DETERMINAÇÃO DE TENSÕES A PARTIR DE EXTENSÕES

OBSERVADAS EM BARRAGENS DE BETÃO

Graça Maria Gomes Moura
(Engenheira Civil)

Dissertação apresentada à Faculdade de Engenharia da Universidade do Porto para obtenção do grau de Mestre em Estruturas de Engenharia Civil
Ao Manel,
ao Zé
e aos meus Pais
ÍNDICE GERAL

AGRADECIMENTOS .. I

RESUMO .. III

ABSTRACT .. V

RÉSUMÉ .. VII

ÍNDICE DO TEXTO .. IX

ÍNDICE DE FIGURAS ... XIII

1 INTRODUÇÃO ... 1

2 MÉTODOS E APARELHAGEM DE OBSERVAÇÃO DE BARRAGENS ... 9

3 OBSERVAÇÃO DE EXTENSÕES E TENSÕES ... 31

4 PROPRIEDADES REOLÓGICAS DO BETÃO DE BARRAGENS .. 43

5 MÉTODOS DE INTERPRETAÇÃO QUANTITATIVA ... 59

6 EXEMPLO DE APLICAÇÃO: BARRAGEM DO ALTO LINDOSO .. 85

7 CONCLUSÃO .. 129

REFERÊNCIAS .. 135

ANEXOS .. 141
AGRADECIMENTOS

A elaboração desta dissertação foi facilitada por diversas pessoas e entidades a quem gostaria de expressar os meus agradecimentos:

- ao Professor Rui Faria, meu orientador, a quem agradeço o apoio científico prestado, a cuidada revisão dos textos e as pertinentes sugestões nas várias matérias abordadas;

- ao Eng.º José Mora Ramos, sem o incitamento do qual provavelmente não teria concluído com esta dissertação um trabalho que já tinha sido iniciado há muitos anos, pela sua sugestão do tema para este trabalho e pelo apoio baseado na sua vasta experiência no campo das barragens de betão;

- ao Eng.º António Correia de Sousa que, embora não tenha estado presente nesta fase da minha vida, me iniciou no projecto e na análise do comportamento de barragens;

- ao meu marido, Manuel Pinho de Miranda, que sempre me apoiou com a sua grande experiência no campo da análise do comportamento de barragens, com a sua determinação nos momentos em que a minha força parecia estar a diminuir e com a sua infinita paciência para me apoiar ao longo de todos os meses em que este trabalho foi sendo desenvolvido;

- ao Eng.º António Abreu Aguiar, Director da EDP Produção EM, pelas facilidades concedidas na fase final de elaboração desta dissertação;

- e, finalmente, mas não de menor importância, à CPPE (Companhia Portuguesa de Produção de Electricidade), empresa do grupo EDP que, nas pessoas do Director da Produção Hidráulica Eng.º José Franco e dos Eng.ºs Ilídio Ferreira e Fernando Almeida, prontamente me facultou todos os dados relativos à barragem do Alto Lindoso sem os quais este trabalho seria certamente muito menos valioso.
RESUMO

O objectivo desta dissertação consiste na aplicação de um modelo de interpretação quantitativa para cálculo de tensões a partir de extensões observadas em grupos de extensómetros colocados na barragem do Alto Lindoso. A interpretação quantitativa consiste na decomposição dos resultados das observações em parcelas correspondentes aos diferentes efeitos que influenciam o comportamento da estrutura. Este processo é também designado por separação de efeitos. Os efeitos isolados considerados habitualmente na análise do comportamento de barragens são o efeito hidrostático, o efeito térmico e a evolução ao longo do tempo em que se poderão incluir o efeito da fluência e os efeitos irreversíveis tais como os assentamentos de fundação, as aberturas de junta, a fissurização, etc. A principal vantagem do modelo adoptado consiste na consideração dos efeitos da fluência, da relaxação e da maturação do betão.

Neste trabalho procede-se a uma apresentação sumária das diferentes técnicas e aparelhos utilizados na observação de barragens, dando-se especial relevo aos destinados à medição de extensões e tensões.

Apresentam-se as características gerais da fluência dos betões, referem-se os factores que a influenciam, e particularizam-se algumas leis de fluência, com especial atenção para a lei de Bazant e Panulla que foi adoptada.

É apresentada uma resenha de diversos modelos de interpretação quantitativa focalizando-se no modelo que é objecto da dissertação. No que respeita a acções o modelo adoptado admite que o efeito da acção hidrostática é proporcional à quarta potência da altura da água na albufeira na data de realização da campanha em análise, o efeito da acção térmica é função linear das temperaturas lidas em três grupos de extensómetros e os efeitos permanentes variam linearmente com o tempo decorrido desde uma campanha considerada como referência. Relativamente ao comportamento dos materiais o modelo apresentado leva em linha de conta os efeitos da maturação, da fluência e da relaxação do betão, apoiando-se na informação experimental recolhida das células de fluência instaladas.

A validação dos resultados obtidos com o modelo de interpretação quantitativa foi feita por comparação das tensões obtidas por essa via com as resultantes de uma análise de elementos finitos em que se levou em linha de conta a maturação, a fluência e a relaxação. Simultaneamente procedeu-se à comparação dos resultados da interpretação quantitativa com os valores observados em células tensométricas instaladas na barragem.
ABSTRACT

The work presented now deals with the application of an interpretation model of the observed strains in the extensometers of Alto Lindoso dam and the calculation of the corresponding stresses. An interpretation model is an analytical tool intended for the analyses of dam behaviour that consists in breaking up the results of observation in different components that are related with the main actions that influence the behaviour of a dam. The effects that are usually considered in dam observation are the hydrostatic effect, the thermal effect and the irreversible effects due to foundation settlement, opening of joints, cracking, etc. The main advantage of the adopted model consists in the consideration of the effects of creep, relaxation and ageing of concrete.

The techniques and apparatus for the observation of dams are presented. The presentation of the techniques for the observation of stresses and strains is made in more detail.

The general characteristics of creep and the factors that influence it are presented together with some creep laws. The Bazant and Panulla law used both in the interpretation and the finite element model is presented.

Several interpretation models are summarised and a more detailed presentation of the interpretation model used in this work is made.

The interpretation model adopted considered that the hydrostatic effect is a function of the water height in the reservoir in the moment that is being studied, the thermal effects are related with the temperatures observed in three groups of extensometers and the permanent effects are linearly proportional to the time elapsed since a reference campaign. The model used takes into account the ageing, the creep and the relaxation of the concrete and is based upon the creep laws derived from the observed results on creep cells that were placed inside the dam during construction. The Bazant and Panulla formulation was considered.

The results obtained with the interpretation model are compared with the ones obtained with a finite element model where the Bazant and Panulla law used in the interpretation model was assumed. At the same time a comparison with the observed values of the stress cells installed in the dam is also presented.
RÉSUMÉ

On présent les techniques et les appareils utilisé dans l’observation des barrages avec la présentation détaillée de ceux qui sont adoptés dans l’observation des tensions et déformations.

Les caractéristiques principales du fluage et les facteurs dont elle dépende sont présentées. Quelques lois de fluage sont présentées et on fait référence à la loi de Bazant et Panulla.

On présent aussi plusieurs modèles d’interprétation quantitative bien que le modèle utilisé dans ce travail.

Le modèle d’interprétation quantitative adopté considère que l’effet de la pression hydrostatique est proportionnel à la hauteur de l’eau dans le réservoir au moment de l’observation. Le modèle utilisé compris les effets du vieillissement, du fluage et de relaxation du béton en utilisant les lois de fluage obtenues de l’observation des cellules de fluage qui ont été installés dans le barrage considérant le modèle de Bazant et Panulla.

Les tensions calculées sont d’abord comparées avec les tensions obtenues avec un modèle d’éléments finis qui utilise les mêmes lois de vieillissement, de fluage et de relaxation utilisées dans l’interprétation quantitative. On fait aussi la comparaison avec les tensions observées aux cellules de tensions installées dans le barrage.
ÍNDICE DO TEXTO

1 INTRODUÇÃO ... 1
1.1 Considerações gerais .. 1
1.2 Enquadramento e objectivos da dissertação ... 4
1.3 Organização da dissertação .. 6

2 MÉTODOS E APARELHAGEM DE OBSERVAÇÃO DE BARRAGENS .. 9
2.1 Observação das acções ... 9
 2.1.1 Acção hidrostática ... 9
 2.1.2 Subpressões .. 10
 2.1.3 Acção térmica ambiental ... 11
 2.1.4 Acções físico-químicas da água .. 12
 2.1.5 Acção sísmica ... 12
2.2 Caracterização das propriedades dos materiais da fundação e da barragem 13
2.3 Observação dos efeitos .. 15
 2.3.1 Temperaturas no interior do betão ... 16
 2.3.2 Extensões ... 16
 2.3.3 Tensões .. 18
 2.3.4 Deslocamentos .. 18
 2.3.5 Deslocamentos relativos entre blocos ... 24
 2.3.6 Deslocamentos no contacto barragem fundação ... 27
 2.3.7 Rotações ... 28
 2.3.8 Deslocamentos dos taludes ... 28
 2.3.9 Caudais drenados e infiltrados ... 29

3 OBSERVAÇÃO DE EXTENSÕES E TENSÕES .. 31
3.1 Considerações gerais ... 31
3.2 Métodos e aparelhos para observação de tensões em barragens 32
 3.2.1 Extensómetros ... 33
 3.2.2 Tensómetros ... 38
 3.2.3 Método SFJ ... 40
 3.2.4 Método STT ... 41

4 PROPRIEDADES REOLÓGICAS DO BETÃO DE BARRAGENS .. 43
4.1 Generalidades sobre betões de barragens .. 43
4.2 Fluência e relaxação ... 48
Índice do texto

4.2.1 Aspectos gerais .. 48
4.2.2 Parâmetros que afectam a fluência... 50
 4.2.2.1 Humidade relativa... 50
 4.2.2.2 Temperatura .. 50
 4.2.2.3 Composição do betão.. 51
 4.2.2.4 Tensão, idade de carga e tempo sob carga.. 52

4.3 Maturação .. 53

4.4 Ensaios de caracterização das propriedades reológicas do betão de barragens..... 53
 4.4.1 Ensaios in situ .. 53
 4.4.2 Ensaios em laboratório... 55

4.5 Leis de fluência adoptadas ... 56

5 MÉTODOS DE INTERPRETAÇÃO QUANTITATIVA .. 59
 5.1 Considerações gerais .. 59

 5.2 Métodos estatísticos .. 61
 5.2.1 Método do LNEC... 62
 5.2.2 Método de Willm e Beaujoint ... 62
 5.2.3 Método de Miranda .. 63

 5.3 Métodos determinísticos .. 64
 5.3.1 Método de Gicot... 64
 5.3.2 Método de Schnitter ... 66
 5.3.3 Método de Fanelli .. 67
 5.3.4 Método de Stucky .. 69

 5.4 Métodos mistos .. 70
 5.4.1 Método de Gicot... 70
 5.4.2 Método de Doboz ... 71
 5.4.3 Método de Ramos .. 72
 5.4.4 Método de Oliveira, Ramos e Florentino ... 77

6 EXEMPLO DE APLICAÇÃO: BARRAGEM DO ALTO LINDOSO 85
 6.1 Descrição geral do aproveitamento ... 85
 6.2 Características da barragem .. 86
 6.3 Sistema de observação ... 87

 6.4 Modelo para interpretação quantitativa das extensões observadas 90
 6.4.1 Extensómetros unidireccionais ... 90
 6.4.1.1 Interpretação quantitativa de extensões e cálculo de tensões 92
 6.4.2 Grupos planos de extensómetros .. 96
 6.4.2.1 Correcção das extensões observadas .. 96
 6.4.2.2 Interpretação quantitativa de extensões e cálculo de tensões 97
 6.4.3 Grupos tridimensionais de extensómetros ... 99
6.4.3.1 Correcção das extensões observadas... 100
6.4.3.2 Interpretación quantitativa das extensões e cálculo de tensões 101
6.5 Comparação com tensões observadas em células tensométricas......................... 106
6.6 Análise pelo método dos elementos finitos.. 107
6.6.1 Discretização e modelo reológico.. 107
6.6.2 Caracterização das épocas de cálculo e das acções .. 110
6.6.3 Comparação das tensões obtidas pelo MEF e pela interpretación quantitativa . 112
6.6.3.1 Análise linear sem efeitos diferidos .. 112
6.6.3.2 Análise linear com efeitos diferidos .. 115
6.7 Considerações finais.. 126
7 CONCLUSÃO .. 129
7.1 Síntese do trabalho.. 129
7.2 Desenvolvimentos futuros... 131
REFERÊNCIAS .. 135
ANEXOS ... 141
A1 - Interpretação quantitativa de extensões. Extensómetros unidireccionais 143
A2 - Tensões calculadas em extensómetros unidireccionais 145
A3 - Grupos planos de extensómetros. Extensões observadas (primeiro invariante do
tensor das deformações).. 147
A4 - Interpretação quantitativa de extensões. Grupos planos de extensómetros 155
A5 - Tensões calculadas nos grupos planos de extensómetros 177
A6 - Interpretação quantitativa de extensões. Grupos tridimensionais de
extensómetros.. 189
A7 - Tensões calculadas nos grupos tridimensionais .. 195
ÍNDICE DE FIGURAS

figura 2-1– Escala de níveis... 10
figura 2-2 - Piezômetro simples (a), leque piezométrico (b) e (c) representação esquemática 10
figura 2-3 – Termómetro de máxima e mínima ... 11
figura 2-4 – Termohigrógrafo... 11
figura 2-5 - Abrigo meteorológico: (a) dispositivo antigo; (b) dispositivo moderno 12
figura 2-6 - Vibrador de grande potência destinado a ensaios de vibração forçada......................... 15
figura 2-7 – Termómetro de resistência eléctrica para embeber no betão... 16
figura 2-8 – Colocação de um grupo plano de extensômetros ... 17
figura 2-9 – Extensômetro corrector.. 17
figura 2-10 - Tensómetro... 18
figura 2-11 – Fio de prumo invertido ... 19
figura 2-12 – Base para coordinómetro e coordinómetro óptico... 20
figura 2-13 - Rede de triangulação geodésica ... 20
figura 2-14 - Pilar com base para teodolito e base de centralização forçada................................... 21
figura 2-15 - Marca de pontaria para observação geodésica ... 21
figura 2-16 - Base para poligonal ... 22
figura 2-17 - Sistema de observação de deslocamentos horizontais da barragem do Alto Lindoso
 – fios de prumo e poligonação... 23
figura 2-18 - Taco de nivelamento ... 24
figura 2-19 - Medidor de juntas... 25
figura 2-20 - Alongâmetro e roseta plana de bases de alongâmetro.. 26
figura 2-21 – Base tridimensional: (a) colocação em obra; (b) montagem em laboratório com
 deflectómetro e (c) esquema ... 26
figura 2-22 - Extensômetro de fundação ... 27
figura 2-23 – Clinómetro de bolha ... 28
figura 2-24 – Clinómetro de resistência eléctrica ... 28
figura 2-25 - Inclinómetro .. 29
figura 2-26 - Terminal de um dreno (a) e bica totalizadora (b).. 30
Índice de figuras

figura 3-1 – Extensómetro de corda vibrante. Esquema de funcionamento 34
figura 3-2 – Extensómetro Carlson .. 34
figura 3-3 – Posição relativa dos extensómetros (a) grupo plano (b) grupo tridimensional.
Representação esquemática de um extensómetro corrector (c).. 36
figura 3-4 – Colocação de um tensómetro para medição de tensões verticais......................... 39
figura 3-5 – Esquema do método SFJ .. 40
figura 3-6 – Método STT ... 42
figura 4-1 – Temperaturas observadas em termómetros da barragem do Alto Lindoso durante
a construção e o primeiro enchimento da albufeira.. 44
figura 4-2 – Deformações do betão sob tensão constante de pequena intensidade (Ramos,
1985)... 48
figura 4-3 – Forma geral da evolução das deformações num material com fluência 49
figura 4-4 - Células de fluência para betão integral e crivado: a) esquema de montagem e ligação
de duas células de fluência; b) dispositivos de manutenção da carga ao longo do tempo
instalados numa galeria... 54
figura 5-1 – Método de Gicot... 65
figura 5-2 – Barragem do Alto Lindoso. Discretização em patamares da variação do nível de
água na albufeira... 75
figura 6-1 – Aproveitamento hidroeléctrico do Alto Lindoso. Vista aérea. 85
figura 6-2 – Barragem do Alto Lindoso: alçado de jusante. .. 86
figura 6-3 – Barragem do Alto Lindoso. Planta e corte pela descarga de fundo 87
figura 6-4 - Sistema de observação da barragem do Alto Lindoso. Medição de deslocamentos
e do estado de deformação e tensão.. 88
figura 6-5 – Evolução do módulo de elasticidade dos betões integral e crivado..................... 91
figura 6-6 – Grupo G1. Interpretação quantitativa de extensões. .. 93
figura 6-7 – Grupo G2. Interpretação quantitativa de extensões. .. 93
figura 6-8 – Grupo G5. Interpretação quantitativa de extensões. .. 93
figura 6-9 – Grupo G6. Interpretação quantitativa de extensões. .. 94
figura 6-10 – Grupo G9. Interpretação quantitativa de extensões. ... 94
figura 6-11 – Grupo G10. Interpretação quantitativa de extensões. 94
Índice de figuras

figura 6-12 – Grupo G1. Discretização em patamares das extensões que produzem tensões que relaxam no tempo... 95
figura 6-13 – Grupo G5. Tensões... 95
figura 6-14 – Grupo G6. Tensões... 95
figura 6-15 – Interpretação quantitativa das extensões de um grupo plano. Grupo G15... 98
figura 6-16 – Componentes do tensor das tensões calculadas no grupo G15... 99
figura 6-17 – Interpretação quantitativa de extensões do Grupo G16. Componentes do tensor das deformações ... 103
figura 6-18 – Componentes do tensor das tensões calculadas no grupo G16... 105
figura 6-19 – Comparação entre as tensões calculadas e as tensões observadas em células tensométricas... 106
figura 6-20 – Malha de elementos finitos: discretização da barragem................................. 108
figura 6-21 – Relação entre extensões e temperaturas medidas nos extensómetros correctores ... 108
figura 6-22 - Modelo reológico em cadeia de Kelvin com N unidades................................. 109
figura 6-23 – Função de fluência de Bazant e Panulla e aproximação pela série de Dirichlet para idades de carga iguais a 1, 2 e 3 anos... 109
figura 6-24 – Onda térmica do ar: valores lidos e calculados ... 111
figura 6-25 – Onda térmica anual na água da albufeira... 112
figura 6-26 – Tensões normais horizontais devidas à variação da acção térmica entre 6-2-1995 $(h= 324,4$) e 7-8-1996 $(h= 324,4$)... 114
figura 6-27 - Tensões normais horizontais devidas à variação da acção hidrostática entre 12-12-1995 $(h= 315,2$) e 8-1-1996 $(h= 338,1$) ... 114
figura 6-28 – Tensões principais obtidas pelo MEF (a preto) e pela interpretação quantitativa (a vermelho)... 116
figura 6-29 - Tensões normais horizontais no arco do coroamento e na consola de fecho em 29-6-1992 .. 117
figura 6-30 – Tensões principais obtidas pelo MEF (a preto) e pela interpretação quantitativa (a vermelho)... 118
Índice de figuras

figura 6-31 - Tensões normais horizontais no arco do coroamento e na consola de fecho em 27-12-1993... 119

figura 6-32 – Tensões principais obtidas pelo MEF (a preto) e pela interpretação quantitativa (a vermelho)... 120

figura 6-33 - Tensões normais horizontais no arco do coroamento e na consola de fecho em 25-6-1997... 121

figura 6-34 – Tensões principais obtidas pelo MEF (a preto) e pela interpretação quantitativa (a vermelho)... 122

figura 6-35 - Tensões normais horizontais no arco do coroamento e na consola de fecho em 29-6-1999... 123

figura 6-36 – Tensões normais ao plano de corte na secção que contém o grupo tridimensional G16 ... 125

figura 6-37 – Tensões normais ao plano de corte na secção que contém o grupo tridimensional G16 ... 125

figura A-1 – Grupo G3. Interpretação quantitativa de extensões .. 143

figura A-2 – Grupo G4. Interpretação quantitativa de extensões .. 143

figura A-3 – Grupo G7. Interpretação quantitativa de extensões .. 143

figura A-4 – Grupo G8. Interpretação quantitativa de extensões .. 143

figura A-5 – Grupo G1. Tensões.. 145

figura A-6 – Grupo G2. Tensões.. 145

figura A-7 – Grupo G3. Tensões.. 145

figura A-8 – Grupo G4. Tensões.. 145

figura A-9 – Grupo G7. Tensões.. 146

figura A-10 – Grupo G8. Tensões... 146

figura A-11 – Grupo G9. Tensões.. 146

figura A-12 – Grupo G10. Tensões... 146

figura A-13 – Grupo G11. Primeiro invariante.. 147

figura A-14 – Grupo G12. Primeiro invariante.. 147

figura A-15 – Grupo G13. Primeiro invariante.. 147

Índice de figuras

figura A-17 – Grupo G15. Primeiro invariante ... 148
figura A-18 – Grupo G17. Primeiro invariante ... 148
figura A-19 – Grupo G18. Primeiro invariante ... 149
figura A-20 – Grupo G19. Primeiro invariante ... 149
figura A-21 – Grupo G20. Primeiro invariante ... 149
figura A-23 – Grupo G22. Primeiro invariante ... 150
figura A-26 – Grupo G26. Primeiro invariante ... 151
figura A-27 – Grupo G27. Primeiro invariante ... 151
figura A-28 – Grupo G29. Primeiro invariante ... 152
figura A-29 – Grupo G30. Primeiro invariante ... 152
figura A-30 – Grupo G32. Primeiro invariante ... 152
figura A-31 – Grupo G33. Primeiro invariante ... 153
figura A-32 – Grupo G35. Primeiro invariante ... 153
figura A-33 – Grupo G36. Primeiro invariante ... 153
figura A-34 – Grupo G38. Primeiro invariante ... 154
figura A-35 – Grupo G11. Interpretação quantitativa de extensões 155
figura A-36 – Grupo G12. Interpretação quantitativa de extensões 156
figura A-37 – Grupo G13. Interpretação quantitativa de extensões 157
figura A-39 – Grupo G17. Interpretação quantitativa de extensões 159
figura A-40 – Grupo G18. Interpretação quantitativa de extensões 160
figura A-41 – Grupo G19. Interpretação quantitativa de extensões 161
figura A-42 – Grupo G20. Interpretação quantitativa de extensões 162
figura A-44 – Grupo G22. Interpretação quantitativa de extensões 164
figura A-45 – Grupo G24. Interpretação quantitativa de extensões 165
figura A-46 – Grupo G25. Interpretação quantitativa de extensões 166
figura A-48 – Grupo G27. Interpretação quantitativa de extensões .. 168
figura A-49 – Grupo G29. Interpretação quantitativa de extensões .. 169
figura A-50 – Grupo G30. Interpretação quantitativa de extensões .. 170
figura A-51 – Grupo G32. Interpretação quantitativa de extensões .. 171
figura A-52 – Grupo G33. Interpretação quantitativa de extensões .. 172
figura A-53 – Grupo G35. Interpretação quantitativa de extensões .. 173
figura A-54 – Grupo G36. Interpretação quantitativa de extensões .. 174
figura A-55 – Grupo G38. Interpretação quantitativa de extensões .. 175
figura A-56 – Tensões calculadas no grupo G11 .. 177
figura A-57 – Tensões calculadas no grupo G12 .. 177
figura A-58 – Tensões calculadas no grupo G13 .. 178
figura A-59 – Tensões calculadas no grupo G14 .. 178
figura A-60 – Tensões calculadas no grupo G17 .. 179
figura A-61 – Tensões calculadas no grupo G18 .. 179
figura A-62 – Tensões calculadas no grupo G19 .. 180
figura A-63 – Tensões calculadas no grupo G20 .. 180
figura A-64 – Tensões calculadas no grupo G21 .. 181
figura A-65 – Tensões calculadas no grupo G22 .. 181
figura A-66 – Tensões calculadas no grupo G24 .. 182
figura A-67 – Tensões calculadas no grupo G25 .. 182
figura A-68 – Tensões calculadas no grupo G26 .. 183
figura A-69 – Tensões calculadas no grupo G27 .. 183
figura A-70 – Tensões calculadas no grupo G29 .. 184
figura A-71 – Tensões calculadas no grupo G30 .. 184
figura A-72 – Tensões calculadas no grupo G32 .. 185
figura A-73 – Tensões calculadas no grupo G33 .. 185
figura A-74 – Tensões calculadas no grupo G35 .. 186
figura A-75 – Tensões calculadas no grupo G36 .. 186
figura A-76 – Tensões calculadas no grupo G38 .. 187
índice de figuras

figura A-77 – Grupo G23. Interpretação quantitativa de extensões. Componentes do tensor das deformações .. 189
figura A-78 – Grupo G23. Interpretação quantitativa de extensões. Componentes do tensor das deformações .. 190
figura A-79 – Grupo G28. Interpretação quantitativa de extensões. Componentes do tensor das deformações .. 191
figura A-82 – Grupo G31. Interpretação quantitativa de extensões. Componentes do tensor das deformações .. 194
figura A-83 – Componentes do tensor das tensões calculadas no grupo G23............. 195
figura A-84 – Componentes do tensor das tensões calculadas no grupo G28............. 196
figura A-85 – Componentes do tensor das tensões calculadas no grupo G31............. 197
figura A-86 – Componentes do tensor das tensões calculadas no grupo G34............. 198
figura A-87 – Componentes do tensor das tensões calculadas no grupo G37............. 199
1 INTRODUÇÃO

1.1 Considerações gerais

A segurança de uma barragem, como um todo, pode definir-se (Regulamento de Segurança de Barragens (RSB, 1990) como sendo a capacidade daquela para satisfazer as exigências de comportamento necessárias para evitar incidentes e acidentes, e que se referem a aspectos estruturais, hidráulicos, operacionais e ambientais. Nesta definição entende-se por incidente qualquer anomalia susceptível de afectar, a curto ou longo prazo, a funcionalidade da obra, implicando a tomada de medidas de conservação, ao passo que o acidente é uma ocorrência excepcional relativa ao comportamento da barragem, cuja evolução não controlada é susceptível de conduzir à ruptura de uma ou mais componentes estruturais, podendo originar uma onda de inundação.

