
Android Security
by Introspection

João Vasco Bispo Estrela
Mestrado Integrado em Engenharia de Redes e
Sistemas Informáticos
Departamento de Ciência de Computadores
2019

Orientador
Rolando da Silva Martins
Professor Auxiliar
Faculdade de Ciências da Universidade do Porto

Coorientador
João Miguel Maia Soares de Resende
Professor Assistente Convidado
Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

Abstract

Smartphones have become a necessity in everyday life for most people. These devices are a huge
repository of personal data and thus become a valuable target for information gathering.

Access to this kind of personal data can be used to understand an individual’s behaviour,
allowing for the establishment of associated profiles. These profiles can be used to manipulate
individuals in various contexts, for example, what to buy or what to believe.

The increasing awareness of the importance of this data requires new solutions to protect it
and we propose a new security system for the Android operating system, one of the most popular
platforms where this data is collected. Our system is focused on providing any user with the
ability to change the behaviour of applications installed on their devices so that data collection
can be monitored and modified to better suit the user policies.

i

Resumo

Os smartphones tornaram-se uma necessidade na vida cotidiana para a maioria das pessoas.
Estes dispositivos são um enorme repositório de dados pessoais e, portanto, tornam-se um alvo
valioso para a recolha de informações.

O acesso a esse tipo de dados pessoais pode ser usado para entender o comportamento de um
indivíduo, permitindo o estabelecimento de perfis associados. Esses perfis podem ser usados para
manipular indivíduos em vários contextos, por exemplo, o que comprar ou em que acreditar.

O aumento da conscientização sobre a importância desses dados exige novas soluções para
protegê-los e propomos um novo sistema de segurança para o sistema operacional Android, uma
das plataformas mais populares onde esses dados são coletados. Nosso sistema está focado em
fornecer a qualquer utilizador a capacidade de alterar o comportamento das aplicações instaladas
mos seus dispositivos, para que a coleta de dados possa ser monitorada e modificada para melhor
se adequar às políticas do utilizador.

iii

Acknowledgments

I want like to thank my thesis advisor, Rolando Martins for the opportunity to work in this
project and for all suggestions that improved my thesis.

I also want like my thesis co-advisor, João Resende for all the guidance, recommendations
and support given during the development of this thesis.

To Rafael Almeida and Duarte Figueiredo for listening me while rambling about my thesis
and giving moments of so much needed distraction.

I want to thank my best friends for their patience and support during some difficult hours.

Special thank to my parents, Vasco and Anabela, because without them would never be who I’m
and where I’m today.

Finally, last but not the least, my beloved Tânia Carvalho, for all the love, patience, support,
encouragement, time and all of that stuff.

v

Dedicated to
my parents and Tânia

vi

Contents

Abstract i

Resumo iii

Acknowledgments v

Contents x

List of Tables xi

List of Figures xiv

Listings xv

Acronyms xvii

1 Introduction 1

1.1 Motivation . 2

1.2 Proposed Solution . 3

1.2.1 Objectives . 3

1.2.2 Features . 4

1.3 Contributions . 4

1.4 Outline . 5

2 Background 7

2.1 Android . 7

vii

2.1.1 Rooting . 8

2.1.2 Permissions Model . 9

2.1.3 Project building . 9

2.2 Aspect Oriented Programming . 10

2.3 Code Obfuscation . 11

2.4 Cloud computing . 12

2.4.1 Micro-services architecture . 12

2.4.2 Docker & Kubernetes . 13

2.5 Related Work . 14

2.5.1 Research Methodology . 14

2.5.2 Similar applications . 14

2.5.3 Related work comparison . 20

2.6 Android Decompilers & Compilers . 23

2.6.1 Decompilers . 23

2.6.2 Compilers . 24

2.6.3 zipalign & apksigner . 25

3 Implementation 27

3.1 Sobek Instrumentation Tool . 28

3.2 User application . 32

3.2.1 Preferences and Logging . 33

3.2.2 Inter-Process Communication (IPC) Service 34

3.2.3 Synchronization with Backend . 36

3.3 Backend . 36

3.3.1 Tools & Frameworks . 36

3.3.2 Database Design . 38

3.3.3 Sobek Services . 38

3.3.4 Docker Images . 40

viii

3.3.5 Kubernetes Setup . 41

3.3.6 REST API . 41

4 Results 43

4.1 Simple Location Application . 43

4.2 Simple Contacts Application and Simple SMS Application 44

4.3 Simple Wifi Mac Address Application . 46

4.4 Facebook applications . 47

4.5 Twitter & Twitter Lite . 48

4.6 Waze . 48

4.7 YinzCam applications . 49

4.8 Taxonomy . 49

4.9 Related work evaluation . 50

4.10 Smartphone performance impact analysis . 50

4.10.1 Methodology and experimental setup . 51

4.10.2 Instrumented applications . 51

4.11 Back-end performance . 53

4.11.1 Methodology and experimental setup . 53

4.11.2 Enjarify & Dex2jar . 53

4.11.3 Sobek Instrumentation Tool . 55

5 Conclusion 57

5.1 Current implementation limitations . 58

5.2 Future work & open research challenges . 58

A Development notes 61

A.1 Programming languages used . 61

A.2 Data definition languages used . 61

A.3 Software used . 62

ix

A.4 Utilities used . 63

B Code snippets 65

Bibliography 73

x

List of Tables

2.1 Comparison Features Criteria . 21

2.2 Similar implementations comparison . 22

3.1 ISobekAidlInterface expected string formats . 35

4.1 Facebook owned application results . 48

4.2 Evaluation scale . 50

xi

List of Figures

1.1 Mobile phones and privacy timeline . 1

2.1 Android Platform Architecture . 8

2.2 Runtime Permissions - User Flow . 9

2.3 Standard Android project building process . 10

2.4 Code obfuscation example[7] . 11

2.5 Users and providers of cloud computing . 12

2.6 Docker + Kubernetes Architecture Example . 13

2.7 TaintDroid architecture within Android [11] . 15

2.8 Architecture of PmP [6] . 16

2.9 RefineDroid + Dr. Android + Mr. Hide architecture 17

2.10 RV-Android Build Process . 18

2.11 Weave Droid context . 18

2.12 Architecture of Adrenaline-RV . 19

2.13 Schematics of SRT-AppGuard . 19

2.14 DX + proguard compilation . 24

2.15 D8 compilation . 24

2.16 R8 compilation . 25

3.1 Sobek System Overview . 27

3.2 Sobek Instrumentation Tool work-flow . 29

3.3 Sobek Manager . 32

xiii

3.4 Sobek Manager Settings . 33

3.5 Applications Interactions with Sobek . 34

3.6 Sobek Backend . 36

3.7 gRPC Usage Example . 37

3.8 gRPC-gateway functionalities overview [20] . 37

3.9 Sobek Backend Database diagram . 38

4.1 Simple Location Application Screenshots . 44

4.2 Simple Contacts Application Screenshots . 45

4.3 Simple SMS Application Screenshots . 46

4.4 Simple Contacts Application life-cycle . 46

4.5 Simple Contacts Application instrumented life-cycle 47

4.6 Taxonomy of Android applications . 50

4.7 Scores based on the availability and usability for each implementation 51

4.8 Simple Location Application performance . 52

4.9 Instrumented Simple Location Application performance 52

4.10 Simple Wifi Mac Address Application performance 52

4.11 Instrumented Simple Wifi Mac Address Application performance 52

4.12 Enjarify execution time with PyPy and CPython interpreters 53

4.13 Enjarify execution time per classes processed . 54

4.14 Dex2jar execution with different sizes of memory allocation performance 55

4.15 Enjarify vs Dex2jar performance . 55

4.16 Sobek Instrumentation Tool performance . 56

4.17 Sobek Instrumentation Tool execution profile . 56

xiv

Listings

3.1 Basic r8 rules for Android . 30
3.2 Retrofit2 r8 rules for Android . 31
3.3 Sobek User Application Service AIDL Definition 35
3.4 Protobuf Instrumentation Service Definition . 39
3.5 Protobuf Authentication Service Definition . 40
B.1 Protobuf Device Managment Service Definition 65
B.2 Wifi Information Aspect . 68

xv

Acronyms

AIDL Android Interface Definition Language

AOP Aspect-Oriented Programming

API Application Programming Interface

APK Android Package

CPU Central Processing Unit

CSV Comma-separated values

GDPR General Data Protection Regulation

GCP Google Cloud Platform

GUI Graphical User Interface

IPC Inter-Process Communication

HAL Hardware Abstraction Layer

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IPC Inter-Process Communication

JDK Java Development Kit

JNI Java Native Interface

JSON JavaScript Object Notation

NDK Native Development Kit

OS Operating System

PSTN Public Switched Telephone Network

RAM Random Access Memory

REST Representational State Transfer

RPC Remote Procedure Call

SaaS Software as a Service

SDK Software Development Kit

SE Standard Edition

SMS Short Message Service

SQL Structured Query Language

SSL Secure Socket Layer

UI User Interface

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

xvii

Chapter 1

Introduction

The innovations in the field of microprocessors have lead to the creation of devices with large
computing power that are able to be carried by anyone, anywhere. One example of these devices
is the mobile phones that started with a constrained number of functions in the early stages. At
the start only offering voice such as in the Public Switched Telephone Network (PSTN), and
later with messages with the purpose of simplifying communications.

In the early 2000’s the smartphone introduced a new paradigm (Figure 1.1). This new
iteration of mobile devices brought hardware that enabled many the usage of today features like
Internet connectivity, cameras and various sensors, such as GPS. By 2007 new mobile operating
systems (Android, IOS, Windows Phone) started to emerge to make the use of this modern
hardware and quickly replaced the old ones. These innovations made easy to perform many tasks
that previously required a personal computer but came at the cost of collecting user information
to execute them.

At this time one of the most controversial problems of today started to arise, the lack of
privacy. These modern devices are capable of performing many tasks that before were thought
impossible on such small and mobile equipment and became deposits of personal data that
hold high value in today’s markets [34]. This data is extremely valuable as it enables the
creation of advertisement profiles for targeting advertisements or to discriminate persons based
on information that otherwise would be piratically impossible to know, like, medical records,
sexual orientation or even religious beliefs. The sources for the retrieval of this data include text
mining from Short Message Service (SMS) or audio mining in recorded clips from the microphone.

Figure 1.1: Mobile phones and privacy timeline

1

2 Chapter 1. Introduction

Overtime the Android operating system introduced multiple layers to protect user privacy. In
the early versions, only applications from the official store, the Google Play Store, were available
and at the very beginning, the store did not have any kind of regulations. Quickly, malicious
agents realized the users did not care about the permission access information and flooded
the application store with software to grab personal information in order to provide from this
sensitive data.

With the growth of the store, in addition to the information on what kind of functionalities
of the device are accessed, warnings were added before the download started, however, these
warnings did not improve as most of the users did not understand the dangers related with each
permission.

In addition to these updates to the store, more steps were taken to improve the user
experience and by 2012, Google updated their developer policies and started cleaning up the
offered applications [22]. It was at this time, that applications started to go through an automated
review process in order to be approved to be offered in the store. Unfortunately, these efforts
were not perfect and some malicious applications could get through. In 2015, this review process
was changed from automated to manual in order to fight malicious, exploitative, inappropriate,
and low-quality apps [31].

It was not the last time that Google updated their store as for each time one type of exploit
was blocked another one would appear, making this a never-ending work. One example of this
effort happened in 2018 when Google banned on applications that would mine cryptocurrencies
in the background while draining resources from the user device. [9]

By Android 6.0 (Marshmallow), in 2015, it had evolved much since its release and many
updates brought security features like Permission Manager[16] to make the users more conscious
about what is being accessed by the applications. But this feature did not solve the complete
problem since it lacks a method for displaying the intended purpose for each permission used.

Currently, Android has grown to be the most popular Mobile Operating System with 88% of
the market share [35] and is one of the most attractive platforms for personal data collection.

A large number of permissions present in today’s Android Operating System (OS) is hindering
the users capability of comprehending what is happening and shared by the various applications
in their smartphones. We propose the usage of introspection within the Android applications,
via code injection using Aspect-Oriented Programming (AOP), to measure the data collection
and notify the user or/and sink into a secure back-end.

1.1 Motivation

Today many applications are available for free on the Google Play Store and some of these gather
money from advertisements or selling collected data. This data is collected by requiring extensive

1.2. Proposed Solution 3

lists of permissions that in the majority of the cases are not necessary for the purpose of the
application [40].

With these problems in mind, an effort to regulate this kind of practices was started in
2016 by the states of the European Union and the European Economic Area by the form of the
General Data Protection Regulation (GDPR) [30].

The article 1 of chapter 1 of GDPR [30] lays down rules relating to the protection of natural
persons regarding to the processing of personal data and rules relating to the free movement of
personal data. The GDPR also states various concerns on how the consent should be handled
and the most relevant for our problem are:

• A request for consent should be clear, concise and not disrupt the use of service. - Recital
32 [30]

• If the processing is based on consent, the controller should be able to demonstrate that the
data subject has consented this usage. Article - 7 [30]

• Any information that might be used to identify a person should be evaluated as a critical
factor against its usage while taking into account the available technology and technological
developments. The amount of time required and the costs should be parameters in this
evaluation. - Recital 26 [30]

While Android has a Permission Model, it does not automatically make the applications
GDPR compliant as it requires that the consent to process the data should be clear and concise.

1.2 Proposed Solution

In this section, we describe the objectives and features of the proposed solution to our problem.
With the problem in mind, our solution is named after Sobek, an Egyptian deity considered to
be a fierce protector that wards off the evil and defend the innocent.

1.2.1 Objectives

The main goal of this project is to enhance the user privacy while using their Android smartphone,
as such we have the following objectives:

• Literature review: By reviewing the state of art we aim to identify the progress done
to combat the problem and learn the pros and cons of each approach to propose a more
efficient solution.

• Architecture design: The definition of architecture is fundamental, it helps to compre-
hend how the requirements of the solution relate to the implementation and the data flow
between components should act.

4 Chapter 1. Introduction

• Implementation: The effort to implement the proposed solution should be able to
combine the most recommended practices found in the research together with the planned
architecture. This implementation should deliver a tool which offers improvements to our
problem.

• Security and privacy analysis: In the end, we should look at the proposed solution and
its implementation to analyze the security and privacy improvements made.

• Deployment in a real environment: Taking into consideration the most used applica-
tion of the Play Store, conduct a study regarding the support, performance overhead and
information leakage of the application.

1.2.2 Features

The main features of our project are as follows:

• Easy migration: The users should be able to use their settings independently on what
device they are using.

