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Abstract

In this thesis, we obtain some entropy formulas for the physical or Sinai-Ruelle-Bowen (SRB) measures

of two classes of systems with singular sets first introduced in [5] that, to the best of our knowledge,

are not yet clearly covered in previous literature. The first class consists of general endomorphisms

displaying nonuniform expansion and slow recurrence to a nondegenerate singular set. The second,

inspired on Poincaré return maps of the Lorenz flow, comprises partially hyperbolic diffeomorphisms

with singularities which are nonuniformly expanding along the centre-unstable direction and also

exhibit slow recurrence to a nondegenerate singular set.

Our fundamental approach is heavily dependent upon the existence of a certain type of combi-

natorial and geometrical structures, introduced in [76]. The full construction of Young structures, as

these are nowadays commonly called, is thoroughly performed for the first time to the second class of

partially hyperbolic maps with singularities, in a way that can be applied to yield the existence of the

technically simpler Gibbs-Markov structures in the case of endomorphisms, a well-established fact

in previous works but recovered here under a new general framework. An entropy formula is then

derived for the second class taking into account a classical compression technique along the stable

direction, that allows a reduction of a Young structure to a Gibbs-Markov, and the inducing scheme

based techniques used to derive an entropy formula for the first class.

These abstract results find interesting applications in parametrized families of one- and two-

dimensional dynamics encompassing Lorenz, Rovella and Luzzatto-Viana maps. In conjunction with

previous works on statistical stability, our results pave the way to deepen the study on the problem of

the variation of the physical or SRB entropy seen as a function of the maps in these families.

Keywords: entropy, partial hyperbolicity, physical/SRB measures, nonuniform expansion, slow

recurrence, systems with singularities.





Resumo

Neste trabalho, o estudo foca-se na obtenção de fórmulas para a entropia das medidas físicas ou de

Sinai-Ruelle-Bowen (SRB) de duas classes de sistemas com conjuntos singulares introduzidas em [5]

as quais, tanto quanto nos é possível saber, não se encontram ainda cobertas na literatura disponível.

A primeira classe consiste de endomorfismos exibindo expansão não-uniforme e recorrência lenta

a um conjunto singular não-degenerado. A segunda, inspirada nas aplicações de primeiro retorno

de Poincaré associadas ao fluxo de Lorenz, engloba difeomorfismos parcialmente hiperbólicos com

singularidades apresentando expansão não-uniforme ao longo da direção centro-instável e exibindo de

igual forma recorrência lenta a um conjunto singular não-degenerado.

A nossa estratégia fundamental depende fortemente da existência de um certo tipo de estruturas

combinatórias e geométricas introduzidas em [76]. A construção completa de estruturas de Young,

como são hoje vulgarmente conhecidas, é feita detalhadamente pela primeira vez para a segunda classe

de difeomorfismos parcialmente hiperbólicos com singularidades, de uma forma que pode igualmente

ser adaptada no caso do endomorfismo para a construção de estruturas Gibbs-Markov tecnicamente

mais simples, um facto que já se encontra bem estabelecido na literatura mas é aqui recuperado sob

uma nova luz. A fórmula da entropia para esta segunda classe é então obtida tendo em conta uma

técnica de compressão ao longo das folhas estáveis, a qual permite reduzir uma estrutura de Young a

uma Gibbs-Markov, e as técnicas de indução usadas para obter a fórmula da entropia para a primeira

classe.

Estes resultados abstratos encontram aplicações interessantes em famílias parametrizadas de

sistemas uni- e bidimensionais englobando mapas de Lorenz, Rovella e Luzzatto-Viana. Em conjunção

com trabalhos prévios sobre estabilidade estatística, os nossos resultados abrem caminho para um

estudo mais aprofundado sobre o problema da variação da entropia da medida física ou SRB nestas

famílias.

Palavras-chave: entropia, expansão não-uniforme, hiperbolicidade parcial, medidas físicas/SRB,

recurrência lenta, sistemas com singularidades.
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Chapter 1

Introduction

The modern theory of dynamical systems, having its roots in the works of Poincaré on celestial

mechanics at the end of the 19th century, can be broadly described as the study of the long-term

behavior of processes evolving in time. Roughly speaking, two main ingredients compound what we

call a dynamical system: first, a phase space, consisting of the several configurations the system can

assume; second, an evolution law, i.e., a dynamical rule determining how a certain configuration is

obtained from another in the course of time. The mathematical description of these processes can be

done in either continuous or discrete terms, most commonly when they appear as flows associated

to the solutions of differential equations (continuous time) or simply as iterations of maps (discrete

time), respectively. We concern ourselves only with discrete dynamics, more precisely smooth maps

f ∶M→M defined on some compact Riemannian manifold M.

It soon became apparent that even very simple evolution laws may give rise to highly complex

dynamical phenomena. Quite often, systems display the so-called sensitivity to initial conditions

or chaotic behavior, roughly meaning that two initial configurations which are arbitrarily close to

one another may diverge largely as the time passes by - in other words, the behavior of individual

trajectories becomes unpredictable. It thus became one of the major goals of this theory to investigate

the typical behavior of most orbits in some suitable sense, whenever that possibility was available. A

successful approach in this regard is provided by ergodic theory, a further evolution of the dynamical

systems’ branch aiming at understanding systems from a probabilistic point of view. Here, the phase

space is a probability space M endowed with an invariant measure µ for the dynamics f ∶M→M. A

nontrivial property on its own, indeed, the existence of invariant measures founds one of its raisons

d’être in Birkhoff’s Ergodic Theorem, a foundational result which describes from a statistical viewpoint

the orbits of most points with respect to µ .

For several purposes, the Lebesgue or volume measure still plays a prominent role and becomes

a natural reference measure. Nevertheless, it turns out that the Lebesgue measure is not necessarily

invariant, thus not fitting automatically into the ergodic theory natural setting. This simple observation

triggered the question of determining the invariant measures (not necessarily ergodic) that bear some

physical significance, that is, in a sense, the ones most compatible with volume when volume is not

1



2 Introduction

preserved. In this context, the notion of physical measure emerged, a type of invariant measure that

still describes the statistics of orbits with respect to initial conditions in a large (positive Lebesgue

measure) set of the phase space. There are examples of systems without physical measures (e.g. the

identity map) as well as examples with an infinite number of physical measures (e.g. Dirac measures

supported on attracting periodic orbits), but these are somewhat pathological examples. The research

program delineated in the Palis conjecture [60] aims at showing that typical dynamical systems admit

at least one and at most a finite number of physical measures. Despite some and slow progress along

the lines of the Palis conjecture, up to the present date, it is still a challenging and fundamentally open

problem to determine which dynamical systems admit or not physical measures, let alone prove it.

A class of systems for which the Palis conjecture has already been proved is the class of uniformly

hyperbolic systems. These are characterized by the existence of an invariant splitting of the tangent

bundle for which the derivative contracts or expands uniformly on each of the invariant directions of

that splitting. Actually, in between the end of the 1960’s and the beginning of 1970’s, Sinai, Ruelle and

Bowen introduced and constructed a particular type of physical measures in the setting of uniformly

hyperbolic attractors, encompassing Anosov diffeomorphisms, Axiom A diffeomorphisms and flows,

that are nowadays called Sinai-Ruelle-Bowen, or SRB, measures in their honor; see [30, 31, 70, 73, 74].

To this end, an earlier approach fruitfully generalized some decades afterward was based on the

introduction of rich geometric and combinatorial structures, called Markov partitions, which allowed to

bring the techniques of symbolic dynamics into the theory of smooth uniformly hyperbolic dynamical

systems; cf. [28]. Despite bearing the same significance as physical measures quite often in the

literature, an interchange backed by the fact that the two notions actually coincide in the uniformly

hyperbolic world, the distinguishing feature of SRB measures is the property of having non-zero

Lyapunov exponents almost everywhere and absolutely continuous conditional measures on unstable

manifolds. For the purposes of this thesis, to be detailed in the sequel, it is worth mentioning that, in

this setting, SRB measures coincide with the ones satisfying an entropy formula, as pointed in the

detailed exposition [78]. In the particular case of uniformly expanding systems, proving the existence

of SRB measures can be reduced, by Birkhoff’s Ergodic Theorem, to the problem of finding ergodic,

absolutely continuous invariant measures - we refer the reader to [46], where the authors proved the

existence of such measures for uniformly expanding maps.

Beyond the uniformly hyperbolic world, the dynamical picture is necessarily more complex,

involving increasingly sophisticated new arguments and techniques. Some success has been obtained

in the settings of nonuniformly hyperbolic and partially hyperbolic dynamics, often a combination

of both. The necessity of combining these two beforehand distinct settings is in part grounded on

the pioneering work of Pesin and Sinai [63], where so-called Gibbs measures were constructed for

partially hyperbolic systems. While Gibbs measures provide a platform to investigate the existence

of SRB measures, they may nevertheless fail to be physical because of the possible lack of absolute

continuity or even existence of a foliation tangent to the central subbundle. The existence of SRB

measures for a considerably large set of one-dimensional quadratic maps exhibiting non-uniformly

expanding behavior has been established in the pioneer work of Jakobson [42]. Subsequently, in the
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1980’s and 1990’s, M. Benedicks and L. Carleson, in the celebrated paper [22], studied using hard

analysis (a tour de force) the dynamics near the well known Hénon attractors; afterward SRB measures

for these attractors were constructed by M. Benedicks and L.S. Young in [23]. On the other hand,

SRB measures corresponding to nonhyperbolic attractors of derived from Anosov diffeomorphisms

were constructed by M. Carvalho in [33]. Later, M. Viana introduced in [75] an open class of chaotic

maps in higher dimensions with non-uniformly expanding behavior, and J. F. Alves, making use of

the original notion of hyperbolic times, proved in [2] the existence of SRB measures for these maps.

Motivated by these results, Alves, Bonatti and Viana obtained general conclusions on the existence

of SRB measures for partially hyperbolic systems with mostly expanding central direction [5] and

mostly contracting central direction [27], conditions which couple nonuniform and partially hyperbolic

behaviors as referred to in the beginning of the paragraph.

An important breakthrough along this research line of systems with some sort of hyperbolicity

occurred about two decades ago in L. S. Young papers [76, 77]. There, she introduced a type of

Markov partitions that generalized, and were much less rigid than, the classical Markov partitions

used by Sinai, Ruelle and Bowen, in basically three main aspects: they are characterized by some

(not the whole) region of the phase space partitioned into an at most countable (not necessarily finite)

number of subsets with associated (variable, not fixed, depending on the partition element) return times.

This abstract setting is, up to this date, one of the most powerful frameworks to study nonuniformly

hyperbolic dynamical systems, yielding not only the existence of SRB measures as well as several

of their statistical properties like the Decay of Correlations, Large Deviations and probabilistic Limit

Theorems. As a matter of fact, in the original paper [76], the existence of these structures was shown

for some classical dynamics previously mentioned, including Axiom A attractors, billiards with convex

scatterers, logistic maps, intermittent maps, piecewise hyperbolic maps and Hénon-like attractors; for

the latter, see also [24]. This approach was successfully carried out afterward by Alves, Luzzatto and

Pinheiro in the context of partially hyperbolic systems and general systems with critical or singular

sets [8, 9, 13, 64]; the existence of SRB measures was already known via the classical geometric-

pushforward approach, where they are realized as limit points of Birkhoff’s averages of the Lebesgue

measure restricted to some suitable region of M, typically where we can guarantee some expansion. In

the recent survey [34], Climenhaga, Luzzatto and Pesin provide an excellent exposition on the several

methods to construct SRB measures ranging from the more classical works mentioned above to a new

general framework based on the notion of effective hyperbolicity.

The concept of dynamical entropy was successfully introduced by Kolmogorov and Sinai [45]

around 1958, based on the analogous notion proposed by C. Shannon in Information Theory. In broad

terms, this quantity measures the rate of increase in dynamical complexity as the system is iterated in

time and thus relates to the unpredictability of the system. A first, very natural question arising from

the actual definition was the computation of this number for concrete systems, - a question treated

by Kolmogorov and Sinai themselves in their celebrated theorem concerning generating partitions -

finding one of its first answers in the Rokhlin formula, which expresses the entropy in terms of the

integral of the Jacobian for general invariant measures, and in related subsequent works [1, 26, 49]).
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For the setting of smooth diffeomorphisms of a Riemannian manifold, Ruelle established in [71] that

the entropy of any invariant probability measure is always bounded by the integral of the sum of the

positive Lyapunov exponents (counted with multiplicity) with respect to that measure. The reverse

inequality has been obtained in [62] by Pesin for the case when the invariant probability measure is

absolutely continuous with respect to the Lebesgue measure and also in a simpler, ingenious way by

R. Mañé in [56]. There is currently a vast literature addressing Pesin’s entropy formula. For instance,

extensions of the results of Ruelle and Pesin for the class of maps with infinite derivative inspired

on billiards and introduced in [43] were obtained in [48], and a characterization of the validity of

the entropy formula in terms of the so-called SRB property is given in [50]; cf. also [79]. Natural

versions for non-invertible smooth maps (endomorphisms) have been drawn in [51, 53, 65]. Albeit,

to the best of our knowledge, besides the recent work [14], not much is known on the existence of

entropy formulas that can be applied directly to smooth maps with singular sets in general, specially in

dimensions greater than one (for one-dimensional dynamical systems, see e.g. [25], [44] or [47], and,

in higher dimensions, see e.g. [36]). In this regard, let us refer that, in the Markov case of piecewise

expanding maps with full branches, a direct approach as in [10] can be implemented to obtain an

entropy formula and it will be further explored in this work.

Regarding the integral term in Pesin entropy formula, we are naturally lead to consider the case

where all Lyapunov exponents are positive and the sum of Lyapunov exponents coincides with the

Jacobian of the map or, more generally, the sum of Lyapunov exponents coincides with the unstable

Jacobian, i.e., along the unstable direction, in case of systems displaying contracting behavior along

some directions. The main contribution of this work is thus to extend the classes of systems with

singularities, fitting the previous two scenarios, for which it holds an entropy formula resembling that

appearing in the classical literature. More precisely, the classes we address here were introduced in the

seminal work [5]: the first consisting of general endomorphisms of a compact Riemannian manifold,

and the second of partially hyperbolic diffeomorphisms - both having a singular set satisfying some

nondegeneracy conditions. The original construction of SRB measures for these classes - essentially

pointed out and not carried thoroughly until the end for the latter - followed the so-called geometric-

pushforward approach aforementioned. Notwithstanding, it turns out that such SRB measures can

also be lifted to Markov structures, a nontrivial fact essentially well known from the works [9, 64] for

the endomorphism case but not for the partially hyperbolic systems with singularities inspired on the

Lorenz attractor that constitute one of the leitmotifs of this thesis. Owing to their symbolic nature, the

existence of these structures is actually the fundamental tool to overcome the presence of singularities

and deduce an entropy formula in this context as indeed we do, so that the approach to be used here

may in principle be carried out whenever this condition (or any other equivalent to this one) is ensured.

Before ending this introduction, we would like to allude to the problem of the variation of the

entropy of the physical or SRB measures - henceforth referred to simply as physical or SRB entropy

-, in parametrized families of systems admitting them, i.e., how that quantity changes as a function

of the parameter (system) in the family. Despite being beyond the scope of the present work, we

remark that the validity of the entropy formula similar to the ones we obtain here together with the
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statistical stability of the systems has been a mainstream ingredient to deduce results concerning

the continuity of the physical or SRB entropy in several relevant parametrized families, including,

for instance, the Benedicks-Carleson quadratic maps, Hénon-maps, Tent and Viana maps (see e.g.

[6, 7, 10, 14, 15, 21, 39]), which often use in a significant way the boundedness of the derivative.

Therefore, we hope the results in this paper may at least open the door to deepen the study on

the problem of the entropy variation for systems with singularities, in particular for the families of

endomorphisms with singularities we consider in the applications.

After the present introduction which is the content of Chapter 1, this work is organized as follows:

In Chapter 2, we present the main results of this thesis and the necessary definitions to do it. In

Section 2.1, we start with a general class of not necessarily invertible systems with singularities coming

from [5] and stating an entropy formula for them, and then, in Section 2.2, introduce a class of partially

hyperbolic diffeomorphisms with singularities (also coming from [5]) drawing its main inspiration

from the model of two-dimensional Poincaré return maps of Lorenz flows. In the latter, we state not

only an entropy formula as well as the existence of Young structures which sustain the SRB measures

and provide the suitable background for the calculation of their entropy.

In Chapter 3, we prove the entropy formula for the first class of systems with singularities. We

give an overview of the strategy in Section 3.3, strongly dependent upon the classical Gibbs-Markov

structures we introduce in Section 3.1. The existence of these structures for the maps we consider in

this chapter, stated in Theorem 3.3.1, is well known from the works [9, 64], but we recover this result

here under a general framework to be used in the next chapter for the partially hyperbolic case. The

entropy formula is then stated under general conditions (mainly, the existence of Markov structures) in

Proposition 3.3.5. Our approach consists in using a tower extension of the Gibbs-Markov inducing

scheme, as in Section 3.2, deriving an entropy formula for the tower, which we do in Section 3.4, and

finally relate back the entropies of these two semi-conjugated systems in Section 3.5.

In Chapter 4, the spirit is the same as that of the previous chapter, but with increased complexity.

In addition to the work done in the previous chapter, where the existence of inducing schemes for a

class of systems with singularities was essentially contained in previous literature, here the main focus

is on the construction of Young structures that we review in Section 4.1, playing the same role for these

systems as the Gibbs-Markov structures do for the previous. A main difference between them is the

presence of contracting directions so that the return of the partition elements only needs to stretch

all the way over along the unstable direction, i.e., it does not need to be a full return in the previous

sense. The general framework for the construction of Young structures is then provided in Section 4.3.

Accordingly, the relevant work consists of the construction of so-called hyperbolic disks and times

for these maps as well as that of a reference leaf serving as the basis of the Young structure, which is

done in Sections 4.4 and 4.5, respectively. We postpone to Appendix B the partitioning algorithm of

the reference leaf and other more or less standard check-ups, as these do not contain any particular

novelty or require substantial adaptations in this setting; however, the construction in [8, Section 5]

from where it is drawn is improved here, in the sense that clearer satellite estimates are provided and

it serves as well for the purpose of the construction of Gibbs-Markov structures for endomorphisms.
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In order to derive an entropy formula, we essentially make use of the results and line of attack of the

previous chapter, but with more sophisticated tools. We introduce the quotient dynamics, obtained,

roughly speaking, by collapsing stable leaves, and associated tower extension in Section 4.2. More

importantly, in Section 4.2, we present the notion of natural extension, which is, in other words, the

formal way to express or deduce the heuristic and a priori expected idea that such collapsing procedure

- which neglects only the stable direction where no new dynamical information is produced - preserves

the entropy. We conclude the reasoning in Section 4.6.

