physical processes responsible for the MCE and the
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magnetocrystalline anisotropy experimentally observed.

This dissertation is divided in seven chapters, that will now be described

succinctly.

In chapter 2, an introduction to the structural and magnetic states of the

family of Tb5(SixGe1−x)4 compounds will be presented. The crystalline and

magnetic structures of Tb5Si2Ge2 compound will be described in detail, as

they constitute an important basis to understand all phenomenological effects

observed in these compounds.

In chapter 3, the theoretical principles of magnetism.

Chapter 4 focus in the crystal field theory and also the magnetocrystalline

anisotropy both at a microscopic (quantum) and macroscopic systems (pheno-

melogical).

In the chapter 5 we present experimental results and analysis that shows

evidence for the spin reorientation transition in Tb5Si2Ge2 compounds.

The chapter 6 the numerical results obtained will be presented and discussed.

Finally some conclusions and perspective of this work will be presented.





Chapter 2

Study of Crystalline of

Tb5Si2Ge2 Compound

In this chapter the crystalline and magnetic structures of the Tb5(SixGe1−x)4

system will be described. The crystalline structure of Tb5Si2Ge2 will be analy-

zed in detail describing its atomic structure and defining its symmetry. The

magnetic and structural phase transitions will be studied, showing the modifi-

cations in the interatomic distances and the magnetic moment alignment that

occur in the compound.

The phase diagram of the Tb5(SixGe1−x)4 system has been established,

both as a function of composition and temperature as presented in Fig. 2.1.

At room temperature, the Tb5(SixGe1−x)4 compounds exhibit three structural

phases, all of them in the paramagnetic (PM) state [12]. The compounds with

x > 0.65 have an orthorhombic structure of the Gd5Si4-type (O(I); Pnma),

which persists down to the lowest temperatures. However, under cooling, these

compounds become ferromagnetic (FM1) through a 2nd-order phase transition,

with a Curie temperature (TC) linearly increasing with Si concentration. A

spin reorientation transition occurs at lower temperatures, from the FM1 into

another ferromagnetic phase (FM2), with the corresponding transition tempe-

rature (TSR) being almost independent of the Si concentration [13, 15].

For x < 0.35, the compounds are orthorhombic (O(II);Pnma) at room tem-

perature. Under cooling, they first undergo a 2nd-order magnetic transition

5
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Figure 2.1: Magnetic and crystallographic phase diagram of the Tb5(SixGe1−x)4
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2.1. CRYSTALLINE STRUCTURE OF TB5SI2GE2 COMPOUND 7

from the PM to an antiferromagnetic phase (AFM1) at the Néel temperature

(TN), followed by a spin reorientation transition of the AFM1 −→ AFM2 type

at lower temperatures.

The compounds with 0.35 < x < 0.65, which encompasses the particular

composition discussed in this work, are monoclinic (M; P1121/a group) at room

temperature but, upon cooling, suffer a 1st-order magneto-structural transition

from the [PM, M] into the [FM1, O(I)] phases at a critical temperature TS

[13]. Recent detailed neutron diffraction works [?] show that such magnetic and

crystallographic changes are not simultaneous as initially considered [13], i.e.

the transitions are not fully coupled [?, 11]: the magnetic transition precedes by

a few degrees the structural one (under cooling). At lower temperatures a spin

reorientation transition was also observed in three Tb compounds (x = 0.4, 0.5

and 0.6), from the FM1 into another FM2 phase, occurring between 57 K and

73 K (see Fig. 2.1). In the following we will describe the crystalline structure

of the Tb5Si2Ge2 compound which is marked in Fig. 2.1 by a blue line.

2.1 Crystalline structure of Tb5Si2Ge2 compound

2.1.1 Unit Cell and Symmetry Space Group

In Fig. 2.2 we represent the low temperature orthorhombic phase and the high

temperature monoclinic phase of the Tb5Si2Ge2 alloy, using crystallographic

data obtained by X-ray power diffraction with a Rietveld refinement [13] (see

table in appendix A).

These two crystalline structures are complex and contain a total of 36 atoms

per unit cell (20 atoms of Tb and 16 atoms of Si(Ge)), distributed among

six independent crystallographic sites (Tb1-dark blue, Tb2-violet blue, Tb3-

light blue and M1-dark green, M2-light green and M3-red) in the orthorhombic

structure ( see Fig. 2.2a) and among nine independent crystallographic sites

(Tb1-dark blue ,Tb2A-violet blue,Tb2B-violet blue, Tb3A-light blue, Tb3B-

light blue and M1-dark green, M2-light green, M3A-red and M3B-red) in the

monoclinic crystal system (see Fig. 2.2b).

In Fig. 2.2a) the crystalline system is orthorhombic, meaning that the

angles between adjacent sides are right angles (90◦) and in Hermann-Mauguin
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b)

b

c
aa

c

b

a)

Figure 2.2: Unit Cell of Tb5Si2Ge2 compound: a) Orthorhombic phase (Pnma)

at 100K b) Monoclinic phase (P1121/a) at 250 K.

representation has a Pnma structure [17]. The P symbol means that the unit

cell is primitive, that is, only has atoms on the corners in the rectangular cell.

The character n is associated with the x -axis (parallel to the lattice a - axis)

and is denominated glide-plane - this means that first the atoms are reflected

in a symmetry plane and afterwards suffer a diagonal translation (~a +~b). The

letter m designates a mirror plane and is associated with the y-axis (parallel to

the lattice b-axis of the unit cell). Finally, the letter a is associated with the

z -axis (parallel to the lattice c-axis) and is a glide plane, like letter n, but with

a translation parallel to the x -axis. The monoclinic structure differs from the

orthorhombic structure only in one angle that has a little deviation from 90◦

(β = 90◦ → 93.019◦, see Fig. 2.2), causing a small change in the symmetry

space group, known as P1121/a in Hermann-Mauguin representation [17]. The

symbol P as the same meaning referred above, the numbers 1 mean that there is

only one reflection in the symmetry plane corresponding to the main reflection,

and the 21/a symbol is a screw axis along the lattice a-axis of the unit cell [17].

These two structural states are both based in two different polyhedra, as
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a c a

Figure 2.3: Crystalline structure of Tb5Si2Ge2 alloy: a) cubo-octahedron

[TbM6Tb8] b) double trigonal prism [M2Tb8].

shown in Fig. 2.3: the cubo-octahedron [TbM6Tb8] and the double trigonal

prism [M2Tb8], where M can be Si and Ge atoms, which are nearly equally

distributed among their respective crystallographic sites [18].

Both polyhedra are assembled by tight bonds and are alternatively orde-

red (cubo-octahedron/double trigonal prism/cubo-octahedron) giving periodic

structures, forming rigid slabs, which are shown in Fig. 2.4. The chemical

composition of the slabs is Tb5M4, because there is one cubo-octahedron for

each double trigonal prism in the slab. The three distinct M-sites are occupied

by Si(Ge) atoms which we designated by M1, M2 and M3: the last one (M3) is

located on the slab surface thus playing a role in the interslab bonding, whereas

the other two (M1 an M2) are found inside the slabs contributing to the stability

of the slabs [18].

The rigid slabs can also be subdivided in five atomic planes and the order of

the layers in each slab is the following: M3; Tb2/Tb3; M2/M1/Tb1; Tb2/Tb3;

M3, as we can see in Fig. 2.5.

2.1.2 Structural Transition: Martensitic-like transforma-

tion

The two crystal structures that are observed in the Tb5Si2Ge2 compound differ

only in the different form of arrangements of the slabs. The first structure

belongs to the orthorhombic Gd5Si4-type, in which all slabs are interconnected

via short M3-M3 bonds, where the interatomic distance is approximately 2.6 Ȧ
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M1-M2 
covalent bond

M1-M2 
covalent bond

Rigid slabs

Rigid slabs

interfaceM3-M3 
covalent bond

Figure 2.4: Schematic representation of two rigid slabs, in Tb5Si2Ge2 alloy at

100 K, with the covalent bonds between M3 atoms in the interface.

(see Fig. 2.6). The second structure belongs to the monoclinic Gd5Si2Ge2-type,

with the slabs being identical to those from the Gd5Si4-type, but interconnected

alternately forming pairs of slabs (see Fig. 2.6).

Above TS , the interatomic distance between the unconnected pairs increases

from 2.6 to 3.4 Ȧ, while between the connected pairs remain equal to 2.6 Ȧ.

This happens because the slabs move parallel to the lattice a-axis, leading to

a natural decrease of the corresponding bond strength and to the lowering of

the Fermi level. In Fig. 2.7 a schematic diagram of the Fermi level in the cases

of bonding and non-bonding is represented [18]. This process is denominated

Martensitic-like transformation [19], occurring at TS ∼ 100 K.

This phase transformation occurs suddenly (at the speed of sound) and

can be of two types - thermic or athermic. The athermic transitions are fast

time-dependent martensitic transitions. The thermic transitions are marten-

sitic transformations that occur practically instantaneously when reaching the

transition temperature or when applying a magnetic field or pressure. In the

present studied compound, the transformation is thermic. This transformation

together with the magnetic transition originate the MCE, and can be induced
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Figure 2.5: Nanostratified atomic slabs of the unit cell for Tb5Si2Ge2 compound

at 100 K.
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Figure 2.6: Schematic crystalline structures during the Martensitic-like trans-

formation in Tb5Si2Ge2 compound below and above TS : Orthorhombic (left;

at 100 K) and Monoclinic (right; at 250 K).
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Figure 2.7: Schematic Fermi level for bonding and non-bonding structures: for

monoclinic structure (left) and for the orthorhombic structure (right)[18].
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Figure 2.8: Magnetic structure of Tb5Si2Ge2 at 100 K.

by a temperature variation or by application of a magnetic field, therefore its

enormous potential for the application the magnetic refrigeration.

During this transformation, the respective charge-balanced formulas based

on the Zintl-Klemn formalism change from [(Tb3+
5 )(M6−

2 )2(3e−)] to

[(Tb3+
5 )(M6−

2 )1.5(M4−)(2e−)], where M represents a Si or Ge atom. Note

that the number of electrons assigned to the conduction band drops as some of

the M2 bonds break [20].

2.2 Magnetic structure of Tb5Si2Ge2 compound

In the previous section the crystalline structure of the compound was studied,

being concluded that the Si(Ge) atoms have an important role, namely in the

interslab bonding. The magnetic contribution is due to the Tb atoms.

In Fig. 2.8 we observe that the magnetic structure can be subdivided in

the same away as the crystalline structure: an approximated body-centered

cube and a double trigonal prism. The body-centered cube is the principal

magnetic structure because the distance between the Tb atoms in the corners

(Tb2, Tb3) and the Tb atom in the center (Tb1) are significantly less than in

the double trigonal prism or between the corner atoms of the cubic structure.
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The double trigonal prism only appears to establish the bonding between two

body-centered cubes. In the structural transition, the rigid slabs remain almost

equal, only varying the distance between the two principal magnetic structures

(body-centered cube) in the two different slabs. The variation of this distance

is important for the magnetic contribution because in these compounds the

magnetic exchange coupling between Tb ions is mediated by the conduction

electrons (RKKY - exchange interaction; chapter 3). Additionally, at lower

temperature a spin reorientation transition occurs which we will study in detail

in this work. As the name indicates, this transition consists in the realignment

of the magnetic moment directions of the Tb atoms, from the FM1 into another

FM2 phase at TSR1 ∼ 65K. This identification (TSR1) was achieved through

neutron diffraction intensity measurements of the purely magnetic (100)+(020)

reflections [13].

A detailed and refined diffraction study of the magnetic structure (Rietveld

refinements of neutron power diffraction data) was performed for the sample

with x = 0.5 [13], for temperatures 85 K (above TSR1) and 2 K. Such study

[13] shows that the different Tb directions depend on the three distinct types of

positions in the unit cell: Tb1 (4c symmetry), Tb2 (8d) and Tb3 (8d). Different

magnetic anisotropy site-constants exist and so different orientational processes

occur as temperature change.

Additionally for each of the 8d positions (Tb2 and Tb3) the magnetic mo-

ment can still point in two distinct directions (γ and σ).

According to the neutron diffraction data [13], at T ∼ 85 K the Tb1, Tb2

and Tb3 magnetic moment components in the ac plane form slightly different

angles with the a-axis, θ1 = 50, θ2 = 130 and θ3 = 30 respectively, whereas the

corresponding angles (with a-axis) in the ab plane are φ1=00, φ2 ∼ 110 and φ3

∼ 40. Therefore, at 85 K, the spontaneous magnetization (MS) is quasi-parallel

to the a-axis, if one disregards the small φi angles.

At T=2K the magnetic moments of each Tb site are splitted in two subsets

with slightly different canting angles whose average values are θ1 = 330, θ2 = 450

and θ3 = 340. The values of the magnetic moment direction for the three Tb

atoms obtained by neutron diffraction data are tabled in Appendix 2 of this

work. These results are pictorially summarized in Figs. 2.9 a) and 2.10 a) for
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Figure 2.9: a) Magnetic structure for Tb5Si2Ge2 projected (orthogonally) into

the ab-plane at T=85 K (grey, black and white atoms correspond to Tb1, Tb2

and Tb3 atoms respectively). b) Magnetic structure projected into the ab-plane

at T= 2K.

T = 85 K and in Figs. 2.9 b) and 2.10 b) for T = 2 K. It is very clear that

above the spin reorientation transition (T = 85 K), all the Tb ions essentially

lie in the ac-plane and most of them are oriented along the a-axis. Below the

spin reorientation transition (T = 2 K), most of the Tb magnetic moments

still lie close to the ac-plane, except half of the Tb2 ions, which point into a

direction (β) making a large angle (∼330) with the ac-plane. One notes that the

markedly out-of-plane moments at low temperatures represent only 20% of the

total number of moments. Therefore, the major reorientational processes occur

in theac plane, as can be seen comparing Figs. 2.10 a) (T = 85K) and b) (T =

2K), likely influencing the behavior of different physical properties through the

spin reorientation transition [15].
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Figure 2.10: a) Magnetic structure of Tb5Si2Ge2 (orthogonally) projected into

the ac-plane at T=85 K (grey, black and white atoms correspond to Tb1, Tb2

and Tb3 atoms respectively). b) Magnetic structure projected into the ab plane

at T=2 K.



Chapter 3

Quantum Theory of

Magnetism

3.1 Introduction to Rare Earths

The rare-earth elements are located in the 6th Period of the Periodic Table,

forming the lanthanide series and are responsible for the strong magnetism

observed in some compounds. The study of the magnetic properties of the rare-

earth metals started in the 1930’s, when the ferromagnetism of Gd was discove-

red and the paramagnetism of the other heavy elements was investigated. Their

magnetic properties like magnetoresistance (MR) [21], magnetostriction (MS)

and magnetocaloric effects (MCE) [22] form a vast area of research where new

compounds and interesting phenomena are still being discovered. Therefore,

the understanding of the magnetism of these elements is very important. The

unusual properties (magnetic, electronic, transport and several other physical

properties) observed in rare-earth compounds arise from the presence of 4f elec-

trons, which are generally well separated in energy from the 6s electrons, since

they are well embedded within the atom and shielded by the 5s and 5p shells

(see Fig. 4.1). As a consequence, the 4f electrons do not take a significative role

in chemical bonding. The incomplete screening of the increasing nuclear charge

along the rare-earth series causes wavefunction contraction, which is reflected

in the ionic and atomic radii in the solid state [23].

