Estudos de Fiabilidade Utilizando o Método de Simulação de Monte Carlo Integrando Informação Expressa sob a Forma de Números Imprecisos
Estudos de Fiabilidade Utilizando o Método de
Simulação de Monte Carlo Integrando Informação
Expressa sob a Forma de Números Imprecisos

António Augusto Varejão Teixeira de Sousa

Licenciado em Física/Matemática Aplicada
pela Faculdade de Ciências da Universidade do Porto

Dissertação submetida para satisfação parcial dos
requisitos do grau de mestre
em
Engenharia Electrotécnica Electrónica e de Computadores

Dissertação realizada sob a supervisão de
Professor Doutor João Paulo Tomé Sarniva,
do Departamento de Engenharia Electrotécnica e de Computadores
da Faculdade de Engenharia da Universidade do Porto

Porto, Setembro de 1997
Resumo

O planeamento de redes eléctricas debate-se hoje com diversos problemas entre os quais se inclui a presença de incertezas afectando diversas grandezas. Este aspecto é agravado hoje em dia pela progressiva liberalização e liberdade de acesso de consumidores às redes eléctricas. Tradicionalmente, as incertezas eram tratadas em modelos no âmbito das redes eléctricas por conceitos probabilísticos. Estas metodologias não deverão ser utilizadas para representar o conhecimento associado a declarações de natureza qualitativa, características da linguagem natural ou em situações em que se disponha de poucos dados para caracterizar o comportamento de uma grandeza.

Para ultrapassar as limitações de diversas metodologias hoje tradicionais já foram desenvolvidas formulações para o estudo de sistemas eléctricos de energia, capazes de integrar nos seus dados incertezas recorrendo à Teoria dos Fuzzy Sets, como o problema do trânsito de potências e do trânsito de potências óptimo impreciso.

Por outro lado, a avaliação da fiabilidade revela-se importante para o estudo e planeamento dessas redes. Assim, neste trabalho foram desenvolvidos um conjunto de módulos de cálculo computacional que permitem avaliar a fiabilidade de sistemas compostos produção/transmissão utilizando o método de simulação de Monte Carlo. A aplicação desenvolvida possui um elevado grau de flexibilidade no sentido em que o utilizador poderá optar por realizar um sorteio cronológico ou não cronológico, poderá decidir integrar incertezas nas potências de carga e em taxas de avarias e de reparação de componentes representadas por números imprecisos trapezoidais, poderá adoptar representações das potências de carga considerando diagramas de carga classificados em que a cada posto horário está associado uma potência de carga modelizada por um número impreciso trapezoidal e, finalmente, poderá adoptar técnicas de aceleração da convergência do método de simulação de Monte Carlo por forma a diminuir o tempo de cálculo. Desenvolveu-se, assim, uma aplicação que permitirá integrar uma variedade de dados afectados por incerteza e reflectirá essas incertezas nos resultados. Este tipo de metodologias poderá desempenhar um papel importante na ajuda à decisão na avaliação da fiabilidade em problemas de planeamento de sistemas eléctricos de energia.
Abstract

Power system planning activities has to deal with several problems among which one can refer the presence of uncertainties affecting several variables. This aspect is even more serious nowadays due to the trend towards liberalisation of power systems and the access to transmission and distribution networks given to consumers and distributors. Traditionally, uncertainties were modelled in the scope of power system studies by probabilistic concepts. However, these methodologies should not be used to deal with uncertainties or to represent the knowledge present in declarations having qualitative nature, common in natural language, or in situations where we have few data to characterise the behaviour of a variable.

In order to overcome the limitations imposed by methodologies that can already be considered traditional nowadays, they were developed several formulations to study power systems able to integrate uncertainties using concepts from Fuzzy Set Theory. The formulations available to solve power flow and optimal power flow problems are only examples of this kind of applications.

Apart from these considerations, reliability evaluation of power systems is undoubtedly an important issue in the scope of power system planning activities. In this work, they were developed a set of computational modules that can be used to evaluate reliability indices of composite generation/transmission power systems using the Monte Carlo simulation method. The developed application has an important degree of flexibility in the sense that the user can decide to use a chronological or a non-chronological type of sampling, can integrate uncertainties in loads, failure and repair rates of components by representing their values by fuzzy numbers, can adopt representations of loads considering load duration curves in which each time step in represented by a fuzzy number and, finally, can also decide to use convergence acceleration techniques in order to reduce the computational effort. Therefore, it was developed an application that allows one to integrate a variety of data affected by uncertainties and able to reflect those uncertainties in the results of the problem. This type of methodologies may have an important role as decision aid tools in the evaluation of the reliability in the scope of power system planning problems.
Resumé

Le planificament de réseaux électrics se débattre aujourd'hui avec plusieurs problèmes parmi lesquels se insere la presence de incertitudes affectent plusieurs variables. Cet aspect c'est aggravé aujourd'hui pour la progressive liberalization et liberté d'access de consommateurs a les réseaux électrics. Traditionnelment, les incertitudes ont été traité en modeles dans le countour des réseaux électrics pour les idées probabilistics. Ces methodologies ne devront pas être se utilises pour représenter le connaissance associé a declarations de nature qualitative, caracteristiques de la langage naturel ou en situations dans ce que dispose de peu donnés pour caracteriser le conduite d'une variable.

Pour dépasser les limitations de plusieurs methodologies aujourd'hui traditionnel déjà ont été développé formulations pour l'étude de systèmes électrics d'énergie, capables d'intégrer dans ses données incertitudes recourent à la Theorie des Fuzzy Sets, comme le problème de transit de puissance optime imprecis.

Cependant, l'appréciation de la fiabilité on se révèle importante pour l'étude et le planificament de ces réseaux. Ainsi, dans ce travail ont été developpé un conjoint de modules de calcul de resolution sur ordinateur que permettent evaluer la fiabilité des systemes hétérogènes production/transmission utilisées le méthode de simulation de Monte Carlo. L'application developpé possède un élevé degré de flexibilité, dans le sens que l'utilisateur pourra opter pour réaliser un tirage au sort chronologique ou non chronologique, pourra décider intégrer les incertitudes dans les puissances de charge et en taux de avaries et de réparation de composants representés pour nombres imprecis trapézoids, pourra adopter representations des puissances de charge considerant diagrammes de charge classifié en que chaque poste horaire est associé une puissance de charge modelisé pour un nombre impreci trapézoid et, finalement pourra adopter tècnics d'accélération de la convergence de la méthode de simulation de Monte Carlo de manière a baisser le temps de calcul. On s'est développé, ainsi, une application qui permettra intégrer une diversité de donnés affecté pour incertitudes et reflechirra ces incertitudes dans les résultats. Ce modèle de methodologies pourra accomplir un papier important à l'aide à decision dans l'estimation de la fiabilité en problems de planificament de systems électrics d'énergie.
Prefácio

Estou profundamente agradecido a todos os que me auxiliaram, de alguma forma, a chegar à conclusão deste trabalho:

- Ao Prof. Tomé Saraiva, pela confiança e pelo apoio constante e sempre motivador,

- Ao António Silveira e Ana Maria Rosas pelas discussões sobre assuntos correlacionados ou não com este trabalho;

- A todos os programadores que, dispersos pelo mundo, contribuíram para o projecto de desenvolvimento do sistema operativo Linux, que me proporcionou uma plataforma UNIX para a realização do trabalho.

Finalmente, dedico este trabalho à minha esposa, Manuela, e minha filha, Filipa, pelo carinho, paciência e compreensão.

Os meus sinceros agradecimentos a todos.
Índice

1 Introdução ... 14
 1.1 Motivação .. 14
 1.2 Objectivos .. 15
 1.3 Estrutura da dissertação ... 16

2 Funcionamento dos sistemas eléctricos de energia .. 18
 2.1 Formulação do problema de trânsito de potências ... 18
 2.2 Resolução do problema de trânsito de potências ... 21
 2.2.1 Método de Gauss-Seidel ... 22
 2.2.2 Método de Newton-Raphson ... 25
 2.3 Modelo DC ... 31
 2.4 Trânsito de potências óptimo .. 33
 2.4.1 Formulação do problema .. 33
 2.4.2 Linearização do problema de trânsito de potências óptimo. 35

3 Fiabilidade e método de Monte Carlo .. 37
 3.1 Fiabilidade de um sistema eléctrico de energia ... 37
 3.1.1 Noções gerais .. 37
 3.1.2 Fiabilidade de um componente .. 38
 3.1.3 Tempos médios de funcionamento e de avaria ... 40
 3.1.4 Fiabilidade de um sistema .. 41
 3.2 O método de simulação de Monte Carlo ... 43
 3.2.1 Aspectos genéricos ... 43
 3.2.2 Tipos de sorteio ... 44
 3.2.3 Descrição do método ... 45
 3.2.4 Técnicas de redução de variância .. 47
 3.3 Aplicação a sistemas eléctricos de energia ... 48
 3.3.1 Simulação não cronológica ... 49
 3.3.2 Simulação cronológica .. 50
 3.3.3 Avaliação do valor esperado da potência cortada .. 52
 3.3.4 Utilização da amostragem antitética ... 53
 3.3.5 Utilização da variável de controlo .. 54
 3.3.6 Construção da tabela das probabilidades das capacidades fora de serviço 55
4 Conjuntos imprecisos .. 57
 4.1 Aspectos genéricos .. 58
 4.2 Operações básicas sobre conjuntos imprecisos .. 60
 4.3 Princípio da Extensão ... 60
 4.4 Números imprecisos ... 61
 4.4.1 Definição .. 61
 4.4.2 Alguns tipos de números imprecisos: .. 62
 4.4.3 Operações sobre números imprecisos trapezoidais .. 64
 4.5 Critérios de ordenação de números imprecisos .. 68
 4.5.1 Critério de ordenação de Kaufmann/Gupta .. 68
 4.5.2 Critério de ordenação de Lee e Li .. 70

5 Modelos de análise de sistemas elétricos integrando dados sob a forma de números imprecisos .. 72
 5.1 Trânsito de potências impreciso .. 72
 5.1.1 Modelo DC impreco .. 73
 5.1.2 Modelo AC impreco de trânsito de potências .. 76
 5.2 Trânsito de potências óptimo impreciso .. 81
 5.2.1 Estudo determinístico de trânsito de potências óptimo .. 83
 5.2.2 Integração de imprecisões associadas às potências de carga ... 86
 5.2.3 Cálculo das potências de corte de carga ... 87
 5.2.4 Identificação dos vértices ... 89
 5.2.5 Estudos parametrizados .. 90
 5.2.6 Agregação de resultados .. 92

6 Avaliação de fiabilidade utilizando números imprecisos .. 95
 6.1 O método de simulação de Monte Carlo em ambiente impreciso .. 95
 6.2 Análise de convergência em ambiente impreciso .. 96
 6.3 Modelos integrando números imprecisos .. 97
 6.3.1 Potências de carga definidas por postos horários .. 98
 6.3.2 Versão cronológica de método de simulação de Monte Carlo 101

7 Resultados .. 107
 7.1 Dados do sistema teste ... 107
 7.2 Performance das técnicas de aceleração de convergência nos modelos desenvolvidos 112
 7.3 Estimativa do valor esperado da potência cortada .. 113
 7.4 Estimativa do valor esperado da energia anual não fornecida ... 114
8 Conclusões .. 116
 8.1 Trabalho realizado .. 116
 8.2 Trabalho futuro .. 117
9 Referências .. 118
10 Anexos .. 120
 A Comunicação submetida e aceite ao XII Congresso Chileno de Ingeniería Electrica ... 121
Lista de figuras

Figura 2.1 - Diagrama de blocos do método de Gauss-Seidel
Figura 2.2 - Fluxograma do método de Gauss-Seidel para o problema de trânsito de potências
Figura 2.3 - Barramentos ligados por uma linha de resistência desprezável
Figura 2.4 - Função custo de produção de um gerador aproximada por segmentos
Figura 3.1 - Curva típica da taxa de avarias dum componente elétrico
Figura 3.2 - Representação da história de um componente continuamente reparável
Figura 3.3 - Representação gráfica dos tempos médios de funcionamento e avaria de um componente
Figura 3.4 - Associação de componentes em série
Figura 3.5 - Indisponibilidade dum associação de três componentes em paralelo
Figura 3.6 - Algoritmo genérico do método de simulação de Monte Carlo
Figura 4.1 - Exemplo dum função de pertença
Figura 4.2 - Função de pertença de um conjunto impreciso A
Figura 4.3 - Dois conjuntos imprecisos em que apenas o segundo corresponde a um número impreciso
Figura 4.4 - Representação gráfica dum número impreciso trapezoidal
Figura 4.5 - Representação gráfica dum número impreciso triangular
Figura 4.6 - Representação gráfica dum número impreciso rectangular
Figura 4.7 - Identificação dos Removal à esquerda e à direita dum número impreciso
Figura 5.1 Algoritmo de resolução do trânsito de potências impreciso segundo uma formulação AC
Figura 5.2 - Algoritmo do modelo DC do trânsito de potências óptimo impreciso
Figura 5.3 - Algoritmo de resolução do problema determinístico de trânsito de potências óptimo
Figura 5.4 - Cortes de nível 0.0 e 1.0 das funções de pertença de duas potências de carga
Figura 5.5 - Solução possível dos problemas de programação paramétrica
Figura 5.6 - A função de pertença anterior depois de tratada pelo operador máximo
Figura 6.1 - Diagrama de cargas impreciso
Figura 6.2 - Diagrama de cargas classificado por quatro postos
Figura 6.3 - Fluxograma da versão implementada para cargas expressas por postos horários ... 100
Figura 6.4 - Modelo cronológico do método de Monte.Carlo ... 103
Figura 6.5 - Modelo cronológico do método de Monte.Carlo com integração de imprecisões nas taxas de avaria e de reparação dos componentes. 105
Figura 7.1 - Sistema MRTS - Modified IEEE reliability test system ... 107
Figura 7.2 - Função de pertença do valor esperado da potência cortada 114
Figura 7.3 - Função de pertença do valor esperado da energia não fornecida 115
Lista de tabelas

Tabela 3.1 - Sorteio de estados numa simulação não cronológica.......................... 50
Tabela 3.2 - Dados de fiabilidade de 3 componentes... 51
Tabela 3.3 - Tempos de saída de serviço de três componentes.............................. 51
Tabela 3.4 - Sorteio de estados numa simulação cronológica.................................. 52
Tabela 3.5 - Inicialização da tabela das probabilidades das capacidades fora de serviço...... 55
Tabela 5.1 - Variáveis conhecidas e calculadas no problema de trânsito de potências...... 80
Tabela 7.1 - Limites de funcionamento e custos de produção de cada secção, dos geradores... 108
Tabela 7.2 - Dados dos barramentos.. 108
Tabela 7.3 - Dados dos circuitos... 109
Tabela 7.4 - Dados de fiabilidade das linhas do sistema MRTS.................................. 110
Tabela 7.5 - Dados da fiabilidade dos geradores do sistema MRTS............................ 111
Tabela 7.6 - Características dos postos horário.. 111
Tabela 7.7 - Características das imprecisões em λ e μ componentes.................. 112
Tabela 7.8 - Número de estados analisados da versão em estudo versus aceleração de convergência... 112
Tabela 7.9 - Resultados para o valor esperado da potência cortada em MW................ 113
Tabela 7.10 - Resultados para o valor esperado da energia média anual não fornecida.... 115
Liste de abreviaturas e símbolos

[I] vector intensidade de corrente elétrica que circula nos barramentos

[Y] matriz de admitâncias da rede. \(Y_{ik} = G_{ik} + jB_{ik} \)

\(E \) tensão do barramento. \(E = e + jf = V \angle \theta \)

[Z] matriz das impedâncias = \([Y]\)^{-1}

\(S \) potência aparente \(P + jQ \) injectada num barramento

\(P \) potência activa

\(Q \) potência reactiva

[B] matriz do modelo DC formada a partir do inverso das reactâncias dos ramos da rede

[S] matriz de coeficientes de sensibilidade associada ao modelo DC

[J] matriz do jacobiano

\(\bar{A} \) conjunto impreciso

\(\mu(x) \) função de pertença do conjunto impreciso \(\bar{A} \)

\(\oplus \) adição de números imprecisos

\(\ominus \) subtração de números imprecisos

\(\cup \) união

\(\cap \) interseção

\(\mu \) taxa de reparação

\(\lambda \) taxa de avarias

\(R(t) \) fiabilidade de um componente

\(Q(t) \) indisponibilidade de um componente

\(r \) tempo médio de reparação

\(m \) tempo médio de funcionamento

MTTF \textit{mean time to failure}

MTTR \textit{mean time to repair}

MTBF \textit{mean time between failure}

\(A \) estado de avaria

\(f \) estado de funcionamento
Capítulo 1

Introdução

1.1 Motivação

O planeamento de sistemas elétricos de energia é um problema reconhecidamente complexo consistindo num processo em que se pretende identificar os elementos a construir ou reforçar com um horizonte temporal adequado e considerando previsões relativamente à evolução do valor das cargas. Os elementos a construir ou reforçar poderão corresponder a geradores, linhas de transmissão e cabos ou a subestações do sistema. O processo de decisão referido é usualmente dirigido por critérios de natureza técnica e económica reconhecendo-se, para além destes, e em anos mais recentes a importância de aspectos relacionados com questões de natureza ambiental e factores relacionados com a qualidade de serviço. O processo de planeamento é, por outro lado, afectado por uma diversidade de factores associados às incertezas que podem afectar muitos dados e parâmetros necessários à realização destes estudos. Por esta razão, as acções de planeamento são cada vez mais realizadas num ambiente em que o planeador deverá estar consciente do risco envolvido nas decisões a adoptar.

A este ambiente dominado por incertezas de diversa natureza, acresce que as sociedades actuais se encontram cada vez mais dependentes do consumo de energia eléctrica. As empresas fornecedoras desta energia são cada vez mais, solicitadas a fornecerem energia a novos clientes ou a reforçarem o fornecimento aos existentes. Este facto acarreta incertezas quanto à dimensão das expansões e/ou reforços da rede por forma a que ela alimente os consumos futuros.

O ambiente em que as empresas de produção, transporte e distribuição de energia eléctrica actuam alterou-se ainda de forma significativa dado que estas empresas são cada vez menos consideradas como produtoras de um bem mas, cada vez mais, como fornecedoras de um serviço que deverá ter elevada qualidade em relação, entre outros aspectos, à fiabilidade assegurada, e à potência e energia não fornecidas.

Em anos mais recentes, a liberalização do sector eléctrico e as possibilidades que, cada vez com mais frequência, são concedidas aos clientes em termos do acesso às redes e ao estabelecimento de contratos entre distribuidores/consumidores, por um lado, e entidades produtoras, por outro, alarga ainda mais o âmbito das incertezas que podem afectar diversos tipos de estudo entre os quais os de planeamento. Este facto, por ser um problema relativamente recente, não tem sido considerado no processo de planeamento. No entanto, a possibilidade de estabelecimento de contratos de compra venda de energia ou a adopção de mecanismos correspondentes a um mercado tipo spot e existência de
um número muito elevado de produtores independentes alteram de forma radical a filosofia tradicional associada ao planeamento das redes eléctricas impondo o desenvolvimento de novas metodologias que possam lidar com diversos tipos de incertezas que afectam o processo de decisão.

Tradicionalmente, os estudos de avaliação da fiabilidade de sistemas eléctricos de energia são realizados com grande frequência no âmbito de estudos de planeamento. Com estes estudos, pretende-se realizar o diagnóstico das condições de funcionamento do sistema existente, avaliar a sua performance em termos de diversos índices de fiabilidade tendo em conta a evolução prevista das potências de carga, e caracterizar os benefícios que se poderiam retirar da adopção de estratégias de expansão ou reforço previamente seleccionadas. Face ao ambiente referido anteriormente, torna-se importante adaptar metodologias de avaliação de fiabilidade de sistemas compostos produção/transmissão por forma a incorporar, por um lado, modelos de natureza probabilística que tradicionalmente descrevem o ciclo de vida dos componentes das redes eléctricas e, por outro, incertezas presentes nas potências de carga ou associadas a caracterizações incompletas de taxas de avaria e reparação de componentes.

Pelo exposto e face ao novo ambiente em que o sector eléctrico se move, algumas destas incertezas podem estar associadas a declarações qualitativas sendo, por esta razão, representadas por números imprecisos no âmbito da Teoria dos Fuzzy Sets.

De entre os diversos métodos de avaliação da fiabilidade o método de simulação de Monte Carlo revela-se uma ferramenta poderosa para avaliar a fiabilidade de sistemas compostos produção/transmissão permitindo representar com o detalhe que se pretender o sistema eléctrico. Assim, e de uma forma breve, o trabalho que agora se apresenta correspondeu ao desenvolvimento de um conjunto de módulos de cálculo computacional para avaliação da fiabilidade de sistemas elétricos adoptando o método de simulação de Monte Carlo em que, face às incertezas presentes nas potências de carga, cada estado sortead é analisado recorrendo a um algoritmo de trânsito de potências óptimo im preciso. Foram implementadas e testadas versões não cronológicas e cronológicas deste algoritmo por forma a, face aos dados disponíveis, ser possível obter uma variedade de resultados que, reflectindo as incertezas existentes, possam constituir um elemento importante de ajuda à decisão no processo de planeamento de redes eléctricas.

1.2 Objectivos

O objectivo deste trabalho consistiu em implementar uma versão do método de simulação de Monte Carlo que integrasse algumas técnicas de aceleração de convergência e em que alguns dos dados necessários fossem representados por números imprecisos. Neste âmbito, o utilizador pode especificar números imprecisos trapezoidais para representar o comportamento possível de potências de carga e de taxas de avaria e de reparação dos componentes do sistema eléctrico de energia. Desenvolveu-se, ainda, um módulo de cálculo que permite o tratamento de potências de carga do sistema.
expressas sob a forma de diagramas de carga classificados em que cada posto horário é representado por um número impreciso trapezoidal.

Pretendeu-se com estes desenvolvimentos determinar quais as técnicas de aceleração que mais rapidamente atingiam a convergência, bem como construir as funções de pertença associadas a diversos índices de fiabilidade que permitem avaliar o comportamento do sistema elétrico tais como as funções de pertença dos valores esperados da potência cortada e da energia média anual não fornecida.

1.3 Estrutura da dissertação

Após esta breve introdução com a qual se pretende apresentar a motivação e objectivos do trabalho realizado, inclui-se no capítulo 2, a formulação dos problemas de trânsito de potências e trânsito de potências óptimo determinístico. Neste capítulo reveem-se alguns métodos de resolução do problemas de trânsito de potências, apresenta-se a formulação genérica do problema de trânsito de potências óptimo e referem-se, de forma breve, algumas metodologias para a sua resolução. Pelo seu interesse em capítulos seguintes apresenta-se, ainda, a versão linealizada do problema de trânsito de potências óptimo.

No capítulo 3, descrevem-se conceitos relacionados com a fiabilidade de um componente e de um sistema bem como alguns métodos de para avaliação da fiabilidade em sistemas constituídos por um elevado número de componentes. Dado o âmbito deste trabalho, é conferida uma atenção particular ao método de simulação de Monte Carlo. Assim, é descrito o algoritmo genérico deste método de simulação e são analisadas algumas questões mais particulares tais como os tipos de sorteio de estados do sistema e técnicas de aceleração de convergência da simulação.

No capítulo 4 apresentam-se conceitos da Teoria dos Conjuntos Imprecisos. De entre eles confere-se uma atenção especial aos números imprecisos incluindo definições, operações aritméticas e critérios de ordenação destes números.

Como foi referido cada estado sorteado no âmbito do processo de simulação de Monte Carlo será analisado recorrendo a um estudo de trânsito de potências óptimo impreciso. Assim, a formulação dos problemas de trânsito de potências impreciso, trânsito de potências óptimo impreciso e métodos de resolução são abordados no capítulo 5.

No capítulo 6 são apresentados os algoritmos baseados no método de simulação de Monte Carlo implementados para as funções de pertença associadas ao valor esperado da potência média cortada e energia média anual não fornecida. Estes algoritmos permitem ao utilizador selecionar uma variedade de opções entre as quais se destacam a possibilidade de:
• adoptar um sorteio cronológico ou não cronológico;
• selecionar, ou não, a utilização de técnicas de aceleração de convergência;
• representar as potências de carga por números imprecisos trapezoidais considerando, ou não, diagramas de carga classificados;
• adoptar, ou não, números imprecisos trapezoidais para representar taxas de avarias e reparação de componentes do sistema.

Os módulos descritos foram testados utilizando sistemas teste do IEEE. No capítulo 7 apresentam-se os resultados obtidos com as diversas implementações referidas.

Finalmente, as principais conclusões obtidas e algumas pistas relativas a trabalho futuro são apresentados no capítulo 8.
Capítulo 2

Funcionamento dos sistemas elétricos de energia

O problema do trânsito de potências, em sistemas elétricos de energia, consiste em determinar as tensões nos barramentos e as potências que transitam em todos os componentes do sistema, para um conjunto de cargas, em condições de funcionamento estacionárias.

As equações que definem o problema do trânsito de potências, são resolvidas por métodos numéricos especiais, desenvolvidos de acordo com as características específicas da estrutura do problema a analisar e que permitam o seu tratamento computacional para redes de dimensão real.

O primeiro programa de trânsito de potências que teve realmente sucesso foi desenvolvido por Ward e Hale (1956). Era baseado num método iterativo de Newton modificado. Rapidamente surgiram outros programas que implementaram diversos algoritmo como o de Gauss-Seidel. No entanto, este método para sistemas de grande dimensão torna-se instável além de exigir um grande número de iterações para atingir a convergência.

O algoritmo de trânsito de potências com maior aceitação, segundo Brown, H. E., (1975), foi desenvolvido por Tiney e Hart (1967), e baseia-se no método de Newton-Raphson. Entretanto, diversas variantes deste método e metodologias baseadas em algoritmos genéticos e implementações paralelizadas têm sido sugeridos para a resolução deste problema.

2.1 Formulação do problema de trânsito de potências

Na sua forma mais simples e também mais usada, o problema de trânsito de potências é abordado considerando que a rede de transmissão é fixa, linear e equilibrada, representada por esquemas equivalentes de parâmetros constantes. Deste modo, segundo Olle Elgerd, (1971), a rede é modelada por um conjunto de equações que relacionam os valores complexos das tensões nos barramentos com os valores complexos das correntes injetadas, através de um sistema de equações lineares representadas matricialmente pela equação (2.1):

\[
[I] = [Y][-E] \tag{2.1}
\]
em que:

\[Y_{sk} = \sum_{i=1}^{n} Y_{ki} \]

soma de todas as admitâncias incidentes no barramento \(k \),

\[Y_{ki} = Y_{ik} \]

simétrico das admitâncias que ligam os barramentos \(k \) e \(i \),

e ainda por um conjunto de condições nodais que variam conforme o tipo de barramento.

A matriz das admitâncias nodais inclui informação relativa aos componentes passivos do sistema e tem uma estrutura bem definida, o que permite a sua fácil construção. As suas principais propriedades são:

- matriz quadrada de ordem \(n \);
- matriz simétrica: \(Y_{ki} = Y_{ik} \) considerando que a rede não integra transformadores e esfazadores;
- matriz complexa;
- matriz esparsa.

Os barramentos, de acordo com as especificações a si associadas, são usualmente agrupados nas seguintes três classes:

- barramentos do tipo \(PQ \)
 Barramento para o qual a potência injectada, \(P + jQ \), é especificada, \(S_{SP} \),

\[S_{SP} = E_i \cdot I_i^* = P_i^{SP} + j Q_i^{SP} = P_i^{SP} - P_i^{SP} + j(Q_i^{SP} - Q_i^{SP}) \] \((2.2) \)

Nesta expressão, os índices \(pi \) e \(ci \) referem-se, respectivamente, à produção e à carga ligadas ao barramento \(i \).

- barramentos do tipo \(PV \)
 Barramento para o qual a potência activa injectada, \(P \), e o valor eficaz da tensão, \(V \), são especificados. Este tipo de barramento simula um ponto da rede eléctrica ao qual está ligada uma fonte de energia. A potência reactiva
injected, \(Q_i \), is an unknown whose value will be provided by the solution of the power flow.

\[
\text{Re}(E_i, I_i^*) = P_i^{sp} = P_{pi}^{sp} - P_{ai}^{sp} \tag{2.3}
\]

\[
|E_i| = V_i^{sp} = (e_i^2 + f_i^2)^{1/2} \tag{2.4}
\]

In expression (2.4), \(e_i \) and \(f_i \) represent the real and imaginary parts of the complex voltage at node \(i \).

- **barramento de referência e de compensação**

It is a type of fictitious bus, necessary as a reference for the phases of all other buses. In general (although it can be any other) the value specified for the phase of the voltage is zero. Thus:

\[
|E_i| = E_i = V_i^{sp} \tag{2.5}
\]

It is usual in the study of power flow, to make coincide with the reference bus, another type of bus - the compensatory (slack).

The necessity of the existence of this bus results from the fact that the power active and reactive injected cannot be specified in all buses due to the losses of reactive power and active in the system only be known after the solution of the power flow.

A network exists, normally, only one of this type. Some formulations of the problem of power flow consider the existence of a distributed compensation.