De acordo com o RSB, o controlo de segurança de uma barragem engloba, portanto, a verificação da segurança estrutural, da segurança hidráulica, da segurança operacional e da segurança ambiental.

A segurança estrutural entende-se como a capacidade da barragem para satisfazer as exigências de comportamento estrutural perante as acções e outras influências, associadas à construção e exploração e a ocorrências excepcionais. Ainda no articulado do RSB, uma ocorrência excepcional é definida como sendo um facto não previsto, ou apenas previsível para um período de recorrência muito superior ao da vida da obra, em regra de
desenvolvimento rápido, relativo às acções, às características das estruturas, aos materiais ou à exploração da obra.

Por seu lado a segurança hidráulica é definida como a capacidade da barragem para satisfazer as exigências de comportamento hidráulico dos órgãos de segurança e exploração, e dos sistemas de impermeabilização, de filtragem e de drenagem.

Define-se segurança operacional como a capacidade da barragem para satisfazer as exigências de comportamento relacionadas com a operação e funcionalidade dos equipamentos dos órgãos de segurança e exploração.

Por último, a segurança ambiental é entendida como a capacidade da barragem para satisfazer as exigências de comportamento relativas à limitação de incidentes prejudiciais ao ambiente, designadamente sobre as populações e os meios produtivos.

De forma a garantir os níveis desejados e regulamentares de segurança é necessário que o comportamento das barragens seja acompanhado ao longo de toda a sua vida, entendendo-se por vida da obra o período que engloba a construção, o primeiro enchimento, a exploração e a demolição ou abandono. Esse acompanhamento é conseguido, de um modo efectivo, através da observação.

A observação de barragens é, segundo alguns autores (Ramos, 2004), o conjunto de actividades que vão desde a planificação e exploração dos sistemas de observação até à interpretação dos seus resultados, baseada nos resultados daquela exploração e no eventual uso de modelos interpretativos. Essencialmente pode dizer-se que a observação de uma barragem consiste em coligir a informação necessária à avaliação da sua segurança em serviço ou ao estudo do seu comportamento. A observação de barragens serve também outros objectivos, como a melhoria de projectos futuros. Como em qualquer ramo de actividade, o conhecimento previamente acumulado é essencial para definir as linhas gerais de orientação na observação de barragens e na interpretação da informação recolhida.
A primeira fase da observação de uma barragem consiste na definição do seu Plano de Observação. De acordo com o RSB (1990), o Plano de Observação é um documento de caráter vinculativo no qual se baseia o controlo de segurança estrutural da barragem. Este é entendido como sendo o conjunto de medidas a tomar nas várias fases de vida da obra, com vista ao conhecimento adequado e continuado da barragem, à detecção oportuna de eventuais anomalias e a uma intervenção eficaz sempre que esta se revele necessária. A elaboração do Plano de Observação de uma barragem passa pela definição do conjunto de grandezas a observar de acordo com o tipo de estrutura, os valores previsíveis das grandezas consideradas mais relevantes pelo projectista, as características do maciço de fundação e a legislação oficial em vigor. A dimensão de um Plano de Observação está estritamente ligada à fiabilidade colocada na previsão do seu comportamento, quer através do cálculo ou empiricamente. Os factores que determinam a escolha do tipo e da quantidade de aparelhos de observação a definir no Plano de Observação são o factor de risco da barragem, o tipo desta, a respectiva altura, os materiais de construção adoptados, as características da fundação e o nível de conhecimentos relativos ao tipo de estrutura.

Em Portugal o RSB e as respectivas normas complementares – Normas de Construção de Barragens, Normas de Projecto de Barragens, Normas de Observação e Inspecção de Barragens (NOIB) e Normas de Exploração – contêm as linhas orientadoras para a definição do Plano de Observação nas diversas fases de vida da barragem já referidas anteriormente.

Como regra geral, a inspecção visual constitui o primeiro e, também, o mais importante patamar da observação, sendo da maior importância para a avaliação global da estrutura. Através da inspecção visual é possível detectar qualquer alteração das condições ou do comportamento de uma barragem, das suas obras auxiliares, dos encontros, da área a jusante ou das encostas, que não seriam habitualmente detectadas através da aparelhagem de observação instalada.

No que diz respeito à observação de barragens não basta que ela seja efectuada regularmente, mas sobretudo que os seus resultados sejam acessíveis de imediato, inicialmente de uma forma não tratada, através, por exemplo de um gráfico de evolução das
grandezas em causa, fornecido pelo observador da barragem. Seguidamente esses resultados devem ser transmitidos ao engenheiro responsável pelo controlo de segurança da obra, que deverá compará-los com os resultados de modelos matemáticos, determinísticos ou probabilísticos, a fim de verificar se terá ocorrido qualquer anomalia que possa pôr em causa a segurança da barragem (CNSGB, 1985).

Durante a fase de construção há que observar um certo número de acções que são aplicadas especificamente nessa fase, tais como o peso próprio da barragem, os assentamentos da fundação, as variações de temperatura, como por exemplo as devidas à libertação do calor de hidratação, e a retracção do betão. Estas acções só poderão ser devidamente levadas em linha de conta se se proceder à sua observação durante a construção.

Por sua vez a fase de primeiro enchimento é de grande importância no controlo da segurança, já que é nessa altura que a barragem é submetida pela primeira vez à acção hidrostática. O primeiro enchimento constitui assim um ensaio de carga em larga escala, durante o qual se começam a verificar as hipóteses de cálculo adoptadas no projecto.

Já durante a fase de exploração são aplicadas outras acções que poderão ser observadas de duas formas. Ou através de ensaios de carga em que essas acções são reproduzidas, ou pela observação da estrutura durante um período de tempo suficientemente alargado. Geralmente não é possível observar o efeito das acções que se podem considerar mais desfavoráveis, ou por que essas acções não atingem as intensidades máximas previsíveis, ou por que não ocorrem simultaneamente. Englobam-se neste conjunto, entre outras, as cheias com período de retorno elevado, as acções sísmicas e os galgamentos ocasionados por escorregamentos de taludes circundantes da albufeira.

1.2 Enquadramento e objectivos da dissertação

De todos os tipos de controlo de segurança mencionados anteriormente o que mais interessa ao projectista de barragens é o controlo da segurança estrutural. Este, embora se baseie fundamentalmente no controlo dos deslocamentos, dos movimentos diferenciais entre
introdução

blocos e dos caudais drenados e das subpressões na fundação, é essencialmente um problema de análise de tensões.

O conhecimento do campo de tensões de uma barragem obriga à correspondente medicação num número elevado de pontos, o que levanta diversas dificuldades. Por um lado, o caráter tensorial e tridimensional do estado de tensão obriga à medição de tensões em várias direcções no mesmo ponto. Por outro, a aparelhagem disponível para a medição de tensões é cara e de difícil colocação. Finalmente existem dificuldades técnicas na própria medição dos valores das tensões, o que diminui a confiança depositada na observação directa das tensões.

Apesar das dificuldades já mencionadas é comum, em barragens de betão, a colocação de aparelhos para medição de tensões, embora geralmente apenas num número escasso de pontos. Em contrapartida é habitual proceder-se à colocação de aparelhos para medição de extensões em várias direcções num elevado número de pontos, efectuando-se posteriormente o cálculo das tensões correspondentes a partir do conhecimento das relações tensões/deformações.

Este trabalho tem como objectivo a aplicação de um modelo de interpretação quantitativa apresentado por Oliveira, Ramos e Florentino (Oliveira et al., 1998) para análise das extensões observadas em grupos de extensómetros de uma barragem de betão e a sua posterior conversão em tensões levando em linha de conta as propriedades reológicas do betão, nomeadamente a fluência e a maturação. Entende-se por modelo de interpretação quantitativa um modelo de separação de efeitos através do qual se relacionam os efeitos observados com as causas actuantes através de expressões matemáticas simples. O exemplo de aplicação escolhido é a barragem abóbada do Alto Lindoso, que foi concluída em 1992 segundo projecto desenvolvido pela EDP.

O referido modelo de interpretação é aplicado aos diferentes tipos de grupos de extensómetros instalados na barragem, isto é, aos grupos unidireccionais, planos e tridimensionais. Os resultados obtidos são comparados com os de um modelo determinístico.
de elementos finitos, que inclui os fenómenos de fluência e de maturação, bem como com os valores observados nas células tensométricas instaladas na barragem.

1.3 Organização da dissertação

A presente dissertação está organizada em sete capítulos, o primeiro dos quais é constituído pela presente introdução.

No capítulo 2 é feita uma abordagem genérica dos diversos métodos e aparelhos destinados à observação de barragens, descrevendo-se as entidades a observar – acções, efeitos e propriedades dos materiais – e os equipamentos específicos destinados à sua medição e caracterização. Tendo em vista que esta dissertação não tem por objectivo último a aparlhagem de observação de barragens, para cada aparelho dar-se-á apenas uma breve noção do seu funcionamento.

O capítulo 3 está mais directamente direccionado para os objectivos da dissertação, já que aborda e descreve em pormenor as técnicas e aparelhos destinados à observação de extensões e tensões em barragens de betão. Para cada tipo de aparelho ou técnica apresenta-se uma descrição detalhada do seu funcionamento ou processo de aplicação.

No capítulo 4, e atendendo às especificidades do modelo de interpretação quantitativa adoptado no exemplo de aplicação, faz-se uma caracterização genérica das propriedades reológicas do betão de barragens, apresentam-se os métodos destinadas a proceder a essa caracterização e, atendendo a que o exemplo de aplicação é a barragem do Alto Lindoso, apresentam-se as correspondentes leis de fluência e maturação (Braga, 2000).

No capítulo 5 começa-se por justificar a necessidade do desenvolvimento de modelos de interpretação quantitativa para a análise do comportamento de barragens, chamando a atenção para o facto de que a sua aplicação permite: i) o controlo da segurança estrutural, ii) a previsão do comportamento futuro em função das acções e iii) a elaboração de estudos aprofundados sobre o comportamento dos materiais e das obras. É apresentada a descrição
pormenorizada de alguns modelos de interpretação quantitativa que são agrupados em modelos estatísticos, determinísticos ou mistos. Finalmente é feita a descrição detalhada do modelo de interpretação quantitativa adoptado nesta dissertação.

No capítulo 6 detalha-se a aplicação do modelo de interpretação quantitativa escolhido aos diversos grupos de extensómetros instalados na barragem do Alto Lindoso, procede-se à comparação dos correspondentes resultados com os decorrentes de um modelo determinístico de elementos finitos que discretiza a abóbada e a fundação, bem como com os valores das tensões medidas em células tensométricas instaladas na barragem.

Finalmente, no Capítulo 7 é apresentada uma síntese do trabalho realizado, salientando-se as conclusões mais importantes e sugerindo-se desenvolvimentos futuros destinados a dar continuidade ao trabalho apresentado nesta dissertação.
2 MÉTODOS E APARELHAGEM DE OBSERVAÇÃO DE BARRAGENS

Na observação de barragens há que ter em conta a caracterização das acções, das propriedades dos materiais e dos efeitos estruturais. Seguidamente são referidos cada um dos tipos de grandezas a observar e os equipamentos que permitem a sua medição. O conjunto dos equipamentos montados para a observação da barragem, isto é, para a medição das acções e dos respectivos efeitos e para a caracterização das propriedades dos materiais, constitui o seu sistema de observação.

2.1 Observação das acções

As acções a considerar na observação de barragens são a pressão hidrostática, as subpressões, a acção térmica ambiental, as acções físico-químicas da água e as acções sísmicas.

2.1.1 Acção hidrostática

A medição da acção hidrostática consiste na determinação dos níveis da água das albufeiras a montante e a jusante, que poderá ser feita pela leitura de escalas de níveis, tal como reproduzido na figura 2-1, ou em limnímetros. É possível também proceder ao registo contínuo dos níveis da água em aparelhos registadores designados por limnígrafos.
2.1.2 Subpressões

A medição das subpressões é efectuada em piezômetros situados na galeria geral de drenagem da barragem, e que poderão estar isolados ou ser dispostos em perfis com a orientação montante-jusante, constituindo os chamados leques piezométricos (figura 2-2). Estes conjuntos de aparelhos são colocados em secções específicas, e permitem caracterizar a distribuição espacial das subpressões nessas secções.

figura 2-2 - Piezômetro simples (a), leque piezométrico (b) e (c) representação esquemática
2.1.3 Acção térmica ambiental

A acção térmica ambiental é medida em termómetros de máxima e mínima (figura 2-3) e em termohigrógrafos (figura 2-4), que permitem o registo contínuo das temperaturas e da humidade relativa do ar.

Estes aparelhos são colocados em abrigos meteorológicos (figura 2-5) localizados numa das margens nas proximidades da barragem. Se a exposição solar diferir substancialmente entre as duas margens é comum proceder-se à colocação de um abrigo meteorológico em cada margem.
2.1.4 Acções físico-químicas da água

A caracterização das acções físico-químicas da água é feita através da medição de grandezas tais como a temperatura, pH, condutividade, potencial Redox e índice de agressividade a partir de amostras da água da albufeira e da água recolhida no sistema de drenagem. É habitual, também, proceder-se, periodicamente, à colheita de resíduos sólidos depositados nos drenos, e à sua análise para detecção de eventuais fenómenos de deterioração da fundação ou de deslavamento dos materiais das caldas utilizadas nas cortinas de consolidação e de impermeabilização.

2.1.5 Acção sísmica

Consoante a importância da barragem e a sua localização face às zonas sísmicas do país ou proximidade relativamente a acidentes geológicos relevantes, é habitual prever-se a observação dos eventuais sismos produzidos por causas naturais ou induzidos pelo enchimento da albufeira. A observação dessas acções é feita colocando macrosismógrafos no

A definição da acção térmica ambiental engloba também a caracterização térmica da água da albufeira, o que é conseguido através da medição da temperatura da água a diversas profundidades com sondas termométricas.

figura 2-5 - Abrigo meteorológico: (a) dispositivo antigo; (b) dispositivo moderno
interior da barragem em determinadas posições chave, que permitem não só a caracterização da acção mas também da resposta da estrutura a essa acção. Assim, normalmente colocam-se macrosismógrafos nas proximidades do contacto barragem-fundação para medir a acção sísmica bem como na parte alta da barragem em correspondência com os pontos de maior amplitude dos modos principais de vibração, a fim de medir a resposta estrutural.

A medição de eventuais microssismos induzidos pelo enchimento da albufeira pode também implicar a colocação de sismógrafos em determinados pontos situados no contorno daquela.

2.2 Caracterização das propriedades dos materiais da fundação e da barragem

A caracterização das propriedades dos materiais é feita quer em relação ao maciço de fundação, quer em relação ao betão da barragem.

Relativamente ao maciço de fundação é habitual proceder-se à sua caracterização geológica e geotécnica durante a fase de projecto, complementada durante a construção através de (Ramos, 2004):

- cartografia da superfície de inserção da barragem na fundação, com levantamento pormenorizado de todos os acidentes;
- realização de ensaios de resistência e de deformabilidade das amostras de rocha da fundação extraídas dos furos para instalação dos extensómetros de fundação e dos fios de prumo;
- realização de ensaios de injeção de água com vista à caracterização da permeabilidade do maciço de fundação, antes e depois do tratamento desta;
- realização de ensaios geofísicos, por métodos sísmicos, após o tratamento da fundação e, posteriormente, de forma espaçada ao longo da vida das obras, de forma a avaliar a evolução das características mecânicas do maciço;
- observação da resposta da fundação à instalação do peso próprio da barragem, tendo em vista a determinação da deformabilidade do maciço, a partir dos deslocamentos observados em extensómetros de fundação.

Relativamente às propriedades do betão da barragem interessa conhecer as resistências à tracção e à compressão, as características de deformabilidade (módulo de elasticidade e função de fluência) e as características térmicas tais como o coeficiente de dilatação térmica linear, a difusibilidade, a condutibilidade e o calor específico.

Nas barragens de betão convencional, a realização de ensaios de permeabilidade do betão não é corrente.

Também a caracterização das propriedades térmicas do betão, designadamente a difusibilidade e a condutibilidade, não é feita correntemente, embora em algumas obras, e no âmbito de estudos de investigação, aquelas propriedades sejam determinadas. Os valores dos coeficientes de dilatação térmica linear dos betões integrais e crivados podem ser facilmente estimados a partir da evolução das extensões observadas em extensómetros integrados nos grupos de extensómetros da barragem e que se encontram libertos do campo de tensões envolvente.

1 O betão integral é o betão com a mesma composição do betão da barragem.
2 Designa-se por betão crivado um betão com a mesma composição do betão da barragem ao qual são retirados os agregados de dimensão superior a 38 mm.
A caracterização da evolução das propriedades do betão ao longo do tempo e do correspondente envelhecimento pode ser feita através da realização de ensaios de vibração forçada (figura 2-6) que permitem, de forma indirecta, avaliar da degradação ou maturação dos materiais constituintes da estrutura, o estado de abertura das juntas e do eventual estado de fissuração.

figura 2-6 - Vibrador de grande potência destinado a ensaios de vibração forçada

2.3 Observação dos efeitos

Os efeitos resultantes das acções atrás referidas que é habitual observar são:

- as temperaturas no interior do betão;
- as extensões;
- as tensões;
- os deslocamentos relativos entre blocos;

[^3]: Designam-se por absolutos os deslocamentos que são referidos a pontos suficientemente afastados da barragem para se poderem considerar fixos por se encontrarem fora da sua influência.
- os deslocamentos ao longo do contacto barragem-fundação;
- as rotações;
- os deslocamentos dos taludes no perímetro da albufeira;
- os caudais drenados pela fundação e infiltrados no corpo da barragem.

2.3.1 Temperaturas no interior do betão

No que diz respeito às temperaturas no interior do betão, a caracterização do campo térmico de uma barragem é essencial para se poder proceder a estudos de comportamento da obra e é obtida através da leitura de temperaturas em toda a aparelhagem elétrica embebida no betão, nomeadamente, em extensómetros, em células tensométricas, em medidores de pressão, em medidores de junta e, em particular, em termómetros (figura 2-7) ou em pares termoeléctricos.

2.3.2 Extensões

A medição das extensões é feita através de extensómetros de resistência eléctrica (figura 2-8) ou extensómetros de corda vibrante, dispostos em conjuntos ordenados designados por grupos. A descrição pormenorizada deste tipo de equipamento é apresentada no capítulo 3.
figura 2-8 – Colocação de um grupo plano de extensómetros

Em todos os grupos de extensómetros é colocado um extensómetro corrector (figura 2-9), que fica inserido dentro de um balde metálico de parede dupla que o mantém isolado do campo de tensões da estrutura. Nos extensómetros correctores medem-se, assim, as extensões que não induzem tensões, ou seja, as extensões devidas a variações autogêneas de volume, a variações de temperatura sem constrições externas e a variações higrométricas do betão envolvente do extensómetro. Para além disso, estes extensómetros permitem a detecção de fenómenos expansivos e retracções.

figura 2-9 – Extensómetro corrector
2.3.3 Tensões

Relativamente ao campo de tensões instalado em dado ponto de uma barragem de betão ele pode ser caracterizado, de forma indirecta, através da medição das extensões em grupos de extensómetros ou, de forma directa, a partir da observação de tensómetros ou células tensométricas (figura 2-10) ou através de métodos de libertação de tensões, tais como os métodos SFJ (Small Flat Jacks) ou STT (Stress Tensor Tube). Quer o funcionamento das células tensométricas quer os princípios de aplicação dos métodos SFJ e STT são descritos pormenorizadamente no capítulo 3 deste trabalho.

![figura 2-10 - Tensómetro](image)

2.3.4 Deslocamentos

Na análise do comportamento de uma barragem interessa caracterizar o seu campo de deslocamentos absolutos, o que engloba o conhecimento dos deslocamentos horizontais e dos deslocamentos verticais da estrutura.

Os deslocamentos horizontais podem ser determinados através de três processos:

- medição com coordinómetro de deslocamentos de pontos situados ao longo de fios de prumo direitos ou invertidos (figura 2-11), constituídos por um fio de aço inoxidável com 1 mm de diâmetro (para fios de prumo de grande comprimento o
diâmetro do fio pode ser de 2 mm). Não se recomenda a utilização de fios de prumo com mais de 50 a 80 m de comprimento, devido a poderem ser sujeitos a vibrações excessivas provocadas pelo vento ou pela circulação de ar dentro do poço em que está instalado (ASCE, 2000). Os fios de prumo direitos são normalmente suspensos de um ponto próximo do coroamento, e dispõem de um peso de cerca de 600 N na sua extremidade inferior, que os mantém sob tensão constante. A tensão a que o fio está submetido deve ser da ordem dos 200 MPa (ASCE, 2000). Os fios de prumo invertidos são fixos num ponto situado na fundação, e na extremidade superior dispõem de um flutuador que se encontra dentro de uma tina com um líquido que, por impulsão, os coloca sob tensão constante e mantêm o fio na vertical (MEFI, 2004). Os deslocamentos são medidos com o coordinómetro (figura 2-12), que a cada nível fornece leituras em duas direções ortogonais definindo a posição do fio de prumo nesse plano, relativamente a pontos da estrutura ou da fundação. Para esse fim o coordinómetro materializa dois eixos em relação aos quais se referem as coordenadas do fio: um dos eixos é colocado longitudinalmente e o outro transversalmente;

Figura 2-11 – Fio de prumo invertido
figura 2-12 – Base para coordinómetro e coordinómetro óptico

- medição, através de métodos de geodesia de posição (figura 2-13 e figura 2-14), dos deslocamentos horizontais de pontos objecto materializados no paramento de jusante com marcas de pontaria (figura 2-15);

figura 2-13 - Rede de triangulação geodésica
figura 2-14 - Pilar com base para teodolito e base de centralização forçada

figura 2-15 - Marca de pontaria para observação geodésica

- medição de deslocamentos dos vértices de poligonais inseridas ao longo das galerias de visita da barragem. Os vértices são, em regra, materializados em galerias horizontais, por meio das designadas bases para poligonal (figura 2-16). Os deslocamentos dos vértices são determinados em relação a pontos considerados “fixos” situados nas extremidades das galerias abertas na rocha.
(figura 2-17), ou relativamente a pontos acedidos através de aberturas para o exterior, ou ainda, em relação a pontos com movimentos controlados por fios de prumo invertidos. As bases para poligonal são instaladas em cachorros metálicos ou de betão armado situados nos hasteais das galerias, a intervalos regulares, e servem para se proceder ao estacionamento dos teodolitos que permitem a observação das bases da poligonal.

(figura 2-16 - Base para poligonal)

A observação dos deslocamentos horizontais é por vezes feita associando dois dos métodos referidos. Efectivamente, na maioria das barragens instalam-se fios de prumo invertidos, ou estes associados a fios de prumo direitos, e ao mesmo tempo procede-se à observação das marcas geodésicas ou dos vértices das poligonais inseridas nas galerias de visita (figura 2-17).
figura 2.17 - Sistema de observação de deslocamentos horizontais da barragem do Alto Lindoso – fios de prumo e poligono
A determinação dos deslocamentos verticais da estrutura é feita através do nivelamento geométrico de precisão de pontos materializados por tacos de nivelamento (figura 2-18) situados quer no coroamento quer ao longo das galerias de visita da barragem.

figura 2-18 - Taco de nivelamento

2.3.5 Deslocamentos relativos entre blocos

A quantificação dos movimentos relativos entre os blocos das barragens de betão, isto é, a determinação das aberturas/fechos e dos deslizamentos nas juntas de contracção é conseguida pela observação de:

- medidores de movimentos de junta (figura 2-19);
- bases de alongâmetro (figura 2-20);
- bases tridimensionais (figura 2-21).

Os medidores de movimentos de junta permitem apenas o conhecimento das aberturas e fechos, ao passo que as bases de alongâmetro e as bases tridimensionais fornecem-nos igualmente os deslizamentos entre blocos. Recentemente tem-se optado pela instalação de bases tridimensionais em detrimento das bases de alongâmetro clássicas, pois estas fornecem-
nos unicamente a componente do deslizamento no plano de colocação da base, ao passo que as bases tridimensionais fornecem as duas componentes do deslizamento no plano da junta.

Um medidor de movimentos de junta do tipo Carlson (figura 2-19) é constituído, essencialmente, por um tubo de latão de cerca de 25 cm de comprimento e 3,8 cm de diâmetro, dentro do qual existe uma haste. Esta haste é constituída por duas barras de aço, ligadas entre si por duas braçadeiras também de aço e por uma mola de aperto, com tendência para fechar o aparelho, isto é, para aproximar os topos. O tubo de latão é muito deformável, graças a um fôle canelado que tem, contudo, uma certa resistência transversal. Os medidores de movimentos de junta ficam embebidos no betão pelo que podem ser colocados em locais inacessíveis da obra, sendo a sua informação transmitida por cabos eléctricos para centrais de leitura. As bases de alongâmetro planas ou tridimensionais são instaladas em locais acessíveis – galerias ou paramentos.