17
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Figure 3.1: Radial components of atomic wavefunctions for 4f, 5s, 5p and 6s

The rare-earth ions usually have the valence state 3+ (trivalent) both in

ionic crystals and in metals, except in the cases of europium (Eu) and ytterbium

(Yb) which can form 2+ (bivalent) ions and cerium (Ce) whose valence state

can fluctuate between 3+ and 4+ (fourvalent).

Observing Fig. 3.2 one concludes that the spin-orbit coupling (L-S) in

4f metals is the strongest interaction. Therefore, the angular momentum ~L

and the total spin-angular momentum ~S combine themselves, giving the total

angular momentum ~J , which is a good quantum number. The ground state

multiplet (J) is determined by Hund’s rules [23]. These quantum numbers for

all rare-earth elements are given in an appendix C. The complicated magnetic

structures of the pure rare-earth metals, their alloys and compounds result

from the competition between different interactions, mainly because of the

indirect exchange interaction through the RKKY (Ruderman-Kittel-Kasuya-

Yosida) mechanism [24], which is critically affected by complexity and topology

of Fermi surface.

In the present chapter, the theoretical background (principles) of magnetism

will be introduced . Particular attention will be given to methods to calculate

the spontaneous magnetization in a mean-field approach.
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Figure 3.2: Crystal field and spin-orbital coupling in 4f ions.

3.2 Principles of Magnetism

3.2.1 Paramagnetism

Zeemann Hamiltonian

Introducing the total angular momentum operator J diagonalizes the spin orbit

interaction, i.e. the hamiltonian for the spin-orbit interaction HLS comutes with

J2 and Jz. In the presence of a magnetic field, these states are splitted. This

effect is caused by the orbital and spin magnetic moments (~L and ~S) with an

applied magnetic field ( ~B), giving a additional term to the general Hamiltonian

- the Zeeman hamiltonian [23].

Consider a system with N not interacting identical magnetic atoms. Neglec-

ting the small diamagnetic susceptibility, the interaction hamiltonian between

the atomic magnetic moment and the magnetic field is given by Zeemann

hamiltonian

ĤZ = −µB(~L + g0
~S) · ~B (3.1)

where µB is the Bohr magneton, g0 is the Landé factor which is for the

electron g0=2 and ~B is the magnetic flux density (magnetic induction) given

by ~B=µ0( ~H + ~M) where ~H is designated by applied magnetic field and ~M the

magnetization.
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Magnetic Susceptibility and Magnetization

The most natural way to classify the magnetic properties of a material is by its

response to an applied magnetic field ~H [25]. This response is characterized by

the susceptibility χ, given by the relation [26]

χ =
dM

dH
|H=0=

M

H 0
(3.2)

where M is given by the derivative of the free energy F with respect to the

magnetic field

~M = − 1
V

∂F
∂ ~B

(3.3)

with the free energy being

F = −N

β
ln

∑

N

e−βEn( ~B) (3.4)

with En being the atomic energy levels of the magnetic hamiltonian and

β=1/kBT where kB is the Boltzman constant. Using equations 3.3 and 3.4, the

general form for the magnetization becomes

~M =
N

V

Σn
∂En

∂ ~B
e−βEn( ~B)

Σne−βEn( ~B)
(3.5)

The Zeemann hamiltonian term gives a small En( ~B) contribution to the

energy that can be calculated using a first-order perturbation theory [23]

En( ~B) = µB · ~B < n|~L + 2~S|n > (3.6)

Problems of degeneracy are solved using the |JMJLS > basis, whose de-

generacy is completely lifted by the magnetic field. In this basis and within a

particular JLS-multiplet, the Wigner-Eckart theorem implies that the matrix

elements of (~L + 2~S) are proportional to those of ~J . Considering the magnetic

field ~B parallel to z-axis the eq.3.6 becomes

En(B) = gµB ·B < JLSMJ |Jz|JLSM ′
J >= gµB ·BMJδMJM ′

J
(3.7)

where factor g, called the Landé factor, can be expressed by
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g =
3
2

+
S(S + 1)− L(L + 1)

2J(J + 1)
(3.8)

and within the a given J multiplet considerer ~L + 2~S = g ~J . The effective

moment of the atom is then given by

~µ = −gµB
~J (3.9)

In similar way we can use the projection theorem to find a similar

~L = (2− g) ~J (3.10)

and

~S = (g − 1) ~J (3.11)

Once the eigenvalues are obtained by eq.3.7, the magnetization can be cal-

culated from eq. 3.5 giving

~M( ~B, T ) = gnµBJBJ(βgµBJB)~uz (3.12)

where n is concentration of magnetic moments (number of magnetic ions per

volume unit), β=1/kBT and BJ(βgµBJB)=BJ(x) is the Brillouin function [23]

BJ(x) =
2J + 1

2J
coth

2J + 1
2J

x− 1
2J

coth
1
2J

x (3.13)

From eq. 3.12, we see that the magnetization depends on the magnetic field

and temperature, as illustrated in Fig. 3.3. In Fig. 3.3 a) we can see that, when

a magnetic field is applied, the magnetization grows rapidly (first linearly) and

then saturates for higher magnetic fields [27]. In Fig. 3.3 b), it is clear that the

magnetization decreases with temperature to M=0, upon heating.

If x«1 we can perform a Taylor expansion and the Brillouin function in 1st

approximation becomes linearized 3.13, resulting the approximation [25]:

BJ(x) =
J + 1
3J

x (3.14)

Within the above approximation eq.3.12 becomes

M =
ng2µ2

BJ(J + 1)
3kBT

B (3.15)
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Figure 3.3: Variation of the magnetization (M) using the Brillouin function

with: (a) Magnetic field (B0) (b) Temperature (T)

Using the expression 3.2 and the previous approximation for the magnetiza-

tion, the susceptibility in such a paramagnetic system is given by

χ =
ng2µ2

BJ(J + 1)
3kBT

=
C

T
(3.16)

known as the Curie’s law, where C is the Curie constant. Observing Fig. 3.4

it can be seen that the inverse susceptibility depends linearly with temperature,

according with eq. 3.16 [27].

3.3 Exchange Interaction

3.3.1 Direct Exchange Interaction

In the last section we have discussed the properties of a paramagnetic system,

but it is known that some materials become magnetized spontaneously at low

temperatures. This spontaneous magnetization appears essentially because of

the exchange interaction processes between magnetic atoms [28]. For simplicity

we consider a simple model with two electrons A and B (S= 1
2 ) which have

spatial coordinates r1 and r2, respectively [29]. In a real crystal, the spins

of these electrons interact with each other and the main contributions are the
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Figure 3.4: Temperature dependence of the susceptibility inverse in a paramag-

netic system using the Brillouin function

Coulomb interaction and the exchange symmetry for two electrons instead of

the dipole-dipole magnetic interaction. The Coulomb hamiltonian term is

Ĥc =
1

4πε0

e2

r12
(3.17)

The wavefunctions of two neighboring electrons are ψA(r1) and ψB(r2) which

are localized functions in neighboring points of the lattice. The overall wave-

functions must be antisymmetric accordingly with Pauli’s exclusion principle,

so the spin part of the wavefunction must be either an antisymmetric singlet

state χS (S=0) in the case of a symmetric spatial state, or a symmetric triplet

state χT (S=1) in the case of an antisymmetric spatial state [29]:

χS =
|↑↓> − |↓↑>√

2

χT =





|↑↑>
|↓↓>

|↑↓>+|↓↑>√
2

So we can write the system wavefunctions for the singlet ψS and triplet ψT

respectively as
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ψS = [ψA(r1)ψB(r2) + ψA(r1)ψB(r2)]χS

ψT = [ψA(r1)ψB(r2)− ψA(r1)ψB(r2)]χT

(3.18)

where both the spatial and spin parts of the wavefunctions are included, and

the respective energy of each state is

ES =
∫

ψ∗SĤcψSdr1

ET =
∫

ψ∗T ĤcψT dr2

(3.19)

assuming that the spin parts of the wavefunction χS and χT are normalized.

The difference between the two energy states is

ES − ET =
∫

ψ∗A(r1)ψ∗B(r2)ĤcψA(r1)ψB(r2)dr1dr2 (3.20)

For S= 1
2 particles the eigenvalues of the operator (~SA · ~SB) are (S are the

quantum number of the system total spin operator =A + ~sB) :

~SA · ~SB =





1
4 if s = 1 (triplet state)

− 3
4 if s = 0 (singlet state)

(3.21)

So we can write the effective hamiltonian for two electrons as

Ĥc =
1
4
(ES + ET )− (ES − ET )~SA · ~SB (3.22)

In this hamiltonian the first term is a sum of constant terms being thus

irrelevant and the second one depends on the spin and the energy difference

between the two states. This energy difference is directly related with the so

called exchange constant J defined by

J =
ES − ET

2
=

∫
ψ∗a(r1)ψ∗b (r2)Ĥcψa(r1)ψb(r2)dr1dr2 (3.23)

In this way, the hamiltonian term for the interaction between two spins is

given by

Ĥc = −2J ~S1 · ~S2 (3.24)

If J is positive, ES > ET the triplet state (S=1) is the ground state

corresponding to a ferromagnetic interaction between spin. On the other hand,

if J is negative, the singlet state (S=0) is the most favorable one corresponding



3.3. EXCHANGE INTERACTION 25

to an antiferromagnetic ground state. These arguments can be generalized for

a system with many particles.

3.3.2 Indirect-Exchange Interaction - RKKY

In rare-earths, the 4f electrons are strongly localized (as seen previously) and

lie very close to the nucleus with biggest density probability, occupying about

one tenth of the interatomic spacing. This means that the direct exchange

interaction is unlikely to be very effective in rare-earths, being indirect instead.

The indirect coupling of magnetic moments by conduction electrons is referred

as the Ruderman-Kittel-Kasuya-Yosida (RKKY ) interaction [24]. The form of

the RKKY interaction is obtained within the framework of generalized suscep-

tibility. Assuming the exchange interaction between a localized spin ~Sα located

at r=0 and the conduction spins ~si, using expression 3.24 we have

Ĥ = −J
∑

i

~Sα · ~siδ(ri) (3.25)

Each conduction spin therefore experiences an effective magnetic field given

by

~Bef (r) = − J
gµB

~Sαδ(r) (3.26)

Performing a Fourier transform on this field, we obtain

~Bef (k) = − J
gµB

Sαδ(k) (3.27)

so the spin density at r is given by

s(r) = − J
g2µB

2V
Σkχ(k)eikrSα (3.28)

where χ(k) is the susceptibility. For a free-electron gas, χ(k) is given by

χ(k) = −3g2µ2
B

N
V

8εF
F

(
k

2kF

)
(3.29)

where

F

(
k

2kF

)
=

1
2

+
kF

2k

(
1− k2

4k2
F

)
log

∣∣∣∣
2kF + k

2kF − k

∣∣∣∣ (3.30)
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The exchange coefficient is given by

J =
1
V

Σkχ(k)eik·r =
3g2µ2

Bn

8εF

k3
F

2π2r

∫
dkkF

(
k

2kF

)
sin(kr) (3.31)

From the calculation of expression 3.31, we arrive to the general formula for

the RKKY exchange [24]

J =
3g2µBn

8εF

k3
F

16π

{
sin2kF r − 2kF cos2kF r

(kF r)4

}
(3.32)

In Fig.3.5, we see that a localized moment is introduced and the conduction

spins develop an oscillating polarization in the vicinity of this moment. The rn

marked give the nodes of J where J inverts its signal.
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3.4 Molecular Field Theory of Ferromagnetism

3.4.1 Heisenberg Hamiltonian

In section 3.3.1 we have built the hamiltonian for the direct interaction between

two electron spins 3.24 using the Heisenberg model. A real magnetic system is

composed by N magnetic particles and thus we must considerer the interaction

between all magnetic particles. Substituting the spin (S) by the total angu-

lar momentum (J) using the eq.3.11 in the expression , the 3.24 Heisenberg

hamiltonian becomes

Ĥex = −(g − 1)2
∑

ij

Jij
~Ji · ~Jj (3.33)

where Jij is the exchange coefficient. This Hamiltonian is very attractive

to use as a starting point for the calculation of the spontaneous magnetization,

particularly because it allows us to apply the powerful spin operator technics to

this problem.

The general magnetic hamiltonian in the presence of a flux ~B is given by

Ĥmag = Ĥex + ĤZ = −(g − 1)2
∑

ij

Jij
~Ji · ~Jj − gµB

~J · ~B (3.34)

Mean-Field approximation

The simplest method used to obtain approximated solutions is the mean-field

approximation [23, 25, 26]. In this approximation, we assume that each atom

experiences the action of a magnetic exchange field ~Bex proportional to the

magnetization of its nearest neighbors:

~Bex = λ ~M (3.35)

where λ is the mean field constant. According to this expression, each

spin feels the average magnetization of all other spins. We can considerer in a

simple approximation that all nearest neighbors atoms have the same exchange

interaction J . In this way the hamiltonian 3.33, can be simply written as

Ĥex =
∑

i

−2(g − 1)2J ~Ji ·
z∑

j=1

~Jj (3.36)
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where the sum is extended over the z nearest neighbors of the i-th atom.

Now we can replace the interactions by an effective magnetic field so that Hex

has the form

Ĥex = −
∑

i

µBg ~Bex · ~Ji (3.37)

and from expressions 3.36 and 3.37 we find

~Bex =
2(g − 1)2J

gµB

z∑

j=1

~Jj (3.38)

In the context of mean-field, we assume that each ~Jj can be replaced in the

Heisenberg term by its average value < ~Jj >. So, as all magnetic atoms are

identical and equivalent, < ~Jj > is replaced by the total magnetic spin < ~J >

magnetization is given by the

~M = ngµB < ~J > (3.39)

Thus, the exchange magnetic field becomes

~Bex =
2z(g − 1)2J

gµB
< ~J >= =

2z(g − 1)2J
g2µ2

Bn
~M (3.40)

and the molecular-field parameter is

λ =
2z(g − 1)2J

ng2µ2
B

(3.41)

The molecular-field coefficient (λ) defined in this way depends on the number of

atoms of the sample. However ~Bex (eq. 3.40) is independent of n, as one would

expect. For simplify an energy variable J0 defined as

J0 =
2z(g − 1)2J

n
(3.42)

Since we also want to consider the effects of an applied magnetic field H

( ~B = µ0
~H), so that the total induction acting on the ith atom is

~BT = ~B + ~Bex (3.43)

Using a simple model with no anisotropy we can consider a collinear align-

ment of ~M , ~Bex, ~B and ~BT and ~J along the z-axis. For one atom, the

Hamiltonian is
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Ĥmag = −gµBJzBT (3.44)

and has eigenvalues given by

EM = −gµBMBT M = −J,−J + 1, ..., J (3.45)

3.4.2 Weiss Magnetization

Using identical processes presented in section 3.2.1 and taking in account the

mean-field approximation, we can calculate the spontaneous susceptibility and

the spontaneous magnetization. Particularly, in the molecular-field theory, the

magnetization is given by expression

M = ngµBJBJ(βgµBJBT ) (3.46)

Since for sufficiently high temperatures the magnetization is small one can

use approximation 3.14 and the magnetization is:

M =
ng2µ2

BJ(J + 1)
3kBT

BT (3.47)

considering that M = UBT where U = ng2µ2
BJ(J+1)
3kBT but using the relation

that BT = B + λM the fraction M/B is given by:

M

B
=

U

1− λU
(3.48)

and using the definition of the paramagnetic susceptibility 3.2

χ =
M

H 0
= µ0

M

B
(3.49)

we obtain

χ = µ0

ng2µ2
BJ(J+1)
3kB

T − 2z(g−1)2J(J+1)J
3kB

This expression is known as the Curie-Weiss susceptibility and can be written

χ =
C

T −Θc
(3.50)
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where C is the Curie constant and Θc is the Curie Temperature is a critical

temperature, both given by:

C = µ0
ng2µ2

BJ(J + 1)
3kB

(3.51)

Θc =
2z(g − 1)2J J(J + 1)

3kB
(3.52)

In conclusion, within a mean field approximation model the magnetic hamil-

tonian (Zeemann and Heisenberg hamiltonian), if the direction of magnetization

is taken along z -axes, we have

Ĥmag = −gµBBT Jz (3.53)

where

gµBBT = gµBB + J0Jz (3.54)

The eigenvalues of the magnetic hamiltonian are

EM = −gµBBT M, M = −J,−J + 1, ..., J (3.55)

Analyzing the eq. 3.55 the magnetic hamiltonian within the | J,M > basis

can be described by a square matrix with (2J+1)×(2J+1) elements and all are

zero except for the diagonal elements (diagonal matrix).