The minimum data required for the solution of the power flow problem are the following:

- impedance of all elements that constitute the transmission network;
- active powers produced in all buses;
• potências activas consumidas em todos os barramentos de tipo \(PQ \) e \(PV \);

• potências reactivas produzidas em todos os barramentos de tipo \(PQ \);

• potências reactivas consumidas em todos os barramentos;

• valor eficaz das tensões em todos os barramentos \(PV \) e no barramento de referência;

Os resultados que se obtêm com a resolução deste problema são:

• valor eficaz das tensões nos barramentos de tipo \(PQ \);

• fase das tensões em todos os barramentos tipo \(PV \) e \(PQ \);

• potência activa produzida no barramento de referência e compensação;

• potência reactiva produzida nos barramentos \(PV \) e no barramento de referência e compensação;

• potências injectadas nos extremos de todas as linhas e as consequentes perdas no transporte;

• potências injectadas nos dois lados de todos os transformadores e respectivas perdas;

• potência gerada ou consumida por todos os dispositivos de compensação existentes na rede;

• perdas totais.

2.2 Resolução do problema de trânsito de potências

O problema de trânsito de potências consiste em obter uma solução numérica para um sistema de equações algébricas não lineares.

Grande parte dos métodos propostos para a resolução deste problema baseiam-se em processos iterativos que aproximam a solução do problema do seguinte modo:

• especifica-se um valor inicial para arranque do método;
• esta solução é usada em conjugação com as equações que definem o problema, para calcular uma solução mais aproximada;

• volta-se a usar esta aproximação, para obter uma nova aproximação e vai-se repetindo este procedimento até o processo convergir.

Os diferentes métodos utilizam esquemas diferentes para obter as novas estimativas, e a sua qualidade pode ser medida em termos de velocidade de convergência. A implementação dos diferentes métodos em programas computacionais, normalmente originam algoritmos mais ou menos complexos dependentes da velocidade de convergência conseguida.

Em todos os processos iterativos, é necessário instruir o computador quando deve parar. Normalmente, nos programas de cálculo de trânsito de potências, utiliza-se o módulo da diferença entre os valores das tensões em módulo e fase nos barramentos obtidos em duas iterações sucessivas. Considera-se que o processo convergiu para uma solução quando este valor é inferior a um valor especificado pelo utilizador. Pode também optar-se por avaliar a convergência calculando o módulo da diferença das potências ativas injectadas nos barramentos PQ e PV e reactivas injectadas nos barramentos PQ obtidos em duas iterações sucessivas.

Os métodos iterativos mais conhecidos são o de Gauss-Seidel e o de Newton-Raphson. Este último é mais complexo que o anterior mas mais poderoso sendo actualmente o mais utilizado em diversas variantes.

2.2.1 Método de Gauss-Seidel

O método de Gauss-Seidel é um método iterativo muito simples e desenvolveu-se rapidamente devido à facilidade de se escrever um programa para implementar o algoritmo. Este método iterativo pode ser resumido no diagrama de blocos esquematizado na figura 2.1.

Neste fluxograma considera-se que todas as grandezas se encontram representados por valores complexos. No bloco A são especificados todos os valores conhecidos respeitantes aos componentes da rede bem como um ponto inicial de arranque do processo iterativo. No bloco B, em cada iteração, o valor de \(E \) é ajustado pela expressão (2.6)

\[
E^{(v+1)}_i = \frac{1}{Y_{ii}} \left[I^{(v)}_i - \sum_{k=1}^{n} Y_{ik} \cdot E^{(v)}_k \right]
\]

(2.6)
No entanto, a implementação deste método tem que ser alterada em função do tipo de barramento em estudo sendo certas expressões calculadas na sua forma real. Uma possível implementação do método é detalhada no fluxograma da figura 2.2.

No algoritmo da figura 2.2 considerou-se que os índices correspondem a:

- $i = 1$ barramento de referência;
- $i = 2, \ldots, m$ barramentos PV;
- $i = m+1, \ldots, n$ barramentos PQ.
Figura 2.2 - Fluxograma do método de Gauss-Seidel para o problema de trânsito de potências
O bloco A consiste na aquisição de dados da rede e construção da matriz \([X]\) formada de acordo com o especificado em pontos anteriores.

No bloco B especificam-se os valores das grandezas conhecidas de acordo com a classificação dos diversos barramentos do sistema.

No bloco C obriga-se a que os barramentos \(PV\) tenham \(V_i = V_i^{SP}\) isto é, mantenham o valor especificado para o valor eficaz da tensão.

O valor da potência reactiva injectada em cada barramento é calculado no bloco D.

No bloco E, recorre-se à expressão (2.6) para calcular o valor da tensão em cada barramento.

No bloco F, é realizado o controlo de convergência. O processo iterativo prossegue até que as condições \(|V^{v+1} - V^v| < \varepsilon\) e \(|\theta^{v+1} - \theta^v| < \varepsilon\) sejam satisfeitas por todos os barramentos. Este método converge lentamente para a solução o que o torna pouco indicado para sistemas com muitos barramentos.

Finalmente no bloco G calculam-se os valores de \(P_1\) e \(Q_1\) no barramento de referência bem como os trânsitos de potência nos ramos (linhas e transformadores).

2.2.2 Método de Newton-Raphson

O método de Newton-Raphson, é um método de convergência quadrática. Trata-se de um método muito fiável e pouco sensível a factores susceptíveis de causar dificuldades de convergência tal como a escolha do barramento de referência ou a existência de condensadores em série. Converge para a solução num reduzido número de iterações.

A principal dificuldade associada a este método, consiste na necessidade de calcular e inverter o jacobiano em todas as iterações.

Para aplicar o algoritmo de Newton-Raphson em estudos de trânsitos de potência, definem-se as equações do sistema eléctrico sob a forma:

\[
F(x) = 0 \tag{2.7}
\]

A equação (2.7) quando desenvolvida em série de Taylor em torno de um valor inicial, \([x^0]\), e desprezando os termos de ordem superior à primeira, leva à obtenção de um desvio da função \(F\) dado pela expressão:

\[
[\Delta F] = [J] \cdot [\Delta x] \tag{2.8}
\]
onde \([J]\), é a matriz do jacobiano da função. O processo iterativo pode-se resumir nos seguintes passos:

1. \(k = 0\);
2. Estimar um valor inicial para os componentes do vetor \([x], [x^{(k)}]\);
3. Calcular o valor dos componentes do vetor \([ΔF^{(k)}]\);
4. Calcular o valor dos elementos da matriz do jacobiano, \([J^{(k)}]\);
5. Calcular os desvios para o vetor \([x]\) invertendo \([J^{(k)}]\), isto é,

\[
[Δx^{(k)}] = [J^{(k)}]^{-1} [ΔF^{(k)}]
\]

(2.9)

6. Adicionar estes desvios ao valor disponível na iteração anterior,

\[
[x^{(k+1)}] = [x^{(k)}] + [Δx^{(k)}]
\]

(2.10)

7. Considerar este, o novo valor inicial e repetir os passos 3 a 7 até o processo convergir.

Como este método só é aplicável a sistemas de funções reais de variáveis reais, torna-se necessário que as equações que definem um sistema eléctrico de energia sejam desdobradas nas suas partes real e imaginária.

O método de Newton-Raphson pode ser formulado quer para desvios de potências quer para desvios de intensidade de correntes, sendo possível para cada barramento do sistema, definir qualquer uma das seguintes equações:

\[
ΔS_i = S_i^{SP} - S_i^{col} = 0
\]

(2.11)

\[
ΔI_i = I_i^{SP} - I_i^{col} = 0
\]

(2.12)

Nestas expressões, os índices superiores \(SP\) e \(col\) referem-se, respectivamente, aos valores especificados e aos valores calculados em cada iteração.

Cada uma destas equações pode desenvolver-se quer em coordenadas polares quer em coordenadas rectangulares. É usual, desenvolver este método para desvios de
potência em coordenadas polares. Assim, consideremos uma rede para a qual é conhecida a matriz das admitâncias,

\[[Y] = [G] + j[B] \] \hspace{1cm} (2.13)

sendo cada elemento dessa matriz representado por:

\[Y_{ik} = G_{ik} + jB_{ik} \] \hspace{1cm} (2.14)

Para cada barramento, \(i \), a potência aparente respectiva pode ser calculada por:

\[S_i^{cal} = E_i \cdot L_i^* \] \hspace{1cm} (2.15)

Nesta expressão, \(L_i^* \) é conjugado complexo da intensidade de corrente injectada nesse barramento, sendo esta intensidade de corrente dada pela expressão:

\[I_i = \sum_{k=1}^{n} Y_{ik} \cdot E_k \] \hspace{1cm} (2.16)

Por substituição de (2.16) na expressão (2.15), obtém-se então para a potência aparente as expressões (2.17) e (2.18). Em (2.18) \(\theta \) e \(\theta_k \) representam a fase das tensões nos nós \(i \) e \(k \).

\[S_i^{cal} = P_i^{cal} + jQ_i^{cal} = \sum_{k=1}^{n} E_i Y_{ik}^* E_k^* \] \hspace{1cm} (2.17)

\[P_i^{cal} + jQ_i^{cal} = \sum_{k=1}^{n} V_k e^{j\theta_k} V_k^{-j\theta_k} (G_{ik} - jB_{ik}) \] \hspace{1cm} (2.18)

Efectuando o desenvolvimento desta expressão,

\[P_i^{cal} + jQ_i^{cal} = \sum_{k=1}^{n} V_k V_k (\cos \theta_k + j \sin \theta_k) (G_{ik} - jB_{ik}) = \]
\[V \sum_{k=1}^{n} \left((G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) + j(\frac{G_{ik} \sin \theta_{ik}}{B_{ik}} - \frac{B_{ik} \cos \theta_{ik}}{G_{ik}}) \right) \]

(2.19)

Sendo definido \(\theta_{ik} = \theta_i - \theta_k \), obtém-se então as componentes real e imaginária da potência aparente, que são a potência activa e reactiva dadas por (2.20) e (2.21), respectivamente:

\[P_i^{\text{cal}} = \sum_{k=1}^{n} \left(V V_k \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \right) \]

(2.20)

\[Q_i^{\text{cal}} = \sum_{k=1}^{n} \left(V V_k \left(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik} \right) \right) \]

(2.21)

Finalmente, as expressões (2.20) e (2.21) permitem obter as equações para os desvios de potência, em coordenadas polares e para cada tipo de barramento:

- **barramentos PQ**

\[\Delta P_i = P_i^{\text{sp}} - P_i^{\text{cal}} = P_i^{\text{sp}} - \sum_{k=1}^{n} \left(V V_k \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \right) = 0 \]

(2.22)

\[\Delta Q_i = Q_i^{\text{sp}} - Q_i^{\text{cal}} = Q_i^{\text{sp}} - \sum_{k=1}^{n} \left(V V_k \left(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik} \right) \right) = 0 \]

(2.23)

- **barramentos PV**

\[\Delta P_i = P_i^{\text{sp}} - P_i^{\text{cal}} = P_i^{\text{sp}} - \sum_{k=1}^{n} \left(V_i^{\text{sp}} V_k \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right) \right) = 0 \]

(2.24)

Para o barramento de referência, não é necessária nenhuma equação porque os valores do módulo e fase da tensão para este barramento são conhecidos.

Assim, aplicando o método a problemas de trânsito de potência, das expressões (2.22), (2.23) e (2.24) obtém-se os desvios das potências activas e reactivas que se podem escrever na seguinte forma matricial:
\[
\begin{bmatrix}
\Delta P \\
\Delta Q
\end{bmatrix} =
\begin{bmatrix}
H & N \\
M & L
\end{bmatrix}
\begin{bmatrix}
\Delta \theta \\
\Delta V \\
\frac{\Delta V}{V}
\end{bmatrix}
\]
(2.25)

Nesta igualdade, os elementos das submatrizes \([H], [L], [M], [N]\), que formam a matriz do jacobiano \([J]\), são obtidos utilizando as expressões seguintes:

\[
H_{ik} = -\frac{\partial \Delta P_i}{\partial \theta_k} = V_i V_k \left(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik} \right)
\]
(2.26)

\[
H_{ii} = -\frac{\partial \Delta P_i}{\partial \theta_i} = V_i \sum_k V_k \left(B_{ik} \cos \theta_{ik} - G_{ik} \sin \theta_{ik} \right)
\]
(2.27)

\[
= -V_i^2 B_{ii} - Q^{\text{rad}}_i
\]
(2.28)

\[
M_{ik} = -\frac{\partial \Delta Q_i}{\partial \theta_k} = -V_i V_k \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right)
\]
(2.29)

\[
M_{ii} = -\frac{\partial \Delta Q_i}{\partial \theta_i} = -V_i \sum_k V_k \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right)
\]
(2.30)

\[
= P_i^{\text{rad}} - V_i^2 G_{ii}
\]
(2.31)

\[
N_{ik} = -\frac{\partial \Delta P_i}{\partial V_k} V_k = -V_i V_k \left(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik} \right)
\]
(2.32)

\[
N_{ii} = -\frac{\partial \Delta P_i}{\partial V_i} V_i = -V_i^2 G_{ii} + P_i^{\text{rad}}
\]
(2.33)

\[
L_{ik} = -\frac{\partial \Delta Q_i}{\partial V_k} V_k = V_i V_k \left(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik} \right)
\]
(2.34)
\[L_i = - \frac{\partial \Delta Q_i}{\partial V_i} V_i = -V_i^2 B_{ki} + Q_{cal} \]

(2.35)

Nestas expressões, \(G_{ki} \) e \(B_{ki} \) correspondem a elementos das matrizes \([G]\) e \([B]\), isto é, a elementos das matrizes correspondentes às partes real e imaginária da matriz \([Y]\).

O problema do trânsito de potências fica então equacionado na forma:

\[
\begin{cases}
[\Delta P] = [H] \cdot [\Delta \theta] + [N] \cdot \left[\frac{\Delta V}{V} \right] \\
[\Delta Q] = [M] \cdot [\Delta \theta] + [L] \cdot \left[\frac{\Delta V}{V} \right]
\end{cases}
\]

(2.36)

O processo iterativo inicia-se especificando um valor inicial de arranque do método para \(\theta_i \) e \(V_i \). De seguida calcula-se e inverte-se a matriz do jacobiano, calculam-se os incrementos de \(\theta_i \) e \(V_i \) e actualizam-se estes valores. Finalmente, calculam-se os valores \(\Delta P_i \) e \(\Delta Q_i \), realiza-se o controlo de convergência a partir dos desvios de potência activa e reactiva e repetem-se os passos acima até haver convergência.

Neste processo iterativo a maior carga computacional está associada à necessidade de inverter a matriz do jacobiano em cada iteração.

Em geral, as submatrizes \([N]\) e \([M]\) são numericamente menos importantes que as submatrizes \([H]\) e \([L]\). Diversos autores têm-se baseado nesse facto para sugerirem algoritmos de convergência rápida simplificando as equação (2.36) pelas aproximações:

\[
\begin{cases}
[\Delta P] = [H] \cdot [\Delta \theta] \\
[\Delta Q] = [L] \cdot \left[\frac{\Delta V}{V} \right]
\end{cases}
\]

(2.37)

Com esta aproximação Stott e Alsaç, (1974), afirmam que este método simplificado executa cada iteração 5 vezes mais rapidamente que o que ocorre no método de Newton-Raphson tradicional, mas tendo as características de rápida convergência do método de Newton-Raphson.
2.3 Modelo DC

Se se considerar que as impedências nas linhas, \(Z = R + jX \), se resumem apenas às reactâncias, isto é, se a sua resistência for considerada nula, \(Z \approx jX \), pode então construir-se a matriz \([B]\) cujos elementos \(B_{ij}\) se obtém do seguinte modo:

- \(B_{ii}\) = soma dos inversos das reactâncias ligadas ao barramento \(i\).
- \(B_{ij}\) = soma do simétrico dos inversos das reactâncias dos ramos que ligam os barramentos \(i\) e \(j\).

Esta matriz relaciona a fase da tensão nos barramentos com a potência activa injectada nesses barramentos:

\[
[P] = [B] \cdot [\theta]
\] \hspace{1cm} (2.38)

Se nesta matriz for retirada uma linha e uma coluna - associadas ao barramento de referência - obtém-se uma nova matriz \([\hat{B}]\). Sejam esta linha e coluna referenciadas pelo índice \(n\). Os valores da fase da tensão nos barramentos podem-se exprimir em função da fase da tensão neste barramento podendo-se, sem perda de generalidade, considerar-se que este possui o valor \(\theta_n = 0\). Assim, o valor de \(P_n\) pode ser determinado considerando que, sendo as perdas activas desprezadas, o somatório das potências produzidas deverá igualar o somatório das potências activas de cargas.

O problema de trânsito de potências pode, então, ser formulado do seguinte modo:

\[
[\hat{P}] = [\hat{B}] \cdot [\hat{\theta}]
\] \hspace{1cm} (2.39)

ou, explicitando esta última de modo a obter \([\hat{\theta}]\), ainda por (2.40):

\[
[\hat{\theta}] = [\hat{B}]^{-1} \cdot [\hat{P}]
\] \hspace{1cm} (2.40)

As fases das tensões nos diversos barramentos podem então ser calculadas pela expressão (2.41):
\[\theta_i = \sum_{j=1}^{n-1} \hat{B}_y^{-1} \cdot \hat{P}_j \]

(2.41)

\[P_{ik} = \frac{\theta_i - \theta_k}{X_{ik}} \]

(2.42)

Substituindo em (2.42) as fases nos nós \(i\) e \(k\) pelas expressões que se obtêm a partir de (2.41), obtém-se:

\[P_{ik} = \sum_{j=1}^{n-1} \hat{B}_y^{-1} \cdot \hat{P}_j - \sum_{j=1}^{n-1} \hat{B}_y^{-1} \cdot \hat{P}_j \]

\[X_{ik} \]

(2.43)

Esta expressão pode ser reescrita considerando os coeficientes \(S_j\) dados por (2.44). O trânsito de potências de \(i\) para \(k\) será dado por (2.45):

\[S_j = \frac{\hat{B}_y^{-1} - \hat{B}_y^{-1}}{X_{ik}} \]

(2.44)

\[P_{ik} = \sum_{j=1}^{n-1} S_j \cdot \hat{P}_j \]

(2.45)

Esta nova matriz \([S]\), relaciona o trânsito da potência activa nos ramos do sistema com as potências activas injectadas nos primeiros \(n-1\) barramentos.

Os elementos desta matriz são designados coeficientes de sensibilidade e reflectem a importância que a potência injectada nos \(n-1\) primeiros barramentos do sistema tem no cálculo da potência que circula num dado ramo.
2.4 Trânsito de potências óptimo

2.4.1 Formulação do problema

O problema do trânsito de potências óptimo formulado para um sistema elétrico de energia, constituído por \(n_b \) barramentos e \(n_g \) geradores ligados ao barramento \(i \), e considerando o modelo DC exposto no ponto 2.3, pode ser equacionado por,

\[
\text{minimizar } C = \sum_{i=1}^{n_b} \sum_{j=1}^{n_g} c_{ij} \cdot P_{g_{ij}} \tag{2.46}
\]

sujeito a

\[
\sum_{i=1}^{n_b} \sum_{j=1}^{n_g} P_{g_{ij}} = \sum_{i=1}^{n_b} P_{c_i} \tag{2.47}
\]

\[
P_{g_{ij}}^{\text{min}} \leq P_{g_{ij}} \leq P_{g_{ij}}^{\text{max}} \tag{2.48}
\]

Com este problema pretende-se identificar um ponto de funcionamento do sistema que respeitando diversas restrições origine a optimização de um critério especificado. A título de exemplo, em (2.46) \(c_{ij} \) representa a função custo da energia produzida por um gerador ligado a um barramento, pelo que nesta formulação se pretende minimizar o custo de produção.

A garantia de equilíbrio entre a potência produzida nos geradores e de carga é obtida pela restrição (2.47). A restrição (2.48) representa as condições reais de funcionamento dos geradores ou seja os seus limites mínimos e máximos de funcionamento. No caso de existirem geradores fictícios, os seus limites mínimos e máximos devem ser considerados, incluindo novas restrições deste tipo.

Existem outras restrições que devem ser consideradas no processo de optimização associadas, por exemplo, aos limites de trânsito de potência activa em cada ramo do sistema em análise. No capítulo 5.2.1. consideram-se outras restrições ao problema base aqui proposto.

O problema formulado por (2.46) a (2.48), representa uma versão simplificada do problema de trânsito de potências óptimo. Este problema (Stott et al., 1980) é com frequência formulado por (2.49) a (2.51).
minimizar \(f(x, u) \) \hspace{1cm} (2.49) \\

sujeita a \(g(x, u) = 0 \) \hspace{1cm} (2.50) \\

\(h(x, u) \leq 0 \) \hspace{1cm} (2.51)

Nesta formulação, \(x \) representa o conjunto de variáveis dependentes ou variáveis de estado e \(u \) representa o conjunto de variáveis independentes ou variáveis de controlo.

Conhecendo-se as admitâncias da rede e as tensões nos barramentos, pode-se calcular facilmente as potências geradas e de carga bem como os trânsitos de potência na rede. No caso particular do modelo DC, é necessário conhecer apenas as reacências nos ramos e a fase das tensões nos barramentos.

As variáveis controláveis que afectam predominantemente o valor da potência activa são essencialmente a potência gerada e a fase da tensão. Quanto à potência reactiva, esta é afectada essencialmente pelo módulo da tensão e pela potência reactiva gerada.

A função \(f \) representa o objectivo que se pretende minimizar, a igualdade (2.50) representa o conjunto de equações do problema convencional de trânsito de potências e a desigualdade (2.51) representa o conjunto de condições limite de operação do sistema. Este conjunto de igualdades e desigualdades são representadas por expressões algébricas, em geral não lineares e portanto o problema pode ser interpretado como um problema clássico de programação não linear.

Diversas técnicas têm sido propostas para resolver o problema. Algumas das mais importantes referidas por Chowdhury et al, (1990) são as seguintes:

- técnicas de optimização baseadas na redução da matriz Hessiana;

- métodos de optimização matemática como a busca sequencial, programação quadrática, linear, não linear, inteira ou dinâmica.

- métodos de linearização sucessiva, (SLP, successive linear programming);

- método do gradiente, etc.

Destas, a programação linear permite implementações computacionais eficientes visto se dispor de algoritmos para diferentes tipos de formulação do problema. Dentre eles há a destacar o Método Simplex que é aplicável ao problema linearizado em estudo.

No ponto seguinte apresentam-se as etapas associadas à aplicação do método do simplex ao problema de trânsito de potências óptimo.
Em relação aos métodos de optimização não linear, verifica-se que há uma enorme variedade de métodos e particularizações aplicadas ao problema de trânsito de potências óptimo. De entre eles, há diversos algoritmos baseados no método do gradiente que se revelam, em geral, de convergência lenta. São também conhecidas aplicações integrando métodos de convergência quadrática, tipo Newton. Estes algoritmos convergem em poucas iterações mas o tempo de cálculo é, com frequência, prejudicado pelo facto de terem de ser identificadas as restrições de desigualdade que se encontram activas.

2.4.2 Linearização do problema de trânsito de potências óptimo.

Um algoritmo possível para resolver o problema de trânsito de potências óptimo consiste em linearizar as expressões (2.49) a (2.51) e assim considerar o novo problema como um problema de programação linear (Stott et al, 1973-a e b), que se resolveria segundo os seguintes passos:

1. Resolver o problema de trânsito de potências.
2. Linearizar as restrições e a função objectivo do problema.
3. Minimizar a função objectivo sujeita a essas restrições.
4. Iterar os passos de 1 a 4 até o problema convergir.

A função custo de produção de energia dum gerador não é uma função linear. No entanto, se essa não linearidade não for acentuada, pode-se considerar esta função dividida em diversas partes, aproximadas por secções lineares, correspondendo a cada secção um gerador fictício tal como se encontra representado na figura 2.4.

Figura 2.4 - Função custo de produção de um gerador aproximada por segmentos.
As restrições associadas à expressão (2.47) podem ser facilmente linearizadas como se viu anteriormente nos pontos 2.2 e 2.3. A relação entre \(P \) e \(\theta \) é bem aproximada por uma relação linear enquanto que na relação entre \(Q \) e \(V \) a qualidade desta aproximação é menor.
Capítulo 3

Fiabilidade e método de simulação de Monte Carlo

Fiabilidade é um conceito frequentemente utilizado para caracterizar o grau de confiança que os seres humanos têm nos diversos equipamentos com que lidam habitualmente. De um modo geral, todos nós classificamos esses equipamentos como mais ou menos fiáveis apenas baseados na experiência própria que se adquiriu durante o período de tempo em que se possuïu ou manipulou o equipamento. Este conceito é também entendido por todas as pessoas como bastante relativo, isto é, pelo facto de até ao momento o equipamento ter estado disponível não significa que continue disponível momentos mais tarde.

O cálculo da fiabilidade de um sistema pode ser mais ou menos complexo dependendo da quantidade de componentes que o constituem bem como do modo de funcionamento do sistema e da importância que cada um deles tem no funcionamento global do conjunto. Existem diversos métodos analíticos que, aplicados a sistemas de vários componentes, permitem calcular a sua fiabilidade. No entanto, para sistemas reais, a utilização desses métodos nem sempre é praticável. Habitualmente, para sistemas complexos, recorre-se à simulação de funcionamento utilizando o método de simulação de Monte Carlo para estudar o impacto que apresenta no sistema em estudo a saída de serviço de um ou mais componentes.

3.1 Fiabilidade de um sistema eléctrico de energia

3.1.1 Noções gerais

Os sistemas eléctricos de energia são constituídos por um número muito elevado de componentes que podem sofrer situações de avaria. Nestas condições, o componente não desempenha de forma adequada as funções para que foi construído podendo este facto reflectir-se no desempenho do sistema em que esses componentes se integram.

Os principais objectivos dos estudos de fiabilidade são:

- identificar áreas de risco do sistema;
- comparar esquemas alternativos de expansão ou reforço;
• analisar os custos quer de reforços quer de interrupções;
• comparar esquemas alternativos de operação e de manutenção do sistema.

Não é objectivo dos estudos de fiabilidade resolver problemas de decisão, mas sim fornecer informação quantitativa quer de carácter económico quer de risco, que constituia elementos de ajuda à decisão.

A fiabilidade de um componente ou de um sistema define-se como a probabilidade de ele desempenhar a função para o qual foi concebido sob as condições de operação previstas e nos momentos ou intervalos de tempo em que tal é exigido.

Nem sempre é fácil realizar estudos deste tipo. As principais razões estão relacionadas com os aspectos seguintes:

• falta de dados;
• problemas demasiado complexos que exigem grande capacidade computacional;
• desconhecimento de técnicas de cálculo de fiabilidade dos sistemas;
• necessidade de utilização de técnicas probabilísticas.

Para calcular a fiabilidade de um sistema é necessário dispor da história de funcionamento do sistema. Nos casos em que essa informação não existe, é possível recorrer-se a informação relativa a sistemas análogos.

3.1.2 Fiabilidade de um componente

Uma grandeza frequentemente utilizada em estudos de fiabilidade é a taxa de avarias de um componente. Esta define-se como sendo igual ao limite do quociente entre a probabilidade do componente avariar no intervalo de tempo \([t, t+\Delta t]\) e \(\Delta t\) quando \(\Delta t\) tende para 0. Considerando \(N\) componentes iguais:

\[
\lambda(t) = \lim_{\Delta t \to 0} \frac{N_a(t+\Delta t)-N_a(t)}{N_f(t)} = \frac{dN_a(t)}{dt} \cdot \frac{1}{N_f(t)}
\]

(3.1)
em que:

- $N_a(t)$ representa o número de componentes que avariaram até ao instante t
- $N_a(t+\Delta t)$ representa o número de componentes que avariaram até ao instante $t+\Delta t$
- $N_f(t)$ representa o número de componentes que funcionam até ao instante t.

Em geral verifica-se que a taxa de avarias não é constante ao longo do período de vida de um componente. Na figura 3.1 apresenta-se a dependência típica de λ em relação a t.

![Figura 3.1 - Curva típica da taxa de avarias dum componente elétrico](image)

Normalmente considera-se que o componente se encontra no período de vida útil (zona II do gráfico da figura 3.1) e que portanto apresenta uma taxa de avarias constante.

A fiabilidade de um componente, $R(t)$, num instante t, é dada por:

$$ R(t) = \frac{N_f(t)}{N} = 1 - \frac{N_a(t)}{N} \quad (3.2) $$

Por outro lado, $N = N_f(t) + N_a(t)$ e da expressão anterior obtém-se

$$ \frac{dR(t)}{dt} = -\frac{1}{N} \cdot \frac{dN_a(t)}{dt} \quad (3.3) $$

Substituindo estas expressões na expressão (3.1) obtém-se

$$ \lambda(t) dt = -\frac{1}{R(t)} \cdot dR(t) \quad (3.4) $$
Por integração e considerando $\lambda(t)$ constante obtém-se a expressão (3.5) para a fiabilidade de um componente:

$$R(t) = e^{-\lambda t}$$ \hspace{1cm} (3.5)

Designa-se indisponibilidade de um componente (sistema) à probabilidade do componente avariar até ao instante t e calcula-se pela expressão:

$$Q(t) = 1 - e^{-\lambda t} = 1 - R(t)$$ \hspace{1cm} (3.6)

3.1.3 Tempos médios de funcionamento e de avaria

A história de funcionamento dum componente continuamente reparável, pode ser traduzida pelo seguinte gráfico:

![Diagrama de tempo médio de funcionamento e de avaria](image)

Figura 3.2 - Representação da história de um componente continuamente reparável

Define-se tempo médio de funcionamento, de avaria ou reparação e o tempo médio entre avarias por:

$$m = MTTF = \frac{\sum_{i=1}^{n_f} t_{fi}}{n_f} = \frac{1}{\lambda}$$ \hspace{1cm} (3.7)

$$r = MTTR = \frac{\sum_{i=1}^{n_a} t_{ai}}{n_a} = \frac{1}{\mu}$$ \hspace{1cm} (3.8)
\[MTBF = m + r \]

(3.9)

Na expressão (3.8), \(\mu \) representa a taxa de reparação.