• High privacy level: With this solution, we aim to provide an improvement for the
smartphone’s users on how their information is accessed and used.

• High availability: The solution should be able to be used anywhere, anytime, online or
offline. While online, the servers should always be accessible.

• Interoperability: The connectivity between devices and applications remain unaffected
as any changes do not alter the process of communication, only the sensitive information is
modified.

• Remote control: The solution should be able to offer remote control capabilities as it
can be a highly pursued feature for certain use-cases.

• Profiling: The creation and usage of user-defined profiles with fake sensitive data is crucial
to deliver an intrusive free experience on some applications.

1.3 Contributions

This thesis aims to improve on the current state-of-the-art by making the following contributions:

1. Literature review: While reviewing similar implementations, we aim to identify the
progress done to combat our problem described in Subsection 1.1 and learn the pros and
cons of each approach to propose a more efficient solution.

1.4. Outline 5

2. Related work classification: In order to have a better idea on the state-of-art we
categorize and score each of the found implementations. This classification has an emphasis
on two main features, degree of usability and reliability to affect applications.

3. Creation of a prototype for an Android security system: We used the knowledge
obtained from the literature review and related work classification to created Sobek, an
security system that instruments Android applications in order to control the access of
sensitive data to improve the confidentiality and privacy in the devices.

4. No rooted solution: The ease of usability heavily impacts the adoption rates from the
users, as such our solution does not require a rooted device. Another concern with rooted
devices is malware can gain unauthorized root privilege through exploiting an uninformed
user heavily impacting the security of the data inside the device [39].

5. User interface application: With the usability in mind we created an application that
helps the device user to control the behaviour of the instrumented code, either by allowing
the original behaviour or modifying it.

6. Improvements on the data confidentiality and privacy: Our implementation allow
the user to protect their contacts, SMS, location, and Wifi network address from applications
by either faking the results or denying them.

7. Taxonomy: With this we to establish a relation from how applications are built and with
the results obtained for our implementation.

1.4 Outline

This thesis is divided into four more chapters and are organized as it follows:

Background: Brief overview of some of technologies like Android, Aspect Oriented Pro-
gramming, code obfuscation and cloud computing. This chapter ends with an review of other
implementation as related work aiming to get a better insight on the subject.

Implementation: Details on the produced Android security system prototype. We describe
process of creation of our multiple components, the issues, solutions and methodologies used.

Results: In this chapter contains types of tests conducted. The first tests detailed are against
sample applications created specifically to evaluate the prototype. After we conduct the same
tests on publicly available applications and provide an overview on the results obtained. Based
on the findings we then propose an taxonomy for Android applications and evaluate the related
work against our prototype. At the end we present an analysis of the performance impact on the
smartphone and then we evaluate the performance and scalability of our back-end solution.

Conclusion: Evaluation of the work produced, listing limitations, possible future work and
open research challenges.

Chapter 2

Background

In this chapter we explain some of concepts needed before approaching the problem. We start by
explaining some relevant features and architecture of the Operating System (OS) of our devices
followed by some programming ideologies. Further, we show some technologies that might be
relevant to the creation of the final solution.

2.1 Android

Android is an open source, Linux-based software stack created for a wide array of devices and form
factors [17]. This stack can be also referred to as a mobile operating system as its structure and
functionalities resemble a traditional OS. This OS is fragmented into various layers (Figure 2.1):

The System Apps layer is where the core applications reside and are distributed with the
OS and provide methods to utilize the most basic features of a smartphone like calls, texting,
keyboard or web-browser. These apps are not any different from an application developed by a
third-party other than being the default behaviour of the device.

The Java API Framework provides the developers with a set of tools to ease the
development of applications by enabling the use of components, services and core functionalities
specially developed to interact with the OS.

The Native C/C++ Libraries remain the fundamental for the system as they constitute
the foundations of its components like the Android Runtime or the Hardware Abstraction
Layer (HAL). These libraries are equally accessible to the application developers through the
Java Application Programming Interface (API) Framework.

The Android Runtime is an abstraction that enables each application to run in a separated
virtual machine for itself. This way each application has its own specific memory allocation and
garbage collection making the execution smoother by optimizing these processes. Before Android
5.0 (Lolipop) this abstraction was made through the Dalvik Virtual Machine which was a similar
method and the major difference was on the compilation of the app code going from just-in-time

7

8 Chapter 2. Background

to ahead-of-time reducing the start up time while increasing the installation time.

TheHAL is made of multiple modules to communicate with the various hardware components.
Each one of these modules is responsible for only one component and can be accessed by the
Java API framework.

Finally, the Linux Kernel lays the foundation for the system, providing a proven, well-known
hardware interface.

Based on this analysis, the most relevant layers for this project are the Java API Framework
and the HAL as they are where the most applications rely upon to acquire the information that
they request and where reside the most of the functionality to collect information about the
surroundings of the device.

Figure 2.1: Android Platform Architecture1

2.1.1 Rooting

Rooting is a process of allowing Android device users of having privileged control over the system.
With this, the user can have better customization of the themes, more control on the kernel level
definitions, remove system apps, allow third-party apps to access or modify assets that other
way would be impossible or even install a completely new firmware.

1https://source.android.com/security

https://source.android.com/security

2.1. Android 9

Although what this process brings to the user experience, the most of the manufacturers do
not support it as it leaves many options for inexperienced users to alter that can make their
devices unusable either by software deficiency or hardware degradation. As a non-supported
feature, this process can be hard for the people without technological background making its
advantages out of reach for most of the population.

2.1.2 Permissions Model

Android 6.0 Marshmallow introduced a new permissions model that lets apps request permissions
from the user at runtime, rather than prior to installation [19]. As Figure 2.2 shows this approach
gives both the developer a method to explain the user the consequences of the decisions being
made and the impact they have on their system.

This new model represents an upgrade since it offered the users the option to only allow
the applications to access the requested data when the request is made but also to select which
permissions were given, and has proven to have an impact in the user choice of applications [25].

However, this model does not offer an option to monitor what is done with the accessed data
and after the permission is given only through the system settings it can be revoked, allowing the
application to freely use the permission without alerting the user again. This model also does
not automatically make the applications General Data Protection Regulation (GDPR) compliant
since the permissions are to access the data or features and never to allow the information to be
sent outside the device for further processing.

Figure 2.2: Runtime Permissions - User Flow

2.1.3 Project building

Since the early days of Android, Google has tried to make sure that development for the platform
was easy to start by creating tools to deal with the complex build cycle required to create an
application. One of these tools is the Android Gradle plugin that was created to extend the
Gradle powerful build automation system with Android specific features.

10 Chapter 2. Background

However, to be able to do an analysis of any application, it is important to understand the
whole build process that turns all the code and resources into one application that is able to be
used by the end user. As shown in Figure 2.3, this process can be broken in two smaller processes,
one that deals with all the code, and another to deal with resources such as images/videos and
.xml files containing information about the application (AndroidManifest.xml) or static data.

Figure 2.3: Standard Android project building process

2.2 Aspect Oriented Programming

The introspection is the ability to examine selected aspects of the structure, behaviour, and state
of a system by the system itself [5]. This ability was further expanded and gave birth to a new
architectural pattern, the reflection, that provides a mechanism for changing the structure and
behaviour of software systems dynamically. It supports the modification of fundamental aspects
like type structures and function call mechanisms [5].

These concepts represent the base of the Aspect-Oriented Programming (AOP) as it inherited
their abilities and objectives. AOP is based on the idea that computer systems have better
performance when each component is programmed for a specific concern and then tied together
with the use of AOP into a coherent program [10].

To completely understand the AOP one must understand the concepts of aspect, cross-cutting
concerns, advice, join point and point-cut. An aspect is a feature of a program that is used in
many other parts of the program. Cross-cutting concerns are aspects of a program that affect
other concerns. An advice is a class of functions which modify other functions when are triggered.
Join point is a specification of when the aspect code should be executed. Point-cut is a group of
join points.

One of the most popular and advanced implementations of AOP for Java is the AspectJ. It was
created by the Eclipse Foundation. It first appeared in 2001 and is a project still in development
getting frequent updates keeping up with the new concepts in the field by incorporating new
features on each release. It is widely used nowadays in the Java development and is one of the
few that is able to support Android applications.

2.3. Code Obfuscation 11

2.3 Code Obfuscation

Code obfuscation is a process that tries to modify the compiled code in order to prevent the
decompilation and further human analysis while maintaining all the original functionality [7].
This processes are mostly used to keep secret how the program works and prevent malicious
agents to exploit vulnerabilities. Code obfuscation techniques usually are used when building
releases of software together with code reduction techniques. In Figure 2.4 an example of this
process can be seen and shows the impact of this process and the obstacles it presents against
human comprehension or code matching techniques as all variables and functions have been
renamed into single characters.

Figure 2.4: Code obfuscation example[7]

12 Chapter 2. Background

2.4 Cloud computing

The definition of cloud-computing is constantly evolving, however we decided on a simplified
version and describe it as any solution delivered as services over the Internet coupled with the
all hardware and software used in the data centers [24]. This new paradigm introduces two
concepts, the software that is able to be interact with the end-user usually is considered as
Software as a Service (SaaS) and the hardware coupled with low-level software as Infrastructure
as a Service (IaaS). The Figure 2.5 illustrates an simplified view of these concepts and how they
are intertwined.

In the context of this thesis the proposed solution aims to be a SaaS that should be used on
top of a IaaS solution such as Google Cloud Platform (GCP), Microsoft Azure or Amazon Web
Services.

Figure 2.5: Users and providers of cloud computing

2.4.1 Micro-services architecture

The micro-service architecture is a design pattern for developing an application in small standalone
modules [28]. This approach is the opposite of the traditional monolithic architecture and enables
new methods of deployment, better dependency management and better problem tracking of the
code base.

The improvements on the deployment start by being able to run as many as needed instances
of a module behind a load balancer2 meaning that we can better optimize the usage of our
resources.

Another advantage is the dependency management as each independent module can be
developed without concerns related to external requirements, like libraries or third-party software,
as each have their dependencies bundled with the module.

Another improvement is that is easier to track down problems related with code since usually
each module is responsible for a very specific task and finding the code responsible for the
problem should be easier than going through the the whole code base of an monolithic approach.

2A load balancer is a component responsible for the distribution of network or application traffic to a cluster of
services

2.4. Cloud computing 13

2.4.2 Docker & Kubernetes

Docker is a software that performs vitalization on the operative system level. To do this, Docker
grabs a container image and then proceeds to start a container which is an isolated environment
with an application and its requirements.

Kubernetes is an open-source system for automating deployment, scaling, and management
of containerized applications [18].

The combination of these two technologies enables highly scalable applications that are able to
adapt themselves reacting to the demand. One of the most frequent uses is for web services with
architectures similar to the one shown in Figure 2.6 where the demand is mostly unpredictable
and the components can be run independently and have distinct needs in their scalability.

Figure 2.6: Docker + Kubernetes Architecture Example3

3https://medium.com/@AnimeshSingh_74972/microservices-polyglot-apps-websites-scalable-databases-
hosted-repositories-bring-them-all-on-2f99eecb9039

https://medium.com/@AnimeshSingh_74972/microservices-polyglot-apps-websites-scalable-databases-hosted-repositories-bring-them-all-on-2f99eecb9039
https://medium.com/@AnimeshSingh_74972/microservices-polyglot-apps-websites-scalable-databases-hosted-repositories-bring-them-all-on-2f99eecb9039

14 Chapter 2. Background

2.5 Related Work

In this chapter, we present various implementations that tackle our problem. We start by
reviewing similar applications aiming to get a glimpse of what and how this problem has been
tackled and learn the pros and cons of each with the objective of introducing a more efficient
approach. At the end of this review we compare all of these to measure the progress made in
order to implement some features.

2.5.1 Research Methodology

In order to review similar applications, we defined a set of keywords according to features defined
in Section 1.2.2. This set of keywords include the following:

• Android

• Instrumentation

• Aspect Oriented Programming

• Sensitive Information

• Weaving

• Security

• Personal Information

• Privacy Enhancement

• Permission Manager

• Monitoring

The search engine used was the Google Scholar coupled with regular Google Search Engine.
With the results found in the search with these keywords were filtered by date, being only
considered results from 2010 onwards. Additionally, some references showed up multiple times
while reviewing but not in the search result and were consulted by an individual case in order to
evaluate their relevance.

2.5.2 Similar applications

In this subsection we present the most prominent results of our research and provide a little
insight on how they work.

TaintDroid
TaintDroid is a taint tracking system for Android designed to monitor how third-party applications
handle the user sensitive data by categorizing the sources from where they can be accessed as
taint source and the last step where they are used as taint sink [11].

This solution uses various kinds of approaches, variable-level to taint data while leaving the
code untouched, message-level tracking to avoid Inter-Process Communication (IPC) overhead
and extend the analysis to the system, method-level tracking that allows the propagation of taint
with the return of the functions and lastly file-level tracking to ensure that the information retains

2.5. Related Work 15

the taint. Each tracking level is attached to a layer of the Android architecture, message-level
is placed between application code, variable-level on the virtual machine, method-level on the
native system libraries and lastly the file-level tracking acts on network interfaces and secondary
storage. The usage of these concepts in TaintDroid architecture can be seen in Figure 2.7 where
can be seen the flow of data from the source up to the sink. Although the concepts applied in
this system are important for addressing the problem the implementation lacks many common
user-features like logging or even warnings.

Figure 2.7: TaintDroid architecture within Android [11]

MockDroid
MockDroid is a modified version of the Android operating system which allows a user to ‘mock’
an application’s access to a resource [4]. This version of Android includes a modified package
manager which allows the creation of two kinds of permissions at the installation of a new
application, one for regular permissions other for mocked permissions. These mocked permissions,
are derivatives from the regular permissions and are used to allow the user to modify them
while not altering the originals. The mocked data is stored within a new operating system user
called mock which can be accessed through the mocked permissions and modified by the Mocker
application that is a user-friendly interface. Some of biggest downsides of this approach are
the root requirement and the complicated installation process while not providing features like
logging.

PmP
Protect my Privacy is an application designed to infer the context around data accesses [6]. Its
first appearance for Android appeared in 2016 and allowed users to control app-level permissions
and lacked features to collect the stack traces of sensitive data and cloud syncing that were later
released in an updated version in 2017.

16 Chapter 2. Background

The architecture of this project (Figure 2.8) shows the components of the system and specifies
the interaction between the monitored application and the PmP. The PmP application gives
a User Interface (UI) to allow the user to check and modify the current permissions and relay
them to the PmP service, so it can save these changes to the Decisions Database. The Monitor
service is responsible to have the decisions loaded and prepared to reply when a protected call
is triggered and send the logging information to the server. The Anonymizer is where PmP
generates credible new fake data.