Chapter 4

Crystal Field and Magnetic

Anisotropy

4.1 Crystal Field

When atoms condense to form a crystal, the electronic state of each atom is

modified from the free-atom state because of the interaction with surrounding

atoms. The 4f electrons in a rare earth ion are thus subject to a variety of

interactions with their surroundings. These forces may be broadly classified

into two categories: the single-ion interactions and the two-ion interactions.

the single-ion interactions act independently at each ionic site, so that their

influence on the state 4f at a particular site is unaffected by the magnetic

state of neighbors [23]. The corresponding contribution to the Hamiltonian

therefore contains sums extended over terms located at the ionic sites i of the

crystal, but without any coupling between different ions. On the other hand,

the two-ion interactions couple the 4f -electron clouds at pairs of ions, giving

terms which involve two sites i and j. The first treatment is made considering a

paramagnetic ion as a quantum system and the second process considers it as a

classical system. In this chapter the crystal field interactions in a single crystal

will be presented using the Steven’s operator methods. A model for magnetic

anisotropy will be also presented considering the anisotropic hamiltonian. At the

end of this chapter a phenomenological approach will be presented to determine

31
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Figure 4.1: Scheme of the point charge model

the easy direction of magnetization.

4.1.1 The crystal field potential

The 4f electrons of a given Rare earth ions are subject to the electrostatic charge

distribution ρ(~R). This electrostatic potential is given by

Vcf (~ri) =
∫

eρ(~Ri)

| ~ri − ~R |
d~R (4.1)

~ri is the i -th electron coordinate [30]. Two models can be used for the crystal

field and are described below.

The point charge model

If we consider that the electrostatic potential of the surroundings arises from

point electric charges located at the center of the atoms of the crystal at a point

Rj the eq. 4.1 can then be written as [27]:

Vcf (~ri) = −e
∑

j

qj

| ~Rj − ~ri |
(4.2)

where qj is the charge of the ion j of the surroundings. If one knows the charge

qj , this potential can be calculated precisely. Although this model sometimes

gives the correct signal of the coefficients, it fails in most cases [31]. This happens

because this simples model neglects the finite extent of charges on the ions and

the overlap of the magnetic ion wavefunctions with those of neighboring ions.

Also this model does not consider the conduction electrons which give rise to a

strong contribution to the crystal field Hamiltonian.
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The spherical harmonics potential

This model consists in writing the potential as a series of spherical harmonics

with the nucleus in the center of the ion:

Vcf (~ri) =
∑

l,m

Am
l fl(ri)Y m

l (θi, φi) (4.3)

The linear combinations of Y m
l (θi, φi) remain invariant under the symmetry

operations of R̂, R̂ stands for an element of the point symmetry group, but

the Am
l is not invariant and depends directly on the site symmetry as we shall

explain latter.

4.1.2 Perturbing Hamiltonian of Crystal Field

Let V (~ri) be the electrostatic potential acting on the electron i of the studied

magnetic ion. The perturbing Hamiltonian due to the crystalline electric field

can be written as:

Ĥcf = ΣiqiV (~ri) = −eΣiV (~ri) (4.4)

The sum is restricted to electrons in unfilled shells (4f in the case of rare earth

metals), as the crystal field does not affect closed shells to a first order of

perturbation [23].

Calculation of the matrix elements of the perturbing Hamiltonian ĤC

In the basis | J,MJ > of the considered multiplet, the matrix elements within

first-order perturbation are:

< J,MJ | Ĥc | J,MJ >=< J,MJ | −eΣiV (ri) | J,MJ > (4.5)

Direct integration

The free-ion wave function | J,MJ > is obtained from states involving single-

electron wave function [26]:

Ψk
n ∼ R(rk)Y k

n (θk, φk) (4.6)

Using the definition of the angular multiplication, equation 4.5 is written as:
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∫
Ψm∗

3
l3

Ψm∗
2

l2
Ψm∗

1
l1

=
[
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)

] 1
2

C(l1l2l3;m1m2m3)C(l1l2l3; 000)

(4.7)

where the C’s are the Clebsch-Gordan coefficients. These coefficients are

non zero only if l3 = l1 + l2, l1 + l2 − 1, ..., |l1 − l2| and m3 = m1 + m2.

In the matrix element components for the present case, the subscripts 1

and 3 refer to the atomic f -electrons (l1 = l3 = 3) and index 2 stands for a

spherical harmonic of the potential expansion and is restricted to 0 ≤ l2 ≤
6. As was refereed above the potential has to be invariant under rotation or

inversion. Let us consider first the group of inversion through the origin (r→-

r) . This contains two elements and hence two one-dimensional irreducible

representations. One easily shows that Y m
l with l even and l= 2n (n=integer)

transforms according to the identity representation, while it occurs for l=2n+1

for the inversion symmetry. Therefore for 4f-atoms l is restricted to the values

2, 4 and 6. The term l=0 in the expansion is a constant. This term shifts all the

levels of the given configuration by the same amount. Being R̂ an element of

the point symmetry group R̂V=VR̂ we can use this relation to show that some

coefficient Am
l of expansion 4.3 are zero.

For example, if the crystal field has a C3 local point symmetry (hexagonal

symmetry), where the generating elements of C3 group are r→-r, θ → θ, φ→φ−
2π
3 . So

Ĉ3Vcf =
∑

l,m

e−im 2π
3 Am

l rlY m
l (θ, φ)Ĉ3 (4.8)

Since R̂V=VR̂, so we must have

e−im 2π
3 Am

l = Am
l (4.9)

hence Am
l =0 (if m 6= ±3 and ±6). Consequently, the potential in a C3 point

symmetry is

V (C3) =
∑

l=2,4,6

∑
m±3,±6

Am
l rlY m

l (θ, φ) (4.10)

Therefore for rare earth atoms we have 9 crystal field parameters, A0
2, A0

4,

A±3
4 ,A0

6, A±3
6 and A±6

6 , for the C3 point symmetry.
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Figure 4.2: Sixfold cubic coordination

As an alternative we can proceed by representing the lattice ions as point

charges, using directly the formula for the crystal field potential (eq. 4.3) and

substituting directly the angular positions, for example considering a sixfold

cubic symmetry. Observing Fig.4.2 it is obvious that the angular positions

(φ,θ) are P1=(π
2 ,0), P2=(π

2 ,
π
2 ), P3=(0,0), P4=(π

2 ,π), P5=(π
2 ,

3π
2 ) and P6=(π,0).

Substituting in eq.4.3 the non-zero terms are the terms with l=4 and 6 and

m=0 and ±4.

4.2 The Stevens "Equivalent Operator" Method

The Stevens equivalent operator method is by far the most convenient method

for evaluating the matrix elements of the crystalline potential between coupled

wave functions specified by J (or L). It eliminates the need to go back to

single electron wave functions by the use of an "equivalent operator" to Ĥcf

consisting of angular momentum operators which act on the angular part of the

wave function. This is an application of the Wigner-Eckart theorem. Due to

the fact that the angular momentum J and the position of an electron r are both

vectors, to find the operator equivalents of terms as
∑

i f(xi, yi, zi) occurring in

Ĥc, one replaces x, y and z by Jx, Jy and Jz respectively, always allowing for

the non-commutation of Jx, Jy and Jz. This is done by replacing products of

x, y and z by an expression consisting of all the possible different combinations
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of Jx, Jy and Jz, divided by the total number of combinations, we for example

obtain [23, 26]:

x2 − y2 → J2
x − J2

y , 3z2 − r → 3J2
z − J(J + 1), xy → 1

2
(JxJy + JyJx)

(4.11)

In this way we can write the matrix elements for example as:

< J,MJ |
∑

i

(3z2
i −ri) | J,MJ >≡ αJ < r2 >< J,MJ | 3J2

z−J(J+1) | J,MJ >

(4.12)

The multiplicative factor αJ is a constant depending on the quantum number

l of the electron (3 in the case of a rare-earth), and J of the considered rare-

earth element. The constants are commonly named βJ and γJ for fourth- and

the sixth-order terms, respectively. Their values are tabulated in appendix D.

The values and expressions of the equivalent operators Om
l are given in appendix

E. Using the formalism of the equivalent operator for the case of sixfold cubic

symmetry we obtain [32]

Ĥcf = C4[
7
2
Y 0

4 +
√

70
4

(Y 4
4 + Y −4

4 )] + C6[
3
4
Y 0

6 −
3
8

√
14(Y 4

6 + Y −4
6 )]

= B0
4(O0

4 + 5O4
4) + B0

6(O0
6 − 21O4

6) (4.13)

where

Bm
n = Am

l αl < rl > (4.14)

are the crystal field parameters.

4.2.1 The crystal field parameters Bm
n

The crystal field parameters can be either measured experimentally (by neutron

diffraction) or calculated by means of simple models such as the point charge

model [33, 34]. In the case of a cubic symmetry the point charge model yields

B0
4 = b4

|e|q
d

5

β < r4 >; B0
6 = −b6

|e|q
d

7

β < r6 >; (4.15)

and b4 and b6 depends on the type of symmetry (tetrahedric, cubic and

octahedric) and are tabulated in 4.1 [35] and d is the distance of the nearest

newborns to the RE site and |e|q is the effective charge placed on them. The
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Table 4.1: Parameters for the crystal field.

Type of coordination b4 b6

Tetrahedric (4) − 7
36

1
16

Octahedric (6) + 7
16 + 3

64

Cube − 7
18 + 1

9

most common eigenfunctions and eigenvalues of the hamiltonian 4.13 have been

determinate and tabulated for different J by Lea et al [35]. In order to cover all

possible values of the ratio between the fourth and sixth degree terms we put

[36, 37, 38]:

B4F (4) = Wx; B6F (6) = W (1− |x|); (4.16)

where -1<x<1. It follows that

B4

B6
=

x

1− |x|
F (6)
F (4)

; (4.17)

so that B4/B6=0 for x=0, while B4/B6=±∞ for x=±1. The factors F(4)

and F(6) are the common factors to the matrix On
4 and On

6 respectively.

Rewriting the equation 4.13 we have:

Hcf = W

[
x

1
F (4)

(O0
4 + 5O4

4) + (1− |x|) 1
F (6)

B0
6(O0

6 − 21O4
6)

]
(4.18)

Expressed in this form the term in square bracket represents a matrix whose

eigenvectors correspond to the most general combination of the fourth and sixth

degree crystal fields, and whose eigenvalues are related to the crystal field energy

levels by a scale factor W defined in equation 4.16 and 4.18 [33].
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4.3 Magnetic Anisotropy

In a ferromagnetic material, both the energy and the magnetization depend

on the orientation of the magnetization relative to the crystal axes, and the

interactions between magnetic atoms favor a parallel alignment of the atomic

magnetic moments. At absolute zero temperature, the alignment is complete

and the spontaneous magnetization has its maximum possible value. As the

temperature increases, the effects of thermal fluctuations which favor random

orientation of the magnetic moment become important. In the sixties, Callen

and Callen first pointed out that the existence of energy anisotropy implies

anisotropy the magnetization. This gives an anisotropy hamiltonian Ĥani with

two components. The exchange Ĥmag (chapter 3) and the crystal field hamil-

tonian given in this chapter Ĥcf . The anisotropic hamiltonian are expressed by

Ĥani = Ĥmag + Ĥcf [26].

4.3.1 Relation between Crystalline and Magnetization Co-

ordinate Systems

As we have seen in Chapter 3, the magnetic hamiltonian for simplification is

considered that magnetization direction is along the z -axis and is given by

Ĥmag = −gµBBT M (4.19)

where M = -J,-J+1....J -1, J. The crystal field Hamiltonian has the simple

form given in eq. 4.18 because it was considered the coordinates (x,y,z) are along

the crystallographic (a,b,c)-axes. However to use the magnetic hamiltonian

(Hmag) we have to project the lattice coordinates to obtain the c-axis parallel

to the magnetization direction.

In order to distinguish the two systems, we will denote the Stevens operators

Om
n (J) in Ĥcf with respect to the crystallographic axis, i.e. in the (ξ,η,ζ)-

coordinate system, by Qm
n (Jξ,Jη,Jζ), as Hcf=ΣBm

n Q( ~J) [23, 26]. The direction

of magnetization (z -axis) is specified by the transformation of the angular

momentum operator in Qm
n ( ~J) (by projecting Jx, Jy, Jz onto Jξ, Jη, Jζ) (see

Fig.4.3).
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y

x

z

Figure 4.3: Relationship between the crystalline Jx, Jy, Jz and magnetic

coordinates (Jξ,Jη,Jζ).