A medição de deslocamentos das bases planas é feita recorrendo aos alongâmetros (figura 2-20) que são extensômetros mecânicos que não dispõem de nenhum dispositivo de ligação ao corpo cuja deformação se pretende medir. Essa ligação é efectuada pelo operador quando efectua a leitura. O alongâmetro apoia-se então sobre bases especiais, as bases de alongâmetro, que se chumbaram no betão. Existem vários tipos de alongâmetro tais como o
Marion, o do LNEC, o Huggenberger e o Staeger. A base de medida destes alongâmetros é variável, podendo ser de 25 ou de 50 cm.

figura 2-20 - Alongâmetro e roseta plana de bases de alongâmetro

figura 2-21 – Base tridimensional: (a) colocação em obra; (b) montagem em laboratório com deflectômetro e (c) esquema
Uma base tridimensional é constituída por duas peças metálicas que estão ligadas a cada um dos lados de uma junta (figura 2-21). Uma das peças desloca-se dentro da outra sendo as três componentes do deslocamento relativo entre elas medidas através de um deflectômetro.

2.3.6 Deslocamentos no contacto barragem fundação

Os deslocamentos ao longo do contacto barragem-fundação são habitualmente controlados através de extensómetros de fundação (figura 2-22) os quais são instalados em furos abertos a partir da galeria geral de drenagem ou do pé de jusante da barragem. São essencialmente constituídos por uma barra metálica selada num ponto considerado fixo do maciço de fundação, alojada numa bainha que se destina a eliminar qualquer atrito entre a barra e o meio envolvente, e ligada a uma cabeça no seu topo que se encontra alojada numa caixa rigidamente ligada à estrutura. São medidos os deslocamentos longitudinais relativos entre o topo da barra e a caixa onde ela se insere. Os extensómetros podem conter uma só vara ou diversas varas seladas a diversas profundidades, para medição de deslocamentos relativos a pontos situados a diferentes profundidades na fundação.

figura 2-22 - Extensómetro de fundação
2.3.7 Rotações

Os clinómetros são aparelhos para observação de rotações, que são colocados, preferencialmente, na superfície de contacto barragem-fundação, na direcção montante-jusante. Há dois tipos de clinómetros: os de bolha (figura 2-23) e os de resistência eléctrica (figura 2-24).

Dada a pequena dimensão destes aparelhos, em comparação com a espessura da estrutura, têm sido instaladas baterias de clinómetros dispostos em série. Com esta disposição é possível, por integração das rotações obtidas e conjugando-as com os resultados de extensómetros de fundação, controlar os deslocamentos verticais das secções a que se encontram ligados.

2.3.8 Deslocamentos dos taludes

Os deslocamentos horizontais das encostas a montante ou a jusante da barragem podem ser observados por meio de inclinómetros instalados em furos de sondagem (figura 2-25). O princípio em que se baseiam as medições com inclinómetros consiste em determinar em cada ponto do furo de sondagem a orientação e a inclinação em relação à vertical da tangente ao eixo da sondagem. Geralmente determina-se a inclinação em relação à vertical em dois planos
perpendiculares por meio de uma sonda inclinométrica que se faz descer ao longo do furo de sondagem. As medidas fornecidas pela sonda permitem determinar as primeiras derivadas das coordenadas x e y dos pontos de medida em função da profundidade em relação à boca do furo. O traçado do eixo da sondagem deduz-se assim por integração dessas derivadas.

![figura 2-25 - Inclinómetro](image)

2.3.9 Caudais drenados e infiltrados

A caracterização da fundação passa também pela observação das águas coletadas em drenos e em bicas totalizadoras (figura 2-26). As bicas totalizadoras destinam-se a colectar os caudais medidos numa série de drenos, e têm por objectivo o conhecimento dos caudais drenados por zonas da fundação. A observação das águas coletadas nos drenos e nas bicas totalizadoras pode consistir apenas na medição dos caudais drenados, ou ainda na observação das características físico-químicas das águas drenadas, tais como temperatura, pH, condutividade, potencial Redox e índice de agressividade. Tal como referido anteriormente, é também habitual proceder-se periodicamente à caracterização dos resíduos sólidos contidos nas águas drenadas, tendo em vista a detecção de eventuais fenómenos de deterioração da fundação ou de deslavamento do cimento das caldas utilizadas nas cortinas de contenção e de impermeabilização.
figura 2-26 - Terminal de um dreno (a) e bica totalizadora (b)
3 OBSERVAÇÃO DE EXTENSÕES E TENSÕES

3.1 Considerações gerais

O controlo de segurança estrutural de uma barragem é feito principalmente através da análise dos deslocamentos de pontos da estrutura, de forma a facilitar a interpretação do seu comportamento global, dos movimentos diferenciais das juntas de contracção, com vista a controlar o monolitismo estrutural, e também dos caudais drenados e subpressões, para assim avaliar o comportamento das fundações.

No entanto, o controlo de segurança estrutural é, essencialmente, uma questão de análise de tensões, sendo a interpretação dos deslocamentos, movimentos diferenciais e comportamento das fundações uma forma indirecta de verificação dessa segurança.

O conhecimento dos campos de tensões devidos às diferentes acções sobre uma barragem implica a observação de um número elevado de pontos. Para além da quantidade de pontos envolvidos, esta observação levanta outros tipos de problemas, dos quais os mais relevantes são:

- o carácter tensorial e tridimensional do estado de tensão, que obriga à medição de componentes em várias direcções no mesmo ponto;
- a aparelhagem disponível destinada à observação directa de tensões, que é cara e de colocação difícil;
- a existência de dificuldades técnicas na medição dos valores, o que diminui a confiança depositada na observação directa de tensões.

Mesmo assim, e uma vez que o conhecimento do estado de tensão é de importância primordial no controlo de segurança estrutural, é costume integrar no sistema de observação das barragens aparelhagem específica para a medição de tensões, embora num número escasso de pontos, definidos em correspondência com os locais em que se prevê que aquelas atinjam os valores mais elevados. Em contrapartida, os sistemas de observação de barragens contemplam a colocação, num número elevado de pontos, de extensómetros dispostos segundo várias direcções, com os quais se procura determinar indirectamente as tensões através da medição das extensões, utilizando formulações constitutivas adequadas para relacionar os estados de tensão e de deformação.

A recolha das extensões observadas é feita, geralmente, de uma forma sistemática, embora nem sempre se proceda da mesma forma em relação à sua análise e interpretação.

3.2 Métodos e aparelhos para observação de tensões em barragens

Conforme acabou de se referir, a observação do estado de tensão é feita normalmente de forma indirecta, através de observação de extensões com extensómetros.

Os extensómetros mais antigos colocados em barragens de betão são os acústicos de corda vibrante, como por exemplo os existentes nas barragens de Santa Luzia e Castelo do Bode construídas em 1942 e 1951, respectivamente. Por efeito da fluência das próprias cordas vibrantes, a fiabilidade destes extensómetros diminui no tempo, o que tem levado ao seu abandono como forma de observação sistemática. Por tal motivo, a observação de extensões em barragens com bastante idade só terá interesse para grandes variações das acções actuantes (Ramos et al., 1997). No entanto, nas barragens antigas em que não há extensómetros ou em que os extensómetros acústicos não estão em boas condições de funcionamento, é possível superar essa limitação efectuando a medição de tensões num número reduzido de pontos. Essa
medicação é feita através do recurso a métodos de compensação ou libertação de tensões (Gomes, 1986), tais como:

- os ensaios SFJ (Small Flat Jacks) ou ensaios de almofadas planas ou de macacos planos, método que permite a medição de tensões em locais acessíveis, nomeadamente, os paramentos e as galerias;

- os ensaios STT (Stress Tensor Tube) ou ensaio do tubo sensível, que permite a medição de tensões em pontos situados no interior das barragens, que são acedidos através da execução de furos.

Atualmente os extensómetros usados mais frequentemente em barragens são extensómetros de resistência eléctrica, normalmente do tipo Carlson.

3.2.1 Extensómetros

Os extensómetros de corda vibrante (figura 3-1) baseiam-se na propriedade de variação da frequência de vibração de um fio com a tensão a que se encontra submetido. São essencialmente constituídos por um fio metálico tensionado, cujas extremidades se encontram fixas às bases de uma caixa metálica cilíndrica muito deformável e perfeitamente estanque. Quando o betão sofre deformações transmite-as à caixa e, portanto, à corda, o que provoca a variação da sua frequência própria de oscilação. Para medir esta frequência dispõe-se de um pequeno electroíman, comandado do exterior, o qual excita a corda e, além disso, capta a sua vibração e transmite-a a um aparelho que permite a comparação da frequência de vibração da corda do extensómetro com a de uma corda padrão (ou de referência) existente no aparelho, e cujas variações de comprimento são conhecidas.
Os extensómetros de resistência eléctrica mais utilizados actualmente baseiam-se na lei de Ohm, que estabelece a proporcionalidade entre a variação da resistência de certos materiais condutores e a variação de comprimento a que são submetidos. Uma variante destes aparelhos para embeber no betão é constituída por um cilindro de latão com cerca de 25 cm de comprimento, dotado de caneluras transversais que lhe conferem deformabilidade, e possui no interior uma estrutura de aço que suporta quatro isoladores de porcelana entre os quais se encontram dispostos dois enrolamentos de fios de aço (figura 3-2).

As duas resistências eléctricas existentes no interior do cilindro permitem a determinação das extensões, através da variação da relação das resistências, e a determinação
da temperatura do betão, através da sua soma. Este último aspecto permite reduzir o número de termômetros necessários para caracterização adequada do campo térmico da barragem. Permite também a determinação das extensões “reais”, designando desta forma as extensões que produzem tensões, as quais são calculadas descontando as extensões não impedidas devidas a variações de temperatura. Os extensómetros são colocados durante a construção ficando envolvidos em betão crivado.

Dado o carácter tridimensional das tensões, em cada ponto é necessário colocar um grupo de extensómetros, convenientemente orientados. Nas proximidades dos paramentos, onde se pode admitir que ocorrem estados planos de tensão, utilizam-se grupos planos (figura 3-3 (a)) constituídos por cinco extensómetros e um extensómetro corrector. Daqueles cinco extensómetros, quatro são colocados num plano paralelo ao paramento, sendo dois colocados segundo dois eixos ortogonais e os outros dois em direcções que fazem 45º com esses eixos. O quinto extensómetro é posicionado segundo a direcção normal àquele plano. Uma vez que para a determinação do tensor de deformações num ponto, no caso dum estado plano de tensão, basta conhecer as extensões segundo a normal ao plano e três direcções não colineares daquele plano, a colocação do quarto extensómetro permite, por um lado, determinar o tensor das deformações mesmo que um dos extensómetros esteja avariado e, por outro, a correção de erros de leitura através da confirmação do primeiro invariante do estado de deformação, que é determinado por duas vias independentes.

Em zonas afastadas dos paramentos ou do contorno das galerias, o estado de tensão é tridimensional, pelo que são colocados grupos de nove extensómetros e um extensómetro corrector. Os nove extensómetros são colocados segundo as três faces ortogonais de um tetraedro trirectângulo (figura 3-3 (b)). A determinação do tensor das deformações necessita apenas do conhecimento das extensões em seis direcções. As três extensões excedentárias permitem corrigir erros de leitura através da verificação do primeiro invariante, e continuar a calcular o tensor das deformações mesmo quando estão avariados três extensómetros, no máximo.
Em pontos próximos do coroamento, em que o estado de tensão é fundamentalmente unidireccional, ou em locais em que se pretenda conhecer a extensão segundo uma direcção determinada, coloca-se habitualmente um ou dois extensómetros segundo essa direcção e um extensómetro corrector.

![Diagrama](image)

Figura 3-3 – Posição relativa dos extensómetros (a) grupo plano (b) grupo tridimensional. Representação esquemática de um extensómetro corrector (c)

Foi referido que, em qualquer dos tipos de grupos de extensómetros, é sempre colocado um extensómetro corrector (figura 3-3 (c)). Este extensómetro, que é envolvido pelo mesmo betão dos restantes extensómetros do grupo, designados por extensómetros activos, é colocado dentro de um balde de parede dupla que o mantém isolado do campo de tensões da estrutura. Nos extensómetros correctores medem-se, assim, as extensões que não produzem tensões, ou seja, as extensões devidas a variações autogéneas de volume, a variações de temperatura sem constrições externas e a variações higrométricas do betão envolvente do extensómetro. Descontando essas extensões às extensões medidas nos extensómetros activos obtém-se as extensões que provocam tensões. A observação das extensões e das temperaturas medidas nos extensómetros correctores permite ainda a determinação do coeficiente de dilatação térmica linear, através da relação entre as duas grandezas.

As principais características requeridas a um extensómetro de resistência eléctrica destinado a observações de deformações durante um largo período de tempo são as seguintes:

- Durabilidade – atendendo à impossibilidade de substituição dos aparelhos, o seu corpo exterior deve resistir a qualquer ataque químico da água e do cimento e
possuir uma boa estanqueidade, de modo a preservar as condições ambientais no seu interior. É fundamental que o seu interior esteja quase cheio com um óleo de boa qualidade (não poderá estar completamente cheio a fim de permitir as deformações sem grandes alterações na pressão interior), fundamentalmente no que diz respeito à sua neutralidade química, antioxidação e antiemulsionamento.

- Fiabilidade – o aparelho de medida deverá registar sempre o mesmo valor quando o aparelho retoma o seu comprimento inicial.

- Flexibilidade longitudinal – o aparelho deverá ter uma flexibilidade longitudinal capaz de acompanhar as deformações do betão, após a sua presa, sem introduzir tensões parasitas e mantendo o seu grau de elasticidade.

- Grande robustez e rigidez transversal – o aparelho deverá ser capaz de aguentar choques e forças laterais, que são inevitáveis durante a instalação, sem que parta. Deverá ainda ser capaz de resistir a pressões exteriores de 2 a 3 MPa, sem se deformar ou perder a estanqueidade.

- Dimensão física adequada – o aparelho deverá ter um diâmetro que não introduza grandes vazios no betão, e um comprimento adequado à dimensão máxima do agregado aplicado (recomenda-se um comprimento 3 a 4 vezes superior à dimensão máxima do agregado). Por regra são utilizados aparelhos com 250 mm de comprimento e 25 mm de diâmetro, o que obriga a crivar o betão envolvente quando são utilizados agregados superiores a 75 mm.

- Amplo campo de medida – é essencial que o aparelho tenha um campo de resposta linear igual ou superior a 1500x10^{-6}, e que de fábrica venha posicionado com 2/3 do campo para compressão e 1/3 do campo para extensão. Existem hoje em dia no mercado aparelhos com campos de medida entre 1600 e 3900x10^{-6} correspondendo o primeiro valor a aparelhos com 250 mm de comprimento.

- Grande exactidão e resolução – o aparelho deverá fornecer leituras o mais representativas possível dos movimentos verificados, com resolução da ordem de 10^{-6}. Os valores normalmente indicados pelos fabricantes situam-se entre 2,3x10^{-6},
para aparelhos com 1600x10^{-6} de campo, e 5,6x10^{-6}, para aparelhos com 3900x10^{-6} de campo.

- Linearidade e estabilidade – o aparelho deverá dar resposta linear no campo de medida indicado pelo fabricante, mantendo essa característica durante a sua vida útil. O conjunto destas duas características poderá designar-se por reprodutibilidade, ou seja, a capacidade do aparelho fornecer sempre a mesma leitura quando solicitado pela mesma acção. Embora todas as características anteriormente referidas sejam importantes, estas serão talvez as mais importantes, atendendo às características de construção deste tipo de aparelho. Com efeito, como elementos sensores são utilizadas duas resistências realizadas em fio de aço de 0,2 mm de diâmetro, postas em tensão por duas molas calibradas, e para aumentar a resolução do aparelho as duas resistências sofrem movimentos inversamente proporcionais quando submetidas à mesma acção. Como a leitura apresentada é proporcional à diferença de tensão entre as duas resistências, torna-se evidente que a fluência das molas e dos fios de aço constituintes das resistências terão que manter uma grande estabilidade no tempo.

- Funcionar como um termómetro preciso – tendo em vista a necessidade de medição da temperatura para o cálculo das deformações medidas no aparelho e a grande influência daquela no valor das próprias deformações, a medição da temperatura com base nos extensómetros deverá ser muito precisa.

O cálculo do estado de tensão a partir das extensões observadas só é possível se se conhecer a reologia do betão crivado, nomeadamente as leis de fluência e de maturação. Para o conhecimento destas leis é necessário proceder a ensaios em laboratório ou ensaios ‘in situ’ em células de fluência como as que serão referidas no capítulo 4.

3.2.2 Tensómetros

Os tensómetros ou células tensométricas tipo Carlson que têem sido usados para medição de tensões (figura 3-4) são constituidos por um disco, formado por duas placas metálicas
circulares, com cerca de 18 cm de diâmetro e 1,3 cm de espessura, separadas por uma fina película de mercúrio submetida a uma pressão sensivelmente igual à pressão esperada para o betão. As deformações são medidas por um extensómetro tipo Carlson, ligado a uma zona de menor espessura de uma das placas, a qual constitui um diafragma interior.

As características deste tipo de tensómetro dispensa a utilização de um aparelho corrector, pois as tensões de origem térmica ou devidas à retracção, numa inclusão de pequena altura, grande diâmetro e baixo módulo de elasticidade, podem considerar-se desprezáveis.

A colocação deve ser especialmente cuidadosa de forma a garantir a aderência do tensómetro ao betão envolvente que é, tal como no caso dos extensómetros, betão crivado.

![figura 3-4 – Colocação de um tensómetro para medição de tensões verticais](image)

Os tensómetros são normalmente colocados na vizinhança de grupos de extensómetros de forma a permitir a comparação dos valores observados com os obtidos indirectamente a partir das extensões observadas (Gomes, 1986; Braga, 2000).
3.2.3 Método SFJ

O método SFJ é um método de libertação de tensões que consiste em abrir um rasgo na zona em que se pretende medir tensões, e fazer uma leitura, com um alongâmetro, das deformações locais produzidas. Seguidamente introduz-se no rasgo um macaco hidráulico plano tipo almofada aplicando a esta a pressão de óleo necessária para anular a deformação local previamente instalada. A pressão imposta é aproximadamente igual à tensão existente na direcção perpendicular ao plano do rasgo.

A aplicação deste método em barragens de betão em exploração permite determinar o estado de tensão existente no instante da abertura dos rasgos, e conhecer a sua evolução ao longo do tempo devido às principais acções de serviço, que são a pressão hidrostática e as variações térmicas sazonais.

Os rasgos SFJ e as almofadas respectivas têm a forma de um segmento circular, com 24 cm de flecha e 30 cm de raio, e espessura igual a cerca de 5 mm. A distância entre as bases de alongâmetro é de 20 cm (cota D da figura 3-5).

![figura 3-5 – Esquema do método SFJ](image)
As principais dificuldades de aplicação do método SFJ nas barragens de betão relacionam-se com a complexidade das operações de campo, o carácter manual das medições a efectuar e o difícil acesso a alguns pontos da estrutura onde se pretende determinar as tensões e a sua evolução ao longo do tempo. Além disso, tem o inconveniente de não permitir a determinação directa de tensões de tracção. De facto, este método é especialmente adequado quando a tensão normal ao plano do rasgo é de compressão. Quando tal não ocorre, a determinação da tensão de tracção pré-existente é feita por extrapolação da resposta da estrutura a dois níveis de pressão imposta na almofada, o que diminui a qualidade da estimativa.

Um outro inconveniente, quando os rasgos se situam nos paramentos da barragem, deve-se à pequena profundidade daqueles que não permitem colocar a área observada ao abrigo do efeito térmico superficial que pode ser relevante.

3.2.4 Método STT

O método do tubo sensível, designado habitualmente por STT (figura 3-6), consiste essencialmente em inserir uma célula no meio em estudo, por colagem num furo de pequeno diâmetro (37 mm) feito à priori, e posterior sobrecarotagem com diâmetro largo (120 mm), fazendo-se a medição das deformações da célula com libertação das tensões. A célula é um tubo de resina epoxi com uma parede de 2 mm de espessura, que contém três rosetas de três extensómetros, colocados a meia espessura da parede.

A interpretação dos resultados do ensaio obriga a conhecer com bastante aproximação o valor das constantes elásticas do material sobrecarotado. Estas constantes são determinadas com suficiente rigor a partir do conhecimento da deformação da célula causada por um estado de tensão conhecido, obtida num ensaio numa câmara biaxial, de um tarolo resultante da sobrecarotagem.
Após a colagem da célula e enquanto não se proceder à sobrecarotagem, as leituras dos extensômetros permitem determinar a evolução do estado de tensão, desde que seja tido em conta o efeito das variações autogêneas e termo-higrométricas de volume do meio envolvente. Assim, a colocação de duas células vizinhas num local, uma das quais se sobrecarota de imediato, permite a determinação do estado de tensão na data de colocação e a correspondente evolução ao longo do tempo.
4 PROPRIEDADES REOLÓGICAS DO BETÃO DE BARRAGENS

4.1 Generalidades sobre betões de barragens

A colocação do betão nas barragens é feita com um ritmo muito elevado devido aos volumes envolvidos bem como à grande espessura das camadas que varia entre 1,5 e 4 m. Nessas condições é necessário que sejam tomadas medidas para controlar a geração de calor devida à hidratação do cimento, e as correspondentes variações de volume que podem produzir fendilhação (ACI, 1999).

As principais medidas cautelares que distinguem o betão em massa de outros tipos de betão relacionam-se com o seu comportamento térmico. De facto, uma vez que a reacção do cimento com a água é exotérmica, a subida de temperatura originada pela colocação de grandes massas de betão, sem possibilidade de dissipação rápida do calor gerado, pode ser bastante elevada e aproximar-se dos valores obtidos em condições adiabáticas (figura 4-1). Geram-se assim estados de tensão de intensidade apreciável, devidos às variações de volume decorrentes do aumento e posterior diminuição da temperatura no interior da massa do betão que podem originar fissuração no betão.
figura 4-1 – Temperaturas observadas em termómetros da barragem do Alto Lindoso durante a construção e o primeiro enchimento da albufeira

Na construção de barragens têm sido utilizadas diversas técnicas tendentes a controlar a elevação de temperatura decorrente da reação de hidratação do cimento. Entre essas técnicas contam-se as de pré-arrefecimento, que englobam quer o arrefecimento dos agregados quer o da água da amassadura a fim de se limitar a temperatura de colocação do betão, e as de pós-arrefecimento. O arrefecimento dos agregados pode ser feito através de diversos processos, utilizando ar ou água arrefecida e nitrogénio líquido, enquanto o arrefecimento da água da amassadura pode ser conseguido através da adição de gelo triturado. Por sua vez, o pós-arrefecimento é conseguido através da circulação de água à temperatura ambiente ou de água refrigerada em serpentina embebida no betão.

O agregado utilizado no betão de barragens tem, geralmente, dimensão máxima inferior a 150 mm, embora nalguns casos, tais como nas barragens portuguesas de Salamonde e Castelo de Bode, se tenham usado agregados com dimensão máxima de 200 mm. Há também o registo de casos em que a dimensão máxima não ultrapassou os 100 mm, como por exemplo na construção das barragens de Forte Baso (Itália), Rossens, Mauvoisin e Zervreila (Suíça), Pueblo (EUA) e Krasnoiarisk (União Soviética) e na modificação da barragem de Theodore Roosevelt (EUA) (ACI, 1999). A definição da dimensão máxima do agregado é condicionada, por um lado, pela configuração das cofragens e pela presença de armaduras, e por outro, condiciona os processos de mistura, transporte, colocação e vibração do betão influenciando a
trabalhabilidade e a própria resistência final deste material. A trabalhabilidade do betão é também influenciada pela quantidade de finos que contém, isto é, pelos agregados que passam no peneiro de 4,75 mm.

Relativamente à água de amassadura, e como regra geral não só para o betão em massa mas também para todos os tipos de betão, devem limitar-se as quantidades de cloretos.

Na construção de barragens é prática corrente utilizarem-se betões mais ricos em cimento junto aos paramentos, designados por betões de paramento, e betões com menores dosagens de cimento no corpo da barragem, designados por betões de núcleo. Com este procedimento consegue-se, por um lado, um betão no exterior que não só resiste melhor às agressões climáticas mas apresenta também menor permeabilidade, e por outro, uma diminuição da quantidade total de cimento utilizada, o que além de conduzir a uma economia global na construção tende a reduzir o aumento de temperatura por libertação do calor de hidratação. No intuito de se conseguir também menor libertação do calor de hidratação é prática corrente substituir-se parte do ligante por cimento pozolânico ou por cinzas volantes. A utilização de cimento pozolânico ou de cinzas volantes melhora também determinadas características químicas do betão, um exemplo importante das quais é a diminuição da capacidade de reacção aos alcalis dos agregados, reduzindo-se assim a possibilidade de ocorrência de fenômenos expansivos e a probabilidade de ataque por sulfatos.

Os betões das barragens são habitualmente caracterizados através da determinação das resistências à compressão e à tracção, do módulo de elasticidade, do coeficiente de Poisson, das leis de fluência e retração, do calor de hidratação, do coeficiente de dilatação térmica linear e do calor específico, da condutividade e difusibilidade térmicas, da permeabilidade e da durabilidade.