In Chapter 5, we present three families of systems with singularities that enable an illustration of

our main theorems, namely: Lorenz maps, both one-dimensional and two-dimensional (Section 5.1),

Rovella maps (Section 5.2) and Luzzatto-Viana maps (Section 5.3). To the best of our knowledge,

entropy formulas for the maps in these families are not yet clearly established in previous literature and

pave the way to approach the problem of the variation of the SRB entropy.

In Appendix A, we briefly review some elementary concepts of ergodic theory, in particular, the

notion of metric or measure-theoretic or Kolmogorov-Sinai entropy [45] of a measure-preserving

dynamical system and some useful related results for the purposes of this thesis. The core of Appendix

B was already exposed.



Chapter 2

Definitions and statements

In this chapter, we present the main results of this thesis and the necessary definitions to do it. We

start with a general class of endomorphisms with singularities and then introduce a class of partially

hyperbolic diffeomorphisms with singularities, drawing its main inspiration from the model of two-

dimensional Poincaré return maps of Lorenz flows, both outlined in [5]. In the latter, we state not only

an entropy formula as well as the existence of Young structures which sustain the SRB measures and

provide the suitable background for the calculation of their entropies.

2.1 Expanding endomorphisms with singular sets

Let M be a compact Riemannian manifold of dimension d ∈N and Leb denote the reference normalized

Riemannian or Lebesgue measure defined on the Borel σ -algebra of M. Let f ∶M→M be a endomor-

phism which is C1+ local diffeomorphism (meaning that f is a C1 with Hölder continuous derivative)

out of a (nonempty) compact submanifold S of M with dim(S) < dim(M) that we shall refer to as the

singular set of f . As the name suggests, this set consists of singular points or singularities, i.e., points

x0 ∈M at which D f (x0) is not defined. For instance, singularities appear if ∥D f ∥ is unbounded near x0

or else f fails to be continuous at x0. Given x ∈M/S, we define the minimum norm as

m(D f (x)) ∶= inf
∥v∥=1
∥D f (x) ⋅v∥,

a number easily seen to be equal to ∥D f (x)−1∥−1 in the present setting, since D f (x) is invertible. In

this work, we require that S satisfies the non-degeneracy conditions indicated in the next definition.

Nondegeneracy of a set

We say that a subset S of M is nondegenerate (with respect to f ) if both S and f (S) have zero Lebesgue

measure and there are constants α,β ,B > 0 such that:

7



8 Definitions and statements

1. for every x ∈M/S , we have

B−1 dist(x,S)α ≤m(D f (x)) ≤ ∥D f (x)∥ ≤ B dist(x,S)−α .

2. for any x,y ∈M/S with dist(x,y) < dist(x,S)/2 we have,

(a) ∣ log∥D f (y)−1∥− log∥D f (x)−1∥∣ ≤ B
dist(x,S)α dist(x,y)β ,

(b) ∣ log ∣det D f (y)∣− log ∣det D f (x)∣∣ ≤ B
dist(x,S)α dist(x,y)β .

Remark 2.1.1. Observe that the first condition is only significant when the norm of the derivative of f

is unbounded (below or above) near S, providing in that case analytic information about the order of

the (singular) set. The last two conditions say that the functions log ∣detD f ∣ and log∥D f −1∥ are locally

Hölder at points x ∈M/S, with the Hölder constant possibly getting worse as x approaches S. Notice

that if dim(M) = 1, conditions 2.(a) and 2.(b) express the same property.

Remark 2.1.2. The original definition of nondegenerate set was meant to allow the possibility of

including critical points in S , i.e., points at which D f is defined but not invertible. Our results remain

valid in that case since all that matters in this regard is that the nondegeneracy conditions hold true for

the critical points as well. Despite the fact that some of our applications exhibit critical points, the focus

of this work and its main novelty lies on the singular ones. Indeed, in the absence of singularities, i.e.,

when differentiability is not an issue, the classical research literature on entropy covers the situation

completely [51, 65, 66].

Nonuniform expansion and slow recurrence

In the definitions that follow, we will be implicitly assuming that the forward orbits of points in some

set H do not hit the singular set S. In general, if a set H does not satisfy this property, we can always

consider a subset H+ of H with the same Lebesgue measure satisfying it, namely, H+ ∶=⋂∞n=0 f −n(H/S).
For this reason, we may assume without loss of generality that H is itself forward invariant. Such

assumption is reinforced by the fact that the properties expressed in the definitions below are morally

invariant under forward and backward iteration, i.e., modulo some technical assumptions like the

precedent one to ensure that certain quantities appearing in these definitions are well-defined in the

presence of a singular set.

We say that f is nonuniformly expanding (NUE) on a subset H of M if there is λ > 0 such that for

all x ∈H ,

liminf
n→∞

1
n

n−1

∑
j=0

log∥D f ( f j(x))−1∥ < −λ . (2.1)

Alternatively, we may express the condition (2.1) as follows:

limsup
n→∞

1
n

n−1

∑
j=0

log∥D f ( f j(x))−1∥−1 > λ . (2.2)
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Remark 2.1.3. In dimension one, (2.2) is equivalent to the existence of a positive Lyapunov exponent

at x. In higher dimensions, all one can say is that nonuniform expansion at a point x ∈M implies the

existence of dim(M) positive Lyapunov exponents at x ∈M:

limsup
n→∞

1
n

log∥D f n(x) ⋅v∥ > λ > 0, for all v ∈ TxM, (2.3)

a strictly weaker property than nonuniform expansion, in general.

Remark 2.1.4. In the original paper [5], the authors considered a stronger notion of nonuniform

expansion by replacing the limsup with the liminf in the definition above: more precisely, we say that

f is strongly nonuniformly expanding on a subset H of M if there is λ > 0 such that for all x ∈H ,

limsup
n→∞

1
n

n−1

∑
j=0

log∥D f ( f j(x))−1∥ < −λ . (2.4)

Our techniques rely on the existence of inducing schemes for such maps, a property that can be

guaranteed under the weaker form of nonuniform expansion in (2.1); cf. [64].

Given r > 0 and x ∈M/S, we define the r-truncated distance from x to S as

distr(x,S) =
⎧⎪⎪⎨⎪⎪⎩

1, if dist(x,S) ≥ r.

dist(x,S), otherwise.
(2.5)

The careful reader might note that this is not a distance in the usual sense, but only a useful quantitity

derived from it. We say that f has slow recurrence to the singular set S on a subset H of M, if for

every ε > 0 there exists r > 0 such that for every x ∈H we have

limsup
n→∞

1
n

n−1

∑
j=0
− logdistr( f j(x),S) < ε. (2.6)

Remark 2.1.5. As observed in several previous works involving the slow recurrence, we do not need to

impose this condition in all its strength, i.e., for all ε > 0: it suffices that (2.6) holds for some ε
∗ > 0

sufficiently small.

Main results

Given a Borel probability measure µ on M we define the basin of µ as the set

Bµ ∶= {x ∈M ∶ lim
n→∞

1
n

n−1

∑
j=0

φ( f j(x)) = ∫ φ dµ for all continuous φ ∶M→R}. (2.7)

Roughly speaking, the basin of a measure µ is the set of points in the phase space whose orbits under

f are asymptotically uniformly distributed with respect to µ and are thus well-understood in statistical

terms. A priori, there is no reason for the basin to be a nonempty set. Under certain conditions, this
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is indeed the case and it is actually a large set with respect to the volume or Lebesgue measure. For

instance, the classical Ergodic Theorem of Birkhoff, together with the fact that C0(M) has a countable

dense set, implies that if µ is an ergodic invariant probability measure, then µ-almost every point

belongs in the basin of µ . Besides, if µ is absolutely continuous with respect to the Lebesgue measure,

then we immediately conclude that the basin of µ has positive Lebesgue measure. On the other hand,

if µ is singular with respect to Lebesgue measure, which happens frequently, this does not guarantee

beforehand that the basin has positive Lebesgue measure. These contrasting scenarios motivate the

following definition: a measure µ is called physical if

Leb(Bµ) > 0. (2.8)

The existence of a finite collection of ergodic absolutely continuous invariant (hence physical) proba-

bility measures

F f ∶= {µ1, . . . ,µl} (2.9)

for each map f in the first class of systems with critical/singular sets that we consider in this section is

well known in the literature since [5]. In addition, a striking and non-trivial feature of these measures

is that they can be associated with a particular type of geometrical and combinatorial structures, which

we call Gibbs-Markov [8, 9, 64]. The precise definition of these structures is actually not needed for

the formulation of the main result and, in order to keep this presentation as simple as possible, it will

be postponed to Chapter 3, where related comments on their existence for this class of systems can be

found. The reason why we highlight this fact in the presentation relates to the goal of providing the

reader with the underlying idea of the heart of our strategy: first, we derive an entropy formula for the

Markov structures of these measures and then pass the information down to original system. We will

illustrate Theorem A below with some concrete applications in Chapter 5.

Theorem A. Let f ∶M→M be a C1+ local diffeomorphism out of a nondegenerate set S ⊂M. Assume

that there exists a positive Lebesgue measure set H ⊂M on which f is non-uniformly expanding and

has slow recurrence to S. Then, for any measure µ ∈ F f , we have

hµ( f ) = ∫ log ∣detD f ∣dµ. (2.10)

Remark 2.1.6. Observe that the integrand term in (2.10) is measurable and well defined outside S, a

zero Lebesgue (and thus µ) measure set. A natural question that may be prompted is whether or not

the integral in (2.10) is finite. In [51, Remark 1.2], it is proved that the integrability condition

log ∣detD f ∣ ∈ L1(µ) (2.11)

is automatically verified whenever f is a C2 smooth map of a C∞ compact Riemannian manifold and µ

is an f -invariant probability measure absolutely continuous with respect to the Lebesgue measure. In

our setting, it is a rather straightforward consequence of the definition of nondegenerate set that (2.11)
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holds for any µ ∈ F f . Indeed, from the condition (1), it follows that for every x ∈M/S we have

B−d dist(x,S)αd ≤m(D f (x))d ≤ ∣detD f (x)∣ ≤ ∥D f (x)∥d ≤ Bd dist(x,S)−αd . (2.12)

Taking logarithms,

0 ≤ ∣ log ∣detD f (x)∣∣ ≤ d∣ logB∣+αd∣ logdist(x,S)∣. (2.13)

By the fact that dµ/d Leb ∈ L∞(Leb) and invoking, for instance, [4, Proposition 4.1, Corollary 4.2],

we conclude that the function logdist(⋅,S) is µ-integrable and therefore (2.11) follows from (2.13). It

should not be neglected that the same argument yields the integrability of the derivatives:

log∥D f ±1∥ ∈ L1(µ), (2.14)

a useful condition to guarantee the existence (and finiteness) of Lyapunov exponents in the light of

Oseledets Theorem.

2.2 Partially hyperbolic diffeomorphisms with singular sets

Now, we consider a second class of systems with singularities inspired on Poincaré return maps of

Lorenz flows. Let M be a compact Riemannian manifold, possibly with boundary, of dimension d ∈N,

and Leb denote the normalized Riemannian or Lebesgue measure defined on the Borel σ -algebra of

M. Let f ∶M→M be a C1+ diffeomorphism (meaning that f is C1 with Hölder continuous derivative)

out of a compact submanifold S of M with dim(S) < dim(M) that we shall refer to as the singular

set of f . As in the previous chapter, this set may consists of points x0 ∈M at which D f (x0) is not

defined, so-called singular points, either because ∥D f ∥ is unbounded near x0 or f is not continuous at

x0. Before we present the nondegeneracy conditions of S adapted to this situation, we need to introduce

the notion of partial hyperbolicity upon which they depend.

Partial hyperbolicity

We say that a compact subset K ⊆M with Leb(K) > 0 is a partially hyperbolic set for f if it is forward

invariant, in the sense that f (K/S) ⊂ K, and there is a continuous splitting of the tangent bundle

TK/SM = Ecu⊕Ess such that

D f (E∗x ) ⊆ E∗f (x) for x ∈K/S ∩ f −1(K/S) and ∗ ∈ {cu,ss} (2.15)

and, for some choice of a Riemannian metric ∥ ⋅ ∥ on M, there is a constant 0 < λ < 1 such that:

1. Ess is strongly (uniformly) contracting: ∥D f ∣Ess
x ∥ ≤ λ < 1 for all x ∈K/S;

2. Ecu⊕Ess is dominated: ∥D f ∣Ess
x ∥ ⋅ ∥D f −1∣Ecu

f (x)∥ ≤ λ < 1 for all x ∈K/S ∩ f −1(K/S).
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We stress that in spite of the fact that the above conditions are naturally dependent upon the choice

of Riemannian metric, it is enough that they are verified for some such choice. With regards to

nomenclature, Ecu is called the centre-unstable bundle and Ess is called the strong-stable bundle.

Owing to the presence of a singular set, in addition to the usual conditions described above, we require

two additional properties that are standard for partially hyperbolic systems (without singularities) but

we are not sure about to what extent they hold true in more general situations as in the present one:

(E1) Transversality of the dynamical bundles: the angle between the bundles Ecu and Ess, set to

∠(Ecu,Ess) ∶= min
x∈K/S

min
vu∈Ecu

x ,vs∈Ess
x

∠(vu,vs),

is strictly positive.

(E2) Existence of long stable manifolds: There is δs > 0 such that the local stable manifolds W s
δ
(x)

are defined for all points x ∈K/S and 0 ≤ δ ≤ δs.

Remark 2.2.1. Despite that being the case in the two-dimensional Poincaré return maps of Lorenz

flow that we consider in Chapter 5, in general, K/S is not assumed to contain any open sets. Since

our techniques require that we work with open regions Σ of the ambient space where these bundles

are defined, we therefore assume the existence of continuous extensions of the bundles, still denoted

Ecu and Ess, to some compact neighbourhood V of K/S, containing a δ1-neighbourhood of K/S for

some δ1 > 0 to be specified later. It should be noted that we are assuming the possibility to extend the

bundles to S, but, for self-evident reasons, we are not requiring that D f can be extended in a similar

fashion. Actually, this is immaterial since even in case our working regions Σ or their iterates intersect

the singular set, we will just consider sub-regions where that does not happen and so be able to take the

derivative D f . For simplicity, we assume that V is forward invariant: for instance, it may be thought as

a trapping region for an attractor.

Cone fields

The extensions Ecu and Ess are not a priori assumed to be invariant outside K/S as in (2.15), but we

can still derive some sort of invariance if we allow more freedom in the dynamic directions. Given

0 < a < 1, we define the centre-unstable cone field Ccu
a = (Ccu

a (x))x∈V of width a by

Ccu
a (x) ∶= {vu+vs ∈ Ecu

x ⊕Ess
x ∶ ∥vs∥ ≤ a∥vu∥} ⊂ TxM. (2.16)

Analogously, we define the strong-stable cone field Css
a = (Css

a (x))x∈V of width a in a similar way, just

reversing the roles of the sub-bundles in (2.16). We fix a > 0 and V small enough so that, up to slightly

increasing λ , the domination condition (2) remains valid in the two cone fields:

∥D f (x) ⋅vss∥ ⋅ ∥D f −1( f (x)) ⋅vcu∥ ≤ λ < 1 (2.17)
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for every point x ∈ V and vss ∈Css
a (x), vcu ∈Ccu

a ( f (x)). Under the above conditions, the centre-unstable

cone field is forward invariant:

D f (x) ⋅Ccu
a (x) ⊆Ccu

a ( f (x)), for all x ∈ V/S. (2.18)

Let Σ be a submanifold of M, possibly with boundary. We denote by distΣ and LebΣ, respectively,

the distance and Lebesgue measure on the Borel sets of the submanifold Σ, both induced by the

Riemannian metric on M. The boundary of Σ is denoted by ∂Σ and the distance from a point x ∈ Σ to its

boundary is set to distΣ(x,∂Σ) ∶= infy∈∂Σ distΣ(x,y). We say that an embedded C1 manifold Σ ⊂ V is a

centre-unstable disk, abbreviated to cu-disk, if TxΣ, the tangent space to Σ at a point x ∈ Σ, is contained

in the corresponding cone Ccu
a (x). Observe that the property (2.18) implies that given any subdisk ∆0

of a cu-disk Σ, we have that f (∆0) is a cu-subdisk of f (Σ) ⊂ V . Given x ∈ K/S, we define the usual

sup- and inf- norms of D f ∣Ecu
x as

∥D f ∣Ecu
x ∥ = sup

∥v∥=1
∥D f ∣Ecu

x (v)∥ and m(D f ∣Ecu
x ) ∶= inf

∥v∥=1
∥D f ∣Ecu

x (v)∥. (2.19)

Again, we have m(D f ∣Ecu
x ) = ∥(D f ∣Ecu

x )−1∥−1 in the present setting owing to the fact that D f ∣Ecu
x is

invertible.

Remark 2.2.2. We opt for the notation (D f ∣Ecu
x )−1 to denote the inverse map of D f ∣Ecu

x ∶ Ecu
x → Ecu

f (x).

Notice that it may happen that f (x) belongs in the singular set S and therefore D f −1∣Ecu
f (x) is not

necessarily defined. Of course, when f (x) ∉ S, we naturally have (D f ∣Ecu
x )−1 = D f −1∣Ecu

f (x) and

consequently m(D f ∣Ecu
x ) = ∥D f −1∣Ecu

f (x)∥
−1. Alternatively, when x ∉ f (S), the singular set of f −1, we

have D f −1∣Ecu
x = (D f ∣Ecu

f−1(x))
−1.

Nondegeneracy of a set

In the partially hyperbolic setting, we say that a set S as above is non-degenerate (with respect to f ) if

both S and f (S) have zero Lebesgue measure and there are constants α,β ,B > 0 such that:

1. for every x ∈K/S, we have

B−1 dist(x,S)α ≤m(D f ∣Ecu
x ) ≤ ∥D f ∣Ecu

x ∥ ≤ B dist(x,S)−α ;

2. for any centre-unstable disk Σ ⊂ V and x,y ∈ Σ with distΣ(x,y) < dist(x,S)/2, we have

(a) ∣ log∥(D f ∣TyΣ)−1∥− log∥(D f ∣Ecu
x )−1∥∣ ≤ B

dist(x,S)α distΣ(x,y)β , and

(b) ∣ log ∣det D f ∣TyΣ∣− log ∣det D f ∣TxΣ∣∣ ≤ B
dist(x,S)α distΣ(x,y)β .

These conditions are entirely analogous to those in Section 2.1, but here we account only for the

behavior of f along the centre-unstable direction.
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Nonuniform expansion and slow recurrence

In the definitions below, we will need to consider points x ∈ K for which the entire forward orbit

{ f n(x)}n≥0 is well defined, meaning that f n(x) ∉ S for all n ≥ 0. Strictly speaking, such points belong

to a smaller subset of K, namely,

K+ ∶=
∞

⋂
n=0

f −n(K/S),

which could happen to be too small in the sense of having zero Lebesgue measure. Since we are

assuming that Leb(S) = 0 we still have Leb(K+) = Leb(K) > 0. For this reason and in order to avoid

unnecessary notational complexity, we will keep writing K instead of K+. We say that f is nonuniformly

expanding (NUE) along the centre-unstable direction on a set H ⊆K if there is λ > 0 such that for all

x ∈H ,

liminf
n→∞

1
n

n

∑
j=1

log∥D f −1∣Ecu
f j(x)∥ < −λ . (2.20)

or equivalently,

limsup
n→∞

1
n

n

∑
j=1

log∥D f −1∣Ecu
f j(x)∥

−1 > λ .