This projection results in the following expressions [39]:

Jζ = Jzcos(θ)− Jxsin(θ)

Jξ = Jxcos(θ)cos(φ) + Jzsin(θ)cos(φ)− Jysin(φ)

Jη = Jxcos(θ)sin(φ) + Jzsin(θ)sin(φ) + Jycos(φ) (4.20)

With such transformation, we have the expressions of Qm
n (Jξ,Jη,Jζ) in terms

of Om
n (Jx,Jy,Jz) (see appendix E) [39]. As an example we transform Q0

2:

Q0
2 = 3J2

ζ − J(J + 1) (4.21)

Using equation 4.20 we obtain:

Q0
2 = 3(Jzcos(θ)− Jxsin(θ))2 − J(J + 1) = 3J2

z cos2(θ) + 3J2
xsin2(θ) +

3
2
(JzJx + JxJz)sin(2θ)

−J(J + 1)

=
1
2
(3cos2(θ)− 1)(3J2

z −X) + 3sin(2θ)
[
1
2
(JzJx + JxJz)

]
+

3
2
sin2(θ)

1
2
(J2

+ + J2
−)

=
1
2
(3cos2(θ)− 1)O0

2 − 3sin(2θ)O1
2 +

3
2
sin2(θ)O2

2 (4.22)

To obtain the other operators a similar process is used [39].
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4.4 The anisotropy Hamiltonian

If we specifically consider the sixfold cubic axis we have

Ĥcf = B0
4(Q0

4 + 5Q4
4) + B0

6(Q0
6 − 21Q4

6) (4.23)

and we obtain the matrix of the Ĥanis as:

< JMJ |Hanis|JM ′
J >=< JMJ |Hex + Hcf |JM ′

J >

=< JMJ |B0
4(Q0

4 + 5Q4
4) + B0

6(Q0
6 − 21Q4

6)− gµBBexJz|JM ′
J >

(4.24)

and more simply we express the above equation by

H = −J0JZ + W

[
x

1
F (4)

(O0
4 + 5O4

4) + (1− |x|) 1
F (6)

B0
6(O0

6 − 21O4
6)

]
(4.25)

with

Q0
4 =

35
8

sin4(θ)O4
4

−35sin3(θ)cos(θ)O3
4

+
5
2
sin2(θ)(7cos2(θ)− 1)O2

4

−5
2
sin(2θ)(7cos2(θ)− 3)O1

4

+
1
8
(35cos4(θ)− 30cos2(θ) + 3)O0

4 (4.26)

Q4
4 =

1
8
cos(4φ)(cos4(θ) + 6cos2(θ) + 1)O4

4

+
1
2
sin(2θ)cos(4φ)(cos2(θ) + 3)O3

4

+
1
2
sin2(θ)cos(4φ)(cos2(θ) + 1)O2

4

+sin3(θ)cos(4φ)cos(θ)O1
4

+
1
8
sin4(θ)cos(4φ)O0

4
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−sin3(θ)sin(4φ)O−1
4

+sin2(θ)sin(4φ)cos(θ)O−2
4

−sin(θ)sin(4φ)(3cos2(θ) + 1)O−3
4

−1
2
sin(4φ)cos(θ)(cos2(θ) + 1)O−4

4 (4.27)

Q0
6 =

231
32

sin6(θ)O6
6

−693
8

sin5(θ)cos(theta)O5
6

+
63
1

6sin4(θ)(11cos2(θ)− 1)O4
6

−105
8

sin3(θ)cos(θ)(11cos2(θ)− 3)O3
6

+
105
3

2sin2(θ)(33cos4(θ)− 18cos2(θ) + 1)O2
6

−21
8

sin(2θ)(33cos4(θ)− 30cos2(θ) + 5)O1
6

+
1
16

(231cos6(θ)− 315cos4(θ) + 105cos2(θ)− 5)O0
6 (4.28)

Q4
6 =

11
32

sin2(θ)cos(4φ)(cos4(θ) + 6cos2(θ) + 1)O6
6

−11
16

sin(2θ)cos(4φ)(3cos4(θ) + 10cos2(θ)− 5)O5
6

+
1
16

cos(4φ)(33cos6(θ) + 35cos4(θ)− 65cos2(θ) + 13)O4
6

+
5
16

sin(2θ)cos(4φ)(11cos4(θ) + 2cos2(θ)− 5)O3
6

+
5
32

sin2(θ)cos(4φ)(33cos4(θ)− 10cos2(θ) + 1)O2
6

+
1
4
sin3(θ)cos(θ)cos(4φ)(33cos2(θ)− 13)O1

6

+
1
16

sin4(θ)cos(4φ)(11cos2(θ)− 1)O60

−1
2
sin3(θ)sin(4φ)(11cos2(θ)− 1)O−1

6

−5
8
sin2(θ)cos(θ)sin(4φ)(11cos2(θ)− 5)O−2

6

−5
4
sin(θ)sin(4φ)(11cos4(θ)− 8cos2(θ) + 1)O−3

6

−1
2
cos(θ)sin4φ(5cos4(θ)− 1)O−4

6

+
11
4

sin(θ)sin(4φ)(5cos4(θ)− 1)O−5
6

−11
8

sin2(θ)cos(θ)sin(4φ)(cos2(θ) + 1)O−6
6 (4.29)
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4.5 Determination of easy direction of magneti-

zation

In a free rare earth ion, each J level is (2J+1)-fold degenerated. However, on

placing the ion in lattice, the (2J+1)-fold state degeneracy is partial or totally

removed due to the crystalline electric field produced by the charges surrounding

the rare earth ion. Given a magnetic rare-earth, we have a definite J, then MJ=-

J,-J+1,-J+2,...,J. In this thesis we developed a computer program where we de-

termine the matrix elements of Stevens operator < JMJ |Om
n (Jx, Jy, Jz)|JM ′

J >

and then the anisotropic Hamiltonian matrix [23]. In this way we can obtain the

first-order energy correction Ei to the 2J +1 sublevel which is used to calculate

the partition function [28]:

Z(~n, T ) =
∑

i

e−βEi (4.30)

and immediately we can obtain the free energy using eq. 4.31 [28]

F (~n, T ) = − 1
β

ln
∑

i

e−βEi (4.31)

The minimum of free energy at a given temperature gives the direction of

the easy magnetization. An estimate of the magnitude of µB Bex can often be

obtained for the compound considered from available magnetic data considering

a selfconsistent method (see chapter 6).

4.6 Phenomenological Approach

4.6.1 The expression of the free energy

The magnetic anisotropy properties of crystals are often expressed in terms of

the bulk magnetic anisotropy constants. In the phenomenological treatment,

the magnetic free energy of a cubic crystal can be expanded into a polynomial

series in αi, the direction cosine of the direction of magnetization with respect

to the cubic edges [29, 40]:

F (~n, T ) = K0 + K1(α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) + K2(α2

1α
2
2α

2
3) (4.32)
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with α2
1 + α2

2 + α2
3 = 1. The K ′s are the anisotropy constants and depend

strongly on temperature. It is commonly accepted that only terms up to

the sixth power of the direction cosine should be retained. It can be easily

shown by differentiation with respect to the angles β and γ (α = cos−1α1, β =

cos−1α2, γ = cos−1α3) that the only minima for the free energy occur in the

major axes of symmetry [100], [110] and [111] in case of a cubic system. Which

of these axes become an easy axis of magnetization, depends on the relative

values of K1 and K2. On the other hand, the easy direction of magnetization

may not be along the such major symmetry axes so that the expression would

be expanded to include the eighth-power terms:

F (~n, T ) = K0+K1(α2
1α

2
2+α2

2α
2
3+α2

3α
2
1)+K2(α2

1α
2
2α

2
3)+K3(α4

1α
4
2+α4

2α
4
3+α4

3α
4
1)

(4.33)

4.6.2 The easy direction of magnetization with anisotropy

constants

To determine the easy directions, first we start substituting α2
1 to 1-α2

2-α2
3 in

eq.4.32 and changing the notation to α1=cos(α), α2=cos(β) and α3=cos(γ).

Mathematically, the conditions for an extremum in F (~n, T ) are

∂F

∂β
= 0

∂F

∂γ
= 0 (4.34)

The extremum is a minimum if

∂2F

∂β2
> 0 and

∂2F

∂γ2
> 0 (4.35)

Using the eq.4.34 for the extremum, one obtains [40]

∂F

∂β
= 2sinβcosβ(2cos2β − 1 + cos2γ)

·[K1 + K2cos
2γ − 2K3(cos4β − cos2β + cos2βcos2γ + cos4γ)] = 0

∂F

∂γ
= 2sinγcosγ(2cos2γ − 1 + cos2β)

·[K1 + K2cos
2β − 2K3(cos4γ − cos2γ + cos2γcos2β + cos4β)] = 0 (4.36)

Each derivative is a product of four factors. These derivatives will simulta-

neously satisfy condition 4.34 whenever one of the four factors vanish as follows.
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Case 1 : The [100] axes and equivalent direction by rotation ([010], [001]) of

magnetization corresponds to

cosβ = cosγ = 0 cosβ = sinγ = 0 sinβ = cosγ = 0 (4.37)

Case 2 : The [110] axes of magnetization corresponds to

cosβ = 0 and 2cos2γ − 1 + cos2β = 0

or to

cosγ = 0 and 2cos2β − 1 + cos2γ = 0 (4.38)

Case 3: The [111] axes of magnetization corresponds to

2cos2γ − 1 + cos2β = 0 and 2cos2β − 1 + cos2γ = 0 (4.39)

Substituting the values of cosβ and cosγ in each case into the quadratic form,

eq.4.33 , yields the limiting values of K1 for which the above-mentioned major

axes of symmetry becomes easy axes of magnetization.

Case 4 : The nonmajor axes of easy magnetization are obtained by the

vanishing of the second and fourth factors, respectively, in the two derivatives,

i.e.,

cosβ = 0

and

K1 + K2cos2β − 2K3(cos4γ − cos2γ + cos2γcos2β + cos4β) = 0 (4.40)

This yields the [uv0] directions, the angle φ between the direction of magne-

tization and [100] axes being in this case sin22φ=sin22β=−2K1
K3

. The magnetic

anisotropy free energy Fuv0=−3K1
4K3

.

Case 5 : Finally the vanishing of the third factor in one derivative and the

four in the second or the vanishing of both fourth factors, yields the minima for

the [uuW] directions, i.e.,

2cos2β − 1 + cos2γ = 0
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and

K1 + K2cos2β − 2K3(cos4γ − cos2γ + cos2γcos2β + cos4β) = 0

or

K1 + K2cos2γ − 2K3(cos4β − cos2β + cos2γcos2β + cos4γ) = 0

and

K1 + K2cos2β − 2K3(cos4γ − cos2γ + cos2γcos2β + cos4β) = 0 (4.41)

The angle θ in this case is

cosθ = 1− 2cos2β

and

cosβ =
(K2 + 2K3)[(K2 + 2K3)2 + 24K1K3]

1
2

12K3
(4.42)

Substituting in eq. 4.33, one obtains the boundaries of region ABDGECA in

Fig. 4.4. The results indicates that such minima can exist for direction of ~n

parallel to the major axes of symmetry and also for crystallographic directions

of type [uuw] (α = β) and of type [uv0] (γ = π
2 ). These additional directions

exist only for K3 > 0. For the sake of conciseness, it is helpful to express K1

and K2 in units of K3, and therefore define K ′
1 = K1/K3 and K ′

2 = K2/K3. A

straightforward calculation allows one to determine the conditions imposed on

the K ′
is which account for the presence of axes of symmetry. These conditions

for [uuw]-type direction are

−2 < K ′
2 < 2 and − 1

24
(K ′2 + 2)2 < K ′1 < 0

or

2 < K ′
2 < 4 and − 1

24
(K ′2 + 2)2 < K ′1 <

1
2
(K ′1− 1) (4.43)

The conditions for a [uv0]-type direction are

−1
2

< K ′
1 < 0 and 2 < K ′2 (4.44)

The figure 4.4 represents, in the K1’, K2’ plane, the regions with the different

possible axes of magnetization. Within the approximately triangular region
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Figure 4.4: Boundaries of regions to different easy axis of magnetization in the

K ′
1 and K ′

2.

ABC, the axis of magnetization is of type [uuw]. Within this region θ=cos−1α3,

defined as the angle between ~n and the [001] axis, has values between 0 and 54.4◦.

Lines of constant θ change continuously across the AB boundary, but show a

discontinuity when crossing the AC and BC boundaries. The cross hatched

region in the neighborhood of A corresponds to a region of local minima of F

for [uuw] types of magnetization. Such direction will therefore not be stable.

Region CED is similar to ABC in that the direction of easy magnetization is

of type [uuw]; the angle θ within this region varies between 54.4◦ and 90◦.

Between points E and G there is again a very narrow band corresponding to

non-stable (local minima of F) axes of type [uuw]. Region DBML is part of the

area in which the direction of magnetization is of type [uv0], i.e., θ=900 and

φ=tan−1( v
u ). Lines of constant φ have also been plotted in this region, which

continues indefinitely towards the right, bounded by the straight lines K ′
1=0

and K ′
2=- 12 [40].

In chapter 2 we describe the spin reorientation of the compound where study

(Tb5Si2Ge2) and conclude that in a simple description the magnetic moments

at high temperatures are almost all parallel to a-axis (the direction [100]). In

the spin reorientation process the magnetic moments modify to [101] direction

at low temperatures. Using the Fig.4.4 we represent the angular dependence (θ,
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Figure 4.5: Angular dependence of magnetocrystalline energy for K ′
1=0 and

K ′
2=4 (left). Angular dependence of magnetocrystalline energy for K ′

1=-1 and

K ′
2=4(right)

φ) of the energy surface considering K ′
1=0 and K ′

2=4 that correspond to the

easy direction on [100] and the equivalent direction ([010],[001]) (see Fig. 4.5 a).

Observing the Fig. 4.5a) it is clear that the minimum energy correspond to the

direction [100] and the other minimums are the equivalent direction. In Fig.4.5

b) we considerer K ′
1=-1 and K ′

2=4 and we can observe the three minimums that

correspond to [110], [101] and [011] direction.

With above results we conclude that the spin reorientation process can occur

due to the alteration of K ′
1.

4.7 Relation between macroscopic and microsco-

pic free anisotropic energy

The macroscopic anisotropy parameters are known to be the coefficients in a

symmetry-determined expansion of the free energy in terms dependent on the

magnetization direction as specified by polar coordinates (θ,φ) relative to the

crystallographic axes. For cubic symmetry, the free energy may be written in a

expansion of spherical harmonics as

F (~n, T ) = F0(T ) + k0
4(T )Y 0

4 (θ, φ) + k4
4(T )Y 4

4 (θ, φ) + k0
6(T )Y 0

6 (θ, φ) (4.45)

+K4
6 (T )Y 4

6 (θ, φ) (4.46)

The spherical harmonics are normalized over a solid angle 4π.
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An expansion in powers of sin θ has been employed, however the spherical

harmonics form an orthogonal basis and are thus more appropriate.



Chapter 5

Experimental results

To understand the spin reorientation process for Tb5Si2Ge2 compound, some

physical properties namely transport and magnetic properties were measured.

In this chapter we first give some experimental details related with the results

obtained. Afterwards, a detailed analysis of the electrical resistance R(T), ther-

mopower S(T), neutron diffraction and magnetization of Tb5Si2Ge2 compound

is reported, on the vicinity of the spin reorientation transition. A simple model

based on an approximate magnetic anisotropy energy is presented, which gives

a satisfactory qualitative description of the main features of the reorientation

process.

5.1 Experimental details

5.1.1 Preparation of samples by arc melting technique

The Tb5Si2Ge2 compound was synthesized by arc melting of 99.9 % wt pure Tb

and 99.9999 % wt pure Si and Ge under high-purity argon atmosphere. This

process consists in melting the pure elements which constitute the sample, in

the desired stoichiometric quantities, through an electric arc discharge caused

by the application of a high voltage between two near electrodes. Weight

losses during melting were negligible and, therefore, the initial composition was

assumed unchanged. The quality of the sample was checked by scanning electron

microscopy and X-ray diffraction at room temperature. The measurements

49
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confirmed the presence of a monoclinic (P1121/a) main phase with unit cell

parameters a=7.5080(5) Å, b=14.652(1) Å and c=7.7117(5) Å. A parallelepiped

sample with cross-section 0.89×0.76 mm 2 and length 1.9 mm was cut from the

initial ingot for our transport property measurements. The samples obtained

are very shiny, porous and generally have microcracks. This method has a

disadvantage: when the melting process ends, the process is not as fast and

homogeneous as desired. The lower side of the sample, in contact with the

water-cooled copper hearth cools faster than the upper part of the sample. This

cooling difference is visible in the form acquired by the samples. During the brief

cooling process, the upper part of the sample crystallizes with a shiny aspect

and a spherical form, whereas the lower part does not crystallize.