Relativamente à resistência e à impermeabilidade do betão, a sua melhoria consegue-se pela redução da relação água/cimento (w/c). A resistência é também influenciada por outros factores tais como a composição e finura do cimento, a quantidade e tipo da pozolana, bem como pela textura, forma, composição mineralógica, resistência e granulometria dos
agregados e ainda pelos adjuvantes. Quanto ao betão em massa, e uma vez que à exceção das barragens abóbada muito delgadas não são geralmente necessárias resistências muito elevadas, a respectiva composição deverá ser tal que seja utilizada a quantidade mínima de cimento por forma a que, alcançando-se a resistência pretendida, se obtenha a máxima economia e uma subida mínima da temperatura durante a hidratação. Relativamente às resistências é habitual admitir que a resistência à tracção f_t pode ser relacionada com a resistência à compressão f_c através da expressão seguinte (ACI, 1999)

$$f_t = 0.32 f_c^{2/3}$$ \hspace{2cm} (4-1)

Embora o betão não seja um material com comportamento elástico linear, é habitual considerar para um betão em massa o módulo de elasticidade constante dentro da faixa de tensões a que habitualmente está sujeito em barragens. Os módulos de elasticidade apresentados pelos betões de barragens variam de 19 - 38 GPa aos 28 dias a 26 - 47 GPa ao fim de um ano (ACI, 1999). Normalmente os betões com maiores valores da resistência à compressão apresentam também maiores valores do módulo de elasticidade. O módulo de elasticidade à tracção é normalmente considerado igual ao módulo de elasticidade em compressão. Relativamente ao coeficiente de Poisson, os valores habitualmente determinados em betões de barragens variam entre 0,16 e 0,20.

Quanto à fluência, esta parece estar relacionada com o módulo de elasticidade, já que os betões que possuem módulos de elasticidade elevados apresentam baixas deformações de fluência. Para as tensões que é usual observar-se no corpo das barragens \[4\] a fluência é directamente proporcional à relação entre a tensão e a resistência à compressão.

\[As tensões de compressão habitualmente instaladas nas barragens de betão são inferiores a 40 % da resistência à compressão \]
As variações de volume experimentadas pelos betões são devidas às variações da humidade relativa e da temperatura ambientes, a reacções químicas no interior do betão e às tensões aplicadas. A retracção é normalmente devida à secagem e à diminuição de volume do gel cimentício que se forma durante a hidratação do cimento. Os factores principais que influenciam a retracção de secagem são a humidade relativa ambiente e a composição e conteúdo mineralógico dos agregados. As variações autogéneas de volume são devidas unicamente às reacções químicas no interior do betão, não estando relacionadas com a quantidade de água da amassadura (ACI, 1999).

O coeficiente de dilatação térmica linear depende, principalmente, do tipo e quantidade de agregado graúdo, e da proporção de combinação dos agregados com o cimento. Como já foi referido, é possível determinar de forma indirecta o coeficiente de dilatação térmica linear a partir do estabelecimento de correlações entre as extensões e as temperaturas medidas nos extensómetros correctores. Também é possível determinar o valor do coeficiente de dilatação térmica linear procurando a correlação existente entre as extensões e as temperaturas medidas nas células de fluência. Para efeitos de cálculo, adopta-se, habitualmente, um valor da ordem de 10^{-5}/ºC.

Durante o processo de arrefecimento do betão geram-se tensões de tracção que são resultantes das constrições impostas ao betão, e que dependem da variação do campo térmico, do coeficiente de dilatação térmica linear, do módulo de elasticidade, das características reológicas do material e do grau de constrição.

Em relação à permeabilidade pode dizer-se que desde que a composição do betão seja convenientemente definida, e sejam tidos os devidos cuidados na vibração e cura, aquela não constitui um problema. Verifica-se que a permeabilidade aumenta com a relação água/cimento. Como valor de referência pode admitir-se que a permeabilidade do betão convencional em massa é da ordem de 10^{-12} a 10^{-13} m/s/m.
4.2 Fluência e relaxação

4.2.1 Aspectos gerais

Quando no instante \(t_0 \) se submete um provete de betão a uma tensão \(\sigma_0 \), inferior a 40% da resistência à compressão (figura 4-2), começa por se observar uma deformação instantânea \(\varepsilon_i \) que é inversamente proporcional ao módulo de elasticidade do betão à idade \(t_0 \). Seguidamente e mantendo a tensão constante durante um intervalo de tempo igual a \(t_1 - t_0 \), o provete começa a deformar-se a uma taxa que diminui ao longo do tempo, e a partir de certo instante, a velocidade de deformação mantém-se constante.

Na deformação de fluência \(\varepsilon_f \) registada entre os instantes \(t_0 \) e \(t_1 \) há a distinguir duas fases: a correspondente à taxa de deformação decrescente com o tempo, designada por fluência primária, e a fase em que a taxa de deformação se mantém constante no tempo, designada por fluência secundária.
Entretanto se no instante t_1 for retirada a carga produz-se uma redução da deformação por recuperação elástica instantânea, que é inferior à deformação elástica instantânea inicial ε_i, pois por um lado o módulo de elasticidade do betão aumentou devido à maturação, e por outro, registou-se uma deformação plástica não recuperável. Posteriormente a t_1, as deformações observadas vão diminuindo ao longo do tempo, correspondendo essa fase à recuperação elástica diferida, sempre inferior a ε_f e tendendo para o valor da deformação plástica ε_p.

Se o ensaio descrito anteriormente fosse efectuado para uma tensão superior a 40% da resistência à compressão registar-se-iam deformações de fluência a uma taxa de deformação crescente no tempo, designando-se essa fase por fluência terciária (figura 4-3). Nesta fase o aumento da fluência é devido a um aumento da microfissuração. Para os níveis de tensão a que os betões de barragens estão habitualmente submetidos as deformações de fluência são do tipo primário ou secundário. Na fase de fluência primária verifica-se que a relação tensão-deformação é praticamente linear numa escala logarítmica do tempo.

As deformações de fluência podem ser também classificadas de acordo com as condições higrométricas em que se processam, já que são fortemente influenciadas pelas trocas de humidade entre o betão e o meio envolvente (Braga, 2000). De acordo com essa
classificação a fluência básica ocorrerá quando não se registam trocas de humidade com o meio envolvente, correspondendo a fluência de secagem à fase em que ocorrem trocas de humidade com o exterior. A fluência básica é parcialmente recuperável na generalidade dos betões, podendo considerar-se completamente recuperável em betões velhos; a fluência de secagem é irrecuperável. À excepção das zonas próximas dos paramentos, os betões das barragens não exibem genericamente fluência de secagem, uma vez que o seu estado higrométrico pode supor-se invariável no tempo.

4.2.2 Parâmetros que afectam a fluência

Existem diversos parâmetros que condicionam a fluência, designadamente a humidade relativa do ar e do betão, a temperatura, a composição, a tensão, a idade de carga e o tempo sob carga.

4.2.2.1 Humidade relativa

A humidade relativa do ar envolvente do betão afecta a fluência na medida em que condiciona a perda de humidade do betão, factor que, por sua vez, determina a fluência de secagem. Admite-se que, quando o betão está em equilíbrio higrométrico com o meio ambiente, a menos de efeitos secundários, a fluência não é afectada pela humidade ambiente.

Vários estudos efectuados (L’Hermite, 1965) relativos ao efeito da humidade ambiental sobre a fluência indicam que, para tempos de carga superiores a 200 dias, existe uma relação aproximadamente linear entre a humidade relativa do ar e a fluência do betão.

4.2.2.2 Temperatura

Segundo alguns autores (Neville, 1970) a temperatura é o segundo parâmetro que mais fortemente condiciona a fluência. Diversos ensaios efectuados indicam que, para variações de temperatura entre 22 e 45°C, se verifica um aumento da fluência com a temperatura, que se traduz, basicamente, num aumento da taxa de fluência nos primeiros dias de carga.
Segundo Ramos (1985) a influência da temperatura sobre a fluência do betão de barragens pode resumir-se da forma seguinte:

- as variações térmicas não alteram, no essencial, os mecanismos da fluência do betão, na medida em que a fluência para temperaturas elevadas segue o mesmo quadro geral da fluência para temperaturas ambientes;

- quer o efeito da temperatura sobre a fluência seja traduzido por uma relação linear, ou por uma relação mais atenuada, para temperaturas inferiores a 60 ºC, parece ser de aceitar que, a menos de efeitos secundários, as variações induzidas relativamente ao comportamento para uma temperatura média se compensarão, no núcleo das obras, dado o caráter sinusoidal da onda térmica anual;

- a influência da temperatura manifestar-se-á, fundamentalmente, através da viscosidade da água, o que está de acordo com um dos mecanismos básicos explicativos da fluência, a chamada teoria da percolação.\(^5\)

4.2.2.3 Composição do betão

O efeito da composição do betão na fluência manifesta-se essencialmente através do tipo de cimento, da natureza e quantidade do agregado e da relação w/c.

Em relação ao tipo de cimento, verifica-se que a fluência diminui com o aumento da resistência dos betões fabricados, sendo em regra inversamente proporcional à respectiva velocidade de endurecimento (Ramos, 1985). Ensaios efectuados com cimentos Portland de diferentes finuras levaram a concluir que a fluência é tanto maior quanto mais fino o cimento utilizado. O emprego de cimentos pozolânicos conduz a um aumento da fluência relativamente à que é verificada em betões fabricados com cimento Portland (ACI, 1999).

\(^5\) Esta teoria decorre de se considerar a pasta de cimento hidratado como um gel rígido, no qual as tensões aplicadas originam a expulsão da componente viscosa do interior dos vazios do esqueleto, do que resulta uma redistribuição de tensões da componente viscosa para o esqueleto resistente.
Quanto à natureza do agregado, a fluência relaciona-se com o módulo de elasticidade do agregado adoptado, verificando-se uma diminuição da fluência quando este módulo aumenta. Em relação à granulometria, alguns autores (Davis e al., 1934) consideram que a diminuição do agregado grosso reduz a fluência.

Relativamente à relação w/c verifica-se um aumento da fluência com o aumento daquela.

4.2.2.4 Tensão, idade de carga e tempo sob carga

Exceptuando os casos de betões muito jovens, e para tensões aplicadas da ordem de 40 a 70% da tensão de ruptura, verifica-se existir uma relação linear entre a tensão aplicada e a fluência.

A fluência diminui com a idade de carga, havendo a assinalar que para alguns autores essa influência é pouco significativa para idades avançadas do betão.

Relativamente ao tempo sob carga, existem várias formulações que relacionam a fluência com o logaritmo do tempo sob carga \(t - t_0 \). Assim se passa com a lei proposta pelo U.S.B.R. (United States Bureau of Reclamation) (1955) em que a função de fluência \(J(t - t_0) \) toma a forma

\[
J(t - t_0) = f(t_0) \log_e (t + 1)
\]

(4-2)

Outros autores relacionam a fluência com exponenciais do tipo \(e^{-(t-t_0)} \) como por exemplo nas leis de Aroutianian (1957) e de McHenry (1943) que têm, respectivamente, as formas

\[
J(t - t_0, t_0) = \left[J(\infty) + \frac{b}{t_0} \right] \left[1 - e^{-a(t-t_0)} \right]
\]

(4-3)

\[
J(t - t_0) = J(\infty) \left[1 - e^{-a(t-t_0)} \right]
\]

(4-4)
Segundo Ramos (1985) relativamente aos betões de barragens pode dizer-se existir uma relação linear entre a fluência e as tensões aplicadas, dado o campo tensional normalmente verificado, e ser de grande importância a idade de carga mesmo em betões velhos, dado o isolamento higrométrico existente em quase todo o corpo das obras.

4.3 Maturação

Designa-se por maturação a capacidade que o betão tem de modificar as suas propriedades reológicas ao longo do tempo. Engloba-se no processo de maturação o aumento do módulo de elasticidade e das resistências à tracção e à compressão, e a diminuição da fluência ao longo do tempo.

A maturação do betão está relacionada com o processo de hidratação, ou seja, com a reacção química exotérmica que se dá entre o cimento e a água, e é mais acentuada em betões ensaiados em condições de saturação.

4.4 Ensaios de caracterização das propriedades reológicas do betão de barragens

A caracterização das propriedades reológicas dos betões pode ser feita através de ensaios in situ ou em laboratório. Seguidamente apresenta-se uma descrição geral de cada um desses tipos de ensaios.

4.4.1 Ensaios in situ

Os ensaios in situ são efectuados nas chamadas células de fluência (figura 4-4). Devido ao seu custo elevado, este tipo de equipamento não tem sido colocado sistematicamente em todas as barragens. As células de fluência são normalmente constituídas por dois dispositivos, sendo um deles para determinação das deformações de fluência em betão crivado, e o outro para betão integral. O isolamento dos provetes em relação ao campo de tensões do meio envolvente é conseguido mantendo-os no interior de baldes de parede dupla semelhantes aos utilizados nos extensómetros correctores (ver sub capítulo 3.2.1). Os provetes contidos nas
células de betão integral têm 45 cm de diâmetro e 125 cm de altura, enquanto que os das células de betão crivado têm 25 cm de diâmetro e 67,5 cm de altura. Durante a moldagem são deixados no interior de cada um dos provetes extensómetros do tipo Carlson. O extensómetro no interior do provete de betão crivado tem 25 cm de comprimento, ao passo que no provete de betão integral é colocado um extensómetro da mesma série com um alongamento rígido acoplado, de forma a perfazer 45 cm de comprimento.

![Diagrama](image)

figura 4-4 - Células de fluência para betão integral e crivado: a) esquema de montagem e ligação de duas células de fluência; b) dispositivos de manutenção da carga ao longo do tempo instalados numa galeria

As células de fluência têm na sua base uma almofada de aço (macaco plano), ligada a um tubo de cobre acessível do exterior, que permite a aplicação de pressões na base dos
provetes (figura 4-4 a)). Essas pressões são mantidas ao longo do tempo através de uma garrafa cheia de uma emulsão comprimida de azoto e óleo.

Tem-se procurado colocar em carga as células de fluência em idades relativamente jovens do betão, em torno dos 30 dias. Embora este procedimento tenha o inconveniente de as deformações de fluência poderem ser influenciadas pela libertação do calor de hidratação do cimento (que, no entanto, é na sua maioria gerado até aos 30 dias de idade), permite contudo a obtenção de informação muito mais rica sobre o comportamento reológico do betão durante a vida útil da barragem (Ramos, 1985).

Uma das vantagens dos ensaios in situ reside no facto de se manterem nos provetes ensaiados, as reais condições termo-higrométricas prevalecentes na barragem.

4.4.2 Ensaios em laboratório

A caracterização em laboratório da lei de fluência de um betão é feita através de ensaios que se encontram devidamente normalizados em especificações (LNEC, 1993). De acordo com essas especificações a máquina de ensaio deverá ter capacidade para manter a carga aplicada com uma precisão não inferior a 3%. Um dos pratos da máquina de ensaio deverá ser flexível de forma a assegurar uma distribuição uniforme das tensões. Os instrumentos de medição deverão ter uma base de medida com comprimento superior à aresta ou ao diâmetro do provete, e estar colocados a pelo menos ¼ da altura a contar dos topos. O sistema de medida das extensões deve ter uma precisão não inferior a 5x10⁻⁶.

Os provetes ensaiados deverão também obedecer a determinados requisitos, nomeadamente ser prismáticos de secção quadrada ou cilíndricos, com uma relação entre o comprimento e a aresta (ou o diâmetro) não inferior a 3. A aresta ou o diâmetro não deverão ter dimensões inferiores a 4 vezes a dimensão máxima do agregado, com um mínimo de 100 mm. Pelo menos dois provetes deverão ser preparados em duas condições: i) um que será conservado num ambiente com teor de humidade da ordem de 50 ± 5% e temperatura de 20 ± 2ºC; e o outro ii) que será mantido sem trocas de humidade com o exterior, pelo que o
respeito molde deverá ser forrado com folhas de alumínio, cobre ou chumbo, as quais após a moldagem serão imediatamente soldadas de forma a envolverem o provete na sua totalidade, isolando-o higrometricamente. Este isolamento pode ser também conseguido através do revestimento do provete com uma camada de resina epoxi.

Os ensaios para determinação da função de fluência em laboratório que se destinam a representar o betão do núcleo das barragens são efectuados sobre provetes mantidos em isolamento termo-higrométrico, isto é, sob condições de temperatura e humidade invariáveis. Este isolamento é conseguido moldando os provetes dentro de moldes forrados com camisas plásticas, as quais são fechadas após a regularização da sua face superior. Posteriormente os provetes são ainda envolvidos com uma chapa de chumbo laminado com 1,65 mm de espessura. As extensões de fluência sofridas pelos provetes após a sua colocação em carga são dadas pelos extensómetros tipo Carlson, que são embebidos nos provetes durante a moldagem.

4.5 Leis de fluência adoptadas

As leis de fluência adoptadas obedecem à expressão de Bazant e Panulla (Braga, 2000). Assim, para o betão crivado, que envolve a quase totalidade dos extensómetros colocados em obra, adoptou-se a seguinte expressão

\[J(t, t_0) = \frac{1}{34,2} + \frac{3,99}{34,2} \left(t_0^{0,81} + 0,05 \right) (t-t_0)^{0,116} \quad \text{[GPa]} \quad (4-5) \]

Quanto ao betão integral, que envolve o grupo plano de extensómetros número 40, a lei de fluência adoptada foi a seguinte

\[J(t, t_0) = \frac{1}{31,4} + \frac{2,54}{31,4} \left(t_0^{0,72} + 0,05 \right) (t-t_0)^{0,102} \quad \text{[GPa]} \quad (4-6) \]
Nos estudos em modelo matemático pelo método dos elementos finitos foi adoptada a lei de Bazant e Panulla para o betão integral traduzida pela expressão (4-6).

Quanto à evolução do módulo de elasticidade assumiram-se as seguintes expressões, respectivamente, para o betão crivado e para o betão integral.

\[
\frac{1}{E(t_0)} = \frac{1}{34,2} + \frac{2,34}{34,2}(t_0^{-0,81} + 0,05) \quad \text{[GPa}^{-1}] \quad (4-7)
\]

\[
\frac{1}{E(t_0)} = \frac{1}{31,4} + \frac{1,59}{31,4}(t_0^{-0,72} + 0,05) \quad \text{[GPa}^{-1}] \quad (4-8)
\]
5 MÉTODOS DE INTERPRETAÇÃO QUANTITATIVA

5.1 Considerações gerais

É habitual proceder-se à interpretação quantitativa dos resultados da observação de barragens decompondo aqueles em parcelas correspondentes aos efeitos das diferentes acções que influenciam o comportamento da estrutura. Este processo, designado habitualmente por separação de efeitos observados, permite:

- o controlo da segurança estrutural, quer por comparação dos resultados da observação com os resultados de modelos utilizados no projecto ou na interpretação quantitativa, quer pelo estudo da evolução ao longo do tempo dos efeitos não explicáveis pela variação das acções habituais;

- a previsão do comportamento futuro em função das acções;

- a elaboração de estudos mais aprofundados sobre o comportamento dos materiais e das obras.

A separação de efeitos pode ser feita simplesmente por comparação das observações efectuadas em épocas nas quais se verificou uma variação significativa de apenas uma das acções principais – a acção hidrostática ou a acção térmica ambiental. Essas épocas deverão ser relativamente próximas no tempo, para que os efeitos deste se possam considerar desprezáveis.
No entanto, o processo mais geral de analisar o efeito das principais acções consiste na utilização de métodos matemáticos de interpretação quantitativa de resultados de observação. Estes métodos consistem no estabelecimento de relações funcionais entre as acções sobre a barragem e os efeitos observados envolvendo um número significativo de observações.

Genericamente, na aplicação dos métodos de análise quantitativa admitem-se várias hipóteses, umas de carácter geral:

- os efeitos analisados dizem respeito a um intervalo de tempo durante o qual se admite que não se verificam modificações estruturais significativas da barragem;
- para condições de exploração normal da barragem as acções predominantes são as variações da acção hidrostática e da temperatura.

e outras cuja índole caracteriza o tipo dos vários métodos de interpretação utilizados. Nos métodos mais correntes admite-se que:

- os efeitos representativos do comportamento estrutural das barragens, para condições de exploração normal, podem decompor-se em duas parcelas, uma de natureza elástica (reversível e instantânea), provocada essencialmente pelas variações das acções hidrostática e térmica, e outra não elástica (irreversível e variável ao longo do tempo);
- é válido o princípio da sobreposição dos efeitos, pelo que os efeitos das variações das acções hidrostática e térmica podem ser estudados separadamente.

Os métodos de análise quantitativa podem ser agrupados de várias formas, consoante os aspectos comuns a que se pretende dar especial relevo. Os dois critérios de classificação geralmente adoptados consistem no agrupamento dos métodos segundo o grau de intervenção da análise estrutural, sendo classificados em estatísticos, determinísticos e mistos, ou segundo as hipóteses de comportamento reológico dos materiais em que se baseiam as relações funcionais estabelecidas entre as acções e os efeitos correspondentes podendo assim ser elásticos, viscoelásticos ou viscoelastoplásticos.
Nos métodos estatísticos os efeitos devidos às acções predominantes e ao tempo são representados por intermédio de expressões matemáticas independentes dos resultados de análise de modelos estruturais. Nos métodos determinísticos os efeitos das acções predominantes e do tempo são representados por funções obtidas por intermédio de análises de modelos estruturais, a menos de eventuais correções dos valores das constantes que intervêm nestes modelos, nomeadamente características elásticas e térmicas dos materiais. Nos métodos mistos utiliza-se uma formulação determinística relativamente a algumas das componentes e uma formulação estatística relativamente às demais.

Nos métodos elásticos, os efeitos do tempo são considerados independentes da variação das solicitações principais integrando os efeitos da fluência e outros efeitos permanentes. Nos métodos viscoelásticos representa-se explicitamente a parcela dos efeitos devidos à fluência e nos métodos viscoelastoplasticos é possível considerar também o comportamento não linear dos materiais (Gomes, 1981).

5.2 Métodos estatísticos

Nos métodos estatísticos os efeitos da pressão hidrostática são normalmente representados por funções polinomiais, em que a variável independente é uma grandeza relacionada com o nível da água na albufeira verificado no instante em que se mede o efeito. As funções representativas dos efeitos térmicos utilizam, essencialmente, dois tipos de variáveis: as temperaturas representativas do estado térmico da barragem, isto é, as temperaturas observadas no betão no mesmo instante em que se mede o efeito; ou parâmetros relacionados com o estado térmico da barragem. Os efeitos permanentes exprimem-se em função do tempo decorrido entre uma época considerada de referência e a época de observação.

São exemplos de métodos estatísticos os apresentados seguidamente.
5.2.1 Método do LNEC

No método do LNEC, que foi apresentado pela primeira vez em 1958 (Rocha et al., 1958), o efeito da acção hidrostática é traduzido por um polinómio na variável nível da água na albufeira h_i e os efeitos térmicos são representados por funções lineares da temperatura média θ_i e do gradiente térmico β_i num número de arcos considerados representativos do comportamento da estrutura. Como regra considera-se que, no máximo, quatro arcos são suficientes para determinar a influência do estado térmico da barragem sobre uma dada grandeza observada.

Mais tarde foram introduzidos os efeitos permanentes (Silveira et al., 1964).

A fórmula geral do método do LNEC para um dado efeito observado U é a seguinte:

$$ U = \sum_n a_n h_i^n + \sum_i b_i \theta_i + \sum_j c_j \beta_j + d_1 \tau + d_2 \tau^2 + d_3 \ln(\tau+1) + K + r $$

sendo τ o número de dias contados desde uma data de referência até à campanha em análise. A constante K deve-se ao facto de à campanha de referência das observações não corresponderem valores nulos dos efeitos observados, e r representa os erros de observação e de adequação do modelo.

As variáveis a_n, b_i, c_j, d_1, d_2 e d_3 são determinadas pelo método dos mínimos quadrados.

5.2.2 Método de Willm e Beaujoint

No método de Willm e Beaujoint (Gomes, 1981) o efeito hidrostático é representado por um polinómio do terceiro ou quarto grau. A função representativa do efeito térmico é formada pela soma de duas ondas sinusoidais desfasadas, sendo uma de período anual e outra de período semestral. Os efeitos permanentes são função do tempo τ decorrido desde uma
data de referência, por exemplo, o início do primeiro enchimento. Assim a fórmula geral do método de Willm e Beaujoint é a seguinte

\[U = \left(a_1 Z + a_2 Z^2 + a_3 Z^3 + a_4 Z^4 \right) + \left(h_1 \cos S + b_2 \sin S + b_3 \sin^2 S + b_4 \sin S \cos S \right) + \left(d_1 e^{-T} + d_2 e^{+T} \right) + K + r \]

em que \(Z = (RN - h)/H \), sendo \(RN \) o nível de pleno armazenamento, \(h \) o nível da albufeira na época de observação e \(H \) a altura da barragem; \(S = 2\pi s/365 \), sendo \(s \) o número de dias decorridos desde o início do ano até à época de observação.

5.2.3 Método de Miranda

No método de Miranda (Gomes et al., 1985) os efeitos das acções hidrostática e térmica e do tempo são modelados através de polinómios completos nas diferentes variáveis. A variável independente utilizada para representar o efeito hidrostático é a altura da água na albufeira \(h \), para o efeito térmico é a temperatura média do ar \(\theta \) e para o efeito do tempo é o número de dias \(t \) contados a partir de uma data de referência. No que diz respeito ao efeito do tempo este método admite que o seu polinómio representativo é uma função monótona, isto é, sempre não crescente ou não decrescente.

Tendo em vista levar em linha de conta o significado físico das funções polinomiais adoptadas, este método permite impor restrições à primeira derivada do polinómio representativo do efeito da acção hidrostática.