Os tempos médios de funcionamento, \(MTTF \) - \textit{mean time to failure}, de reparação, \(MTTR \) - \textit{mean time to repair} e entre avarias, \(MTBF \) - \textit{mean time between failure} ou período, podem ser esquematizados no seguinte gráfico:

![Diagrama de MTBF](image)

Figura 3.3 - Representação gráfica dos tempos médios de funcionamento e avaria de um componente

As probabilidades de um componente se encontrar fora de serviço ou em funcionamento, em qualquer instante, são dadas pelas expressões:

\[P(A) = \frac{r}{m + r} \]

(3.10)

\[P(F) = \frac{m}{m + r} \]

(3.11)

3.1.4 Fiabilidade de um sistema

A fiabilidade de um sistema constituído por vários componentes depende essencialmente de três factores:

- fiabilidade de cada componente;
- forma como os componentes se encontram funcionalmente associados;
- definição das condições de funcionamento do sistema (condições de trabalho impostas aos componentes).
No caso de o funcionamento do sistema exigir que todos os componentes estejam em serviço, a fiabilidade do sistema é dada pelo produto da fiabilidade dos diversos componentes. Neste caso, diz-se que os componentes se encontram associados em série (não é necessariamente a forma como os componentes estão ligados fisicamente).

![Diagrama de componentes em série](image)

Figura 3.4 - Associação de componentes em série

Para n componentes ligados em série a sua fiabilidade é dada por (3.12):

$$R_s = R_1 R_2 \cdots R_n = \prod_{i=1}^{n} R_i$$ \hspace{1cm} (3.12)

Esta equação é conhecida como Lei do produto das fiabilidades e permite calcular a fiabilidade dum sistema que no período de vida útil dos seus componentes é dada pela expressão:

$$R_s = e^{-\sum_{i=1}^{n} \lambda_i}$$ \hspace{1cm} (3.13)

Considere-se agora, um sistema integrando n componentes independentes e redundantes (para o sistema funcionar basta que um componente funcione). A indisponibilidade do sistema é dada pelo produto das indisponibilidades de todos os componentes - Lei do produto das indisponibilidades. Neste caso diz-se que os componentes estão associados em paralelo.

![Diagrama de componentes em paralelo](image)

Figura 3.5 - Indisponibilidade dum associação de três componentes em paralelo

A fiabilidade do sistema será então dada por:

$$R_s = 1 - \prod_{i=1}^{n} Q_i$$ \hspace{1cm} (3.14)
Para sistemas não redundantes ou mistos, as condições de funcionamento do sistema têm que ser definidas e pode-se calcular a fiabilidade do sistema recorrendo à noção de probabilidade condicionada, árvore de avarias, modelo de Processos de Markov ou métodos de simulação nomeadamente o método de Monte Carlo, etc..

3.2 O método de simulação de Monte Carlo

3.2.1 Aspectos genéricos

O método de simulação de Monte Carlo permite avaliar a fiabilidade de um sistema constituído por um determinado número, n, de componentes. O processo consiste em simular uma experiência com uma duração previamente fixada. Durante a experiência obriga-se, tanto quanto possível, que as condições de funcionamento sejam aproximadas da realidade.

Os resultados obtidos na experiência permitem, por adequado tratamento estatístico, determinar a fiabilidade do sistema.

As principais desvantagens deste método são:

- grande número de experiências que, em geral, é necessário realizar;
- se o estudo de cada estado for complexo pode exigir grande esforço e tempo computacional.

No entanto, apresenta diversas vantagens a ter em conta:

- permite utilizar qualquer função de distribuição de probabilidade;
- permite incluir com facilidade qualquer relação de dependência entre acontecimentos;
- pode-se ajustar facilmente a alterações no sistema.

De uma forma genérica o método de simulação de Monte Carlo inclui as seguintes etapas:

- sorteio de estados a analisar;
• análise do estado sorteado por uma função relacionada com a grandeza a estudar;

• realização de um teste de convergência para verificar se a estimativa corrente possui a qualidade requerida.

![Flowchart](image)

Figura 3.6 - Algoritmo genérico do método de simulação de Monte Carlo

3.2.2 Tipos de sorteio

O método de simulação de Monte Carlo pode ser implementado adoptando um sorteio de tipo cronológico, que inclui as seguintes fases:

• sorteio para cada componente de tempos até avaria e que obedecam à mesma distribuição estatística que o componente real possui;

• determinação do tempo de reparação de cada componente obedecendo aos critérios anteriores,
• simulação de diversas avarias e reparações até atingir o tempo pré-determinado para a duração da experiência.

Outras implementações utilizam sorteios de tipo não cronológico, incluindo:

• sorteio dos componentes que não se encontram em serviço;
• avaliação da função em estudo para este estado;
• repetição destes passos até se atingir a convergência.

No capítulo 3.3.1 descreve-se mais detalhadamente a aplicação destes tipos de sorteio a sistemas de energia elétrica.

3.2.3 Descrição do método

O método de simulação de Monte Carlo inicia-se com o sorteio de um estado do sistema. Nas versões mais simples, cada componente do sistema residirá em um de dois estados possíveis - disponível ou indisponível. Cada estado é caracterizado por um vetor \(x \) cujos elementos, \(x_i \), indicam o estado do componente \(i \). Considerando que as avarias correspondem a acontecimentos aleatoriamente independentes, a probabilidade de ocorrência deste estado é dada por:

\[
\begin{align*}
p(x) &= \left[\prod_{i=1}^{n_1} (1 - p_i(A)) \right] \left[\prod_{i=n_1+1}^{n} (p_i(A)) \right] \\
\end{align*}
\]

(3.15)

Nesta expressão, considerou-se os \(n_1 \) primeiros componentes disponíveis, os restantes indisponíveis e \(p_i(A) \) representa a probabilidade de avaria do componente \(i \).

No conjunto universo, \(X \), de estados do sistema existem estados sorteados em que alguns componentes se encontram indisponíveis pelo que interessa estudar o comportamento do sistema em face dessas indisponibilidades através da avaliação probabilística do valor esperado duma função genérica, \(F(x) \):

\[
E(F) = \sum_{x \in X} F(x) \cdot p(x)
\]

(3.16)
em que \(x \) representa um estado em que o sistema se pode encontrar e \(p(x) \) a probabilidade de ocorrência desse estado.

Na prática o número de possíveis estados de residência do sistema poderá ser muito elevado pelo que a expressão (3.16) se revela pouco adequada. O método de simulação de Monte Carlo permite estimar o valor esperado de \(F(x) \), \(\hat{E}(F) \), considerando apenas uma amostra de \(N \) elementos de \(X \). Para isso sorteiam-se \(N \) estados considerando-se as probabilidades de avaria dos componentes do sistema.

\[
\hat{E}(F) = \frac{1}{N} \sum_{i=1}^{N} F(x_i)
\]

(3.17)

Nesta expressão, \(x_i \) representa o estado \(i \) do sistema.

O valor obtido por esta expressão não é o valor exacto de \(E(F) \). É portanto necessário determinar qual a dimensão da amostra que garanta a obtenção de um erro para \(\hat{E}(F) \) não superior a um valor especificado. Sejam então, \(\tilde{V}(F) \) e \(V(\hat{E}(F)) \) a variância de \(F \) e a variância da amostra de valores esperados de \(F \) obtidos com diversas amostras de \(X \). Define-se imprecisão relativa ou coeficiente de variação da estimativa de \(\hat{E}(F) \) ao valor

\[
\beta^2 = \frac{V(\hat{E}(F))}{E(F)^2}
\]

(3.18)

Como \(V(\hat{E}(F)) \) é dado por (3.19),

\[
V(\hat{E}(F)) = \frac{\tilde{V}(F)}{N}
\]

(3.19)

e \(\tilde{V}(F) \) pode ser estimado por (3.20),

\[
\tilde{V}(F) = \frac{1}{N-1} \sum (F(x_i) - \hat{E}(F))^2
\]

(3.20)

obtém-se então para \(N \),

\[
N = \frac{\tilde{V}(F)}{(\beta \hat{E}(F))^2}
\]

(3.21)
Esta expressão permite determinar a dimensão da amostra, \(N \), sabendo qual a imprecisão máxima admitida, \(\beta \).

É possível reduzir a dimensão da amostra mantendo a mesma imprecisão, mas adoptando técnicas que permitam reduzir o valor da variância \(\bar{V}(F) \).

Duas dessas técnicas são a amostragem antitética e variável de controlo. Com estas técnicas poderá ser possível reduzir o esforço computacional e acelerar a convergência do método.

3.2.4 Técnicas de redução de variância

Amostragem Antitética

Esta técnica de redução de variância baseia-se na utilização de dois estimadores \(F_1(x) \) e \(F_2(x) \) que podem ser associados originando um terceiro estimador \(F_3(x) \).

A variância de \(F_3(x) \) pode exprimir-se em função da variância de \(F_1(x) \) e de \(F_2(x) \) e da covariância respectiva. Se esta correlação for negativa então verifica-se que a variância de \(F_3(x) \) é inferior à obtida no caso das variáveis aleatórias associadas a \(F_1(x) \) e \(F_2(x) \) serem independentes.

\[
F_3(x) = \frac{F_1(x) + F_2(x)}{2} \tag{3.22}
\]

\[
V(F_3) = \frac{V(F_1) + V(F_2) + 2 \cdot \text{Cov}(F_1, F_2)}{4} \tag{3.23}
\]

Esta técnica é implementada do seguinte modo:

1. obtém-se uma sequência de números pseudo-aleatórios, \(u_1, u_2, \ldots, u_n \), que representam o estado do sistema, \(x \).

2. formam-se os respectivos números complementares para 1, desta sequência, \(1 - u_1, 1 - u_2, \ldots, 1 - u_n \), obtendo-se uma nova sequência designada por antitética da inicial. Assim, obtém-se o estado antitético do inicial, formando estas duas sequências um par de estados do sistema.
Para \(N \) pares de sequências de números pseudo-aleatórios obtidos segundo os pontos 1 e 2 deverá realizar-se a avaliação de \(F(x) \) construindo-se uma nova amostra de \(F(x) \) segundo (3.22). Existindo uma correlação negativa entre os pares de \(F(x) \) obtidos por aplicação desta função a cada estado \(x \) e ao seu antitético para os \(N \) pares, obtém-se uma variância inferior à que se obteria caso não se aplicasse esta técnica.

Variável de controlo

Seja \(Z(x) \) uma função possuindo valor médio \(E(Z) \) que permite obter um valor aproximado de \(F(x) \) para cada estado do sistema. Sejam \(\xi(x) \) e \(F^*(x) \) respectivamente, a diferença entre \(F(x) \) e \(Z(x) \) e um novo estimador, definidos por:

\[
\xi(x) = F(x) - Z(x)
\]

\[
F^*(x) = \xi(x) + E(Z) = F(x) - Z(x) + E(Z)
\]

Os valores médios de \(F(x) \) e de \(F^*(x) \) são iguais sendo, no entanto, a variância de \(F^*(x) \) igual à variância de \(\xi(x) \).

Se o coeficiente de correlação entre \(Z(x) \) e \(F(x) \) for positivo e elevado ou seja, se \(Z(x) \) constituir uma boa aproximação de \(F(x) \), o valor da variância de \(\xi(x) \), \(V(\xi) \), será pequeno. Assim, a variância de \(F^*(x) \) será inferior à de \(F(x) \).

Esta técnica exige o cálculo analítico do valor de \(Z(x) \), para cada estado do sistema analisado, bem como o seu valor esperado, também por via analítica, por agregação dos resultados obtidos. A expressão que permite estimar o valor esperado de \(F(x) \) é então:

\[
\hat{E}(F) = E(Z) + \frac{1}{N} \sum_{i=1}^{N} (F(x_i) - Z(x_i))
\]

3.3 Aplicação a sistemas elétricos de energia

Um sistema elétrico de energia tem por função alimentar as cargas com os valores previstos para a fase e valor eficaz da tensão. A qualidade de serviço prestado por um sistema depende da sua fiabilidade. Para isso há a necessidade de nas etapas de planeamento e de exploração da rede se realizarem estudos de fiabilidade.
Os índices que normalmente se utilizam para avaliar a fiabilidade dum sistema eléctrico de energia poderão, entre outros, ser os seguintes:

- taxa de avarias;
- duração média das avarias;
- indisponibilidade anual;
- potência média cortada;
- valor médio da energia anual não fornecida.

A avaliação da fiabilidade dum sistema eléctrico de energia, normalmente constituído por elevado número de componentes, pode calcular-se recorrendo a diversos processos dentre os quais o método de simulação de Monte Carlo.

Este método quando aplicado a um sistema eléctrico de energia, exige a análise de um elevado número de estados do sistema, avaliação das grandezas em estudo para cada estado e agregação de resultados de modo a obter estimativas dos valores esperados destas grandezas. A obtenção de estimativas dos valores esperados da probabilidade de corte de carga, da potência cortada e da energia não fornecida, exige que se realize, para cada estado, um estudo de trânsito de potências óptimo. O tipo de sorteio que gera os estados a analisar, depende da grandez a estimar. Assim, para obter estimativas dos valores esperados da probabilidade de corte de carga e da potência cortada, realiza-se um sorteio não cronológico ou cronológico. Para obter, além destas estimativas, uma estimativa do valor esperado da energia não fornecida ao longo dum período de tempo, será necessário adoptar um sorteio cronológico.

3.3.1 Simulação não cronológica

Realiza-se uma simulação não cronológica quando não é necessário estimar a energia não fornecida.

A implementação deste tipo de sorteio pode ser realizada considerando as seguintes duas etapas:

- obter uma sequência de números pseudo-aleatórios \(u_1, u_2, ..., u_k \);
- um componente é considerado indisponível se \(u_i < p_t(A) \)
Neste processo, cada estado é analisado recorrendo a um exercício de trânsito de potências óptimo e obtém-se estimativas da probabilidade de corte de carga e do valor esperado da potência não fornecida.

Exemplo: Seja um sistema constituído por 3 componentes C_1, C_2 e C_3 com as seguintes probabilidades de avarias: $P_1(A) = 0,03$, $P_2(A) = 0,06$ e $P_3(A) = 0,15$.

Obtida a sequência de números pseudo-aleatórios, determina-se para cada estado quais os componentes que estão indisponíveis:

<table>
<thead>
<tr>
<th>Estado</th>
<th>Comp. 1</th>
<th>Comp. 2</th>
<th>Comp. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,9083</td>
<td>0,7338</td>
<td>0,2003</td>
</tr>
<tr>
<td>2</td>
<td>0,1467</td>
<td>0,0440</td>
<td>0,7981</td>
</tr>
<tr>
<td>3</td>
<td>0,5147</td>
<td>0,3394</td>
<td>0,9519</td>
</tr>
<tr>
<td>4</td>
<td>0,4058</td>
<td>0,9955</td>
<td>0,0078</td>
</tr>
</tbody>
</table>

Este tipo de simulação não permite conhecer o tempo de duração de cada estado sorteado e por isso não é possível estimar a energia não fornecida.

3.3.2 Simulação cronológica

Este tipo de simulação é adoptado quando se pretende estudar a operação do sistema durante um determinado intervalo de tempo recorrendo a algoritmos que utilizam as taxas de avaria e de reparação de cada componente. Obtém-se, com este tipo de simulação, estimativas da probabilidade de corte de carga, do valor esperado da potência cortada e, ainda, do valor esperado da energia não fornecida. Outras estratégias podem ser adoptadas caso se pretenda considerar acções de manutenção programada, avarias com causa comum, taxas de avarias dependentes das condições atmosféricas, etc.

Sejam C_1, C_2, ..., C_n componentes dum sistema. Sejam ainda λ_i e μ_i as taxas de avarias e de reparação, respectivamente, dum determinado componente, C_i.

Os diversos estados do sistema podem ser determinados considerando o instante em que um determinado componente entra ou sai de serviço.
Exemplo: Seja considerado um sistema com 3 componentes \(C_1, C_2 \) e \(C_3 \). Considere-se, ainda, que estes componentes têm as seguintes taxa de avaria, taxa de reparação e probabilidade do componente avariar:

<table>
<thead>
<tr>
<th>Dados</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>1/2940</td>
<td>1/1980</td>
<td>1/1100</td>
</tr>
<tr>
<td>(\mu)</td>
<td>1/60</td>
<td>1/20</td>
<td>1/180</td>
</tr>
<tr>
<td>(P(A))</td>
<td>0,02</td>
<td>0,01</td>
<td>0,12</td>
</tr>
</tbody>
</table>

Cada estado do sistema é identificado considerando os seguintes pontos:

1. Todos os componentes estão disponíveis para \(t = 0 \).

2. Calcula-se uma sequência de números pseudo-aleatórios, \(u_1, u_2, \ldots, u_k \):
 0,95547 ; 0,53702 ; 0,14486 ; 0,42320 ; 0,51695 ; ...

3. Calcula-se o tempo médio de funcionamento de cada componente. Seja \(u_i \) um número pseudo-aleatório referido no ponto anterior. O tempo médio de funcionamento do componente \(i \), é dado pela expressão: \(t = -\ln(u_i)/\lambda_i \).

<table>
<thead>
<tr>
<th>componente</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t/h)</td>
<td>1384,1</td>
<td>90,2</td>
<td>683,9</td>
</tr>
<tr>
<td>ordem de saída de serviço</td>
<td>(1^a) a sair de serviço</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

O próximo estado inicia-se quando um componente sair de serviço.

4. Calcula-se o tempo de reparação do componente que saiu de serviço, recorrendo ao número pseudo-aleatório seguinte da sequência. O tempo de reparação é dado pela expressão: \(t = -\ln(u_i)/\mu_i \).

\(t = 38.6 \) h para o componente \(C_2 \)
5. Compara-se o tempo de reparação deste componente com o tempo em que ocorre a próxima avaria para se obter o próximo estado.

No instante \(t = 128.8 \text{h} \), \(C_2 \) entra em serviço sem que \(C_1 \) ou \(C_3 \) tenham avariado. Sorteia-se de novo o tempo que \(C_2 \) funciona sem avariar:

\[
\begin{align*}
& t = 1702.6 \text{h}
\end{align*}
\]

6. Repete-se os pontos 4 e 5.

Pode-se assim determinar os estados do sistema bem como a sua duração tal como indicados na tabela 3.4.

Tabela 3.4 - Sorteio de estados numa simulação cronológica

<table>
<thead>
<tr>
<th>Estado</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>Duração</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>90,2 (h)</td>
</tr>
<tr>
<td>2</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>38,0 (h)</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>555,1 (h)</td>
</tr>
<tr>
<td>4</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

3.3.3 Avaliação do valor esperado da potência cortada

Num sistema de energia eléctrica, a potência cortada deve-se a vários factores como sejam:

- deficiências do sistema produtor mas com o sistema de transporte em pleno funcionamento ou seja com todos os componentes do sistema de transporte em serviço;

- deficiências no sistema de transporte mas com o sistema produtor em pleno funcionamento;

- deficiências em simultâneo de componentes do sistema produtor e de transporte.

O valor esperado da potência cortada pode ser calculado pela expressão:
\[E(P_{gc}) = \sum P_{gc}(x_i) \cdot p(x_i) \tag{3.27} \]

em que \(P_{gc}(x_i) \) é a potência cortada no estado \(x_i \) e \(p(x_i) \) representa a probabilidade de ocorrência desse estado que é dada pela expressão (3.15). Como não é prático, em sistemas de grandes dimensões, avaliar todos os possíveis estados de residência do sistema, recorre-se ao método de simulação de Monte Carlo para estudar o funcionamento do sistema e assim obter estimativas do valor esperado da potência cortada. Para \(N \) estados avaliados a expressão (3.28) permite estimar o valor esperado da potência cortada.

\[\hat{E}(P_{gc}) = \frac{1}{N} \sum_{i=1}^{N} P_{gc}(x_i) \tag{3.28} \]

Na prática pode ser necessário avaliar muitos estados do sistema pelo que há necessidade de implementar técnicas de aceleração de convergência. Nos pontos seguintes descreve-se o modo como as técnicas referidas em pontos anteriores podem ser implementadas para sistemas de energia eléctrica.

3.3.4 Utilização da amostragem antitética

A técnica de redução de variância associada à amostragem antitética pode ser facilmente implementada em sistemas de energia eléctrica para o caso da simulação com sorteio não cronológico, não tendo no entanto sentido a sua implementação na simulação com sorteio cronológico. Esta situação deve-se ao facto de, com esta técnica e para cada estado sorteado, se identificar o estado antitético. Os estados antitéticos de cada estado a analisar iriam destruir a sequência cronológica de estados que é inerente ao sorteio de tipo cronológico. Assim, a adopção de um sorteio deste tipo torna inviável a utilização desta técnica de redução de variância.

A amostragem antitética é implementada simulando um conjunto de pares de estados do sistema em que a disponibilidade/indisponibilidade dos componentes é avaliada, considerando uma sequência de números pseudo-aleatórios para o primeiro estado desse par e a sequência antitética para o segundo estado.
3.3.5 Utilização da variável de controlo

Esta técnica de redução de variância pode ser implementada quer para o sorteio de tipo cronológico quer para o não cronológico. Em ambos os tipos de sorteio, a implementação exige a utilização duma função, \(Z(x_i) \), que constitua uma boa aproximação da função a estimar.

No caso de se pretender estimar o valor esperado da potência cortada, pode-se obter uma boa aproximação desta, considerando que a potência cortada é devida apenas a deficiências do sistema produtor. A potência cortada devida apenas a deficiências do sistema produtor \(P_{gc} \) pode ser calculada através da expressão (3.29).

\[
Z(x_i) = P_{gc}(x_i) = \begin{cases}
 P_{c^{total}} - P_{g^{max}}(x_i) & \text{se } P_{c^{total}} > P_{g^{max}}(x_i) \\
 0 & \text{se } P_{c^{total}} \leq P_{g^{max}}(x_i)
\end{cases} \quad (3.29)
\]

Nesta expressão, \(P_{c^{total}} \) e \(P_{g^{max}}(x_i) \) correspondem respectivamente aos valores da potência de carga total instalada e à potência máxima que os geradores disponíveis no estado \(x_i \) em estudo podem gerar.

Pode-se calcular o valor de \(Z(x_i) \), para um dado estado, recorrendo à tabela das probabilidades das capacidades fora de serviço.

A tabela das probabilidades das capacidades fora de serviço, utiliza-se para avaliar a fiabilidade dum sistema produtor permitindo calcular o valor esperado da potência cortada devida apenas a deficiências do sistema produtor.

Para cálculo da probabilidade de ocorrência de um estado, considere-se que cada componente do sistema produtor pode residir em apenas dois estados - disponível ou indisponível. Considere-se ainda que as saídas de serviço são acontecimentos aleatórios e independentes. Seja \(x_i \) um estado do sistema constituído por \(n \) geradores em que \(n \) estão em funcionamento e os restantes estão fora de serviço por avaria. Calcula-se a probabilidade de ocorrência desse estado através da expressão (3.15) e a potência cortada, devida apenas a deficiências do sistema produtor, através da expressão (3.29).

A potência que está fora de serviço em cada estado \(x_i \) considerado, é dada pela diferença entre a potência máxima instalada e a potência máxima disponível:

\[
P_{gf}(x_i) = P_{g^{max}} - P_{g^{max}}(x_i) \quad (3.30)
\]

Desta expressão pode-se obter \(P_{g^{max}}(x_i) \) que, substituída em (3.29), resulta na expressão (3.31):
\[P_{gc}(x_i) = \begin{cases} Pc_{total} - Pg_{max} + Pgf(x_i) & \text{se } Pc_{total} > Pg_{max} - Pgf(x_i) \\ 0 & \text{se } Pc_{total} \leq Pg_{max} - Pgf(x_i) \end{cases} \] (3.31)

O valor esperado da potência cortada devida apenas a deficiências do sistema produtor é dado pela expressão (3.27) em que \(P_{gc} \) é a potência cortada devida apenas a saídas de serviço dos geradores. Como o número de estados em que o sistema se pode encontrar é muito elevado e podem haver vários estados com a mesma potência cortada, torna-se necessário implementar algoritmos eficientes que permitam obter as probabilidades das capacidades fora de serviço. A construção da tabela das probabilidades das capacidades fora de serviço permite calcular rapidamente esse valor podendo-se construir de forma sistemática e eficiente em termos computacionais.

3.3.6 Construção da tabela das probabilidades das capacidades fora de serviço

A construção da tabela das probabilidades das capacidades fora de serviço, inicia-se com a inclusão da capacidade \(P_{i}^{max} \) correspondente à potência nominal do componente \(i \) e que tem probabilidade de avaria \(p_i(A) \). Na tabela seguinte encontra-se o estado da tabela após inicializada desta forma:

<table>
<thead>
<tr>
<th>capacidade fora de serviço</th>
<th>probabilidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0 - (p_i(A))</td>
</tr>
<tr>
<td>(P_{i}^{max})</td>
<td>(p_i(A))</td>
</tr>
</tbody>
</table>

Os restantes componentes podem ser incluídos na tabela um de cada vez, de uma forma sistemática utilizando para o efeito a expressão recursiva:

\[p(Pgf) = \tilde{p}(Pgf) \cdot (1 - p_i(A)) + \tilde{p}(Pgf - P_{i}^{max}) \cdot p_i(A) \] (3.32)

Nesta expressão:

- \(p(Pgf) \) - corresponde à probabilidade de no sistema estar fora de serviço uma potência igual a \(Pgf \) após incluir o componente \(i \) na tabela;
• \(\tilde{p}(Pgf) \) - representa a probabilidade de no sistema estar fora de serviço uma potência igual a \(Pgf \) antes de incluir o componente \(i \) na tabela;

• \(\tilde{p}(Pgf - P_i^{\text{max}}) \) - representa a probabilidade de no sistema estar fora de serviço uma potência igual a \(Pgf - P_i^{\text{max}} \) antes de incluir o componente \(i \) na tabela.

Da análise desta expressão constata-se que uma capacidade fora de serviço poderá ser formada considerando as duas situações seguintes:

• esse valor da potência fora de serviço já está incluído na tabela antes do novo componente ser integrado e este não avaria;

• o valor \(Pgf - P_i^{\text{max}} \) de potência fora de serviço já está incluído na tabela e o novo componente com potência \(P_i^{\text{max}} \) sofre uma avaria.

Para sistemas reais, com elevado número de geradores, o número de combinações possíveis de capacidades fora de serviço poderá ser muito elevado e, por isso, a construção da tabela referida exigirá um esforço computacional significativo. Se se considerar que um componente pode residir apenas em um de dois estados possíveis - em funcionamento e avariado - então o número possível de estados de um sistema com \(N \) componentes é de \(2^N \).

Para evitar que o esforço computacional seja elevado na construção desta tabela. Pode recorrer-se à truncagem da mesma. Este processo consiste em eliminar as capacidades fora de serviço com probabilidades de ocorrência inferiores a um valor especificado pelo utilizador.

Noutras situações pode recorrer-se ao arredondamento da tabela. Esta técnica consiste em considerar que a tabela integra apenas, para elêm do 0, múltiplos de um valor base. O arredondamento é realizado sempre que ocorra uma potência fora de serviço diferente de um múltiplo desse valor base. Neste caso, a probabilidade associada à ocorrência dessa potência fora de serviço é distribuída pelos múltiplos do valor base que enquadrem a potência fora de serviço em causa. Desta forma, realiza-se uma repartição da influência de estados intermédios por estados adjacentes.
Capítulo 4

Conjuntos imprecisos

A noção de conjunto impreciso - *Fuzzy Set* - foi introduzido por L. Zadeh (1965) que expôs as razões porque os humanos obtinham melhores resultados em determinadas tarefas que as máquinas existentes na altura. A grande vantagem dos humanos, residia na capacidade destes tratarem informação linguística imprecisa e que os conceitos no mundo real nem sempre podem ser representados usando limites claramente definidos.

Zadeh definiu conjunto impreciso como uma classe de objectos com um contínuo grau de pertença. Cada conjunto é caracterizado por uma função de pertença ou característica a qual atribui a cada objecto um determinado grau de pertença.

Na década de 70 a teoria dos conjuntos imprecisos desenvolveu-se e utilizou-se pela primeira vez o significado de variável linguística (L. Zadeh, 1973) que permitia estabelecer regras para tratar informação do mundo real.

Actualmente, a teoria dos conjuntos imprecisos é utilizada em diversos tipos de problemas como:

- fenómenos com baixa frequência de ocorrência e que, portanto, não podem ser tratados estatisticamente.

- estudo de sistemas com elevada complexidade. Nos sistemas à medida que o grau de complexidade aumenta, diminui a capacidade de formular juízos significativos e precisos. Estes aspectos tornam-se mutuamente exclusivos a partir duma determinada complexidade. De algum modo, esta relação entre complexidade e precisão corresponde ao *Princípio da Incompatibilidade*.