5.1.2 Methods of measurement of transport and magnetic

properties at cryogenic temperatures

Cryogenic systems

The determination of the transport properties, namely the electric resistivity

and thermoelectric power was performed closed cycle refrigerators based in

circulation of helium which, in our case can reach temperatures of 3.7 K and 10

K. In the determination of the magnetic properties, the cryogenic system used

is a helium, with a temperature range between 4 and 300K cryostat coupled to

a evercool system.

5.1.3 Electrical resistivity measurement

The sample holder is a cylindrical block of copper with a thread which incases in

the cold tip of the cryostat. On its surface is placed a thin leaf of shroud paper

absorbed in a GE-varnish which is a good electric insulator and good thermal

conductor. This varnish allows the fixation of the sample to the sample holder,

where the sample is placed on the shroud paper. On the sample holder plate,

there are two connection wires to establish the electric contacts - generally two

wires for the voltage of the sample (V) and the other two for the electric current

of the sample (I).

After being established the electric contacts in the sample, it is inserted
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in the cryostat, making the experimental setup represented in Fig. 5.1. The

electric resistance measurement was made by the 4-probe technique as one can

see in Fig. 5.1.

Figure 5.1: Experimental montage for electrical resistivity data using 4-probe

technique.

During the experiment, the temperature is changed using a temperature

controller thermocouple are used for measuring temperatures. The temperature

variation rate has to be very small (about 1 K/min to 0.5 K/min) so that the

thermal equilibrium of the sample can be established. This time variation of

the temperature is so reduced that it allows obtaining a reasonable number of

experimental values.

The software used allows monitoring graphically the experimental results, in

real-time, early enabling the verification of the measured data.

5.1.4 Thermopower Measurements

The method used was the differential method. This method consists in the

measurement of the thermoelectric voltage (∆V) generated by a temperature

gradient (∆T) between the two tips of the sample, as is schematized in Fig. 5.2.
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Figure 5.2: Schematic montage of thermopower measurements

As one can see from Fig.5.2 there are two connection points in the sample,

each one with two connection wires (one of copper - Cu - and the other of

Kromel - Cr). Each pair of wires is linked to the nanovoltmeters. During

the thermoelectric power experiment, the average temperature of the sample

is varied, acting in the temperature regulation system of the cryostat. The

temperature gradient is increased almost continually (turning the heater on)

up to a maximum value (usually ∆Tmax ∼ 0.5 K). Typically, a temperature

increases takes about a minute, being registered the successive voltage values

of the copper and is kromel wires. After the ∆Tmax being reached, the process

repeat until reach ∆T = 0 along the sample. As the temperature gradient value

is small and because the temperature of the sample and contacts is the same

(for contacts sufficiently small and fixed with a silver ink which is a good heat

conductor), one can build the graphic of VCu as a function of VCr, obtaining a

straight line with slope α = ∆VCu/ ∆VCr. To obtain the thermoelectric power

value, one has to consider the following equations

∆VCu = Sa,Cu∆T (5.1)

∆VCr = Sa,Cr∆T (5.2)

Since
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∆VCu −∆VCr = (Sa,Cu − Sa,Cr)∆T = SCr,Cu∆T (5.3)

it is obtained the following expression to the thermoelectric power of the

sample in respect comparison to the thermoelectric power of the copper:

Sa,Cr =
α

α− 1
SCr,Cu (5.4)

Now it only lacks to know the thermoelectric power of copper in relation

to the one of kromel as a function of temperature. Those values are obtained

through a calibration made previously in the laboratory that allows determining

the value of as a function of the temperature. The absolute value of the ther-

moelectric power of the sample SA(T) is obtained by the following expression

SA = Sa,Cr(T ) + SCr(T ) (5.5)

Where the values of SA,Cu are obtained experimentally using eq.5.4 and the

values of SCu are tabulated.

5.2 Experimental results

5.2.1 Electrical Resistivity

Figure 5.3 displays the temperature dependence of the electrical resistivity of

Tb5(Si0.5Ge0.5)4 from 10 K to 75 K, after subtracting the (large) residual

resistivity ρ0=500 µΩcm, together with its temperature derivative dρ/dT. Two

clear anomalies are observed in dρ/dT near TSR1=57K and TSR2=40K. At TSR1

the temperature dependence of dρ/dT changes abruptly, which we associate

with the onset of the spin reorientation transition (see section D). At TSR2 the

temperature dependence of dρ/dT again changes suddenly, marking the end of

the spin reorientation process, i.e. completing which makes the transformation

of the FM1 phase into the FM2 phase. Between TSR1 and TSR2 , dρ/dT exhibits

an irregular behavior. To investigate this effects, two further ρ(T) measure-

ments were performed, taking the numerical (local) dρ/dT derivatives. These

experiments confirmed the irregular behavior of dρ/dT between TSR1 and TSR2 .

The anomalies cannot be attributed to artifacts of differentiation (coupled with
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finite accuracy of experimental data), since as soon as T decreases below TSR1

(or increases above TSR2) a smooth dρ/dT curve is systematically observed.

These results suggest erratic steps in the reorientation of the Tb1, Tb2 and Tb3

magnetic moments during the spin reorientation process.
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Figure 5.3: (a) Temperature dependence of the electrical resistivity (ρ)

of Tb5(Si0.5Ge0.5)4 between 10K to 75K, after subtraction of the residual

resistivity (ρ0). Inset: temperature dependence ρ(T) between 50K and 180K):

(b)Temperature derivative of the electrical resistivity (dρ/dT) between 10K and

75K.

Below TSR2 and all the way to the lowest measured temperatures, dρ/dT

exhibits a linear temperature dependence extrapolating through the origin,

which means a quadratic resistivity dependence, ρ(T) = ρ0 + AT2 with A=0.14

µΩcmK−2. We associate this behavior with spin wave electron scattering in the

ferromagnetic FM2 phase, suggesting a quadratic spin wave dispersion relation,

w ∝ k2 [41].

Remarkably, at TSR1 and above ρ(T) increases almost linearly with tem-

perature but does not extrapolate through the origin, i.e. ρ(T)=BT+C with

B ' 5.73µΩcmK−1 and C=70 µΩcm. This linear behavior is the same both

in decreasing and increasing temperatures, being intrinsic of the FM1 phase

just above TSR1 . The finite intercept (at the origin) of the linear ρ(T) part

above TSR1 , indicates an extra constant resistivity in the FM1 phase, besides

the residual resistivity ρ0. This suggests some temperature-independent spin-

disorder within the FM1 phase (orthorhombic I), in a scale of the order or

below the electron mean free path. With regard to the linear term one could

think on the usual electron-phonon contribution to ρ. Such term is clearly seen

in the PM phase (monoclinic) above TS∼100K, but its slope (0.88µΩcmK−1;
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see inset of Fig.1a) is much smaller that the B coefficient in ρ(T) just above

TSR1 , unless the orthorhombic-I structure (T<TS) exhibits an extremely high

electron-phonon resistivity. It is thus unlikely that phonon resistivity dominates

ρ(T) near TSR1 . One recalls that, according to the available neutron diffraction

data [12], below TSR1 the magnetic moments are essentially aligned along the

ac bisecting direction, whereas above TSR1 they are oriented along the a-axis.

Therefore, another possible explanation could be a significant change in the spin

wave spectrum, in such a way as to give a resistivity linear contribution, ρ=BT

in the FM1 phase.

5.2.2 Thermoelectric power

The behavior of the thermoelectric power at low temperatures also confirms

the two critical temperatures associated with the reorientation processes in

Tb5(Si0.5Ge0.5)4. This is clearly seen in Fig.5.4a, which displays the S(T) data

from 10 to 70 K.
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Figure 5.4: (a) The temperature dependence of the thermoelectrical power (S)

of Tb5(Si0.5Ge0.5)4 between 75 K to 10 K (b) The temperature derivative of the

thermoelectrical power (dS/dT).

Above ∼ 57 K the thermopower exhibits a linear temperature dependence,

S(T)=β+αT with β ' -5.73 µVK−1 and α ' -0.017 µVK−2, leading to a strictly

constant dS/dT behavior (Fig. 5.4b)

Upon cooling, the S(T) behavior changes at TSR1=57K (Fig. 2a), corres-

ponding to the onset of the spin reorientation process, similarly to what was

observed in dρ/dT. At TSR2=40K one observes an inflexion point in S(T),

marking the end of the spin reorientation process. From TSR1 to TSR2 , a
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non-monotonic behavior is observed in dS/dT (Fig. 2b), suggesting competing

effects in the reorientation process: dS/dT first decreases below TSR1 , reaches a

minimum at T∼44K and then rises as T approaches TSR2 . When we compare the

dS/dT and the dρ/dT curves ( Figs 5.4b and 1b), the latter one appears much

more irregular between TSR1 and TSR2 . This could be due to the dominant

dependence of the electrical resistivity on the electron scattering processes,

which are very sensitive to short-range order effects. Therefore, ρ is essentially

linked with the averaged electron collision time over the Fermi surface. In

contrast, S(T) depends strongly on the energy derivatives and density of states

of the conduction electrons near the Fermi surface (besides electron scattering)

i.e. on the electron band features.

At temperatures below TSR2 the S(T) data is well described by a polynomial

fit S(T) = AT + BT2 + CT3 with A= -0.432 µVK−2, B= 0.005 µVK−3 and C=

6.83 × 10−5 µ VK−4. This behavior is more neatly confirmed in the dS/dT

curve (Fig.5.4b), described by a quadratic polynomial below TSR2 .

The quadratic term (B), usually characteristic of electron-spin wave scatte-

ring [42, 41], again suggests the dominance of such excitations below TSR2 . The

cubic term coefficient (C), which begins to be important at temperatures around

∼ TSR2 , is likely associated with the phonon drag contribution, which at tem-

peratures T¿ΘD should be proportional to (T/ΘD)3 [43]. At low temperatures

(<10K) the S(T) dependence is practically linear indicating the dominance of

impurity scattering [43].

5.2.3 Magnetization and neutron diffraction

The temperature dependence of the magnetization M(T) and its derivative

dM/dT obtained field-cooled (FC) regimes for an applied magnetic field of 10

Oe, are displayed in Figs 5.5 a) and 5.5 b) respectively. The dM/dT curves

were obtained from numerical differentiation of high resolution M(T) data (0.5

K steps). The spin reorientation process is well observable in the M(T) curve

with a decrease of magnitude between 67K and 40K also confirmed by dM/dT

curve. The important anomaly observed at T ∗= 67 K, where dM/dT exhibits

a well defined maximum, however such anomaly is not detected in our trans-

port property measurements (Figs. 5.3 and 5.4). Besides the referred SQUID
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magnetization data, we have also information on the basal plane component

of the spontaneous magnetization as a function of temperature, from neutron

diffraction data [12]. This data (inset of Fig.5.5a) shows that the reorientation

transition actually starts at T ∗= 67 K, apparently persisting down to TSR2 '
40K.
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Figure 5.5: a) M(T) in Tb5(Si0.5Ge0.5)4 as a function of the temperature,

both in the zero-field-cooled (ZFC) and field-cooled (FC) regimes. Inset:

Temperature dependence of the neutron diffraction intensity of the purely

magnetic (100)+(020) reflection, obtained in the Tb5(Si0.5Ge0.5)4 sample. b)

dM/dT in Tb5(Si0.5Ge0.5)4 as a function of the temperature

5.2.4 Magnetic anisotropy and spin reorientation proces-

ses

Considering only a dominant rotation of the Tb moments in the ac plane, from

θ = 0◦ to θ = 45◦, and disregarding the small φi variations in the ab plane,

we consider an approximate anisotropy magnetic energy (Ea) with the required

symmetry:

Ea = K1sin
2(2θ) + K2sin

4(2θ) (5.6)
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Near TSR1 we assume that the first anisotropy coefficient has the usual

form K1 (T)' α (T − TSR1)+ β(T − TSR1)
2, with α and β > 0. K2 is the

2nd-anisotropic constant and the positive α and β coefficients ensure θ=0 for

T>TSR1 . Minimizing the energy with respect to θ and considering the above

approximation for K1(T) over the whole reorientation range one obtains three

possible spin structures: θ = 0 for T>TSR1 , θ=π/4 for T≤TSR2 (see below) and

0<θ<π/4 between TSR1 and TSR2 (as follows):

θ =
1
2
sin−1

√
−α(T − TSR1) + β(T − TSR1)2

2K2
(5.7)

This shows that a spin-reorientation transition at T=TSR1 requires K2 > 0

and K1<0, whereas the transition at TSR2 requires (α(TSR2−TSR1)+β(TSR2−
TSR1)

2)/2K2=-1 , i.e. K1(TSR2)=-2K2(TSR2).

One can also calculate the θ(T) dependence directly from the experimental

ρ(T) values. For this one recalls that ρ should satisfy the condition ρ(θ)=ρ(θ±π/4)

implicit in eq.5.6 and a second-order development of ρ (in powers of cos(2θ)) is

generally sufficient to account for the mean effect of the reorientation process

[44]:

ρ(T ) = ρ0 + a(T ) + b(T )cos2(2θ) (5.8)

Here ρ0 is the residual resistivity, a(T)=AT 2 is the low temperature resis-

tivity (extrapolated into the reorientation range) and the anisotropy coefficient

b(T) ∝ M2
S(T) gives the magnitude of the spin re-orientation effects on the

electrical resistivity. Assuming b'constant in the small temperature range

where the spin reorientation occurs, we can estimate b since at TSR1 one has

θ=00, so b= ρ(TSR1)− a(TSR1)− ρ0. We can then extract, from ρ(T ), the θ(T)

dependence between TSR2 and TSR1 [44]:

θ(T ) =
1
2

cos−1

√
ρ(T )− a(T )− ρ0

ρ(TSR1)− a(TSR1)− ρ0
(5.9)

Such θ(T) behavior is shown in Fig.5.6 (heavy points), together with the

best fit to the anisotropy-model formula (eq.2; dotted line), obtained with

α/2K2∼0.096 K−1 and β/2K2 ∼ 0.0023 K−2.
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Figure 5.6: Temperature dependence of the angle θ taking of experimental

results ρ(T) in Tb5(Si0.5Ge0.5)4 compound (point) between 58 K to 38 K, the

dotted line given the theoretical results accordingly to eq.5.7.

It is clear that the agreement is only qualitative, which may be due to the

oversimplified model used. In fact we only considered a common θ-rotation in

the ac plane, disregarding the θi differences among the Tb1, Tb2 and Tb3 ions,

as well as the φ-rotations in the ab plane (that occur in Tb2 and Tb3 ions). We

also assumed K1(T ) = α(T − TSR1) + β(T − TSR1)
2 between TSR1 and TSR2

and b=constant over such range.

It seems desirable to have refined neutron diffraction data covering in greater

detail the temperature range between TSR2 and TSR1 in detail, to provide direct

information on the corresponding θ(T) dependence, so as to compare with the

approximate results obtained in the present work. In addition, such data may

help in the (independent) discrimination between TSR1 , TSR2 and T ∗.

This simple model gives a satisfactory phenomenological description of the

main features of the reorientation process, but lacks in explaining the microsco-

pic causes of this type of transition. It remains to understand the microscopic

nature of such spin transitions and we will devote the next chapter to this issue.

It is the main objective to of these work arising from the numerically the crystal
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field interaction and understand the effect of this interaction in magnetic and

thermodynamic properties.