A fórmula geral referente a este método é

\[U = \sum a_n h^n + \sum b_i \theta^i + \sum d_k t^k + r \]

\[(5-3) \]
5.3 Métodos determinísticos

Nos métodos determinísticos as principais hipóteses sobre o comportamento das barragens são feitas ao nível dos modelos de análise estrutural nomeadamente com recurso ao Método dos Elementos Finitos (MEF). A incorporação dos resultados destes modelos nos métodos determinísticos é feita da forma seguinte:

- os efeitos da acção hidrostática, dependentes de parâmetros elásticos característicos da barragem e da fundação, são representados sob a forma de linhas de influência, isto é, sob a forma de efeitos relativos a um determinado ponto ou elemento de volume da estrutura, para diferentes níveis da água na albufeira;

- os efeitos das variações térmicas podem ser representados de várias formas, por exemplo através de parâmetros característicos do comportamento térmico de determinadas secções da obra, ou de temperaturas observadas na estrutura. Os parâmetros térmicos que se utilizam mais habitualmente são a temperatura média dos arcos, o gradiente térmico montante-jusante, etc.

São exemplos de métodos determinísticos os métodos de Gicot, Schnitter, Fanelli e Stucky, que se descrevem seguidamente de uma forma sucinta.

5.3.1 Método de Gicot

Se considerarmos duas épocas de observação entre as quais se verificou uma grande variação do nível da água na albufeira, mas suficientemente próximas no tempo para que os efeitos elásticos sejam preponderantes, determinam-se os deslocamentos respectivos em regime elástico linear adoptando valores extremos (η' e η") do quociente η entre os módulos de elasticidade do betão (E) e da rocha (E_r). Admitindo que E_r é fixo e que os deslocamentos variam linearmente com η, por interpolação linear determina-se o valor de η que melhor se adapta aos deslocamentos observados.
Se se admitir que os deslocamentos devidos à pressão hidrostática são funções lineares de η tem-se

$$\delta_h = \frac{A + B\eta}{E}$$ \hspace{1cm} (5-4)

em que o significado dos parâmetros A e B está indicado na figura 5-1. Em particular o coeficiente A representa a deformada da estrutura para a acção hidrostática quando $E = 1$ e a fundação é considerada infinitamente rígida ($\eta = 0$).

A parcela correspondente aos efeitos térmicos δ_θ é dada pela expressão

$$\delta_\theta = \alpha u^*$$ \hspace{1cm} (5-5)

sendo α o coeficiente de dilatação térmica linear do betão e u^* a resposta do modelo estrutural, calculada para as variações de temperatura observadas na barragem, para um módulo de elasticidade do betão unitário e para o valor de η determinado anteriormente.
Se a exploração da albufeira tiver características periódicas, pode considerar-se que a parcela viscoelástica, entre épocas cronologicamente não muito afastadas, é relativamente pequena, podendo admitir-se que varia linearmente com o tempo \(\tau \) decorrido desde uma data de referência:

\[
\delta_\tau = d\tau
\]

\[\text{(5-6)}\]

Assim a expressão geral do método de Gicot toma a forma seguinte:

\[
\delta = \frac{1}{E}(A+B\eta) + \alpha u^* + d\tau + r
\]

\[\text{(5-7)}\]

5.3.2 Método de Schnitter

Este método permite o controlo imediato dos deslocamentos em barragens. Admite-se que os efeitos das acções hidrostática e térmica são preponderantes no valor total dos deslocamentos medidos.

A influência da pressão hidrostática é representada através de linhas de influência do nível da água para os deslocamentos observados. Essas linhas de influência são determinadas através de modelos estruturais (matemáticos ou físicos), com os quais se determinam as deformadas da estrutura para diferentes níveis da água na albufeira. As linhas de influência são aproximadas por polinómios de grau adequado, função da altura \(h \) da água na albufeira.

Para determinar os coeficientes de influência da temperatura calculam-se os deslocamentos devidos às variações das temperaturas e dos gradientes térmicos médios de alguns arcos através de um modelo matemático.

Determinados os coeficientes de influência das acções hidrostática (\(\overline{\delta_h} \)) e térmica (\(\overline{\delta_\theta} \)), é possível escrever, a partir dos resultados da observação da barragem, o sistema de equações
Os parâmetros a e b são determinados pelo método dos mínimos quadrados (MMQ).

5.3.3 Método de Fanelli

O método de Fanelli (Fanelli et al., 1979) é basicamente semelhante aos métodos determinísticos descritos anteriormente, havendo, no entanto, um aspecto diferente: a forma de caracterizar a componente relativa ao efeito térmico.

A componente dos deslocamentos devida à acção hidrostática é escrita sob uma forma semelhante à utilizada no método de Gicot, isto é,

$$
\delta_h = \frac{1}{E} (A + B\eta)
$$

(5-9)

Designando por A^* a deformada devida à acção hidrostática supondo $E_h = 1$ e uma relação arbitrada η^*, o coeficiente B da expressão pode ser determinado pela fórmula seguinte

$$
B = \frac{A^* - A}{\eta^*}
$$

(5-10)

e a expressão (5-9) toma a forma

$$
\delta_h = \frac{1}{E} A + \frac{\eta^*}{E\eta^*} (A^* - A) = a_1 A + a_2 (A^* - A)
$$

(5-11)

em que a_1 e a_2 são determinados estatisticamente, por exemplo, pelo MMQ. Seguidamente calculam-se as constantes elásticas $E = 1/a_1$ e $E_r = 1/a_2\eta^*$. As deformadas A ($\eta = 0$; $E = 1$)...
e \(A^* (\eta = \eta^*; \, E = 1) \), obtidas a partir da análise estrutural, podem ser escritas sob a forma de polinómios função do nível da água \(h \)

\[
A = \sum_{i=0}^{N} A_i h^i \quad \text{e} \quad A^* = \sum_{i=0}^{N} A'_i h^i
\]

(5-12)

Neste método os deslocamentos permanentes \(\delta_i \) são representados sob a forma exponencial

\[
\delta_i = \sum_{k=1}^{M} d_k e^{m_i (t-t_k)}
\]

(5-13)

em que \(t \) é o tempo decorrido desde uma data de referência, e \(d_k, m_k \) e \(t_k \) são constantes determinadas estatisticamente, por exemplo, pelo MMQ.

Relativamente ao efeito da temperatura a distribuição desta no interior da barragem é determinada com um modelo numérico sendo os deslocamentos correspondentes calculados para um valor unitário do coeficiente de dilatação térmica linear do betão \(\alpha \). O campo de temperaturas é determinado a partir de modelos térmicos, baseados na integração numérica da equação de Fourier, e modelos estruturais. Admitindo que os efeitos térmicos podem ser expressos como funções lineares das temperaturas e das suas derivadas em ordem ao tempo nos pontos em que se medem as temperaturas, a menos do valor de \(\alpha \) ter-se-á então

\[
\delta_\theta = \alpha \sum_{p=1}^{Q} \left[b_p \theta_p + c_p \frac{d\theta^*_p}{dt} \right]
\]

(5-14)

em que os coeficientes \(b_p \) e \(c_p \) são determinados a partir dos cálculos dos modelos estruturais. \(\theta_p \) representa a temperatura medida num dado termômetro \(p \) e \(d\theta^*_p/dt \) representa a derivada em ordem ao tempo dumá aproximação sinusoidal \(\theta^* \) das temperaturas \(\theta \) medidas nos termômetros.
Tendo em consideração as expressões apresentadas anteriormente a fórmula geral deste método é

\[
\delta = a_1 \sum_{i=0}^{N} A_i h_i + a_2 \sum_{i=0}^{N} \left(A_i - \bar{A}_i \right) h_i + \alpha \sum_{p=1}^{Q} \left[b_p \theta_p + d \frac{d \Theta_p}{dr} \right] + \sum_{k=1}^{M} d_k e^{m_k (r - \eta)}
\]

(5-15)

Os coeficientes \(a_1, a_2, \alpha \) e \(d_k \) são determinados por métodos estatísticos, como por exemplo o MMQ.

5.3.4 Método de Stucky

O método de Stucky tem particular interesse no caso de barragens em que não existe aparelhagem para medição de temperaturas.

O efeito da acção hidrostática é representado através de polinómios função do nível da água, que aproximam as linhas de influência determinadas por um modelo estrutural para um dado valor do quociente \(\eta = \frac{E}{E_r} \).

Os efeitos térmicos são definidos a partir de modelos simplificados nos quais se considera a actuação das ondas térmicas anuais nos paramentos. As ondas térmicas aplicadas nos paramentos são definidas a partir da observação das temperaturas do ar no local, e considera-se a influência da variação de temperatura na água da albufeira através de uma forma simplificada. Partindo dos dados anteriores obtém-se as ondas térmicas anuais médias no betão, e determinam-se as temperaturas médias para um certo número de arcos, calculando-se os deslocamentos correspondentes com um modelo estrutural. Os deslocamentos obtidos desta forma podem ser ajustados em função da época do ano \(S \).

A fórmula geral deste método é a seguinte

\[
\delta = a \left(a_1 h + a_2 h^2 + a_3 h^3 \right) + b \left(b_1 \cos S + b_2 \sin S + b_3 \cos^2 S + b_4 \cos S \cos \right)
\]

(5-16)
A determinação dos parâmetros \(a \) e \(b \) é feita por ajuste da expressão anterior aos valores observados. A adequação do modelo é função dos valores dos resíduos em relação às épocas de observação, e da ordem de grandeza dos parâmetros \(a \) e \(b \).

5.4 Métodos mistos

Nos métodos mistos a utilização de resultados dos modelos estruturais é feita apenas em relação a um dos efeitos – o hidrostático ou o térmico. Dada a maior facilidade de caracterização da acção hidrostática através de modelos estruturais, normalmente a parcela determinística diz respeito a essa acção.

5.4.1 Método de Gicot

No método de Gicot os resultados da análise estrutural devidos à acção hidrostática são aproximados por polinómios do terceiro grau

\[
\delta_h = \frac{1}{E} \left(a_1 h + a_2 h^2 + a_3 h^3 \right) \quad (5-17)
\]

Na série de deslocamentos observados \(\delta \) começa-se por selecionar os que correspondam a um período curto, de forma a minimizar os efeitos irreversíveis, e digam respeito a épocas com pequenas diferenças dos níveis da água, de forma a minimizar os erros cometidos em \(\delta_h \).

Os deslocamentos \(\delta_\theta \) devidos à variação de temperatura podem ser calculados a partir dos observados, corrigindo-os dos devidos às pequenas variações do nível da albufeira

\[
\delta_\theta = \delta - \delta_h \quad (5-18)
\]

O conjunto de deslocamentos \(\delta_\theta \) obtidos desta forma, e que estão associados a variações de temperatura entre duas épocas, podem ser representados pelas variações da temperatura média.
dos arcos onde estão instalados termómetros \(\theta_i \). Se admitirmos que \(\delta_\theta \) é uma função linear de \(\theta_i \) tem-se

\[
\delta_\theta = \delta - \delta_h = \sum_i b_i \theta_i
\]

(5-19)

determinando-se assim os valores mais prováveis de \(b_i \).

Seguidamente consideram-se os deslocamentos observados num período relativamente curto e suficientemente afastado do primeiro enchimento, para minimizar os efeitos permanentes, e relativos a épocas com níveis da água na albufeira bastante diferentes. Com os valores de \(\delta_h \) obtidos desta forma determina-se o valor mais provável de \(E_b \).

5.4.2 Método de Doboz

O método de Doboz (1982) considera a história da variação da pressão hidrostática e da temperatura, e admite que o conjunto barragem-fundação apresenta um comportamento viscoelástico sem maturação. Os coeficientes a determinar são os parâmetros de uma lei de fluência que se calculam pelo MMQ aplicado a um sistema de equações, em que cada equação corresponde a uma época de observação.

A fórmula geral deste método pode escrever-se da seguinte forma

\[
\delta = \int_t \int_{t'} J(t-t') \frac{\partial F(t')}{\partial \tau} dt' + \int_t \int_{t'} \theta(t-t') T(t') dt' + r
\]

(5-20)

em que \(J(t-t') \) é a função de fluência e \(F(t) \) e \(T(t) \) são as funções representativas das evoluções do carregamento e da temperatura, respectivamente. \(\theta(t-t') \) é uma função impulso que representa o efeito da temperatura sobre o deslocamento após o intervalo de tempo \((t-t') \), em que \(t' \) é o instante de aplicação da força exterior ou da temperatura e \(t \) é o instante em que o deslocamento é lido.
Neste método a função de fluência utilizada é a do modelo de Aroutiounian

\[J(t-t', t) = \left[J(\infty) + \frac{b}{t'} \right] \left[1 - e^{-a(t-t')} \right] \] \hspace{1cm} (5-21)

em que \(J(\infty) \) é a fluência específica a tempo infinito, e \(a \) e \(b \) são constantes que caracterizam o comportamento viscoelástico e se determinam experimentalmente (Ramos, 1985).

De acordo com Ramos (1985) este método pode conduzir a parâmetros reológicos sem significado físico, por razões meramente numéricas e pelo facto de considerar um modelo reológico único para o conjunto barragem-fundação.

5.4.3 Método de Ramos

O método de Ramos (1985) tem por base a decomposição dos efeitos observados em diversas parcelas, função das acções, das características reológicas do betão e da natureza do efeito em causa (deslocamento, extensão ou tensão), invocando os conceitos de coeficiente de fluência e de relaxação, e o princípio da sobreposição dos efeitos devido à história das acções principais. O método procura quantificar a parcela dos efeitos diferidos com base na reologia do betão.

Este método considera que uma determinada grandeza observada \(U \) se pode decompor em duas parcelas, dependentes não só do valor das acções principais na data de observação, mas também da história da variação dessas acções. Assim ter-se-á

\[U(h, \theta, t) = U_h(h, t) + U_\theta(\theta, t) \] \hspace{1cm} (5-22)

em que \(U_h(h, t) \) representa o efeito da pressão hidrostática no instante \(t \), dependente da história de variação do nível da água na albufeira desde o primeiro enchimento, e \(U_\theta(\theta, t) \) designa o efeito das variações de temperatura no mesmo instante, dependente da história da variação de temperatura desde a data da injecção das juntas. Cada uma destas parcelas pode
ser decomposta numa parcela elástica e numa parcela diferida, consoante a grandeza em análise e os efeitos diferidos associados a cada uma das acções principais. Se a grandeza observada é um deslocamento δ ou uma extensão ε, pode ser decomposta numa parcela elástica devida à temperatura (δ^e_h ou ε^e_h), numa parcela elástica devida à pressão hidrostática (δ^e_h ou ε^e_h) e numa parcela diferida também devida à pressão hidrostática e função da lei de fluência do betão (δ^f_h ou ε^f_h). Pode-se assim escrever:

$$
\delta(h, \theta, t) = \delta^e_h(h, t) + \delta^f_h(h, t) + \delta^e_\theta(\theta, t)
$$

(5-23)

$$
\varepsilon(h, \theta, t) = \varepsilon^e_h(h, t) + \varepsilon^f_h(h, t) + \varepsilon^e_\theta(\theta, t)
$$

(5-24)

Se a grandeza em causa é uma tensão σ poderá ser decomposta numa parcela elástica devida à pressão hidrostática σ^e_h, numa parcela elástica devida à variação de temperatura σ^e_θ e numa parcela diferida σ^f_θ, também devida à variação de temperatura e função da lei de relaxação do betão. Pode-se então escrever

$$
\sigma(h, \theta, t) = \sigma^e_h(h, t) + \sigma^f_\theta(\theta, t) - \sigma^e_\theta(\theta, t)
$$

(5-25)

As parcelas elásticas correspondentes à pressão hidrostática e à variação de temperatura são calculadas por separação de efeitos, ao passo que as parcelas diferidas se determinam a partir do conhecimento das leis de fluência e de relaxação do betão, estas últimas estabelecidas a partir dos resultados de ensaios laboratoriais e “in situ” e da composição do betão. Na formulação apresentada em Ramos (1985), a função de fluência considerada é a de Bazant e Panulla.

Para as grandezas deslocamentos e extensões, e admitindo um comportamento viscoelástico linear, a parcela diferida devida a uma pressão hidrostática mantida constante desde o instante t_0 vem dada por
\[
\delta_h^f(t) = \delta_h^f(t_0) \varphi(t, t_0) \tag{5-26}
\]

\[
\varepsilon_h^f(t) = \varepsilon_h^f(t_0) \varphi(t, t_0) \tag{5-27}
\]

em que \(\varphi(t, t_0) \) é o coeficiente de fluência.

Admitindo a variação do nível da água na albufeira discretizada por patamares (figura 5-2), atendendo ao princípio da sobreposição dos efeitos podem-se somar as parcelas correspondentes a cada variação da acção hidrostática, obtendo-se

\[
\delta_{h,j}^f = \sum_{j=1}^{m} \Delta \delta_j^f (h_j, E_j) \varphi (t_i, t'_j) \tag{5-28}
\]

e

\[
\varepsilon_{h,j}^f = \sum_{j=1}^{m} \Delta \varepsilon_j^f (h_j, E_j) \varphi (t_i, t'_j) \tag{5-29}
\]

sendo

\[
\Delta \delta_j^f = \delta_j - \delta_{j-1} \tag{5-30}
\]

\[
\Delta \varepsilon_j^f = \varepsilon_j - \varepsilon_{j-1} \tag{5-31}
\]

Portanto, \(\delta_{h,j}^f \) e \(\varepsilon_{h,j}^f \) são os efeitos não elásticos, verificados na época \(t_i \), devidos à sobreposição dos sucessivos incrementos de carga hidrostática ocorridos nas \(m \) épocas \(t'_j \).
figura 5-2 – Barragem do Alto Lindoso. Discretização em patamares da variação do nível de água na albufeira

Os valores de δ^e_j e ε^e_j são obtidos a partir das linhas de influência da acção hidrostática para a cota h_j, correspondente ao patamar entre as épocas t'_{j-1} e t'_j, e são corrigidos da variação do módulo de elasticidade no tempo.

Assim as expressões (5-23) e (5-24) tomam, respectivamente, as formas

$$
\delta(h, \theta, t) = \delta^e_{h_1}(h, t) + \sum_{j=1}^{m} \Delta \delta^e_j(h_j, E_j) \varphi(t, t_j) + \delta^e_{\theta_j}(\theta, t)
$$

(5-32)

$$
\varepsilon(h, \theta, t) = \varepsilon^e_{h_1}(h, t) + \sum_{j=1}^{m} \Delta \varepsilon^e_j(h_j, E_j) \varphi(t, t_j) + \varepsilon^e_{\theta_j}(\theta, t)
$$

(5-33)

Se a grandeza é uma tensão, admitindo um comportamento viscoelástico linear a parcela diferida devida à actuação de uma acção térmica mantida constante desde o instante t_0 vem dada por

$$
\sigma^e_\theta(t) = \sigma^e_\theta(t_0) \rho(t, t_0)
$$

(5-34)

em que $\rho(t, t_0)$ é o coeficiente de relaxação.
Em relação à acção térmica, pode ser usado um critério de sobreposição passo-a-passo semelhante ao preconizado para a acção hidrostática. Neste caso, no entanto, há a considerar a sobreposição de dois efeitos globais: um devido à diferença entre o campo térmico à data de injeção das juntas de contracção e o campo térmico médio na fase de exploração, ao qual corresponde uma distribuição de tensões inicial σ^e_0; outro devido à diferença entre a onda térmica anual e aquele campo térmico médio. Assim, designando por σ^r_{ij} a parcela da tensão inicial σ^e_0 que relaxou até t_i, e por σ^r_{ij} a tensão total devida aos sucessivos incrementos térmicos verificados entre as m épocas t'_j, ter-se-á

$$\sigma^r_i = \sigma^r_{i0} + \sigma^r_{ij}$$ \hspace{1cm} (5-35)

em que

$$\sigma^r_{i0} = \sigma^e_0(\theta_0, E_0) \rho(t_i, t_0)$$ \hspace{1cm} (5-36)

$$\sigma^r_{ij} = \sum_{j=1}^{m} \Delta \sigma^e_j(\theta_j, E_j) \rho(t_i, t'_j)$$ \hspace{1cm} (5-37)

sendo

$$\Delta \sigma^e_j = \sigma^e_{j-1} - \sigma^e_j$$ \hspace{1cm} (5-38)

Em analogia com o que foi referido para os deslocamentos e extensões, σ^r_{i0} e σ^r_{ij} são obtidos a partir das linhas de influência das temperaturas, para a temperatura θ_j correspondente ao patamar entre os instantes t'_{j-1} e t'_j.

A expressão (5-25) escreve-se finalmente da seguinte forma

$$\sigma(h, \theta, t) = \sigma^e_{hi}(h, t) + \sigma^e_{ij}(\theta, t) - \left[\sigma^e_0(\theta_0, E_0) \rho(t_i, t_0) + \sum_{j=1}^{m} \Delta \sigma^e_j(\theta_j, E_j) \rho(t_i, t'_j) \right]$$ \hspace{1cm} (5-39)
5.4.4 Método de Oliveira, Ramos e Florentino

No método proposto por Oliveira, Ramos e Florentino (Oliveira et al., 1998; Oliveira, 2000; Oliveira et al., 2002) as extensões observadas \(\varepsilon(t) \) são decompostas em duas parcelas: uma devida às forças aplicadas (acção hidrostática), \(\varepsilon^H(t) \), e outra devida às deformações impostas (acções térmicas), \(\varepsilon^D(t) \),

\[
\varepsilon(t) = \varepsilon^H(t) + \varepsilon^D(t)
\]

(5-40)

A parcela \(\varepsilon^H(t) \) pode, por sua vez, ser decomposta numa parcela elástica instantânea \(\varepsilon_e^H(t) \) e numa parcela diferida \(\varepsilon_f^H(t) \), pelo que

\[
\varepsilon(t) = \varepsilon_e^H(t) + \varepsilon_f^H(t) + \varepsilon^0(t)
\]

(5-41)

A parcela \(\varepsilon^0(t) \) inclui as extensões devidas às restrições estruturais \(\varepsilon^{0r}(t) \) e as extensões livres \(\varepsilon^0(t) \), isto é,

\[
\varepsilon^0(t) = \varepsilon^{0r}(t) + \varepsilon^0(t)
\]

(5-42)

Como as extensões \(\varepsilon^0(t) \) podem ser medidas usando extensómetros correctores, a expressão de separação de efeitos (5-42) pode ser escrita sob a forma

\[
\varepsilon(t) - \varepsilon^0(t) = \varepsilon_e^H(t) + \varepsilon_f^H(t) + \varepsilon^{0r}(t)
\]

(5-43)

As tensões correspondentes à parcela \(\varepsilon^{0r}(t) = \varepsilon^0(t) - \varepsilon^0(t) \) relaxam ao longo do tempo, enquanto que as tensões associadas à parcela elástica instantânea \(\varepsilon_e^H(t) \) não relaxam e são apenas dependentes das acções. As extensões diferidas \(\varepsilon_f^H(t) \) não produzem tensões. Assim,
para estados tridimensionais de tensão σ a história relativa ao período de exploração normal vem escrita da forma

$$\sigma(t) = D\varepsilon^H(t) + \int_{t_{d0}}^{t} C^{-1}R(t,t')d(\varepsilon^D(t') - \varepsilon^0(t')) \quad (5-44)$$

em que D é a matriz de elasticidade, $C = ED^{-1}$ sendo E o módulo de elasticidade do betão e $R(t,t')$ é a função de relaxação que se pode obter por inversão numérica da função de fluência $J(t,t')$.

A parcela devida às restrições estruturais $\varepsilon^{Dr}(t)$ pode ser decomposta numa parcela sinusoidal $\varepsilon^{Dr}_S(t)$, associada, por exemplo, a variações termo-higrométricas sazonais, e numa parcela não sinusoidal $\varepsilon^{Dr}_N(t)$, relacionada, por exemplo, com expansões, movimentos de fundação, redistribuições devidas a eventuais heterogeneidades das características viscoelásticas ou a acções anteriores ao início do período em análise.

Neste método, adoptando a formulação proposta por Ramos et al., (1987), é possível separar a parcela devida à fluência $\varepsilon^H_f(t)$ dos restantes efeitos do tempo $\varepsilon^{Dr}_N(t)$. Essa formulação parte do conhecimento da relação entre a parcela elástica $\varepsilon^H_e(t)$ e a parcela diferida $\varepsilon^H_f(t)$, recorre à discretização do nível da água da albufeira em patamares constantes e à aplicação do princípio da sobreposição de efeitos. A parcela diferida surge como o somatório das parcelas correspondentes aos vários patamares em que se discretiza o nível da albufeira.

$$\varepsilon^H_f(t) = \sum_{t_{d0}}^{t} \varphi(t,t')\Delta\varepsilon^H_e(t') \quad (5-45)$$

em que o coeficiente de fluência $\varphi(t,t')$ é dado por
Métodos de interpretação quantitativa

\[
\phi(t, t') = \frac{\varepsilon_\varphi''(t)}{\varepsilon_\varphi''(t)} = E(t') J(t, t') - 1
\] (5-46)

e \(\Delta \varepsilon_\varphi''(t') \) é o incremento elástico da extensão devido ao incremento da carga hidrostática \((\Delta H(t') = h_x(t') - h_x(t)) \) correspondente ao patamar definido em \(t' \).