Figure 2.8: Architecture of PmP [6]

While these components are built upon the Xposed4 to modify the calls to where the sensible
data is stored, the PmP Firewall is used to complement the lack of interceptions for mobile data
/ Wifi connections as it interacts with the default iptables5 to force the user decisions on these
connections. The PmP Server is a storage mechanism for the decisions made in the application
and relies on a MySQL database to store the information and Secure Socket Layer (SSL) to
secure the connections. This information is stored with a one-way hash of the device id as the
only identifier of the user and does not store any personal information.

Unfortunately, this project is close-source however with the article is possible to have some
insight on how to achieve similar results. One major drawback of this application is that the
device must be rooted to have Xposed installed to work.

4Xposed is a framework that allows users to easily apply add-ons to the ROM.
5iptables is a Linux utility to manage Linux Firewall

2.5. Related Work 17

RefineDroid + Dr. Android + Mr. Hide
These applications form an approach where the one application goes through RefineDroid to be
inspected and create a set of fine-grained permissions that are used by Dr. Android to retrofit the
standard Android permissions by replacing them [23]. Afterwards, these fine-grained permissions
are managed by Mr. Hide that acts as a drop-in replacement for sensitive Android API’s. The
flow of how these components are integrated can be seen in Figure 2.9. The usage of Mr.Hide
service showed us a solution for how the behaviour can be decoupled from the instrumented code
had provide an simple method of altering it without going through the whole process again.

This approach allows the user to protect their information, but does not provide remote
control or logging capabilities. Unfortunately, we were unable to find information if this project
had cloud-based instrumentation and as close source project we could not test ourselves.

Figure 2.9: RefineDroid + Dr. Android + Mr. Hide architecture

RV-Android
This project tries to enable run time verification on Android devices by expanding RV-Monitor
technology which is a project by the same developers that allows the code to be monitored by a
set of rules defined in either aspects or javaMOP [8].

The build process in Figure 2.10 refers to the various components / tools and the inputs
and outputs of each. Through the usage of javamop, Monitor Oriented Programming Files
can be converted into AspectJ Files able to be used with AspectJ Compiler to instrument any
application.

It allows the applications to be instrumented in the device or in a cloud server but does not
confer the power to give simple user control over how their information is accessed or to provide
modified information.

18 Chapter 2. Background

Figure 2.10: RV-Android Build Process

Weave Droid
Weave Droid is an Android application that makes AOP on Android devices possible and
user-friendly [12].

This application provides an easy way to use AOP however it does not have user-oriented
functionalities. The article of its release describes many relevant concerns and solutions, however,
the project seems to be halted as the Android Package (APK) and source code are not public at
the time of writing.

Figure 2.11 represents its architecture and provides an insight on how an online and offline
solution can be achieved. Through the usage of embedded weaving coupled with a local aspect
repository and a local application repository the offline usage is guaranteed. For the devices with
fewer capabilities an online solution is present with the use of an external server (Weaving Cloud)
for the cloud weaving with an external aspect repository and external application repository. All
these features are delivered through WeaveDroid application.

Figure 2.11: Weave Droid context

2.5. Related Work 19

Adrenaline-RV
Similar to WeaveDroid this project aims to provide instrumentation on Android, however, it
does not use AOP but DiSL [26] and relies on an external server to instrument the code [37]
as displayed in Figure 2.12. The Adrenaline-RV does not provide user-oriented features and
as the latest version is not compatible with the most updated versions of Android. It also is
discontinued since November 2017.

Figure 2.12: Architecture of Adrenaline-RV

SRT-AppGuard
This close-source project tackles the problem by rewriting the application to add monitoring
capabilities in itself that are able to be read by the application. It is discontinued since March
2018 and only supports Android 2.3 to Android 4.4 [2].

In Figure 2.13 is displayed a concept of how monitoring of one application can be implemented
with the usage of one service coupled with a visual monitoring application.

Figure 2.13: Schematics of SRT-AppGuard

20 Chapter 2. Background

2.5.3 Related work comparison

To be able to compare the various reviewed application we first decided a set of features that we
think that are a must to tack the problem described in Section 1.1. These features are:

• Easy migration: The users should be able to use their settings independently on what
device they are using.

• High privacy level: With this solution, we aim to provide an improvement for the users
on how their information is accessed and used.

• High availability: The solution should be able to be used anywhere, anytime, online or
offline. While online, the servers should always be accessible.

• Interoperability: The connectivity between devices and applications remain unaffected
as any changes do not alter the process of communication however only the sensitive
information is modified.

• Remote control: The solution should be able to offer remote control capabilities as it
can be a highly pursued feature for certain use-cases.

• Profiling: The creation and usage of user-defined profiles with fake sensitive data is crucial
to deliver an intrusive free experience on some applications.

However this features were too abstract in order to implement, as such we narrowed them into a
more concise objectives that could be tackled in a direct way. In Table 2.1 depicts the relations
between this objectives with the proposed objectives.

• No root required: This objective aims to ease the migration between devices as some
devices may be rooted and others not and thus we should focus on what is granted.

• User defined policies: In order to provide high privacy levels and profiling we consider
that the user should be able to create their own policies for each behaviour supported by
the instrumentation as it enables better control on the personal information.

• User friendly interface: An user interface should be provided as it enables the most
common smartphone users to use our system without requiring previous knowledge on the
subject. This objective should ease the user when migrating their preferences and creating
new profiles.

• Allow to fake data: We require the that the solutions should be able to provide fake data
to the other applications as it enhances the user privacy and is crucial for the implementation
of profilling as each profile should have its own set of fake data.

• Realistic fake location: Being able to provide realistic fake locations to other applications
allows the solution to reliably provide this type of information without detection or enable

2.5. Related Work 21

the user to not only fake their position at a singular time and position. This may enable the
usage of the solutions in applications that need to calculate the traveled distance without
revealing the true location, increasing the privacy level for the user.

• Cloud-based policies: These enable the solutions to be easy to migrate between devices
and enhance the interopability between system. They also provide high availability since
as long as the device can be online their settings can be used. Another enhancement is
that this allows for remote control of the instrumentation behaviour through other devices
than itself.

• Remote logs storage: By storing the logs remotely we diminish the burden in the device
storage as these can be cleaned regularly freeing space and enable another methods for
consulting outside of the device.

• Cloud-based instrumentation: The instrumentation process should be usable off-device
to provide better compatibility and ensure that all devices can obtain instrumented
applications regardless of their specifications.

• Sensitive data access logging: Logging the accesses done by applications to the sensitive
data allows for a better understanding on how and why this is requested improving the
user knowledge of the applications behaviour.

Easy migration
High privacy

level
High

availability
Interoperability

Remote
control

Profiling

No root
required

x x x

User defined
policies

x x

User friendly
interface

x x

Allow to fake
data

x x

Realistic Fake
Location

x x

Cloud-based
policies

x x x x

Remote Logs
Storage

x x x

Cloud-based
instrumenta-

tion
x x

Sensitive data
access logging

x

Table 2.1: Comparison Features Criteria

Additionally, we choose to add the type of the project, open or close source, as open-source
projects can be used to build upon or give a glimpse on how to build a new solution based
on previous iterations. The criteria of working in up to date Android was used because it is

22 Chapter 2. Background

important to give a solution appropriate for every device available and also help to prove the
resilience of the solution against updates. In conclusion, the table 2.2 summarizes the features
present on all the reviewed implementations and we could aggregate the implementations by
their objective:

• Tools for development: WeaveDroid & Adrenaline-RV - These do not offer any kind of
UI and are not targeted for regular smartphone users.

• Research prototypes: TaintDroid & MockDroid & RefineDroid + Dr. Android + Mr.
Hide - Created as proof of concept these projects do not enhance the end user experience
with their devices as they do not provide functionalities for the day-to-day usage.

• Commercial applications: PmP & RV-Android & SRT-AppGuard - Functionalities that
aim to improve the end user experience are present coupled with methods for the user to
interact with the implementation.

Additionally we found out that the none of these did not offer any sort of logging or cloud-based
policies, and very few gave the user the option to fake data.

Feature \
Solution

TaintDroid MockDroid PmP
RefineDroid +
Dr. Android +

Mr. Hide
Rv Android WeaveDroid Adrenaline-Rv

SRT-
AppGuard

Sobek

No root
required

User defined
policies

? #

Open-source # # # # #

User friendly
interface

 ? # #

Allows to fake
data

Realistic Fake
Location

Logging # # # # # #

Cloud-based
Policies

Remote logs
storage

Cloud-based
instrumenta-

tion
? #

Works on up
to date
android
(API-28)

? # ? # # #

 - feature present; #- feature absent; ? - feature unclear;

Table 2.2: Similar implementations comparison

2.6. Android Decompilers & Compilers 23

In the end we the most promising for users turned out to be PmP, however, it had one major
flaw for the problem we are aiming as it requires root. Most of them gave us ideas on how we
can achieve our goal either through the tools used, processes needed or architecture of the whole
system. An additional insight on how these implementations behave on the current smartphones
can be found in Subsection 4.9 where we test and scale them based of their performances.

2.6 Android Decompilers & Compilers

From our research done in Section 2.5 we learned that to achieve a solution we are required to
decompile the applications in order to obtain code that can be instrumented and then recompiled.
In this section we describe various tools that are able to decompile fully developed application
and compilers for Android.

2.6.1 Decompilers

apktool is a tool for reverse engineering 3rd party, closed, binary Android apps. It can disassemble
resources and repackage all back to .APK format. It is build in Java and uses either AAPT or
AAPT2 (Android Asset Packaging Tool). By disassembling an APK it is possible to read/write
the XML files inside it and reach the .dex files that can be used by other tools to inspect and
modify the source code. After all modifications this tool can repackage the APK back to its
original state with the result being an unsigned APK.

Dex2jar is a tool for converting Android’s .dex files (Dalvik bytecode) into .jar files (Java
bytecode), enabling the access to the .class files within the application. This tool is also distributed
with others such as jar2dex that provides a way to reconvert the files into .apk, d2j-asm-verify to
verify the integrity and that the files are valid APK files and d2j-apk-sign to sign the .apk with a
new pair of keys. The development of this tool started by 2010 and entered in maintenance mode
by 2015 which means it does not support many of the most recent features of Java language.
Although the results are acceptable most of the times, when used on APK that utilize newer
Java features, or have edge cases it may fail or produce incorrect results, making these unusable
for further instrumentation and recompilation.

Similarly to Dex2jar, enjarify is another tool to translate Dalvik bytecode into Java bytecode
and was built to allow Java analysis tools to analyze Android applications. This tool is written
in Python, however the author has a Rust and Go languages prototypes. It is recommended to
use PyPy as interpreter instead of CPython to ensure the best performance possible. At time
of writing only version 35 dex files are supported which means that Java 8 bytecode features
are not supported and does not translate optional metadata such as sourcefile attributes, line
numbers, and annotations. These restrictions mean that like the previous tool, it is possible to
obtain acceptable results in many cases however it can produce incorrect results. The restriction
on annotations translation is a huge drawback because some of the most popular libraries for

24 Chapter 2. Background

Android development, like Retrofit2 and Picasso, rely on these to work properly meaning that
this tool is unusable on APK with these libraries.

2.6.2 Compilers

DX is the original Android compiler bundled with Android Software Development Kit (SDK) that
is responsible to generate Dalvik bytecode from .class files [38]. Because it is the default Android
compiler, it must retain backwards compatibility and to meet this requirement, Java 7 onwards
is not directly supported, however, any feature from these versions need to get desugared6 into
compatible code.

Proguard is a Java tool that can be used to shrink, optimize, obfuscate, and pre-verify Java
code [33]. This tool is normally used when building an APK in release mode to shrinking and
optimize the APK before releasing to the public access to ensure that the user gets the best
performance while preventing unnecessary usage of device storage. The obfuscation feature can
be used to add an layer of protection against reverse-engineering by renaming classes, field and
methods to random short names as described in Section 2.3. A general overview of the process
of using both dx with Proguard is represented in the Figure 2.14.

Figure 2.14: DX + proguard compilation

d8 is a tool used to compile Java bytecode into Dex bytecode and was created with the
purpose of reducing the long build times which were needed to provide the previous compilers
with more recent Java features [13]. The reduced build time is achieved by moving the process
of desugaring into the compilation process as can be seen in Figure 2.15.

Figure 2.15: D8 compilation
6Desugar - transformation of source code into a nore syntactically rigorous form

2.6. Android Decompilers & Compilers 25

r8 is an upgraded version of D8 as it serves the same purpose of compiling and desugaring
Java bytecode while being able to provide Proguard features like code reduction, optimization
and obfuscation, making it a all-in-one tool reducing the build times even further [15].

Figure 2.16: R8 compilation

2.6.3 zipalign & apksigner

zipalign is an archive alignment tool that is responsible for one last optimization before distribution.
This optimization is achieved by ensuring that all uncompressed data starts with a particular
alignment relative to the start of the file. This procedure reduces the RAM consumption of an
application when running.

In order to distribute one application, the APK must be signed so that the authorship can be
verified and thus protecting the users against fake or modified replicas. This is where apksigner
comes allowing the to sign. While signing, the signature is also verified to work in every specified
version of Android.

Chapter 3

Implementation

In this chapter we describe the multiple components of our Android security system.

The system is composed by an Android user application, that is responsible for controlling
the instrumentation behaviour, a backend service that enables synchronization of preferences
across multiple devices along with providing access to the Sobek Instrumentation Tool that
receives normal applications and instruments them.

In Figure 3.1 we display an overview of these components and how they are connected.
Each one of these components are explained in detail in this chapter, being split into the Sobek
Instrumentation Tool (Section 3.1) where the code modifications are applied, Sobek Manager
(Section 3.2) the application that controls the behaviour of instrumented applications and
the backend (Section 3.3) that aggregates all server side components for serving instrumented
applications, synchronization of settings and logs.

Figure 3.1: Sobek System Overview

27

28 Chapter 3. Implementation

3.1 Sobek Instrumentation Tool

In order to instrument applications, we built a tool based on the ones reference previously. This
tool was built as a shell-script written in Bash1 and has the following requirements:

• javac - Included in Java Software Development Kit (SDK)

• Android SDK

• zip and unzip can be installed with the help of a package manager such as apt/yum/rpm

• sed - stream editor for filtering and transforming text usually included in the Linux
distributions.