Chapter 6

Numerical Results

In this chapter, we summarize several numerical investigations related with

crystal field interaction and these effects on 4f systems. In the first part we study

the influence of strong and weak crystal field interactions on the magnetic pro-

perties. We also study the temperature dependence of relevant thermodynamic

properties namely magnetization, free energy and susceptibility, considering a

mean field approximation for these two strengths of interactions. We study the

magnetocrystalline anisotropy, determine the easy direction of magnetization

and understand microscopically the influence of CF-interactions in spin reori-

entation transition process. An application of the crystal field interaction on

a spin reorientation transition will be analyzed for the compound Tb5Si2Ge2.

In all the results here presented we considered the Tb+3 ion as the rare earth

element (J=6).

6.1 Introduction

The simplest lattice symmetry for the crystal field interaction is the cubic

symmetry that has been introduced in chapter 4. However, in a number of

situations, the symmetry is not far from cubic and it is convenient to regard the

crystal field as a combination of a large cubic term with smaller terms of lower

symmetry [35]. In our study we are going to consider a cubic symmetry as a

simple approach where ~B is parallel to c-axis and an external applied magnetic

field ( ~H), in this case the hamiltonian can be expressed by:

61
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H = −J0Jz + W

[
x

1
F (4)

(O0
4 + 5O4

4) + (1− |x|) 1
F (6)

B0
6(O0

6 − 21O4
6)

]
(6.1)

where J0, W and x are in principle unknown parameters.

In the next section we will study the influence of J0, W and x on the magnetic

and thermodynamic properties. For this study, it was created a computer

program.

6.2 Computational Methods

The numerical code elaborated in this work was made using the MatLab 6.5

software. The choice of MatLab software was made essentially because of its

simple programming language and because this program presents some impor-

tant packages of numerical methods (diagonalization, differentiation, etc...) that

are helpful in the study of the physical problem. In brief the program calculates

the hamiltonian matrix using the quantum mechanic operators (J+, J− and JZ)

given by the following common definitions:

< JMJ |JZ |JM ′
J > = MJδMJM ′

J

< JMJ |J2|JM ′
J > = J(J + 1)δMJM ′

J

< JMJ |J±|JM ′
J > =

√
(J ∓M ′

J)(J ±M ′
J + 1)δMJM ′

J±1
(6.2)

The crystal field hamiltonian was calculated using the Steven’s operator

methods (see table D.1 in D appendix). The eigenvalues and eigenvectors of the

hamiltonian matrix were determined for a certain magnetic molecular field.

The eigenvalues allow the calculation of the magnetization at a certain

temperature T and to calculate a better estimation for the molecular field,

closing a self-consistent loop. The program stops when the magnetization

converges to a given percentage (e.g. ∆M/M=0.1 %). Once the convergence is

obtained, it is straightforward to calculate different thermodynamic functions

(susceptibility, energy levels, occupation number and magnetization).
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6.3 Numerical Results

6.3.1 Crystal Field Energies

The main frame of this work is study the influence of CF-interactions in rare-

earth system. The first part of the calculation was the determination of the

energy levels of the crystal field hamiltonian using the equation

H = W

[
x

F (4)
(O0

4 + 5O4
4) +

(1− |x|)
F (6)

B0
6(O0

6 − 21O4
6)

]
(6.3)

and the determination of the energy as a function of the x parameter. The

results are given by Fig. 6.1, and are in agreement with the Lea et al work

[35]. In Fig.6.1 we can see that the energy levels are very dependent of the x

parameter.
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Figure 6.1: x dependence of crystal field states

The eigenvectors were also determined and the eigenvectors corresponding

to Γ1, Γ2, Γ3, Γ4 eigenvalues are presented table 6.1. The eigenvector corres-

ponding to Γ5 varies with the x concentration. All results are in agreement with

Lea et al work [35], which means that the developed program is performing the

correct calculation for the crystal field hamiltonian. The results performed were
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Table 6.1: Steven’s Equivalent Operators

Γ1 : -0.6614|4>+0.3536|0>-0.6614|-4>

Γ2 : -0.3953|6>+0.5863|2>+0.5863|-2>-0.3953|-6>

Γ3 : 0.5863|6>+0.3953|2>+0.3953|-2>+0.5863|-6>

0.2500|4>+0.9354|0>+0.25|-4>

Γ4 : 0.6846|±3 > −0.4330| ∓ 1 > +0.5863| ∓ 5 >

-0.7071|4>+0.7071|-4>

also compared with other previous works [23, 36, 37, 38] and the results fully in

agreement with previous literature.

6.3.2 The Effect of Crystal Field Interaction on Magne-

tization

In the last chapter we presented the experimental data of transport and mag-

netic properties. However the transport properties are not easily accessed by

numerical calculation due to the complexity of the transport theory models.

Like was mentioned in chapter 4, the magnetization is the property that is more

directly related with crystal field splitting and indirect exchange. To determine

the temperature dependence of the magnetization is used the following relation:

M(T ) = NgµB

Tr
(
Sze

− Ĥi
kT

)

Tr
(
e−

Ĥi
kT

) (6.4)

However to obtain M(T) it is necessary to know the crystal field parameters

solve the following hamiltonian finding corresponding the eigenvalues an the

eigenvectors. It is helpful to study the effect of the crystal field and exchange

parameters on magnetization. However, the crystal field parameters can only

be determined experimentally for example by neutron diffraction. In present
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case these parameters are unknown. Our first purpose will be to describe the

influence of these parameters in the magnetic properties and thermodynamics

functions.

W
J0

and x dependence on magnetization

We divide the crystal field interactions in two types: strong interactions with

1<W
J0
<1/10 and weak interactions with W

J0
< 1/100.

The parameter J0 is directly related with the molecular field and an increase

of J0 causes an increase in TC as well in the magnetic moment with a maximum

value of 9 (g.J). This is well known for systems where it is only considered the

exchange term.

It is interesting to study the effect of the coefficient W
J0

in thermal magneti-

zation for the two distinct regions of this parameters. This effect is represented

in Fig. 6.2. For a weak CF-interaction (Fig.6.2 a) it can be observed that this

effect does not affect a significantly TC . At very low temperatures, an absolute

increase in M originates an anomalous behavior,which is more evident when W
J0

< 0 because the magnetic momentum decreases.
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Figure 6.2: a)Temperature dependence of magnetization for a weak CF-

interaction with variation of W
J0

parameter (left). b) Temperature dependence

of magnetization for a strong CF-interaction with variation of W
J0

parameter

(right).

For the strong crystal field interactions, we can observe that a variation of

the crystal field parameter gives a large variation on the M(T) curve at low
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temperatures and also a significant variation of TC . The variation of the critical

temperature with the free parameter W
JO

is represented in Fig. 6.3
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Figure 6.3: Variation of the critical temperature with W
J0

parameter.

For W
J0
<-0.8 the system is always in the paramagnetic state (TC=0). In

range -0.8<W
J0
<-0.1, the critical temperature increases with W

J0
. This increase

slows down in weak interaction regime.

Another important parameter is the x value that is related with the relative

amplitude between 4th and 6th elements of the Steven’s Operators.

Observing the Fig.6.4 it is clear that for negative values of x (the most

common case), a large change in the M(T) curve is observed as well as a variation

of the critical temperature.

In conclusion we see that M(T) dependents largely with W
J0

and x parameters

causing a deviation of the "normal" behavior (the Brillouin function). With the

eigenvalues and eigenvectors obtained with our programm we can study other

important physical properties presented in next section.

6.3.3 Statistical and Thermodynamical Functions

Statistical state

In this subsection we study some statistical and thermodynamics functions,

namely the temperature dependence of the occupation number and the energy
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Figure 6.4: a) Temperature dependence of magnetization for a weak CF-

interaction with variation of x parameter (left). b) Temperature dependence of

magnetization for a strong CF-interaction with variation of x parameter (right).

splitting, in order to understand the mechanisms implicit in a strong and weak

crystal field interaction. For these two interactions we have selected the parame-

ter x=0.5 W
J0
=-0.5 µ2

B and W/J0=-0.05 µ2
B for strong and weak CF-interaction

respectively.

In Fig.6.5 a) the temperature dependence of the energy levels splitting is

represented. Below TC , the levels split giving 2J+1 levels (13) due to the

magnetic contribution. It is clear that the crystal field interaction does not

contribute significatively to the splitting of the energy levels which means that

only for low temperatures the crystal field becomes important.

For a strong CF-interaction, presented in Fig. 6.5 b), above TC , there are six

energy levels populated, which appear because of the CF-interactions, although

the total magnetization is zero. Below TC , the magnetic hamiltonian (JZ) splits

the degenerated levels causes an increase of M(T). Also in Fig. 6.5 b), when we

show the effect of a strong CF-interaction, it is clear that strong CF-interaction

causes a large splitting of the energy levels above and below TC . The most

important levels below TC have a splitting from the ground state to the first
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excitated state of ∆E∼ 25.06 meV, demonstrating that the ground state is the

most important one. On the other hand, in a weak CF-interaction we observe

that ∆E is only of ∼ 3.00 meV and is essentially due to the magnetic interaction

(Jz).
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Figure 6.5: a) Temperature dependence of energy states for a weak CF-

interaction (left). b)Temperature dependence of energy states for strong CF-

interaction (right)

Another important statistical property is the occupation number (probabi-

lity) which gives the states occupied on each level, having an important role in

the physical properties. Statistically the probability of a certain level Ei being

occupied is given by:

P (Ei) =
e−

Ei
kT

Tr
(
e−

Ei
kT

) (6.5)

In Fig. 6.6 we represent P (Ei) in the two limiting cases. In a weak CF-

interaction (see Fig. 6.6a)) where we observed that all states are occupied and

that only at very low temperatures a strong decrease on the population of the

excited states occur. However in a strong CF-interactions, (see Fig. 6.6 b) we

can see that, at very low temperatures, only one state is occupied (the ground

energy state). With an increase of temperature, an increase of the number of

occupation of the first excited state is observed, making an alteration in the

linear combination of the quantum states. This new linear combination is the

same as an alteration of the magnetization direction. However, the splitting
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Figure 6.6: a)(left) Temperature dependence of number of occupation for a weak

CF-interaction. b) (right) Temperature dependence of number of occupation for

strong CF-interaction

of states is very high corresponding to an intense crystal field interaction (un-

common in 4f ions) because, observing the inset of Fig. 6.6b), for T ∼ 1300 K

the states are not equally occupied contrasting with the T ∼ 110 K on a weak

crystal field (more common in 4f ions).

Thermodynamic functions: susceptibility

The thermodynamic functions are also important to understand the microscopic

process due to crystal field interactions. One of them is the magnetic suscepti-

bility (χ), that is defined as the response of a material when a magnetic field is

applied (eq. 4.2). The method of determination of the magnetic susceptibility

is to consider two small applied magnetic fields (H=1 Oe and H=4 Oe), to make

the difference between the magnetization and divide it by the variation of the

applied magnetic field. It is interesting to plot the inverse of susceptibility with

temperature for CF-interactions, whose results are represented in the Fig. 6.7.

Observing Fig. 6.7 it can be seen that at high temperatures, χ−1 varies

linearly with temperature, i.e. it follows the Curie-Weiss law for both interaction

(eq.3.50). For both cases the linear contribution gives a 9.72 µB that are in good

agreement to what we expected. Also we can determined the Curie temperature

and the results were θp = 145.7 K and 110 K in the case of strong and weak

CF-interaction respectively. Near TC , the weak CF-interaction follows the χ−1
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Figure 6.7: Temperature dependence of χ−1 in the absence of CF-interaction

(black line), with a weak interaction (line red) and in a strong CF-interaction

(line blue).

in the absence of CF-interaction. In the case of strong interaction we observe

a deviation of this linear regime (blue line) which is in disagreement with the

Curie Weiss law because the crystal field splitting is very high. This means

that the CF-interactions causes a decrease of critical temperature when we have

a strong crystal field interaction. Below TC the weak interaction behavior is

almost the same as without the CF -interaction. For a strong CF -interaction at

low temperatures we observe a much smaller slope in the inverse of susceptibility

than in the cases of weak or in the absence of CF-interaction.

6.3.4 Anisotropy studies

Until now we presented the effect of CF-interaction, but these results are only

applied to isotropic systems or considering only the magnetic contribution paral-

lel to z -axis. In general the real systems are not isotropic being called anisotropic

systems. These anisotropies are directly related with the surroundings atoms

and the CF-interaction is one of the causes. The magnetic anisotropy systems

have a preferential direction called the easy-axis corresponding to the direction
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where the magnetic moment is maximum. However, in some of these systems,

the easy-axis change its direction with temperature, and this process is called the

spin reorientation transition. In other cases this anisotropy is unchangeable

with temperature maintaining the same direction. To study this anisotropy we

use the theory described in section 4.3.4.

Weak CF-interaction

To study the anisotropy it is better to study the free energy of a system and

the condition that minimizes the free energy which gives the direction of the

easy-axis. Using the crystal field parameters for a weak interaction B0
4∼1E-5

meV and B0
6 ∼ 1E-6 meV, making a variation for φ=[0o,90o] and θ=[0o,90o] and

using the eq. 5.29, we obtain the free energy results for temperatures of 2K,

15K, 30K and 65K.

Figure 6.8: a)Free energy for a anisotropic system considering a weak CF-

interaction for T=2K (up left), b) T=15K (up right), c) T=30K (down left)

and d) for T=65K (down right)

We clearly observe in Fig. 6.8 a) that the free energy has three minimums

at low temperature corresponding to (90o,45o), (45o,0o) and (45o,90o) for θ



72 CHAPTER 6. NUMERICAL RESULTS

and φ respectively. These three directions are the same by symmetry and

correspond to possible directions of the easy-axis. This figure can be compared

with Fig.4.5 obtained within by the phenomenological theory (see chapter 4)

concluding that both have the same behavior and the same minimums. These

means that the microscopical theory (CF-interaction) is in agreement with

phenomenological theory for a cubic symmetry. With an increase of temperature

these minimums decrease (see Fig. 6.8 b) and c)) and at approximately 65K they

almost disappear (see Fig. 6.8) and "any" direction can be the easy direction.

The weak CF-effects only predict the easy-directions where their contribu-

tion to free energy anisotropy becomes more important (always at low tem-

perature). So the easy direction for high temperature has to be due other

interactions, for example, dipolar interactions very characteristic in case of Gd

ion. The above process described can be responsible for rotation of magnetic

momentum being called spin reorientation transition.

Strong CF-interactions

A similar study was performed considering strong CF-interactions and the re-

sults for the angular dependence of free energy are represented in Fig. 6.9.

Figure 6.9: a)Free energy for a anisotropic system considering a strong CF-

interaction for T=2K.
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Analyzing Fig. 6.9 we can see that the free energy surface presents three

minimums corresponding to 45o and 28o, 22o and 72o, 69o and 22o for φ and

θ respectively. These minimums are not common in a cubic symmetry except

if we consider higher terms in the phenomenological free energy equation as we

presented in eq. 5.32. These minimums present a significant variation of free

energy (∆F∼500K) relatively to F∼-950K and do not disappear when increasing

the temperature like in the case of a weak CF-interaction. So in this case the

easy-direction remains the same and is invariant with temperature, this means

that for strong CF-interaction a spin reorientation is not expected due to a very

marked deep of minimums of free energy.

Until now we have studied the CF-interaction in general for a cubic system.

However this study can be applied for any symmetry being only needed the

CF-parameters. In the next section we will demonstrate an application of spin

reorientation process in Tb5Si2Ge2 and try to understand these transition within

a crystal field theory.