Esta formulação consiste, por exemplo em admitir a seguinte relação

\[
\varepsilon(t) - \varepsilon^0(t) = \frac{a}{E(t)} h^4(t) + \sum_{i=0}^{t} \varphi(t, t') \Delta \varepsilon_\varphi''(t') + b \cos \left(\frac{2\pi}{365} t' \right) + b' \sin \left(\frac{2\pi}{365} t' \right) + k
\] (5-47)

em que \(\Delta \varepsilon_\varphi''(t') = \Delta \left(\frac{a}{E(t')} h^4(t') \right) = \frac{a}{E(t')} (h^4_{t'} - h^4_{t}) \), \(\tilde{t} \) é o número de dias contados desde o início do ano corrente até à época \(t \), e \(a \), \(b \), \(b' \) e \(k \) são as incógnitas que se determinam através da resolução do sistema de \(N \) equações que se obtém aplicando a expressão (5-48) às \(N \) épocas de observação. Uma vez que o termo correspondente à parcela diferida pode ser escrito em função da incógnita \(a \), a equação (5-47) toma a forma seguinte

\[
\varepsilon(t) - \varepsilon^0(t) = \frac{a}{E(t)} \left(h^4(t) + \sum_{i=0}^{t} \varphi(t, t') [h^4_{t'} - h^4_{t}] \right) + b \cos \left(\frac{2\pi}{365} t' \right) + b' \sin \left(\frac{2\pi}{365} t' \right) + k
\] (5-48)

Nesta técnica de separação de efeitos admite-se que as tensões elásticas devidas ao nível da água são independentes do aumento do módulo de elasticidade ao longo do tempo (maturação) pelo que se pode escrever que

\[
\sigma_{\varphi''} = a h^4
\] (5-49)

e

\[
\varepsilon_{\varphi''} = \frac{a}{E(t)} h^4
\] (5-50)
Desta forma é possível obter um modelo de separação de efeitos que permite determinar histórias de tensões a partir de histórias de extensões medidas em grupos de extensômetros considerando explicitamente o efeito da maturação, os efeitos da fluência e da relaxação e o caráter tensorial das extensões e tensões.

Generalizando a equação de separação de efeitos (5-43) ao caso de estados de deformação tridimensionais vem

\[
\varepsilon(t) - \varepsilon^0(t) = \varepsilon^H(t) + \varepsilon^Dr(t) = \varepsilon^H_x(t) + \varepsilon^H_y(t) + \varepsilon^H_z(t) + \varepsilon^Dr_x(t) + \varepsilon^Dr_y(t) + \varepsilon^Dr_z(t) + k
\]

(5-51)

Atendendo ao princípio de sobreposição de efeitos pode-se escrever

\[
\varepsilon^H(t) = \varepsilon^H_x(t) + \varepsilon^H_y(t) + \varepsilon^H_z(t) = \int_{t'=t_0}^{t} C J(t,t') d\sigma^H_x(t')
\]

(5-52)

Atendendo à expressão (5-49) tem-se

\[
d\sigma^H_x(t') = d(a h^4(t')) = a d h^4(t')
\]

(5-53)

em que \(a\) é um vector de constantes. Desta forma (5-52) pode escrever-se como segue

\[
\left(\varepsilon^H(t)\right) = a^T \int_{t'=t_0}^{t} C J(t,t') d h^4(t')
\]

(5-54)

Para o caso de uma função de fluência qualquer escrita na forma

\[
J(t,t_0) = \frac{1}{E(t_0)} + \left[J(t,t_0) - \frac{1}{E(t_0)} \right]
\]

(5-55)
em que surgem separadas as parcelas instantânea e diferida, vem

\[
\left(\varepsilon^H(t)\right)^T = a^T \int_{t'=0}^{t} C \left(\frac{h^4(t')}{E(t')} - \frac{1}{E(t')} \right) d h^4(t') + a^T \int_{t'=0}^{t} J(t,t') \frac{1}{E(t')} d h^4(t')
\] (5-56)

que é equivalente a

\[
\left(\varepsilon^H(t)\right)^T = a^T C \left(\frac{h^4(t)}{E(t)} - \frac{1}{E(t)} \right) + a^T C \int_{t'=0}^{t} J(t,t') \frac{1}{E(t')} d h^4(t')
\] (5-57)

Na expressão (5-57) a primeira parcela do segundo membro corresponde à extensão elástica \(\varepsilon^H_e(t)\) devida ao nível da albufeira, e a segunda à extensão diferida \(\varepsilon^H_f(t)\). Se adoptarmos a notação

\[
L_e(t) = C \left(\frac{h^4(t)}{E(t)} \right)
\] (5-58)

\[
L_f(t) = C \int_{t'=0}^{t} J(t,t') \frac{1}{E(t')} d h^4(t')
\] (5-59)

a expressão (5-57) transforma-se em

\[
\left(\varepsilon^H(t)\right)^T = a^T \left[L_e(t) + L_f(t) \right]
\] (5-60)

O vector de constantes \(a\), que se determina pelo MMQ, tem seis constantes no caso geral e três no caso da hipótese de estado plano de tensão.

Admitindo a separação de efeitos seguinte
\[e(t) - e^0(t) = e^H(t) + \varepsilon_S^D(t) + \varepsilon^D_{NS}(t) + k \]

em que \(e^H(t) \) é dado por (5-60), \(k \) é um vetor de constantes correspondentes ao termo independente, e adoptando, por exemplo,

\[\varepsilon^D_{NS}(t) = \frac{d}{2} t^2 + e t \]

e \(\tilde{t} \) o número de dias contados a partir do princípio do ano correspondente à época de observação, e considerando ainda

\[\varepsilon^D_S(t) = \frac{\tilde{t}}{365} \]

obtém-se um sistema de seis equações para cada época de observação:

\[
\begin{bmatrix}
\varepsilon_1(t)
\varepsilon_2(t)
\varepsilon_3(t)
\gamma_21(t)
\gamma_31(t)
\gamma_22(t)
\end{bmatrix}
=
\begin{bmatrix}
I_{11}(t) & I_{12}(t) & I_{13}(t) & 0 & 0 & 0 & a_1 & b_1 & c_1 & d_1 & e_1 & k_1 \\
I_{21}(t) & I_{22}(t) & I_{23}(t) & 0 & 0 & 0 & a_2 & b_2 & c_2 & d_2 & e_2 & k_2 \\
I_{31}(t) & I_{32}(t) & I_{33}(t) & 0 & 0 & 0 & a_3 & b_3 & c_3 & d_3 & e_3 & k_3 \\
0 & 0 & 0 & I_{44}(t) & 0 & 0 & a_4 & b_4 & c_4 & d_4 & e_4 & k_4 \\
0 & 0 & 0 & 0 & I_{55}(t) & 0 & a_5 & b_5 & c_5 & d_5 & e_5 & k_5 \\
0 & 0 & 0 & 0 & 0 & I_{66}(t) & a_6 & b_6 & c_6 & d_6 & e_6 & k_6
\end{bmatrix}
\]

Neste sistema tem-se

\[I_{11}(t) = I_{22}(t) = I_{33}(t) = \left[\frac{\dot{h}^4(t)}{E(t)} + \sum_{t'=t} \left(J(t,t') - \frac{1}{E(t')} \right) \left(h_{FP}^4(t') - h_{FP}^4(t') \right) \right] \]

\[I_{12}(t) = I_{21}(t) = I_{32}(t) = I_{32}(t) = I_{55}(t) = I_{55}(t) = \frac{\dot{h}^4(t)}{E(t)} + \sum_{t'=t} \left(J(t,t') - \frac{1}{E(t')} \right) \left(h_{FP}^4(t') - h_{FP}^4(t') \right) \]
\[I_{44}(t) = I_{55}(t) = I_{66}(t) = 2(1 + \nu) \left[\frac{h^4(t)}{E(t)} + \sum_{i = 0}^{J} \left(J(t, i') - \frac{1}{E(t)} \right) \left(h_i^4(i') - h_i^4(i) \right) \right] \quad (5-67) \]

Assim, considerando as hipóteses adoptadas obtem-se um sistema de \(6 \times N \) equações, em que \(N \) é o número de épocas de observação existentes, e 36 incógnitas. Após a resolução deste sistema de equações pelo MMQ é possível discretizar em patamares a parcela \(\varepsilon^{Dr}(t) \), de forma a obter a história de tensões através da equação seguinte que resulta da discretização da expressão (5-44):

\[
\begin{bmatrix}
\sigma_{11}(t) \\
\sigma_{22}(t) \\
\sigma_{33}(t) \\
\tau_{23}(t) \\
\tau_{31}(t) \\
\tau_{12}(t)
\end{bmatrix} = \begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5 \\
a_6
\end{bmatrix} \begin{bmatrix}
1 \\
-\nu \\
-\nu \\
0 \\
2(1 + \nu) \\
0
\end{bmatrix} + \begin{bmatrix}
h^4(t) \\
J(t, i') - \frac{1}{E(t)} \\
J(t, i') - \frac{1}{E(t)}
\end{bmatrix}
\]

em que

\[\Delta \varepsilon^{Dr}_{ii}(t') = [\varepsilon^{Dr}_{ii}(t')]_{j} - [\varepsilon^{Dr}_{ii}(t')]_{j} \quad i, j = 1, 2, 3 \quad (5-69) \]

\[\Delta \gamma^{Dr}_{ij}(t') = [\gamma^{Dr}_{ij}(t')]_{j} - [\gamma^{Dr}_{ij}(t')]_{j} \quad i, j = 1, 2, 3 \quad (5-70) \]
sendo

\[\varepsilon_{ij}^{Dr}(t') = b_i \cos(w(t')) + c_j \sin(w(t')) + d_i \ t'^2 + e_i \ t'\]

\[i = 1,2,3\quad (5-71)\]

e

\[\gamma_{ij}^{Dr}(t') = b_k \cos(w(t')) + c_k \sin(w(t')) + d_k \ t'^2 + e_k \ t'\]

\[i = 1,2,3; \quad j = 2,3,1 \quad \text{e} \quad k = 4,5,6\quad (5-72)\]
6 EXEMPLO DE APLICAÇÃO: BARRAGEM DO ALTO LINDOSO

6.1 Descrição geral do aproveitamento

O aproveitamento hidroeléctrico do Alto Lindoso (figura 6-1) está situado no rio Lima, no distrito de Viana do Castelo, a pequena distância da fronteira com Espanha, entre as serras do Soajo e do Gerês. É constituído, essencialmente, por uma barragem do tipo abóbada de dupla curvatura, pelo circuito hidráulico e por uma central subterrânea.

figura 6-1 – Aproveitamento hidroeléctrico do Alto Lindoso. Vista aérea.
A central subterrânea, equipada com dois grupos com potência de 317 MW cada, está situada a uma profundidade de 340 m e pode produzir 970×10^6 kWh em ano médio.

Os descarregadores de cheia, com uma capacidade máxima de descarga total de 2700 m³/s, são em túnel, com comprimentos de 268 m e 238 m, e situam-se na margem direita (EDP, 1983; PNCOLD, 1992). A barragem possui também duas descargas de fundo localizadas na zona central da abóbada.

A albufeira criada pela barragem tem uma área de 1072 ha e um volume de 347,8$ \times 10^6$ m³ (EDP, 1983; PNCOLD, 1992).

6.2 Características da barragem

A barragem é do tipo abóbada de dupla curvatura. A abóbada descarrega os impulsos directamente sobre o maciço de fundação, não possuindo encontros artificiais nem soco. É praticamente simétrica (figura 6-2), tendo uma altura máxima de 110 m acima do ponto mais baixo da fundação e um desenvolvimento de 298 m à cota do coroamento. A espessura da consola de fecho varia entre 4 m, no coroamento, e 21 m, na base (figura 6-3). O volume total de betão da barragem é de 309000 m³.

![figura 6-2 – Barragem do Alto Lindoso: alçado de jusante.](image)
Além da galeria geral de drenagem que se insere ao longo de todo o contacto com a fundação, a barragem possui três galerias de visita horizontais, que penetram cerca de 50 m na fundação em ambas as margens, e cinco galerias radiais situadas próximo da intersecção dos poços de fio de prumo com a galeria geral de drenagem.

6.3 Sistema de observação

O sistema de observação da barragem visa o controlo das acções, a caracterização das propriedades reológicas, térmicas e hidráulicas dos materiais e o controlo da resposta da estrutura (Braga, 2000).

As acções a controlar são:

- as relativas ao efeito da água, nomeadamente a pressão hidrostática, as subpressões, as pressões no corpo da barragem e as acções químicas;
- as devidas às variações de temperatura.
Na barragem do Alto Lindoso o nível da albufeira é controlado através de um limnígrafo, que permite registar a evolução da cota da albufeira ao longo do tempo, e por uma escala de níveis instalada na superfície da tomada de água. A medição das subpressões no contacto barragem-fundação é feita através da leitura dos valores registados na rede piezométrica, que engloba 23 piezómetros. As pressões no interior do betão são observadas por meio de dois conjuntos de três medidores de pressão instalados em duas secções da consola central (bloco 11/12) (ver figura 6-4) às cotas 310,00 e 236,00. Relativamente às acções químicas, estas são controladas através de análises periódicas efectuadas à água da albufeira e à água coletada nos drenos, tendo em vista a determinação do seu pH, da mineralização, do resíduo seco e da alcalinidade antes e após contacto com carbonato de cálcio.

No que se refere às acções térmicas, a medição da temperatura do ar no local da barragem do Alto Lindoso é feita através de um termohigrógrafo. Relativamente às variações de temperatura no betão da barragem, estas são controladas através da aparelhagem eléctrica embbedida, nomeadamente 236 extensómetros Carlson, 190 medidores de movimento de junta, 70 termómetros de resistência, 10 células tensométricas Carlson e 6 medidores de pressão.

figura 6-4 - Sistema de observação da barragem do Alto Lindoso. Medição de deslocamentos e do estado de deformação e tensão.
O controlo da resposta estrutural é feito através da medição de:

- deslocamentos absolutos da superestrutura;
- movimentos diferenciais entre blocos;
- movimentos ao longo da superfície de contacto barragem-fundação;
- extensões;
- tensões;
- caudais.

Os deslocamentos da superestrutura são observados através da leitura de 23 bases de coordinómetro localizadas em 5 fios de prumo, e através do movimento de pontos que materializam os vértices de poligonais nas três galerias de visita (ver figura 6-4) e através de medição de deslocamentos verticais de marcas de nivelamento.

Para medição dos movimentos diferenciais entre blocos são utilizadas 107 bases de alongámetro instaladas nas galerias de visita e 190 medidores de movimento de junta distribuídos na superfície das juntas, entre galerias.

Relativamente aos movimentos da superfície do contacto barragem-fundação, existem 18 extensómetros de fundação que permitem observar os empolamentos e (ou) assentamentos de pontos situados naquela interface.

A medição das extensões no betão é feita em grupos de extensómetros havendo três tipos, nomeadamente os unidireccionais, na presente barragem designados por G1 a G10 e colocados na vizinhança do coroamento, os planos localizados nas proximidades dos paramentos onde se pode admitir um estado de tensão plano, e os tridimensionais com designações G16, G23, G28, G31, G34 e G37, situados a meia espessura (ver localizações na figura 6-4).
A medição directa de tensões é efectuada em oito células tensométricas, designadas pela letra C seguida de um número de ordem, situadas nos blocos 6/7, 11/12 e 16/17 (ver figura 6-4).

Durante a construção foram ainda instaladas na barragem 6 células de fluência, localizadas nos blocos 7/8, 10/11, 11/12, 12/13 e 13/14 (ver figura 6-4) visando a caracterização das propriedades reológicas do betão, nomeadamente o módulo de elasticidade e a fluência.

6.4 Modelo para interpretação quantitativa das extensões observadas

A interpretação quantitativa das extensões observadas foi efectuada utilizando o modelo de separação de efeitos descrito no ponto 5.4.4 do Capítulo 5.

A apresentação dos estudos resultantes da interpretação quantitativa efectuada iniciar-se-á pelos extensómetros unidireccionais, seguindo-se os grupos planos e, finalmente, os grupos tridimensionais.

6.4.1 Extensómetros unidireccionais

No caso concreto dos grupos de extensómetros unidireccionais G1 a G10 localizados na vizinhança do coroamento (figura 6-4), a formulação que por intermédio do modelo de interpretação quantitativa possibilitou o melhor ajuste às extensões observadas é traduzida pela expressão

\[e(t) - e^0(t) = \frac{a}{E(t)} \left(h^4(t) + \sum_{t=0}^{t} \phi(t,t') \left[h^2_{t'}(t') - h^1_{t'}(t') \right] \right) + b_1 \theta_1(t) + b_2 \theta_2(t) + b_3 \theta_3(t) + c t + k \]

(6-1)

em que \(h(t) \) é a altura da água na albufeira na época \(t \), sendo \(t \) número de dias contados a partir de uma data tomada como referência, \(\theta_1(t) \) e \(\theta_2(t) \) são as temperaturas lidas em dois
extensómetros, $\theta_3(t)$ é a temperatura lida no extensómetro em análise, a parcela c_t representa o efeito do “tempo”, pretendendo-se desta forma englobar deformações permanentes devidas a outras causas, nomeadamente assentamentos de fundação, abertura de juntas e fissuração, e k é uma constante. $E(t)$ é o módulo de elasticidade do betão na data em análise, cujo gráfico de evolução no tempo é, para os betões integral e crivado da barragem do Alto Lindoso, representado na figura 6-5.

![Figura 6-5](attachment:image.png)

Figura 6-5 – Evolução do módulo de elasticidade dos betões integral e crivado

Na expressão (6-1) as parcelas

$$\frac{a}{E(t)} h^i(t)$$

(6-2)

e

$$\frac{a}{E(t)} \sum_{t \leq t_i} \varphi(t, t') [h_E^i(t') - h_I^i(t')]$$

(6-3)

correspondem, respectivamente, aos efeitos instantâneo e diferido da pressão hidrostática na data t, sendo $h_I(t')$ e $h_E(t')$ as alturas da água na albufeira no início e no fim do patamar de discretização.
Na formulação escolhida foram consideradas as temperaturas $\theta_1(t)$ e $\theta_2(t)$ medidas nos extensómetros G15 e G17 situados na consola de fecho à cota 310,5 (ver figura 6-4), uma vez que a sua localização na vizinhança de cada um dos paramentos fornece uma caracterização adequada do estado térmico da estrutura. Efectivamente, uma vez que nas barragens abóbada o fluxo térmico durante a fase de exploração é essencialmente unidirecional, dando-se as trocas de calor preferencialmente na direcção montante-jusante, a escolha daqueles extensómetros teve em consideração o facto de estarem afastados do coroamento e do contacto com a fundação, sendo a respectiva informação sobre a temperatura menos afectada por aquelas condições fronteira. Por outro lado, aqueles extensómetros foram ainda seleccionados por se localizarem próximo da consola de fecho, a fim de minimizarem a influência de eventuais assimetrias do campo térmico. A consideração da temperatura $\theta_3(t)$ lida no extensómetro que se pretende estudar permite entrar em linha de conta com eventuais desvios entre os estados térmicos local e global.

6.4.1.1 Interpretação quantitativa de extensões e cálculo de tensões

Nas figuras 6-6 a 6-11 apresentam-se os resultados da aplicação do modelo de interpretação quantitativa às extensões observadas nos grupos G1, G2, G5, G6, G9 e G10, assim seleccionados por reproduzirem a evolução de extensões praticamente unidireccionais na proximidade do coroamento. Os resultados das interpretações quantitativas efectuadas para os restantes extensómetros unidireccionais instalados na barragem são apresentados no Anexo A1.

Nas figuras 6-6 a 6-11 “Hid inst” representa a parcela correspondente ao efeito instantâneo da acção hidrostática, sendo destacado com “Hid fluencia” o efeito diferido associado a essa acção. As curvas designadas por “Temperatura” e “Tempo” representam, respectivamente, os efeitos da acção térmica e de deformações permanentes devidas a outras causas. Finalmente as curvas assinaladas com “res” representam a diferença entre os valores calculados e os observados para extensões unidireccionais. Nesses gráficos está também representada em “Albuf” a evolução do nível de água na albufeira.
A análise das figuras 6-6 a 6-11 permite verificar que as extensões previstas através do modelo de interpretação quantitativa (assinaladas pelas curvas “E calc”) têm evoluções próximas das medidas nos grupos (curvas “E lido”), facto pelo qual as curvas “res” traduzem diferenças com valores muito pequenos. Observa-se ainda que a parcela resultante da acção térmica é nitidamente preponderante em relação à correspondente ao efeito hidrostático.
A partir do modelo de interpretação adoptado obteve-se a história das extensões que produzem tensões. Obtida essa história e feita a sua discretização em patamares (ver exemplo para o grupo G1 reproduzido na figura 6-12), utilizando a expressão (5-68) para um estado de tensão unidireccional

\[
\sigma(t) = a h^4(t) + \sum_{t'=0}^{t} R(t,t') \Delta e^D(t')
\]

(6-4)

procedeu-se ao cálculo das tensões correspondentes, que para os grupos de extensómetros G5 e G6 se reproduzem nas figuras 6-13 e 6-14, respectivamente (as tensões nos restantes extensómetros unidireccionais são apresentadas no Anexo A2). Nestas figuras “S Hid”
representa a parcela das tensões devida à acção hidrostática e “S Temper+Fluência” a parcela devida à acção térmica e à fluência. “S total” é a tensão total correspondente à soma dessas duas parcelas.

figura 6-12 – Grupo G1. Discretização em patamares das extensões que produzem tensões que relaxam no tempo

figura 6-13 – Grupo G5. Tensões.

Através da análise dos gráficos de evolução das tensões constata-se, tal como mencionado para as extensões, que a parcela correspondente à acção térmica é preponderante relativamente à da acção hidrostática.
6.4.2 Grupos planos de extensómetros

A metodologia de interpretação quantitativa de extensões referida anteriormente foi igualmente aplicada aos grupos planos de extensómetros instalados na barragem, os quais se localizam nas proximidades dos paramentos. Previamente efectuou-se uma correcção dos valores observados levando em linha de conta a condição de verificação do primeiro invariante do tensor das deformações, processo que se descreve em continuação.

6.4.2.1 Correcção das extensões observadas

Para a montagem de extensómetros esquematizada na figura 3-3 o primeiro invariante do tensor das deformações pode ser obtido por qualquer uma das expressões seguintes:

\[I_1 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 \]
\[I_1 = \varepsilon_2 + \varepsilon_6 + \varepsilon_7 \] (6-5)

Contudo, como as extensões medidas contêm erros, estas duas expressões conduzem, habitualmente, a resultados não coincidentes. Pode, por isso, escrever-se a equação seguinte que traduz a diferença \(\Delta \) entre os dois valores calculados do primeiro invariante:

\[\varepsilon_1 + \varepsilon_3 = \varepsilon_6 + \varepsilon_7 + \Delta \] (6-6)

De forma a satisfazer as equações (6-5) as extensões lidas necessitam de ser corrigidas, o que foi efectuado da forma seguinte:

\[\varepsilon'_1 = \varepsilon_1 - \Delta / 4 \]
\[\varepsilon'_3 = \varepsilon_3 - \Delta / 4 \]
\[\varepsilon'_6 = \varepsilon_6 + \Delta / 4 \]
\[\varepsilon'_7 = \varepsilon_7 + \Delta / 4 \] (6-7)
6.4.2.2 Interpretação quantitativa de extensões e cálculo de tensões

Utilizando como base a metodologia adoptada para a interpretação quantitativa das extensões lidas nos extensómetros unidireccionais, a interpretação das extensões observadas nos grupos planos de extensómetros será efectuada por generalização daquela a um estado plano de tensão. Assim a expressão (6-1) é reescrita sob a forma

\[
\begin{bmatrix}
\varepsilon_x(t) \\
\varepsilon_y(t) \\
\gamma_{xy}(t)
\end{bmatrix}
- \begin{bmatrix}
\varepsilon_x^0(t) \\
\varepsilon_y^0(t) \\
\gamma_{xy}^0(t)
\end{bmatrix}
= \frac{1}{E(t)} \begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix} \left[C \left(h^i(t) + \sum_{i=1}^{4} \varphi(t, t') \left[b_1^i(t') - b_1^i(t) \right] \right) + \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix} \theta_1(t) + \begin{bmatrix}
b_2 \\
b_3 \\
b_3
\end{bmatrix} \theta_2(t) + \begin{bmatrix}
b_3 \\
b_3 \\
b_3
\end{bmatrix} \theta_3(t) \right]
\]

em que \(\varepsilon_x \) e \(\varepsilon_y \) são as extensões segundo os eixos locais do grupo de extensómetros e \(\gamma_{xy} \) designa a distorção associada a essas direcções.

O resultado da interpretação quantitativa efectuada para o grupo de extensómetros G15, que se considerou representativo por se encontrar na consola de fecho (ver figura 6-4), é apresentado na figura 6-15. Nessas figuras “Ex lido”, “Ey lido” e “Gxy lido” representam, respectivamente, as extensões e a distorção lidas, sendo “Ex calc”, “Ey calc” e “Gxy calc” os correspondentes valores calculados. A análise dos gráficos apresentados nesta figura revela a existência de uma boa concordância entre as componentes do tensor das deformações calculadas e das observadas.

No Anexo A4 apresentam-se os resultados da interpretação quantitativa efectuada para os restantes grupos planos existentes na barragem.
A partir do modelo de interpretação adoptado obteve-se a história das extensões que produzem tensões. Procedendo à discretização daquela em patamares, e particularizando a expressão (5-68) para estados de tensão planos, isto é,
procedeu-se ao cálculo das tensões, que para o grupo G15 se reproduzem na figura 6-16. A análise das curvas que integram essa figura mostra que a componente horizontal σ_x, referenciada na figura por “S_x”, é fortemente influenciada pela variação do nível da água na albufeira, enquanto que a componente vertical σ_y, designada na figura por “S_y”, depende essencialmente da variação sazonal da temperatura. A componente tangencial τ_{xy}, representada por “T_{xy}” na figura, mantém-se praticamente constante e muito próxima de zero.

figura 6-16 – Componentes do tensor das tensões calculadas no grupo G15

6.4.3 Grupos tridimensionais de extensómetros

A metodologia referida anteriormente foi também aplicada aos grupos tridimensionais de extensómetros instalados na barragem.
6.4.3.1 Correção das extensões observadas

À semelhança do mencionado a propósito dos grupos planos de extensômetros, também nos grupos tridimensionais não se verifica habitualmente a igualdade entre as várias equações que traduzem o primeiro invariante do tensor das deformações. Para a montagem esquematizada na figura 3-3 a verificação do primeiro invariante obrigaria a que

\[\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \varepsilon_1 + \varepsilon_4 + \varepsilon_5 = \varepsilon_2 + \varepsilon_6 + \varepsilon_7 = \varepsilon_3 + \varepsilon_8 + \varepsilon_9 \]

(6-10)

Os valores lidos contêm erros, pelo que

\[\varepsilon_1 + \varepsilon_3 = \varepsilon_1 + \varepsilon_7 + R_1 \]
\[\varepsilon_2 + \varepsilon_3 = \varepsilon_4 + \varepsilon_5 + R_2 \]
\[\varepsilon_1 + \varepsilon_2 = \varepsilon_8 + \varepsilon_9 + R_3 \]

(6-11)

em que \(R_1, R_2 \) e \(R_3 \) são resíduos.