- tratamento de proposições da linguagem humana

- incerteza intrínseca em muitas situações reais e que, portanto, não podem ser tratados por métodos determinísticos nem estatísticos.
4.1 Aspectos genéricos

A teoria dos conjuntos imprecisos pode ser considerada uma generalização da Análise Intervalar.

Uma noção elementar de conjunto impreciso pode ser dada pelo exemplo seguinte.

Considere-se o conjunto, \(X \), de todos os números reais entre 0 e 5, \(X = [0; 5] \), ao qual se vai designar de universo. Considere-se ainda, um subconjunto \(A \) em \(X \) de números reais entre 1 e 3, \(A = [1; 3] \). Considere-se, agora, que em \(X \) se define uma função \(\mu_A(x) \) que, a cada elemento \(x \) de \(X \), atribui o valor 1 se o elemento pertencer a \(A \) e o valor 0 se não pertencer a \(A \). Na figura 4.1 apresenta-se o gráfico desta função de pertença.

![Diagrama de função de pertença para \(\mu_A(x) \)](image)

Figura 4.1 - Exemplo dum função de pertença

Consideremos que \(\mu_A(x) \), é interpretado como o grau de credibilidade dum elemento pertencer a \(A \). Este conceito pode ser generalizado definindo um conjunto impreciso como um conjunto de intervalos, cada um deles associado a um grau de pertença. Na figura 4.2 encontra-se esquematizada uma possível função de pertença de um conjunto impreciso \(\tilde{A} \).

![Diagrama de função de pertença para \(\mu_{\tilde{A}}(x) \)](image)

Figura 4.2 - Função de pertença de um conjunto impreciso \(\tilde{A} \)
\(\mu_A(x) \) designa-se por função de pertença de \(A \), e define-se do seguinte modo:

\[
\mu_A(x) : X \rightarrow [0, 1], \text{ sendo } A = \{ (x, \mu_A(x)) ; x \in X \} \tag{4.1}
\]

Apresentam-se em seguida algumas definições relativas aos conjuntos imprecisos:

- o conjunto suporte de \(A \), \(S(A) \) é definido por

\[
S(A) = \{ x : \mu_A(x) > 0 \} \tag{4.2}
\]

- a altura dum conjunto impreciso \(A \), \(height(A) \) é o grau de pertença mais elevado atribuído a qualquer elemento de \(A \);

- um conjunto impreciso é normalizado se a sua altura, \(height(A) \), for igual a 1,0. Um conjunto impreciso pode ser normalizado dividindo \(\mu_A(x) \) pela sua altura;

- um corte de nível \(\alpha \) define-se como o conjunto clássico \(A_\alpha \) tal que

\[
A_\alpha = \{ x : \mu_A(x) \geq \alpha \} \tag{4.3}
\]

Em relação ao exemplo exposto na figura 4.2 o corte de nível \(\alpha \) é dado por \([x_1, x_2]\);

- Um conjunto impreciso \(A \) é convexo se e só se for válido:

\[
\forall x_1, x_2, \forall \lambda \in [0, 1] \quad \mu_A(\lambda \cdot x_1 + (1 - \lambda) \cdot x_2) \geq \min(\mu_A(x_1), \mu_A(x_2)) \tag{4.4}
\]

Esta definição significa que, para quaisquer valores \(x_1 \) e \(x_2 \), o grau de pertença de \(x_t \) tal que \(x_1 \leq x_t \leq x_2 \) deverá ser não inferior ao menor dos graus de pertença de \(x_1 \) e \(x_2 \). Esta definição é equivalente a considerar que um conjunto \(A \) é convexo se todos os seus cortes de nível \(\alpha \) também o forem. No exemplo apresentado na figura 4.2, o conjunto \(A \) não é convexo.

- um conjunto impreciso, \(A \), é positivo se \(\mu_A(x) = 0 \); \(\forall x \leq 0 \);

- um conjunto impreciso, \(A \), é negativo se \(\mu_A(x) = 0 \); \(\forall x \geq 0 \).

--- 59 ---
4.2 Operações básicas sobre conjuntos imprecisos

Sejam \(\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) ; x \in X\} \) e \(\tilde{B} = \{(x, \mu_{\tilde{B}}(x)) ; x \in X\} \) dois conjuntos imprecisos. Zadeh propôs as seguintes definições para as operações básicas entre conjuntos imprecisos:

- **Reunião** \(\tilde{C} = \tilde{A} \cup \tilde{B} \)

\[
\mu_{\tilde{C}}(x) = \max\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}, x \in X
\]

(4.5)

- **Interseção** \(\tilde{C} = \tilde{A} \cap \tilde{B} \)

\[
\mu_{\tilde{C}}(x) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}, x \in X
\]

(4.6)

- **Complementação** \(\tilde{C} = \overline{\tilde{A}} \)

\[
\mu_{\tilde{C}}(x) = 1 - \mu_{\tilde{A}}(x), x \in X
\]

(4.7)

4.3 Princípio da Extensão

Seja \(X \) o produto cartesiano dos universos \(X_1, X_2, ..., X_r \). Sejam ainda \(\tilde{A}_1, \tilde{A}_2, ..., \tilde{A}_r \), \(r \) conjuntos imprecisos definidos em \(X_1, X_2, ..., X_r \). O produto cartesiano de \(\tilde{A}_1, \tilde{A}_2, ..., \tilde{A}_r \), \(\tilde{A} \), é definido por:

\[
\tilde{A} = \tilde{A}_1 \times \tilde{A}_2 \times \cdots \times \tilde{A}_r \text{ tal que:}
\]

\[
\mu_{\tilde{A}}(x_1, x_2, ..., x_r) = \min\{\mu_{\tilde{A}_1}(x_1), \mu_{\tilde{A}_2}(x_2), ..., \mu_{\tilde{A}_r}(x_r)\}
\]

(4.8)

Seja \(f \) uma função definida de \(X \) sobre \(Y \):

--- 60 ---
\[f: X \rightarrow Y \]
\[y = f(x_1, x_2, \ldots, x_r) \quad (4.9) \]

O Princípio da Extensão permite construir o conjunto impreciso \(\tilde{B} \) em \(Y \) obtido a partir dos \(r \) conjuntos imprecisos iniciais \(\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_r \), do seguinte modo:

\[\tilde{B} = \left\{ (y, \mu_{\tilde{B}}(y)) : y = f(x_1, x_2, \ldots, x_r), (x_1, x_2, \ldots, x_r) \in \mathcal{R} \right\} \quad (4.10) \]

\[
\begin{align*}
\mu_{\tilde{B}}(y) &= \sup_{x_1, x_2, \ldots, x_r} \min_{y = f(x_1, x_2, \ldots, x_r)} \left(\mu_{\tilde{A}_1}(x_1), \mu_{\tilde{A}_2}(x_2), \ldots, \mu_{\tilde{A}_r}(x_r) \right) \\
\mu_{\tilde{B}}(y) &= 0 \quad \text{se } f^{-1}(y) = \emptyset
\end{align*}
\quad (4.11)
\]

De acordo com este princípio, \(\mu_{\tilde{B}}(y) \) corresponde ao maior valor de pertença de \(\mu_{\tilde{A}}(x) = \mu_{\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_r}(x_1, x_2, \ldots, x_r) \) para todos os elementos \((x_1, x_2, \ldots, x_r)\) de \(X \) que por \(f \) permitam obter o valor de \(y \).

4.4 Números imprecisos

4.4.1 Definição

Um número impreisco, \(\tilde{A} \), é um conjunto impreciso convexo e normalizado, definido em \(\mathcal{R} \) tal que:

i. existe pelo menos um \(x_0 \in \mathcal{R} \) tal que \(\mu_{\tilde{A}}(x_0) = 1,0; \)

ii. \(\mu_{\tilde{A}}(x) \) é contínua por segmentos.

O conjunto \(\tilde{A} \), representado na figura 4.3, é um número impreciso e \(\tilde{N} \) não é, pois não é convexo. A convexidade de um número impreciso refere-se à função de pertença. Assim, para \(\tilde{N} \) ser convexo teriam que o ser, também, todos os seus cortes de nível \(\alpha \).
Figura 4.3 - Dois conjuntos imprecisos em que apenas o segundo corresponde a um número im preciso

4.4.2 Alguns tipos de números imprecisos:

 i) Número impreciso trapezoidal

Um número impreciso trapezoidal é representado por \(\tilde{A} = (a_1 ; a_2 ; a_3 ; a_4) \), com \(a_1 ; a_2 ; a_3 ; a_4 \in \mathbb{R} \). A sua função de pertença é dada pela expressão:

\[
\mu_{\tilde{A}}(x) = \begin{cases}
\frac{x-a_1}{a_2-a_1} & \text{se } a_1 \leq x \leq a_2 \\
1.0 & \text{se } a_2 \leq x \leq a_3 \\
\frac{a_4-x}{a_4-a_3} & \text{se } a_3 \leq x \leq a_4
\end{cases}
\]

(4.12)

e a sua representação gráfica encontra-se na figura seguinte:

Figura 4.4 - Representação gráfica dum número impreciso trapezoidal.
ii) Número impreciso triangular

Este tipo de número impreciso pode ser entendido como um número impreciso trapezoidal em que \(a_2 = a_3 \). Assim, a sua função de pertença é dada por:

\[
\mu_{A}(x) = \begin{cases}
\frac{x-a_1}{a_2-a_1} & \text{se } a_1 \leq x \leq a_2 \\
1,0 & \text{se } x = a_2 \\
\frac{a_4-x}{a_4-a_2} & \text{se } a_2 \leq x \leq a_4
\end{cases}
\]

(4.13)

e a sua representação gráfica é:

![Figura 4.5 - Representação gráfica dum número impreciso triangular.](image)

iii) Número impreciso rectangular

Do mesmo modo que para os números imprecisos triangulares, este tipo de número impreciso pode ser entendido como um número impreciso trapezoidal em que \(a_1 = a_2 \) e \(a_3 = a_4 \). Assim, a sua função de pertença e representação gráfica são dadas por:

\[
\mu_{A}(x) = \begin{cases}
1,0 & \text{se } a_1 \leq x \leq a_4 \\
0 & \text{se } x < a_1 \lor x > a_4
\end{cases}
\]

(4.14)
Os números imprecisos trapezoidais podem ser utilizados para modelizar a incerteza associada ao conhecimento dos valores extremos de um intervalo. Os números imprecisos triângulares e rectangulares correspondem a casos particulares dos anteriores. Os primeiros permitem apresentar a incerteza que afecta um valor numérico enquanto que os segundos correspondem, afinal, à noção clássica de intervalo. Neste sentido, fica reforçada a ideia de que os números imprecisos permitem generalizar as noções clássicas associadas à Análise Intervalar. Assim, algoritmos que permitam integrar conhecimentos sob a forma de números imprecisos trapezoidais correspondem a generalizações de aplicações no âmbito da Análise Intervalar.

4.4.3 Operações sobre números imprecisos trapezoidais

Zadeh propôs uma metodologia geral para estender conceitos matemáticos determinísticos, para o domínio dos conjuntos imprecisos - Princípio da Extensão.

Este Princípio pode ser utilizado, recorrendo ao conceito de cortes de nível α. Um número impreciso trapezoidal $\tilde{A} = (a_1; a_2; a_3; a_4)$, pode ser representado por cortes de nível α, que correspondem aos intervalos $\tilde{A}_\alpha = [a_1 + (a_2 - a_1)\alpha; a_4 - (a_4 - a_2)\alpha]$, para $\alpha\in[0, 1]$.

Nos pontos seguintes serão definidas as operações aritméticas sobre números imprecisos trapezoidais. Verificar-se-á que as operações de adição e subtração sobre números imprecisos trapezoidais são internas enquanto que as operações de multiplicação, divisão e inversão não o são. Nestes três últimos casos é possível aproximar o resultado por um número impreciso trapezoidal desprezando, entre outros, termos de segunda ordem.
Adição

Sejam \(\tilde{A} = (a_1 ; a_2 ; a_3 ; a_4) \) e \(\tilde{B} = (b_1 ; b_2 ; b_3 ; b_4) \) dois números imprecisos trapezoidais com os respectivos cortes de nível \(\alpha \), \(A_\alpha = [a_1 + \alpha(a_3 - a_1) ; a_4 - \alpha(a_4 - a_1)] \) e \(B_\alpha = [b_1 + \alpha(b_3 - b_1) ; b_4 - \alpha(b_4 - b_3)] \), onde os primeiros elementos destes intervalos representam as partes crescentes de \(\tilde{A} \) e de \(\tilde{B} \) e os segundos elementos, as respectivas partes decrescentes.

Então, a adição de um corte de nível \(\alpha \) de \(\tilde{A} \) com um corte de nível \(\alpha \) de \(\tilde{B} \) é dada por:

\[
A_\alpha \oplus B_\alpha = [a_1 + b_1 + \alpha((a_3 + b_3) - (a_1 + b_1)) ; a_4 + b_4 - \alpha((a_4 + b_4) - (a_3 + b_3))] \tag{4.15}
\]

Resulta então o número trapezoidal:

\[
\tilde{C} = \tilde{A} \oplus \tilde{B} = (a_1 + b_1 ; a_2 + b_2 ; a_3 + b_3 ; a_4 + b_4) \tag{4.16}
\]

com função de pertença dada pela expressão:

\[
\mu_{\tilde{C}}(x) = \begin{cases}
\frac{x - (a_1 + b_1)}{(a_2 + b_2) - (a_1 + b_1)} & \text{se } a_1 + b_1 \leq x < a_2 + b_2 \\
1,0 & \text{se } a_2 + b_2 \leq x \leq a_3 + b_3 \\
\frac{a_4 + b_4 - x}{a_4 + b_4 - (a_3 + b_3)} & \text{se } a_3 + b_3 < x \leq a_4 + b_4
\end{cases} \tag{4.17}
\]

Multiplicação dum número impreciso trapezoidal por um escalar real

Seja \(\tilde{A} = (a_1 ; a_2 ; a_3 ; a_4) \) um número impreciso trapezoidal e \(k \) um número real. Define-se multiplicação dum número impreciso por um escalar do seguinte modo:

\[
k \cdot \tilde{A} = (k \cdot a_1 ; k \cdot a_2 ; k \cdot a_3 ; k \cdot a_4) \quad \text{se } k > 0 \tag{4.18}
\]

\[
k \cdot \tilde{A} = (k \cdot a_4 ; k \cdot a_3 ; k \cdot a_2 ; k \cdot a_1) \quad \text{se } k < 0
\]
Caso particular do produto por um escalar negativo - produto por \((-1)\)

Seja \(\tilde{A}\) um número trapezoidal. Define-se \(\Theta \tilde{A}\) o produto de \(\tilde{A}\) por \((-1)\) pela expressão (4.19):

\[
\Theta \tilde{A} = (-a_4; -a_3; -a_2; -a_1)
\quad (4.19)
\]

Subtração

Desta última definição e do resultado da adição, podemos facilmente obter a expressão para a subtração, \(\tilde{A} \Theta \tilde{B}\), dos números imprecisos trapezoidais \(\tilde{A}\) e \(\tilde{B}\):

\[
\tilde{C} = \tilde{A} \Theta \tilde{B} = \tilde{A} \Theta (\Theta \tilde{B}) = (a_1 - b_1; a_2 - b_2; a_3 - b_3; a_4 - b_4)
\quad (4.20)
\]

Multiplicação

Sejam \(\tilde{A} = (a_1; a_2; a_3; a_4)\) e \(\tilde{B} = (b_1; b_2; b_3; b_4)\), dois números imprecisos trapezoidais positivos, isto é,

\(\tilde{A}\) é um número impresto positivo se \(\mu_\tilde{A}(x) = 0; \forall x \leq 0\)

Do produto de dois cortes de nível \(\alpha\), em \(\tilde{A}\) e \(\tilde{B}\) resulta para as:

- partes crescentes de \(\tilde{A}\) e \(\tilde{B}\)
 \[
 x = a_1 + \alpha(a_2 - a_1)

 y = b_1 + \alpha(b_2 - b_1)

 xy = a_1 b_1 + \alpha(a_1 b_2 + a_2 b_1 - 2 a_1 b_1) + \alpha^2 \left((a_2 - a_1) (b_2 - b_1)\right)

 (4.22)
 \]

- partes decrescentes de \(\tilde{A}\) e \(\tilde{B}\)
 \[
 x = a_4 - \alpha(a_4 - a_3)

 y = b_4 - \alpha(b_4 - b_3)

 xy = a_4 b_4 - \alpha(2 a_4 b_4 - a_3 b_4 - a_4 b_3) + \alpha^2 \left((a_4 - a_3) (b_4 - b_3)\right)

 (4.23)
 \]
• partes constantes de \(\tilde{A} \) e \(\tilde{B} \)

\[
\alpha = 1,0 \quad \text{com} \quad x \in [a_1; a_3] \quad \text{e} \quad y \in [b_2; b_3]
\]

\(x \cdot y \in [a_2 b_2; a_3 b_3] \)

Desprezando, entre outros, os termos em \(\alpha^2 \) obtém-se um número trapezoidal que é uma aproximação de \(\tilde{A} \otimes \tilde{B} \),

\[
\tilde{A} \otimes \tilde{B} = (a_1 b_1; a_2 b_2; a_3 b_3; a_4 b_4)
\]

(4.24)

com função de pertença dada por:

\[
\mu_{\tilde{A} \otimes \tilde{B}}(z) = \begin{cases}
\frac{z - a_1 b_1}{a_2 b_2 - a_1 b_1} & z \in [a_1 b_1; a_2 b_2] \\
1,0 & z \in [a_2 b_2; a_3 b_3] \\
\frac{a_4 b_4 - z}{a_4 b_4 - a_3 b_3} & z \in [a_3 b_3; a_4 b_4]
\end{cases}
\]

(4.25)

De igual modo, é possível obter aproximações para a multiplicação de dois números imprecisos sendo um positivo e outro negativo, ou sendo ambos negativos, para o quociente entre 1 e um número impreciso trapezoidal e para a divisão de números imprecisos trapezoidais.

Quociente entre 1 e \(\tilde{A} \)

Seja \(\tilde{A} = (a_1; a_2; a_3; a_4) \) um número impreciso trapezoidal positivo. Define-se uma aproximação de \(\tilde{A}^{-1} \) por:

\[
\tilde{A}^{-1} = \left(\frac{1}{a_4}; \frac{1}{a_3}; \frac{1}{a_2}; \frac{1}{a_1} \right)
\]

(4.26)
Divisão

Sejam $\bar{A} = (a_1; a_2; a_3; a_4)$ e $\bar{B} = (b_1; b_2; b_3; b_4)$, dois números imprecisos trapezoidais positivos. A divisão de \bar{A} por \bar{B} pode ser aproximada por:

$$\bar{A} \div \bar{B} = (\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}, \frac{a_4}{b_4})$$ \hspace{1cm} (4.27)

4.5 Critérios de ordenação de números imprecisos

Em muitas aplicações práticas, é necessário ordenar os números associados, por exemplo, a diversas soluções admissíveis de problemas ou a alternativas de investimento. Pode-se realizar esta ordenação determinando diversos valores que sejam característicos de cada um desses números.

De entre vários critérios que têm sido propostos na literatura da especialidade apresentam-se em seguida a hierarquia de critérios de Kaufmann/Gupta e o critério de Lee e Li.

4.5.1 Critério de ordenação de Kaufmann/Gupta

i) Primeiro critério - Removal

Kaufmann e Gupta, (1988), apresentam um conjunto de critérios de ordenação de números imprecisos a serem utilizados de forma hierárquica. O primeiro destes critérios é o Removal dum número impreciso \bar{A}, referente a um número real k. O Removal é definido como a média dos Removal à esquerda, R_{E}, e à direita, R_{D}, de \bar{A} em relação a k, ou seja:

$$R(\bar{A}, k) = \frac{R_{\text{E}} + R_{\text{D}}}{2}$$ \hspace{1cm} (4.28)
Figura 4.7 - Identificação dos Removal à esquerda e à direita dum número impreciso.

Por escolha conveniente da posição de \(k \), à esquerda de \(\tilde{A} \), pode-se obter Removal positivos e assim estes valores serem interpretados como medida da distância dos números imprecisos a \(k \), criando-se assim um critério de ordenação.

O Removal permite associar a um número impreciso um número real. Se se considerar \(k = 0 \) para um número impreciso trapezoidal, \(\tilde{A} = (a_1; a_2; a_3; a_4) \) obtém-se:

\[
R = \frac{a_1 + a_2 + a_3 + a_4}{4}
\]

(4.29)

Se os Removal de diferentes números imprecisos forem iguais, estes podem ser agrupados dentro duma classe. Para ordenar os números dentro de cada classe assim formada deverá utilizar-se um segundo critério.

ii) Segundo critério de ordenação - Valor central

Para cada classe formada por números com o mesmo Removal, podemos formar subclasses integrando números possuindo o mesmo valor central. Quanto maior for o valor central dum número impreciso, maior é esse número. Se o número impreciso em consideração não tiver apenas um valor central, considera-se o valor médio dos vários valores centrais. Podemos também considerar que este critério de ordenação usa o valor médio do corte de nível \(\alpha = 1.0 \). Para um número impreciso trapezoidal o valor central obtém-se a partir da expressão:

\[
M(\tilde{A}) = \frac{a_2 + a_4}{2}
\]

(4.30)
Se, após aplicar este segundo critério, subsistirem situações de empate entre números imprecisos deverá aplicar-se um terceiro critério.

iii) Terceiro critério de ordenação - Amplitude

Se se considerar em cada subclasse a amplitude de cada número impreciso como a amplitude do corte de nível 0, podemos ordenar estes números por ordem crescente da amplitude e assim tentar ultrapassar as situações de empate identificadas. A expressão seguinte permite calcular a amplitude dum número impreciso trapezoidal:

\[D(\tilde{A}) = a_4 - a_1 \] (4.31)

4.5.2 Critério de ordenação de Lee e Li

Este segundo método tem por base o cálculo da média ou centro de massa, \(\overline{X}(\tilde{A}) \), e do desvio padrão, \(\sigma(\tilde{A}) \), quando aplicado a um conjunto impreciso.

De acordo com Chen et al, O centro de massa dum conjunto impreciso, é dado pela expressão:

\[\overline{X}(\tilde{A}) = \frac{\int_{s(\tilde{A})} x \mu_\tilde{A}(x) dx}{\int_{s(\tilde{A})} \mu_\tilde{A}(x) dx} \] (4.32)

Considerando um número impreciso trapezoidal, \(\tilde{A} = (a_1; a_2; a_3; a_4) \), a definição anterior conduz à expressão (4.33).

\[\overline{X}(\tilde{A}) = \frac{-a_1^2 - a_1 a_2 - a_2^2 + a_3^2 + a_3 a_4 + a_4^2}{3(-a_1 - a_2 + a_3 + a_4)} \] (4.33)

Também este critério não permite obter uma relação de ordem estrita quando aplicada a qualquer conjunto de números imprecios. Situações de empate podem então ser ultrapassadas recorrendo ao cálculo do desvio padrão, (4.34).
\[
\sigma(\bar{A}) = \sqrt{\frac{\int x^2 \mu_2(x) dx}{\int \mu_2(x) dx} - \left[\bar{X}(\bar{A})\right]^2}
\]

(4.34)

No caso específico dos números imprecisos serem trapezoidais, o desvio padrão é obtido pela expressão (4.35):

\[
\sigma(\bar{A}) = \sqrt{\frac{-a_1^2 - a_2^2 - a_3^2 - a_4^2 + a_1^2 a_4 + a_2^2 a_3 + a_3^2 a_2 + a_4^2 a_1}{6(-a_1 - a_2 + a_3 + a_4)} - \left[\frac{-a_1^2 - a_2^2 - a_3^2 + a_4^2 + a_1^2 a_2 + a_2^2 a_3 + a_3^2 a_4}{3(-a_1 - a_2 + a_3 + a_4)}\right]^2}
\]

(4.35)

Após calcular o desvio padrão, os números imprecisos com igual centro de massa são ordenados por ordem crescente considerando valores decrescentes do desvio padrão. Significa isto, que dados dois números imprecisos com igual centro de massa é maior o que possuir menor desvio padrão.
Capítulo 5

Modelos de análise de sistemas elétricos integrando dados sob a forma de números imprecisos

5.1 Trânsito de potências impreciso

A solução dum problema de trânsito de potências dum sistema elétrico de energia pretende identificar o ponto de funcionamento deste em regime estacionário. Este tipo de problemas sofreu nos últimos 20 anos uma grande divulgação, o que permitiu diversos tipos de formulações, devido em parte, ao grande aumento da capacidade de cálculo e de memória que os computadores têm tido nos últimos anos.

O problema de trânsito de potências encontra-se tradicionalmente associado a modelos de índole determinística. No entanto, desde a década de 70 diversos investigadores têm desenvolvido modelos e algoritmos de solução que permitem a integração de incertezas de diversos tipos nos dados do problema.

Aceita-se actualmente que os conceitos probabilísticos são adequados para representar imprecisões associadas a eventos aleatórios e repetitivos. No entanto, quando a incerteza está associada a informação de natureza vaga ou difusa, a proposições correntes na nossa linguagem natural ou até devido à pouca informação disponível do fenómeno em estudo, a formulação mais adequada é aquela que recorre a conjuntos imprecisos (V. Miranda et al, 1990) originando, assim, uma nova classe de metodologias designadas por Trânsito de potências impreciso. Assim, é corrente definir-se:

Trânsito de potências impreciso é o estudo do trânsito de potências em que pelo menos uma potência produzida ou de carga especificada é representada por um número impreciso.

Esta formulação pode ser desenvolvida considerando modelos DC ou AC.

Nos modelos DC pretende-se avaliar a potência activa produzida no barramento de referência, o trânsito de potência activa nos ramos do sistema e a fase da tensão nos barramentos do sistema.

Nos modelos AC, pretende-se calcular a potência activa produzida no barramento de referência, a potência reactiva produzida nos barramentos tipo PV e de
referência, o módulo e fase das tensões, os trânsitos de potência, potência de perdas e o módulo e quadrado do módulo da intensidade de corrente nos ramos do sistema.

As potências produzidas e de carga especificadas são, em geral, representadas por números imprecisos trapezoidais. A classificação dos barramentos do sistema é análoga à realizada nos estudos de índole determinística. Assim,

- **barramentos tipo PQ**
 Conhecem-se os números imprecisos associados às potências activas e reactivas produzidas e de carga.
 Desconhecem-se os números imprecisos associados ao módulo e fase da tensão.

- **barramentos tipo PV**
 Conhecem-se os números imprecisos associados à potência activa produzida e de carga e à potência reactiva de carga. Conhece-se ainda o valor determinístico do módulo da tensão.
 Desconhecem-se os números imprecisos associados à fase da tensão e à potência reactiva produzida.

- **barramento de referência e compensação**
 Conhecem-se os números imprecisos associados às potências activa e reactiva de carga. Conhece-se ainda os valores determinísticos do módulo e fase da tensão.
 Desconhecem-se os números imprecisos associados à potência activa e reactiva produzida.

5.1.1 Modelo DC impreciso

Considere-se que \(n_b \) representa o índice do barramento de referência dos argumentos e que este barramento tem um valor determinístico para a fase da tensão igual a 0,0. Considere-se também que os barramentos tipo PQ têm índices \(1, \ldots, n_{PQ} \) e os barramentos do tipo PV têm índices \(n_{PQ}+1, \ldots, n_{PQ}+n_{PV} \). Considere-se ainda que são conhecidos todos os valores referidos aquando da classificação dos barramentos do sistema.

Adoptando as simplificações associadas ao modelo DC determinístico, é possível construir as matrizes \([B]\) e \([S]\) em que a primeira relaciona a fase da tensão nos primeiros \(n_b-1 \) barramentos com as potências activas injectadas nesses barramentos e a segunda relaciona o trânsito de potência activa nos \(n \) ramos do sistema com as potências activas injectadas nos primeiros \(n_b-1 \) barramentos.
Neste último caso, e se existirem ramos em paralelo, deve ser incluída uma linha na matriz \([S]\) associada a cada ramo em paralelo, calculando-se os coeficientes de sensibilidade respectivos, considerando a reactância de cada ramo e não o valor equivalente à ligação em paralelo.