6.4 An application of CF-interaction in Tb5Si2Ge2

As we have presented in chapter 2 the compound Tb5Si2Ge2 has a spin reo-

rientation transition at low temperatures. We have seen that this compound

has three types of Tb sites (one 4c and two in 8d symmetry). The Tb in

4c symmetry has six neighbors forming almost a regular octahedron symmetry.

The other sites do not have a regular symmetry, presenting a complex one. This

transition can be essentially described as a rotation on ac-plane from 0o (at high

temperatures) to 45o with respect to a-axis. In this section will only studied the

Tb atom in 4c-symmetry because it is expected that the process is "identical"

in other sites. In a 4c-symmetry the number crystal field parameters (Bm
n ’s)

on the hamiltonian are 9 parameters. However for this system, the crystal field

parameters are still unknown which makes more complex the task of describing

the CF-interaction. As we have seen along of this chapter a variation on CF-

parameters gives distinct and diversifies behavior on physics properties. But

as we refereed in chapter 3 we can calculated in a first approximation we can

simplify the study of these application considering a cubic system and the other
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terms in hamiltonian can be consider as secondary terms less important.

6.4.1 Point Charge Model

The principal unknown variables for a cubic system are the B0
4 and B0

6 pa-

rameters. Theoretically, there are only one possibility to try to obtain the

CF-parameters called the point charge model, described in chapter 4. Using

equation 4.15 and table 4.1 we obtain the values of B0
4= -1.17E-5 meV and

B0
6=3.49E-5 meV, B0

4= 5.86E-6 meV and B0
6=-1.74E-5 meV and B0

4= 1.32E-5

meV and B0
6=-1.472E-5 meV for cubic, tetrahedric and octahedric symmetries

respectively using an average distance of d=3.2 . The effective charge is consi-

dered the charge of Si or Ge atoms (-4 e). With these coefficients was calculated

the temperature dependence of magnetization and the corresponding results are

presented in Fig. 6.10. The only free parameter is J0 which corresponds to the

critical temperature TC with a value equal to the one obtained experimentally,

that is ∼ 105 K. The values obtained for J0 are 0.87 meV, 0.75 meV and 0.72

meV for cubic, tetrahedric and octahedric symmetry respectively. Comparing

results obtain with experimental results M(T) curve (see Fig.5.5), the behavior

are different concluding that the point charge model does not explain these

results for Tb5Si2Ge2 compound.

These results are not surprising because according to ref. [31] the point

charge model in almost all cases does not give a correct information of coeffi-

cients, inclusively the signal can be wrong. Also the approximation model for

a cubic symmetry and the average distance used can cause some differences

between a real system and the simple model here presented.

6.4.2 Complementar studies

In the present chapter we concluded that only the weak CF -interaction ex-

plained the spin reorientation transition premising a change in the easy-axis

direction. For the easy-axis direction have to be in the φ∼45o and θ∼0o at

low temperature we obtain the following parameters B0
4 ∼ 3.2736E-5 meV and

B0
6 ∼ 9.6706E-7 meV. For these parameters we can determine the anisotropic

magnetization. The results are only made for the plane ac for φ=0o and 45o

because it is in this plane that our system occurs.
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Figure 6.10: Temperature dependence of magnetization using point charge

model parameters for a cubic, tetrahedron and octahedron symmetry.

Observing the Fig.6.11 we can see the anisotropy is very small almost negligi-

ble and this result is in disagreement with the experimental results (see Fig.6.12),

only for very low temperatures there is a difference between two direction. The

next step was to determine the unknown variables that fit the experimental

results. After making some attempts to discover the best parameters, finally

we obtained the ones that fit our experimental results which are J0=1.22 meV,

W=-0.97 meV and x=0.37 corresponding to a strong CF-interactions. The

comparison of the M(T) curves are represented in Fig. 6.12.

We refereed above that in these cases the minimums of free energy are very

well defined and unchangeable with temperature variation not predicting a spin

reorientation transition. However by Fig.6.12 we observed that below TC ∼
70K, a decrease of magnetization occurs.

A complementary study of the anisotropy magnetization was performed

and we could see that for this case a large anisotropy occurred. With these

results from the magnetization variation can be interpreted as a variation of the

magnetic moment because in some direction there is a decrease and in the other

direction there is an increase contrasting with free energy where predict only
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Figure 6.11: Temperature dependence of magnetization in ac plane with φ=0o

and φ=45o.

one unchangeable direction.

This process can not be seen as a classic model of a momentum change

because is purely quantic (change of eigenstates).

In summary, we observed that the crystal field interaction explain the spin

reorientation transition. Comparing the numerical results with experimental

data we obtain the best fit if we consider a strong crystal field interaction.

However the compound studied here is polycrystalline and this condition was

not taken in account. Also a very simplified model was made and this can

change the magnitude of the CF-interaction. The ideal is to obtain the crystal

field parameters experimentally and afterwards substitute these values in this

programme and predicting the M(T) curves to understand the CF-interaction

in Tb5Si2Ge2 compound.
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Chapter 7

Conclusions

This Thesis presents a study of several fundamental physical properties on

Giant magnetocaloric compound Tb5Si2Ge2 combining numerical and physical

property measurements.

In the Tb5Si2Ge2 compound the spontaneous magnetization in rare-earths

is a consequence of the exchange interaction due to localized 4f electrons via

conduction electrons and the magnetic anisotropy arises from the crystal field

effects. We modeled the effect of crystal field arising at a given site by means

of a single-ion crystal-field Hamiltonian. We observed that in a number of

physical situations in which symmetry is not far from cubic, it is sufficient to

regard the crystal field as a combination of a large cubic term with smaller

terms of lower symmetry. The strength of the exchange interactions could be

estimated by a mean-field approximation. We developed a computer programm

which, once fixed the crystal field parameters and use a self-consistent method

to calculate the temperature dependence of magnetization and other relevant

physics properties.

This work also shows that the magnetic properties depend strongly of crystal

field parameters. Two regimes of crystal field interactions (strong and weak

interaction) are presented and we concluded that weak crystal field parameters

gives small contribution to magnetic properties. Strong CF-interaction, on the

other hand contributes strongly to the anomalous behaviors of magnetization.

We studied the free energy and showed numerically that the strength of the
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crystal field interaction plays an important role on determining of the easy

direction of magnetization as also as in the magnitude of the minimum of free

energy (∆F).

Our transport (ρ, dρ/dT, S, dS/dT) and magnetic property measurements

(M, dM/dT) in Tb5Si2Ge2 reveal the existence of a complex spin reorientation

process within the FM phase at low temperatures. According to our magnetic

data and previous neutron diffraction work [12], the spin reorientation process

clearly starts at T ∗=67K and ends at TSR2=40K. However, due to the different

site-anisotropies (Tb1, Tb2, Tb3), corresponding spin reorientation transitions

may occur at slightly different temperatures involving different numbers of Tb

ions. In particular, the transport properties are virtually insensitive to the spin

reorientations, occurring between T ∗=67K and TSR1=57K. They are however

very sensitive to the reorientation processes between TSR1=57K and TSR2=40K.

A simple phenomenological treatment, based on an approximate model of

the magnetic structure of Tb5Si2Ge2 at low temperatures, gives a satisfactory

description of the main features of the reorientation process and corresponding

effect on the electrical resistivity, between TSR1 and TSR2.

Applying the developed computer to this specific system we showed that the

weak CF-interactions predicted a change of the easy direction as a function of

temperature. At low temperatures the easy direction with θ=90o and φ=45o

was obtained for B0
4=1E-5 meV and B0

6=1E-6 meV, in agreement with a phe-

nomenological model also developed in this work. At higher temperatures, the

free energy becomes isotropic implying other physical processes are responsible

for the new easy direction of magnetization found experimentally.

In the case of a strong CF-interaction, the free energy showed a clear mi-

nimum at φ=45o and θ=28o directions corresponding to the easy direction

(the other minimums are obtained by symmetry). The free energy is strongly

anisotropic which is reflected in the magnetization along different directions.

and important changes in magnetization were observed.

Without any crystal field parameters obtained experimentally (by for exam-

ple inelastic neutron scattering ) the task of fitting the magnetization at different

temperatures becomes very complex of finding the scanned parameters phase

spaces in order to understand the M(T) behavior obtained experimentally. We
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found B0
4=6.1E-3 meV and B0

6=-7.955E-5 meV parameters for the best fit of

data. These parameters showed that only a strong CF-interaction could explain

the experimental data. However this interaction does not predict a change in

the easy direction according to the free energy but only changes on magnitude

of magnetic momentum of the ion.

In summary, we think that main objective of this work that consisted in

developed the numerical methods to study the influence of the crystal field

interaction was attained. We are now considering to perform in mean future

inelastic neutron scattering to obtain the CF-parameters.

Also important is for instance a magnetic study in a single crystals to fit

our results and understand the real magnitude of crystal field parameters. Also

a statistical approach for polycrystal systems can be important to explain ours

experimental results.

Finally and probably the most promising is study a new family of compounds

PrNi5−xCux and PrNi5−yCoy that presents a simple structure (cubic symme-

try) and understand the influence of crystal field interactions in this compounds

in particular the anomalous magneto caloric effect that they present.
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Appendix A

X-ray Crystallographic data

for Tb5Si2Ge2 compound

ii



iii

Table A.1: Space group, lattice parameters, unit-cell, volume and fractional

atomic coordinates at 250 K and 2K [13].

250 K 100 K

Space group P1121/a Pnma

a(Ȧ) 7.5080(5) 7.4340(3)

b(Ȧ) 14.652(1) 14.6290(6)

c(Ȧ) 7.7117(5) 7.7171(3)

γ (deg) 93.042(5)

V(Ȧ3) 847.1(1) 839.25(6)

Tb1 (4e):x 0.3241 Tb1 (4c):x 0.3476(6)

y 0.2466(6) y 1
4

z 0.0033(9) z -0.099(4)

Tb2A (4e):x -0.000(1) Tb2 (8d):x 0.0202(4)

y 0.0994(5) y 0.0966(1)

z 0.179(1) z 0.8192(4)

Tb2B (4e):x 0.019(1)

y 0.4002(5)

z 0.182(1)

Tb3A (4e):x 0.359(1) Tb3 (8d):x 0.1763(4)

y 0.8820(5) y 0.1227(2)

z 0.168(1) z 0.3217(3)

Tb3B (4e):x 0.331(1)

y 0.8820(5)

z 0.168(1)

M1 (4e):x 0.953(1) M1 (4c):x 0.997(1)

y 0.2522(6) y 1
4

z 0.893(1) z 0.1047(9)

M2 (4e):x 0.207(1) M2 (4c):x 0.977(1)

y 0.2528(6) y 1
4

z 0.206(1) z 0.634(1)

M3A (4e):x 0.206(1) M3 (8d):x 0.15379

y 0.9581(6) y 0.9597(4)

z 0.469(1) z 0.5299(7)

M3B (4e):x 0.153(1)

y 0.5435(6)

z 0.466(1)

RP /Rwp (%) 2.6/3.2 3.6/4.4
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Table B.1: Components of the Tb magnetic moments for Tb5Si2Ge2 determined

form the Rietveld refinements at 100 K, 85 K and 2 K[13].

T(K) µTb1(µB) µTb2(µB) µTb3(µB)

µx 8.51(9) 7.20(8) 7.61(8)

100 K µy 0 1.5(1) 0.4(1)

µz 0.8(1) 1.26(8) 0.2(1)

µx 8.50(8) 7.45(7) 8.04(7)

85 K µy 0 1.54(8) 0.67(9)

µz 0.7(1) 1.76(6) 0.40(8)

µx 9.3(3) 7.2(3) 8.7(2)

µy 0 0.1(1) 0.0(2)

µz 3.7(2) 7.0(2) 5.6(2)

2K

µx 7.7(3) 6.6(3) 8.2(2)

µy 0 4.3(2) 1.0(2)

µz 5.1(3) 5.4(2) 3.7(2)
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Table C.1: Properties of the tripositive rare-earth ions [23].

4fn Ion+++ L S J g (g − 1)2 J(J+1) ∆(K)

0 La 0 0 0 -

1 Ce 3 1
2

5
2

6
7 0.18 3150

2 Pr 5 1 4 4
5 0.80 3100

3 Nd 6 3
2

9
2

8
11 1.84 2750

4 Pm 6 2 4 3
5 3.20 2300

5 Sm 5 5
2

5
2

2
7 4.46 1450

6 Eu 3 3 0 – 500

7 Gd 0 7
2

7
2 2 15.75

8 Tb 3 3 6 3
2 10.50

9 Dy 5 5
2

15
2

4
3 7.08 4750

10 Ho 6 2 8 5
4 4.50 7500

11 Er 6 3
2

15
2

6
5 2.55 9350

12 Tm 5 1 6 7
6 1.17 11950

13 Yb 3 1
2

7
2

8
7 0.32 14800

14 Lu 0 0 0 –
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xAPPENDIX D. VALUES OF α, β AND γ FORGROUND STATES OF RARE EARTH IONS

Table D.1: Values of α, β and γ for Ground States of Rare Earth Ions

α β γ

4f1 Ce3+ 2F 5
2

-2/35 2/7 · 45 0

4f2 Pr3+ 3H4 -52/11 · 152 -4/55·33·3 17 · 16/7 · 112 · 13 · 5 · 34

4f3 Nd3+ 4I 9
2

−7/332 −8 · 17/112 · 13 · 297 −17 · 19 · 5/132 · 113 · 33 · 7
4f4 Pm3+ 5I4 14/112 · 15 952/13 · 33 · 113 · 5 2584/112 · 132 · 3 · 63

4f5 Sm3+ 6H 5
2

13/7 · 45 26/33 · 7 · 45 0

4f6 Eu3+ 6F0 0 0 0

4f7 Gd3+ 8S 7
2

0 0 0

4f8 Tb3+ 7F6 -1/99 2/11 · 1485 −1/13 · 33 · 2079

4f9 Dy3+ 6H 15
2

−2/9 · 35 −8/11 · 45 · 273 4/112 · 132 · 33 · 7
4f10 Ho3+ 5I8 −1/30 · 15 −1/11 · 2730 −5/13 · 33 · 9009

4f11 Er3+ 4H 15
2

4/45 · 35 2/11 · 15 · 273 8/132 · 112 · 33 · 7
4f12 Tm3+ 3H6 1/99 8/3 · 11 · 1485 −5/13 · 33 · 2079

4f13 Y b3+ 2F 7
2

2/63 −2/77 · 15 4/13 · 33 · 63
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xii APPENDIX E. STEVENS EQUIVALENT OPERATORS

Table E.1: Stevens Equivalent Operators

O2
2 = 1

2 (J2
+ + J2

−)

O1
2 = 1

2 (JzJx + JxJz) = 1
4 [Jz(J+ + J−) + (J− + J+)Jz]

O0
2 = 3J2

z −X

O−1
2 = 1

2 )(JzJx + JxJz) = i
4 [Jz(J+ − J−) + Jz(J+ + J−)]

O−2
2 = 1

2i (J
2
+ − J2

−)

O4
4 = 1

2 (J4
+ + J4

−)

O3
4 = 1

4 [Jz(J+ + J−) + (J+ + J−)Jz]

O2
4 = 1

4 [(7J2
z −X − 5)(J+ + J−) + (J+ + J−)(7J2

z −X − 5)]

O1
4 = 1

4 [(7J3
z − (3X + 1)Jz)(J+ + J−) + (J+ + J−)(7J3

z − (3X + 1)Jz)]