Remark 2.2.3. As before, the notion of NUE admits a stronger version, simply replacing the liminf by

the limsup in the definition: more precisely, we say that f is strongly non-uniformly expanding along

the centre-unstable direction on a set H ⊆K if there is λ > 0 such that for all x ∈H,

limsup
n→∞

1
n

n

∑
j=1

log∥D f −1∣Ecu
f j(x)∥ < −λ .

Owing to this reason, a map f satisfying (2.20) may be called weakly nonuniformly expanding (see e.g.

[8]).

Exactly in the same way, we say that f has slow recurrence to S on a set H ⊆M, if for every ε > 0

there exists r > 0 such that for every x ∈H we have

limsup
n→∞

1
n

n−1

∑
j=0
− logdistr( f j(x),S) < ε, (2.21)

with the truncated distance distr as in (2.5). Again, we don’t need the slow recurrence condition in all

its strength, i.e., for all ε > 0: it will be enough that (2.21) holds for some ε
∗ > 0 sufficiently small.

Main results

We now present the main results concerning this type of maps, having their seminal form proposed

in [5, final comments in Section 5]. A particular type of physical measures are the so-called Sinai-

Ruelle-Bowen, or SRB, measures, which have the property of having a positive Lyapunov exponent

almost everywhere and admitting a Rokhlin decomposition of conditional measures on Pesin’s unstable
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manifolds that are absolutely continuous with respect to the Lebesgue measures on these manifolds.

The first part of our main results in this section (Theorem B) concerns the existence and finiteness

of ergodic physical SRB measures and may be regarded as the natural counterpart of [8, Theorem

A] for the class of partially hyperbolic systems with singularities just introduced. The proof requires

nontrivial technical adaptations in the corresponding arguments for the partially hyperbolic case owed

to the presence of a singular set, properly addressed in Chapter 4, thus granting Theorem B some

novelty despite the two statement’s similarity.

The main ingredient is the construction of a finite collection of nontrivial combinatorial and

geometric structures which we call Gibbs-Markov-Young, or just Young, structures for f [76]. We

postpone the quite involved description of such mathematical objects to Chapter 4 but, for the purposes

of the formulation of the statement, we just mention that such structures consist of an induced map

F = f R ∶ Λ→ Λ, defined on some set Λ ⊂M by a, generally unbounded, recurrence time function

R ∶Λ→N yet satisfying a control condition that we call the integrability of the return times. Classical

results then imply the existence of the aforementioned SRB measures for the original system associated

with Young structures with integrable return times, a process to be described more thoroughly in

Chapter 4. The global picture is given below.

Theorem B. Let f ∶M →M be a C1+ diffeomorphism outside a non-degenerate singular set S and

K ⊆M a partially hyperbolic set for f . Suppose moreover that there exists a positive Lebesgue measure

set H ⊆ K on which f is nonuniformly expanding along the centre-unstable direction and has slow

recurrence to the singular set S . Then

1. there exist closed invariant transitive sets Ω1, . . . ,Ωl ⊆ K such that for every x ∈ H we have

ω(x) =Ω j for some 1 ≤ j ≤ l;

2. each Ω j contains a subset Λ j which is the domain of a Young structure (for f ) with integrable

return times;

3. there exists a finite collection F f ∶= {µ1, . . . ,µl} of ergodic physical SRB measures supported

on the sets Ω1, . . . ,Ωl , whose basins have nonempty interior and cover a full Lebesgue measure

subset of H.

Another compelling advantage of an inducing scheme-based approach, beyond its standard use-

fulness to study statistical properties of the liftable measures, is that it allows us to derive a natural

entropy formula for them. In this regard, we call

Ju
f (x) ∶= ∣detD f ∣Ecu

x ∣

the Jacobian (w.r.t. Lebesgue) along the centre-unstable direction, a quantity naturally defined µ-almost

everywhere for every ergodic SRB measure µ ∈ F f . Observe that the integrability condition

log ∣detD f ∣Ecu
x ∣ ∈ L1(µ)
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is naturally satisfied in the context of Theorem B, in virtue of the nondegeneracy condition (1) - exactly

as in Remark 2.1.6. Likewise, relying on the Young structures prescribed by the aforementioned

theorem, we are able to deduce an entropy formula for partially hyperbolic systems with singularities

in terms of this jacobian.

Theorem C. For any ergodic physical SRB measure µ ∈ F f , we have

hµ( f ) = ∫ log ∣detD f ∣Ecu
x ∣ dµ ∈R.

The pivotal application upon which this abstract model is inspired - the Poincaré return maps of the

Lorenz flow - will be shown in Chapter 5.



Chapter 3

Entropy formula for expanding
endomorphisms with singular sets

In this chapter, we prove an entropy formula for a class of endomorphisms with singularities. We start

by giving an overview of the strategy, strongly dependent upon the classical Gibbs-Markov structures

we introduce in the sequel. The existence of these structures for the maps we consider in this chapter,

stated in Theorem 3.3.1, is well known from the works [9, 64], but we recover this result here under a

shared general framework to be used in the next chapter for diffeomorphisms. The entropy formula

is then stated under abstract conditions in Proposition 3.3.5. The heart of our approach uses fairly

standard methods in ergodic theory: we consider a tower extension associated with the Gibbs-Markov

inducing scheme, deriving a corresponding entropy formula for it and finally relate back the entropies

of these two semiconjugated systems. We refer the reader to the book [3] in order to support the

elementary material and classical results of this chapter.

3.1 Gibbs-Markov structures

In the present section, we give some preliminary definitions and classical results concerning inducing

schemes. For the purposes of this section, consider a map f ∶M→M defined on a measurable space M

with a finite reference measure m. We assume that there is a countable m mod 0 partition P∗ of M into

domains of invertibility: each f (ω) with ω ∈ P∗ is measurable and f∣ω ∶ω → f (ω) is a bimeasurable

bijection. We say that a measurable function J f ∶M→ [0,∞) is a Jacobian of f (with respect to m) if

the restriction of J f to any ω ∈ P∗ is integrable with respect to m and for any measurable set A ⊂ω we

have

m( f (A)) = ∫
A

J f dm. (3.1)

This definition does not depend on the choice of invertibility domains and the Jacobian is essentially

unique; cf. [58, Exercise 9.7.1 & Proposition 9.7.2]. When f has a strictly positive Jacobian with

respect to some partition, then f is nonsingular with respect to m, meaning that both f and f −1 preserve

17
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sets of measures zero. In that case,

n−1
⋁
j=0

f − j(P∗) = {ω0∩ f −1(ω1)∩ ⋅ ⋅ ⋅∩ f −n+1(ωn) ∶ ω0, . . . ,ωn ∈ P∗}.

defines an m mod 0 partition on M, for each n ≥ 1, and the map f n also has a Jacobian Jn
f satisfying the

usual chain rule:

Jn
f =

n−1

∏
j=0

J f ○ f j. (3.2)

Let ∆0 ⊂M be a measurable set with m(∆0) > 0. For simplicity, the restriction of m to ∆0 will still

be denote by m. Consider

• a countable m mod 0 partition P∗ of ∆0 into disjoint invertibility domains of f , which we will

call the natural partiton;

• a function R ∶ ∆0→N constant in the elements of P∗ such that

f R(ω)(ω) ⊂ ∆0, for all ω ∈ P∗. (3.3)

We associate to these objects a new map F = f R, defining, for each ω ∈ P∗,

f R∣ω = f R(ω)∣ω .

We shall refer to F = f R ∶ ∆0→ ∆0 as an induced map and to R as the recurrence time associated to f R.

We are interested in the case when the induced map f R satisfies the properties (G1)-(G4) below:

(G1) Markov: each ω ∈ P∗ is sent bijectively by F to a full m measure subset of ∆0.

(G2) Nonsingular: F has a strictly positive Jacobian JF .

It follows from the properties (G1)-(G2) that there is a subset of ∆0 with full m measure such that

for all points x in that full measure subset of ∆0, Fn(x) belongs in some element of P∗ for every

n ∈N. For all x,y belonging in that full measure subset of ∆0 we may define the separation time

s(x,y) ∶=min{n ≥ 0 ∣ Fn(x) and Fn(y) lie in distinct elements of P∗}, (3.4)

with the convention that min(∅) =∞. As we aim at results in a measure theoretical sense with

respect to the reference measure m (or some measure absolutely continuous with respect to m),

we may assume with no loss of generality that the separation time is defined for all x,y ∈ ∆0.

(G3) Separation of points: s(x,y) <∞ for all x,y ∈ ∆0 with x ≠ y.

(G4) Bounded distortion: there are constants C > 0 and 0 < β < 1 such that for all ω ∈ P∗ and x,y ∈ω ,

we have

log
JF(x)
JF(y)

≤Cβ
s(F(x),F(y)).
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We shall refer to a map F ∶ ∆0→ ∆0 satisfying the properties (Gi), i = 1,2,3,4, as a Gibbs-Markov

map. It is a classical folklore theorem (see, for instance, [3, Theorem 2.1]) that any such map admits

a unique ergodic absolutely continuous invariant probability (a.c.i.p.) measure ν0 equivalent to m

with a density function dν0/dm uniformly bounded from above and below by positive constants. This

elementary fact is the basis for the construction of all the relevant measures in this thesis. For instance,

it follows from the properties of ν0 aforementioned that

µ∗ ∶=
∞

∑
j=0

f j
∗(ν0∣{R > j})

defines an ergodic absolutely continuous f -invariant measure on M and a direct calculation shows that

µ∗ is finite if and only if

∞

∑
j=0

ν0({R > j}) = ∫
∆0

R dν0 <∞⇔∫
∆0

R dm <∞. (3.5)

The control condition (3.5) is called the integrability of the recurrence times and, whenever it holds,

the normalization

µ ∶= 1
µ∗(M)

µ∗ (3.6)

is the unique ergodic f -invariant probability measure on M with µ <<m and µ(∆0) > 0. An ergodic

absolutely continuous f -invariant probability µ on M derived from a Gibbs-Markov map F ∶ ∆0→ ∆0

with integrable recurrence times by the process described above is called liftable.

Fig. 3.1 An induced map (right) of the intermittent map (left).

3.2 Tower extension

The construction in this section can be performed under very general conditions from maps F ∶∆0→∆0,

not necessarily induced maps. However, this is the special case we are interested in, so that the
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Fig. 3.2 Tower map.

concepts/notations in the previous section are inherited here as well. Indeed, let f ∶M →M be a

map admitting an induced map F = f R ∶ ∆0→ ∆0 with reference measure m, natural partition P∗ and

recurrence time function R ∶ ∆0→N. We associate to these objects the tower

∆ = {(x, l) ∶ x ∈ ∆0 and 0 ≤ l < R(x)}

and the tower map T ∶ ∆→ ∆ given by

T(x, l) =
⎧⎪⎪⎨⎪⎪⎩

(x, l+1), if l < R(x)−1

(F(x),0), if l = R(x)−1

The lth-level of the tower is the set

∆l ∶= {(x, l) ∈ ∆}, l ∈N0, (3.7)

Observe we have used the notation ∆0 to represent both the base (or ground level) of the tower and the

inducing domain of F ∶ ∆0 → ∆0 upon which it is built: they are naturally identified with each other.

Moreover, under this identification it’s straightforward from the definitions that T R(x)(x,0) = f R(x)(x),
for x = (x,0) ∈ ∆0. We call T R ∶ ∆0 → ∆0 the return map to the base ∆0, which in the case of the

tower is actually a first return map. We shall refer to the set T−1(∆0) as the roof of the tower and to

T−1(∆0)∩∆l as a the lth-roof level. Therefore, T is an upward translation between tower levels, except

on the roof, where its action is dictated by the return map F = f R. In the same spirit, the lth level of

the tower is naturally identified with the set R+l ∶= {x ∈ ∆0 ∣R(x) > l} ⊆ ∆0. This natural identification of

each tower level ∆l with a subset of ∆0 allow us to extend the reference measure m of ∆0 to a measure

on ∆, that we still denote by m. In general, this measure on ∆ is not finite. It actually happens that the

integrability of R with respect to m (on ∆0) is a necessary and sufficient condition for the finiteness of
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m on ∆. Indeed, we have

m(∆) =∑
l≥0

m(∆l) =∑
l≥0

m({R > l}) =∑
l≥1

lm({R = l}) = ∫
∆0

Rdm.

Under the hypothesis R ∈ L1(m), we can define a unique ergodic invariant probability measure ν on ∆

lifting the measure ν0 on ∆0 by the tower map T : we start considering

ν∗ =
∞

∑
j=0

T j
∗ (ν0∣{R > j})

and then normalize: ν = ν∗(∆)−1 ⋅ν∗. Moreover, the density dν/dm is bounded from above and below

by positive constants. A measure preserving system ( f ,M,µ) is said to be a factor of another measure

preserving system (T,∆,ν) if there is a measure preserving map π ∶ ∆→M such that π ○T = f ○π and

π∗ν = µ . The map π is called the projection map or the semiconjugacy. In this case, we may say

that (T,∆,ν) is an extension of ( f ,M,µ). An important feature of tower maps coming from induced

schemes as in (3.3) is that we are able to define a projection map π ∶ ∆→M by π(x, l) = f l(x) that

semiconjugates the original system and the tower.

(∆,ν) TÐÐÐ→ (∆,ν)
×××Ö

π π

×××Ö
(M,µ) fÐÐÐ→ (M,µ)

The countable partition P∗ on ∆0 naturally induces an m mod 0 countable partition on each level ∆l .

Collecting all these partitions, we obtain an m mod 0 natural partition Q∗ of the whole tower ∆. A

sequence of dynamically generated partitions (Qn)n≥0 of ∆ is then defined in the usual way:

Qn =
n
⋁
i=0

T−iQ∗, n ∈N. (3.8)

By definition of Gibbs-Markov map, F has a strictly positive Jacobian JF . It is straightforward to check

that then the tower map also has a Jacobian with respect to the measure m on the tower given by

JT (x, l) =
⎧⎪⎪⎨⎪⎪⎩

1, if R(x) > l+1.

JF(x), if R(x) = l+1.

Besides, associated to the Gibbs-Markov map F , we have a separation time s(x,y) defined for points

x,y ∈ ∆0 as in (3.4). This separation time extends to a separation time in ∆ in the following way:

s((x, l),(x′, l′)) =
⎧⎪⎪⎨⎪⎪⎩

s(x,x′), if l = l′.

0, otherwise.
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Finally, given 0 < β < 1 and a separation time function, we can define a metric dβ on ∆×∆ by

dβ ((x, l),(x′, l′)) = β
s((x,l),(x′,l′)).

3.3 Overview of the strategy

A striking and non-trivial feature of the measures µ1, . . . ,µl in (2.9) is that they can be associated

with Gibbs-Markov maps, i.e., they are liftable according to our previous terminology. For the sake

of completeness, the global picture is stated in Theorem 3.3.1 below, the first part of which may be

regarded as a topological decomposition admitting [5, Theorem C] as its measure theoretical version

(and corollary), with the attractors replaced by SRB measures.

Theorem 3.3.1. Let f ∶M →M be a C1+ local diffeomorphism out of a nondegenerate set S ⊂M.

Assume that H ⊂M is an invariant set with Leb(H) > 0 on which f is nonuniformly expanding and has

slow recurrence to S. Then, there exist closed forward invariant sets Ω1, . . . ,Ωl ⊆M and r > 0 such

that:

1. for Leb almost every x ∈H we have ω(x) =Ω j for some 1 ≤ j ≤ l;

2. each Ω j is transitive and contains a ball Σ j of radius r such that f is nonuniformly expanding

and has slow recurrence to S for Lebesgue almost every point in Σ j.

In addition, f has an induced Gibbs-Markov map defined on a ball ∆ j ⊂ Σ j with integrable recurrence

times (with respect to Lebesgue).

Each Gibbs-Markov map on ∆ j admits a unique ergodic a.c.i.p. ν j which in turn gives rise to an

ergodic a.c.i.p. µ j (for f ) whose basin contains Lebesgue almost very point in ∆ j. The collection of

measures derived in this way gives precisely the family F f in (2.9). Theorem 3.3.1 can be proved using

a general approach (to be used in the next chapter for a more intricate class of partially hyperbolic

systems with singularities), which combines important results and techniques of the foundational

paper [5] and subsequent works [8, 9, 64]. In the remaining of this section, we outline the framework

that allow us to obtain Markov structures for systems with singularities, highlighting only the main

ingredients, clarifying how they are already present in the literature for the endomorphism case and

postponing the actual full construction to Appendix B.

The first part of Theorem 3.3.1, i.e., the existence of a finite collection of transitive attractors

Ω1, . . . ,Ωl with the property that each Ω =Ω j contains a ball Σ = Σ j of some fixed radius (uniform on

the family) on which f is nonuniformly expanding and has slow recurrence to the singular set S is not

particularly significant here, being obtained in very much the same way as in the context of the next

chapter, based on the fact that the set H is incompressible or unshrinkable in this situation as well; we

refer the reader to [8, Sections 3 and 4] for details. The more substantial part, i.e., the construction of a

Gibbs-Markov induced scheme with integrable recurrence times, is based on the assumption that there

exists ∆0 ⊂ Σ, with the same dimension of Σ, for which the conditions (A1)-(A3) below hold. We stress
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that these properties could be stated alternatively in terms of the set H alone, and only then derive the

existence of ∆0 - which as a subset of Σ will be contained Leb mod 0 in H. For the sake of notational

simplicity, we denote for each n ≥ 1,

distn ∶= dist f n(Σ) and Lebn = Leb f n(Σ),

where dist f n(Σ) stands for the distance in the submanifold f n(Σ) and Leb f n(Σ) the Lebesgue measure

on the Borel sets of f n(Σ), both induced by the Riemannian metric on M. When using this simplified

notation, the underlying manifold Σ depends upon the context and it should be implicit that Σ is such

that all the iterates f k(Σ) with 0 ≤ k ≤ n are submanifolds disjoint from S. In general, f n(Σ) might

possibly be a submanifold with singularities or even a finite union of disjoint submanifolds.

(A1) There are compact sets H1,H2, ⋅ ⋅ ⋅ ⊂ ∆0 such that for Lebesgue almost every x ∈ ∆0

a. x ∈HnÔ⇒ f k(x) ∈Hn−k, for all 0 ≤ k ≤ n,

b. x belongs to Hn for infinitely many n.