Com as matrizes \([S]\) e \([B]^{-1}\) obtêm-se expressões lineares para a fase das tensões e trânsito de potência activa. A obtenção dos números imprecisos associados a estas grandezas, bem como à potência produzida no barramento de referência do sistema é realizada de acordo com os seguintes pontos:

a) realizar um estudo determinístico do trânsito de potências de acordo com a formulação DC, de modo a se dispor dum ponto inicial de funcionamento do sistema. Para isso devem considerar-se na especificação dos dados relativos a este estudo inicial, os valores centrais dos números imprecisos associados às grandezas especificados para o sistema. Sejam então designados por \(\theta^{or}_k\), \(P^{or}_k\) e \(P_g^{or}_k\), respectivamente, os valores determinísticos da fase da tensão no barramento \(k\), do trânsito de potência activa no ramo que liga os barramentos \(i\) e \(k\) e ainda a potência activa produzida no barramento de referência obtidos a partir deste estudo determinístico inicial.

b) obter os números imprecisos trapezoidais associados aos desvios das potências activas injectadas em relação aos valores determinísticos iniciais. Com estes desvios forma-se o vector \([\Delta \bar{P}]_{n-1}\):

\[
[\Delta \bar{P}] = \bar{P}\Theta [P^{or}]
\] (5.1)

c) obter os números imprecisos trapezoidais associados aos desvios da fase da tensão nos barramentos e ao trânsito das potências activas nos ramos do sistema:

\[
[\Delta \bar{\theta}] = [\bar{B}]^{-1} \cdot [\Delta \bar{P}]
\] (5.2)

\[
[\Delta \bar{P}_k] = [S] \cdot [\Delta \bar{P}]
\] (5.3)

d) obter os números imprecisos trapezoidais associados às fases da tensão nos barramentos e ao trânsito das potências activas nos ramos do sistema adicionando os valores determinísticos obtidos no estudo inicial aos valores obtidos para os desvios calculados em c):
\[
\begin{align*}
[\hat{\theta}] &= [\theta^{cr}] \oplus [\Delta \hat{\theta}] \\
[\hat{P}_{ik}] &= [P_{ik}^{cr}] \oplus [\Delta \hat{P}_{ik}]
\end{align*}
\] (5.4) (5.5)

e) pode-se obter o número impreciso associado à potência activa produzida no barramento de referência, calculando o desvio da potência produzida respectiva com o valor determinístico obtido no estudo inicial \(P_{g_{n_p}}^{cr} \).

\[
\Delta \hat{P}_{g_{n_p}} = \sum_{k=1}^{n_p} \Delta \hat{P}_{c_k} \Theta \sum_{k=1}^{n_p} \Delta \hat{P}_{g_k}
\] (5.6)

\[
\hat{P}_{g_{n_p}} = P_{g_{n_p}}^{cr} \oplus \Delta \hat{P}_{g_{n_p}}
\] (5.7)

A implementação computacional deste modelo pode ser realizada de uma forma eficiente visto se dispor de expressões que permitem obter as funções de pertença associadas à adição, subtração e ao produto dum escalar por números imprecisos trapezoidais. Verifica-se que este modelo apresenta valores tanto mais correctos quanto maior for a tensão de exploração da rede eléctrica. Os erros associados à linearização efectuada, podem no entanto ser reduzidos se, neste modelo, for realizado um estudo determinístico inicial para identificar um ponto de funcionamento do sistema utilizando um modelo AC determinístico e não um modelo DC, como referido.

Este novo modelo do problema de trânsito de potências impreciso, integra ainda uma estimativa constante da potência activa de perdas nos ramos do sistema, obtida através do estudo AC inicial.

Sendo conhecidos os valores iniciais imprecisos ou determinísticos referentes a cada tipo de barramento do sistema, como referido em 5.1, a obtenção dos números imprecisos trapezoidais associados à fase da tensão nos barramentos, ao trânsito de potência activa nos ramos do sistema e à potência activa produzida no barramento de referência é feita considerando os passos seguintes:

a) realizar um estudo determinístico inicial do trânsito de potências utilizando o modelo AC. A realização deste estudo exige o conhecimento de valores para as potências activas e reactivas e módulo e fase da tensão em alguns barramentos do sistema. Este estudo inicial utiliza o valor central dos números imprecisos quando existirem grandezas para as quais tenham sido especificados os valores representados por números imprecisos. Este estudo permite, entre outros, obter valores determinísticos para \(\theta^{cr}_{k} \), \(P_{ik}^{cr} \) e \(P_{g_{n_p}}^{cr} \),
respectivamente, a fase da tensão no barramento \(k \), o trânsito de potência ativa no ramo que liga os barramentos \(i \) e \(k \) e ainda a potência ativa produzida no barramento de referência.

b) uma vez terminado o estudo inicial, utilizando o modelo AC, o algoritmo de resolução do problema de fluxo de cargas impreciso continua segundo os pontos descritos em b) a e) do modelo DC, referido anteriormente.

5.1.2 Modelo AC impreciso de trânsito de potências.

A implementação deste algoritmo baseia-se nos seguintes passos:

- estudo determinístico inicial usando uma formulação AC;
- avaliação dos desvios das grandezas a calcular em relação aos valores obtidos pelo estudo inicial.

O estudo determinístico inicial realiza-se para os valores centrais das potências ativas e reativas especificadas.

O módulo e fase das tensões nos barramentos tipo \(PQ \) e fase das tensões em barramentos tipo \(PV \) formam o vector \([X]\) cujos desvios são dados por

\[
[\Delta X] = [J]^{-1} \cdot [\Delta Z]
\]
(5.8)

em que a matriz \([J]\) corresponde ao jacobiano do processo iterativo do problema construído para cada iteração. O vector \([\Delta Z]\) corresponde aos valores centrais das potências ativas e reativas injectadas nos barramentos tipo \(PQ \) e às potências ativas injectadas nos do tipo \(PV \). O processo iterativo quando convergir permite obter os desvios para \([\Delta X]\) a partir dos valores calculados para \([\Delta Z]\) e \([J]\) na iteração em que se verificou a convergência. Estes últimos, permitem ainda o cálculo dos desvios associados a outras grandezas em estudo que, adicionados aos valores centrais dessas grandezas, nos dão o valor impreciso associado a essa medida.
Os desvios em relação aos valores obtidos por este estudo inicial, podem ser calculados a partir das expressões lineares e aproximadas das expressões exactas. Estas linearizações são obtidas a partir do desenvolvimento em série de Taylor das expressões exactas e despregados todos os termos de ordem superior à primeira.

Deve-se obter expressões linearizadas das seguintes grandezas:

- Potências activa e reactiva produzidas nos geradores do sistema ligados ao barramento de referência e do tipo \(PV \), dadas pelas expressões exactas (5.9) e (5.10).

- Potência reactiva produzida ou consumida nas reactâncias ligadas aos diversos barramentos, expressão (5.11).

- Trânsito de potência activa e reactiva nos ramos do sistema, cujas expressões exactas são dadas por (5.12) e (5.13).

- Potência activa e reactiva de perdas, (5.14) e (5.15).

- Módulo e quadrado do módulo da intensidade da corrente que circula nos ramos do sistema, expressão (5.16).

As expressões (5.9) a (5.16) correspondem às expressões exactas das grandezas referidas.

\[
P_i = \sum_{k=1}^{n} V_i \cdot V_k \cdot (G_{ik} \cdot \cos \theta_{ik} + B_{ik} \cdot \sen \theta_{ik})
\]
(5.9)

\[
Q_i = \sum_{k=1}^{n} V_i \cdot V_k \cdot (G_{ik} \cdot \sen \theta_{ik} - B_{ik} \cdot \cos \theta_{ik})
\]
(5.10)

\[
Q_{r_i} = V_i^2 \cdot B_{r_i}
\]
(5.11)

\[
P_{ik} = -G_{ik} \cdot V_i^2 + V_i \cdot V_k \cdot (G_{ik} \cdot \cos \theta_{ik} + B_{ik} \cdot \sen \theta_{ik})
\]
(5.12)

\[
Q_{ik} = (B_{ik} - ysh_{ik}) \cdot V_i^2 + V_i \cdot V_k \cdot (G_{ik} \cdot \sen \theta_{ik} - B_{ik} \cdot \cos \theta_{ik})
\]
(5.13)

\[
P_{per_{ik}} = -G_{ik} \cdot V_i^2 - G_{ik} \cdot V_k^2 + 2 \cdot V_i \cdot V_k \cdot G_{ik} \cdot \cos \theta_{ik}
\]
(5.14)
\[Q_{per_{ik}} = (B_{ik} - ysh_{ik}) \cdot V_i^2 + (B_{ik} - ysh_{ik}) \cdot V_k^2 - 2 \cdot V_i \cdot V_k \cdot B_{ik} \cdot \cos \theta_{ik} \] (5.15)

\[|f|^2 = (G_i^2 + B_i^2) \cdot (V_i^2 + V_k^2) - 2 \cdot V_i \cdot V_k \cdot (G_i^2 + B_i^2) \cdot \cos \theta_{ik} + V_i^2 \cdot ysh_{ik}^2 +
2 \cdot B_{ik} \cdot ysh_{ik} \cdot V_i \cdot V_k \cdot \cos \theta_{ik} - 2 \cdot G_{ik} \cdot ysh_{ik} \cdot V_i \cdot V_k \cdot \sen \theta_{ik} - 2 \cdot B_{ik} \cdot ysh_{ik} \cdot V_i^2 \] (5.16)

Nestas expressões, considerou-se o sentido de circulação da corrente de \(i \) para \(k \).
A título de exemplo, apresenta-se em seguida a linearização da expressão (5.9).

Os desvios da expressão (5.9) são aproximados pela expressão (5.17) em que se consideram apenas os termos de 1ª ordem no desenvolvimento em série de Taylor:

\[\Delta P_i \approx \sum_{k=1}^{n} \left. \frac{\partial P_i}{\partial V_k} \right|_{V_i=V_i^m} \cdot \Delta V_k + \sum_{k=1}^{n} \left. \frac{\partial P_i}{\partial \theta_k} \right|_{\theta_i=\theta_i^m} \cdot \Delta \theta_k \] (5.17)

Nesta expressão, as derivadas parciais são dadas pelas expressões seguintes:

\[\frac{\partial P_i}{\partial V_k} = V_i \cdot (G_{ik} \cdot \cos \theta_{ik} + B_{ik} \cdot \sen \theta_{ik}) \quad ; \quad i \neq k \] (5.18)

\[\frac{\partial P_i}{\partial V_i} = \sum_{j=1}^{n} V_j \cdot (G_{ij} \cdot \cos \theta_j + B_{ij} \cdot \sen \theta_j) + 2 \cdot V_i \cdot G_{ii} \quad ; \quad i = k \] (5.19)

\[\frac{\partial P_i}{\partial \theta_k} = V_i \cdot V_k \cdot (-G_{ik} \cdot \sen \theta_{ik} + B_{ik} \cdot \cos \theta_{ik}) \quad ; \quad i \neq k \] (5.20)

\[\frac{\partial P_i}{\partial \theta_i} = \sum_{j=1}^{n} V_j \cdot V_i \cdot (-G_{ij} \cdot \sen \theta_j + B_{ij} \cdot \cos \theta_j) + 2 \cdot V_i \cdot G_{ii} \quad ; \quad i = k \] (5.21)

Se na expressão (5.17) se substituir os desvios de \(\Delta V_i \) e \(\Delta \theta_i \), pelas expressões correspondentes dadas por (5.8), obtém-se uma nova expressão linear que relaciona \(\Delta P_i \) com \([\Delta Z]\). Os coeficientes que surgem nesta nova expressão, são designados por coeficiente de sensibilidade e reflectem a influência que as variações em \([\Delta Z]\) têm nos
valores dos desvios, ΔP_i. Assim, forma-se uma nova expressão (5.22), relacionando ΔP_i com $[\Delta Z]$.

$$
\Delta P_i \equiv [S_{P_i}] \cdot [\Delta Z]
$$

(5.22)

Estes coeficientes de sensibilidade obtêm-se do seguinte modo:

1. forma-se o vector, $[D]$, a partir dos valores das derivadas parciais, calculados no ponto obtido a partir do estudo determinístico inicial. Para formar este vector, consideram-se apenas as derivadas parciais em relação ao módulo e fase da tensão nos barramentos tipo PQ e em relação à fase da tensão no barramento tipo PV. Isto deve-se a que o módulo e fase da tensão nos barramentos de referência são determinísticos assim como o módulo da tensão nos barramentos tipo PV.

2. O vector dos coeficientes de sensibilidade obtém-se a partir da expressão (5.23):

$$
[S_{P_i}] = [D] \cdot [J]^{-1}
$$

(5.23)

A potência activa produzida no barramento de referência será então dado por (5.24):

$$
P_{g_i} = P_{i}^{cr} + \Delta P_i + P_{c_i}
$$

(5.24)

O procedimento a adoptar para linearizar as expressões das outras grandezas referidas é semelhante ao efectuado para a potência activa produzida.

O algoritmo completo do problema de trânsito de potências impreciso decompõe-se nos seguintes passos:

1. Construção do vector $[\tilde{Z}]$ associado aos números imprecisos trapezoidais correspondentes às potências activas injectadas em todos os barramentos tipo PQ e PV bem como às potências reactivas em todos os barramentos tipo PQ.

2. Realização de um estudo determinístico inicial de trânsito de potências segundo uma formulação AC e utilizando o método de Newton-Raphson. Para
realizar este estudo inicial usam-se os valores centrais associados às potências especificadas para cada barramento, \(Z^c \), segundo o exposto em 1. A resolução deste problema permite obter os valores determinísticos das grandezas desconhecidas em cada tipo de barramento segundo a tabela 5.1 e ainda os valores das potências produzidos ou consumidos nas reacências, trânsito de potências ativa e reactiva bem como a potência de perdas e ainda o módulo e quadrado do módulo da intensidade da corrente, nos ramos do sistema.

<table>
<thead>
<tr>
<th>Tipo de barramento</th>
<th>variáveis conhecidas</th>
<th>variáveis calculadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(P_c) (Q_c) (P_g) (Q_g) (</td>
<td>E</td>
</tr>
<tr>
<td>Referência</td>
<td>(\checkmark) (\checkmark)</td>
<td>(\checkmark) (\checkmark)</td>
</tr>
<tr>
<td>(PQ)</td>
<td>(\checkmark) (\checkmark)</td>
<td>(\checkmark) (\checkmark)</td>
</tr>
<tr>
<td>(PV)</td>
<td>(\checkmark) (\checkmark)</td>
<td>(\checkmark) (\checkmark)</td>
</tr>
</tbody>
</table>

3. De seguida, forma-se o vector dos desvios dos números imprecisos trapezoidais segundo (5.8):

\[
[\Delta Z] = [Z] \otimes [Z^c]
\]

(5.25)

4. Para todas as grandezas a calcular, os seus desvios, \(\Delta \bar{w} \), são obtidos pela expressão (5.26), em que \(s_k \) representa um elemento do vector \([S]\) que está associado aos coeficientes de sensibilidade da grandeza em análise.

\[
\Delta \bar{w} = \sum_{i=1}^{2n_{PQ}+n_{PV}} s_k \cdot \Delta \bar{z}_k
\]

(5.26)

Adicionando este desvio ao valor determinístico, da grandeza em análise, \(w^{str} \), obtém-se o valor im preciso \(\bar{w} \).

\[
\bar{w} = w^{str} \oplus \Delta \bar{w}
\]

(5.27)

5. No caso de se tratar da potência ativa produzida no barramento de referência ou da reactiva no de referência ou do tipo \(PV \), deve-se também adicionar a respectiva potência de carga ligada a esse barramento.
De seguida apresenta-se o algoritmo de resolução do problema de trânsito de potências impreciso segundo uma formulação AC.

![Diagrama de fluxo do algoritmo](image)

Figura 5.1 Algoritmo de resolução do trânsito de potências impreciso segundo uma formulação AC.

5.2 Trânsito de potências óptimo impreciso

Os modelos apresentados no ponto anterior permitem obter funções de pertença de grandezas não condicionadas por questões económicas ou mesmo limitações físicas e técnicas associadas ao sistema real. A integração destes factores no modelo é importante pois, de entre as diversas estratégias de produção viáveis, deverá ser escolhida, por exemplo, aquela que se mostra associada a um custo de produção mínimo.

A formulação e o algoritmo de solução do problema de trânsito de potências óptimo impreciso, caracteriza-se (Saraiva et al, 1994) pelos seguintes passos:

a) formulação e resolução do problema de trânsito de potências óptimo determinístico associado ao modelo DC;

b) integração das imprecisões associadas às potências de carga especificadas;
c) determinação dos cortes de nível α das grandezas a calcular, recorrendo a técnicas de programação multiparamétrica;

d) a partir dos cortes de nível α, construir as funções de pertença dessas grandezas.

Na figura seguinte, apresenta-se o algoritmo para o modelo DC impreciso de cálculo de trânsito de potências óptimo.

![Diagrama do algoritmo](image)

Figura 5.2 - Algoritmo do modelo DC do trânsito de potências óptimo impreciso
5.2.1 Estudo determinístico de trânsito de potências óptimo

Considere-se que o sistema possui \(n_b \) barramentos e que cada barramento possui \(n_g \) geradores, todos eles controláveis. Como a potência activa é aquela que tem maior influência no custo da produção, pode definir-se a função custo do sistema que se pretende minimizar, do seguinte modo:

\[
\begin{align*}
\min \quad Z &= \sum_{i=1}^{n_b} \sum_{k=1}^{n_g} c_{ik} \cdot P_{g_{ik}} \\
\end{align*}
\] \((5.28) \)

onde \(c_{ik} \) representa o custo unitário do gerador \(k \) ligado ao barramento \(i \).

Como o sistema tem que alimentar todas as cargas deverá, então, ser imposta a restrição \((5.29) \):

\[
\sum_{i=1}^{n_b} \sum_{k=1}^{n_g} P_{g_{ik}} = \sum_{i=1}^{n_b} P_{c_{i}}^{cr}
\] \((5.29) \)

em que \(P_{c_{i}}^{cr} \) representa a carga total no barramento \(i \), que se pode considerar constante durante um certo período de tempo.

Existem ainda limites de operação dos geradores e das linhas de transmissão que têm de ser respeitados. Assim se formam as restrições \((5.30) \) a \((5.33) \):

\[
P_{g_{ik}} \leq P_{g_{ik}}^{max} \quad ; \quad i = 1, 2, \ldots, n_b \quad ; \quad k = 1, 2, \ldots, n_g
\] \((5.30) \)

\[
P_{g_{ik}} \geq P_{g_{ik}}^{min} \quad ; \quad i = 1, 2, \ldots, n_b \quad ; \quad k = 1, 2, \ldots, n_g
\] \((5.31) \)

\[
\sum_{i=1}^{n_b} S_{ji} \left(\sum_{k=1}^{n_g} P_{g_{ik}} - P_{c_{i}}^{cr} \right) + \forall f 1_j = P_{f_{j}}^{max} \quad ; \quad j = 1, 2, \ldots, n_r
\] \((5.32) \)

\[
- \sum_{i=1}^{n_b} S_{ji} \left(\sum_{k=1}^{n_g} P_{g_{ik}} - P_{c_{i}}^{cr} \right) + \forall f 2_j = -P_{f_{j}}^{min} \quad ; \quad j = 1, 2, \ldots, n_r
\] \((5.33) \)

Nestas expressões \(\forall f 1_j \) e \(\forall f 2_j \) representam variáveis de folga das restrições de limite máximo e mínimo do trânsito de potência activa no ramo \(j \).
Com a resolução deste problema de programação linear, pretende-se obter o valor das variáveis P_{g_k} de modo a ser obtido um custo de produção mínimo do sistema, sujeito às restrições indicadas. Como já referido em modelos anteriores, no âmbito do modelo DC impreciso, deverão ser considerados os valores centrais dos números imprecisos especificados. Este modelo genérico do travisito de potências ótimo pode ser resolvido considerando os seguintes passos correspondentes ao algoritmo da figura 5.3.

1. Forma-se um novo problema de programação linear com as expressões (5.28) a (5.31) e resolve-se recorrendo à forma Primal do Método Simplex.

2. Com a solução óptima obtida no passo 1, executa-se um estudo de problema de travisito de potências utilizando o modelo DC e determinam-se os travisitos de potências nas linhas.

3. Se em alguma linha houver um travisito de potência que exceda o limite respectivo, então recorrer-se à forma Dual do Método Simplex. Para isso irão realizar-se várias iterações e integrar no problema algumas restrições respeitantes aos limites máximo e mínimo de travisito de potências nas linhas (5.32) e (5.33).

4. As violações referidas no ponto 3, devem-se a valores negativos que as variáveis básicas ou as variáveis de folga podem tomar. Calculam-se os valores das variáveis de folga a partir das expressões (5.34) e (5.35):

 \[vf_{1_j} = P_{j}^{\text{max}} - P_j \quad j = 1, \ldots, nr \]
 \[vf_{2_j} = -P_{j}^{\text{min}} + P_j \quad j = 1, \ldots, nr \]

 Considera-se a violação mais severa, aquela que estiver associada em módulo, ao valor mais elevado da variável de folga respectiva.

5. Se essa variável for de folga então deve-se incluir no problema a restrição correspondente a essa variável.

6. De seguida deve-se iterar o problema recorrendo à forma Dual do Método Simplex, retirando da base, a variável associada à violação mais severa.

7. Repetem-se os passos 2 a 7 até não verificar que nenhuma restrição é violada.

A solução corrente na iteração em que não se verificarem violações é uma solução óptima e admissível do problema de optimização referido.
Figura 5.3 - Algoritmo de resolução do problema determinístico de trânsito de potências óptimo
5.2.2 Integração de imprecisões associadas às potências de carga

Pode-se expressar as funções de pertença das potências de carga como função do seu valor central:

\[\Delta_i = P_{c_i} \Theta P_{c_i}^{err} \quad (5.36) \]

Os valores dos cortes de nível 0,0 das funções de pertença assim criadas podem ser obtidos considerando um parâmetro \(\Delta_i \) - desvio da potência de carga ligada ao nó \(i \):

\[P_{c_i} = P_{c_i}^{err} + \Delta_i \quad ; \quad \Delta_i \in S(P_{c_i} \Theta P_{c_i}^{err}) \quad (5.37) \]

As restrições do sistema devem incluir as imprecisões associadas às potências de carga. Isto pode ser realizado incluindo parâmetros \(\Delta_i \) nos termos independentes das diversas restrições referidas. Desse modo obtém-se as seguintes restrições:

\[\sum_{i=1}^{n_b} \sum_{k=1}^{n_b} P_{g_{ik}} = \sum_{i=1}^{n_b} \left(P_{c_i}^{err} + \Delta_i \right) \quad (5.38) \]

\[\sum_{i=1}^{n_b} S_{ji} \left(\sum_{k=1}^{n_b} P_{g_{ik}} - P_{c_i}^{err} - \Delta_i \right) + \forall \, f_j = P_j^{max} \quad (5.39) \]

\[\sum_{i=1}^{n_b} S_{ji} \left(\sum_{k=1}^{n_b} P_{g_{ik}} - P_{c_i}^{err} \right) + \forall \, f_j = P_j^{max} + \sum_{i=1}^{n_b} S_{ji} \cdot \Delta_i \quad (5.40) \]

\[- \sum_{i=1}^{n_b} S_{ji} \left(\sum_{k=1}^{n_b} P_{g_{ik}} - P_{c_i}^{err} - \Delta_i \right) + \forall \, f_j = -P_j^{min} \quad (5.41) \]

\[- \sum_{i=1}^{n_b} S_{ji} \left(\sum_{k=1}^{n_b} P_{g_{ik}} - P_{c_i}^{err} \right) + \forall \, f_j = -P_j^{min} - \sum_{i=1}^{n_b} S_{ji} \cdot \Delta_i \quad (5.42) \]

Estas equações representam as restrições do problema determinístico inicial de trânsito de potências óptimo com integração das imprecisões associadas ao corte de nível 0,0 das funções de pertença das potências de carga especificadas.
A restrição (5.38) é obtida a partir de (5.29) considerando os parâmetros Δ. As restrições (5.39) e (5.41) reescritas sob a forma de (5.40) e (5.42) resultam das restrições de limites de trânsito de potência activa nos ramos, isto é, de (5.32) e (5.33). As restrições associadas aos limites mínimo e máximo da potência produzida em cada gerador (5.30) e (5.31) não sofrem qualquer alteração.

Após integrar estas imprecisões no problema determinístico inicial de trânsito de potências óptimo obtém-se uma formulação que corresponde a um problema de programação multiparamétrica.

5.2.3 Cálculo das potências de corte de carga

Um problema de trânsito de potências óptimo poderá ser impossível, isto é, pode ser impossível alimentar as cargas dados os geradores disponíveis e as restrições a respeitar.

Neste caso terão que ser realizados cortes de carga em alguns subsistemas da rede. Neste caso interessa avaliar a situação em que ocorre o menor corte de carga tornando-se, assim, o problema possível. Na formulação do problema pode-se tratar esta situação, considerando a inclusão de geradores de corte de carga nos barramentos onde a carga é nula. Para minimizar a potência de corte de carga, inclui-se na função objetivo, novas variáveis associadas aos geradores de corte de carga, afectadas dum custo de produção muito superior ao maior custo de produção dos geradores do sistema. A necessidade de inclusão de geradores de corte de carga pode dever-se a vários factores como insuficiência da produção ou violação dos limites de trânsito de potência activa em alguns ramos do sistema.

A formulação do problema determinístico incluindo os geradores de corte de carga, e caso se considere a integração das imprecisões associadas à potência de carga, toma a forma seguinte:

\[
\begin{align*}
\min \quad & Z = \sum_{i=1}^{n_b} \sum_{k=1}^{n_0} c_{ik} \cdot P_{gi} + c_e \sum_{i=1}^{n_b} P_{gi} \\
\text{suj} \quad & \sum_{i=1}^{n_b} \sum_{k=1}^{n_0} P_{gi} + \sum_{i=1}^{n_b} P_{gi} = \sum_{i=1}^{n_b} (P_{gi} + \Delta_i) \\
& P_{gi} \leq P_{gi}^{\text{max}} \quad ; \quad i = 1, \ldots, n_b \quad ; \quad k = 1, \ldots, n_g \\
& P_{gi} \geq P_{gi}^{\text{min}} \quad ; \quad i = 1, \ldots, n_b \quad ; \quad k = 1, \ldots, n_g
\end{align*}
\]
\[P_{gc} \leq P_{c_i}^{cr} \quad ; \quad i = 1, \ldots, n_b \quad ; \] (5.47)

\[
\sum_{i=1}^{n_b} S_{ji} \cdot \left(\sum_{k=1}^{n_m} P_{g_{ik}} - P_{c_i}^{cr} + P_{gc_i} \right) + v f 1_j = P_{j}^{max} + \sum_{i=1}^{n_b} S_{ji} \cdot \Delta_i \quad ; \quad j = 1, \ldots, n_r
\] (5.48)

\[
- \sum_{i=1}^{n_b} S_{ji} \cdot \left(\sum_{k=1}^{n_m} P_{g_{ik}} - P_{c_i}^{cr} + P_{gc_i} \right) + v f 2_j = -P_{j}^{min} - \sum_{i=1}^{n_b} S_{ji} \cdot \Delta_i \quad ; \quad j = 1, \ldots, n_r (5.49)
\]

Nesta formulação, \(c_e \) representa o custo associado aos geradores de corte de carga tal que \(c_e \gg c_{ik} \) e \(P_{gc_i} \) representa a potência de corte de carga no barramento \(i \).

Neste estudo podem surgir várias soluções pelo que não terão importância os valores individuais para cada barramento, mas sim a potência de corte de carga total do sistema.

Este problema pode ser formulado como um problema de programação multiparamétrica cuja formulação genérica é dada pelas expressões (5.50) a (5.52), onde \(A \) representa a matriz dos coeficientes e \(X \) o vector das variáveis, o vector \(b \) representa os termos do segundo membro e o vector \(b'(\Delta) \) integra os termos dependentes de \(\Delta_i \).

\[
\min \quad z = c^T \cdot X
\] (5.50)

suj \[A \cdot X = b + b'(\Delta) \] (5.51)

\[\Delta_i^{min} \leq \Delta_i \leq \Delta_i^{max} \quad , \quad i = 1, \ldots, n_b \] (5.52)

Nesta expressão \(b'(\Delta) \) representa a inclusão das incertezas relativas às potências de carga ou seja \(\sum \Delta_i \) nas restrições do tipo (5.44), \(\sum S_{ji} \Delta_i \) para restrições do tipo (5.48) e \(-\sum S_{ji} \Delta_i \) para as restrições do tipo (5.49).

Os parâmetros \(\Delta_i \) estão associados aos valores extremos que cada variável da base óptima pode tomar. Isto significa que podem existir zonas no hiperparalelipípedo condicionado por (5.52) para as quais a solução óptima determinada no estudo inicial é não admissível. A identificação dessas zonas em que a base óptima é não admissível faz-se reescrevendo a solução óptima do problema inicial de trânsito de potências óptimo na forma:

\[
\left[X^{opt} \right] = \left[A \right]^{-1} \cdot \left[\left[b \right] + \left[b'(\Delta) \right] \right]
\] (5.53)

--- 88 ---
Para um corte de nível \(\alpha \) genérico é ainda possível formular um problema de programação multiparamétrica. A resolução deste problema permitiria identificar os intervalos de variação das potências activas produzidas e o trânsito de potência activa nos ramos do sistema. Estes intervalos de variação permitiriam então construir o corte de nível \(\alpha \) das funções de pertença respectivas.

5.2.4 Identificação dos vértices

A partir do hiperparalelipípedo representado pelo conjunto de condições (5.52) que representam o domínio das incertezas nas potências de carga, das expressões lineares função de \(\Delta_i \) associadas às variáveis básicas e às variáveis de folga, é possível identificar as zonas para as quais a base óptima é não admissível. Essas zonas incluem vértices do hiperparalelipípedo porque estão associados aos valores mínimos e máximos de \(\Delta_i \).

Os vértices podem ser classificados em quatro tipos distintos e são identificados do seguinte modo:

- Vértices do tipo I.
 1. Identifica-se a combinação de desvios \(\Delta_i \) que minimiza a expressão associada à variável base em análise do problema de optimização (5.53). O seu valor é mínimo ou máximo para os valores extremos de \(\Delta_i \).
 2. Calculam-se os valores de todas as variáveis básicas e de folga para a combinação dos desvios identificada em 1.
 3. Se existir alguma variável com valor negativo então a base óptima é não admissível nesse vértice e ele designa-se do tipo I.