• AspectJ (subsec 2.2)

• apktool, enjarify and dex2jar (subsec 2.6.1)

• r8 (subsec 2.6.2)

• JAVA_HOME environment variable pointing to Java Development Kit (JDK) folder

• ANDROID_HOME environment variable pointing to Android SDK folder

In order to utilize his tool, a few parameters must be provided in the execution, with these
being, the original .apk file path and then the path to the folder where the aspects are located.
It is also able to receive an additional parameter to specify the decompiler to be used, enjarify
(default) or dex2jar and another parameter to trigger the cleanup of the temporary and output
folders used in process. Additionally the key-store password and alias must be setup inside the
script in the variables, KEYSTORE_PASSWORD and KEYSTORE_ALIAS respectively.

The Figure 3.2 depicts how one instrumented application can be achieved from its original
state. This flow can be separated into three distinct phases:

Resource extraction and code decompilation (1) where Apktool is used to extract both
resources and compiled code which is fed into dex2jar or enjarify for decompilation;

Injecting and instrumentation of code (2) with the use of javac together with ajc in
order to modify the input application based on the aspects provided;

Recompilation and repackaging (3) with the use of r8 followed by Apktool, zipalign and
apksigner to repackage all the resources back into an .apk. The specific tool for resource modifi-
cation refers to an additional step we added using sed in order to change the google_maps_key,
found in the .xml files, that is used by some applications that use Google maps library to display
a map.

1Bash is a Unix shell and command language

3.1. Sobek Instrumentation Tool 29

Figure 3.2: Sobek Instrumentation Tool work-flow

We started developing this tool based in the previously obtained knowledge from the related
work review described in Subsection 2.5. As such we used dex2jar decompiler and dx Android
compiler. However these tools revealed several problems while instrumenting applications and
being unable to recompile due to missing classing classes errors or unknown functions.

In order to understand these errors, we inspected the decompiled code and compared them
with issues found in dex2jar Github page and found that these were happening due to the
lack of updates of the tool in order to support newer Android features. Some of these issues,
recommended to try out another decompilation tool, enjarify.

With enjarify, we were able to make some progress and get code that was able to be compiled,

30 Chapter 3. Implementation

however we then stumbled upon new errors but this time these were during runtime. Must of
these were about missing code related with Android SDK and thus we narrowed that the problem
should be related with the re-compilation process.

As such we decided to use d8 and r8 in order to be able to utilize newer and more feature
rich compilers to tackle the problem. d8 did not reveal any progress against these errors as this
compiler did not have code reduction, optimizations and desugaring incorporated. With the
problem being the missing functions we used r8 compiler with a custom rule-set in order to force
the compiler to maintain the missing functions from Android SDK.

We started this rule-set with some of the most basic rules (Listing 3.1). Some of the most
important ones in this rule set are the "keepatributes" and "keep public class" that force the
compiler to keep attributes such as annotations, exceptions, innerclasses, etc and keep all the
classes that extend some of the most used Android SDK classes such as Activity, Application or
Service.� �
−dontusemixedcasec lassnames
−don t s k i pnonpub l i c l i b r a r y c l a s s e s
−dontsk ipnonpub l i c l ib ra ryc la s smembers
−dontp r eve r i f y
−verbose
−a l l owac c e s smod i f i c a t i on
−ke epa t t r i bu t e s ∗Annotation∗
−r e n ame s ou r c e f i l e a t t r i bu t e SourceF i l e
−ke epa t t r i bu t e s SourceFi l e , LineNumberTable
−r epa ckag e c l a s s e s ’ ’
−ke epa t t r i bu t e s Exceptions , InnerClas se s , S ignature , Deprecated , SourceFi l e ,

LineNumberTable ,∗ Annotation ∗ , EnclosingMethod
−keep pub l i c c l a s s ∗ extends java . lang . Exception
−keep pub l i c c l a s s ∗ extends android . app . Ac t i v i ty
−keep pub l i c c l a s s ∗ extends android . app . App l i ca t ion
−keep pub l i c c l a s s ∗ extends android . app . S e rv i c e
−keep pub l i c c l a s s ∗ extends android . content . BroadcastRece iver
−keep pub l i c c l a s s ∗ extends android . content . ContentProvider
−keep pub l i c c l a s s ∗ extends android . app . backup . BackupAgentHelper
−keep pub l i c c l a s s ∗ extends android . p r e f e r en c e . Pre f e r ence
−keep pub l i c c l a s s com . android . vending . l i c e n s i n g . IL i c e n s i n gS e r v i c e
−dontnote com . android . vending . l i c e n s i n g . IL i c e n s i n gS e r v i c e
−keep , i n c l u d e d e s c r i p t o r c l a s s e s c l a s s

in . uncod . android . bypass . Document { ∗ ; }
−keep , i n c l u d e d e s c r i p t o r c l a s s e s c l a s s

in . uncod . android . bypass . Element { ∗ ; }� �
Listing 3.1: Basic r8 rules for Android

3.1. Sobek Instrumentation Tool 31

With further usage of these techniques we managed to have more reliable results, and kept
adding new rules based on new finding of libraries used on Android applications.

An example of these custom rules we used can be seen in Listing 3.2. These rules are provided
by Square, the company behind the creation of Retrofit2, in their Github page2.� �

Re t r o f i t does r e f l e c t i o n on gene r i c parameters . Inne rC la s s e s i s
r equ i r ed to use S ignature and EnclosingMethod i s r equ i r ed to use
Inne rC la s s e s .

−ke epa t t r i bu t e s Signature , InnerClas se s , EnclosingMethod
Re t r o f i t does r e f l e c t i o n on method and parameter annotat ions .
−ke epa t t r i bu t e s RuntimeVis ibleAnnotations ,

RuntimeVis ibleParameterAnnotations
Retain s e r v i c e method parameters when opt imiz ing .
−keepclassmembers , a l l owshr ink ing , a l l owob fu s ca t i on i n t e r f a c e ∗ {

@r e t r o f i t 2 . http .∗ <methods>;
}
Ignore annotat ion used f o r bu i ld t o o l i n g .
−dontwarn org . codehaus . mojo . an ima l_sn i f f e r . IgnoreJRERequirement
Ignore JSR 305 annotat ions f o r embedding n u l l a b i l i t y in fo rmat ion .
−dontwarn javax . annotat ion .∗∗
Guarded by a NoClassDefFoundError t ry / catch and only used when on the

c l a s spa th .
−dontwarn ko t l i n . Unit
Top−l e v e l f un c t i on s that can only be used by Kot l in .
−dontwarn r e t r o f i t 2 . Kot l inExtens ions
−dontwarn r e t r o f i t 2 . Kot l inExtens ions$ ∗
With R8 f u l l mode , i t s e e s no subtypes o f R e t r o f i t i n t e r f a c e s s i n c e

they are c reated with a Proxy and r ep l a c e s a l l p o t e n t i a l va lue s
with nu l l . E xp l i c i t l y keeping the i n t e r f a c e s prevents t h i s .

− i f i n t e r f a c e ∗ { @r e t r o f i t 2 . http .∗ <methods>; }
−keep , a l l owob fu s ca t i on i n t e r f a c e <1>� �

Listing 3.2: Retrofit2 r8 rules for Android

In order to surpass the issues described previously we decided that our tool, should support
both dex2jar and enjarify usage as each application may have different behaviours due to each
tool restrictions explained in Subsection 2.6.1 and issues.

For .dex compilation, we choose r8, because of the all-in-one package it offers and being able
to utilize all the improvements on the code reductions/optimization. With this, we are able to
increase the optimization of some applications since their original state may not have utilized
such methods.

2https://github.com/square/retrofit

https://github.com/square/retrofit

32 Chapter 3. Implementation

3.2 User application

In order to accomplish the objective of having a user interface to define the behaviour of the
instrumented code, we created the Sobek Manager, an application that is able to list every
non-system application and allows to connect to an instrumentation server to instrument these
applications, define per application behaviours and check the instrumentation actions logs.

The Figure 3.3(a) shows the listing of all non-system applications and Figure 3.3(b) shows
an example of instrumented actions logs in a sample application.

(a) Sobek dashboard (b) Sobek logs example

Figure 3.3: Sobek Manager

To accomplish our objective of being able to fake the device position we created an activity
where a user can manage their fake locations. It is possible to add new locations with an identifier
string and remove them when no longer needed. To add new locations the user have an fully
functional map from Google GMS library. The Sobek Manager offers profiling for each setting
(Figure 3.4(a)) available meaning that we can create fake personas to reliably lie to specific
applications with fake locations (Figure 3.4(b)).

3.2. User application 33

(a) Fake location settings (b) Profile specific settings

Figure 3.4: Sobek Manager Settings

3.2.1 Preferences and Logging

To save user preferences, we decided to use the default SharedPreferences interface of the Android
SDK which allows us to access and modify preference data. This interface stores this information
as files in a private folder for each application. As we have two distinct types of settings, we
decided on various diferent files, the default SharedPreferences, fakeLocations, entities and
applicationsPreferences.

As SharedPreferences work in a key-value pairs we decided to use Comma-separated values
(CSV) style keys and values as it helps to have simple rules when creating new pairs for new
applications,locations or profiles.

The default SharedPreferences aggregates Sobek Manager general settings.

fakeLocations saves the user defined fake locations with the key being the name and a CSV
style for the coordinates, latitude;longitude, as value.

entities holds information related to each user defined profile.

applicationsPreferences stores the behaviour for the instrumentation on that application along
with the profile to be used that holds the fake information.

34 Chapter 3. Implementation

Additionally each individual application has a CSV file that holds all the information about
the interactions of the application with Sobek. In this file each line represents an event.

3.2.2 Inter-Process Communication (IPC) Service

We decided that instrumented applications should be able to be controlled as such we decided to
utilize Android Services in order to provide IPC. An overall idea how this IPC mechanism works
is displayed in Figure 3.5.

Figure 3.5: Applications Interactions with Sobek

On the left side of Figure 3.5 we choose to represent two of the most popular applications that
requires access to device information to work while un-monitored. One of these is the WhatsApp
that requires access to device’s contacts to help the user connect with his friends. We also choose
Google Maps as one of the most used applications for accessing maps and getting directions, and
this one requires access to the device location. In both of these cases, the applications are used as
delivered by the Google Play Store. After the user allows the applications to access the needed
data they request it directly to the Android’s Java API Framework for this information (1).

On the right side of Figure 3.5 are represented three applications being monitored by Sobek.
In the first case, we used Instagram as an example of one application with location requirements
where the user allows the access to the data both in the Android and in Sobek. In the Instagram
application request for information, there is a new step where it is done the verification of accesses
against the Sobek Permissions Service and is selected what action should be taken next (4).
As the permission is granted by the Sobek Permission Service, the application is redirected to
request the Java API Framework for the location (5).

The Facebook and Twitter applications represent applications that require many permissions,
for the Facebook example we will review the case of faking contacts. The Twitter application

3.2. User application 35

exemplifies an example where Sobek will fake the user location. Although the requirements are
different, their interaction with Sobek is the same. First, they need to verify their permissions on
Sobek Permissions Service (2). Afterwards, with the access to real data denied, the applications
are instructed to request data from the Sobek Fake Content Provider instead of connecting with
the Java API Framework (3).

In order to provide the previously explained solution we needed to create a class that extends
Service class from the Android SDK and implements the functions defined in the AIDL file
(Listing 3.3). Each one of these functions are accessed by the instrumentation code in order to
query Sobek Manager preferences and save each interaction in a file as described in the previous
Subsection 3.2.1.� �

i n t e r f a c e ISobekA id l In t e r f a c e {
St r ing accessType (St r ing appl icat ionPackage , S t r ing data) ;
S t r ing fakeLocat ion (St r ing app l i cat ionPackage) ;
S t r ing a l lowedContactIds (S t r ing app l i cat ionPackage) ;
S t r ing allowedSmSAddress (S t r ing app l i cat ionPackage) ;
S t r ing fakeMacAddress (S t r ing app l i cat ionPackage) ;

}� �
Listing 3.3: Sobek User Application Service AIDL Definition

By default Android Interface Definition Language (AIDL), supports: All primitive types
in the Java programming language, String, CharSequence, List and Map. In order to simplify
our prototype we decided to use String for every type of values being transmitted between the
processes and we expect them to be formatted as demonstrated in the Table 3.1.

Variable Expected format Meaning

accessType ^(Allow|Deny|Fake|FakeMovement)$ Permission type

fakeLocation ^(\-?\d+(\.\d+)?),\s*(\-?\d+(\.\d+)?);(\-?\d+(\.\d+)?),\s*(\-?\d+(\.\d+)?)$ latitude;longitude

allowedContactIds ^(\d{1,19})(;\d{1,19})*$ List of long integers separated by ;

allowedSmSAddress ˆ((\(?\+?[0-9]*\)?)?[0-9_\- \(\)])(;((\(?\+?[0-9]*\)?)?[0-9_\- \(\)]))*$ List of phone numbers separated by ;

fakeMacAddress ^[a-fA-F0-9:]{17}|[a-fA-F0-9]{12}$ MAC address

applicationPackage ^([A-Za-z]{1}[A-Za-z\d_]*\.)+[A-Za-z][A-Za-z\d_]*$ Application package name

data ^(location|contacts|smsFilter|wifiMacAddress)$ Type of data being accessed

Table 3.1: ISobekAidlInterface expected string formats

36 Chapter 3. Implementation

3.2.3 Synchronization with Backend

Android’s Worker class permits to schedule the execution of tasks without compromissing
the normal behaviour of the device. As such we created two classes LogSyncWorker and
PreferenceSyncWorker that are responsible to synchronize both the logs and the preferences with
our back-end through the usage of gRPC.

To enable the usage of gRPC we created a protocol buffer definition and used protoc
(Section 3.3.1) to create stubs for all the functions there defined. These stubs were then used as
base for the fully fledged implementation.

Additionally we made sure that the workers could have its schedules being periodic or one
time, as the user may not want this feature to work automatically.

3.3 Backend

With multiple of our objectives being cloud-based, we decided on a micro-services architecture
where each service is responsible for a very specific task as described in Subsection 2.4.1. The
overall architecture is shown in Figure 3.6.

Figure 3.6: Sobek Backend

3.3.1 Tools & Frameworks

gRPC is an open source general purpose Remote Procedure Call (RPC) mechanism developed
by Google [3]. gRPC uses protobuf definitions in order to establish the communication protocol,
and is able to be used both in servers and clients regardless of the used language (Figure 3.7).

Protoc is a compiler that converts the protocol definition into .proto files that can be used to
generate protobuf runtimes for multiple languages.