Distribuindo os resíduos pelas variáveis intervenientes

\[(\varepsilon_1 + \Delta\varepsilon_1) + (\varepsilon_3 + \Delta\varepsilon_3) = (\varepsilon_1 + \Delta\varepsilon_7 + \Delta\varepsilon_9) + (\varepsilon_7 + \Delta\varepsilon_7) \]
\[(\varepsilon_2 + \Delta\varepsilon_2) + (\varepsilon_3 + \Delta\varepsilon_3) = (\varepsilon_4 + \Delta\varepsilon_4) + (\varepsilon_5 + \Delta\varepsilon_5) \]
\[(\varepsilon_1 + \Delta\varepsilon_1) + (\varepsilon_2 + \Delta\varepsilon_2) = (\varepsilon_8 + \Delta\varepsilon_8) + (\varepsilon_9 + \Delta\varepsilon_9) \]

(6-12)

Das expressões anteriores (6-11) e (6-12) resulta que

\[\Delta\varepsilon_1 + \Delta\varepsilon_3 = \Delta\varepsilon_9 + \Delta\varepsilon_7 - R_1 \]
\[\Delta\varepsilon_2 + \Delta\varepsilon_3 = \Delta\varepsilon_4 + \Delta\varepsilon_5 - R_2 \]
\[\Delta\varepsilon_1 + \Delta\varepsilon_2 = \Delta\varepsilon_8 + \Delta\varepsilon_9 - R_3 \]

(6-13)

No caso de nenhum dos extensômetros do grupo se encontrar avariado ter-se-á
\[\Delta \varepsilon_6 = \Delta \varepsilon_7 = E_1 \]
\[\Delta \varepsilon_4 = \Delta \varepsilon_5 = E_2 \]
\[\Delta \varepsilon_8 = \Delta \varepsilon_9 = E_3 \]

onde resulta que

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{bmatrix}
\begin{Bmatrix}
\Delta \varepsilon_1 \\
\Delta \varepsilon_2 \\
\Delta \varepsilon_3
\end{Bmatrix} =
\begin{Bmatrix}
2E_1 - R_1 \\
2E_2 - R_2 \\
2E_3 - R_3
\end{Bmatrix}
\]

(6-15)

Resolvendo este sistema de equações tem-se

\[
\begin{bmatrix}
\Delta \varepsilon_1 \\
\Delta \varepsilon_2 \\
\Delta \varepsilon_3
\end{bmatrix} =
\begin{bmatrix}
1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & 1 & -1
\end{bmatrix}
\begin{Bmatrix}
2E_1 - R_1 \\
2E_2 - R_2 \\
2E_3 - R_3
\end{Bmatrix}
\]

(6-16)

Minimizando a soma \(S \) dos quadrados das correções a efectuar nas diversas leituras

\[S = \Delta \varepsilon_1^2 + \Delta \varepsilon_2^2 + \Delta \varepsilon_3^2 + \Delta \varepsilon_4^2 + \Delta \varepsilon_5^2 + \Delta \varepsilon_6^2 + \Delta \varepsilon_7^2 + \Delta \varepsilon_8^2 + \Delta \varepsilon_9^2 \]

(6-17)

e utilizando as equações (6-14) e (6-16), obtém-se as correções a aplicar a cada uma das medidas para que seja satisfeita a condição relativa ao primeiro invariante do tensor das deformações.

6.4.3.2 Interpretação quantitativa das extensões e cálculo de tensões

Utilizando a metodologia adoptada para a interpretação quantitativa das extensões lidas nos extensômetros unidireccionais e nos grupos planos, proceder-se-á à interpretação quantitativa das extensões observadas nos grupos tridimensionais de extensômetros. Neste caso a expressão (6-1) toma a forma
em que \(\varepsilon_x \), \(\varepsilon_y \) e \(\varepsilon_z \) são as extensões segundo os eixos locais do grupo de extensómetros e \(\gamma_{xy} \), \(\gamma_{yx} \) e \(\gamma_{zx} \) as distorções associadas a essas direcções.

O resultado da interpretação quantitativa efectuada para o grupo G16 localizado na zona alta da parte central da barragem, no bloco 11/12 (ver figura 6-4), é apresentado na figura 6-17 para as seis componentes do tensor das deformações. Nessa figura “Ex”, “Ey”, “Ez” representam as extensões e “Gxy”, “Gyz” e “Gzx” as distorções relativas aos eixos locais do grupo de extensómetros. A análise desta figura mostra que a concordância das extensões calculadas relativamente aos valores observados é razoável para qualquer uma das componentes do tensor das deformações.

No Anexo A6 apresentam-se os gráficos correspondentes aos restantes grupos tridimensionais.
Utilizando o procedimento base descrito na equação (6-9) para os grupos planos, a determinação das tensões correspondentes aos grupos tridimensionais é efetuada de acordo com a expressão

\[
\begin{bmatrix}
\sigma_x(t) \\
\sigma_y(t) \\
\sigma_z(t) \\
\tau_{xy}(t) \\
\tau_{yz}(t) \\
\tau_{zx}(t)
\end{bmatrix}
= \begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5 \\
a_6
\end{bmatrix}
\begin{bmatrix}
1 & -\nu & 0 & 0 & 0 \\
-\nu & 1 & -\nu & 0 & 0 \\
-\nu & -\nu & 1 & 0 & 0 \\
0 & 0 & 0 & 2(1+\nu) & 0 \\
0 & 0 & 0 & 0 & 2(1+\nu) \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}^{-1}
\sum_{t'=t_0}^{t} \begin{bmatrix}
\Delta \varepsilon_x^{\text{DN}}(t') \\
\Delta \varepsilon_y^{\text{DN}}(t') \\
\Delta \varepsilon_z^{\text{DN}}(t') \\
\Delta \gamma_{xy}^{\text{DN}}(t') \\
\Delta \gamma_{yz}^{\text{DN}}(t') \\
\Delta \gamma_{zx}^{\text{DN}}(t')
\end{bmatrix}
\]

tendo em linha de conta uma prévia discretização da história das extensões que geram tensões. Na figura 6-18 são apresentados os gráficos que traduzem as evoluções das componentes do tensor das tensões assim obtidas para o grupo G16. A análise dessas componentes mostra que as tensões normais \(\sigma_x, \sigma_y \) e \(\sigma_z \), designadas por “Sx”, “Sy” e “Sz” nessa figura, são principalmente influenciadas pela variação do nível da água na albufeira, e que as componentes tangenciais \(\tau_{xy}, \tau_{yz} \) e \(\tau_{zx} \), referenciadas com “Txy”, “Tyz” e “Tzx”, são praticamente nulas.

figura 6-18 – Componentes do tensor das tensões calculadas no grupo G16.
6.5 Comparação com tensões observadas em células tensométricas

Procedeu-se à comparação das tensões calculadas a partir do modelo de interpretação quantitativa das extensões com as medições de tensões efectuadas directamente nas células tensométricas.

Na figura 6-19 apresenta-se uma das comparações efectuadas, relativa à tensão normal ao plano da célula tensométrica C5, sendo a tensão referente ao modelo de interpretação quantitativa calculada a partir das extensões medidas no grupo plano G27 (ver figura 6-4).
Da análise do gráfico apresentado conclui-se que o andamento das curvas é semelhante, embora a amplitude das tensões observadas seja maior do que a das calculadas, o que poderá ser explicado pelos valores dos parâmetros de cálculo das tensões das células tensométricas adoptados. Na realidade trata-se de um aparelho de difícil instalação em obra sendo problemático garantir um bom contacto sobretudo quando há agregados de grandes dimensões.

6.6 Análise pelo método dos elementos finitos

6.6.1 Discretização e modelo reológico

Tendo em vista a comparação das tensões calculadas a partir do modelo de interpretação quantitativa com as obtidas através de uma análise estrutural com um modelo numérico, procedeu-se à discretização da barragem e da fundação utilizando elementos finitos (EF) hexaédricos tridimensionais subparamétricos com oito pontos nodais. A discretização da barragem atendeu ao posicionamento das juntas de contracção, e para melhor reproduzir a variação da acção térmica no sentido montante-jusante foram utilizados três EF na espessura da abóbada, tendo os exteriores um quarto da espessura e o central metade. A discretização envolveu 719 EF, dos quais 369 situam-se na barragem (figura 6-20) e os restantes no maciço de fundação.

Para a determinação das tensões induzidas pela acção térmica admitiu-se um coeficiente de dilatação térmica linear α igual a $1,2 \times 10^{-5}/^\circ\text{C}$. Este valor foi estimado a partir dos valores das extensões observadas nos extensómetros correctores instalados em todos os grupos colocados na barragem. Para esse fim determinou-se o declive da recta que aproxima os pontos representativos dos valores observados das extensões e das temperaturas num referencial $\varepsilon - \theta$, conforme representado na figura 6-21. Efectuado este procedimento para todos os grupos de extensómetros adoptou-se para α a média ponderada dos declives, utilizando como pesos os valores dos coeficientes de correlação entre as temperaturas e as extensões lidas.
Relativamente ao maciço de fundação, que se considerou ser homogéneo e em que não se simulou qualquer tipo de descontinuidade, admitiu-se um comportamento elástico traduzido por um módulo de elasticidade igual a 30 GPa e um coeficiente de Poisson ν igual a 0,2.
Na análise em regime viscoelástico o comportamento reológico do betão foi aproximado através de uma cadeia de Kelvin constituída por um conjunto de seis corpos de Kelvin, tendo cada um rigidez E_i e viscosidade η_i, e um corpo de Hooke, com rigidez E, dispostos em série (ver figura 6-22). Na figura 6-23 apresenta-se a função de Bazant e Panulla adoptada (curvas “BaP”), bem como a sua aproximação pela série de Dirichlet correspondente à cadeia de Kelvin seleccionada.

figura 6-22 - Modelo reológico em cadeia de Kelvin com N unidades

figura 6-23 – Função de fluência de Bazant e Panulla e aproximação pela série de Dirichlet para idades de carga iguais a 1, 2 e 3 anos
Na análise em regime viscoelástico o tempo foi discretizado em intervalos de 6 meses, procedendo-se a cálculos representativos das épocas correspondentes definindo as acções hidrostática e térmica, e alterando os parâmetros viscoelásticos dos corpos de Kelvin em função da maturação. Em cada instante \(t \) o estado de tensão resulta da soma do correspondente ao instante de tempo anterior \(t-\Delta t \), com o incremento \(\Delta \sigma \) que resulta da variação de acções ocorrida no respectivo intervalo \(\Delta t \), intervindo igualmente a relaxação das tensões de toda a história passada conforme a equação (6-20):

\[
\Delta \sigma = C^{-1} E^* \Delta \varepsilon + \Delta \sigma^*
\]

sendo

\[
E^* = \sum_{i=1}^{N} \tau_i E_i \left(1 - e^{\frac{\Delta}{\tau_i}} \right)
\]

\[
\Delta \sigma^* = -\sum_{i=1}^{N} \sigma_i(t_{i-1}) \left(1 - e^{\frac{\Delta}{\tau_i}} \right)
\]

e \(\tau_i \) o tempo de retardação do corpo de Kelvin de ordem \(i \).

6.6.2 Caracterização das épocas de cálculo e das acções

Para proceder à comparação de tensões pretendida foram seleccionadas várias épocas representativas de diferentes situações térmicas da abóbada, bem como de níveis diferenciados da água na albufeira. Assim escolheram-se as épocas de 29-6-1992 (cota da água \(h=325,3 \)), 27-12-1993 (\(h=325,9 \)), 25-6-1997 (\(h=334,3 \)) e 29-6-1999 (\(h=331,2 \)). As acções a definir nestas épocas foram referidas ao início do enchimento da albufeira, ou seja, 6-1-1992.
A quantificação das acções necessárias às análises através do método dos elementos finitos (MEF) foi feita, para a acção hidrostática, através do registo da cota da albufeira para cada época em questão. A acção térmica em cada época estudada foi definida a partir de um programa de cálculo automático que procede à integração da equação de Fourier para fluxo unidireccional

\[
\frac{\partial \theta(t)}{\partial t} = h^2 \nabla^2 \theta(t)
\]

em que \(\theta(t)\) é a temperatura no instante \(t\) e \(h^2 = k/(\rho c)\) é a difusibilidade térmica, sendo \(k\) a condutibilidade térmica, \(\rho\) a massa específica e \(c\) o calor específico. No paramento de jusante e na parte emersa do paramento de montante admitiu-se como condição fronteira a onda térmica do ar dada pela expressão

\[
\theta_{ar}(t) = 14,1 - 6,2 \cos \frac{2\pi}{365}(t - 21)
\]

obtida a partir dos valores das temperaturas lidas no local, que vem também representada na figura 6-24. Nesta expressão \(t\) representa o número de dias contados a partir de 1 de Janeiro. Na parte imersa do paramento de montante a condição fronteira considerada é a correspondente ao diagrama de temperaturas representado na figura 6-25, em que “tag” representa a temperatura média da água, “sag” a semi-amplitude da temperatura da água e “tmin” e “tmax” as temperaturas mínima e máxima, respectivamente.
6.6.3 Comparação das tensões obtidas pelo MEF e pela interpretação quantitativa

6.6.3.1 Análise linear sem efeitos diferidos

Para aferição e validação recíproca dos modelos de interpretação quantitativa e de elementos finitos procedeu-se à comparação dos correspondentes resultados em duas situações em que é válido assumir para a estrutura um comportamento em regime elástico linear, sem efeitos diferidos. Por um lado testou-se o efeito da acção hidrostática comparando duas épocas termicamente semelhantes e suficientemente próximas no tempo para que se pudessem considerar desprezáveis os efeitos diferidos; as épocas adoptadas neste caso foram 12-12-1995 e 8-1-1996, nas quais o nível de água na albufeira se encontrava, respectivamente, às cotas 315,2 e 338,1. Por outro lado, para verificação dos efeitos da acção térmica, escolheram-se duas épocas em que o nível de água na albufeira fosse o mesmo, sendo uma
representativa do período frio, para o que se selecionou 6-2-1995, e outra do período quente, considerando-se então 7-8-1995.

As tensões normais horizontais obtidas em cada um dos casos para o arco do coroamento e para a consola de fecho estão representadas nas figuras 6-26 e 6-27. Para a acção térmica verifica-se que há uma boa concordância entre as tensões calculadas pelo MEF e as obtidas a partir da interpretação quantitativa no paramento de montante, quer ao longo do arco do coroamento quer na consola de fecho. No paramento de jusante a aproximação só é boa a meio do arco do coroamento. Verifica-se que para a acção hidrostática, embora a forma dos diagramas de tensões obtidos no arco do coroamento seja análoga à da interpretação quantitativa, o MEF sobrestima aquelas tensões; situação inversa ocorre para as cotas inferiores, na consola de fecho.

Um aspecto a referir que pode explicar esta diferença de tensões prende-se com o facto do compartimento superior das juntas de contracção só ter sido injectado durante o mês de Maio, altura em que essa zona da barragem se encontrava a uma temperatura superior à prevista no projecto. Consequentemente os arcos superiores só começaram a ter continuidade estrutural após a albufeira alcançar um nível relativamente alto. Assim, enquanto a albufeira se encontra a um nível mais baixo toda a acção hidrostática é suportada pela parte monolítica da barragem, o que provoca uma transferência das tensões horizontais para os arcos inferiores. Este facto pode explicar terem-se encontrado tensões horizontais maiores através do MEF do que as obtidas pela interpretação quantitativa. O modelo de EF utilizado não reproduz essa situação, que requereria a utilização de um modelo com elementos de junta e em que se representasse a situação inicial de abertura parcial das juntas na vizinhança do coroamento.

Há a assinalar ainda que as condições de apoio na parte superior da barragem poderão não ter sido impostas considerando o limite do maciço de fundação suficientemente afastado do contacto com a abóbada, o que terá introduzido uma rigidez superior à real nessa zona, conduzindo a maiores tensões no modelo do MEF.
Capítulo 6

114

Arco do coroamento

Desenvolvimento do arco do coroamento (m)

Consola de fecho

Profundidade da consola de fecho (m)

MEF-mon Interp-mon Interp-jus MEF-jus

MEF-mon Interp-mon Interp-jus MEF-jus

figura 6-26 – Tensões normais horizontais devidas à variação da acção térmica entre 6-2-1995 ($h = 324,4$) e 7-8-1996 ($h = 324,4$)

figura 6-27 - Tensões normais horizontais devidas à variação da acção hidrostática entre 12-12-1995 ($h = 315,2$) e 8-1-1996 ($h = 338,1$)

Essa diferença de tensões pode também estar relacionada com a forma como foi considerada a parcela correspondente ao efeito hidrostático no modelo de interpretação quantitativa, em que as tensões foram consideradas proporcionais à quarta potência da altura.
Exemplo de aplicação: barragem do Alto Líndoso

115

de água na albufeira. Poder-se-ia ter utilizado para representação destas tensões uma função
determinada através de análises efectuadas pelo MEF para diferentes níveis de água na
albufeira. Dessa forma esta acção estaria a ser representada por uma função com significado
físico, e provavelmente mais próxima da realidade. Por outro lado a função representativa do
efeito hidrostático foi estabelecida com base em campanhas efectuadas, genericamente, com a
albufeira a cotas altas, o que conduz a uma lei que, muito provavelmente, não traduz de forma
adeguada o efeito hidrostático resultante de grandes variações da cota da albufeira.

6.6.3.2 Análise linear com efeitos diferidos

Nas figuras 6-28, 6-30, 6-32 e 6-34 procedeu-se à representação, nos paramentos, das
tensões principais obtidas pelo MEF (a preto) e das determinadas a partir da interpretação
quantitativa das extensões observadas (a vermelho), nas quatro épocas escolhidas. Em ambos
os modelos os efeitos da fluência e da maturação do betão foram tidos em consideração de
acordo com os procedimentos referidos anteriormente. Na parte superior e na zona central da
abóbada pode dizer-se que a concordância é boa, tanto em termos da grandeza como das
direcções das tensões principais representadas. Globalmente constata-se que a interpretação
quantitativa conduziu a tensões principais maiores do que as obtidas pelo MEF, sendo este
aspecto mais patente na proximidade do contacto com a fundação. Na figura 6-29 apresentam-
se as tensões horizontais no arco do coroamento e na consola de fecho em 29-6-1992.

Na primeira época apresentada (figura 6-28 e figura 6-29) existe genericamente uma
razoável concordância entre as tensões resultantes da interpretação quantitativa e as obtidas
pelo MEF. No entanto os grupos G14 e G19 revelam componentes subverticais das tensões
que não são consentâneas com o estado de tensão instalado nessa zona da barragem, conforme
amplamente reconhecido e traduzido pelo MEF. Analisando em particular a aproximação
obtida no arco do coroamento (figura 6-29), verifica-se que as discrepâncias entre os valores
das tensões horizontais obtidas pelo MEF relativamente às determinadas pela interpretação
quantitativa oscilam entre 3%, no grupo G2 a montante, e 73%, no grupo G6 também a
montante. Nas análises apresentadas seguidamente as discrepâncias são iguais ao quociente
entre a diferença das tensões obtidas pelos dois métodos e a tensão resultante da interpretação
quantitativa. Ao longo da consola de fecho as diferenças encontradas entre as tensões horizontais calculadas pelos dois processos oscilam entre 26% e 76% nos grupos G6 e G35 localizados no paramento de montante, e 9% e 87% nos grupos G5 e G33, a jusante. A informação relativa à comparação entre as tensões horizontais calculadas pelo modelo de interpretação quantitativa e pelo MEF no arco do coroamento, grupos G1 a G10, e na consola de fecho, grupos G5, G6, G15, G17, G33 e G35, encontra-se condensada na Tabela 1.

figura 6-28 – Tensões principais obtidas pelo MEF (a preto) e pela interpretação quantitativa (a vermelho) em 29-6-1992 (t=325,3)
Exemplo de aplicação: barragem do Alto Lindoso

Arco do coroamento

Consola de fecha

figura 6-29 - Tensões normais horizontais no arco do coroamento e na consola de fecho em 29-6-1992

Tabela 1 – Comparação entre as tensões horizontais calculadas pelo MEF e pela interpretação quantitativa em 29-6-1992

<table>
<thead>
<tr>
<th>Grupo</th>
<th>σ_x (MPa)</th>
<th>MEF</th>
<th>Desvio (%)</th>
<th>σ_x (MPa)</th>
<th>MEF</th>
<th>Desvio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>-2.81</td>
<td>-0.75</td>
<td>73%</td>
<td>G8</td>
<td>-2.07</td>
<td>-2.32</td>
</tr>
<tr>
<td>G2</td>
<td>-2.46</td>
<td>-2.54</td>
<td>3%</td>
<td>G9</td>
<td>-1.83</td>
<td>-0.59</td>
</tr>
<tr>
<td>G3</td>
<td>-2.03</td>
<td>-1.41</td>
<td>31%</td>
<td>G10</td>
<td>-2.58</td>
<td>-2.42</td>
</tr>
<tr>
<td>G4</td>
<td>-2.23</td>
<td>-2.35</td>
<td>5%</td>
<td>G15</td>
<td>-4.01</td>
<td>-1.51</td>
</tr>
<tr>
<td>G5</td>
<td>-2.09</td>
<td>-1.89</td>
<td>9%</td>
<td>G17</td>
<td>-2.55</td>
<td>-1.94</td>
</tr>
<tr>
<td>G6</td>
<td>-2.10</td>
<td>-1.56</td>
<td>26%</td>
<td>G33</td>
<td>-3.14</td>
<td>-0.40</td>
</tr>
<tr>
<td>G7</td>
<td>-1.59</td>
<td>-1.51</td>
<td>5%</td>
<td>G35</td>
<td>-0.82</td>
<td>-0.20</td>
</tr>
</tbody>
</table>

Na segunda época analisada (figura 6-30 e figura 6-31) assiste-se a uma menor concordância entre as tensões obtidas pelos dois modelos embora a aproximação obtida se possa considerar ainda razoável. Efectivamente as discrepâncias entre o modelo de interpretação quantitativa e o MEF oscilam entre um mínimo de 2% no grupo G4, localizado
a montante, e um máximo de 83% no grupo G9, situado a jusante. Ao longo da consola de fecho as discrepâncias encontradas oscilam entre 45% e 55% nos grupos G17 e G6, a montante, e 57% e 60% nos grupos G5 e G33, a jusante (Tabela 2).
figura 6-31 - Tensões normais horizontais no arco do coroamento e na consola de fecho em 27-12-1993

Tabela 2 – Comparação entre as tensões horizontais calculadas pelo MEF e pela interpretação quantitativa em 27-12-1993

<table>
<thead>
<tr>
<th>Grupo</th>
<th>(\sigma_x) (MPa)</th>
<th>(\sigma_x) (MPa)</th>
<th>Desvio (%)</th>
<th>Grupo</th>
<th>(\sigma_x) (MPa)</th>
<th>(\sigma_x) (MPa)</th>
<th>Desvio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>-0.99</td>
<td>-0.39</td>
<td>60%</td>
<td>G8</td>
<td>-1.20</td>
<td>-1.00</td>
<td>17%</td>
</tr>
<tr>
<td>G2</td>
<td>-0.76</td>
<td>-0.82</td>
<td>8%</td>
<td>G9</td>
<td>-0.72</td>
<td>-0.13</td>
<td>83%</td>
</tr>
<tr>
<td>G3</td>
<td>-0.85</td>
<td>-0.43</td>
<td>50%</td>
<td>G10</td>
<td>-0.88</td>
<td>-0.81</td>
<td>8%</td>
</tr>
<tr>
<td>G4</td>
<td>-0.99</td>
<td>-1.01</td>
<td>2%</td>
<td>G15</td>
<td>-2.98</td>
<td>-1.38</td>
<td>54%</td>
</tr>
<tr>
<td>G5</td>
<td>-1.58</td>
<td>-0.68</td>
<td>57%</td>
<td>G17</td>
<td>-2.97</td>
<td>-1.63</td>
<td>45%</td>
</tr>
<tr>
<td>G6</td>
<td>-1.26</td>
<td>-0.57</td>
<td>55%</td>
<td>G33</td>
<td>-1.33</td>
<td>-0.53</td>
<td>60%</td>
</tr>
<tr>
<td>G7</td>
<td>-0.65</td>
<td>-0.52</td>
<td>19%</td>
<td>G35</td>
<td>-1.06</td>
<td>-0.52</td>
<td>51%</td>
</tr>
</tbody>
</table>

Para a época de 25-6-1997 (figura 6-32 e figura 6-33) a concordância entre as tensões principais calculadas pelo modelo de interpretação quantitativa e pelo MEF é boa. No arco do coroamento, e de acordo com a Tabela 3, a discrepância entre essas tensões oscila entre 2% no grupo G2, a montante, e 67% no grupo G1, a jusante. Ao longo da consola de fecho há...
discrepâncias significativas entre as tensões calculadas pelos dois modelos, tal como se pode ver na Tabela 3.

figura 6-32 – Tensões principais obtidas pelo MEF (a preto) e pela interpretação quantitativa (a vermelho) em 25-6-1997 \((h=334,3)\)
Exemplo de aplicação: barragem do Alto Lindoso

Arco do coroamento

![Diagrama do desenvolvimento do arco do coroamento (m)]

Consola de fecho

![Diagrama da profundidade da consola de fecho (m)]

figura 6-33 - Tensões normais horizontais no arco do coroamento e na consola de fecho em 25-6-1997

<table>
<thead>
<tr>
<th>Grupos</th>
<th>Desvio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>67%</td>
</tr>
<tr>
<td>G2</td>
<td>2%</td>
</tr>
<tr>
<td>G3</td>
<td>11%</td>
</tr>
<tr>
<td>G4</td>
<td>24%</td>
</tr>
<tr>
<td>G5</td>
<td>25%</td>
</tr>
<tr>
<td>G6</td>
<td>17%</td>
</tr>
<tr>
<td>G7</td>
<td>8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupos</th>
<th>Desvio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G8</td>
<td>8%</td>
</tr>
<tr>
<td>G9</td>
<td>67%</td>
</tr>
<tr>
<td>G10</td>
<td>5%</td>
</tr>
<tr>
<td>G15</td>
<td>55%</td>
</tr>
<tr>
<td>G17</td>
<td>30%</td>
</tr>
<tr>
<td>G33</td>
<td>90%</td>
</tr>
<tr>
<td>G35</td>
<td>53%</td>
</tr>
</tbody>
</table>

Finalmente na quarta época analisada (figura 6-34 e figura 6-35) a concordância entre tensões pode considerar-se razoável ao nível do arco do coroamento, já que a média das discrepâncias entre os valores calculados pelos dois modelos nos diferentes grupos é de 36% correspondendo a um mínimo de 1% no grupo G4, a montante, e um máximo de 80% no grupo G1, a jusante (ver Tabela 4). Em relação à consola de fecho as discrepâncias
encontradas entre as tensões horizontais variam entre 50% e 102% nos grupos G5 e G33, a jusante, e 39% e 52% nos grupos G6 e G35, a montante.

figura 6-34 – Tensões principais obtidas pelo MEF (a preto) e pela interpretação quantitativa (a vermelho) em 29-6-1999 ($h=331.2$)
Exemplo de aplicação: barragem do Alto Lindoso

Arco do coroamento

![Graph of Arco do coroamento](image)

Consola de fecho

![Graph of Consola de fecho](image)

figura 6-35 - Tensões normais horizontais no arco do coroamento e na consola de fecho em 29-6-1999

| Tabela 4 – Comparação entre as tensões horizontais calculadas pelo MEF e pela interpretação quantitativa em 29-6-1999 |
|-------------|-------------|----------------|-------------|-------------|
| | \(\sigma_x \) (MPa) | Interpret. quantitativa | MEF | Desvio (%) | | \(\sigma_x \) (MPa) | Interpret. quantitativa | MEF | Desvio (%) |
| Grupo | | | | | | | | | |
| G1 | -3.54 | -0.72 | 80% | | G8 | -2.91 | -2.54 | 13% |
| G2 | -2.90 | -1.91 | 34% | | G9 | -2.40 | -0.62 | 74% |
| G3 | -2.34 | -1.58 | 32% | | G10 | -2.68 | -2.04 | 24% |
| G4 | -2.69 | -2.68 | 1% | | G15 | -4.21 | -1.83 | 57% |
| G5 | -3.21 | -1.62 | 50% | | G17 | -3.24 | -1.88 | 42% |
| G6 | -2.76 | -1.68 | 39% | | G33 | -2.78 | 0.05 | 102% |
| G7 | -2.06 | -1.77 | 14% | | G35 | -1.45 | -0.60 | 59% |

Seguidamente apresentam-se alguns comentários relativos às discrepâncias encontradas.