This property is based on the notion of hyperbolic times [2, 5]. More precisely, given σ ∈ (0,1)
and r > 0, we say that n is a (σ ,r)-hyperbolic time for x ∈M if

n−1

∏
j=k
∥D f ( f j(x))−1∥ ≤ σ

n−k and distr( f k(x),S) ≥ σ
b(n−k),

for all 0 ≤ k < n. In order to find the sets Hn, we recall that we assume that f is nonuniformly

expanding and has slow recurrence to S for Lebesgue almost every point in Σ. As we shall see

in the next proposition, which can be found essentially in [5] (cf. also [3, Corollary 5.1]), these

two properties ensure the existence of hyperbolic times.

Proposition 3.3.2. Let f ∶M →M be a C1+ local diffeomorphism out of a nondegenerate set

S. If f is nonuniformly expanding and has slow recurrence to S on a set H, then there exists

σ ,r ∈ (0,1) and θ > 0 such that for all x ∈H we have

limsup
n→∞

1
n

#{1 ≤ j ≤ n ∶ j is a (σ ,r)-hyperbolic time for x} ≥ θ .

Defining, for each n ≥ 1,

Hn = {x ∈ ∆0∩H ∶ n is a (σ ,r)-hyperbolic time for x }, (3.9)

Proposition 3.3.2 gives upper density of (σ ,r)-hyperbolic times: there exists θ > 0 such that for

Lebesgue almost every x ∈ ∆0 we have

limsup
n→∞

1
n

#{1 ≤ j ≤ n ∶ x ∈H j} ≥ θ . (3.10)
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In particular, this property implies that Lebesgue almost every x ∈ ∆0 belongs in infinitely many

Hn. Recalling the definition of hyperbolic time, we easily conclude that condition (A1) holds in

this context.

(A2) There is δ1 > 0 such that for each x ∈Hn there is a neighbourhood Vn(x) of x in Σ such that f n

maps diffeomorphically to a ball of radius δ1 centered at f n(x). Moreover, there are C0,η > 0

and 0 < σ < 1 such that for all Vn(x) and all y,z ∈Vn(x) we have

– distn−k( f n−k(y), f n−k(z)) ≤ σ
k distn( f n(y), f n(z)), for all 1 ≤ k ≤ n.

– log ∣detD f n(y)∣
∣detD f n(z)∣ ≤C0 distn( f n(y), f n(z))η .

The sets Vn(x) are called hyperbolic pre-balls and their images f n(Vn(x)) = Bu
δ1
( f n(x)), which

are balls of fixed radius δ1 > 0, are called hyperbolic balls. Their construction is contained in the

proposition below, which again is classical material having its roots at least in [5]; cf. also [3,

Poposition 5.2].

Proposition 3.3.3. Let f ∶M →M be a C1+ local diffeomorphism out of a nondegenerate set

S. Given σ ∈ (0,1) and r > 0, there exists δ1 > 0 such that if n is a (σ ,r)-hyperbolic time for

x ∈M, then there exists a neighbourhood Vn(x) of x which is mapped by f n diffeomorphically

onto Bδ1( f n(x)). Moreover, for all y,z ∈Vn(x) and 1 ≤ k ≤ n we have

dist( f n−k(y), f n−k(z)) ≤ σ
k/2 dist( f n(y), f n(z)).

Also, there is C0 > 0 such that for every hyperbolic preball Vn(x) and every y,z ∈Vn(x) we have

the next bounded distortion property:

log
∣detD f n(y)∣
∣detD f n(z)∣ ≤C0 dist( f n(y), f n(z))β .

We will consider the sets Wn(x) ⊂ W̃n(x) ⊂Vn(x) such that f n maps Wn(x) diffeomorphically to

the ball of radius δ1/9 and W̃n(x) to the ball of radius δ1/3, both centered at f n(x).

(A3) There are L,δ0 > 0 such that for each x ∈ Hn we have 0 ≤ l = l(x) ≤ L and domains ωn,l(x) ⊂
ω̃n,l(x) ⊂Wn(x) with f n+l mapping ωn,l diffeomorphically to a ball of radius δ0 (actually, to ∆0

itself) and mapping ω̃n,l to a ball of radius 2δ0 concentric with f n+l(ωn,l). Moreover, there are

C1,η > 0 such that for every ω̃n,l(x) and every y,z ∈ f n(ω̃n,l(x)) we have

a. 1
C1

dist(x,y) ≤ distl( f l(y), f l(z)) ≤C1 dist(y,z)

b. log ∣detD f l(y)∣
∣detD f l(z)∣ ≤C1 distl( f l(y), f l(z))η .

This condition will follow as an easy consequence of [3, Lemma 5.5] presented below.
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Lemma 3.3.4. Under the hypothesis of Theorem 3.3.1, there exist p ∈ Σ, L ∈N and C > 0 such that for

any small δ0 > 0 and any ball B ⊂Ω of radius δ1/9, there exist U ⊂ B and an integer 0 ≤ l ≤ L such that

f l maps U diffeomorphically onto B2δ0(p). Moreover, for all x,y ∈U we have

1. 1
C dist(x,y) ≤ distl( f l(x), f l(y)) ≤Cdist(x,y);

2. log ∣detD f l(x)∣
∣detD f l(y)∣ ≤Cdist( f l(x), f l(y))β .

The ball ∆0 = Bδ0(p) will be the domain of the inducing scheme, where p and δ0 are given by

Lemma 3.3.4. If conditions (A1)-(A3) hold, then we are able to construct a Gibbs-Markov map defined

on ∆0 with integrable recurrence times. The full construction from these properties as well as the

integrability of the recurrence time, inspired in [8], is carried thoroughly to the end in Appendix B for

a class of partially hyperbolic systems with singularities.

Our main Theorem A is a direct consequence of the abstract Proposition 3.3.5 applied to each

induced Gibbs-Markov map defined on ∆ j and the respective measure µ j, taking m = Leb for the

reference measure.

Proposition 3.3.5. Let f ∶M→M be a measurable map admitting a strictly positive Jacobian J f a.e.

with respect to some finite reference measure m and µ be a liftable ergodic absolutely continuous

invariant probability measure on M such that log J f ∈ L1(µ). Then, the entropy formula below holds:

hµ( f ) = ∫ logJ f dµ.

Recall from the previous section that ( f ,µ) and (T,ν) are semiconjugated systems. Our line of

attack integrates this very fact in that it allows us to relate the entropies of the original system and the

tower, deriving an entropy formula for the latter and passing this information down to the former by

simple integral computations. Indeed, the proof of Theorem A consists in the next chain of equalities:

hµ( f ) = hν(T) = ∫ logJT dν = ∫ logJ f dµ, (3.11)

where JT and J f are the Jacobians with respect to the reference measures on ∆ and M introduced before.

Remark 3.3.6. A natural question that may be prompted is whether we may implement a similar

strategy directly with the induced Gibbs-Markov map, i.e., prove the analogous chain of inequalities

for F = f R ∶ ∆0→ ∆0 without considering the tower map extension. This was actually our first approach,

but owing to the advantage of a semiconjugacy and better support from previous literature we had at

the time (see e.g. [1, 26, 32, 49, 52]), we found it simpler to implement the aforementioned strategy via

tower maps. Only latter, in [80, Theorem 5.1], we found a relation between the entropy of the induced

system and the original’s one, which would provide a somewhat technically simpler approach in very

much the same direction of (3.11). We stress, however, that the proof of [80, Theorem 5.1] relies

strongly on a tower extension and the analogous relation for the tower map hµ( f ) = hν(T) - arguably,

the most intricate part of the argument - so that in the end we opted to stick with the towers’ approach.
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3.4 Entropy formula for the tower map

We now prove Proposition 3.3.5 in a series of lemmas. Our first step is to derive an entropy formula for

the expanding tower (T,ν), namely,

hν(T) = ∫ logJT dν . (3.12)

The Lemma 3.4.1 below relates the integral terms in the entropy formulas for towers and the original

system, and implies that the integrability condition log JT ∈ L1(ν) is equivalent to log J f ∈ L1(µ) -

which is assumed by hypothesis. The calculations follow a standard computational approach which

can be found, for instance, in [10, Lemma 4.4].

Lemma 3.4.1. ∫ logJT dν = ∫ logJ f dµ .

Proof. Since there can be several elements ω ∈ P∗ with the same recurrence time, it will be useful to

group them together and consider the measurable partitions PR = {Pr}r∈N on ∆0 and QR = {∆r
l} on ∆,

defined by

Pr = {x ∈ ∆0 ∣R(x) = r}, r ∈N,

∆
r
l ∶= {(x, l) ∈ ∆ ∣x ∈ Pr⇔ R(x) = r}, for l ∈N0 and r > l.

Clearly, the natural partition Q∗ is a refinement of QR. Recall that, by definition, we have

JT ∣∆r
l
(x, l) =

⎧⎪⎪⎨⎪⎪⎩

JF(x), if r = l+1.

1, if r > l+1.

and, by the chain rule, for all r ∈ N and x ∈ Pr, we have JF(x) = J f ( f r−1(x))⋯J f ( f (x)) ⋅ J f (x). The

previous observations together with suitable algebraic/combinatorial manipulations yield:

∫ logJT dν =
∞

∑
l=0
∫

∆l+1
l

logJF dν

=
∞

∑
l=0

l

∑
k=0
∫

∆l+1
l

logJ f ○ f k dν

=
∞

∑
l=0

l

∑
k=0
∫

∆l+1
k

logJ f ○ f k dν

=
∞

∑
l=0
∑
m>l
∫

∆m
l

logJ f ○ f l dν

=
∞

∑
l=0
∫

∆l

logJ f ○ f l dν

=
∞

∑
l=0
∫

∆l

logJ f ○π dν

= ∫
∆

logJ f ○π dν
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Finally, observing that π∗ν = µ , we have

∫
∆

logJ f ○π dν = ∫
M

logJ f dπ∗ν = ∫
M

logJ f dµ.

◻
The strategy we follow to obtain (3.12) is based in [10, Proposition 4.3], where a similar result is

obtained for inducing schemes of piecewise expanding maps. We start with two auxiliary propositions

that will allows us to implement that strategy in the context of tower extensions. The first one asserts

that the natural partition Q∗ is generating, in the Kolmogorov-Sinai sense that the entropy of the tower

is realized there; cf. [61]. This is intimately connected with the classical fact below (see e.g. [29, pag.

401]) and the finiteness of the separation times.

Fact 1. Let ( f ,M,µ) be a measure-preserving system. Assume there is a sequence {Pk}k∈N of

measurable partitions of M satisfying the separating property:

(S∗) given distinct points x,y ∈M, there is s(x,y) ∈ N0 such that Pk(x) ≠ Pk(y), for all k ≥ s(x,y),
where Pk(x) stands for the atom of the partition Pk containing x.

Then hµ( f ) = supk hµ( f ,Pk).

Proposition 3.4.2. hν(T) = hν(T,Q∗)

Proof. The separating property (G3) of the Gibbs-Markov system (F,∆0,m0) with respect to the

natural partition P∗, together with the very definition of the dynamically generated partitions

Pk ∶=
k
⋁
i=0

F−iP∗, k ≥ 0,

implies that for all x,y ∈ ∆0, there exists s(x,y) ∈N0 (the separating time thus defined), such that

Pk(x) ≠ Pk(y) for all k ≥ s(x,y).

This separating property is clearly inherited to the tower map T and the natural partition Q∗: for all

(x, l),(x′, l′) ∈ ∆, there is ŝ∗((x, l),(x′, l′)) ∈N0 such that

Qk(x, l) ≠ Qk(x′, l′), for all k ≥ ŝ∗((x, l),(x′, l′)),

where Qk ∶= ⋁k
i=0 T−iQ∗. Thus, by the Fact 1, we conclude that

hν(T) = sup
k∈N0

hν(T,Qk) = hν(T,Q∗).

◻
On the second proposition, we will want to compare the volume m(Qk(x, l)) with the Jacobian

Jk
T (x, l), at least for an infinite set of times k ∈N. This is the main technical difference between inducing
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schemes and tower extensions we have to deal with in order to replicate the same approach, since

in the former case, owing to the Markov property (G1), such comparison can be done for all times

k ∈ N. Such property does not pass down to the natural partition Q∗ of the tower but, fortunately,

the strategy does not require all its strength. In the present situation, it suffices to observe that Q∗ is

quasi-Markovian with respect to the measure m (cf. [14]), meaning that there exists η ∶=m(∆0) > 0

such that for m-almost every (x, l) ∈ ∆ there are infinitely many k ∈N for which

m(T k+1(Qk(x, l))) ≥ η > 0. (3.13)

The times k may be characterized by T k(x, l) ∈ T−1(∆0), the roof of the tower, a fact that can be

deduced from the Markov property for the associated induced map F = f R and the nature of the

partition elements Qk(x, l), which remains unchanged during the time elapsed from the base to the

roof. Given an m-generic point (x, l) ∈ ∆, letM(x, l) be the set of times k ∈N where (3.13) holds. We

are now in conditions to present a volume lemma at least for this set of times:

Proposition 3.4.3. There exists a constant K2 > 0 such that for m-almost every (x, l) ∈ ∆ and all

k ∈M(x, l), we have

K−1
2 ≤m(Qk−1(x, l)) ⋅Jk

T (x, l) ≤K2.

Proof. The next auxiliary estimate on the Jacobian will prove itself useful in subsequent calculations.

The reader may want to refer to [11, Lemma 3.4] where a proof can be found. From the bounded

distortion property (G4) and the computations in [11, Lemma 3.4], one can deduce that there exists a

constant CT > 0 such that for all k ≥ 1 and (x, l),(y, l) ∈ ∆ belonging to the same element of Qk−1 we

have

log
Jk

T (x, l)
Jk

T (y, l)
≤CT β

ŝ(T k(x,l),T k(y,l)).

In particular, this implies that there exists a constant K1 ∶= eCT β > 0 such that for all k ≥ 0 and all

(x, l),(y, l) ∈ ∆ belonging to the same element of Qk−1, we have

K−1
1 ≤

Jk
T (x, l)

Jk
T (y, l)

≤K1. (3.14)

Using the Jacobian’s defining property (3.1), it follows that

m(T k(Qk−1(x, l))) = ∫
Qk−1(x,l)

Jk
T (y, l) dm(y, l)

= ∫
Qk−1(x,l)

Jk
T (y, l)

Jk
T (x, l)

Jk
T (x, l) dm(y, l).

Now, on the one hand, using the bounded distortion property (3.14), we deduce that

m(∆) ≥m(T k(Qk−1(x, l))) ≥K−1
1 ⋅Jk

T (x, l) ⋅m(Qk−1(x, l))
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and consequently, for all k ∈N,

Jk
T (x, l) ⋅m(Qk−1(x)) ≤m(∆) ⋅K1.

On the other hand, for all the values of k ∈M(x, l),

η ≤m(T k(Qk−1(x, l))) ≤K1 ⋅Jk
T (x, l) ⋅m(Qk−1(x, l)),

and therefore,

η ⋅K−1
1 ≤ Jk

T (x, l) ⋅m(Qk−1(x, l)).

Choosing K2 ∶=max{m(∆) ⋅K1,(η ⋅K−1
1 )−1}, we are done. ◻

Lemma 3.4.4. hν(T) = ∫ logJT dν .

Proof. First, recall that the measure ν is ergodic. By Proposition 3.4.2, the natural partition Q∗ on

the tower realizes the entropy. Besides, the integrability of the recurrence times implies Hν(Q∗) <∞.

Therefore, by the Shannon-McMillan-Breinman Theorem, for a ν-generic point (x, l) ∈ ∆, we have

hν(T) = hν(T,Q∗) = lim
n→∞
−1

n
logν(Qn(x, l)) = lim

n→∞
−1

n
logm(Qn(x, l)),

where the last equality comes from the fact that ν and m are equivalent measures with uniformly

bounded densities. Finally, using Proposition 3.4.3, the chain rule property for the Jacobian and

Birkhoff’s Ergodic Theorem applied to the observable φ = logJT ∈ L1(ν), we conclude that

hν(T) = lim
n→∞
−1

n
logm(Qn(x, l))

= lim
k→∞

k∈M(x,l)

− 1
k−1

logm(Qk−1(x, l))

= lim
k→∞

k∈M(x,l)

−1
k

logm(Qk−1(x, l))

= lim
k→∞

k∈M(x,l)

1
k

logJk
T (x, l)

= lim
k→∞

k∈M(x,l)

1
k

k−1

∑
i=0

logJT (T i(x, l))

= lim
n→∞

1
n

n−1

∑
i=0

logJT (T i(x, l))

= ∫ logJT dν

◻
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3.5 Original vs Tower map entropies

In this subsection, we relate the towers’ and the original system entropies. The inequality hµ( f ) ≤hν(T)
is immediate because it holds in general for semiconjugated systems. The Lemma 3.5.1 below,

expounding the reverse inequality, is owed to [32, Proposition 2.8] since tower extensions have

countable fibers. We will illustrate in slight more detail how the argument therein can be applied in this

specific scenario, without claiming any significant novelty in the arguments.

Lemma 3.5.1. hµ( f ) ≥ hν(T).

Proof. First, we recall that ( f ,µ) and (T,ν) are ergodic. As observed in [32], we note alternatively

that

hν(T) = sup
Q∈F

hν(T,Q), (3.15)

where F is any family of finite measurable partitions Q on ∆ which is stable by finite joining and

generates the σ -algebra of ∆.

We start by giving a precise description of the family F to be used in the computation. Recall that

for each r ∈N the set Pr = {x ∈ ∆0 ∣R(x) = r} is a union of elements ω0,i of the natural partition P∗ of

∆0. This union may possibly be countable, so, in order to make it finite, we will truncate it as follows:

given r,n ∈ N we denote by Pr,n any finite collection of domains ω0,i ⊂ Pr such that ⋃ω0,i∈Pr,n ω0,i has

µ measure at least (1−1/n) ⋅µ(Pr). Moreover, we can choose such collections in a increasing way:

Pr,n1 ⊆ Pr,n2 for n1 ≤ n2. Let Q∗ = {ωl,i}l,i be the natural partition of ∆, with ωl,i ∈ ∆l being the copy of

ω0,i on the lth-level for all i. Given R ∈N, define

QR−
∗ ∶= {ωl,i ∈ Q∗ ∣ω0,i ∈ Pr,R for some 1 ≤ r ≤ R} and ∆R+ ∶= ⋃

ωl,i∈Q∗/Q
R−
∗

ωl,i,

that is, we are looking at a fixed fraction (1−1/R) of the domains ω0,i which return before time R and

consider all the copies ωl,i of ω0,i from the ground level to the roof of ∆. Clearly,QR
∗ ∶= QR−

∗ ∪{∆R+} is

a finite measurable partition which gets finer and finer as R increases. Let

F ∶= {QP,R ∶= π
−1(P)∨QR

∗ ∣ P finite measurable partition on M and R ∈N }.

Clearly, each Q ∈F is finite and measurable since it is the joining of two finite measurable partitions.