- Vértices do tipo II.
 1. Identifica-se uma combinação de desvios de potência de carga que maximizem ou minimizem as expressões lineares das variáveis básicas, associadas às potências produzidas.
 2. Calculam-se os valores de todas as variáveis básicas e de folga para a combinação dos desvios identificada em 1.
 3. Se não existirem variáveis básicas nem de folga cujos valores sejam negativos então esse vértice classifica-se do tipo II.
• Vértices do tipo III.

1. Identifica-se uma combinação de desvios de potência de carga que maximizem ou minimizem as variáveis de folga das restrições de limites de trânsito de potência.

2. Calculam-se os valores de todas as variáveis básicas para a combinação dos desvios identificada em 1.

3. Se não houver violação da condição de não negatividade das variáveis básicas e de folga então o vértice designa-se do tipo III.

• Vértices do tipo IV.

1. Identifica-se a combinação de desvios de potência ativa de carga que maximiza ou minimiza as expressões lineares das variáveis básicas, associadas a geradores de corte de carga.

2. Estas combinações serão consideradas do tipo IV se não originarem violações de não negatividade nas variáveis básicas e de folga das restrições ainda não incluídas no problema.

5.2.5 Estudos parametrizados

Depois de identificados os vértices segundo o processo descrito no ponto anterior, o conjunto da combinação dos desvios de potências de carga são analisados através de um modelo de programação paramétrica. Uma vez que é conhecida uma base ótima e admissível do problema determinístico inicial então os estudos parametrizados de trânsitos de potências ótimos associados às combinações de potências identificadas pode ser realizado de forma eficiente. A metodologia a seguir pode ser descrita pelo exemplo seguinte:

Considere-se que o sistema é constituído por duas cargas imprecisas trapezoidais, (5.54) e (5.55),

$$\bar{P}_1 = (P_{11}, P_{12}, P_{13}, P_{14})$$

(5.54)

$$\bar{P}_2 = (P_{21}, P_{22}, P_{23}, P_{24})$$

(5.55)

que se podem reescrever em termos dos desvios em relação ao seu valor central por (5.56) e (5.57).
\[
\bar{P}_1 = P_1^{\text{cr}} + (\Delta_{11}, \Delta_{12}, \Delta_{13}, \Delta_{14}) \\
\bar{P}_2 = P_2^{\text{cr}} (\Delta_{21}, \Delta_{22}, \Delta_{23}, \Delta_{24})
\]

(5.56)
(5.57)

A partir destes desvios e considerando um sistema de eixos (um eixo para cada potência de carga), centrado nos valores centrais das duas potências de carga, é possível construir os rectângulos representados na figura 5.4. Estes rectângulos representam os cortes de nível 0.0 e 1.0 da função de pertença conjunto das duas potências de carga.

Figura 5.4 - Cortes de nível 0.0 e 1.0 das funções de pertença de duas potências de carga

Depois de identificado o vértice \(Y\) realizam-se, para os desvios das combinações de potências identificadas, dois estudos consecutivos de programação linear paramétrica, um correspondente aos desvios situados no segmento \([OX]\) e outro que corresponderá aos desvios sobre \([XY]\). Considere-se um parâmetro, \(\delta\), que varia entre 1.0 e 0.0 ao longo do segmento \([OX]\) e ainda entre 1.0 e 0.0 no segmento \([XY]\). Fazendo variar \(\delta\) entre 1.0 e 0.0, pode-se reformular o problema genérico (5.50) a (5.52) do seguinte modo:

\[
\min \quad z = c^T \cdot X
\]

(5.58)

\[
suj \quad A \cdot X = b + b'(1-\delta)
\]

(5.59)

\[
0 \leq \delta \leq 1
\]

(5.60)

A resolução deste problema pode exigir várias iterações da forma Dual do Método Simplex e a integração de novas restrições de limite de trânsito de potências activa nas linhas.
No primeiro estudo considera-se a solução óptima e admissível, correspondente ao estudo determinístico inicial, como base para formular o problema de programação paramétrica associado às combinações de desvios de potências de carga sobre o segmento \([OX]\).

A resolução deste problema permite obter uma solução óptima e admissível associada ao vértice \(X\). Esta solução será a base a utilizar para formular o segundo problema de programação paramétrica associado às combinações de desvios de potência de carga sobre o segmento \([XY]\).

Neste estudo, pode-se considerar que \(\delta\) corresponde aos cortes de nível \(\alpha\) das funções de pertença da potência activa produzida e trânsito de potência nos ramos, uma vez que há uma correspondência entre os cortes de nível \(\alpha\) das funções de pertença associados aos desvios da potência de carga situadas, sobre o segmento \(XY\) e o valor que \(\delta\) toma nesses pontos.

Na resolução do primeiro problema obtém-se a solução para as potências produzidas e para os trânsitos de potência, correspondentes ao grau de pertença 1. No segundo estudo as soluções correspondem aos valores aos graus de pertença entre 1.0 e 0.0 das grandezas referidas.

5.2.6 Agregação de resultados.

Ao resolver um problema de trânsito de potências óptimo, determinístico ou impreciso e considerando corte de carga, a solução nem sempre é única. Isso significa que existem várias estratégias que minimizam o corte de carga. Interessa assim considerar a potência cortada total e não a cortada em cada barramento.

No caso impreciso, a função de pertença da potência de corte de carga total no sistema é obtida do seguinte modo:

1. Para cada vértice do hiperparalelipípedo obter a potência de corte de carga em cada barramento.
2. A potência de corte de carga para cada vértice analisado obtém-se adicionando a potência cortada para todos os barramentos.
3. A função de pertença da potência de corte de carga total corresponde à reunião das funções de pertença da potência de corte de carga obtidas para todos os vértices analisados.

Dependendo do tipo de solução obtida em cada passo, pode ser necessário utilizar o operador máximo para obter funções de pertença.
Assim, se, para uma dada grandeza, se obtiver o gráfico representado na figura 5.5 como solução dos problemas de programação paramétrica, o operador máximo converte-o na função de pertença representada na figura 5.6.

Figura 5.5 - Solução possível dos problemas de programação paramétrica

Figura 5.6 - A função de pertença anterior depois de tratada pelo operador máximo.

Finalmente, as funções de pertença obtidas, para a mesma grandeza, a partir de vértices diferentes deverão ser agregadas utilizando o operador de reunião tal como definido em 4.2. A utilização do operador reunião deve-se ao facto de cada função de pertença dever ser interpretada como traduzindo uma parcela do comportamento possível da grandeza em análise face às incertezas especificadas. A obtenção da função
pertença global dessa grandeza deverá traduzir e integrar todos os seus comportamentos possíveis. Existindo mais do que um valor de pertença para o valor da grandeza em análise verifica-se que o valor de pertença global é o máximo dos diversos valores de pertença identificados. Ora, de acordo com o referido em 4.2 a operação união é exactamente, realizada utilizando o operador máximo.
Capítulo 6

Avaliação de fiabilidade utilizando números imprecisos

6.1 O método de simulação de Monte Carlo em ambiente impreciso.

O algoritmo genérico do método de simulação de Monte Carlo apresentado na figura 3.6 pode integrar dois tipos de incertezas comuns em sistemas de energia eléctrica:

- A incerteza associada ao caráter não ideal dos componentes do sistema, e que é modelizada através de conceitos probabilísticos, já referidos nos pontos anteriores;

- A incerteza associada às potências de carga, especificadas sob a forma de números imprecisos, será analisada, recorrendo a um estudo de trânsito de potências óptimo impreciso.

Considere-se, então, um sorteio de Monte Carlo, que adopta uma estratégia de sorteio de estados do sistema, baseada apenas na probabilidade de saída de serviço, por avaria, dos seus componentes.

A realização, para cada estado \(x_i \), dum estudo de trânsito de potências óptimo impreciso permite obter a função de pertença da potência de corte de carga \(\bar{P}_{g_e}(x_i) \). A agregação dos resultados obtidos para os diversos estados analisados permite estimar o valor esperado dessa grandeza:

\[
\bar{E}(\bar{P}_{g_e}) = \frac{1}{N} \sum_{i=1}^{N} \bar{P}_{g_e}(x_i) \quad (6.1)
\]

É ainda possível, estimar a função de pertença da probabilidade de corte de carga - LOLP. A construção de corte de nível \(\alpha \) desta função é realizada através do cálculo dos valores extremos respectivos \(LOLP_{\alpha}^{\text{min}} \) e \(LOLP_{\alpha}^{\text{max}} \), obtidos a partir das expressões:

\[
LOLP_{\alpha}^{\text{min}} = \frac{1}{N} \sum_{i=1}^{N} f_j(P_{g_e}(x_i)^{\text{min}}) \quad (6.2)
\]
\[LOLP_{a}^{\text{max}} = \frac{1}{N} \sum_{i=1}^{N} f_j(P_{g_{\text{a}}}(x_i))^{\text{max}} \]

(6.3)

em que \(P_{g_{\text{a}}}(x_i) \) e \(P_{g_{\text{a}}}(x_i) \) representam, respectivamente, o valor mínimo e máximo do corte de nível \(\alpha \) de \(P_{g_{\text{a}}}(x_i) \). A função \(f_j(P_{g_{\text{a}}}) \) é definida do seguinte modo:

\[f_j(P_{g_{\text{a}}}) = \begin{cases}
1,0 \quad &\text{se} \quad P_{g_{\text{a}}} \neq 0,0 \\
0,0 \quad &\text{se} \quad P_{g_{\text{a}}} = 0,0
\end{cases} \]

(6.4)

6.2 Análise de convergência em ambiente impreciso

A análise de convergência em ambiente impreciso pode ser realizada, como no caso determinístico, pela análise do valor da imprecisão relativa, \(\beta \).

Assim, considerando a potência de corte de carga, a imprecisão relativa será dada pela expressão:

\[\beta^2 = \frac{V(\hat{E}(P_{g_{\text{a}}^{\text{cr}}}))}{\hat{E}(P_{g_{\text{a}}^{\text{cr}}})^2} \]

(6.5)

em que \(V(\hat{E}(P_{g_{\text{a}}^{\text{cr}}})) \) é calculada por:

\[V(\hat{E}(P_{g_{\text{a}}^{\text{cr}}})) = \frac{\hat{V}(P_{g_{\text{a}}^{\text{cr}}})}{N} \]

(6.6)

e nesta, o valor da \(\hat{V}(P_{g_{\text{a}}^{\text{cr}}}) \) calcula-se pela expressão (6.7),

\[\hat{V}(P_{g_{\text{a}}^{\text{cr}}}) = \frac{1}{N-1} \sum_{i=1}^{N} (P_{g_{\text{a}}^{\text{cr}}}(x_i) - \hat{E}(P_{g_{\text{a}}^{\text{cr}}}))^2 \]

(6.7)

Nestas expressões, \(P_{g_{\text{a}}^{\text{cr}}}(x_i) \) representa o valor central da potência de corte de carga, obtido através do estudo determinístico inicial de fluxo de potência óptimo, para o estado \(x_i \) do sistema.
A convergência pode ser avaliada em cada estado analisado. Para isso, calcula-se o valor de \(\beta, \beta_{\text{cal}} \), a partir da expressão (6.5) e compara-se com o valor especificado pelo operador para o critério de convergência.

A dimensão da amostra dos estados do sistema a analisar, \(N \), é dada por

\[
N = \frac{\hat{V}(P_{g^e}^{\text{op}})}{(\beta \cdot \hat{E}(P_{g^e}^{m}))^2}
\]

(6.8)

A dimensão desta amostra pode ser diminuída pelo recurso a técnicas de aceleração de convergência, já referidos em pontos anteriores, como amostragem antitética e variável de controlo.

No caso da amostragem antitética a implementação segue os passos descritos em 3.2.4, ou seja para cada estado estado analisado é analisado também o seu antitético.

O processo de aceleração de convergência com recurso à utilização da variável de controlo é descrito também em 3.2.4. A função que permite estimar uma primeira aproximação do valor da potência cortada pode ser dada pela potência cortada devida apenas a insuficiências do sistema produtor. Como referido em 3.2.4, esta função é avaliada para cada estado por via analítica. O cálculo do valor esperado desta função é também avaliado por via analítica, recorrendo à tabela de probabilidades das capacidades fora de serviço sendo apenas necessário considerar que as potências de carga são representadas por números imprecisos.

6.3 Modelos integrando números imprecisos

No trabalho desenvolvido pretende-se implementar uma versão do método de simulação de Monte Carlo que integre algumas técnicas de aceleração de convergência e alguns dos seus dados sejam representados por números imprecisos, nomeadamente números imprecisos trapezoidais para as potências de carga e para as taxas de avarias e de reparação dos componentes do sistema elétrico de energia.

O método descrito em pontos anteriores é um método baseado num sorteio não cronológico e assumindo um valor constante para a potência de carga. De modo a ser possível avaliar a influência que as variações de potência de carga têm nos índices de fiabilidade dum sistema de elétrico de energia implementou-se um modelo do método de simulação de Monte Carlo com capacidade para tratar potências de carga imprecisas especificadas por postos horários. O cálculo da energia média anual não fornecida por um sistema elétrico de energia foi efectuado a partir dum modelo cronológico do método de simulação de Monte Carlo. O efeito que a incerteza que afecta os valores das taxas de avaria e de reparação dos componentes têm nos índices de fiabilidade do sistema foi avaliado por um modelo cronológico do método de simulação de Monte Carlo capaz
de tratar potências de carga, taxas de avaria e de reparação expressas por números imprecisos.

6.3.1 Potências de carga definidas por postos horários

Neste modelo, pretendeu-se que a metodologia a implementar permitisse definir as cargas do sistema por um diagrama de cargas (figura 6.1) em que cada posto horário é representado por um número impreciso trapezoidal.

![Diagrama de cargas impreciso](image)

Figura 6.1 - Diagrama de cargas impreciso

Após convenientemente linearizado, o diagrama de cargas impreciso representado na figura 6.1 pode ser utilizado para construir um diagrama de cargas classificado tam como o representado na figura 6.2. Este é obtido do anterior avaliando qual o intervalo de tempo em que uma potência se encontra assegurada. Isto corresponde a calcular, para uma dada potência \(P_b \), o intervalo de tempo em que o sistema tem de veicular uma potência igual ou superior a \(P_b \). Os valores presentes no eixo horizontal deste diagrama podem, então, ser interpretados como a probabilidade de potência ser não inferior a \(P_b \).

Para cada estado sorteados é possível sortear também o nível de carga a veicular pelo sistema e realizar em seguida um estudo de fluxo de potências óptimo impreciso.
Assim, desenvolveu-se um módulo de cálculo que implementou uma versão não cronológica do método de simulação de Monte Carlo cujo algoritmo pode ser descrito pelo fluxograma da figura 6.3.

No caso de ser selecionada a variável de controlo como técnica de aceleração de convergência, então é executado o bloco A, onde se realiza o cálculo da potência cortada devida apenas a deficiências do sistema produtor, \(\bar{P}_{gc_g} \). Como as cargas são especificadas por postos horários, calcula-se o valor correspondente para cada posto, \(\bar{P}_{gc_g} \). O valor esperado de \(\bar{P}_{gc_g} \), é obtido pela média pesada dos valores de todos os postos, segundo a expressão (6.9). A expressão (3.26) toma então a forma da expressão (6.10).

\[
E(\bar{P}_{gc_g}) = \sum_{s=1}^{N_p} \bar{P}_{gc_s} \cdot \Delta t_k
\]

(6.9)

\[
\bar{E}(\bar{P}_{gc}) = E(\bar{P}_{gc_g}) + \frac{1}{N} \sum_{i=1}^{N} \left(P_{gc}(x_i) - \bar{P}_{gc_s}(x_i) \right)
\]

(6.10)

Na expressão (6.9), \(N_p \) representa o número de postos horários especificados para as cargas e \(\Delta t_k \) a largura relativa do posto horário \(k \) com valor entre 0 e 1. Na expressão (6.9) e (6.10), \(P_{gc_s}(x_i) \) representa a potência cortada no estado \(i \) devida apenas a deficiências dos geradores para o posto horário sorteado, \(k \).
Figura 6.3 - Fluxograma da versão implementada para cargas expressas por postos horários
No bloco B é avaliado a convergência. Para este efeito recorreu-se à imprecisão relativa referente à potência não fornecida. Como o valor da imprecisão relativa pode ser calculado em cada estado, \(\beta^{\text{calc}} \), este é comparado com o valor especificado, \(\beta^{\text{op}} \). O processo iterativo convergiu quando a condição (6.11) se verificar.

\[
\beta^{\text{calc}} \leq \beta^{\text{op}}
\]

(6.11)

No bloco C é realizado um controlo quanto ao número máximo de estados a analisar, não se verificando a convergência no caso de ser ultrapassado o número máximo especificado pelo utilizador.

No bloco D é sorteado um novo estado do sistema para um posto horário também sorteado. De seguida, (bloco E), é realizado um estudo do trânsito de potências óptimo onde é obtida, entre outras, a função de pertença da potência não fornecida.

No caso de se selecionar a amostragem antitética para acelerar a convergência (bloco F), e o estado antitético ainda não foi avaliado, então forma-se o estado antitético (bloco G) que é avaliado no bloco E.

Os resultados são agregados no bloco H de modo a ser possível obter estimativas destas funções de pertença.

O valor da imprecisão relativa é actualizado no bloco I.

No bloco J são fornecidos ao utilizador, os resultados da simulação.

6.3.2 Versão cronológica de método de simulação de Monte Carlo

Desenvolveram-se dois modelos cujos módulos de cálculo permitiram implementar uma versão cronológica do método de simulação de Monte Carlo, tendo como objectivo estimar os valores esperados da potência e da energia anual não fornecida.

No primeiro modelo apenas se incluiu a capacidade de tratar potências de carga sob a forma de números imprecisos trapezoidais tendo-se adoptado a variável de controlo como método de aceleração de convergência.

Num segundo modelo incluiu-se a capacidade de tratar informação imprecisa associada quer a potências de carga quer a taxas de avaria e reparação dos componentes da rede.
Modelo cronológico do método de simulação de Monte Carlo

O sorteio cronológico descrito no ponto 3.3.2 permite, para cada estado sortead, obter a duração desse estado, Δt, e, entre outras, a função de pertença da potência de corte de carga $\bar{P}_{gc}(x_i)$. O valor esperado da função de pertença da energia não fornecida durante um período de tempo $T = \Delta t_1 + \Delta t_2 + \cdots + \Delta t_N$, é dado pela expressão:

$$\mathbb{E}(\bar{E}_{gc}) = \sum_{i=1}^{N} \bar{P}_{gc}(x_i) \cdot \Delta t_i$$ \hspace{1cm} (6.12)

Na figura 6.4, apresenta-se o fluxograma do modelo cronológico do método de simulação de Monte Carlo.

O bloco A é executado apenas quando se realiza aceleração de convergência através da variável de controlo. É construída a tabela de probabilidades das potências fora de serviço e avaliada a função de pertença da potência cortada devida apenas a deficiências do sistema produtor.

No bloco B é avaliado a convergência. Esta é atingida quando a condição (6.11) se verificar. No caso de se pretender correr a simulação durante um período de tempo especificado, T_{max}, considera-se atingido o objectivo assim que $T > T_{\text{max}}$.

No bloco C é realizado um controlo quanto ao número máximo de estados a analisar, não se verificando a convergência no caso de ser ultrapassado o número máximo especificado pelo utilizador.

No bloco D é sortead um novo estado do sistema bem como a sua duração, Δt. Este intervalo de tempo é avaliado segundo o procedimento descrito no ponto 3.3.2. De seguida, no bloco E, é realizado um estudo do trânsito de potências óptimo impreciso, onde é obtida, entre outras, a função de pertença da potência não fornecida.

Os resultados são agregados (bloco G) de modo a se obter estimativas das funções de pertença das grandezas em estudo. O valor da imprecisão relativa da função de pertença da potência cortada é actualizado no bloco H.

No bloco I os resultados da simulação são fornecidos ao utilizador.
Figura 6.4 - Modelo cronológico do método de Monte Carlo
Modelo cronológico do método de simulação de Monte Carlo, com taxas de avaria e de reparação imprecisas.

O sorteio cronológico utilizado no modelo exposto no ponto anterior, baseia-se em valores determinísticos das taxas de avarias e de reparação dos componentes do sistema. Pretende-se com este modelo tratar também as imprecisões, expressas sob a forma de números imprecisos trapezoidais, eventualmente existentes nas taxas de avaria e de reparação. Para isso foi necessário adaptar o módulo de cálculo da energia cortada e aquele onde se realiza a seleção de estados a analisar.

Consideremos, então, que para um dado componente as respectivas taxa de avaria e de reparação são dadas pelos números imprecisos trapezoidais (6.13) e (6.14).

\[
\tilde{\lambda} = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \tag{6.13}
\]

\[
\tilde{\mu} = (\mu_1, \mu_2, \mu_3, \mu_4) \tag{6.14}
\]

A função de pertença da energia cortada é avaliada pela expressão:

\[
\hat{E}(\tilde{E}_{gc}) = \sum_{i=1}^{N} \tilde{P}_{gc}(x_i) \cdot \Delta \tilde{T}_i \tag{6.15}
\]

Nesta expressão, \(\Delta \tilde{T}_i\), representa a função de pertença do intervalo de tempo que representa a duração do estado analisado. Este valor é expresso sob a forma dum número impreciso trapezoidal e é determinado aquando da seleção dum novo estado.

Na figura 6.5, expõe-se o fluxograma do modelo cronológico do método de simulação de Monte Carlo com capacidade para integrar imprecisões nas taxas de avaria e de reparação.

Os bloco A, C, E, H e I são executados nas condições expostas sobre o modelo anterior.

No bloco B é avaliada a convergência a partir da expressão (6.3). No caso de se pretender correr a simulação durante um período de tempo especificado, \(T^{max}\), considera-se atingido o objectivo quando o \textit{Removal} do número impreciso trapezoidal associado à duração da simulação, \(\tilde{T}\), for superior a esse tempo especificado.

No bloco D é sortead um novo estado do sistema bem como a sua duração, \(\Delta \tilde{T}\). O tempo de funcionamento ou de reparação dum componente é representado por um número impreciso trapezoidal. Para a sua determinação, o procedimento descrito no exemplo do subcapítulo 3.3.2, foi alterado nos pontos 3, 4 e 5.
Determina-se o número impreciso trapezoidal associado ao tempo médio de funcionamento e de reparação a partir das expressões seguintes:
\[
\tilde{r} = \left(\frac{-\ln u}{\lambda_4}, \frac{-\ln u}{\lambda_3}, \frac{-\ln u}{\lambda_2}, \frac{-\ln u}{\lambda_1} \right) \quad (6.16)
\]

\[
\tilde{r} = \left(\frac{-\ln u}{\mu_4}, \frac{-\ln u}{\mu_3}, \frac{-\ln u}{\mu_2}, \frac{-\ln u}{\mu_1} \right) \quad (6.17)
\]

A identificação do próximo estado exige tal como foi referido em 3.3.2, quando \(\lambda \) e \(\mu \) são representados por números reais, a comparação de tempos de reparação ou até à ocorrência de avaria dos diversos componentes do sistema. Se as taxas de avarias e de reparação forem representadas por números imprecisos trapezoidais, os tempos de reparação ou até avaria serão aproximadamente representados também por números imprecisos trapezoidais. A identificação do novo estado exigirá, então, a ordenação desses números. Esta ordenação é obtida recorrendo às técnicas descritas no subcapítulo 4.5 sobre critérios de ordenação de números imprecisos. Dos critérios implementados, Kaufmann/Gupta e o critério de Lee e Li, o operador poderá selecionar o pretendido aquando da aquisição de dados da rede.

No bloco \(F \) é actualizado o contador de estados bem como a duração da simulação.

Os resultados são agregados (bloco \(G \)) de modo a se obter estimativas das funções de pertença das grandezas em estudo.
Capítulo 7

Resultados

7.1 Dados do sistema teste

Os modelos descritos foram testados com o sistema de teste MRTS de 24 barramentos, representado na figura 7.1, cujas características se apresentam nas tabelas 7.1, a 7.5.

![Sistema MRTS](image)

Figura 7.1 - Sistema MRTS - *Modified IEEE reliability test system*

Características técnicas da rede MRTS apresentada na figura 8.1:

- Número de barramentos: 24
- Número de geradores: 10
- Número de circuitos: 38
- Potência de base (MVA): 500.0

Na tabela 7.1, apresentam-se os dados dos geradores e as diversas seções às quais corresponderá, a cada secção, um gerador fictício com limites mínimos e máximos
de funcionamento e respectivo custo de produção, segundo o exposto em 2.4.1. Os valores das potências estão expressos em MW.

Tabela 7.1 - Limites de funcionamento e custos de produção de cada secção. dos geradores.

<table>
<thead>
<tr>
<th>índice</th>
<th>nº de sec.</th>
<th>Sec. 1</th>
<th>min</th>
<th>max</th>
<th>custo</th>
<th>Sec. 2</th>
<th>min</th>
<th>max</th>
<th>custo</th>
<th>Sec. 3</th>
<th>min</th>
<th>max</th>
<th>custo</th>
<th>Sec. 4</th>
<th>min</th>
<th>max</th>
<th>custo</th>
<th>Sec. 5</th>
<th>min</th>
<th>max</th>
<th>custo</th>
<th>Sec. 6</th>
<th>min</th>
<th>max</th>
<th>custo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0,0</td>
<td>40,0</td>
<td>3,0</td>
<td>0,0</td>
<td>40,0</td>
<td>3,0</td>
<td>0,0</td>
<td>152,0</td>
<td>4,0</td>
<td>0,0</td>
<td>152,0</td>
<td>4,0</td>
<td>0,0</td>
<td>152,0</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0,0</td>
<td>40,0</td>
<td>3,0</td>
<td>0,0</td>
<td>40,0</td>
<td>3,0</td>
<td>0,0</td>
<td>152,0</td>
<td>4,0</td>
<td>0,0</td>
<td>152,0</td>
<td>4,0</td>
<td>0,0</td>
<td>152,0</td>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0,0</td>
<td>200,0</td>
<td>5,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>0,0</td>
<td>394,0</td>
<td>6,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0,0</td>
<td>24,0</td>
<td>2,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0,0</td>
<td>310,0</td>
<td>5,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0,0</td>
<td>800,0</td>
<td>9,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0,0</td>
<td>800,0</td>
<td>8,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0,0</td>
<td>100,0</td>
<td>2,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>0,0</td>
<td>310,0</td>
<td>5,0</td>
<td>0,0</td>
<td>310,0</td>
<td>5,0</td>
<td>0,0</td>
<td>700,0</td>
<td>7,0</td>
<td>0,0</td>
<td>700,0</td>
<td>7,0</td>
<td>0,0</td>
<td>700,0</td>
<td>7,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Na tabela 7.2 apresentam-se os valores das potências activas de carga expressas em MW. Estes valores são representados por números imprecisos trapezoidais, \((a_1, a_2, a_3, a_4) \).

Tabela 7.2 - Dados dos barramentos

<table>
<thead>
<tr>
<th>índice de linha</th>
<th>potência de carga (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a_1)</td>
</tr>
<tr>
<td>1</td>
<td>174,96</td>
</tr>
<tr>
<td>2</td>
<td>157,14</td>
</tr>
<tr>
<td>3</td>
<td>291,60</td>
</tr>
<tr>
<td>4</td>
<td>120,42</td>
</tr>
<tr>
<td>5</td>
<td>115,02</td>
</tr>
<tr>
<td>6</td>
<td>220,32</td>
</tr>
<tr>
<td>7</td>
<td>202,5</td>
</tr>
<tr>
<td>8</td>
<td>277,02</td>
</tr>
<tr>
<td>9</td>
<td>283,50</td>
</tr>
<tr>
<td>10</td>
<td>315,09</td>
</tr>
<tr>
<td>11</td>
<td>0,00</td>
</tr>
<tr>
<td>12</td>
<td>0,00</td>
</tr>
<tr>
<td>13</td>
<td>0,00</td>
</tr>
<tr>
<td>14</td>
<td>429,30</td>
</tr>
<tr>
<td>15</td>
<td>314,28</td>
</tr>
<tr>
<td>16</td>
<td>513,54</td>
</tr>
<tr>
<td>17</td>
<td>162,00</td>
</tr>
<tr>
<td>18</td>
<td>0,00</td>
</tr>
<tr>
<td>19</td>
<td>539,46</td>
</tr>
<tr>
<td>20</td>
<td>293,22</td>
</tr>
<tr>
<td>21</td>
<td>207,36</td>
</tr>
<tr>
<td>22</td>
<td>0,00</td>
</tr>
<tr>
<td>23</td>
<td>0,00</td>
</tr>
<tr>
<td>24</td>
<td>0,00</td>
</tr>
</tbody>
</table>

--- 108 ---
Na tabela 7.3, os dados dos circuitos, reactância e potência máxima, então expressos em pu e em MW respectivamente.