O0
4 = 35J4

z − (30X − 25)J2
z + 3X2 − 6X

O−1
4 = i

4 [(7J3
z − (3X + 1)Jz)(J+ − J−) + (J+ − J−)(7J3

z − (3X + 1)Jz)]

O−2
4 = 1

4i [(7J2
z −X − 5)(J+ − J−) + (J+ − J−)(7J2

z −X − 5)]

O−3
4 = 1

4i [J
2
z (J3

+ − J3
−) + (J3

+ − J3
−)J2

z ]

O−4
4 = 1

2i (J
4
+ − J4

−)

O6
6 = 1

2 (J6
+ + J6

−)

O5
6 = 1

4 [Jz(J5
+ + J5

−) + (J5
+ + J5

−)Jz]

O4
6 = 1

4 [(11J2
z −X − 38)(J4

+ + J4
−) + (J4

+ + J4
−)(11J2

z −X − 38)]

O3
6 = 1

4 [(11J3
z − (3X − 59)Jz)(J3

+ + J3
−) + (J3

+ + J3
−)(11J3

z − (3X − 59)Jz)]



xiii

Table E.2: Stevens Equivalent Operators-continuation

O2
6 = 1

4 [33J4
z − (18X − 123)J2

z + X2 + 10X + 102](J2
+ + J2

−)

+(J2
+ + J2

−)[33J4
z − (18X − 123)J2

z + X2 + 10X + 102]

O1
6 = 1

4 [33J5
z − (30X − 115)J3

z + (5X2 − 10X + 12)]

(J+ + J−) + (J+ + J−)[33J5
z − (30X − 115)J3

z + (5X2 − 10X + 12)]

O0
6 = 231J6

z − (315X − 735)J4
z + (105X2 − 525X + 294)J2

z − 5X3 + 40X2 − 60X

O−1
6 = i

4 [33J5
z − (30X − 115)J3

z + (5X2 − 10X + 12)](J+ − J−)

+(J+ − J−)[33J5
z − (30X − 115)J3

z + (5X2 − 10X + 12)]

O−2
6 = i

4 [33J4
z − (18X − 123)J2

z + X2 + 10X + 102](J2
+ − J2

−)

+(J2
+ − J2

−)[33J4
z − (18X − 123)J2

z + X2 + 10X + 102]

O−3
6 = i

4 [(11J3
z − (3X − 59)Jz)(J3

+ − J3
−) + (J3

+ − J3
−)(11J3

z − (3X − 59)Jz)]

O−4
6 = i

4 [(11J2
z −X − 38)(J4

+ − J4
−) + (J4

+ − J4
−)(11J2

z −X − 38)]

O−5
6 = i

4 [Jz(J5
+ − J5

−) + (J5
+ − J5

−)Jz]

O−6
6 = 1

2i (J
6
+ − J6

−)
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E:\magnetizacaoanisotropia.m Page 1
23 de Fevereiro de 2006 21:37:45

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%    Programme for determination the energy of crystal field for the      %
%                       Tb trivalente ion in a self consistent            %
%                             Made by Andre Pereira                       %
%                                Version 3.0                              %
%                                2005-09-29                               %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

format long
clear
%%%%%%%%INPUT%%%%%%%%%%%%%%%%%%
J=input('Entre com o valor de J:   ');
plsv=input('Deseja (1) salvar os dados ou (2) "plotar":   ');

L=2*J+1; % number of Mj
Z=0;
Jz=zeros(L,L);
J2=zeros(L,L);
JMais=zeros(L,L);
Jmenos=zeros(L,L);
Id=zeros(L,L);

%%%%%%CONSTANTES%%%%%%%%%%%%%%%
g=3/2; k=1.380658e-16; mibor=9.27e-21; %%%%%k em erg.K-1%%%mibor em erg.G-1%%%%
difmag=1;mag3=[]; valores=[]; concx=[]; concW=[]; concJ0=[]; magt=[];temp=[];Ftemp=[];b
molecular=[];

% Quantic operators
for i=1:L
    for j=1:L
if i==j
    Id(i,j)=1;
else
   Id(i,j)=0;
end
end
end

for i=1:L
    for j=1:L
if i==j
    X(i,j)=J*(J+1);
else
   X(i,j)=0;
end
end
end

% operator Jz
for i=1:L
    for j=1:L
if i==j
    Jz(i,j)=i-J-1;
else
    Jz(i,j)=0;
end
end
end

% operator J2
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for i=1:L
    for j=1:L
if i==j
    J2(i,j)=J*(J+1);
else
    J2(i,j)=0;
end
end
end

%operator J+

for i=1:L
    for j=1:L
         if i==j+1
            JMais(i,j)=sqrt((J-(j-J-1))*(J+(j-J-1)+1));
        else
             JMais(i,j)=0;
        end
    end
end

%operador J-

for i=1:L
    for j=1:L
if i==j-1
    Jmenos(i,j)=sqrt((J+(j-J-1))*(J-(j-J-1)+1));
else
    Jmenos(i,j)=0;
end
end
end

%Coeficientes de steven's

O22=1/2*(JMais^2+Jmenos^2);

O21=1/4*(Jz*(JMais+Jmenos)+(JMais+Jmenos)*Jz);

O20=3*Jz^2-X;

O2menos1=1/2i*(Jz*(JMais-Jmenos)+(JMais-Jmenos)*Jz);

O2menos2=1/2i*(JMais^2-Jmenos^2);

O44=1/2*(JMais^4+Jmenos^4);

O43=1/4*((Jz*(JMais^3+Jmenos^3)+(JMais^3+Jmenos^3)*Jz));

O42=1/4*((7*Jz^2-X-5*Id)*(JMais^2+Jmenos^2)+(JMais^2+Jmenos^2)*(7*Jz^2-X-5*Id));

O41=1/4*((7*Jz^3-(3*X+1*Id)*Jz)*(JMais+Jmenos)+(JMais+Jmenos)*(7*Jz^3-(3*X+1*Id)*Jz));

O40=35*Jz^4-(30*X-25*Id)*Jz^2+3*X^2-6*X;

O4menos1=1/4i*((7*Jz^3-(3*X+1*Id)*Jz)*(JMais-Jmenos)+(JMais-Jmenos)*(7*Jz^3-(3*X+1*Id)*
Jz));
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O4menos2=1/4i*((7*Jz^2-X-5*Id)*(JMais^2-Jmenos^2)+(JMais^2-Jmenos^2)*(7*Jz^2-X-5*Id));

O4menos3=1/4i*((Jz*(JMais^3-Jmenos^3)+(JMais^3-Jmenos^3)*Jz));

O4menos4=1/2i*(JMais^4-Jmenos^4);

O66=1/2*(JMais^6+Jmenos^6);

O65=1/4*((Jz*(JMais^5+Jmenos^5))+((JMais^5+Jmenos^5)*Jz));

O64=0.25*[(11*Jz^2-X-38*Id)*(JMais^4+Jmenos^4)+(JMais^4+Jmenos^4)*(11*Jz^2-X-38*Id)];

O63=1/4*[(11*Jz^3-(3*X+59*Id)*Jz)*(JMais^3+Jmenos^3)+(JMais^3+Jmenos^3)*(11*Jz^3-(3*X+5
9*Id)*Jz)];

O62=1/4*[(33*Jz^4-(18*X-123*Id)*Jz^2+X^2+10*X+102*Id)*(JMais^2+Jmenos^2)+(JMais^2+Jmeno
s^2)*(33*Jz^4-(18*X-123*Id)*Jz^2+X^2+10*X+102*Id)];

O61=1/4*[(33*Jz^5-(30*X-15*Id)*Jz^3+(5*X^2-10*X+12*Id)*Jz)*(JMais+Jmenos)+((JMais+Jmeno
s)*(33*Jz^5-(30*X-15*Id)*Jz^3+(5*X^2-10*X+12*Id)*Jz))];  

O60=231*Jz^6-(315*X-735*Id)*Jz^4+(105*X^2-525*X+294*Id)*Jz^2-5*X^3+40*X^2-60*X;

O6menos1=1/4i*[(33*Jz^5-(30*X-15*Id)*Jz^3+(5*X^2-10*X+12*Id)*Jz)*(JMais-Jmenos)+((JMais
-Jmenos)*(33*Jz^5-(30*X-15*Id)*Jz^3+(5*X^2-10*X+12*Id)*Jz))];    

O6menos2=1/4i*[(33*Jz^4-(18*X-123*Id)*Jz^2+X^2+10*X+102*Id)*(JMais^2-Jmenos^2)+(JMais^2
-Jmenos^2)*(33*Jz^4-(18*X-123*Id)*Jz^2+X^2+10*X+102*Id)];

O6menos3=1/4i*[(11*Jz^3-(3*X+59*Id)*Jz)*(JMais^3-Jmenos^3)+(JMais^3-Jmenos^3)*(11*Jz^3-
(3*X+59*Id)*Jz)];

O6menos4=1/4i*[(11*Jz^2-X-38*Id)*(JMais^4-Jmenos^4)+(JMais^4-Jmenos^4)*(11*Jz^2-X-38*Id
)];

O6menos5=1/4i*(Jz*(JMais^5-Jmenos^5)+(JMais^5-Jmenos^5)*Jz);

O6menos6=1/2i*(JMais^6-Jmenos^6);

%for J0=0.81
for J0=1.22
    lambda=J0*1.6E-15/(g*g*mibor*mibor);

%for W=-0.315
for W=-0.97
%for x=0.671
 for x=-0.38

F4=60;

F6=7560;
    
Vcf2=W*(x/F4*(O40+5*O44)+((1-abs(x))/F6)*(O60-21*O64));
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for T=2:1:150
    mag=10;
       
    d=10;     
  
    while d >= 0.001
    
    
b0=0.001;

b=b0+lambda*mag*mibor;

Hm=-g*mibor*Jz*b;

HamG=Hm+Vcf2*1.6E-19*1E-3/1E-7;
%HamG=Hm;

[Vectores_propriosl,Valores_propriosl] = eig(HamG);

Valores_Propriosm=eig(HamG);

Q=0;

VPexp=expm(-Valores_propriosl/(k*T));
 

Jzdiag=Vectores_propriosl'*Jz*Vectores_propriosl;
 

Q=trace(VPexp);
 
 
M1=trace(Jzdiag*VPexp)/Q;
 
    d=abs(mag-g*M1)/(g*M1);
    
    mag=g*M1;
  
Valores_magn = eig(HamG)/(1.6E-19*1E-3/1E-7);

%end  
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%REORIENTAÇAO%%%%%%%%%%%%%%%%%%%%%%

for theta=0:pi/20:pi/2;
for phi=0:pi/40:pi/4;

% Projectado a coordenada cristalina na coordenada da magnetizaçao 1

Q40=35/8*(sin(theta))^4*O44-35*(sin(theta))^3*cos(theta)*O43+5/2*(sin(theta))^2*(7*(cos
(theta))^2-1)*O42-5/2*(sin(2*theta)*(7*(cos(theta))^2-3))*O41+1/8*(35*(cos(theta))^4-30
*(cos(theta))^2+3)*O40;
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Q44=1/8*cos(4*phi)*((cos(theta))^4+6*(cos(theta))^2+1)*O44+1/2*sin(2*theta)*cos(4*phi)*
((cos(theta))^2+3)*O43+1/2*(sin(theta))^2*cos(4*phi)*((cos(theta))^2+1)*O42+(sin(theta)
)^3*cos(4*phi)*cos(theta)*O41+1/8*(sin(theta))^4*cos(4*phi)*O40-(sin(theta))^3*sin(4*ph
i)*O4menos1-(sin(theta))^2*sin(4*phi)*cos(theta)*O4menos2-sin(theta)*sin(4*phi)*(3*(cos
(theta))^2+1)*O4menos3-1/2*sin(4*phi)*cos(theta)*((cos(theta))^2+1)*O4menos4;

Q60=231/32*(sin(theta))^6*O66-693/8*(sin(theta))^5*cos(theta)*O65+63/16*(sin(theta))^4*
(11*(cos(theta))^2-1)*O64-105/8*(sin(theta))^3*cos(theta)*(11*(cos(theta))^2-3)*O63+105
/32*(sin(theta))^2*(33*(cos(theta))^4-18*(cos(theta))^2+1)*O62-21/8*sin(2*theta)*(33*(c
os(theta))^4-30*(cos(theta))^2+5)*O61+1/16*(231*(cos(theta))^6-315*(cos(theta))^4+105*(
cos(theta))^2-5)*O60;

Q64=11/32*(sin(theta))^2*cos(4*phi)*((cos(theta))^4+6*(cos(theta))^2+1)*O66-11/16*sin(2
*theta)*cos(4*phi)*(3*(cos(theta))^4+10*(cos(theta))^2-5)*O65+1/16*cos(4*phi)*(33*(cos(
theta))^6+35*(cos(theta))^4-65*(cos(theta))^2+13)*O64+5/16*sin(2*theta)*cos(4*phi)*(11*
(cos(theta))^4+2*(cos(theta))^2-5)*O63+5/32*(sin(theta))^2*cos(4*phi)*(33*(cos(theta))^
4-10*(cos(theta))^2+1)*O62+1/4*(sin(theta))^3*cos(theta)*cos(4*phi)*(33*cos(theta)^2-13
)*O61+1/16*(sin(theta))^4*cos(4*phi)*(11*(cos(theta))^2-1)*O60-1/2*(sin(theta))^3*sin(4
*phi)*(11*(cos(theta))^2-1)*O6menos1-5/8*(sin(theta))^(2)*cos(theta)*sin(4*phi)*(11*(co
s(theta))^2-5)*O6menos2-5/4*sin(theta)*sin(4*phi)*(11*(cos(theta))^4-8*(cos(theta))^2+1
)*O6menos3-1/2*cos(theta)*sin(4*phi)*(11*(cos(theta))^4-10*(cos(theta))^2+1)*O6menos4+1
1/4*sin(theta)*sin(4*phi)*(5*(cos(theta))^4-1)*O6menos5-11/8*(sin(theta))^2*cos(theta)*
sin(4*phi)*((cos(theta))^2+1)*O6menos6;

Vcf=W*(x/F4*(Q40+5*Q44)+((1-abs(x))/F6)*(Q60-21*Q64));

Hani=Hm+Vcf*1.6E-19*1E-3/1E-7;
%HamG=Hm;

[Vectores_proprios2,Valores_proprios2] = eig(Hani);

Valores_Propriosm2=eig(Hani);

Q2=0;

VPexp2=expm(-Valores_proprios2/(k*T));
 

Jzdiag2=Vectores_proprios2'*Jz*Vectores_proprios2;
 

Q2=trace(VPexp2);
 
 
M2=trace(Jzdiag2*VPexp2)/Q2;
 
    
    mag2=g*M2;

%valores=[valores;vectores_pro_teste];
    
magt=[magt;real(mag2)];

temp=[temp;T];
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concW=[concW;theta*180/pi];

concx=[concx;phi*180/pi];

concJ0=[concJ0;J0];

bmolecular=[bmolecular;b];

end
end
end

if plsv==1
    
m=[concJ0,concW,concx,temp,magt];
    save c:\teste.dat m /ascii
    disp('')
    disp('Arquivo salvo em c:\teste.dat')
    
end

if plsv==2
  plot(temp,magt)
hold on
m=[concJ0,concW,concx,temp,magt];
    save c:\teste2.dat m /ascii
    disp('')
    disp('Arquivo salvo em c:\teste.dat')
end

end

end
end
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