Besides, the joining of a finite number of partitions in F produces another partition in F :

QP1,R1 ∨⋯∨QPn,Rn =QP1∨⋯∨Pn,max{R1,...,Rn},

Recalling that π∣ωl,i
∶ωl,i→M defined by π(x, l) = f l(x) is one-to-one due to the Markov property and

the fact that R(x) > l for (x, l) ∈ωl,i, we conclude that σ(⋃Q∈FQ) is the σ -algebra of ∆ mod sets of
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zero m-measure: just observe that given any measurable set B̂ (on the tower), we have

B̂∩ωl,i = f −l( f l(B̂∩ωl,i))∩ωl,i = π
−1(π(B̂∩ωl,i))∩ωl,i,

and consequently B̂ can be written as the union of elements of the form π
−1(P)∩ωl,i ∈ Q for some

Q ∈F , since (M,µ) is a Lebesgue space and therefore the collection of all finite measurable partitions

P on M generates the σ -algebra of M. This completes the description of the family F to be used in the

calculation of the entropy.

In the light of (3.15), to derive the reverse inequality hν(T) ≤ hµ( f ), it is therefore sufficient to

prove that given ε > 0 arbitrarily small, we have

hν(T,Q) ≤ hµ( f )+ε, for all Q ∈F . (3.16)

We will achieve this using an interesting alternative way of computing the entropy derived from the

Shannon-McMilan-Breinman Theorem. Given a finite measurable partition Q of ∆ and 0 < c < 1, let

r(Q,n,ν ,c) denote the minimum number of elements of Qn whose union has ν-measure at least c. By

Proposition A.1.1, we have

hν(T,Q) = lim
n→∞

1
n

logr(Q,n,ν ,c). (3.17)

In the light of this characterization, the heart of the proof is contained in the next claim.

Claim 1. Given any ε > 0 and a partitionQ= π
−1(P)∨QR

∗ ∈F , there exist a set B̂ ⊂∆ with c ∶= ν(B̂) > 0

and a constant C > 0 such that, for all sufficiently large n, we can cover B̂ with at most C ⋅en(hµ( f )+ε)

elements of Qn.

Note that, in particular, this implies

r(Q,n,ν ,c) ≤C ⋅en(hµ( f )+ε), for all sufficiently large n,

and consequently, taking limits as n→∞, we have hν(T,Q) ≤ hµ( f )+ ε , which finishes the proof.

Roughly speaking, a partition Q = π
−1(P)∨QR

∗ ∈ F completely determines the partition P which

(partially) defines it, in the sense that the knowledge of Q(x, l) contains all the information necessary

to determine P(π(x, l)). The reverse is however not true but, as it will be clear in the proof of Claim 1

to be given below, the knowledge of P(π(x, l)) conditions to a sufficiently large extent the possible

choices for Q(x, l). Heuristically, this is fundamentally how one obtains (3.16) in the light of (3.17).

We now prove the Claim 1. Let ε > 0 and Q = π
−1(P)∨QR

∗ ∈ F be fixed. We will construct B̂ and

exhibit C > 0 as above in three steps.

1. Determination up to the return time. Given n ∈ N and finite measurable partitions P =
{P1, . . . ,Pi} and Q= {Q1, . . . ,Q j} on M and ∆, respectively, write

(i) = (i0, . . . , in) ∶=
n
⋂
k=0

f −k(Pik),
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( j) = ( j0, . . . , jn) ∶=
n
⋂
k=0

F−k(Q jk).

We say that an element (i) ∈ Pn isQn-deterministic on the base ∆0 provided that there is a unique

( j) ∈ Qn such that for all x ∈ (i) we have (x,0) ∈ ( j). Given N ∈N, let

RN− ∶= {ω0,i ∈ P0 ∣ω0,i ∈ Pr,N for some 1 ≤ r ≤N}, ∆0,N+ ∶= ⋃
ω0,i∈P∗/RN−

ω0,i,

and consider the finite measurable partition on M defined by

RN ∶= RN− ∪{∆0,N+}∪{M/∆0}.

We use this to further refine P , thus obtaining a finite measurable partition PN ∶= P ∨RN .

Given a partition Q= π
−1(P)∨QR

∗ ∈ F it is straightforward to check from the construction that

for all N ≥ R, every element (i) ∈ PRi
N ∩ω0,i for some ω0,i ∈ RN− is QRi-deterministic, where

Ri = R(ω0,i). We stress that this full determination property would not be true had we considered

the partition P instead of PN . For instance, knowing P( f k(x)) uniquely determines the element

π
−1(P( f k(x))) =π

−1(P(π(T k(x,0)))) ∈π
−1(P) but to determineQ(T k(x,0)) one would have

to know additionally the element QR
∗(T k(x,0)), an information which can be found inRN .

2. Construction of B̂. The construction of B̂ is based on the two observations below:

(a) As a consequence of Remark A.1.2, there is a set A ⊂M with µ(A) > 3/4 such that for all n

sufficiently large, A is contained in the union of at most en(hµ( f )+ε/3) elements of Pn
N .

(b) Let R−M ∶= {(x, l) ∈ ∆ ∣R(x) ≤M} and ∆M− = ⋃ωl,i∈Q
M−
∗

ωl,i. By the integrability of the return

time function R, given 0 < δ < 1, if M ∈N is sufficiently large, we have

ν(∆M−) ≥ (1−1/M)ν(R−M) > 1−δ/2.

As a consequence of Birkhoff’s Theorem, there is a set Â ⊂ ∆ with ν(Â) > 3/4 such that for

all n sufficiently large and (x, l) ∈ Â

1
n

#{0 ≤ k ≤ n−1 ∣T k(x, l) ∈ ∆M−} > ν(∆M−)−δ/2 > 1−δ .

Define B̂ = Â∩π
−1(A) ⊂ ∆ and note that

ν(B̂) = ν(Â)+ν(π−1(A))−ν(Â∪π
−1(A))

= ν(Â)+µ(A)−ν(Â∪π
−1(A))

> 3/4+3/4−1

= 1/2.
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3. Combinatorial estimates. Our final goal at this point is to bound the number of elements ofQn

necessary to cover B̂ for all n sufficiently large as determined by the conditions appearing along

the proof. We can do it by observing the following:

(a) First, let (x, l) ∈ B̂ and consider its projection π(x, l) ∈ A. Let (i) be the element of Pn
N

containing π(x, l).

(b) Since, π(x, l) ∈ A, there are at most en(hµ( f )+ε/3) possible choices for the sequence (i). For

each of these, we want to further bound the number of possibilities for the sequence ( j) =
the element of Qn that contains (x, l).

(c) Assume N ≥M ≥R and let n1 < n2 <⋯ be the times k ∈N such that T k(x, l) ∈∆0. Note that if

T ni(x, l) ∈ ∆M− , the indexes ink , . . . , ink+Rnk
completely determine the indexes jnk , . . . , jnk+Rnk

until the next return. Therefore, except possibly for the first M iterates in case l > 0, for all

times k such that T k(x, l) ∈ ∆M− the index ik determines jk.

(d) However, observe that, since (x, l) ∈ Â, for at most for [δn] times k we have T k(x, l) ∉ ∆M− ,

where we may have some freedom of choice. There are at most Cn
[δn] possibilities for the

position of such times k and for each such possibility, at most #Q[δn] choices for the jk.

Consequently, bounding the number of all the possibilities for ( j), we conclude that we can

cover B̂ with at most

2 ⋅en(hµ( f )+ε/3) ⋅#QM ⋅Cn
[δn] ⋅#Q

[δn] ≤C ⋅en(hµ( f )+ε)

elements of Qn, provided 0 < δ < 1 is sufficiently small [cf. Proposition A.1.3]. This completes

the proof of the claim (and of the lemma). ◻





Chapter 4

Entropy formula for partially hyperbolic
diffeomorphisms with singular sets

In this chapter, the spirit of the approach is the same as that of the previous chapter, but with increased

complexity. In addition to the work done in the Chapter 3, where the existence of inducing schemes for

a class of systems with singularities was essentially contained in previous literature and just recovered

under a new perspective, here the main focus resides on the construction of Young structures, playing

the same role for these systems as the Gibbs-Markov structures for endomorphisms. A main technical

difference between them is the existence of contracting directions so that here the return of the partition

elements only needs to stretch all the way over along the unstable direction, i.e., it does not need to be

a full return in the previous sense. The general framework for the construction of Young structures

is then provided. Accordingly, the relevant work consists on the construction of so-called hyperbolic

disks and times for these maps as well as of a reference leaf serving as the basis for the domain of

the Young structure. We postpone to the appendices the partitioning algorithm of the reference leaf

and other more or less standard check-ups, as these do not contain any particular novelty or require

substantial adaptations in this setting; however, the construction in [8, Section 5] from where it is

drawn is improved, in the sense that clearer arguments and estimates are provided and it serves as

well for the purpose of the construction of Gibbs-Markov structures for endomorphisms. In order to

derive an entropy formula in terms of the unstable Jacobian, we essentially make use of the results and

general approach of the previous chapter, but with more sophisticated tools. We introduce the quotient

dynamics - obtained, roughly speaking, by collapsing stable leaves - and associated tower extensions.

Perhaps more importantly, the notion of natural extension provides the formal way to express or deduce

the heuristic and a priori expected idea that such compressing procedure - which neglects only the

stable direction, where no new dynamical information is produced - preserves the entropy. We refer the

reader to the reference [3] for additional background and details on the elementary material for this

chapter.

35
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4.1 Young structures

We say that a compact set Λ ⊂M has a product structure if there is a family of C1 stable disks Γ
s = {γs}

and a family of C1 unstable disks Γ
u = {γu} such that

• Λ = (∪γ
u)∩(∪γ

s);

• dimγ
u+dimγ

s = dimM;

• each γ
s meets each γ

u in exactly one point;

• stable and unstable disks are transversal with angles bounded away from 0.

Fig. 4.1 Product structure.

Given x ∈Λ, let γ
∗(x) denote the disk in Γ

∗ containing x, for ∗ = s,u. Given disks γ,γ ′ ∈ Γ
u, define

Θγ,γ ′ ∶ γ ∩Λ→ γ
′∩Λ by

Θγ,γ ′(x) = γ
s(x)∩ γ

′, (4.1)

and Θγ ∶Λ→ γ ∩Λ by

Θγ(x) =Θγu(x),γ(x).

We say that the product structure is measurable if the maps Θγ,γ ′ and Θγ are measurable for all γ,γ ′ ∈Γ
u.

Fig. 4.2 Holonomies.
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Fig. 4.3 s,u-subsets.

We say that Λ0 ⊂Λ is an s-subset if Λ0 has a product structure and its defining families Γ
s
0 and Γ

u
0

can be chosen with Γ
s
0 ⊂ Γ

s and Γ
u
0 = Γ

u; u-subsets are defined analogously. We say that a compact

subset Λ with a measurable product structure has a Young structure if properties (Y1)-(Y5) below hold,

where the notation mγ is used to denote the Lebesgue measure on the Borel sets of the submanifold γ

induced by the Riemannian metric on M.

(Y1) Markov: there are pairwise disjoint s-subsets Λ1,Λ2, ⋅ ⋅ ⋅ ⊂Λ such that

– mγ(Λ∩ γ) > 0 and mγ((Λ/∪i Λi)∩ γ) = 0 for all γ ∈ Γ
u;

– for each i ∈N there is Ri ∈N such that f Ri(Λi) is a u-subset and for all x ∈Λi

f Ri(γs(x)) ⊂ γ
s( f Ri(x)) and f Ri(γu(x)) ⊃ γ

u( f Ri(x)).

Fig. 4.4 Markov property.
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The Markov property allows us to introduce a recurrence time function R and an induced map

f R ∶Λ→Λ, defined respectively for each i ∈N as

R∣Λi = Ri and f R∣Λi = f Ri ∣Λi . (4.2)

Observe that the functions R and f R are defined on a full mγ measure subset of Λ∩ γ for each

γ ∈ Γ
u. Moreover, R is constant on stable disks. Since f is a diffeomorphism, it follows from (Y1)

that there is Λ
∗ ⊂Λ with mγ(Λ∗∩γ) =mγ(Λ∩γ) for each γ ∈ Γ

u, such that ( f R)n(x) belongs in

some Λi for every n ∈N and every x ∈Λ
∗. For all x,y ∈Λ

∗ we may define the separation time

s(x,y) =min{n ≥ 0 ∶ ( f R)n(x) and ( f R)n(y) lie in distinct Λi’s},

with the convention min(∅) = ∞. As we aim at results in a measure theoretical sense with

respect to the measures mγ (or some measures absolutely continuous with respect to mγ ), we

may assume with no loss of generality that the separation time is defined for all x,y ∈Λ.

For the remaining properties, we assume that C > 0 and 0 < β < 1 are constants only depending

on f and Λ.

(Y2) Contraction on stable disks: for all γ
s ∈ Γ

s and x,y ∈ γ
s we have

– dist( f R(y), f R(x)) ≤ β dist(x,y);

– dist( f j(y), f j(x)) ≤Cdist(x,y), for all 1 ≤ j ≤ R(x).

(Y3) Expansion on unstable disks: for all γ ∈ Γ
u, all Λi and x,y ∈ γ ∩Λi we have

– dist(x,y) ≤ β dist( f R(y), f R(x));

– dist( f j(y), f j(x)) ≤Cdist( f R(x), f R(y)), for all 1 ≤ j ≤ R(x).

(Y4) Absolute continuity of Γ
s: for all γ,γ ′ ∈ Γ

u, the map Θγ,γ ′ is absolutely continuous; moreover,

letting ξγ,γ ′ denote the density of (Θγ,γ ′)∗mγ with respect to mγ ′ , we have for all x,y ∈ γ
′∩Λ

1
C
≤ ξγ,γ ′(x) ≤C and log

ξγ,γ ′(x)
ξγ,γ ′(y)

≤Cβ
s(x,y).

(Y5) Bounded distortion: there is γ0 ∈ Γ
u such that for all Λi and all x,y ∈ γ0∩Λi, we have

log
detD f R

0 (x)
detD f R

0 (y)
≤Cβ

s( f R(x), f R(y)),

where f R
0 stands for the restriction of f R to γ0.

We say that the Young structure has integrable recurrence times if R is integrable with respect to

mγ0 for some (and hence all, by absolute continuity) γ0 ∈ Γ
u.
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4.2 Extensions and quotient dynamics

In this section, we review and summarize in a slightly different way classical material concerning a

collapsing procedure along stable leaves which can be found in [76, 77] as well as useful extensions

for the entropy formula.

Tower extension

Given a Young structure Λ, let R ∶Λ→N be the recurrence time function and f R ∶Λ→Λ the induced

map defined as in (4.2). Consider the tower

∆̂ = {(x, l) ∶ x ∈Λ and 0 ≤ l < R(x)},

and the tower map T̂ ∶ ∆̂→ ∆̂, given by

T̂(x, l) =
⎧⎪⎪⎨⎪⎪⎩

(x, l+1), if l < R(x)−1

( f R(x),0), if l = R(x)−1

Notice that the present situation is not exactly as in the tower extension for Gibbs-Markov maps, since

we formally do not have a reference measure on Λ and a mod 0 partition into disjoint sets. Nevertheless,

the Markov property (Y1) provides a countable collection of pairwise disjoint subsets of Λ that induces

a mγ mod 0 partition of γ ∩Λ for each γ ∈ Γ
u.

The base ∆̂0 of the tower ∆̂ is naturally identified with the set Λ, and each level ∆̂l with the set

{R > l} ⊂Λ. This allows us to refer to stable and unstable disks through points in the tower, naturally

considering the corresponding disks for their representatives in the ground level. Also, {Λ1,Λ2, . . .} is

a family of pairwise disjoint subsets of ∆̂0 whose union intersects each unstable disk γ ∈ Γ
u on a full mγ

measure subset of points in γ ∩Λ. This naturally gives rise to subfamilies on each level ∆̂l with similar

properties. Collecting all these families, we obtain a countable family Q̂ into pairwise disjoint subsets

of the tower ∆̂ whose union intersects each unstable disk γ ∈ Γ
u on a full mγ measure subset of points.

Defining π ∶ ∆̂→M by π(x, l) = f l(x), we have f ○π = π ○ T̂ .

Quotient dynamics and tower

We introduce a quotient map of the induced map f R of a Young structure Λ, by colapsing stable leaves.

Given γ0 ∈ Γ
u as in (Y5), consider the quotient map F ∶ γ0∩Λ→ γ0∩Λ of f R, defined as

F(x) =Θγ1,γ0 ○ f R(x), (4.3)

with γ1 = γ
u( f R(x)) and Θγ1,γ0 as in (4.1). The quotient map F is Gibbs-Markov with respect to the

m =mγ0 mod 0 partition P = {γ0∩Λ1,γ0∩Λ2, . . .} of γ0∩Λ, as in Section 3.1. From this fact, it follows

that the induced map of a Young structure f R ∶ Λ→ Λ has a unique ergodic SRB measure ν whose

densities of its conditionals with respect to Lebesgue conditionals on unstable disks are uniformly



40 Entropy formula for partially hyperbolic diffeomorphisms with singular sets

bounded from above and below by positive constants and ν0 = (Θγ0)∗ν is the ergodic F-invariant

probability measure such that ν0 << mγ0 . Then, assuming the integrability of recurrence times, the

measure

µ = 1
∑ j≥0 ν{R > j} ∑j≥0

f j
∗(ν ∣{R > j}) (4.4)

is the unique ergodic SRB measure of f with µ(Λ) > 0. Moreover, in that case T̂ has a unique ergodic

SRB measure ν̂ such that µ = π∗ν̂ .

Consider an unstable disk γ0 ∈ Γ
u as in (Y5) and the quotient map F ∶ γ0 ∩Λ→ γ0 ∩Λ. We can

therefore consider a tower map T ∶ ∆→ ∆ associated to F with recurrence times R as in Subsection 3.2,

and call it the quotient tower. Interpreting, as usual, each γ0∩Λi as an element of the natural partition

of the ground level of the tower ∆0, we clearly have

R∣γ0∩Λi = R∣Λi = Ri, for all i ≥ 1.

Therefore, we may use the same recurrence time R for the two tower maps T̂ and T , and it is easy to see

that we have ∆ ⊂ ∆̂. We introduce the quotient projection map Θ ∶ ∆̂→ ∆ given by Θ(x, l) = (Θγ0(x), l),
which naturally semiconjugates the two towers: T ○Θ = Θ ○ T̂ (observe that Θ is not necessarily

countable-to-one). In addition, if ν̂ is the ergodic SRB measure of T̂ , the measure Θ∗ν̂ is the ergodic

T -invariant probability measure absolutely continuous with respect to mγ0 (on the tower). In other

words, the m.p.s. ( f ,µ) and (T,Θ∗ν̂) are factors of (T̂ , ν̂).