Na margem esquerda, e de forma sistemática, as tensões obtidas pela interpretação quantitativa na vizinhança do contacto com a fundação são consideravelmente maiores do que as obtidas pelo MEF (ver figuras 6-28, 6-30, 6-32 e 6-34). Aquelas tensões apresentam, além
disso, uma componente paralela ao contacto com a fundação com valor apreciável, facto que não corresponde ao que é habitual encontrar-se em barragens abóbada. Esses resultados anómalos poder-se-ão dever a uma orientação real dos aparelhos constituintes desses grupos de extensómetros que não corresponde efectivamente à orientação teórica assumida quando é efectuada a interpretação quantitativa. Convém ainda assinalar que a discretização adoptada não contemplou a existência das blocagens na ligação barragem-fundação a montante e a jusante, o que tende a conferir um encastramento suplementar à abóbada que se traduz num aumento das tensões nessa zona.

Além disso a análise das quatro épocas apresentadas mostra que, genericamente, a aproximação entre os resultados do modelo de interpretação quantitativa e os do MEF é melhor no paramento de montante do que no de jusante, e melhor na margem direita do que na esquerda.

Em relação aos resultados da interpretação quantitativa efectuada para os grupos tridimensionais de extensómetros apresentam-se, para duas épocas de cálculo, as tensões normais ao plano de corte resultantes do modelo de elementos finitos (a preto) e a tensão resultante da interpretação para o grupo G16 (a verde) localizado na consola de fecho (figura 6-36 e figura 6-37). Nessas figuras estão também representadas as tensões resultantes da interpretação quantitativa dos grupos unidireccionais G5 e G6 (a vermelho), localizados na mesma secção na vizinhança do coroamento. Por facilidade de apresentação de resultados as tensões que actuam na direcção normal ao plano de corte são representadas por segmentos com direcção a 45º com a horizontal. A análise dessas figuras mostra que a variação das tensões através da espessura é muito acentuada. Assim, o facto de se estarem a representar as tensões nos pontos de Gauss, como acontece nas figuras apresentadas anteriormente, pode corresponder a uma situação sensivelmente afastada da dos grupos de extensómetros em virtude das diferentes localizações duns e doutros.
Exemplo de aplicação: barragem do Alto Lindoso

figura 6-36 – Tensões normais ao plano de corte na secção que contém o grupo tridimensional G16 em 25-6-1997

figura 6-37 – Tensões normais ao plano de corte na secção que contém o grupo tridimensional G16 em 29-6-1999
6.7 Considerações finais

Neste capítulo procedeu-se à aplicação de um modelo de interpretação quantitativa à análise das extensões nos grupos de extensómetros da barragem do Alto Lindoso. A aplicação desse modelo conduziu genericamente a uma boa aproximação dos valores das extensões calculadas relativamente às extensões medidas. No caso dos extensómetros unidireccionais as correlações dos valores observados relativamente aos calculados foram superiores a 0,92. Em relação aos grupos planos de extensómetros a aproximação foi genericamente boa, embora de pior qualidade do que a obtida para os extensómetros unidireccionais, tendo a média dos coeficientes de correlação sido de 0,83 quer para as extensões quer para as distorções. No caso dos grupos tridimensionais a aproximação obtida por aplicação do modelo de interpretação quantitativa pode considerar-se razoável para a generalidade dos aparelhos quando se analisam as extensões, sendo o coeficiente de correlação médio igual a 0,55; as distorções podem considerar-se mal aproximadas, já que o coeficiente de correlação médio foi somente de 0,25. Os erros vão aumentando quando passamos dos grupos unidireccionais para os planos e destes para os tridimensionais porque há interferência dos erros das leituras individuais de cada extensómetro no cálculo das deformações nas diferentes direcções.

Feita a interpretação quantitativa das extensões efectuou-se o cálculo das tensões resultantes considerando-se os efeitos da fluência e da maturação do betão. A validação dos resultados começou por fazer-se através da comparação das tensões determinadas a partir da interpretação quantitativa das extensões com as tensões obtidas por medição directa nas células tensométricas. Uma vez que, genericamente, os resultados de observação dessas células são de má qualidade, a comparação efectuada limitou-se a um grupo de extensómetros localizado no paramento de jusante, a meia altura da encosta direita. Nessa comparação verificou-se que o andamento das curvas representativas das tensões calculadas e observadas é semelhante, embora a amplitude das tensões observadas seja maior do que a das calculadas. Essa discrepância poder-se-á dever quer aos valores dos parâmetros de cálculo das tensões das células tensométricas adoptados, quer ao facto de as condições reais de colocação dessa aparelhagem não reproduzirem in situ as condições laboratoriais para as quais foram concebidas.
Posteriormente procedeu-se à comparação dos resultados da interpretação quantitativa com os de uma análise pelo método dos elementos finitos, em ambos os casos considerando os efeitos da fluência e da maturação do betão. Essa comparação foi feita com base em quatro épocas de cálculo, para as quais se representaram as tensões principais nos paramentos e as tensões horizontais no arco do coroamento e na consola de fecho resultantes dos dois tipos de análises. Para uma das épocas apresentadas essa comparação pode considerar-se boa, já que conduziu a discrepâncias entre ambos os métodos que se podem considerar aceitáveis sendo o ser valor médio no arco do coroamento de 23 a 36%. Genericamente verifica-se que as aproximações obtidas são melhores no paramento de montante e na margem direita. As diferenças encontradas entre os resultados obtidos pelos dois métodos poderão ser devidas quer a inadequações dos modelos de interpretação quantitativa e de elementos finitos quer aos próprios erros inerentes à leitura da aparelhagem de observação.

Assim o modelo de interpretação quantitativa adoptado admite que as tensões são proporcionais à potência quarta da altura da albufeira, hipótese que poderá não traduzir fielmente a evolução das tensões com a acção hidrostática. Além disso o modelo de interpretação quantitativa desenvolvido apoiou-se em observações em que a albufeira se encontrava a cotas altas, pelo que as situações correspondentes a grandes variações do nível da albufeira não deverão estar bem reproduzidas. Em relação ao modelo de EF este não traduziu a situação de abertura das juntas da parte superior da abóbada ocorrida no início do enchimento, o que conduz a uma transferência das tensões para a parte monolítica da barragem reflectindo-se num maior valor das tensões obtidas pelo MEF nos arcos superiores do que as que se terão observado na barragem. Além disso o modelo de EF não considerou a existência das blocagens, o que teria introduzido um encastramento adicional da abóbada com o consequente aumento das tensões correspondentes ao longo do contacto com a fundação.

Os erros resultantes da leitura da aparelhagem de observação foram distribuídos pelos aparelhos constituintes de cada grupo quando se obrigou, em todas as épocas de leitura, que se verificassem as condições do primeiro invariante do tensor das deformações.
7 CONCLUSÃO

7.1 Síntese do trabalho

O trabalho apresentado foi orientado no sentido da determinação de tensões a partir da análise e interpretação quantitativa das extensões observadas em grupos de extensômetros instalados em barragens de betão. A interpretação quantitativa consiste na decomposição dos resultados das observações em parcelas correspondentes aos diferentes efeitos que influenciam o comportamento da estrutura. Este processo é também designado por separação de efeitos. Os efeitos isolados considerados vulgarmente na análise do comportamento de barragens são o efeito hidrostático, o efeito térmico e a evolução ao longo do tempo em que se poderão incluir o efeito da fluência e os efeitos irreversíveis tais como os assentamentos de fundação, as aberturas de junta, etc.

Começou-se por fazer uma exposição geral sobre os métodos e aparelhagem de observação de barragens, passando-se depois a uma descrição mais pormenorizada relativa aos equipamentos específicos destinados à observação de extensões e tensões.

Como a determinação de tensões a partir das extensões observadas requer o conhecimento das propriedades viscoelásticas do betão, dedicou-se um capítulo à descrição dessas propriedades e dos factores que as influenciam, os métodos para a sua determinação e, a título de exemplo, algumas expressões correspondentes a diferentes formulações das leis de fluência, incluindo a lei da dupla potência de Bazant e Panulla que foi adoptada.
Num capítulo específico procedeu-se a uma descrição pormenorizada de alguns métodos de interpretação quantitativa de resultados de observação, tendo-se dado especial relevo ao método adoptado neste trabalho para conversão de extensões em tensões. Este método leva em linha de conta a maturação, a fluência e a relaxação do betão, e atende também ao carácter tensorial do campo de tensões.

Finalmente, fez-se a aplicação do método de interpretação quantitativa à barragem do Alto Lindoso, obra projectada pela Electricidade de Portugal e cuja construção se concluiu em 1992. Apresentaram-se os resultados obtidos na interpretação quantitativa das extensões observadas em diversos grupos de extensômetros instalados na barragem, bem como as tensões resultantes que se admitiram corresponder, consoante os casos, a estados de tensão unidireccionais, planos e tridimensionais.

As tensões obtidas foram comparadas com as que resultaram de uma análise pelo método dos elementos finitos, tendo nesta última sido considerado o comportamento viscoelástico do betão. A validação das técnicas adoptadas iniciou-se com a respectiva comparação com os de um modelo elástico linear de elementos finitos, escolhendo-se para o efeito dois pares de épocas. Um dos pares é constituído por épocas que são representativas da acção hidrostática, já que correspondem a datas suficientemente próximas para se considerarem termicamente idênticas e ser desprezável o efeito da fluência. Outro par é constituído por épocas seleccionadas de modo a representar o efeito da acção térmica, e como tal escolhidas uma em época fria e outra em época quente, estando a água na albufeira à mesma cota e sendo suficientemente próximas no tempo para ser desprezável o efeito da fluência. A comparação efectuada revelou-se boa para a acção térmica, podendo considerar-se razoável para a acção hidrostática já que o andamento das tensões ao nível do arco do coroamento é semelhante. A discrepância encontrada para a acção hidrostática poderá dever-se ao facto de na interpretação quantitativa se ter considerado a acção hidrostática como proporcional à quarta potência da altura da água na albufeira. Por outro lado a determinação do efeito hidrostático foi feita com base em observações efectuadas com a albufeira situada a cotas altas, o que condicionou a sua aplicação para análise de situações relativas a cotas mais
baixas. As discrepâncias encontradas poderão igualmente ser explicadas pelo facto de o modelo de elementos finitos adoptado não reproduzir o estado de abertura das juntas efectivamente existente no início do enchimento, o que, por se traduzir numa migração das tensões para a zona monolítica da barragem quando a albufeira se encontra a cotas baixas, poderá explicar o facto de o MEF apresentar maiores tensões no arco do coroamento do que as efectivamente resultantes da interpretação quantitativa.

Seguidamente procedeu-se à comparação das tensões resultantes da interpretação quantitativa com as tensões medidas em células tensométricas. Verificou-se que na maioria das células tensométricas a informação não é de boa qualidade. No entanto, numa das células estudadas verificou-se existir uma razoável aproximação das tensões calculadas pelo modelo de interpretação quantitativa relativamente às observadas.

Finalmente procedeu-se à comparação das tensões obtidas pelo modelo de interpretação quantitativa com as decorrentes de uma análise por elementos finitos, em ambos os casos incorporando o comportamento viscoelástico do betão. A comparação de resultados foi feita para diversas épocas, tendo-se verificado existir uma boa concordância entre os valores das tensões resultantes da interpretação quantitativa e os obtidos pelo MEF. As discrepâncias encontradas poderão dever-se quer a inadequações dos modelos de EF e de interpretação quantitativa quer a erros inerentes às próprias leituras dos aparelhos de observação.

Em termos gerais admite-se que o objectivo da dissertação foi atingido, considerando-se que o modelo de interpretação quantitativa adoptado poderá ser utilizado com êxito na análise do comportamento de barragens de betão.

7.2 Desenvolvimentos futuros

A determinação do campo de tensões instalado numa barragem de betão é de primordial importância para avaliação da segurança deste tipo de estruturas. A caracterização desse campo de tensões a partir das extensões implica o conhecimento das propriedades reológicas do betão. Durante a vida útil duma barragem essa caracterização é possível quer pela leitura e
interpretação dos resultados das células de fluência instaladas na obra, quer pelos ensaios sobre provetes confeccionados durante a construção. Relativamente às primeiras idades, e em resultado da libertação do calor de hidratação, os betões são submetidos a elevadas variações de temperatura que induzem estados de tensão que interessa conhecer, sendo que nessa fase os fenómenos diferidos têm uma influência muito marcada. É, portanto, igualmente de importância primordial proceder à caracterização das propriedades reológicas dos betões em idades jovens (Larson, 2003).

Embora a caracterização do estado de tensão seja possível, como se verificou no trabalho agora apresentado, por uma via indirecta a partir do conhecimento das extensões observadas em grupos de extensómetros, devidamente apoiado na caracterização das propriedades reológicas dos betões, é do maior interesse que as tensões calculadas por essa via sejam devidamente comparadas com as tensões medidas directamente nas células tensométricas. A informação disponível relativa às células tensométricas tratada neste trabalho não parece, de uma forma geral, de boa qualidade. Este facto poderá estar ligado às difíceis condições de colocação em obra dessa aparelhagem. Importa portanto investir no sentido de garantir as melhores condições de colocação das células tensométricas de forma a obter maior qualidade dos valores medidos, e dessa forma conseguir, com um número reduzido de células tensométricas, a confirmação dos valores calculados através da interpretação quantitativa das extensões observadas.

A informação proveniente dos grupos de extensómetros foi sujeita à verificação da condição de invariabilidade do primeiro invariante do tensor das deformações. Esta verificação conduziu à eliminação de três grupos de extensómetros planos, que não foram, por isso, incluídos na comparação com os resultados do MEF. Seria do maior interesse que a verificação do primeiro invariante fizesse parte da rotina de recolha de dados sobre as extensões ou da sua análise preliminar, para que em tempo real pudesse proceder-se a uma eventual correção dos valores medidos ou à verificação do estado de funcionamento dos aparelhos em causa.
Um aspecto em que importa investir consiste na validação exaustiva da informação fornecida pela aparelhagem de observação. Algumas acções simples podem ser feitas neste campo, por exemplo a rejeição de extensómetros que apresentem tendência de evolução temporal não acompanhada pelos restantes extensómetros do mesmo grupo, tal como aconteceu nos grupos G14, G19 e G24. Idêntico procedimento pode ser adoptado em relação aos grupos em que a diferença entre o cálculo do primeiro invariante através de duas vias apresente um carácter sazonal.

Passando agora a comentar o modelo de elementos finitos, um aspecto da maior importância passa pela correcta caracterização da acção térmica e das propriedades térmicas e mecânicas do betão. Essa caracterização baseia-se, por um lado, na definição do campo de temperaturas a considerar nas diferentes épocas de cálculo, o que depende das condições fronteira consideradas e do valor admitido para a difusibilidade, e ainda do valor do coeficiente de dilatação térmica linear. Em relação às temperaturas consideradas nas diferentes épocas de cálculo interessa que sejam validadas pelos valores observados. Quanto ao coeficiente de dilatação térmica linear, no estudo agora apresentado adoptou-se o valor $1,2 \times 10^{-5}/^\circ\text{C}$ resultante da interpretação da relação entre temperaturas e extensões observadas nos extensómetros correctores. Como foi referido esse é um valor elevado quando comparado com o valor de $10^{-5}/^\circ\text{C}$ normalmente adoptado. Importa, portanto, determinar experimentalmente este coeficiente, o que pode ser feito a partir de ensaios realizados em provetes de betão integral ou na própria obra, procedimento este que conduzirá a uma avaliação mais correcta das tensões de origem térmica.
REFERÊNCIAS

ASCE (American Society of Civil Engineers) task Committee – “Guidelines for instrumentation and measurements for monitoring dam performance”. 2000

LNEC – “Aparelhagem para observação de obras – Técnicas de montagem e utilização”. Lisboa, 1973

Oliveira, S.– “Modelos para análise do comportamento de barragens de betão considerando a fissuração e os efeitos do tempo. Formulações de dano” – Tese de doutoramento, FEUP. Porto, 2000

PNCOLD - “Large Dams in Portugal”. Portuguese National Comittee on Large Dams, Lisbon, 1992

Referências

Silveira, A. F. – “As variações de temperatura nas barragens” – LNEC Memória n.º 177.
Lisboa, 1961. Pág. 70 - 83

A1 - Interpretação quantitativa de extensões. Extensómetros unidireccionais

figura A-1 – Grupo G3. Interpretação quantitativa de extensões

figura A-2 – Grupo G4. Interpretação quantitativa de extensões

figura A-3 – Grupo G7. Interpretação quantitativa de extensões

figura A-4 – Grupo G8. Interpretação quantitativa de extensões
A2 - Tensões calculadas em extensómetros unidireccionais

figura A-5 – Grupo G1. Tensões

figura A-6 – Grupo G2. Tensões

figura A-7 – Grupo G3. Tensões

figura A-8 – Grupo G4. Tensões
figura A-9 – Grupo G7. Tensões

figura A-10 – Grupo G8. Tensões

figura A-11 – Grupo G9. Tensões

figura A-12 – Grupo G10. Tensões
A3- Grupos planos de extensómetros. Extensões observadas (primeiro invariante do tensor das deformações)

figura A-13 – Grupo G11. Primeiro invariante

figura A-14 – Grupo G12. Primeiro invariante

figura A-17 – Grupo G15. Primeiro invariante

figura A-18 – Grupo G17. Primeiro invariante
figura A-19 – Grupo G18. Primeiro invariante

figura A-20 – Grupo G19. Primeiro invariante

figura A-21 – Grupo G20. Primeiro invariante

figura A-23 – Grupo G22. Primeiro invariante

figura A-26 – Grupo G26. Primeiro invariante

figura A-27 – Grupo G27. Primeiro invariante
figura A-28 – Grupo G29. Primeiro invariante

figura A-29 – Grupo G30. Primeiro invariante

figura A-30 – Grupo G32. Primeiro invariante
figura A-31 – Grupo G33. Primeiro invariante

figura A-32 – Grupo G35. Primeiro invariante

figura A-33 – Grupo G36. Primeiro invariante
figura A-34 – Grupo G38. Primeiro invariante
A4- Interpretação quantitativa de extensões. Grupos planos de extensómetros

figura A-36 – Grupo G12. Interpretação quantitativa de extensões
figura A-37 – Grupo G13. Interpretação quantitativa de extensões
figura A-39 – Grupo G17. Interpretação quantitativa de extensões
figura A-40 – Grupo G18. Interpretação quantitativa de extensões
figura A-41 – Grupo G19. Interpretação quantitativa de extensões
figura A-42 – Grupo G20. Interpretação quantitativa de extensões
figura A-43 – Grupo G21. Interpretação quantitativa de extensões
figura A-44 – Grupo G22. Interpretação quantitativa de extensões
figura A-45 – Grupo G24. Interpretação quantitativa de extensões
figura A-46 – Grupo G25. Interpretação quantitativa de extensões
figura A-47 – Grupo G26. Interpretação quantitativa de extensões
figura A-48 – Grupo G27. Interpretação quantitativa de extensões
figura A-49 – Grupo G29. Interpretação quantitativa de extensões
figura A-50 – Grupo G30. Interpretação quantitativa de extensões
figura A-51 – Grupo G32. Interpretação quantitativa de extensões
figura A-52 – Grupo G33. Interpretação quantitativa de extensões
figura A-53 – Grupo G35. Interpretação quantitativa de extensões
figura A-54 – Grupo G36. Interpretação quantitativa de extensões
figura A-55 – Grupo G38. Interpretação quantitativa de extensões
A5 - Tensões calculadas nos grupos planos de extensómetros

figura A-56 – Tensões calculadas no grupo G11

figura A-57 – Tensões calculadas no grupo G12
figura A-58 – Tensões calculadas no grupo G13

figura A-59 – Tensões calculadas no grupo G14
figura A-60 – Tensões calculadas no grupo G17

figura A-61 – Tensões calculadas no grupo G18
figura A-62 – Tensões calculadas no grupo G19

figura A-63 – Tensões calculadas no grupo G20
figura A-64 – Tensões calculadas no grupo G21

figura A-65 – Tensões calculadas no grupo G22
figura A-66 – Tensões calculadas no grupo G24

figura A-67 – Tensões calculadas no grupo G25
figura A-68 – Tensões calculadas no grupo G26

figura A-69 – Tensões calculadas no grupo G27
figura A-70 – Tensões calculadas no grupo G29

figura A-71 – Tensões calculadas no grupo G30
figura A-72 – Tensões calculadas no grupo G32

figura A-73 – Tensões calculadas no grupo G33
<table>
<thead>
<tr>
<th>Cota albuf</th>
<th>Sx</th>
<th>Sy</th>
<th>Txy</th>
<th>MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td>280</td>
</tr>
</tbody>
</table>

figura A-74 – Tensões calculadas no grupo G35

<table>
<thead>
<tr>
<th>Cota albuf</th>
<th>Sx</th>
<th>Sy</th>
<th>Txy</th>
<th>MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td>280</td>
</tr>
</tbody>
</table>

figura A-75 – Tensões calculadas no grupo G36
figura A-76 – Tensões calculadas no grupo G38
A6 - Interpretação quantitativa de extensões. Grupos tridimensionais de extensómetros

figura A-77 – Grupo G23. Interpretação quantitativa de extensões. Componentes do tensor das deformações
figura -78 – Grupo G23. Interpretação quantitativa de extensões. Componentes do tensor das deformações
figura A-79 – Grupo G28. Interpretação quantitativa de extensões. Componentes do tensor das deformações
figura A-81 – Grupo G31. Interpretação quantitativa de extensões. Componentes do tensor das deformações
figura A-82 – Grupo G31. Interpretação quantitativa de extensões. Componentes do tensor das deformações
A7 - Tensões calculadas nos grupos tridimensionais

figura A-83 – Componentes do tensor das tensões calculadas no grupo G23
figura A-84 – Componentes do tensor das tensões calculadas no grupo G28
figura A-85 – Componentes do tensor das tensões calculadas no grupo G31
figura A-86 – Componentes do tensor das tensões calculadas no grupo G34
figura A-87 – Componentes do tensor das tensões calculadas no grupo G37