3.3. Backend 37

Figure 3.7: gRPC Usage Example3

gRPC-gateway is plugin for protoc that generates a reverse-proxy server able to translate
Representational State Transfer (REST) Hyper Text Transfer Protocol (HTTP) Application
Programming Interface (API) into gRPC. By using this plugin we can provide an REST API
while reusing the gRPC services easing the implementation of an external front-end. An
example of this usage is represented in Figure 3.8 where the gRPC service that provides
the function "example.ProfileService.Update" is exposed through an RESTful API in "PUT
/v1/user/123/profile" with the usage of gRPC-gateway. This plugin requires that the gRPC
protocol definitions have the google.api.http annotations attached in order to define the paths for
the requests.

Figure 3.8: gRPC-gateway functionalities overview [20]

The OpenAPI is an open-source framework for defining and creating RESTful APIs. The
API specifications can be written in JavaScript Object Notation (JSON) or YAML Ain’t Markup
Language (YAML) and can be used to create stubs of clients and servers reducing the conflicts
between the components and the development time. One tool capable of creating these stubs is
Swagger-Codegen that is developed by the original creators of the OpenAPI. In the early versions,
the OpenAPI was called Swagger.

3https://grpc.io/docs/guides/

https://grpc.io/docs/guides/

38 Chapter 3. Implementation

3.3.2 Database Design

The design of the database was though based on the different informations required to be saved.

Each device should be able to have its various preferences saved, as such we created devices
table in order to hold the unique devices along with time-stamps for synchronization. Further we
created table locations, responsible to hold fake locations, event_logs , saving all the events caught
by the instrumentation, and device_application_settings in order to save each the instrumentation
behaviour preferences for each instrumented application.

In order to provide each user authentication and functionalities to control multiple devices, we
created table users that hold regular login and password information coupled with users_devices
that aggregates each device, through androidId, to an user through user_id.

Lastly we created an last table apps that hold information about previously instrumented
application in order to reduce the instrumentation process executions.

The Figure 3.9 displays an overall structure of the final database used in this implementation
that achieves all of the previous statements.

Figure 3.9: Sobek Backend Database diagram

3.3.3 Sobek Services

In order to provide our security system with functionalities like, out-of-device instrumentation
and synchronization we created services according to our chosen micro-services architecture.

These implementations were developed in as a single Java program that has the ability to
transform itself into the multiple services from the startup parameters. With all of these being
available from a single program we aimed to ease prototyping and testing while in a future
version these should be independent programs.

3.3. Backend 39

Instrumentation Service
The instrumentation service is responsible for the execution of the Sobek Instrumentation Tool
(Section 3.1) on behalf of the devices. This service only has two functions, one for upload and
another download (Listing 3.4).

The upload function is responsible for the transmission of the original application in .apk
format from a smartphone to the backend and it is done by a streaming chunks of the file while
returning the status of the operation.

The download function enables a smartphone to retrieve an instrumented application in .apk
format from the backend and similarly to the upload function it is also a stream of chunks. After
recieving an .apk this services starts by calculating the hash of the file and checks if there is an
already instrumented file with this hash. This functionality allows the service to prevent the
usage of resources in vain as we already have an instrumented version ready to be served to the
requesting client.

1 message Chunk {
2 s t r i n g name = 1 ;
3 bytes content = 2 ;
4 int64 o f f s e t = 3 ;
5 }
6 enum UploadStatusCode {
7 Unknown = 0 ;
8 Ok = 1 ;
9 Fai l ed = 2 ;

10 }
11 message UploadStatus {
12 s t r i n g Message = 1 ;
13 UploadStatusCode Code = 2 ;
14 }
15 message DownloadReq {
16 s t r i n g id = 1 ;
17 }
18 s e r v i c e In s t rumenta t i onSe rv i c e {
19 rpc upload (stream Chunk) r e t u r n s (UploadStatus) {
20 opt ion (goog l e . ap i . http) = {
21 post : " / instrument "
22 body : " ∗ "
23 } ;
24 }
25 rpc download (DownloadReq) r e t u r n s (stream Chunk) {
26 opt ion (goog l e . ap i . http) = {
27 get : " / instrument /{ id } "
28 } ;
29 }
30 }

Listing 3.4: Protobuf Instrumentation Service Definition

Authentication Service
As this implementation is a prototype we decided that this service should only provide a

40 Chapter 3. Implementation

simple authentication that is responsible for login and register on the backend. This service
implementation (Listing 3.5) only has the minimal requirements for the rest of functionalities to
work.

1 message Operat ionResult {
2 bool done = 1 ;
3 s t r i n g message = 2 ;
4 }
5 message Log inCredent ia l s {
6 s t r i n g username = 1 ;
7 s t r i n g password = 2 ;
8 }
9 s e r v i c e AuthService {

10 rpc l o g i n (Log inCredent ia l s) r e t u r n s (Operat ionResult) {
11 opt ion (goog l e . ap i . http) = {
12 post : " / l o g i n "
13 body : " ∗ "
14 } ;
15 }
16 rpc r e g i s t e r (Log inCredent ia l s) r e t u r n s (Operat ionResult) {
17 opt ion (goog l e . ap i . http) = {
18 post : " / r e g i s t e r "
19 body : " ∗ "
20 } ;
21 }
22 }

Listing 3.5: Protobuf Authentication Service Definition

Device Management Service
This service aggregates the functionalities of synchronization of preferences and logs from and
into the user application (Section 3.2). Similarly to the previously described services, this also
uses an gRPC definition (Listing B.1) for the communication protocol.

3.3.4 Docker Images

With Docker we created images that could be ran anywhere Docker is installed without having to
concern with the hardware and the software present on the machine. Since we decided on a micro-
services architecture, we could build as many images as necessary for each component, meaning
that each image could be specifically tailored for each case optimizing the size and performance.
For the Sobek Backend we decided on 4 images as being the core of our implementation:

• Instrumentation

• Authentication / Device Management

• Nginx Server

• gRPC Gateway

We start building from the official Ubuntu image for Docker and adding both 32-bit and
64-bit support in order to increase the comparability of the image. Afterwards we add the needed

3.3. Backend 41

repositories to the package manager and installing all the different requirements of our tools
and server code. One special case is the Android SDK that is not installed through the package
manager and is downloaded from the official source. The next step is to add Enjarify and dex2jar
from their git repositories. Then we start adding our Sobek related missing pieces such as the
Sobek Instrumentation Tool, Sobek Manager Service AIDL file, aspects and the backend code.

The Sobek Authentication / Device Manager image is just a simple image built from the
official open-jdk Docker image with our backend code.

Nginx server image is the standard official Nginx Docker image with modified configuration
files that meet our needs.

Lastly the grpc-gateway is built from golang official Docker image with added grpc specific
libraries and our generated entrypoint.

3.3.5 Kubernetes Setup

In order to deploy the previous Docker images (Subsection 3.3.4) on our chosen Cloud service
provider, we decided to use Kubernetes to create a computing cluster. In Kubernetes, we have
workloads and services.

Each one of these workloads holds a micro-service composed by the service itself and some
optional helper services.

Additionally to the workloads, Kubernetes have services that are responsible for establishing
endpoints so each micro-services can connect with others as the architecture requires. These
services can also be used as load balancers. In our deployment we decided on the usage of one
entry-point for each services together with two load balancers, one for the nginx server and
another for instrumentation micro-services, as both of these services can be accessed from the
Internet.

Through the usage of Autoscaler, we were able to scale the number of pods in a replication
controller [1]. Based on the profile of our tool execution obtained in the Subsection 4.11.3 we
choose the default behaviour (CPU utilization) for this scaling.

3.3.6 REST API

Through the usage of gRPC-gateway and OpenAPI (described in Subsection 3.3.1) we are able to
provide an REST API to interact with our services in the backend. As we did not developed an
web-based client to interact with this, we used Postman4 that could load the OpenAPI definitions
created by protoc. These API is saved as a .json file and can also be used in tools such as Swagger
Editor5, in order to visualize how these calls can be made and their parameters.

4Postman is an application for API development and testing (https://www.getpostman.com/)
5https://github.com/swagger-api/swagger-editor

https://www.getpostman.com/
https://github.com/swagger-api/swagger-editor

Chapter 4

Results

To test our implementation, we decided on two distinct types of applications, sample apps that
we had access to the source code and publicly available apps from the Google Play Store. We
required that these applications requested permissions for location, contacts, Short Message
Service (SMS) or Internet.

The idea behind testing on applications that we have source code is to be able to debug and
understand how the instrumentation behaving. On the other hand we also used applications
from Google Play Store to measure the impact of the instrumentation in a real world scenario.

4.1 Simple Location Application

This sample application1 was created in order to track the behaviour when instrumenting code
around the most popular methods to find the device position:

• getLastKnownLocation(String provider)

• getLastLocation()

• requestLocationUpdates(...)

getLastKnownLocation and getLastLocation() are two functions that return an object of Location
class, where the latitude and longitude of a device can be retrieved by getLatitude() and
getLongitude(). In contrast the method requestLocationUpdates(...) is used to setup triggers when
the device updates its location. This setup usually use LocationRequest with LocationCallback
to provide the developers access tho the device position. From the callback LocationResult is
returned which contains an array of objects of class Location.

In our sample application we choose to use the method of requestLocationUpdates(...) as
it is the advised method in the Android Software Development Kit (SDK) documentation and

1https://github.com/Evilong/SimpleLocationApplication

43

https://github.com/Evilong/SimpleLocationApplication

44 Chapter 4. Results

also because it should be the most generic, meaning that what if the instrumentation works on
this case, it should also work on the others [14]. This simple application was developed based on
previous statements and as shown in Figure 4.1(a) it can show the user its position on map from
Google Play Services.

The instrumentation on this application was successful by using aspects with pointcuts on
methods getLatitude() and getLongitude() of class Location and both decompilation tools worked
on this case. With the instrumentation result we had an application that we could change the
behaviour when it tried to get the device position (Figure 4.1(b)).

(a) Normal Position (b) Fake Position

Figure 4.1: Simple Location Application Screenshots

4.2 Simple Contacts Application and Simple SMS Application

Similarly to the Simple Location Application, we made an sample application2 to test instrumen-
tation on the access to the contacts stored in the device. In Android, the contacts are usually
stored through the usage of content providers. This content providers are used to encapsulate the
data have defined contracts where the various methods of accessing are established together with
the permissions required. For the contacts an default content provider is available in Android.
The data in this provider can be accessed by querying it through the ContactsContract. The
result of this query encapsulates can be the entire information of a contact stored in the device
or a few selected fields, like name, email or phone number.

In order to create this sample application, we used two activities, and we query the whole
contacts content provider for its information, displaying a list of available contacts (Figure 4.2(a)).

2https://github.com/Evilong/SimpleContactsApplication

https://github.com/Evilong/SimpleContactsApplication

4.2. Simple Contacts Application and Simple SMS Application 45

When clicking on a user, a new activity is created that uses the previously obtained information
(Figure 4.2(b)). A simplification of the life-cycle of this application can be seen in the Figure 4.4.

(a) Contact List (b) Contact Information

Figure 4.2: Simple Contacts Application Screenshots

One source of personal data can be found in the SMS stored in the device and as such these
applications can be used to retrieve this information. With this threat identified, we created the
Simple SMS Application3 to test the applicability of instrumentation in these applications.

The most common method to retrieve this messages, is similar to the previous example
as it uses ContentResolver with Cursor to query the database identified by the URI of con-
tent://sms/inbox. Our sample application emulates this information retrieval by querying all
the information and then grouping by the identifiable contact. The Figure 4.3 illustrates this
behaviour.

The instrumentation on these applications was made by creating pointcuts on .query(..)
function of Cursor class. These pointcuts and using around advices, we checked for the arguments
passed into the function, and if it was being used to access the contacts information we could
redefine the filters based on the configurations made in the Sobek Manager. This instrumentation
modifies the original life-cycle (Figue 4.4) of the application and the modified version can be
represented as in Figure 4.5.

The instrumentation was successful in both cases and we managed to filter the sensitive data
being accessed by the applications.

3https://github.com/Evilong/SimpleSMSApplication

https://github.com/Evilong/SimpleSMSApplication

46 Chapter 4. Results

(a) Full SMS List (b) Contact Specific SMS List

Figure 4.3: Simple SMS Application Screenshots

Figure 4.4: Simple Contacts Application life-cycle

4.3 Simple Wifi Mac Address Application

Recently an article exposed multiple sources for data leakage in Android [32], and one of them
could be the usage of network MAC address as an hardware-based persistent identifier to better
target advertisements. As such we decided to test if our implementation would be able to change
our perceived network MAC address. As with the previous tests, we started by creating an
application4 that could get our address. In order to find this information we found two methods
that can be used, the WifiInfo object that hold the method getMacAddress() and through listing
the of NetworkInterfaces and then querying them with getHardwareAddress(). We decided on
the second method as the first one was updated in Android 6.0 for security reasons to return a
constant value of 02:00:00:00:00:00.

4https://github.com/Evilong/SimpleWifiMacAddressApplication

https://github.com/Evilong/SimpleWifiMacAddressApplication

4.4. Facebook applications 47

Figure 4.5: Simple Contacts Application instrumented life-cycle

The aspects used on this test targeted the very specific method of getHardwareAddress()
from the NetworkInterface class. After instrumenting this application we successfully changed
the behaviour of the application and could reliably change our perceived MAC address.

4.4 Facebook applications

With Facebook being one of the most popular social network [21], and being involved in the
early 2018 scandal of data leakage together with Cambridge Analytica [29], their applications
raise high concerns on the subject of privacy, as such we identified them as good candidates to
test our implementation. The chosen applications were the Facebook, Messenger, Instagram and
their Lite versions. The Lite versions are smaller and better optimized applications that offer the
main features of these social network while stripping down lesser features such as animations.

We started by reviewing the permissions required by these applications and concluded that
all used the same permissions we used on our sample applications. As such we decided to use
the previously tested aspects.

The Table 4.1 reflects the behaviour of each application on the various tools used in our
process. We concluded that both Facebook Lite and Instagram Lite applications were able to be
instrumented with success, however with further analysis we uncovered most of their code base is
built using native code and out of reach to our tool. With this result we also used a new aspect
with success, that instruments the onCreate() function of the Application class and outputs a
debug message through the usage of the Android logging API. The Facebook and Messenger
applications were unable to go through our instrumentation process as they broke at the first
step, the resource extraction with use of Apktool. In order to find our the behaviour from dex2jar
and enjarify we resorted to the usage of these tools as standalone and both resulted in unusable
code. Messenger Lite and Instragram even though were able to go the whole instrumentation
process resulted in broken code related with the usage of native code. To pinpoint the source
of this problem both of these applications were tested without code modifications and had the
same result. With this we concluded that the broken code was derived from the decompilation
process within dex2jar and enjarify.