(M,µ) π←ÐÐÐ (∆̂, ν̂) ΘÐÐÐ→ (∆,Θ∗ν̂)
×××Ö

f T̂
×××ÖT̂ T

×××Ö
(M,µ) π←ÐÐÐ (∆̂, ν̂) ΘÐÐÐ→ (∆,Θ∗ν̂)

Natural extension

The natural extension of the tower system (∆̂,B̂, ν̂ , T̂) is a new measure preserving system (∆̂#,B̂#, ν̂#, T̂ #)
defined as follows: the phase space is

∆̂
# ∶= {(. . . ,(x−1, l−1),(x0, l0)) ∈

i=0

∏
−∞

∆̂ ∣ T̂(xn, ln) = (xn+1, ln+1) for all n < 0}

and the dynamics T̂ # ∶ ∆̂#→ ∆̂
# is defined by

T̂ #(. . . ,(x−1, l−1),(x0, l0)) ∶= (. . . ,(x−1, l−1),(x0, l0), T̂(x0, l0)).

The σ -algebra B̂# is the one generated by cylinder sets of the form

[Ak, . . . ,A0] ∶= {(xn, ln)n≤0 ∈ ∆̂
# ∣(xi, li) ∈ Ai for all i = k, . . . ,0},
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where Ai ∈ B̂ for all i = k, . . . ,0, so that the extended measure is given by

ν̂
#([Ak, . . . ,A0]) ∶= ν̂(Ak ∩ T̂−1(Ak−1)∩ ⋅ ⋅ ⋅∩ T̂−k(A0)).

The natural extension (∆#,B#,(Θ∗ν̂)#,T #) of the quotient tower, playing an important role in our

arguments, is defined analogously. On the other hand, the associated natural projection maps on the 0th

coordinate of the extended spaces are not particularly relevant here.

4.3 Theoretical framework

The existence of a finite collection of transitive attractors Ω1, . . . ,Ωl in the hypothesis of Theorem

B, with the property that each Ω =Ω j contains a cu-disk Σ = Σ j of some fixed radius on which f is

nonuniformly expanding and has slow recurrence to the singular set S follows very much along the

same lines of the general argument to prove [8, Proposition 4.1]. The additional work required consists

on construction of the so-called hyperbolic disks of radius δ1 > 0 in the presence of a singular set - a

fundamental part of the whole argument - which is properly done in Section 4.4. Having in mind natural

adaptations coming from the introduction of the slow recurrence condition to deal with the presence of

singularities - which is actually the basis for the construction of the aforementioned hyperbolic disks in

that context - there is really nothing new to be done here and we restrain ourselves to the presentation

of the general picture, that resembles that of the first part of Theorem 3.3.1.

Proposition 4.3.1. Under the hypothesis of Theorem B,

1. there exist closed invariant sets Ω1, . . . ,Ωl ⊆ K such that for Lebesgue almost every x ∈H we

have ω(x) =Ω j for some 1 ≤ j ≤ l;

2. each Ω j is transitive and contains a cu-disk Σ j of radius δ1/4 on which f is nonuniformly

expanding along Ecu and exhibits slow recurrence to the singular set for LebΣ j -almost every

point x ∈ Σ j.

We fix some Ω =Ω j and Σ = Σ j as in the previous proposition for the rest of the chapter and localize

the construction of a Young structure on this region. Recall that we denote for each n ≥ 1,

distn ∶= dist f n(Σ) and Lebn = Leb f n(Σ), (4.5)

where dist f n(Σ) stands for the distance in the submanifold f n(Σ) and Leb f n(Σ) the Lebesgue measure on

the Borel sets of f n(Σ), both induced by the Riemannian metric on M. When merely using the above

notation, the manifold Σ considered depends upon the context: in general, f n(Σ) might possibly be a

submanifold with singularities or even a finite union of disjoint submanifolds. Therefore, whenever we

use distn it should be implicit that Σ is such that all the iterates f k(Σ) with 0 ≤ k ≤ n are submanifolds

disjoint from the singular set S . From the assumption (E2), there is a constant δs > 0 so that local stable
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Fig. 4.5 u-crossing.

manifolds W s
δs
(x) are defined for Lebesgue almost all points x ∈ Σ. Moreover, for any subdisk ∆0 ⊂ Σ

we define the cylinder

C(∆0) ∶= ⋃
x∈∆0

W s
δs
(x), (4.6)

and let Θ denote the projection from C(∆0) onto ∆0 along local stable leaves. We say that a centre-

unstable disk γ
u ⊂M u-crosses C(∆0) if there exists a connected component ω of γ

u ∩C(∆0) such

that Θ(ω) = ∆0. We will often be considering cu-disks which u-cross C(∆0) for some centre-unstable

subdisk ∆0. By continuity of the stable foliation, if we choose δs sufficiently small, then the diameter

and Lebesgue measure of the intersection of such disks with C(∆0) are very close to those of ∆0,

respectively. To simplify the notation and the calculations we will ignore this difference as it has no

significant effect on the estimates. The core idea is then to show that there is an unstable disk ∆0 ⊂ Σ of

the same dimension of Σ and sets for which the conditions (A1)-(A3) hold, namely:

(A1) There are compact sets H1,H2, ⋅ ⋅ ⋅ ⊂ ∆0 such that for Lebesgue almost every x ∈ ∆0

a. x ∈HnÔ⇒ f k(x) ∈Hn−k, for all 0 ≤ k ≤ n,

b. x belongs to Hn for infinitely many n.

(A2) There is δ1 > 0 such that for each x ∈Hn there is a neighbourhood Vn(x) of x in Σ such that f n

maps diffeomorphically to a disk of radius δ1 centered at f n(x). Moreover, there are C0,η > 0

and 0 < σ < 1 such that for all Vn(x) and all y,z ∈Vn(x) we have

– distn−k( f n−k(y), f n−k(z)) ≤ σ
k distn( f n(y), f n(z)), for all 1 ≤ k ≤ n.

– log ∣detD f n∣TyΣ∣

∣detD f n∣TzΣ∣
≤C0 distn( f n(y), f n(z))η .
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The sets Vn(x) are called hyperbolic pre-disks and their images f n(Vn(x)) = Bu
δ1
( f n(x)) are

called hyperbolic disks. As before, we will consider the sets Wn(x) ⊂ W̃n(x) ⊂Vn(x) such that f n

maps Wn(x) diffeomorphically to the disk of radius δ1/9 and W̃n(x) to the disk of radius δ1/3,

both centered at f n(x).

(A3) There are L,δ0 > 0 such that for each x ∈ Hn we have 0 ≤ l = l(x) ≤ L and domains ωn,l(x) ⊂
ω̃n,l(x) ⊂Wn(x) with f n+l(ωn,l(x)) u-crossing the cylinder around a cu-disk of radius δ0 and

f n+l(ω̃n,l(x)) u-crossing the cylinder around a concentric cu-disk of radius 2δ0. Moreover, there

are C1,η > 0 such that for every ω̃n,l(x) and every y,z ∈ f n(ω̃n,l(x)) we have

a. 1
C1

dist(x,y) ≤ distl( f l(y), f l(z)) ≤C1 dist(y,z)

b. log ∣detD f l ∣TyΣ∣

∣detD f l ∣TzΣ∣
≤C1 distl( f l(y), f l(z))η .

Fig. 4.6 Recurrence to the cylinder C(∆0).

In this chapter, we concern ourselves only with the exhibition of ∆0 and the verification of

properties (A1)-(A3) above, which is the principal novelty for the class of partially hyperbolic systems

with singularities we consider in this thesis. The remaining of the construction of a Young structure is

postponed to Appendix B since it contains no significant novelty in comparison with previous works on

partially hyperbolic systems; cf. [8]. The conditions (A1), (A2) are intimately related to the notion of

hyperbolic disks and times that we explore in Section 4.4. These are the most fundamental mathematical

objects to implement our strategy regarding the construction of Young structures. Roughly speaking,

the sets Vn(x) will be obtained using some uniform expansion property for the points in Hn at time

n, causing small neighbourhoods of such points to grow to disks of large scale. On the other hand,

the property (A3) - which in particular allows us to define integrable recurrence times to some Young

structure containing ∆0 as an unstable leaf - is derived assuming some transitivity of the system akin to

the endomorphism case and is carefully treated in Section 4.5.
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4.4 Hyperbolic disks and times

In this section, aiming at establishing the properties (A1)-(A2) on an arbitrary centre-unstable disk Σ,

we present the notion of hyperbolic times introduced by J. F. Alves in [2] and the intimately related

geometric objects named hyperbolic (pre-)disks. Roughly speaking, these are neighbourhoods of points

admitting hyperbolic times that are uniformly expanded by the respective hyperbolic time iterate of f

onto a ball of fixed radius, with uniformly bounded distortion. For the sake of convenience, we fix once

and for all α,β ,B > 0 as in the definition of the nondegenerate singular set and take b > 0 such that

b < 1
2

min{1,α−1
β}. (4.7)

Given σ ∈ (0,1) and r > 0, we say that n ∈ N is a (σ ,r)-hyperbolic time for a point x ∈ K, if for all

1 ≤ k ≤ n we have

1. Π
n
j=n−k+1∥D f −1∣Ecu

f j(x)∥ ≤ σ
k,

2. distr( f n−k(x),S) ≥ σ
bk > 0.

Here, we use the letter r on the subscript of ’dist’ to refer to the truncated distance to the singular set

defined in (2.5), while reserving the letters k,n to denote the distance on the iterated disks as in (4.5).

Observe that the first condition in the definition of (σ ,r)-hyperbolic times implies that D f −k∣Ecu
f n(x) is

a σ
k-contraction for every 1 ≤ k ≤ n. The second condition ensures that the iterates f k(x) with 0 ≤ k < n

are not too close to S . In particular, all the points in the set

Hn ∶= {x ∈H ∶ n is (σ ,r)-hyperbolic time for x} (4.8)

are uniformly distant away from S: dist(x,S) ≥ rn ∶= r ⋅σbn > 0. The next result asserts the existence of

infinitely many (σ ,r)-hyperbolic times for points satisfying the weak nonuniform expansion condition

(2.20) and exhibiting slow recurrence to the singular set S (2.21).

Lemma 4.4.1. There are 0 < σ ,r < 1 and θ > 0 such that for all x ∈H ⊂K,

limsup
n→∞

1
n

#{1 ≤ j ≤ n ∣ j is a (σ ,r)-hyperbolic time for x} ≥ θ . (4.9)

Remark 4.4.2. Under the weaker version of nonuniform expansivity expressed in (2.20), we are unable

to prove the existence of a positive frequency of hyperbolic times at infinity for points x ∈H, as is done

in [5, Corollary 3.2]: by positive frequency we mean that there is θ > 0 such that given any x ∈H and

any sufficiently large N ≥ 1, there exist (σ ,r)-hyperbolic times 1 ≤ n1 <⋯ < nl ≤N for x, with l ≥ θ ⋅N.

In other words, we would be able to replace the limsup by a liminf in (4.9). For our purposes, the

existence of infinitely many hyperbolic times for points satisfying (2.20) and (2.21), as implied by (4.9)

is enough.
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Lemma 4.4.3. [5, (Pliss) Lemma 3.1] Given A ≥ c2 > c1, define θ ∶= (c2−c1)/(A−c1) ∈ (0,1]. Assume

that a1, . . . ,aN are real numbers satisfying

1. a j ≤ A for every 1 ≤ j ≤N, and

2. ∑N
j=1 a j ≥ c2N.

Then, there are l ≥ θ ⋅N and natural numbers 1 < n1 <⋯ < nl ≤N satisfying

ni

∑
j=n+1

a j ≥ c1(ni−n)

for every i = 1, . . . , l and 0 ≤ n < ni.

Proof. Define S0 = 0 and

Sn =
n

∑
j=1
(a j −c1), for each 1 ≤ n ≤N.

Take 1 < n1 <⋯< nl ≤N a maximal sequence such that Sni ≥ Sn for every 0 ≤ n < ni and 1 ≤ i ≤ l. Observe

that such a sequence exists: since SN > 0 = S0, we must have l ≥ 1. Moreover, for each 1 ≤ i ≤ l, we have

ni

∑
j=n+1

a j ≥ c1(ni−n), for 0 ≤ n < ni.

We are left to verify that l ≥ θ ⋅N. Defining for convenience n0 = 0, by the choice of the maximal

sequence times we have, for each 1 ≤ i ≤ l,

Sni−1 < Sni−1 .

Therefore, adding A−c1 ≥ ani −c1 to both sides we obtain for each 1 ≤ i ≤ l

Sni < Sni−1 +(A−c1)⇔ Sni −Sni−1 < (A−c1).

Moreover, observing that Snl ≥ SN ≥N(c2−c1), we get

N(c2−c1) ≤ Snl =
l

∑
i=1

Sni −Sni−1 < l(A−c1)

which completes the proof. ◻

Given x ∈H, the strategy to prove Lemma 4.4.1 is to use Pliss’ Lemma twice: first, for the sequence

D j = − log∥D f −1∣Ecu
f j(x)∥, j ≥ 1, (4.10)

up to a cut off that makes it bounded from above, and then with

d j = logdistr( f j−1(x),S), j ≥ 1, (4.11)
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for a convenient choice of r > 0. A routine check shows that any time ni for which the conclusions of

Pliss’ Lemma hold, simultaneously, for both of the sequences introduced above is actually a (σ ,r)-
hyperbolic time for x and we prove the ’frequency’ of such ni accords with (4.9). Recall that we have

assumed that 0 < b <min{1/2,1/2β}.

Proof. (of Lemma 4.4.1) We start with the sequence (4.10). First, observe that for x ∈ H, the

non-uniform expansion condition (2.20) implies that

E(x) ∶= {N ∈N ∣
N

∑
j=1
− log∥D f −1∣Ecu

f j(x)∥ ≥ λN}

is an infinite set. Given N ∈ E(x) sufficiently large, we define a sequence a1, . . . ,aN by

a j =
⎧⎪⎪⎨⎪⎪⎩

− log∥D f −1∣Ecu
f j(x)∥ if j ∉ JN

0 if j ∈ JN

where JN is a subset of times contained in {1, . . . ,N} specified in the next steps:

1. by the condition (1) in the definition of singular set, we have

∣ log∥D f −1∣Ecu
f (x)∥∣ ≤ ∣ logB∣ +α ∣ logdist(x,S)∣ ≤ ρ ∣ logdist(x,S)∣, (4.12)

for every x ∈K/S in a sufficiently small neighbourhood U of S, say

dist(x,S) < ε < 1, for all x ∈ U ,

provided ρ > α is large enough. Let M be an upper bound of − log∥D f −1∣Ecu
f (x)∥ for x on the

(compact) complement of U where the function is defined.

2. Given ε1 > 0 such that ρε1 ≤ λ/2, the slow recurrence condition (2.21) implies the existence of

1 > r1 > 0 such that
N

∑
j=1
− logdistr1( f j−1(x),S) ≤ ε1N,

for all large N.

3. Let A ≥max{ρ ∣ logr1∣,M,λ} and define

JN ∶= {1 ≤ j ≤N ∣ − log∥D f −1∣Ecu
f j(x)∥ > A}.

We claim a1, . . . ,aN satisfies the hypothesis of Lemma 4.4.3 with A as defined above, c1 = λ/4 and

c2 = λ/2. By definition, we have a j ≤ A for all 1 ≤ j ≤N. Moreover, observe that if j ∈ JN , then

• f j−1(x) ∈ U , and in particular, dist( f j−1(x),S) < 1;
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• r1 > dist( f j−1(x),S) = distr1( f j−1(x),S), since

ρ ∣ logr1∣ ≤ A < − log∥D f −1∣Ecu
f j(x)∥ < ρ ∣ logdist( f j−1(x),S)∣.

Using the previous observations, we conclude that

N

∑
j=1

a j =
N

∑
j=1
− log∥D f −1∣Ecu

f j(x)∥− ∑
j∈JN

− log∥D f −1∣Ecu
f j(x)∥

≥
N

∑
j=1
− log∥D f −1∣Ecu

f j(x)∥−ρ ∑
j∈JN

∣ logdistr1( f j−1(x),S)∣

≥ (λ −ρε1)N

≥ λ

2
N = c2N

Therefore, the lemma provides a frequency θ1 > 0 and l1 ≥ θ1N times 1 ≤ p1 < p2⋯< pl1 ≤N such that

pi

∑
j=n+1
− log∥D f −1∣Ecu

f j(x)∥ ≥
pi

∑
j=n+1

a j ≥
λ

4
(pi−n)

for every 1 ≤ i ≤ l1 and 0 ≤ n ≤ pi − 1. Now, we turn our attention to the sequence (4.11). Again,

given 0 < ε2 < θ1bλ/4, there is 1 > r2 > 0 such that ∑N
j=1 logdistr2( f j−1(x),S) ≥ −ε2N for all large

N. Applying Lemma 4.4.3 to the sequence a j = logdistr2( f j−1(x),S) with 1 ≤ j ≤ N and parameters

c1 = −bλ/4, c2 = −ε2, A = 0 and

θ2 =
c2−c1

A−c1
= 1− 4ε2

bλ
> 1−θ1,

we conclude that there are l2 ≥ θ2N times 1 ≤ q1 <⋯ < q2 ≤N such that

qi−1

∑
j=n

logdistr2( f j(x),S) ≥ −bλ/4(qi−n)

for every 1 ≤ i ≤ l2 and 0 ≤ n < qi. Finally, since θ = θ1 +θ2 −1 > 0, there exist l = (l1 + l2 −N) ≥ θN

times 1 ≤ n1 <⋯ < nl ≤N at which

ni

∑
j=n+1
− log∥D f −1∣Ecu

f j(x)∥ ≥ λ/4(ni−n) and
ni

∑
j=n+1

logdistr2( f j−1(x),S) ≥ −bλ/4(ni−n),

for every 1 ≤ i ≤ l and 0 ≤ n < ni. Letting σ = e−λ/4 and r = r2, we easily obtain from the inequalities

above that

Π
ni
j=ni−k+1∥D f −1∣Ecu

f j(x)∥ ≤ σ
k and distr( f ni−k(x),S) ≥ σ

bk > 0

for all 1 ≤ i ≤ l and 1 ≤ k ≤ ni. In other words, all of those ni are (σ ,r)-hyperbolic times for x. ◻
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The cu-disk Σ may be assumed to be almost everywhere contained in H, so, given any ∆0 ⊂ Σ, we

define the sets

Hn ∶= {x ∈H ∩∆0 ∶ n is a (σ ,r)-hyperbolic time for x}.

We can easily check from the definition of hyperbolic times and Lemma 4.4.1 that for every x ∈H ∩∆0

we have

• x ∈HnÔ⇒ f k(x) ∈Hn−k, for all 0 ≤ k ≤ n;

• x belongs to Hn for infinitely many n, more precisely, there is θ > 0 such that

limsup
n→∞

1
n

#{1 ≤ j ≤ n ∣ x ∈H j} ≥ θ .