<table>
<thead>
<tr>
<th>Índice linha</th>
<th>Índice bus de saída</th>
<th>Índice bus de chegada</th>
<th>Reactância (pu)</th>
<th>Potência máxima (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0,0139</td>
<td>175,0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0,2112</td>
<td>175,0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0,0845</td>
<td>175,0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>0,1267</td>
<td>175,0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td>0,1920</td>
<td>175,0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>9</td>
<td>0,1190</td>
<td>175,0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>24</td>
<td>0,0839</td>
<td>400,0</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>9</td>
<td>0,1037</td>
<td>175,0</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>10</td>
<td>0,0883</td>
<td>175,0</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>10</td>
<td>0,0605</td>
<td>175,0</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>8</td>
<td>0,0614</td>
<td>175,0</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>9</td>
<td>0,1651</td>
<td>175,0</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>10</td>
<td>0,1651</td>
<td>175,0</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>11</td>
<td>0,0839</td>
<td>400,0</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>12</td>
<td>0,0839</td>
<td>400,0</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>11</td>
<td>0,0839</td>
<td>400,0</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>12</td>
<td>0,0839</td>
<td>400,0</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>13</td>
<td>0,0476</td>
<td>500,0</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>14</td>
<td>0,0418</td>
<td>500,0</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>13</td>
<td>0,0476</td>
<td>500,0</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>23</td>
<td>0,0966</td>
<td>500,0</td>
</tr>
<tr>
<td>22</td>
<td>13</td>
<td>23</td>
<td>0,0865</td>
<td>500,0</td>
</tr>
<tr>
<td>23</td>
<td>14</td>
<td>16</td>
<td>0,0389</td>
<td>500,0</td>
</tr>
<tr>
<td>24</td>
<td>15</td>
<td>16</td>
<td>0,0073</td>
<td>500,0</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>21</td>
<td>0,0490</td>
<td>500,0</td>
</tr>
<tr>
<td>26</td>
<td>15</td>
<td>21</td>
<td>0,0490</td>
<td>500,0</td>
</tr>
<tr>
<td>27</td>
<td>15</td>
<td>24</td>
<td>0,0519</td>
<td>500,0</td>
</tr>
<tr>
<td>28</td>
<td>16</td>
<td>17</td>
<td>0,0259</td>
<td>500,0</td>
</tr>
<tr>
<td>29</td>
<td>16</td>
<td>19</td>
<td>0,0231</td>
<td>500,0</td>
</tr>
<tr>
<td>30</td>
<td>17</td>
<td>18</td>
<td>0,0144</td>
<td>500,0</td>
</tr>
<tr>
<td>31</td>
<td>17</td>
<td>22</td>
<td>0,1053</td>
<td>500,0</td>
</tr>
<tr>
<td>32</td>
<td>18</td>
<td>21</td>
<td>0,0259</td>
<td>500,0</td>
</tr>
<tr>
<td>33</td>
<td>18</td>
<td>21</td>
<td>0,0259</td>
<td>500,0</td>
</tr>
<tr>
<td>34</td>
<td>19</td>
<td>20</td>
<td>0,0396</td>
<td>500,0</td>
</tr>
<tr>
<td>35</td>
<td>19</td>
<td>20</td>
<td>0,0396</td>
<td>500,0</td>
</tr>
<tr>
<td>36</td>
<td>20</td>
<td>23</td>
<td>0,0216</td>
<td>500,0</td>
</tr>
<tr>
<td>37</td>
<td>20</td>
<td>23</td>
<td>0,0216</td>
<td>500,0</td>
</tr>
<tr>
<td>38</td>
<td>21</td>
<td>22</td>
<td>0,0678</td>
<td>500,0</td>
</tr>
</tbody>
</table>

As características de fiabilidade das linhas e geradores que constituem o sistema estão listados nas tabelas 7.4 e 7.5 respectivamente. Nesta expressão, FOR, forced outage rate, é calculado por (7.1),
em que \(\lambda \) representa a taxa de avarias e \(\mu \), a taxa de reparações dum componente do sistema.

Tabela 7.4 - Dados de fiabilidade das linhas do sistema MRTS.

<table>
<thead>
<tr>
<th>Índice de linhas</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(FOR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.73973E-05</td>
<td>6.25E-02</td>
<td>0.00044</td>
</tr>
<tr>
<td>2</td>
<td>5.82192E-05</td>
<td>1.00E-01</td>
<td>0.00059</td>
</tr>
<tr>
<td>3</td>
<td>3.76712E-05</td>
<td>1.00E-01</td>
<td>0.00058</td>
</tr>
<tr>
<td>4</td>
<td>4.45205E-05</td>
<td>1.00E-01</td>
<td>0.00045</td>
</tr>
<tr>
<td>5</td>
<td>5.47954E-05</td>
<td>1.00E-01</td>
<td>0.00055</td>
</tr>
<tr>
<td>6</td>
<td>4.33790E-05</td>
<td>1.00E-01</td>
<td>0.00043</td>
</tr>
<tr>
<td>7</td>
<td>2.28311E-06</td>
<td>1.30E-03</td>
<td>0.00175</td>
</tr>
<tr>
<td>8</td>
<td>4.10959E-05</td>
<td>1.00E-01</td>
<td>0.00041</td>
</tr>
<tr>
<td>9</td>
<td>3.88128E-05</td>
<td>1.00E-01</td>
<td>0.00039</td>
</tr>
<tr>
<td>10</td>
<td>3.76712E-05</td>
<td>2.86E-02</td>
<td>0.00132</td>
</tr>
<tr>
<td>11</td>
<td>4.56621E-05</td>
<td>1.00E-01</td>
<td>0.00034</td>
</tr>
<tr>
<td>12</td>
<td>5.02283E-05</td>
<td>1.00E-01</td>
<td>0.00050</td>
</tr>
<tr>
<td>13</td>
<td>5.02283E-05</td>
<td>1.00E-01</td>
<td>0.00050</td>
</tr>
<tr>
<td>14</td>
<td>2.28311E-06</td>
<td>1.30E-03</td>
<td>0.00175</td>
</tr>
<tr>
<td>15</td>
<td>2.28311E-06</td>
<td>1.30E-03</td>
<td>0.00175</td>
</tr>
<tr>
<td>16</td>
<td>2.28311E-06</td>
<td>1.30E-03</td>
<td>0.00175</td>
</tr>
<tr>
<td>17</td>
<td>2.28311E-06</td>
<td>1.30E-03</td>
<td>0.00175</td>
</tr>
<tr>
<td>18</td>
<td>4.56621E-05</td>
<td>9.09E-02</td>
<td>0.00050</td>
</tr>
<tr>
<td>19</td>
<td>4.45205E-05</td>
<td>9.09E-02</td>
<td>0.00049</td>
</tr>
<tr>
<td>20</td>
<td>4.56621E-05</td>
<td>9.09E-02</td>
<td>0.00050</td>
</tr>
<tr>
<td>21</td>
<td>5.93607E-05</td>
<td>9.09E-02</td>
<td>0.00065</td>
</tr>
<tr>
<td>22</td>
<td>5.59361E-05</td>
<td>9.09E-02</td>
<td>0.00062</td>
</tr>
<tr>
<td>23</td>
<td>4.33790E-05</td>
<td>9.09E-02</td>
<td>0.00048</td>
</tr>
<tr>
<td>24</td>
<td>3.76712E-05</td>
<td>9.09E-02</td>
<td>0.00041</td>
</tr>
<tr>
<td>25</td>
<td>4.68037E-05</td>
<td>9.09E-02</td>
<td>0.00052</td>
</tr>
<tr>
<td>26</td>
<td>4.68037E-05</td>
<td>9.09E-02</td>
<td>0.00052</td>
</tr>
<tr>
<td>27</td>
<td>4.68037E-05</td>
<td>9.09E-02</td>
<td>0.00052</td>
</tr>
<tr>
<td>28</td>
<td>3.99543E-05</td>
<td>9.09E-02</td>
<td>0.00044</td>
</tr>
<tr>
<td>29</td>
<td>3.88128E-05</td>
<td>9.09E-02</td>
<td>0.00043</td>
</tr>
<tr>
<td>30</td>
<td>3.65297E-05</td>
<td>9.09E-02</td>
<td>0.00040</td>
</tr>
<tr>
<td>31</td>
<td>6.16438E-05</td>
<td>9.09E-02</td>
<td>0.00068</td>
</tr>
<tr>
<td>32</td>
<td>3.99543E-05</td>
<td>9.09E-02</td>
<td>0.00044</td>
</tr>
<tr>
<td>33</td>
<td>3.99543E-05</td>
<td>9.09E-02</td>
<td>0.00044</td>
</tr>
<tr>
<td>34</td>
<td>4.33790E-05</td>
<td>9.09E-02</td>
<td>0.00048</td>
</tr>
<tr>
<td>35</td>
<td>4.33790E-05</td>
<td>9.09E-02</td>
<td>0.00048</td>
</tr>
<tr>
<td>36</td>
<td>3.88128E-05</td>
<td>9.09E-02</td>
<td>0.00043</td>
</tr>
<tr>
<td>37</td>
<td>3.88128E-05</td>
<td>9.09E-02</td>
<td>0.00043</td>
</tr>
<tr>
<td>38</td>
<td>5.13699E-05</td>
<td>9.09E-02</td>
<td>0.00057</td>
</tr>
</tbody>
</table>
Tabela 7.5 - Dados da fiabilidade dos geradores do sistema MRTS.

<table>
<thead>
<tr>
<th>Índice do gerador</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(FOR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,2222E-03</td>
<td>2,0000E-02</td>
<td>0,10</td>
</tr>
<tr>
<td>2</td>
<td>2,2222E-03</td>
<td>2,0000E-02</td>
<td>0,10</td>
</tr>
<tr>
<td>3</td>
<td>5,1020E-04</td>
<td>2,5000E-02</td>
<td>0,02</td>
</tr>
<tr>
<td>4</td>
<td>5,1020E-04</td>
<td>2,5000E-02</td>
<td>0,02</td>
</tr>
<tr>
<td>5</td>
<td>2,2222E-03</td>
<td>2,0000E-02</td>
<td>0,10</td>
</tr>
<tr>
<td>6</td>
<td>2,2222E-03</td>
<td>2,0000E-02</td>
<td>0,10</td>
</tr>
<tr>
<td>7</td>
<td>5,1020E-04</td>
<td>2,5000E-02</td>
<td>0,02</td>
</tr>
<tr>
<td>8</td>
<td>5,1020E-04</td>
<td>2,5000E-02</td>
<td>0,02</td>
</tr>
<tr>
<td>9</td>
<td>8,3333E-04</td>
<td>2,0000E-02</td>
<td>0,04</td>
</tr>
<tr>
<td>10</td>
<td>8,3333E-04</td>
<td>2,0000E-02</td>
<td>0,04</td>
</tr>
<tr>
<td>11</td>
<td>8,3333E-04</td>
<td>2,0000E-02</td>
<td>0,04</td>
</tr>
<tr>
<td>12</td>
<td>1,0526E-03</td>
<td>2,0000E-02</td>
<td>0,05</td>
</tr>
<tr>
<td>13</td>
<td>1,0526E-03</td>
<td>2,0000E-02</td>
<td>0,05</td>
</tr>
<tr>
<td>14</td>
<td>1,0526E-03</td>
<td>2,0000E-02</td>
<td>0,05</td>
</tr>
<tr>
<td>15</td>
<td>3,4014E-04</td>
<td>1,6667E-02</td>
<td>0,02</td>
</tr>
<tr>
<td>16</td>
<td>3,4014E-04</td>
<td>1,6667E-02</td>
<td>0,02</td>
</tr>
<tr>
<td>17</td>
<td>3,4014E-04</td>
<td>1,6667E-02</td>
<td>0,02</td>
</tr>
<tr>
<td>18</td>
<td>3,4014E-04</td>
<td>1,6667E-02</td>
<td>0,02</td>
</tr>
<tr>
<td>19</td>
<td>3,4014E-04</td>
<td>1,6667E-02</td>
<td>0,02</td>
</tr>
<tr>
<td>20</td>
<td>1,0417E-03</td>
<td>2,5000E-02</td>
<td>0,04</td>
</tr>
<tr>
<td>21</td>
<td>1,0417E-03</td>
<td>2,5000E-02</td>
<td>0,04</td>
</tr>
<tr>
<td>22</td>
<td>9,0909E-04</td>
<td>6,6667E-03</td>
<td>0,12</td>
</tr>
<tr>
<td>23</td>
<td>9,0909E-04</td>
<td>6,6667E-03</td>
<td>0,12</td>
</tr>
<tr>
<td>24</td>
<td>5,0505E-04</td>
<td>5,0000E-02</td>
<td>0,01</td>
</tr>
<tr>
<td>25</td>
<td>5,0505E-04</td>
<td>5,0000E-02</td>
<td>0,01</td>
</tr>
<tr>
<td>26</td>
<td>5,0505E-04</td>
<td>5,0000E-02</td>
<td>0,01</td>
</tr>
<tr>
<td>27</td>
<td>5,0505E-04</td>
<td>5,0000E-02</td>
<td>0,01</td>
</tr>
<tr>
<td>28</td>
<td>5,0505E-04</td>
<td>5,0000E-02</td>
<td>0,01</td>
</tr>
<tr>
<td>29</td>
<td>5,0505E-04</td>
<td>5,0000E-02</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>1,0417E-03</td>
<td>2,5000E-02</td>
<td>0,04</td>
</tr>
<tr>
<td>31</td>
<td>1,0417E-03</td>
<td>2,5000E-02</td>
<td>0,04</td>
</tr>
<tr>
<td>32</td>
<td>8,6957E-04</td>
<td>1,0000E-02</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Os valores da potência de carga para o primeiro modelo exposto - versão capaz de tratar cargas expressas por postos horários - foram obtidos a partir da tabela 7.2 considerando a existência de três postos horários com as seguintes características:

Tabela 7.6 - Características dos postos horários

<table>
<thead>
<tr>
<th>Posto horário</th>
<th>1º</th>
<th>2º</th>
<th>3º</th>
</tr>
</thead>
<tbody>
<tr>
<td>% da potência base</td>
<td>110%</td>
<td>100%</td>
<td>85%</td>
</tr>
<tr>
<td>largura relativa do posto</td>
<td>20%</td>
<td>50%</td>
<td>30%</td>
</tr>
</tbody>
</table>

considerando como potência de carga base os valores expressos na tabela 7.2.
Para o terceiro modelo descrito no capítulo anterior, considerou-se que as incertezas nas taxas de avaria e de reparação dos componentes são expressas por números imprecisos trapezoidais \((a_1; a_2; a_3; a_4)\) obtidos a partir das tabelas 7.4 e 7.5, com as seguintes características relativas a cada componente:

Tabela 7.7 - Características das imprecisões em \(\lambda\) e \(\mu\) componentes

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% do valor base</td>
<td>92,5%</td>
<td>97,5%</td>
<td>102,5%</td>
<td>107,5%</td>
</tr>
</tbody>
</table>

e para os quais se consideram os valores das tabelas 7.4 e 7.5, relativos a cada componente como valor base para cálculo das incertezas nos índices de fiabilidade dos componentes.

7.2 Performance das técnicas de aceleração de convergência nos modelos desenvolvidos

Para todos os modelos desenvolvidos foi realizada uma avaliação da velocidade de convergência do método de simulação de Monte Carlo aplicado a estudos de fiabilidade.

Neste primeiro estudo, considerou-se que o método iterativo tinha convergido quando o coeficiente de variação, \(\beta\), tivesse um valor inferior ao valor especificado. A tabela seguinte mostra a relação entre o número de estados analisados necessários para haver convergência dos diversos modelos desenvolvidos, com o tipo de aceleração de convergência selecionado.

Tabela 7.8 - Número de estados analisados da versão em estudo versus aceleração de convergência

<table>
<thead>
<tr>
<th>Tipo de aceleração</th>
<th>Versão</th>
<th>Sem aceleração</th>
<th>Variável de controlo</th>
<th>Amostragem antitética</th>
<th>Var. controlo e amost. antitética</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base</td>
<td>3624</td>
<td>620</td>
<td>3624</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td>Postos horários</td>
<td>2342</td>
<td>419</td>
<td>2420</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>Versão cronológica</td>
<td>2009</td>
<td>473</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Cronológica imprecisa Removal</td>
<td>2009</td>
<td>485</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Cronológica imprecisa Centro de massa</td>
<td>2009</td>
<td>511</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTA: Valor especificado para o coeficiente de variação, \(\beta_{esp} = 0.1\).
Da análise desta tabela conclui-se que o método da variável de controlo é muito eficiente sendo atingida a convergência em cerca de 1/5 das iterações comparativamente com simulações em que esta técnica não é seleccionada.

Conclui-se ainda que a amostragem antitética no primeiro caso - Base - não afectou a velocidade de convergência e no segundo caso - Postos horários - piorou a velocidade de convergência quer comparativamente com a situação em que não se utiliza nenhuma técnica de aceleração de convergência quer quando combinada com a variável de controlo.

7.3 Estimativa do valor esperado da potência cortada

Na tabela seguinte apresentam-se os valores extremos dos cortes de nível 0,0; 0,25; 0,5; 0,75; e 1,0 da função de pertença associada à potência cortada para os modelos desenvolvidos. Especificou-se um valor de 10% para a imprecisão relativa. Em todos eles foi selecionado o método da variável de controlo para aceleração da velocidade de convergência.

<table>
<thead>
<tr>
<th>cortes nível α</th>
<th>0,00</th>
<th>0,25</th>
<th>0,50</th>
<th>0,75</th>
<th>1,00</th>
<th>1,00</th>
<th>0,75</th>
<th>0,50</th>
<th>0,25</th>
<th>0,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>1,865</td>
<td>2,194</td>
<td>2,697</td>
<td>3,417</td>
<td>4,305</td>
<td>23,12</td>
<td>28,16</td>
<td>35,06</td>
<td>44,23</td>
<td>53,95</td>
</tr>
<tr>
<td>Postos horários</td>
<td>2,374</td>
<td>3,221</td>
<td>4,520</td>
<td>5,863</td>
<td>7,286</td>
<td>41,39</td>
<td>49,99</td>
<td>59,71</td>
<td>71,03</td>
<td>83,58</td>
</tr>
<tr>
<td>Versão cronológica</td>
<td>1,370</td>
<td>1,785</td>
<td>2,455</td>
<td>3,179</td>
<td>3,915</td>
<td>32,97</td>
<td>38,81</td>
<td>46,50</td>
<td>55,74</td>
<td>65,49</td>
</tr>
<tr>
<td>Cronológica Imprecisa (Removal)</td>
<td>0,6797</td>
<td>0,9655</td>
<td>1,280</td>
<td>1,612</td>
<td>1,994</td>
<td>25,68</td>
<td>31,96</td>
<td>40,38</td>
<td>51,17</td>
<td>62,51</td>
</tr>
<tr>
<td>Cronológica Imprecisa (Centro masso)</td>
<td>7,5579</td>
<td>8,083</td>
<td>8,792</td>
<td>9,546</td>
<td>10,51</td>
<td>39,87</td>
<td>45,65</td>
<td>52,86</td>
<td>61,89</td>
<td>70,88</td>
</tr>
</tbody>
</table>

Na figura seguinte apresentam-se os gráficos da função de pertença do valor esperado da potência cortada para a versão considerando postos horários e para a versão correspondente a uma simulação cronológica considerando taxas de avaria e reparação representadas por números imprecisos e adoptando os critérios de Lee e Li.
Figura 7.2 - Função de pertença do valor esperado da potência cortada

Em relação à forma destas funções de pertença, pode notar-se que os seus ramos direitos apresentam uma concavidade. Esta concavidade resulta de as funções de pertença referidas serem obtidas por agregação de funções de pertença parcelares podendo algumas destas parcelas corresponder a conjuntos imprecisos cuja altura - definida no capítulo 4 - ser inferior à unidade.

7.4 Estimativa do valor esperado da energia anual não fornecida

Nos modelos cronológicos do método de simulação de Monte Carlo, para além da obtenção da estimativa do valor esperado da potência cortada, obteve-se ainda a estimativa da média anual da função de pertença associada à energia não fornecida (cortada) pelo sistema às cargas. Para isso, os modelos cronológicos expostos no capítulo 6, foram executados para um intervalo de tempo, T_{max}, de 10 anos. Seleccionou-se como método de aceleração da velocidade de convergência a variável de controlo.

Na tabela 7.10 apresentam-se os valores extremos dos cortes de nível 0,0; 0,25; 0,50; 0,75 e 1,0 das estimativas da função de pertença do valor médio da energia anual não fornecida.

A figura 7.3 apresenta graficamente os resultados expressos na tabela 7.10 relativos à função de pertença da energia anual não fornecida. Os dois gráficos apresentados referem-se às funções de pertença dos valores esperados da energia anual não fornecida obtidos considerando a primeira versão cronológica proposta e a versão cronológica imprecisa adoptando os critérios de ordenação de Lee e Li, do método de simulação de Monte Carlo.
Tabela 7.10 - Resultados para o valor esperado da energia média anual não fornecida. Em GWh

<table>
<thead>
<tr>
<th>Cortes nível α</th>
<th>0,00</th>
<th>0,25</th>
<th>0,50</th>
<th>0,75</th>
<th>1,00</th>
<th>1,00</th>
<th>0,75</th>
<th>0,50</th>
<th>0,25</th>
<th>0,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versão cronológica</td>
<td>6,545</td>
<td>9,175</td>
<td>13,24</td>
<td>20,05</td>
<td>28,38</td>
<td>262,6</td>
<td>322,1</td>
<td>396,1</td>
<td>484,8</td>
<td>577,0</td>
</tr>
<tr>
<td>Cronológica Imprecisa (Removal)</td>
<td>1,321</td>
<td>2,774</td>
<td>4,756</td>
<td>7,035</td>
<td>10,06</td>
<td>129,3</td>
<td>222,6</td>
<td>369,8</td>
<td>595,0</td>
<td>882,0</td>
</tr>
<tr>
<td>Cronológica Imprecisa (Centro massa)</td>
<td>4,493</td>
<td>5,630</td>
<td>7,380</td>
<td>9,965</td>
<td>13,48</td>
<td>182,3</td>
<td>311,1</td>
<td>484,1</td>
<td>715,5</td>
<td>993,0</td>
</tr>
</tbody>
</table>

Figura 7.3 - Função de pertença do valor esperado da energia não fornecida

Em relação a estas funções de pertença nota-se de uma forma mais acentuada a concavidade já referida no ponto anterior em relação às funções de pertença dos valores esperados da potência cortada. Em relação à energia não fornecida este efeito é mais acentuado dado que concorrem duas situações. A primeira é análoga à já descrita no ponto anterior enquanto que a segunda está relacionada com o facto de a energia não fornecida em cada estado do sistema ser obtida por multiplicação do número impreciso associado à potência cortada pelo número impreciso representativo do tempo de residência nesse estado. Como se referiu no capítulo 4 o produto de dois números imprecisos trapezoidais não é um número impreciso trapezoidal podendo demonstrar-se que ocorre uma distorção em termos de uma concavidade no ramo direito. No ramo esquerdo ocorrem distorsões em termos de uma convexidade. Em todo o caso, o carácter mais abrupto da transição do corte de nível 0,0 para o corte de nível 1,0 do lado esquerdo inviabiliza a visualização gráfica deste segundo efeito.
Capítulo 8

Conclusões

8.1 Trabalho realizado

Neste trabalho foram implementadas, testadas e descritas diversas versões do método de simulação de Monte Carlo:

- versão não cronológica, para avaliar índices de fiabilidade de um sistema elétrico de energia, nomeadamente, da função de pertença do valor esperado da potência cortada. Esta versão permite representar as potências de carga por valores determinísticos, por números imprecisos trapezoidais e por diagramas de carga classificados em que cada posto horário e modelizado por um número impreciso trapezoidal;

- versão cronológica para avaliar, além da função de pertença do valor esperado da potência cortada, a função de pertença do valor esperado da energia anual não fornecida;

- versão cronológica com inclusão de valores das taxas de avaria e de reparação dos componentes representados por números imprecisos trapezoidais para avaliar as funções de pertença do valor esperado da potência cortada e da energia anual não fornecida.

As metodologias referidas integram incertezas associadas ao caráter não ideal dos componentes - fiabilidade dos componentes representada por modelos probabilísticos - e associadas às potências de carga e às taxas de avarias e de reparação representadas por números imprecisos. Este aspectos deve ser realçado dado que, por vezes, os conceitos e as aplicações no âmbito da Teoria dos Conjuntos Imprecisos são encarados como concorrentes de conceitos e metodologias bem estabelecidas no âmbito da Teoria das Probabilidades. Como se verifica com este trabalho, considera-se que estas duas representações de incertezas são complementares e, portanto, deverão ser utilizadas
quando, do ponto de vista conceptual ou tendo em conta os dados disponíveis, a adopção de uma outra técnica se revelar mais adequada.

8.2 Trabalho futuro

Os módulos de cálculo desenvolvidos não constituem, como se compreenderá, um trabalho acabado. Assim, listam-se em seguida alguns tópicos que se considera possível ou desejável desenvolver no futuro ou vir a integrar na aplicação desenvolvida. Sem preocupação de exaustão podem, assim, referir-se:

- integração no sorteio de estados de residência do sistema de informação e modelos relativos a avarias com causa comum;
- de forma análoga, integração de informação relativa a estados atmosféricos;
- possibilidade de adopção de modelos mais completos e realistas de estados de residência de componentes, considerando estados parciais de avaria;
- representação mais completa do sistema eléctrico em análise considerando, por exemplo, disjuntores. A presença nas redes destes componentes e a avaria eventual de algum deles implicaria a retirada de serviço de zonas do sistema possuindo estrutura radial;
- implementação e teste de outras técnicas de aceleração de convergência tal como a amostragem por importância (*importance sampling*).
Referências

Elgerd, Olle I. - "Electric energy systems theory - an introduction".

Anexos

A Comunicação submetida e aceite ao XII Congresso Chileno de Ingenieria Electrica
DEALING WITH FUZZY DATA IN THE EVALUATION OF THE RELIABILITY OF GENERATION/TRANSMISSION POWER SYSTEMS

António Varejão Sousa
INESC - Instituto de Engenharia de Sistemas e Computadores and
FEUP/DEEC - Faculdade de Engenharia da Universidade do Porto
L. Monplihcr - 4000 Porto - PORTUGAL
Phone: 351.2.2094230 Fax: 351.2.2084172 email: jpts@lorde.inesc.pt

ABSTRACT

This paper presents a fuzzy approach to the reliability evaluation of power systems, based on a Monte Carlo simulation where probabilistic and fuzzy modeling of uncertainties are combined. The proposed methodology is able to integrate load data organized in load duration curves as well as uncertainty related to the non ideal nature of components. Fuzzy distributions for Power and Energy Not Supplied as well as exposure and robustness indices are computed. Some examples run for a modified IEEE Reliability Test System are presented.

Keywords - Reliability; Monte Carlo simulation; fuzzy optimal power flow; fuzzy sets.

1. INTRODUCTION

The evaluation of the reliability of composite generation/transmission systems has been classically addressed considering a probabilistic modeling of the uncertainties in data. While this approach seems appropriate to represent the reliability of components, in terms of their failure and repair rates, it is questionable that it is adequate to model loads and load uncertainty.

One of the approaches with large acceptance in evaluating system reliability is the Monte Carlo method [1,2]. In previously published reports, loads are taken as deterministic or probabilistic. Uncertainty in load forecasts is of great importance and is due to several factors, many of which are of qualitative nature and depend on unpredictable, though determinant, events such as economic growth, environmental constraints, political issues, etc. Neither a deterministic nor a probabilistic modeling of loads are adjusted to this kind of uncertainty: a fuzzy set approach would certainly be a more adequate representation in these cases.

The inclusion of fuzzy data in the power flow problem was addressed in [3, 4, 5]. Loads could be defined based on linguistic declarations, such as "more or less 20 MW" or "possibly between 15 and 25 MW, but not more than 30 nor less than 10 MW". As a result, one has fuzzy distributions for branch power flows and other variables, instead of deterministic answers. Also, in [6] it was presented a first approach to the DC Fuzzy Optimal Power Flow problem that was enhanced in [7]. Some of these tools were integrated in a software package to evaluate the reliability of large composite generation/transmission systems assuming loads represented by fuzzy numbers and adopting probabilistic models to represent system behavior [8].

The Monte Carlo approach presented in [8] already had an unique characteristic as it combined fuzzy data and probabilistic models, to be used according to the type of recognized uncertainty. Therefore, we defined fuzzy indices as Fuzzy Expected Power Not Supplied and the Expected Robustness and Exposure ones. Some of these indices were originally devised in risk analysis and give an indication of the flexibility the system has in supplying loads in an uncertain consumption continuous set of scenarios.

In this paper we enhance this approach in three ways:
- we recognize that system reliability is more closely evaluated if we represent loads using load curves;
- we integrate reliability data not just by Forced Outage Rate - FOR - values but also by failure and repair rates enabling the adoption of chronological sampling strategies. This will give us the means to compute fuzzy distributions for energy not supplied;
- finally, we allow the user to reflect uncertainty in failure and repair rates by modeling them by fuzzy numbers. In some situations, this seems more adjusted than just using what is commonly known as typical values.

At the end of this paper, we present results obtained with the IEEE Reliability Test System (24 bus, 38 branch system).

2. ABOUT FUZZY SET THEORY

A fuzzy set \tilde{A} [9, 10] is characterized by a membership function $\mu_{\tilde{A}}(x)$ relating each element x_1 to its compatibility degree with set X_1. A fuzzy set \tilde{A} is therefore defined by (1). That compatibility degree ranges from 0.0 to 1.0 in normalized fuzzy sets so that fuzzy sets can be interpreted as a generalization of Boolean sets. An α-level set of a fuzzy set \tilde{A} defined in X_1 is the hard set A_{α} obtained from \tilde{A} for each $\alpha \in [0,1]$ according to (2).

$$\tilde{A} = \{(x_1, \mu_{\tilde{A}}(x_1)), x_1 \in X_1\} \quad (1)$$
$$A_{\alpha} = \{x_1 \in X_1 | \mu_{\tilde{A}}(x_1) \geq \alpha\} \quad (2)$$

A fuzzy set \tilde{A} is said to be a fuzzy number - FN - if it is a convex fuzzy set of the real line such that its membership function is normalized and piece wise continuous. A particular FN, the trapezoidal FN, is sketched in figure 1 and is usually represented by (3).