48 Chapter 4. Results

Application

Tool
Apktool Dex2jar/Enjarify javac + ajc

Facebook Unable to extract resources Unusable code Not reached

Facebook Lite � � �

Messenger Unable to extract resources Unusable code Not reached

Messenger Lite � Broken JNI related code �

Instragram � Broken startup due to native code �

Instragram Lite � � �

Table 4.1: Facebook owned application results

4.5 Twitter & Twitter Lite

Twitter in an widely used social network to express personal opinions, and as the previous found
its way into their user’s devices through two application, the Twitter and Twitter Lite. The main
Twitter application, revealed a new problem while trying to apply our aspects to the code with
AJC. The AJC compiler crashes while weaving and throws an org.aspectj.weaver.BCException
and we were unable to track down the issue behind this problem.

On the other hand the Twitter Lite had a completely different behaviour when we applied our
instrumentation. When using our tool with dex2jar it did not show any problems, however when
installed on a device and executed it would crash right at start due to broken code associated
with Firebase, an extremely popular back-end solution that helps mobile and web developers to
produce high quality applications with tons of features that might require complicated server
side logic. With enjarify, as with dex2jar, the tool works without revealing any concerning errors.
After installation, the application works as normal, and by reviewing the logs we can conclude
that instrumentation on the activities/fragments was successful. After rebooting the application
it no longer works due to a crash related with broken code from the usage of retrofit2, an HTTP
client for Android and Java. By inspecting the result code from enjarify, we found out that
this application uses Chrome Web Client, meaning that the most of the code is not Java but
Javascript.

4.6 Waze

Waze is an application that provides various utilities related with maps such as place discovery
or GPS enabled routing. Outside of Google Maps which is distributed with the Operating

4.7. YinzCam applications 49

System (OS) Waze is one of the most complete applications in this category, as such we decided
to test our implementation in it. Our objective in this test was to manage to fake our position as
we did in our Simple Location Application, described in Subsection 4.1, however we were unable
to do it as even though the instrumentation process in our tool worked without any compromise,
the application revealed a crash a few seconds after starting up due to broken code related with
the Java Native Interface (JNI).

4.7 YinzCam applications

YinzCam applications caught our attention as we identified a possible exploit within a particular
feature, the ability to reproduce replays of certain moments within sports games [27].

Through usage of one of these applications he determined that these application would
provide the user with this feature if the user was within a range of the location where the
game is happening. With this in mind we targeted it with our location faking aspect. The
instrumentation tool result was flawless with the use of dex2jar, as it did caught the methods
and did not throw any major errors/warning that could be considered as a possible problem.

We considered this test as a success as even though at time of testing the functionalities that
use the instrumented methods were not available, as they are only enabled during each sport
season, because through the usage of Android Logcat tool we were able to find leftover debug
messages that reported several tries to find out our location and were behaving accordingly to
our preferences established on our user application (Section 3.2).

With the usage of enjarify as alternative to dex2jar the results were a bit different since
even though the instrumentation would work without any relevant concerns, code related with
Retrofit2, a popular library of HTTP in Android, would be broken.

4.8 Taxonomy

In order to understand the results, we decided to categorize the tested applications with a
taxonomy. This taxonomy illustrated in the Figure 4.6 aggregates the applications in three
distinct classes: Java where the application code is written in this language and uses mainly
Android SDK as base to be built, Native that although the starting point for the application
is through Java everything else is derived from code in C/C++ and utilizes Android Native
Development Kit (NDK) as base instead of Android SDK and lastly Java + Native that mixes
both of the previous techniques. With this categorization we are able to determine the working
scope for our implementation and establish that the success rate of the instrumentation is heavily
influenced by in which category the application belongs, being more successful in the category of
Java followed by Java + Native and lastly not working on Native.

50 Chapter 4. Results

Figure 4.6: Taxonomy of Android applications

4.9 Related work evaluation

As stated in Subsection 1.2.1 we had the objective to identify the progress done to combat the
leakage of sensitive data from Android devices. We reviewed various implementations that used
introspection and evaluated them in order to understand the maturity of the technique. Table 4.2
illustrates the scale used to evaluate these implementations based on two factors, degree of
usability and reliability of affecting applications.

level degree of usability reliability of affecting applications

0 not available cannot be tested / did not work

1 build from source simple applications

2 download from website publicly available applications

3 available at play-store popular applications

Table 4.2: Evaluation scale

The Figure 4.7 depicts how each one of the solutions scored against our scale.

With these results, we concluded that the current tools using introspection to protect the
user are not suited for day-on-day use and usually require the users to have a high degree of
knowledge of the platform.

4.10 Smartphone performance impact analysis

Our solution aims to provide better control over the applications installed in the smartphone,
however we also consider that the usage of these applications should not be hindered by
performance degradation.

4.10. Smartphone performance impact analysis 51

TaintDroid

MockDroid

PmP

Dr. Android + Mr.
Hide & Rv Android

Rv Android

WeaveDroid

Adrenaline-Rv

SRT-AppGuard

Sobek

0 2 4 6

Degree of usability Working level on up to date applications

Figure 4.7: Scores based on the availability and usability for each implementation

4.10.1 Methodology and experimental setup

We started by selecting two of our sample applications as we know their expected behaviour
and thus able to infer any changes on the Central Processing Unit (CPU) and Random Access
Memory (RAM) usage with the respective computations while on other applications we might get
changes in these values and cannot discern the reasons. The selected applications were the Simple
Location Application (Section 4.1) and Simple Wifi Mac Address (Section 4.3) as these represent
two distinct workflows as one needs to retrieve location from GPS and the other has to connect
with the network interface. We installed two versions of each one of these applications, one
normal and one instrumented on a LG Nexus 5X smartphone with Android 7.1.2 and connected
to a device to a computer with Snapdragon Profiler. We ran each test ten times, and in each
test we used a 1 second of delay for each measurement. The network behaviour was not recorded
as none of these applications had this kind of behaviour.

4.10.2 Instrumented applications

In order to have a better understanding of the instrumented applications behaviour we decided
to plot the collected data. We decided to not include the RAM usage as it was in all cases a
steadily line at about 80% utilization with no variance over time.

In the Figure 4.8 and Figure 4.9 we can see the CPU utilization results for three tests in both
normal and instrumented versions of the Simple Location Application. In all cases we can see
three spikes with 10000 milliseconds of intervals which represent the update location function of
the application. As the values of these spikes in all cases are in the same range of 10% to 15%
we can conclude that our instrumentation process did not alter the application in any significant
way that may impact the original performance.

52 Chapter 4. Results

In Figure 4.10 and Figure 4.11 are represented the results for the tests conducted with Simple
Wifi Application and we can see three periods of similar behaviour that translate the click of the
refresh button, triggering the application to try to access the network interface of the device. As
with the previous test we can conclude that our instrumentation process did not have impact on
the performance as the periods have similar behaviour both in normal and instrumented version.

5

10

0 10000 20000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

5

10

0 10000 20000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)
5

10

0 10000 20000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

Figure 4.8: Simple Location Application performance

5

10

0 10000 20000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

5

10

0 10000 20000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

5

10

0 10000 20000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

Figure 4.9: Instrumented Simple Location Application performance

5

10

0 2000 4000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

5

10

0 2000 4000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

5

10

0 2000 4000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

Figure 4.10: Simple Wifi Mac Address Application performance

5

10

0 2000 4000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

5

10

0 2000 4000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

5

10

0 2000 4000
Timestamp (miliseconds)

C
P

U
 U

til
iz

at
io

n
(%

)

Figure 4.11: Instrumented Simple Wifi Mac Address Application performance

4.11. Back-end performance 53

4.11 Back-end performance

As we aim to have a scalable implementation, we need to learn how it behaves and what is the
best configuration to be deployed, thus in this section we describe the methodology used for
testing both decompilers, compilers and the full implementation.

4.11.1 Methodology and experimental setup

We used a standard computer equipped with a Ryzen 3700X CPU capable of achieving 4.4 GHz
while boosting on 8 cores with 16 threads and 2x16GB of RAM at 3600 MHz CL16 running
Ubuntu 16.04.4 LTS (xenial) OS, as it would be simpler due to better access and cost reductions.
The recorded times were obtained by using the said tools with the Linux command time5 and
recording the "real" value outputted ten times. The collection of this data was done back-to-back
through the usage of a bash script looping for each application all the different executions. In
the plots we decided to use logarithmic scale due the wide range of values obtained and the error
bars represent the standard deviation to indicate the variability of the values.

4.11.2 Enjarify & Dex2jar

Enjarify is a script built in Python language and as such there are multiple interpreters. Although
the author of this tool recommends the usage of PyPy interpreter instead of CPython we tested
both in order to determine the best case for our setup with performance and results in mind.
The Figure 4.12 shows the results of these tests and we concluded that PyPy performed better
and that as the application size increase CPython gets further behind.

5

10

50

100

200

600

Fa
ce

bo
ok

 L
ite

Sim
ple

 C
on

ta
cts

 A
pp

Sim
ple

 W
ifi

App

Sim
ple

 S
m

S A
pp

In
sta

gr
am

 L
ite

Tw
itte

r L
ite

Sim
ple

 L
oc

at
ion

 A
pp

M
es

se
ng

er
 L

ite
W

az
e

Tw
itte

r

Gold
en

 S
ta

te
 W

ar
rio

rs

In
sta

gr
am

M
es

se
ng

er

Fa
ce

bo
ok

Applications

T
im

e
(S

ec
on

ds
)

Interpreter
CPython
Pypy

Figure 4.12: Enjarify execution time with PyPy and CPython interpreters
5time - run programs and summarize system resource usage

54 Chapter 4. Results

After these tests we decided to see how Enjarfiy performs in various types of applications
and as it outputs the number of classes processed we used it in order to plot with the execution
time in the Figure 4.13. We find that the runtime varies linearly with the number of classes
processed. An additional information we recorded in these tests was that some produced results
although with classes containing errors. These cases were Messenger, Instagram, Twitter and
Golden State Warriors applications with three, four, three and ten errors respectively.

0

25000

50000

75000

100000

0 25 50 75 100

Process execution time (seconds)

N
r.

 C
la

ss
es

 p
ro

ce
ss

ed

Application

Facebook

Facebook Lite

Golden State Warriors

Instragram

Instragram Lite

Messenger

Messenger Lite

SimpleContacts

SimpleLocation

SimpleSMS

SimpleWifiMacAddress

Twitter

Twitter Lite

Waze

Figure 4.13: Enjarify execution time per classes processed

dex2jar allows different allocations of memory, and by default uses 1gb of RAM. While
testing this tool, we found out that it would crash due to the lack of memory. As such we
decided to test different sizes of memory allocation in order to solve these crashes and establish
a reliable value for most of the applications. The Figure 4.14 illustrates the results of these tests.
All times are recorded for full execution including when the execution would crash (Facebook,
Messenger, Golden State Warriors). The large standard deviation variability in Golden State
Warrior and Messenger values when running at 1 GB is derived from unpredictable behavior,
crashing sometimes after long runs or with successful runs on small runs. These results also
show that the allocated memory does not impact the execution time of the process, however it
allows further progress in some applications. Unfortunately this progress does not translate to a
successful result as it would crash but not due to running out of memory (Facebook, Messenger).

While implementing the solution, we decided to plot the performance of enjarify against
dex2jar while decompiling an application from their original .apk file in order to have a better
understanding on the behaviour of these tools and have an educated guess on time required for
their executions.

The Figure 4.15 illustrates the results of these tests, and we are able to conclude the following:

4.11. Back-end performance 55

2

5

15

50

100

Fa
ce

bo
ok

 L
ite

Sim
ple

 W
ifi

App

Sim
ple

 S
m

S A
pp

Sim
ple

 C
on

ta
cts

 A
pp

In
sta

gr
am

 L
ite

Tw
itte

r L
ite

Sim
ple

 L
oc

at
ion

 A
pp

M
es

se
ng

er
 L

ite
W

az
e

Tw
itte

r

Fa
ce

bo
ok

In
sta

gr
am

Gold
en

 S
ta

te
 W

ar
rio

rs

M
es

se
ng

er

Applications

T
im

e
(S

ec
on

ds
)

RAM
1 GB
2 GB
4 GB
8 GB

Figure 4.14: Dex2jar execution with different sizes of memory allocation performance

• The bigger the application code base is the more time is needed to decompile

• dex2jar running with 8gb of RAM is faster than enjarify

• enjarify while being slower was able to complete its execution in contrast to dex2jar that
failed both Facebook and Messenger application.

5

10

50

100

Fa
ce

bo
ok

 L
ite

Sim
ple

 W
ifi

App

Sim
ple

 S
m

S A
pp

Sim
ple

 C
on

ta
cts

 A
pp

In
sta

gr
am

 L
ite

Tw
itte

r L
ite

Sim
ple

 L
oc

at
ion

 A
pp

M
es

se
ng

er
 L

ite
W

az
e

Tw
itte

r

Gold
en

 S
ta

te
 W

ar
rio

rs

In
sta

gr
am

M
es

se
ng

er

Fa
ce

bo
ok

Applications

T
im

e
(S

ec
on

ds
)

Decompiler
dex2jar
Enjarify

Figure 4.15: Enjarify vs Dex2jar performance

4.11.3 Sobek Instrumentation Tool

The Figure 4.16 illustrates the performance of the Sobek Instrumentation Tool (Section 3.1),
while instrumenting our selected applications described previously. In this figure, Facebook

56 Chapter 4. Results

application is missing as it can not be instrumented by our tool, as Apktool is not able do
unpackage its files. Through analisis of these results we can conclude that the difference of
execution times between compilers, dx and r8, is significant and that dx is faster in most of the
cases. However as mentioned earlier in Section 3.1, dx has lower chances of producing usable
applications.

5

15

50

100

200

Fa
ce

bo
ok

 L
ite

In
sta

gr
am

 L
ite

Sim
ple

 W
ifi

App

Tw
itte

r L
ite

Sim
ple

 S
m

S A
pp

Sim
ple

 C
on

ta
cts

 A
pp

Sim
ple

 L
oc

at
ion

 A
pp

M
es

se
ng

er
 L

ite

Tw
itte

r

In
sta

gr
am

W
az

e

Gold
en

 S
ta

te
 W

ar
rio

rs

Applications

T
im

e
(S

ec
on

ds
)

Decompiler
 + compiler

dex2jar + dx
dex2jar + r8
enjarify + dx
enjarify + r8

Figure 4.16: Sobek Instrumentation Tool performance

Afterwards we decided to profile the execution of the tool with the worse case (Enjarify
+ r8 while instrumenting the Golden State Warriors application) in order to have a better
understanding on how we should setup Kubernetes. This profiling was done by monitoring both
CPU and RAM usage. In the Figure 4.17 we represent the RAM usage with dotted lines and the
other the CPU utilization. We can clearly see the various phases of our instrumentation, each
representing a new peak in both measurements, and we conclude that the highest performing
task is to recompile code that reaches 100% CPU utilization.