This is essentially the content of property (A1). Hyperbolic times naturally provide nontrivial pointwise

information about the dynamics of the points where they are defined but, as we shall see below, these

properties can be extended to an unstable neighbourhood of the reference point. This fact, which goes

in the direction of (A2), is properly expressed in the result below, where 0 < σ ,r < 1 are fixed once and

for all according to the Lemma 4.4.1.

Lemma 4.4.4. There exists δ1 > 0 for which the following property holds: given any C1 centre-unstable

disk Σ ⊂ V with radius 0 < r < δ1, there is n0 ∶= n0(r,δ1,σ) ∈N such that if n ≥ n0 is a (σ ,r)-hyperbolic

time for a point x ∈ Σ∩H with distΣ(x,∂Σ) > r/2, there exists a neighbourhood Vn(x) of x in Σ such that

1. f n maps Vn(x) diffeomorphically onto a (full) cu-disk Bcu
δ1
( f n(x)) of radius δ1 around f n(x).

More precisely,

Bcu
δ1
( f n(x)) ∶= {z ∈ f n(Σ)∣ distn(z, f n(x)) < δ1}. (4.13)

2. for every y,z ∈Vn(x) and 1 ≤ k ≤ n,

distn−k( f n−k(y), f n−k(z)) ≤ σ
3k/4 distn( f n(y), f n(z)). (4.14)

Remark 4.4.5. We recall that V , the open neighbourhood where the cone fields are defined, is assumed

to be forward invariant. In that case, all the iterates f n(Σ) with n ≥ 0 are centre-unstable disks. In

particular, Bcu
δ1
( f n(x)) as defined in (4.13) is a cu-disk. The only potential problem that may arise is

whether or not it has radius δ1 in the sense that any point z ∈ ∂Bcu
δ1
( f n(x)) satisfies distn(z, f n(x)) = δ1.

Observe that this is not necessarily true in general: for instance, if f n(x) lies very close to ∂ f n(Σ)
there is no chance for all the points in the border of Bcu

δ1
( f n(x)) to be exactly at radial distance δ1 from

the center. Such difficulty may be overcome by considering only sufficiently large hyperbolic times of

points with distance bounded away from the border of Σ as in the hypothesis of the lemma.
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Lemma 4.4.6 (Comparison of derivatives). Given 0 < σ ,r < 1, there is δ1 ∶= δ1(σ ,r) > 0 such that for

any C1 centre-unstable disk Σ ⊂ V and a (σ ,r)-hyperbolic time n ≥ 1 for x ∈ Σ∩K, we have

∥D f −1∣Tf (y) f n−k+1(Σ)∥ ≤ σ
−1/4∥D f −1∣Ecu

f n−k+1(x)∥

and, hence,

m(D f ∣Ty f n−k(Σ)) ≥ σ
1/4∥D f −1∣Ecu

f n−k+1(x)∥
−1

for all 1 ≤ k ≤ n and any point y ∈ Σn,k(x) ∶= {z ∈ f n−k(Σ)∣ distn−k(z, f n−k(x)) < δ1σ
k/2} ⊂ V/S.

Proof. The lemma is a direct consequence of condition (2a) in definition of nondegenerate set after

we check the following claim:

Claim 2. For all γ > 0 and δ1 < γ ⋅ r < γ , if n is a (σ ,r)-hyperbolic time for x, then

distn−k(y, f n−k(x)) < γ ⋅dist( f n−k(x),S),

for all 1 ≤ k ≤ n and y ∈ Σn,k(x).

Proof of the Claim. Since n is a (σ ,r)-hyperbolic time for x, we have by the slow approximation

condition 2,

distr( f n−k(x),S) ≥ σ
bk, for all 1 ≤ k ≤ n.

By definition of truncated distance, this means that

dist( f n−k(x),S) ≥ r or else dist( f n−k(x),S) = distr( f n−k(x),S) ≥ σ
bk,

which implies

dist( f n−k(x),S) ≥min{r,σbk} ≥ rσ
bk.

Hence, taking δ1 < γ ⋅ r < γ , and since we haven chosen b < 1/2, for any point y ∈ Σn,k(x) we have

distn−k(y, f n−k(x)) ≤ δ1σ
k/2 < γ ⋅min{σbk,r} ≤ γ ⋅dist( f n−k(x),S).

◻
In particular, taking γ = 1/2 we have for all 1 ≤ k ≤ n and y ∈ Σn,k(x),

distn−k(y, f n−k(x)) < 1
2

dist( f n−k(x),S),

Finally, from condition (2a) it follows that for all 1 ≤ k ≤ n and y ∈ Σn,k(x)

log
∥D f −1∣Tf (y) f n−k+1(Σ)∥
∥D f −1∣E f n−k+1(x)∥

≤ B
dist( f n−k(x),S)α distn−k(y, f n−k(x))β ≤ Bδ1

σ
βk/2

min{σαbk,rα} .
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Since 0 < σ ,r < 1 and we have chosen b as in (4.7), the term on the right hand side is bounded by

Bδ1r−α . Choosing δ1 > 0 sufficiently small so that Bδ1r−α < logσ
−1/4 we get the conclusion. ◻

Remark 4.4.7. For latter reference, we resume here the conditions on δ1 > 0 coming from the proof of

Lemma 4.4.4:

1. δ1 < B−1rα logσ
−1/4;

2. the exponential map in the ball of radius δ1 around any point x ∈M is an isometry onto its image.

Proof. (of Lemma 4.4.4) Let Σ be a C1 centre-unstable disk of radius 0 < r < δ1 and n be a (σ ,r)-
hyperbolic time for a point x ∈ Σ∩H with distΣ(x,∂Σ) ≥ r/2. Using an inductive argument, we prove

that the sets

Vk(x) ∶= f −k(Bcu
δ1
( f n(x))), for 0 ≤ k ≤ n,

with Bcu
δ1
( f n(x)) as defined in (4.13), satisfy the properties below:

(a) Vk(x) is a centre-unstable neighbourhood of f n−k(x) in f n−k(Σ) contained in

Σn,k(x) ∶= {z ∈ f n−k(Σ)∣ distn−k(z, f n−k(x)) < δ1σ
k/2},

(b) f k
∣Vk(x)

∶Vk(x) →V0(x) = Bcu
δ1
(x) is a σ

−3k/4-dilation: for all f n−k(y), f n−k(z) ∈Vk(x),

distn( f n(y), f n(z) ≥ σ
−3k/4 distn−k( f n−k(y), f n−k(z)).

Properties (a) and (b) are trivial for V0(x) = Bcu
δ1
( f n(x)) = Σn,0(x). Given 1 ≤ k ≤ n we assume that

Vj(x) satisfies (a) and (b) for all 0 ≤ j ≤ k−1,

and want to verify that the same properties hold for Vk(x). Let f n−k(y) ∈Vk(x) be an arbitrary point.

Since we choose δ1 > 0 so that the exponential map in the ball of radius δ1 around any point x ∈M is an

isometry onto its image, we have that

f n(y) ∈V0(x) = Bcu
δ1
( f n(x)) ⊂ Bδ1( f n(x))

can be joined to f n(x) through a smooth curve of minimal length

γ0 ∶ [0,1] →V0(x) = Σn,0(x) ⊂ f n(Σ)

with γ0(0) = f n(x) and γ0(1) = f n(y). For 1 ≤ j ≤ k, let γ j ∶ [0,1] → Vj(x) ⊂ f n− j(Σ) be the curve

defined by γ j = f − j ○γ0, so that γ j connects γ j(0) = f n− j(x) to γ j(1) = f n− j(y), but is not necessarily of

minimal length, i.e.,

length(γ j) ≥ distn− j( f n− j(x), f n− j(y)).
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By the induction hypothesis, we have γ j ⊂Vj(x) ⊂ Σn, j(x), for all 0 ≤ j ≤ k−1, so let us demonstrate

that γk ⊂ Σn,k(x), i.e.,

distn−k(γk(t), f n−k(x)) < δ1σ
k/2, for all 0 ≤ t ≤ 1.

Using Lemma 4.4.6 and the fact that n is a (σ ,r)-hyperbolic time for x, we have the next estimate for

all f n−k(y′) ∈ Ak ∶= Σn,k ∩Vk(x) ⊆ ⋂k
j=1 f −(k− j)(Σn, j(x)):

m(D f k∣Tf n−k(y′) f n−k(Σ)) ≥
k

∏
j=1

m(D f ∣Tf n− j(y′) f n− j(Σ)) ≥
k

∏
j=1

σ
1/4∥D f −1∣E f n− j+1(x)∥−1 ≥ σ

−3k/4.

In particular, we have m(D f k∣Tγk(t) f n−k(Σ)) ≥ σ
−3k/4 for all times 0 ≤ t ≤ 1 such that γk(t) ∈ Σn,k(x).

We have γk(0) = f n−k(x) ∈ Σn,k(x)∩Vk(x) so assume otherwise that there is a first moment 0 < tk ≤ 1

when γk(tk) ∉ Σn,k(x), say,

distn−k(γk(tk), f n−k(x)) ≥ δ1σ
k/2.

In that case, one would derive a contradiction since then

distn( f n(y), f n(x)) ∶= length(γ0)
≥ length(γ0∣[0,tk])

∶= ∫
tk

0
∥γ ′0(t)∥dt

= ∫
tk

0
∥D f k(γk(t)) ⋅ γ ′k(t)∥dt

≥ ∫
tk

0
σ
−3k/4∥γ ′k(t)∥dt

= σ
−3k/4length(γk∣[0,tk])

≥ σ
−3k/4 distn−k(γk(tk), f n−k(x))

≥ δ1σ
−k/4

> δ1.

(4.15)

Therefore, this implies that f n−k(y) ∈ Σn,k(x) and since f n−k(y) ∈Vk(x) was arbitrary we actually have

Vk(x) ⊂ Σn,k(x). Moreover, it follows from (4.15) that for all f n−k(y), f n−k(z) ∈Vk(x),

distn( f n(y), f n(z) ≥ σ
−3k/4 distn−k( f n−k(y), f n−k(z)).

This completes the induction. Now, we prove that Bcu
δ1
( f n(x)) is a ’full’ cu-disk of radius δ1, in the

sense that any point p ∈ ∂Bcu
δ1
( f n(x)) satisfies distn(p, f n(x)) = δ1, as long as

n ≥ n0 ∶= 2
log(r/(2δ1))

log(σ) .
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As remarked before, this is not necessarily true in general: for instance, if f n(x) lies very close to

∂ f n(Σ) there is no chance for all the points in the border of Bcu
δ1
( f n(x)) to be at radial distance δ1 from

the center. Let z = f n(y) ∈ ∂ f n(Σ) and suppose by absurd that

distn( f n(y), f n(x)) < δ1.

Since in that case f n(y) ∈ Bcu
δ1
( f n(x)), we conclude that y ∈Vn(x) and in particular

distΣ(y,x) < δ1σ
n/2. (4.16)

Moreover, since y ∈ ∂Σ, we have

distΣ(y,x) ≥ distΣ(x,∂Σ) ≥ r/2. (4.17)

Hence, combining the inequalities (4.16) and (4.17), we conclude that

r/2 ≤ δ1σ
n/2⇒ n < n0 ∶= 2

log(r/(2δ1))
log(σ) .

Since we are assuming n ≥ n0, we conclude that Bcu
δ1
( f n(x)) is actually a full disk of radius δ1 in the

sense above. ◻

Lemma 4.4.8. There is C0 > 1 such that for every hyperbolic pre-disk Vn(x) and every y,z ∈Vn(x) we

have the next bounded distortion property:

log
∣detD f n∣TyΣ∣
∣detD f n∣TzΣ∣

≤C0 distn( f n(y), f n(z))β .

Proof. Let y,z ∈Vn(x) ⊂Σ and 0≤ k ≤ n. By construction, f k(x), f k(y), f k(z) ∈Σn,n−k(x) for all 0≤ k ≤ n,

so Claim 2 implies that

dist( f k(y),S) ≥ dist( f k(x),S)−distk( f k(x), f k(y))
> (1− γ)dist( f k(x),S)
> (1− γ)rσ

(n−k)b

> 1− γ

2γ
2δ1σ

(n−k)/2

≥ 1− γ

2γ
distk( f k(y), f k(z)).

(4.18)

Taking γ = 1/5 we conclude that, for all 0 ≤ k ≤ n,

distk( f k(y), f k(z)) < 1
2

dist( f k(y),S).
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Therefore, assumption (2b) in the definition of non-degenerate singular set, estimate (4.18) and the

backward contraction property (4.14) imply that for all 0 ≤ k ≤ n we have

log
∣detD f ∣Tf k(y) f k(Σ)∣
∣detD f ∣Tf k(z) f k(Σ)∣ ≤

B
dist( f k(y),S)α distk( f k(y), f k(z))β

≤ B5α(4r)−α
σ
(n−k)(3/4β−αb)distn( f n(y), f n(z))β .

(4.19)

Finally,

log
∣detD f n∣TyΣ∣
∣detD f n∣TzΣ∣

=
n−1

∑
k=0

log
∣detD f ∣Tf k(y) f k(Σ)∣
∣detD f ∣Tf k(z) f k(Σ)∣

≤
n−1

∑
k=0

B5α(4r)−α
σ
(n−k)(3/4β−αb)distn( f n(y), f n(z))β

≤C0 distn( f n(y), f n(z))β ,

where C1 is any constant greater or equal to B5β (4r)−β∑∞i=0 σ
(3/4β−αb)i < +∞ (recall from (4.7) that

3/4β > 1/2β > αb). ◻

It follows from Lemma 4.4.8 that there is C1 ∶=C1(C0,δ1) > 0 such that for every hyperbolic pre-disk

Vn(x) and any Borel sets Y,Z ⊂Vn(x), we have

1
C1

LebΣ(Y)
LebΣ(Z)

≤
Leb f n(Σ)( f n(Y))
Leb f n(Σ)( f n(Z)) ≤C1

LebΣ(Y)
LebΣ(Z)

(4.20)

Indeed,

Leb f n(Σ)( f n(Y))
Leb f n(Σ)( f n(Z)) =

∫Y ∣detD f n∣TyΣ∣ d LebΣ(y)
∫Z ∣detD f n∣TzΣ∣ d LebΣ(z)

=
∫Y
∣detD f n∣TyΣ∣

∣detD f n∣TxΣ∣
d LebΣ(y)

∫Z
∣detD f n∣TzΣ∣

∣detD f n∣TxΣ∣
d LebΣ(z)

≤C1
LebΣ(Y)
LebΣ(Z)

.

and the other inequality is obtained reversing the roles of Y and Z.

Remark 4.4.9 (Holder continuity of the Jacobian). It follows from (4.19) that the functions

Jk ∶ yk ∈ f k(Vn(x)) ↦ log ∣detD f ∣Ty f k(Σ)∣, 0 ≤ k ≤ n,

are (L1,ζ)-Hölder continuous, with L1 depending only on α,β ,B,r and δ1, provided 0 < ζ < 1 satisfies

3/4(β − ζ) −αb > 0 (recall that from (4.7) it follows that 3/4β −αb > 0). Actually, given points
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yk,zk ∈ f k(Vn(x)) and δ1 as above, we have

∣log
∣detD f ∣Tyk f k(Σ)∣
∣detD f ∣Tzk f k(Σ)∣ ∣ ≤

B
dist(zk,S)α

distk(yk,zk)β

≤ B5α(4r)−α distk(yk,zk)β−ζ

σ (n−k)αb
distk(yk,zk)ζ

≤ B5α(4r)−α
σ

3/4(n−k)(β−ζ)
δ

β−ζ

1

σ (n−k)αb
distk(yk,zk)ζ

= B5α(4r)−α
σ
(n−k)(3/4(β−ζ)−αb)

δ
β−ζ

1 distk(yk,zk)ζ

≤ L1 distk(yk,zk)ζ .

where L1 is any constant greater or equal than B5α(4r)−α
δ

β−ζ

1 .

The next lemma is an important piece in the proof of the existence of finitely many transitive

attractors containing disks contained Leb mod 0 in H (Proposition 4.3.1). It can be found in [12,

Proposition 5.5] and despite the fact that the setting considered by the authors in that paper does not

include the presence of critical/singular sets, the same arguments work here in a similar fashion after

Lemmas 4.4.1 and 4.4.4, stating the existence of infinitely many hyperbolic times n for points x ∈H

and corresponding hyperbolic pre-disks Vn(x) with nice properties, have been obtained.

Lemma 4.4.10. Let Σ be a cu-disk and U ⊆H with LebΣ(U) > 0. Then there exists a sequence of sets

⋯⊆W2 ⊆W1 ⊆ Σ

and a sequence of integers n1 < n2 <⋯ such that:

1. Wk is contained in some hyperbolic pre-disk with hyperbolic time nk;

2. Σk = f nk(Wk) is a cu-disk of radius δ1/4;

3. limk→∞
LebΣk f nk(Σ∩U)

LebΣk(Σk)
= 1.

4.5 Construction of a reference leaf

At this step, we fix some arbitrary 1 ≤ j ≤ l, let Ω =Ω j be the closed transitive attractor and Σ = Σ j

be the centre-unstable disk as in Proposition 4.3.1. In particular, f is nonuniformly expanding and

has slow recurrence to the singular set on Σ and therefore is full of hyperbolic pre-disks. The main

result of this section concerns property (A3), providing both the existence of the cu-subdisk ∆0 and the

nice related recurrence properties. The reader may want to refer to [8, Lemmas 5.2 and 5.3], where a

similar result is obtained for partially hyperbolic diffeomorphisms (without singularities). Owing to the

possibility of unbounded derivative, we should adapt the arguments to deal with this situation as well.



4.5 Construction of a reference leaf 55

Lemma 4.5.1 (Recurrence Lemma). There are p ∈ Σ and L ≥ 1 such that for all δ0 > 0 sufficiently small

and each hyperbolic pre-disk Vn(x) ⊂Σ there is 0 ≤ l ≤ L and domains ωn,l(x) ⊂ ω̃n,l(x) ⊂Wn(x) ⊂Vn(x)
such that

1. f n+l(Vn(x)) intersects W s
δs/2
(p),

2. f n+l(ωn,l(x)) u-crosses C(∆0) with ∆0 = Bu
δ0
(p) and

3. f n+l(ω̃n,l(x)) u-crosses C(∆1) with ∆1 = Bu
2δ0
(p),

where Bu
r(p) is the disk in Σ of radius r centered at p. Moreover, there are C1,η > 0 such that for every

ω̃n,l(x) and every y,z ∈ f n(ω̃n,l(x)) we have

a. 1
C1

dist(x,y) ≤ distl( f l(y), f l(z)) ≤C1 dist(y,z)

b. log ∣detD f l ∣TyΣ∣

∣detD f l ∣TzΣ∣
≤C1 distl( f l(y), f l(z))η .