![Figure 1. Trapezoidal fuzzy number.](image-url)

$$\tilde{A} = (a_1; a_2; a_3; a_4) \quad (3)$$
If A and O are two trapezoidal FN’s represented under the form of (3), then their addition is given by (4). The central value of A is the mean value of its 1.0-cut.

$$A \oplus O = (a_1 + o_1; a_2 + o_2; a_3 + o_3; a_4 + o_4)$$ (4)

3. DEFINITION OF FUZZY LOADS

Modeling of fuzzy loads has been addressed in [3]. The planning engineer is supposed to declare an interval $[a_2, a_3]$ of values having high credibility, being considered as good representations of load forecasts. Besides, values a_1 and a_4, under and above which the load is considered not possible to occur, are also specified. Then, values in $[a_1, a_2]$ and $[a_3, a_4]$ are possible representations of the load but not with the same strength as values in $[a_2, a_3]$.

This representation is a translation of the linguistic declaration: load may occur between a_1 and a_4 but it is likely to occur in $[a_2, a_3]$. It allows building a trapezoidal FN for every specified power injection at the Power System busses, in an analogous way to figure 1. Having in mind, the user can characterize a load by a set of fuzzy numbers organized in terms of a load curve. Such a curve indicates in the horizontal axis the time period in which each trapezoidal load occurs. This curve can be rearranged to obtain a fuzzy load duration one. Let us consider, as an example, the load duration curve sketched in figure 2 in which each time step is modeled by a trapezoidal fuzzy number. According to this representation in the whole studied period - 100% - the load is not inferior to the fuzzy number L_1. In 20% of the period the load is not inferior to L_3. These percentages can be interpreted as probabilities for which each particular fuzzy load occurs.

![Figure 2. Load duration curve.](image)

4. SYSTEM RELIABILITY EVALUATION BY FUZZY MONTE CARLO SIMULATION

4.1. General considerations

The Monte Carlo simulation methodology is well known and used in power system reliability evaluation. In general, it is used to determine reliability indices by randomly sampling system component outages so that a large number of system states are identified and analyzed.

In this paper, uncertainty in failure events is represented by a probabilistic model and uncertainty in loads is described by fuzzy numbers. Therefore, this approach may be referred to as a Fuzzy Monte Carlo model - FMC. The FMC model will be described by focusing on the sampling technique and the reliability indices evaluation. The tool used to analyse each sampled state will also be summarized [7].

4.2. Monte Carlo Sampling

a) Non-Chronological sampling

Let us assume a flat diagram to represent loads, that a sequence of pseudo-random numbers $u_1, u_2, ..., u_n$ is available and that, for each component, the respective FOR is known. A non-chronological sampling strategy is implemented by assigning in each state to be sampled a pseudo-random number to each component. If condition (5) holds, component i is declared in outage in this state.

$$\text{FOR}_i \leq u_i$$ (5)

b) Integration of loads defined by load duration curves

The previous sampling strategy can be adapted to allow the integration of load duration curves to model loads. To do this, for each state to be sampled, we use the rule described in 4.2.a to sample component outages and use an extra pseudo-random number, u, to sample to load step. If the curve in figure 2 is adopted, the first step should be used if $u<0.2$; the intermediate would correspond to 0.2<u<0.7 while the third one should be used if $u>0.7$.

c) Chronological sampling

Both sampling strategies in 4.2.a and 4.2.b can be used to identify states that do not form a chronological sequence. Apart from that, in such samplings there is no indication about the duration of each state. Therefore, those strategies can be used to evaluate Power Not Supplied, but have no way of computing Energy Not Supplied. Energy Not Supplied can be obtained by adopting a chronological sampling using failure and repair rates of each component. This technique also uses a sequence of pseudo-random numbers that are used, in a first iteration, to sample the time of operation, t_0, of each component (6) where λ is the respective failure rate.

$$t_0 = -\frac{1}{\lambda} \ln(u)$$ (6)

The first state - in which all components are available - ends when the first outage occurs. Component j that has an outage in the first place is the one with smaller t_0. In the second state all components but j are available. Now we have to sample the repair time, t_r, of j using a new pseudo-random number and the repair rate, μ, of j (7). This state ends when another component has an outage or j is repaired.

$$t_r = -\frac{1}{\mu} \ln(u)$$ (7)

d) Integration of uncertainty in repair and failure rates

The previous chronological sampling strategy can be adapted in case we want to integrate some fuzzy information regarding failure and repair rates of any component. Let us assume that these rates are given by trapezoidal FN’s. This alters the
sampling procedure in two ways:
- the time of operation and time of repair are also represented by fuzzy numbers that can be approximated by trapezoidal FN's given by (8) and (9);
- to identify states it is necessary to compare times of operation and times of repair represented by trapezoidal FN's, To do this one can adopt a defuzzification approach corresponding, for instance, to three criteria - Removal, Central Value and Amplitude - described in [10].

\[t_o = \frac{1}{(\lambda_1; \lambda_2; \lambda_3; \lambda_4)} \ln(u) = \left(\frac{1}{\lambda_4}; \frac{1}{\lambda_3}; \frac{1}{\lambda_2}; \frac{1}{\lambda_1} \right) \ln(u) \]

(8)

\[t_r = \frac{1}{(\mu_1; \mu_2; \mu_3; \mu_4)} \ln(u) = \left(\frac{1}{\mu_4}; \frac{1}{\mu_3}; \frac{1}{\mu_2}; \frac{1}{\mu_1} \right) \ln(u) \]

(9)

4.3. Analysis of sampled states: fuzzy DC optimal power flow model

Traditionally, each sampled state is analyzed through an OPF model (usually with a DC approach), to derive, among others, the value of the minimum Power Not Supplied - PNS. As this paper presents a model with fuzzy loads, a new methodology is required so that efficiency is preserved. This methodology is designated as Fuzzy Optimal Power Flow - FOPF. The FOPF methodology [7] is an optimization procedure driven by an economic criterion to identify generation membership functions under uncertain loads. The developed methodology adopts a DC formulation including the active power balance equation and generation and branch power flow limit constraints. The DC model is widely accepted as a tool for planning purposes.

The FOPF algorithm starts by a DC crisp OPF to identify an optimal and feasible solution for the central values of the 1.0 \(\alpha \)-cut of the specified load membership functions. The generator cost functions are linearized in the usual way namely for those having non linear convex cost functions.

Fuzzy loads are considered by associating a parameter to the 0.0 \(\alpha \)-cut of each load membership function to formulate a multiparametric optimization problem. Gal [11] presents an algorithm to identify regions related to feasible and optimal solutions. This algorithm has a rather poor computational performance for real sized problems. Therefore, a new and efficient algorithm was developed to solve, even if in an approximate way, the previous problem. The developed algorithm identifies vertices of the hipervolume enclosing the possible load values and analyses each one by performing parametric linear programming studies. The generator, branch power flows and power not supplied membership functions are finally obtained by aggregating the solutions of these parametric studies, using fuzzy operators.

4.4. Robustness and Exposure indices

The FOPF model allows one to detect for which set of lumped and nested load scenarios the system has feasible solutions. This set can be seen as a set for whose uncertainties (in whatever way they may be combined) the system is robust.

This concept is present in risk analysis, whose basic ideas are summarized in [12].

A Robustness Index may be associated to this set: it takes the value (1-\(\alpha \)), where \(\alpha \) is the lowest \(\alpha \)-cut level for which the system still accommodates data uncertainties. This corresponds to the maximum \(\alpha \) value of the PNS possibility distribution. An Exposure Index is also readily available, taking the value \(\alpha \), and is associated with at least one system component (generation or transmission) that creates a bottleneck [7] in system flexibility to accommodate uncertainties in data.

![Figure 3. Example of a PNS fuzzy distribution.](image)

In figure 3 an example of such a distribution is sketched. According to this figure the system Exposure Index is \(\alpha_1 \) meaning that the system can accommodate the specified uncertainties regarding the \(\alpha \) levels from 1.0 to \(\alpha_1 \). If lower cuts are analyzed, that is if the uncertainty grows, the power not supplied assumes positive values, meaning that there are load scenarios for which the system is unable to supply consumptions. These concepts can be extremely useful, namely when a flexible planning is aimed at, as it directly associates a solution to a range of loads (determined by the level \(\alpha \)) for which the system guarantees their supply.

4.5. Reliability indices evaluation

a) Fuzzy indices

For each sampled and analysed state i we obtain crisp values for the Robustness and Exposure Indices - Irob and Iexp - and a fuzzy distribution for PNS - PNS. Once N system states are analysed, we can compute estimates of their expected values by using (10), (11) and (12).

\[E(I_{rob}) = \frac{1}{N} \sum_{i=1}^{N} I_{rob}(x_i) \]

(10)

\[E(I_{exp}) = \frac{1}{N} \sum_{i=1}^{N} I_{exp}(x_i) \]

(11)

\[E(PNS) = \frac{1}{N} \sum_{i=1}^{N} PNS(x_i) \]

(12)

b) Convergence criterium in a FMC

The convergence of a Monte Carlo simulation [2] is generally addressed by monitoring a so-called uncertainty coefficient.
This coefficient is given by (13) where E(PNS) represents the current estimate of expected PNS value and V(PNS), approximated by (14), is the corresponding variance. Convergence is reached if the \(\beta \) calculated value becomes not superior to a specified target,

\[
\beta^2 = \frac{V(PNS)}{(N \cdot E(PNS))^2} \quad (13)
\]

\[
V(PNS) = \frac{1}{N-1} \sum_{i=1}^{N} (PNS(x_i) - E(PNS))^2 \quad (14)
\]

In a FMC approach, this criterion can be applied considering, for each sampled state, the PNS crisp value obtained by the deterministic OPF study referred in 4.3.

The convergence acceleration problem has already been addressed by several authors as it is reported in references [1] and [2]. Many of the so-called variance reduction techniques can be readily adapted to the described FMC approach, leading to reductions in the computational effort of the same magnitude as reported for conventional Monte Carlo approaches. For more details see reference [7].

5. CASE STUDY

5.1. System data

The FMC approach will be illustrated with the MRTS 24 bus, 38 branch, 32 generator network presented in figure 4. This network is based on the IEEE Reliability Test System - RTS (500 MVA was adopted as power base) and further details can be obtained in [2]. Generator and branch characteristics are presented in tables I and II.

![Figure 4. IEEE MRTS network.](image)

The central value of the 1.0 cut of each load distribution corresponds to the MRTS specified one. Using these central values one defined fuzzy load distributions represented by trapezoidal FN’s. The extreme values of the 0.0 and 1.0 cuts correspond to (0.9, 0.95, 1.05, 1.1) of the central value.

The load duration curves were discretized in three time steps:
- in the first one, corresponding to 20% of the period, the load central value is 110% of the load in each bus;
- in the second, corresponding to 50% of the period, the load central value is the MRTS load in each bus;
- in the third one, corresponding to 30% of the period, the load central value is 85% of the load in each bus;

<table>
<thead>
<tr>
<th>bus</th>
<th>Gen. no.</th>
<th>(P_{g_{max}})</th>
<th>Inc cost</th>
<th>failure rate</th>
<th>MTTR</th>
<th>FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>40.0</td>
<td>3.0</td>
<td>0.002222</td>
<td>50.0</td>
<td>0.1</td>
</tr>
<tr>
<td>1.1</td>
<td>2</td>
<td>40.0</td>
<td>3.0</td>
<td>0.002222</td>
<td>50.0</td>
<td>0.1</td>
</tr>
<tr>
<td>1.2</td>
<td>3</td>
<td>152.0</td>
<td>4.0</td>
<td>0.000510</td>
<td>40.0</td>
<td>0.02</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>152.0</td>
<td>4.0</td>
<td>0.000510</td>
<td>40.0</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>40.0</td>
<td>3.0</td>
<td>0.002222</td>
<td>50.0</td>
<td>0.1</td>
</tr>
<tr>
<td>2.1</td>
<td>2</td>
<td>40.0</td>
<td>3.0</td>
<td>0.002222</td>
<td>50.0</td>
<td>0.1</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>152.0</td>
<td>4.0</td>
<td>0.000510</td>
<td>40.0</td>
<td>0.02</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>152.0</td>
<td>4.0</td>
<td>0.000510</td>
<td>40.0</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>200.0</td>
<td>5.0</td>
<td>0.000833</td>
<td>50.0</td>
<td>0.04</td>
</tr>
<tr>
<td>3.1</td>
<td>2</td>
<td>200.0</td>
<td>5.0</td>
<td>0.000833</td>
<td>50.0</td>
<td>0.04</td>
</tr>
<tr>
<td>3.2</td>
<td>3</td>
<td>200.0</td>
<td>5.0</td>
<td>0.000833</td>
<td>50.0</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>200.0</td>
<td>5.0</td>
<td>0.000833</td>
<td>50.0</td>
<td>0.04</td>
</tr>
<tr>
<td>4.1</td>
<td>2</td>
<td>200.0</td>
<td>5.0</td>
<td>0.000833</td>
<td>50.0</td>
<td>0.04</td>
</tr>
<tr>
<td>4.2</td>
<td>3</td>
<td>200.0</td>
<td>5.0</td>
<td>0.000833</td>
<td>50.0</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>394.0</td>
<td>6.0</td>
<td>0.001053</td>
<td>50.0</td>
<td>0.05</td>
</tr>
<tr>
<td>5.1</td>
<td>2</td>
<td>394.0</td>
<td>6.0</td>
<td>0.001053</td>
<td>50.0</td>
<td>0.05</td>
</tr>
<tr>
<td>5.2</td>
<td>3</td>
<td>394.0</td>
<td>6.0</td>
<td>0.001053</td>
<td>50.0</td>
<td>0.05</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>24.0</td>
<td>2.0</td>
<td>0.000340</td>
<td>60.0</td>
<td>0.02</td>
</tr>
<tr>
<td>6.1</td>
<td>2</td>
<td>24.0</td>
<td>2.0</td>
<td>0.000340</td>
<td>60.0</td>
<td>0.02</td>
</tr>
<tr>
<td>6.2</td>
<td>3</td>
<td>24.0</td>
<td>2.0</td>
<td>0.000340</td>
<td>60.0</td>
<td>0.02</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>24.0</td>
<td>2.0</td>
<td>0.000340</td>
<td>60.0</td>
<td>0.02</td>
</tr>
<tr>
<td>7.1</td>
<td>2</td>
<td>24.0</td>
<td>2.0</td>
<td>0.000340</td>
<td>60.0</td>
<td>0.02</td>
</tr>
<tr>
<td>7.2</td>
<td>3</td>
<td>24.0</td>
<td>2.0</td>
<td>0.000340</td>
<td>60.0</td>
<td>0.02</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>310.0</td>
<td>6.0</td>
<td>0.001042</td>
<td>40.0</td>
<td>0.04</td>
</tr>
<tr>
<td>8.1</td>
<td>2</td>
<td>310.0</td>
<td>6.0</td>
<td>0.001042</td>
<td>40.0</td>
<td>0.04</td>
</tr>
<tr>
<td>8.2</td>
<td>3</td>
<td>310.0</td>
<td>6.0</td>
<td>0.001042</td>
<td>40.0</td>
<td>0.04</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>800.0</td>
<td>9.0</td>
<td>0.000909</td>
<td>150.0</td>
<td>0.12</td>
</tr>
<tr>
<td>9.1</td>
<td>2</td>
<td>800.0</td>
<td>8.0</td>
<td>0.000909</td>
<td>150.0</td>
<td>0.12</td>
</tr>
<tr>
<td>9.2</td>
<td>3</td>
<td>100.0</td>
<td>2.0</td>
<td>0.000505</td>
<td>20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>100.0</td>
<td>2.0</td>
<td>0.000505</td>
<td>20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>10.1</td>
<td>2</td>
<td>100.0</td>
<td>2.0</td>
<td>0.000505</td>
<td>20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>10.2</td>
<td>3</td>
<td>100.0</td>
<td>2.0</td>
<td>0.000505</td>
<td>20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>100.0</td>
<td>2.0</td>
<td>0.000505</td>
<td>20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>11.1</td>
<td>2</td>
<td>100.0</td>
<td>2.0</td>
<td>0.000505</td>
<td>20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>11.2</td>
<td>3</td>
<td>100.0</td>
<td>2.0</td>
<td>0.000505</td>
<td>20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>50.0</td>
<td>2.0</td>
<td>0.000505</td>
<td>20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>12.1</td>
<td>2</td>
<td>50.0</td>
<td>2.0</td>
<td>0.000505</td>
<td>20.0</td>
<td>0.01</td>
</tr>
<tr>
<td>12.2</td>
<td>3</td>
<td>50.0</td>
<td>2.0</td>
<td>0.000505</td>
<td>20.0</td>
<td>0.01</td>
</tr>
</tbody>
</table>

5.2. Results obtained from some system state analysis

Tables III and IV and figures 5 and 6 display partial results obtained using the FCPF algorithm for some sampled states. The tables were built with results from a state with all components in service and adopting trapezoidal FN’s to represent loads. Columns a1 and a4 are the extreme values of the 0.0-cut while a2 and a3 stand for the 1.0-cut of membership functions. Figures 5 and 6 show the PNS distributions obtained when branch 3-24 is out of service and for generators 1/1, 2/2 and 21/1 overlapping outage.

In these cases the Robustness and Exposure Indices assume values 1.0 and 0.0 when all system components are in
service. This can be interpreted as the generator/transmission system having capacity to accommodate load uncertainties without load curtailment; values 0.4 and 1.0 if branch 3-24 is out of service indicating that non-zero PNS values occur if crisp OPP’s are run for load scenarios belonging to every cut with $\sigma [0.1]$; values 0.64 and 0.36 for generators 1/1, 2/2 and 21/1 overlapping outage. In this case, any load scenario for $\sigma [0.36, 1]$ gives zero PNS value if crisp OPP’s are run. However, if load uncertainty grows non-zero PNS values may occur.

<table>
<thead>
<tr>
<th>buses</th>
<th>x (pu)</th>
<th>p_{\max} MW</th>
<th>failure rate</th>
<th>MTTR (h)</th>
<th>FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td>0.0159</td>
<td>175</td>
<td>0.000275</td>
<td>16.0</td>
<td>0.00044</td>
</tr>
<tr>
<td>1 3</td>
<td>0.2112</td>
<td>175</td>
<td>0.000059</td>
<td>10.0</td>
<td>0.00059</td>
</tr>
<tr>
<td>1 5</td>
<td>0.0845</td>
<td>175</td>
<td>0.000038</td>
<td>10.0</td>
<td>0.00038</td>
</tr>
<tr>
<td>2 4</td>
<td>0.1267</td>
<td>175</td>
<td>0.000045</td>
<td>10.0</td>
<td>0.00045</td>
</tr>
<tr>
<td>2 6</td>
<td>0.1920</td>
<td>175</td>
<td>0.000055</td>
<td>10.0</td>
<td>0.00055</td>
</tr>
<tr>
<td>3 9</td>
<td>0.1190</td>
<td>175</td>
<td>0.000043</td>
<td>10.0</td>
<td>0.00043</td>
</tr>
<tr>
<td>3 24</td>
<td>0.0839</td>
<td>400</td>
<td>0.000023</td>
<td>76.8</td>
<td>0.00175</td>
</tr>
<tr>
<td>4 9</td>
<td>0.1037</td>
<td>175</td>
<td>0.000041</td>
<td>10.0</td>
<td>0.00041</td>
</tr>
<tr>
<td>5 10</td>
<td>0.0883</td>
<td>175</td>
<td>0.000039</td>
<td>10.0</td>
<td>0.00039</td>
</tr>
<tr>
<td>6 10</td>
<td>0.0603</td>
<td>175</td>
<td>0.0000378</td>
<td>35.0</td>
<td>0.00032</td>
</tr>
<tr>
<td>7 8</td>
<td>0.0614</td>
<td>175</td>
<td>0.000034</td>
<td>10.0</td>
<td>0.00034</td>
</tr>
<tr>
<td>8 9</td>
<td>0.1615</td>
<td>175</td>
<td>0.000050</td>
<td>10.0</td>
<td>0.00050</td>
</tr>
<tr>
<td>8 10</td>
<td>0.1651</td>
<td>175</td>
<td>0.000050</td>
<td>10.0</td>
<td>0.00050</td>
</tr>
<tr>
<td>9 11</td>
<td>0.0839</td>
<td>400</td>
<td>0.000023</td>
<td>76.8</td>
<td>0.00175</td>
</tr>
<tr>
<td>9 12</td>
<td>0.0839</td>
<td>400</td>
<td>0.000023</td>
<td>76.8</td>
<td>0.00175</td>
</tr>
<tr>
<td>10 11</td>
<td>0.0839</td>
<td>400</td>
<td>0.000023</td>
<td>76.8</td>
<td>0.00175</td>
</tr>
<tr>
<td>10 12</td>
<td>0.0839</td>
<td>400</td>
<td>0.000023</td>
<td>76.8</td>
<td>0.00175</td>
</tr>
<tr>
<td>11 13</td>
<td>0.0476</td>
<td>500</td>
<td>0.0000454</td>
<td>11.0</td>
<td>0.00050</td>
</tr>
<tr>
<td>11 14</td>
<td>0.0418</td>
<td>500</td>
<td>0.0000446</td>
<td>11.0</td>
<td>0.00049</td>
</tr>
<tr>
<td>12 13</td>
<td>0.0476</td>
<td>500</td>
<td>0.0000455</td>
<td>11.0</td>
<td>0.00050</td>
</tr>
<tr>
<td>12 23</td>
<td>0.0696</td>
<td>500</td>
<td>0.0000591</td>
<td>11.0</td>
<td>0.00065</td>
</tr>
<tr>
<td>13 23</td>
<td>0.0865</td>
<td>500</td>
<td>0.0000564</td>
<td>11.0</td>
<td>0.00062</td>
</tr>
<tr>
<td>14 16</td>
<td>0.0389</td>
<td>500</td>
<td>0.0000437</td>
<td>11.0</td>
<td>0.00048</td>
</tr>
<tr>
<td>15 16</td>
<td>0.0073</td>
<td>500</td>
<td>0.0000437</td>
<td>11.0</td>
<td>0.00048</td>
</tr>
<tr>
<td>15 21</td>
<td>0.0490</td>
<td>500</td>
<td>0.0000473</td>
<td>11.0</td>
<td>0.00052</td>
</tr>
<tr>
<td>15 21</td>
<td>0.0490</td>
<td>500</td>
<td>0.0000473</td>
<td>11.0</td>
<td>0.00052</td>
</tr>
<tr>
<td>15 24</td>
<td>0.0519</td>
<td>500</td>
<td>0.0000473</td>
<td>11.0</td>
<td>0.00052</td>
</tr>
<tr>
<td>16 17</td>
<td>0.0259</td>
<td>500</td>
<td>0.0000400</td>
<td>11.0</td>
<td>0.00044</td>
</tr>
<tr>
<td>16 19</td>
<td>0.0231</td>
<td>500</td>
<td>0.0000391</td>
<td>11.0</td>
<td>0.00043</td>
</tr>
<tr>
<td>17 18</td>
<td>0.0144</td>
<td>500</td>
<td>0.0000364</td>
<td>11.0</td>
<td>0.00040</td>
</tr>
<tr>
<td>17 22</td>
<td>0.1053</td>
<td>500</td>
<td>0.0000619</td>
<td>11.0</td>
<td>0.00068</td>
</tr>
<tr>
<td>18 21</td>
<td>0.0259</td>
<td>500</td>
<td>0.0000400</td>
<td>11.0</td>
<td>0.00044</td>
</tr>
<tr>
<td>18 21</td>
<td>0.0259</td>
<td>500</td>
<td>0.0000400</td>
<td>11.0</td>
<td>0.00044</td>
</tr>
<tr>
<td>19 20</td>
<td>0.0396</td>
<td>500</td>
<td>0.0000437</td>
<td>11.0</td>
<td>0.00048</td>
</tr>
<tr>
<td>19 20</td>
<td>0.0396</td>
<td>500</td>
<td>0.0000437</td>
<td>11.0</td>
<td>0.00048</td>
</tr>
<tr>
<td>20 23</td>
<td>0.0216</td>
<td>500</td>
<td>0.0000391</td>
<td>11.0</td>
<td>0.00043</td>
</tr>
<tr>
<td>20 23</td>
<td>0.0216</td>
<td>500</td>
<td>0.0000391</td>
<td>11.0</td>
<td>0.00043</td>
</tr>
<tr>
<td>21 22</td>
<td>0.0789</td>
<td>500</td>
<td>0.0000518</td>
<td>11.0</td>
<td>0.00057</td>
</tr>
</tbody>
</table>

Table IV - Fuzzy distributions for some branch flows (MW).

<table>
<thead>
<tr>
<th>buses</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td>-42.59</td>
<td>-26.09</td>
<td>7.88</td>
<td>25.24</td>
</tr>
<tr>
<td>1 5</td>
<td>103.20</td>
<td>116.49</td>
<td>143.06</td>
<td>156.91</td>
</tr>
<tr>
<td>2 6</td>
<td>82.19</td>
<td>92.74</td>
<td>113.84</td>
<td>124.77</td>
</tr>
<tr>
<td>5 10</td>
<td>-26.86</td>
<td>-12.44</td>
<td>16.40</td>
<td>31.42</td>
</tr>
<tr>
<td>8 10</td>
<td>-69.29</td>
<td>-63.33</td>
<td>-51.41</td>
<td>-45.00</td>
</tr>
<tr>
<td>12 23</td>
<td>-342.80</td>
<td>-317.04</td>
<td>-247.80</td>
<td>-191.32</td>
</tr>
<tr>
<td>13 23</td>
<td>-197.04</td>
<td>-172.22</td>
<td>-97.13</td>
<td>-36.82</td>
</tr>
<tr>
<td>20 23</td>
<td>-477.48</td>
<td>-463.16</td>
<td>-415.36</td>
<td>-360.94</td>
</tr>
</tbody>
</table>

Fig. 5. PNS if branch 3-24 is out of service.

Fig. 6. PNS if gen. 1/1, 2/2 and 21/1 are out of service.

3. Indices
a) Non-chronological sampling run with flat load curve

In figure 7, the calculated E(PNS) function is sketched for trapezoidal FN loads corresponding to the intermediate value of the load duration curve referred in 5.1. The expected values for Exposure and Robustness Indices are 0.288 and 0.712. The derived E(PNS) shows that as load uncertainty grows and lower α-cuts are considered, the amplitude of the corresponding E(PNS) α-cut also grows.

Figure 7. E(PNS) fuzzy distribution for non-chronological sampling and flat load curve.
b) Non-chronological sampling with load duration curve

In figure 8 it is sketched the E(PNS) distribution using the load duration curve described in 5.1. According to these results, the extreme values of both 0.0 and 1.0 cuts are larger than the ones in figure 7. This is explained considering that in 20% of the studied period the load is higher and that in 30% in smaller than the values used to compute the distribution in figure 7. Given that PNS is larger when the load is larger one can conclude that the effect of increasing load to 110% in 20% of the period counteracts, in this case, the effect of reducing load to 85% in 30% of the period.

[Graph showing E(PNS) fuzzy distribution for non-chronological sampling and load duration curve.]

Figure 8. E(PNS) fuzzy distribution for non-chronological sampling and load duration curve.

c) Chronological sampling with flat load curves

A chronological sampling strategy using the intermediate load level as in 5.3.a was run to evaluate E(PNS) and ENS. In this run 10 years of the life of the system were simulated. The results obtained for E(PNS) were, as expected, quite close to the ones presented in figure 7. In figure 9 it is sketched the fuzzy distribution obtained for the Energy Not Supplied per year, ENS.

[Graph showing ENS per year fuzzy distribution for flat load curve.]

Figure 9. ENS per year fuzzy distribution for flat load curve.

6. CONCLUSIONS

In this paper we described some developments in a methodology called Fuzzy Monte Carlo. This approach is very flexible in the ways information about loads and component reliability can be handled. Loads are modeled by fuzzy numbers eventually organized in load curves and reliability data can correspond either to FOR or to failure and repair rates. It is important to stress that each load fuzzy number is treated as a whole, that is a continuous set of load scenarios is analyzed at a time. Finally, this combination of fuzzy and probabilistic models allows us to express our belief that each framework has its role, and that each one should be adopted when it is theoretically more adequate.

ACKNOWLEDGMENT

The research reported is being done under a project partially sponsored by contract PRAXIS XXI 2/2/1/TTT/1634/95.

REFERENCES

António Varejão Sousa was born in Gaia, Porto, Portugal. Currently he is with the Instituto Superior de Engenharia of Oporto and is finishing the MSc degree in the Engineering Faculty of Oporto University.

João Tomé Saraiva was born in Oporto, Portugal, on August 18, 1962. He received his licenciature, an M.S. equivalent and Ph.D. degrees from the Faculty of Eng. of Oporto University (FEUP) in 1985, 1988 and 1993, all in electrical engineering. In 1985 he joined FEUP where he is an Auxiliary Professor. In 1989 he joined also INESC - a Research Institute in Systems and Computer Engineering - as a researcher.