0

25

50

75

100

0 50 10
0

15
0

20
0

Time (Seconds)

U
til

iz
at

io
n

(%
)

CPU
RAM

Figure 4.17: Sobek Instrumentation Tool execution profile

Chapter 5

Conclusion

In this thesis, we documented the process of creating a functional and modular instrumentation
system for Android applications able to make severe improvements on the data confidentiality
and privacy on these devices as determined in Subsection 1.2.1.

We started by reviewing the current literature in Section 2.5 and found out that the most of
the of these experiments are unusable by simple users or are not able to be used in up-to-date
application as described in Section 4.9.

In the end, we created and successfully applied an implementation based on introspection
techniques and we can reliably lie to simple applications that targeted personal data.

In summary we were able to:

• Review similar implementation and provide an overview of their current status.

• Create a functional prototype of the proposed security system, including a back-end and a
manager application.

• Prove that Aspect-Oriented Programming (AOP) can be used on Android applications.

• Use AOP successfully to modify code that accesses personal data.

• Instrument applications without impacting their performance.

• Modify application behaviour without needed to root the device.

• Determine current implementation limitations (Section 5.1).

• Propose insight on how the overcome the limitations found (Section 5.2).

57

58 Chapter 5. Conclusion

5.1 Current implementation limitations

While researching on the subject we also had a glimpse of several problems that may limit the
previous implementations and our implementation. dex2jar and enjarify were tools created with
the intent to help researchers to reverse-engineer code, however it this code is not supposed to
be subject to extensive modifications and recompiled back.

With dex2jar, the maturity of the tool shows that even though it is not actively developed
anymore it still can produce usable results sometimes. Many of the issues encountered derive
from the lack of support for Java 7/8/9 features. Another cause for bad code is that obfuscation
tools got much better since the time where it had active development.

Enjarify, tries to be better than dex2jar as it was built while knowing the problems it faced.
Although even though the decompiled code is better for human understanding it fails many times
to produce compilable/working code. One specific reason for this the lack of support for Java
annotations which are popular in the Android development scene [36] that revealed itself as a
problem during our tests to Yinzcam application described in Section 4.7.

Apktool revealed itself as a great tool for the whole process, even though it performed as
expected we need to remark that it failed in one specific case, the Facebook application.

We consider that one of the limitations of our implementation was the use of AspectJ. This
implementation of AOP was built to instrument Java code and as seen in Section 4.8 applications
may be built entirely or partially with C/C++ code.

Although not a limitation per se as we managed to work around it, the default dex compiler
is not suited for this kind of work as it is unable to compile the most of the instrumented code.

5.2 Future work & open research challenges

The limitations described previously in Section 5.1 make implementations based on these
techniques not suited for day-to-day used. As such we propose a few ideas on what can be done
in order to solve some of these problems:

• Research and experiment with tools capable of instrumenting the C/C++ native code in
order to reach all languages used in the Android platform.

• Explore C/C++ decompilers and add module based on these findings to have better
coverage of the supported languages on Android.

• Create a Dex decompiler with a purpose to produce instrumentable code. This decompiler
should aim to generate code that may not be human-readable but should retain all the
original features.

5.2. Future work & open research challenges 59

While not problems, we also have ideas on some improvements to the implementation that would
make it more resilient such as:

• Verification of produced results through automated tests on the new instrumented applica-
tion.

• Analysis of application before instrumenting in order to provide a better selection of used
processes.

• Create a front-end in order to interact with the REST API (Subsection 3.3.6) providing
the user with a user-friendly interface to manage their settings remotely.

• Utilization of smart anonymization techniques in the fake information to reduce the input
needed from the user.

Appendix A

Development notes

A.1 Programming languages used

• Bash - Sobek Instrumentation Tool shell-script

• Go - gRPC-gateway implementation

• Groovy - Gradle build files for Android applications and backend

• Java - Android applications, backend implementation and instrumentation aspects

• Structured Query Language (SQL) - Used to create and interact with Sobek Database

A.2 Data definition languages used

• Android Interface Definition Language (AIDL) - Definition of Sobek Inter-Process Commu-
nication (IPC) service

• Comma-separated values (CSV) - Storing information and data transfer in Android
applications

• JavaScript Object Notation (JSON) - Storing information such as credentials and definitions
for Sobek Backend Services. Also present in OpenAPI definition.

• Protobuf - Defining gRPC protocol for communication between mobile application and
backend

• Extensible Markup Language (XML) - Android resource files

• YAML Ain’t Markup Language (YAML) - Docker and Kubernetes instructions files

61

62 Appendix A. Development notes

A.3 Software used

• Apktool

– Version: 2.4.0

– Website: https://github.com/iBotPeaches/Apktool

• Enjarify

– Version: 1.0.3

– Website: https://github.com/Storyyeller/enjarify

• dex2jar

– Version: 2.1

– Website: https://github.com/pxb1988/dex2jar

• Android Software Development Kit (SDK)

– Version: 28

– Website: https://www.jetbrains.com/idea/

• Java Standard Edition (SE) Java Development Kit (JDK)

– Version: 1.8.0

– Website: https://www.oracle.com/technetwork/java/javase

• MySQL

– Version: 2nd Gen 5.7

– Website: https://dev.mysql.com/downloads/mysql/5.7.html

• Docker

– Version: 18.09.2

– Website: https://www.docker.com/

• Google Kubernetes Engine

– Version: 1.12.7-gke.25

– Website: https://cloud.google.com/kubernetes-engine/

• r8

– Version: 1.6.0

– Website: https://r8.googlesource.com/r8

https://github.com/iBotPeaches/Apktool
https://github.com/Storyyeller/enjarify
https://github.com/pxb1988/dex2jar
https://www.jetbrains.com/idea/
https://www.oracle.com/technetwork/java/javase
https://dev.mysql.com/downloads/mysql/5.7.html
https://www.docker.com/
https://cloud.google.com/kubernetes-engine/
https://r8.googlesource.com/r8

A.4. Utilities used 63

• protoc

– Version: 2.6.1

– Website: https://github.com/protocolbuffers/protobuf

• grpc-gateway

– Version: 1.8.0

– Website: https://github.com/grpc-ecosystem/grpc-gateway

• AspectJ

– Version: 1.9.3

– Website: https://www.eclipse.org/aspectj/

• PyPy

– Version: 7.0.0

– Website: http://pypy.org/

• CPython

– Version: 3.5.2

– Website: https://github.com/python/cpython

A.4 Utilities used

• IntelliJ IDEA

– Description: An Java Integrated Development Environment (IDE).

– Usage: Develop the Sobek Backend services.

– Version: Ultimate Edition - 2018.3.5 -> 2019.1

– Website: https://www.jetbrains.com/idea/

• Android Studio

– Description: An Java IDE with special focus on Android development tools and
features.

– Usage: Build Sobek Manger and test apps, also to conduct tests on Android devices.

– Version: 3.2 -> 3.4

– Website: https://developer.android.com/studio

https://github.com/protocolbuffers/protobuf
https://github.com/grpc-ecosystem/grpc-gateway
https://www.eclipse.org/aspectj/
http://pypy.org/
https://github.com/python/cpython
https://www.jetbrains.com/idea/
https://developer.android.com/studio

64 Appendix A. Development notes

• Visual Studio Code

– Description: A source-code editor able to work with the most of the programming
language through the high customization available with plugins.

– Usage: The main source-code editor for pieces of code developed outside of an IDE.
– Version: 1.28.1 -> 1.38.1
– Website: https://code.visualstudio.com/

• DBeaver

– Description: An universal database tool that simplifies the most of the tasks related
through an user friendly Graphical User Interface (GUI).

– Usage: Create and modify the Sobek database.
– Version: Community Edition - 6.0.1
– Website: https://dbeaver.io/

• Snapdragon Profiler

– Description: Profiling software for Android devices powered by Snapdragon processors.
– Usage: Monitor and record Central Processing Unit (CPU) and Random Access

Memory (RAM) for smartphone performace impact analysis tests
– Version: 2019.2.0.7022019
– Website: https://developer.qualcomm.com/software/snapdragon-profiler

• Google Sheets

– Description: A web based spreadsheet program.
– Usage: Analysis of the performance tests data and graph creation.
– Website: https://www.google.com/sheets/about/

• R Studio

– Description: An IDE for for R programming language.
– Usage: Analyse performance tests data and create graphs to convey their results.
– Version: 3.5.1
– Website: https://www.rstudio.com/

• Adobe Photoshop

– Description: An feature rich graphic editor.
– Usage: Creation of Sobek Manager application icon and prototype its User Interface
(UI).

– Version: CC 2018
– Website: https://www.adobe.com/products/photoshop.html

https://code.visualstudio.com/
https://dbeaver.io/
https://developer.qualcomm.com/software/snapdragon-profiler
https://www.google.com/sheets/about/
https://www.rstudio.com/
https://www.adobe.com/products/photoshop.html

Appendix B

Code snippets

1 /*
2 Messages definition for DeviceManagementService

3 */

4 message AndroidId {

5 string id = 1;

6 }

7 message ServerInformationOnDevice {

8 google.protobuf.Timestamp lastPreferenceChange = 1;

9 google.protobuf.Timestamp lastPreferenceSync = 2;

10 }

11 message DeviceAccount{

12 string id = 1;

13 string accountid = 2;

14 }

15 message DevicesList {

16 map<string,ServerInformationOnDevice> devicesList = 1;

17 }

18 message Preference {

19 string key = 1;

20 string value = 2;

21 }

22 message Preferences {

23 repeated Preference preferences = 1;

24 }

25 message UpdateGeneralPreferences {

26 string id = 1;

27 repeated Preference preferences = 2;

28 }

29 message ApplicationSpecificPreferences {

30 string id = 1;

31 string packageName = 2;

32 }

33 message UpdateApplicationSpecificPreferences {

34 string id = 1;

35 string packageName = 2;

65

66 Appendix B. Code snippets

36 repeated Preference preferences = 3;

37 }

38 message LogsList {

39 map<string, google.protobuf.Timestamp> logsList = 1;

40 }

41 message LogEntry {

42 google.protobuf.Timestamp time = 1;

43 string message = 2;

44 }

45 message ApplicationLogForDevice {

46 string id = 1;

47 string packageName = 2;

48 }

49 message ApplicationLog {

50 repeated LogEntry entries = 1;

51 }

52 message UpdateLog {

53 string id = 1;

54 string packageName = 2;

55 repeated LogEntry entries = 3;

56 }

57 message Location {

58 string name = 1;

59 double latitude = 2;

60 double longitude = 3;

61 }

62 message Locations {

63 map<int32,Location> locations = 1;

64 }

65 message LocationUpdate {

66 string id = 1;

67 map<int32,Location> locations = 2;

68 }

69

70 service DeviceManagementService {

71 rpc getDevices (google.protobuf.Empty) returns (DevicesList) {

72 option (google.api.http) = {

73 get: "/device"

74 };

75 }

76 ←↩

rpc getInformationOnDevice (AndroidId) returns (ServerInformationOnDevice) {

77 option (google.api.http) = {

78 get: "/device/{id}"

79 };

80 }

81 rpc createDeviceOnServer (DeviceAccount) returns (OperationResult) {

82 option (google.api.http) = {

83 post: "/device/{id}"

84 body: "*"

85 };

67

86 }

87 rpc readDevicePreferences (AndroidId) returns (Preferences) {

88 option (google.api.http) = {

89 get: "/device/{id}/preferences"

90 };

91 }

92 ←↩

rpc writeDevicePreferences(UpdateGeneralPreferences)returns(OperationResult){

93 option (google.api.http) = {

94 put: "/device/{id}/preferences"

95 body: "*"

96 };

97 }

98 rpc readDevicePreferencesForApplication (ApplicationSpecificPreferences)

99 returns (Preferences) {

100 option (google.api.http) = {

101 get: "/device/{id}/preferences/{packageName}"

102 };

103 }

104 ←↩

rpc writeDevicePreferencesForApplication(UpdateApplicationSpecificPreferences)

105 returns (OperationResult) {

106 option (google.api.http) = {

107 put: "/device/{id}/preferences/{packageName}"

108 body: "*"

109 };

110 }

111 rpc listDeviceLogs (AndroidId) returns (LogsList) {

112 option (google.api.http) = {

113 get: "/device/{id}/logs"

114 };

115 }

116 rpc readDeviceLog (ApplicationLogForDevice) returns (ApplicationLog) {

117 option (google.api.http) = {

118 get: "/device/{id}/logs/{packageName}"

119 };

120 }

121 rpc writeDeviceLog (UpdateLog) returns (OperationResult) {

122 option (google.api.http) = {

123 put: "/device/{id}/logs/{packageName}"

124 body: "*"

125 };

126 }

127 rpc readDeviceLocations (AndroidId) returns (Locations) {

128 option (google.api.http) = {

129 get: "/device/{id}/locations"

130 };

131 }

132 rpc writeDeviceLocations (LocationUpdate) returns (OperationResult) {

133 option (google.api.http) = {

134 put: "/device/{id}/locations"

68 Appendix B. Code snippets

135 body: "*"

136 };

137 }

138 }

Listing B.1: Protobuf Device Managment Service Definition

� �
import org . a s p e c t j . lang . Jo inPoint ;
import org . a s p e c t j . lang . Proceed ingJo inPoint ;
import org . a s p e c t j . lang . annotat ion . ∗ ;
import android . u t i l . Log ;

import android . content . In tent ;
import android . content . Context ;
import android . content . Serv iceConnect ion ;
import android . content . ComponentName ;
import android . os . IBinder ;
import android . net . Uri ;
import android . app . Ac t i v i ty ;
import android . app . Fragment ;
import android . app . App l i ca t ion ;
import android . content . Context ;
import android . net . w i f i . Wi f i In f o ;

import pt . up . f c . dcc . sobekmanager . I SobekA id l In t e r f a c e ;
import java . u t i l . Arrays ;
import java . lang . r e f l e c t . ∗ ;
import android . database . Cursor ;
import android . prov ide r . ContactsContract ;
import java . u t i l . concurrent . Semaphore ;

@Aspect
pub l i c c l a s s Wi f i In foAspect {

boolean mIsBound ;
pro tec ted ISobekA id l In t e r f a c e sobekServer ;
pub l i c Ac t i v i ty a c t i v i t y ;

p r i va t e Serv iceConnect ion se rv i c eConnec t i on = new
Serv iceConnect ion () {
@Override
pub l i c void onServiceConnected (ComponentName componentName ,

IBinder iB inder) {
Log . d(" SobekInstrumentat ion " , " S e rv i c e Connected ") ;
sobekServer = ISobekA id l In t e r f a c e . Stub . a s I n t e r f a c e (iB inder) ;

}

69

@Override
pub l i c void onServ iceDisconnected (ComponentName componentName) {

Log . d(" SobekInstrumentat ion " , " S e rv i c e Disconnected ") ;
sobekServer = nu l l ;

}
} ;

void doBindService () {
Log . d(" SobekInstrumentat ion " , " Binding s e r v i c e ") ;
In tent i = new Intent () ;
i . setComponent (new ComponentName(" pt . up . f c . dcc . sobekmanager " ,

" pt . up . f c . dcc . sobekmanager . s e r v i c e s . Pe rmi s s i on sSe rv i c e ")) ;
a c t i v i t y . b indServ i c e (i ,

s e rv iceConnect ion , Context .BIND_AUTO_CREATE) ;
mIsBound = true ;

}

void doUnbindService () {
Log . d(" SobekInstrumentat ion " , " Unbinding s e r v i c e ") ;
i f (mIsBound) {

a c t i v i t y . unbindServ ice (s e rv i c eConnect i on) ;
mIsBound = f a l s e ;

}
}

@Pointcut (" (c a l l (void ∗ . onCreate (. .))
| | c a l l (void ∗ . onResume (. .))) && th i s (android . app . Ac t i v i t y+)")

pub l i c void onAct iv i tyCreateEntryPoint () {
}

@After (" onAct iv i tyCreateEntryPoint () ")
pub l i c void s e tAc t i v i t yPo in t cu t (Jo inPoint jp) {

Log . d(" SobekInstrumentat ion " , "New a c t i v i t y ") ;
a c t i v i t y = (Act i v i ty) jp . getThis () ;
doBindService () ;
r e turn ;

}

@Pointcut (" (c a l l (void ∗ . onCreate (. .)) | |
c a l l (void ∗ . onResume (. .))) && th i s (android . app . Fragment) ")

pub l i c void onFragmentCreateEntryPoint () {
}

@After (" onFragmentCreateEntryPoint () ")
pub l i c void setAct iv i ty f romFragmentPointcut (Jo inPoint jp) {

Log . d(" SobekInstrumentat ion " , "New fragment ") ;

70 Appendix B. Code snippets

Fragment f r ag = (Fragment) jp . getThis () ;
a c t i v i t y = f r ag . g e tAc t i v i t y () ;
doBindService () ;
r e turn ;

}

@Pointcut (" c a l l (void ∗ . onDestroy (. .)) ")
pub l i c void onAct iv i tyDestroyEntryPoint () {
}

@Around(" onAct iv i tyDestroyEntryPoint () ")
pub l i c Object de s t r oyAct i v i t y (Proceed ingJo inPoint jp) throws

Throwable {
Log . d(" SobekInstrumentat ion " , " Current a c t i v i t y destroyed ") ;
doUnbindService () ;
r e turn jp . proceed () ;

}

@Pointcut (" c a l l (∗ getHardwareAddress ()) ")
pub l i c void getMacAddressFromNetworkInterfaceEntryPoint () {
}

@Around(" getMacAddressFromNetworkInterfaceEntryPoint () ")
pub l i c Object changeGetMacAddressFromNetworkInterfaceAround

(Proceed ingJo inPoint pjp) throws Throwable {
i f (a c t i v i t y != nu l l && mIsBound && sobekServer != nu l l) {

S t r ing accessType =
sobekServer . accessType (a c t i v i t y . getAppl i cat ionContext ()
. getPackageName () , " wif iMacAddress ") ;

i f (accessType == nu l l | | accessType . isEmpty ()
| | accessType . equa l s (" Allow "))
re turn pjp . proceed () ;

i f (accessType . equa l s (" Fake ")) {
Log . d(" SobekInstrumentat ion " , " Changing

wif iMacAddress ") ;
S t r ing fakeMac = sobekServer

. fakeMacAddress (a c t i v i t y . getAppl i cat ionContext ()

. getPackageName ()) ;
i f (fakeMac == nu l l)

r e turn pjp . proceed () ;
r e turn fakeMac . getBytes () ;

}
re turn pjp . proceed () ;

} e l s e {
Log . d(" SobekInstrumentat ion " , a c t i v i t y +

" " + mIsBound + " " + sobekServer) ;
Log . d(" SobekInstrumentat ion " , " Tried to change getMacAddress

71

but a c t i v i t y was nu l l ") ;
r e turn pjp . proceed () ;

}
}

}� �
Listing B.2: Wifi Information Aspect

Bibliography

[1] The Kubernetes Authors. Horizontal Pod Autoscaler - Kubernetes, 2019. Last visited
2019-07-08.

[2] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von Styp-
Rekowsky. Appguard–fine-grained policy enforcement for untrusted android applications. In
Data Privacy Management and Autonomous Spontaneous Security, pages 213–231. Springer,
2014.

[3] Hakan Bagci and Ahmet Kara. A lightweight and high performance remote procedure call
framework for cross platform communication. In ICSOFT-EA, pages 117–124, 2016.

[4] Alastair R Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mockdroid:
trading privacy for application functionality on smartphones. In Proceedings of the 12th
workshop on mobile computing systems and applications, pages 49–54. ACM, 2011.

[5] Frank Buschmann. Pattern-oriented software architecture: a system of patterns. John Wiley
& Sons, 2011.

[6] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I Hong, and Yuvraj Agarwal.
Does this app really need my location?: Context-aware privacy management for smartphones.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):
42, 2017.

[7] Stelvio Cimato, Alfredo Santis, and Umberto Petrillo. Overcoming the obfuscation of java
programs by identifier renaming. Journal of Systems and Software, 78:60–72, 10 2005.
doi:10.1016/j.jss.2004.11.019.

[8] Philip Daian, Ylies Falcone, Patrick Meredith, Traian Florin Şerbănuţă, Akihito Iwai,
Grigore Rosu, et al. Rv-android: Efficient parametric android runtime verification, a brief
tutorial. In Runtime Verification, pages 342–357. Springer, 2015.

[9] Corbin Davenport. Google bans crypto miners, ’repetitive content,’ and more from the Play
Store, 2018. Last visited 2016-07-08.

[10] Tzilla Elrad, Robert E Filman, and Atef Bader. Aspect-oriented programming: Introduction.
Communications of the ACM, 44(10):29–32, 2001.

73

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
http://dx.doi.org/10.1016/j.jss.2004.11.019
http://dx.doi.org/10.1016/j.jss.2004.11.019
https://www.androidpolice.com/2018/07/26/google-bans-crypto-miners-repetitive-content-play-store/
https://www.androidpolice.com/2018/07/26/google-bans-crypto-miners-repetitive-content-play-store/

74 Bibliography

[11] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS), 32(2):5, 2014.

[12] Yliès Falcone and Sebastian Currea. Weave droid: aspect-oriented programming on android
devices: fully embedded or in the cloud. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 350–353. ACM, 2012.

[13] Google. Android d8, . Last visited 2019-07-10.

[14] Google. Missing Java Annotations, . Last visited 2016-07-08.

[15] Google. Android r8 repository, . Last visited 2019-07-10.

[16] Google. Android 6.0 Marshmallow, 2015. Last visited 2018-11-24.

[17] Google. Android Platform Architecture, 2018. Last visited 2018-12-02.

[18] Google. Kubernetes, 2018. Last visited 2018-12-02.

[19] Google. App permissions best practices, 2018. Last visited 2018-12-16.

[20] grpc ecosystem. gRPC-gateway Github page, 2019. Last visited 2019-09-10.

[21] David John Hughes, Moss Rowe, Mark Batey, and Andrew Lee. A tale of two sites: Twitter
vs. facebook and the personality predictors of social media usage. Computers in Human
Behavior, 28(2):561–569, 2012.

[22] Daniel Ionescu. Google Play Grows Up: New Developer Policies Will Clean Up Google’s
App Store, 2012. Last visited 2016-07-08.

[23] Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel, Nikhilesh Reddy,
Jeffrey S Foster, and Todd Millstein. Dr. android and mr. hide: fine-grained permissions in
android applications. In Proceedings of the second ACM workshop on Security and privacy
in smartphones and mobile devices, pages 3–14. ACM, 2012.

[24] Anthony D JoSEP, RAnDy KAtz, AnDy KonWinSKi, LEE Gunho, DAViD PAttERSon,
and ARiEL RABKin. A view of cloud computing. Communications of the ACM, 53(4),
2010.

[25] Hsiangchu Lai, Jack Shih-Chieh Hsu, and Min-Xun Wu. The impact s of requested permission
on mobile app adoption: The insights based on an experiment in taiwan. In Proceedings of
the 51st Hawaii International Conference on System Sciences, 2018.

[26] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and Zhengwei Qi.
Disl: a domain-specific language for bytecode instrumentation. In Proceedings of the 11th
annual international conference on Aspect-oriented Software Development, pages 239–250.
ACM, 2012.

https://developer.android.com/studio/command-line/d8
https://developer.android.com/training/location/retrieve-current
https://android.googlesource.com/platform/external/r8/
https://www.android.com/versions/marshmallow-6-0/
https://developer.android.com/guide/platform/
https://kubernetes.io/
https://developer.android.com/training/permissions/usage-notes
https://github.com/grpc-ecosystem/grpc-gateway
https://www.pcworld.com/article/260216/
https://www.pcworld.com/article/260216/

Bibliography 75

[27] Nathan D Mickulicz, Priya Narasimhan, and Rajeev Gandhi. Yinzcam: Experiences with
in-venue mobile video and replays. In Presented as part of the 27th Large Installation System
Administration Conference ({LISA} 13), pages 133–144, 2013.

[28] Dmitry Namiot and Manfred Sneps-Sneppe. On micro-services architecture. International
Journal of Open Information Technologies, 2(9):24–27, 2014.

[29] Susanna Paasonen. Affect, data, manipulation and price in social media. Distinktion:
Journal of Social Theory, 19(2):214–229, 2018.

[30] European Parliament. Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation). Official Journal of the European Union, L119:1–88,
May 2016.

[31] Bogdan Petrovan. Google is now manually reviewing apps that are submitted to the Play
Store!, 2015. Last visited 2016-07-08.

[32] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. 50 ways to leak your data: An exploration of apps’
circumvention of the android permissions systems. 2019.

[33] Patrick Schulz. Code protection in android. Insititute of Computer Science, Rheinische
Friedrich-Wilhelms-Universitgt Bonn, Germany, 110, 2012.

[34] Sarah Spiekermann, Alessandro Acquisti, Rainer Böhme, and Kai-Lung Hui. The challenges
of personal data markets and privacy. Electronic markets, 25(2):161–167, 2015.

[35] Statista. Global mobile OS market share in sales to end users from 1st quarter 2009 to 2nd
quarter 2018, 2018. Last visited 2018-11-24.

[36] Storyyeller. Missing Java Annotations, 2012. Last visited 2016-07-08.

[37] Haiyang Sun, Andrea Rosa, Omar Javed, and Walter Binder. Adrenalin-rv: Android runtime
verification using load-time weaving. In Software Testing, Verification and Validation (ICST),
2017 IEEE International Conference on, pages 532–539. IEEE, 2017.

[38] Chih-Sheng Wang, Guillermo Perez, Yeh-Ching Chung, Wei-Chung Hsu, Wei-Kuan Shih,
and Hong-Rong Hsu. A method-based ahead-of-time compiler for android applications. In
Proceedings of the 14th international conference on Compilers, architectures and synthesis
for embedded systems, pages 15–24. ACM, 2011.

[39] Hang Zhang, Dongdong She, and Zhiyun Qian. Android root and its providers: A double-
edged sword. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1093–1104. ACM, 2015.

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://www.androidauthority.com/google-now-manually-reviewing-apps-submitted-to-play-store-594879/
https://www.androidauthority.com/google-now-manually-reviewing-apps-submitted-to-play-store-594879/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://github.com/google/enjarify/issues/4

76 Bibliography

[40] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W Freeh. Taming information-
stealing smartphone applications (on android). In International conference on Trust and
trustworthy computing, pages 93–107. Springer, 2011.

	Abstract
	Resumo
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Proposed Solution
	1.2.1 Objectives
	1.2.2 Features

	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Android
	2.1.1 Rooting
	2.1.2 Permissions Model
	2.1.3 Project building

	2.2 Aspect Oriented Programming
	2.3 Code Obfuscation
	2.4 Cloud computing
	2.4.1 Micro-services architecture
	2.4.2 Docker & Kubernetes

	2.5 Related Work
	2.5.1 Research Methodology
	2.5.2 Similar applications
	2.5.3 Related work comparison

	2.6 Android Decompilers & Compilers
	2.6.1 Decompilers
	2.6.2 Compilers
	2.6.3 zipalign & apksigner

	3 Implementation
	3.1 Sobek Instrumentation Tool
	3.2 User application
	3.2.1 Preferences and Logging
	3.2.2 IPC Service
	3.2.3 Synchronization with Backend

	3.3 Backend
	3.3.1 Tools & Frameworks
	3.3.2 Database Design
	3.3.3 Sobek Services
	3.3.4 Docker Images
	3.3.5 Kubernetes Setup
	3.3.6 REST API

	4 Results
	4.1 Simple Location Application
	4.2 Simple Contacts Application and Simple SMS Application
	4.3 Simple Wifi Mac Address Application
	4.4 Facebook applications
	4.5 Twitter & Twitter Lite
	4.6 Waze
	4.7 YinzCam applications
	4.8 Taxonomy
	4.9 Related work evaluation
	4.10 Smartphone performance impact analysis
	4.10.1 Methodology and experimental setup
	4.10.2 Instrumented applications

	4.11 Back-end performance
	4.11.1 Methodology and experimental setup
	4.11.2 Enjarify & Dex2jar
	4.11.3 Sobek Instrumentation Tool

	5 Conclusion
	5.1 Current implementation limitations
	5.2 Future work & open research challenges

	A Development notes
	A.1 Programming languages used
	A.2 Data definition languages used
	A.3 Software used
	A.4 Utilities used

	B Code snippets
	Bibliography