Proof. First of all, observe that as the subbundles in the dominated splitting have angles uniformly

bounded away from zero (property (E1)), given any sufficiently small ρ > 0 there is α = α(ρ) > 0 with

α Ð→ 0 as ρ Ð→ 0 for which the following holds:

(P) if x,y ∈ Ω satisfy dist(x,y) < ρ and distγu(y,∂γ
u) ≥ δ1 for some cu-disk γ

u ⊆ Ω, then W s
δs
(x)

intersects γ
u in a point z with

distW s
δs
(x)(z,x) < α and distγu(z,y) < δ1/2.

Take ρ > 0 small enough so that α < δs/4. Since f ∣Ω is transitive, we may choose q ∈Ω and L ∈N
such that:

1. W s
δs/4
(q) intersects Σ in a point p with distΣ(p,∂Σ) > 0;

2. { f −L(q), . . . , f −1(q),q} is ρ-dense in Ω and

dist(W s
δs/4( f − j(q)),S) > d0 (4.21)

for all 0 ≤ j ≤ L and some d0 > 0 that we assume smaller than δ1.

Given a hyperbolic predisk Vn(x) ⊆ Σ we know by definition that f n(Vn(x)) is a cu-disk of ra-

dius δ1 > 0 centered at y ∶= f n(x) inside Ω. Consider some iterate f −l(q), with 0 ≤ l ≤ L, such that

dist( f −l(q),y) < ρ . Then, by the choice of ρ and α and property (P) above, we have that W s
δs
( f −l(q))

intersects f n(Vn(x)) in a point z with

distW s
δs
( f−l(q))(z, f −l(q)) < α < δs/4 and dist f n(Vn(x))(z,y) < δ1/2.
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In particular, f n(Vn(x)) contains a cu-disk γ
u of radius δ1/2 centered at z. Since z ∈W s

δs/4
( f −l(q)),

from (4.21), we have that dist(z,S) > d0 and therefore, from item (1) in the definition of non-degenerate

set and (4.21), one can deduce that there is C =C(d0) > 0 such that

m(D f ∣Tz′γ
u) ≥C (4.22)

for all z′ in a subdisk γ
u
0 of γ

u of radius r0 ∶= d0/2 ≤ δ1/2 centered at z. Without loss of generality, we

may even assume that C ≤ 1. From this fact, using an inductive argument, it will follow that f l(γu
0)

contains a cu-disk of radius r = r(L,r0) > 0 centered at f l(z) ∈W s(p) for all 0 ≤ l ≤ L. Indeed, let

γ
u
1 = f (γu

0) and z1 = f (z0) be a point in ∂γ
u
1 minimizing the distance from f (z) to ∂γ

u
1 . Consider a

curve η1 of minimal length in γ
u
1 connecting f (z) to z1 and set η0 = f −1(η1) ⊂ γ

u
0 , which is a curve

connecting z to z0 ∈ ∂γ
u
0 . From (4.22), it follows that

distγu
1
(z1, f (z)) ∶= length(η1)

∶= ∫
1

0
∥η ′1(t)∥dt

= ∫
1

0
∥D f (η0(t)) ⋅η ′0(t)∥dt

≥C∫
1

0
∥η ′0(t)∥dt

=C ⋅ length(η0)
≥C ⋅distγu

0
(z0,z)

=C ⋅ r0.

(4.23)

Therefore, γ
u
1 = f (γu

0) contains a cu-disk of radius r1 =C ⋅ r0 ≤ r0 around f (z) that we denote again γ
u
1

for simplicity.

Observe that f (z) ∈W s
δs/4
( f −l+1(q)) so that, in particular, dist( f (z),S) > d0. We can now replicate

the previous estimates (4.22) and (4.23) with γ
u
1 in the place of γ

u
0 to conclude that γ

u
2 = f 2(γu

0) contains

a cu-disk of radius r2 =C ⋅ r1 =C2 ⋅ r0 ≤ r1 centered at f 2(z). Inductively, we prove that f l(γu
0) contains

a cu-disk of radius rl =Cl ⋅r0 centered at f l(z) for all 0 ≤ l ≤ L. In particular, all of these disks contain a

sub-disk of radius r = rL =CL ⋅ r0.

Moreover, as distances are not expanded under iteration of points in the same stable manifold, we

have

distW s(p)( f l(z), p) ≤ distW s(p)( f l(z),q)+distW s(p)(q, p) ≤ δs/4+δs/4,

which means that f n+l(Vn(x)) intersects W s
δs/2
(p). Also, choosing δ0 > 0 sufficiently small (depending

only on r), we see that f n+l(Vn(x)) u-crosses C(Bu
δ0
(p)). From this fact and since we are considering

all the δ0 > 0 sufficiently small, we easily obtain the sets ωn,l(x) and ω̃n,l(x) in the statement.

Given that the number of iterations is finite, we may have the distance of the at most L iterates of

f n(ω̃n,l(x)) at a distance from S strictly positive (uniformly). Using the fact that f is C1+β in subsets

at positive distance from S, the last two conclusions follow. ◻
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4.6 Entropy formula

We have mentioned before that a diffeomorphism (possibly with singularities) admitting a Young

structure Λ with integrable recurrence times has an ergodic SRB measure µ , which is, a priori, of a

special kind: in this case, we say that µ is liftable (to the Young structure). Since for any ergodic SRB

measure µ ∈ F f the integrability condition

log∥D f ±1∣Ecu
x ∥ ∈ L1(µ),

holds true, in the light of Oseledets Theorem [59], we may look at the Jacobian along the unstable

direction at x, defined for µ-almost every point x ∈M, as

Ju
f (x) ∶= ∣detD f ∣Eu

x ∣, (4.24)

with Eu
x = Ecu

x coinciding with the direct sum⊕λi>0 E i
x of the linear subspaces in the Oseledets decom-

position associated to the (necessarily) positive Lyapunov exponents. Theorem C is then based on the

next chain of equalities that we explain in the sequel:

hµ( f ) = hν̂(T̂) = hΘ∗ν̂(T) = ∫ logJT dΘ∗ν̂ = ∫ logJu
f dµ. (4.25)

The first equality follows directly from Lemma 3.5.1, exactly as before, since the fibers are countable

in this situation as well. Now we shift our attention to the towers (T,Θ∗ν̂) and (T̂ , ν̂). Heuristically,

one would expect these two systems to share the same entropy since we are in a sense just ignoring the

stable direction, where no new dynamical information is produced. The formal way from which we

will be able to deduce this fact is via the natural or symbolic extension, introduced at the beginning

of this chapter. All the work necessary to prove this result is done in [35, B. Appendix.] and we just

reproduce the main ingredients here for the reader’s convenience.

Proposition 4.6.1. [35, B. Appendix.] The map Θ
# ∶ ∆̂#→ ∆

#, defined by

Θ
#(. . . ,(x−1, l−1),(x0, l0)) ∶= (. . . ,Θ(x−1, l−1),Θ(x0, l0)),

is an ergodic isomorphism between the m.p.s. (T̂ #, ν̂#) and (T #,(Θ∗ν̂)#).

Proof. It is easy to check that Θ
# is a measurable surjection satisfying Θ

# ○ T̂ # = T # ○Θ
# and (Θ#)∗ν̂# =

(Θ∗ν̂)# . The proposition follows once we show that Θ
# is one-to-one. In order to do that, first assume

that Θ
#(. . . ,(x−1, l−1),(x0, l0)) =Θ

#(. . . ,(y−1, l−1),(y0, l0)). Letting γ
s(x−n, l−n) denote the stable disk

through (x−n, l−n), we have, by definition, (x0, l0) ∈ ⋂∞n=1 T̂ n−1(γs(x−n, l−n)). The uniform contraction

of f R along stable sets expressed in property (Y2) implies that this intersection consists of a single

point. In the same vein, (y0, l0) ∈ ⋂∞n=1 T̂ n−1(γs(y−n, l−n)). Since Θ(x−n, l−n) =Θ(y−n, l−n) is equivalent

to γ
s(x−n, l−n) = γ

s(y−n, l−n), we have that (x0, l0) = (y0, l0). Applying the same argument inductively

to the remaining elements of the sequence, we conclude that (x−n, l−n) = (y−n, l−n) for all n ≥ 1. ◻
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It is a classical fact that the entropies of a m.p.s. (T̂ , ν̂) and its natural extension (T̂ #, ν̂#) are equal

(see e.g. [35, 67]):

Proposition 4.6.2. hν̂(T̂) = hν̂#(T̂ #).

Besides, in this case it turns out that the two natural extensions in question are isomorphic and therefore

share the same entropy. Bringing the previous result and observation together, it easily follows that

hν̂(T̂) = hν̂#(T̂ #) = h(Θ∗ν̂)#(T #) = hΘ∗ν̂(T),

which is the one-line proof for the second equality. Since the quotient tower is associated to a

Gibbs-Markov quotient map, it follows from Lemma 3.4.4 that it satisfies:

hΘ∗ν̂(T) = ∫ logJT dΘ∗ν̂ .

Therefore, the entropy formula follows from the result below, establishing a relation between the

integral expressions:

Lemma 4.6.3. ∫ logJT dΘ∗ν̂ = ∫ logJu
f dµ.

Proof. Let π1 ∶ ∆̂→M be the projection on the first coordinate: π1(x, l) = x. Using again the definition

of the Jacobian, observing that (π1)∗ν̂ ∣∆̂l+1
l
= σ
−1 ⋅ν ∣

∆̂l+1
l

and (Θγ0)∗ν = ν0, one deduces that

∫
∆

logJT dΘ∗ν̂ = ∫
∆̂

logJT ○Θ dν̂

=
∞

∑
l=0
∫

∆̂l+1
l

logJT ○Θ dν̂

=
∞

∑
l=0
∫

∆̂l+1
l

logJF ○Θγ0 ○π1 dν̂

= σ
−1∫

γ0∩Λ

logJF dν0,

where σ = ∫γ0∩Λ
R dν0. As a consequence of Oseledets Theorem applied to the induced quotient system

(F,ν0), we have

σ
−1∫

γ0∩Λ

logJF dν0 = σ
−1∑

i
λ̃i dim Ẽi,

where λ̃i and Ẽi are the Lyapunov exponents and corresponding linear spaces given by Oseledets’

decomposition. From [6, Lemma 2.6], we can relate the induced Oseledets decomposition back with

the original one, following that

σ
−1∑

i
λ̃i dim Ẽi = ∑

λi>0
λi dimEi,
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where λi and Ei = Ẽi are the positive Lyapunov exponents and corresponding Oseledets subspaces of

the original system ( f ,µ). Therefore, as consequence of the same theorem, we have

∑
λi>0

λi dimEi = ∫ log ∣detD f ∣Eu
x ∣ dµ,

which finishes the proof, in the light of (4.24). ◻





Chapter 5

Applications

In this chapter, we present three families of systems with singularities enabling an illustration of our

main theorems, namely: Lorenz maps [54] (both one- and two-dimensional), Rovella maps [68] and

Luzzatto-Viana maps [55]. Although, to the best of our knowledge, entropy formulas for the maps in

these families are not yet clearly covered in the previous literature, we stress that inducing schemes were

already independently obtained combining results of several previous works [9, 16, 37, 38, 40, 72].

5.1 Lorenz maps

In the late 1970’s, Guckenheimer and Williams [41] introduced the geometric description of a flow

having a similar dynamical behavior as that of the classical Lorenz system, which we call the Geometric

Lorenz Attractor. From this model, we will extract two interrelated families of systems: the first,

consisting of two-dimensional Poincaré return maps, and a second one, consisting of one-dimensional

maps derived from the first family by collapsing stable leaves. In this section, we confine ourselves to a

brief description, referring the reader to [19] for a complete scholarly treatment.

The geometric model of the Lorenz attractor is obtained from a vector field X0 which is linear in a

neighbourhood of the origin containing the unitary cube {(x,y,z) ∶ ∣x∣, ∣y∣, ∣z∣ ≤ 1}. It has a singularity at

(0,0,0) and the real eigenvalues λ1,λ2 and λ3 of DX(0), with corresponding eigenvectors along the

coordinate axis, satisfy 0 < −λ3 < λ1 < −λ2. We consider a square Σ on the top of the cube given by

Σ = {(x,y,1) ∶ −1/2 ≤ x,y ≤ 1/2} , (5.1)

and let Γ be the intersection of Σ with the two-dimensional stable manifold of the singularity. The

segment Γ divides Σ in two parts:

Σ
+ = {(x,y,1) ∈ Σ ∶ x > 0} and Σ

− = {(x,y,1) ∈ Σ ∶ x < 0} .

61
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Fig. 5.1 Cross section.

Near the origin, the behavior of the flow can be described by the map

Q ∶ Σ±→{(±1,y,z) ∶ y,z ∈R}
(x,y,1) ↦ (sgn(x),y∣x∣r, ∣x∣s),

where r = −λ2
λ1

and s = −λ3
λ1

and sgn(x) = x/∣x∣ for x ≠ 0. The images of Σ
± by this map Q are curvilinear

triangles S± without the vertexes (±1,0,0) (corresponding to infinite contraction) and every line

segment in F0 = {{x = const}∩Σ} (except Γ) is mapped to a segment in F1 = {{z = const}∩S±}; see

Figure 5.1.

The time τ which takes for each (x,y,1) ∈ Σ/Γ to reach S± is given by τ(x,y,1) = − 1
λ1

log ∣x∣. Finally,

we suppose that the flow takes the triangles back to Σ in a smooth way as it is shown in Figure 5.2.

Fig. 5.2 Geometric Lorenz Flow.

The resulting Poincaré return map from Σ/Γ back into Σ again has the skew-product form

P(x,y) = ( f (x),g(x,y)), (5.2)
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for some f ∶ I/{0} → I and g ∶ I/{0}× I → I with I = [− 1
2 ,

1
2], as is shown in Figure 5.3 below. The

one-dimensional map f is described in Figure 5.4 and satisfies the properties:

1. f is discontinuous at x = 0 with side limits f (0+) = − 1
2 and f (0−) = 1

2 ;

2. f is differentiable on I/{0} and f ′(x) >
√

2 for all x ∈ I/{0};

3. the side limits of f ′ at x = 0 are f ′(0+) = f ′(0−) = +∞.

Fig. 5.3 Poincaré return map.

On the other hand, the map g satisfies ∣ ∂g
∂y ∣ < k < 1/2, which implies that the foliation F0 formed by

the segments {x = const}∩Σ is uniformly contracting: there exist constants C′ > 0 and 0 < ρ < 1 such

that for any given leaf γ of the foliation, ζ1,ζ2 ∈ γ and n ≥ 1,

dist(Pn(ζ1),Pn(ζ2)) ≤C′ρn dist(ζ1,ζ2). (5.3)

For many purposes, the study of the three dimensional flow can be reduced to the study of a bi-

dimensional Poincaré return map P and the dynamics of this map can be further reduced to that of the

one-dimensional map f , since the invariant contracting foliation F0 enables us to identify two points

on the same stable leaf: their orbits remain forever on the same leaf and the distance of their images

tends to zero under iteration. We set ΛP = ⋂n≥0 Pn(Σ) and the Geometric Lorenz attractor Λ is given

by the union of orbits of points in ΛP by the flow of X0.

A crucial fact about the geometric Lorenz attractor is that it is robust, i.e., vector fields sufficiently

close in the C1 topology to the original one constructed above have strange attractors. In other words,

there exist an open neighbourhood U ⊂R3 containing the geometric Lorenz attractor Λ and an open

neighbourhood U of X0 in the C1 topology such that for any vector field X ∈ U the maximal invariant

set ΛX = ⋂t≥0 X t(U) is a transitive set and invariant under the flow of X .

We define the family of Geometric Lorenz vector fields, denoted by X , as a C2 neighbourhood of

X0 with the following properties:
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1. for each X ∈ X , the maximal forward invariant set ΛX inside U is an attractor containing a

hyperbolic singularity;

2. for each X ∈ X , Σ is the cross-section for the flow with a return time τx and a Poincaré map PX ;

3. for each X ∈ X , the map PX admits a C2 uniformly contracting invariant foliation FX on Σ with

projection along the leaves of FX onto IX given by a map πX ;

4. for each X ∈ X , the map fX on the quotient space IX by the leaves in FX is a transitive C2

piecewise expanding map with two branches and discontinuity point sX ; moreover, there is c > 1

such that f ′X(x) ≥ c and limx→s±X
f ′X(x) =∞

5. there is some constant C > 0 such that for each X ∈ X

τX(ζ) ≤ −C log ∣πX(ζ)−OX ∣.

Therefore, from the family X we are able to extract a family L = { fX}X∈X of one-dimensional

Lorenz-like expanding maps. Each element fX ∶ IX → IX is a map of the interval IX = [−rX ,rX], where

rX is a real number close to 1/2, satisfying similar properties to those of f , namely:

(l0) existence of singular set: fX is a C1+ local diffeomorphism outside a singular set SX = {sX}
consisting of a single discontinuity point sX close to 0 with unbounded derivative

lim
x→s±X

f ′X(x) =∞,

and finite side limits f (s±X);

(l1) order of singularity: there are 1/2 < α < 1 and B > 0 such that for all x ∈ IX/SX , we have:

B−1∣x− sX ∣−α ≤ ∣ f ′X(x)∣ ≤ B∣x− sX ∣−α ;

(l2) local Hölder continuity of f ′: there are β < α and C > 0 such that for all x,y ∈ IX/{sX} we have

∣ f ′X(x)− f ′X(y)∣ ≤C∣x− sX ∣−β ∣y− sX ∣−β ∣x−y∣β ;

(l3) uniform expansion: there is c > 1 such that f ′X(x) ≥ c for all x ∈ IX/{sX};

(l4) transitivity: fX is transitive.

It is observed in [17, Section 2] that each fX admits a unique ergodic invariant probability measure

µX which is absolutely continuous with respect to the Lebesgue measure LebX on IX and whose

density dµX/d LebX is a bounded variation function - in particular, it is bounded and the bound can

be uniformly chosen within the family L; cf. [17, Proposition 2.1]. In this section, we prove that µX

satisfies the entropy formula.
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Fig. 5.4 Lorenz map.

Theorem 5.1.1. Let L= { fX}X∈X be the family of Lorenz-like expanding maps introduced above. Then,

for each map fX ∈ L, the entropy formula below holds:

hµX ( fX) = ∫ log ∣ f ′X ∣dµX .

Proof. This is a straightforward consequence of Theorem A. Given an arbitrary map in fX ∈ L,

properties (l1)− (l3) can easily be seen to imply that SX = {sX} is a non-degenerate singular set .

Moreover, the nonuniform expansion condition on a full Lebesgue measure subset of IX is trivially

satisfied since, owing to (l3), fX is actually (piecewise) uniformly expanding.

The slow recurrence condition on a full Lebesgue measure subset of IX may be deduced using

Birkhoff’s Ergodic Theorem and the properties of µX , as in [14, Lemma 3.3]. Define, for x ∈ IX/SX ,

the function

ξX(x) = − logdist(x,SX).

Since SX is a compact set, it follows from [4, Propostion 4.1] that ξX ∈ Lp(LebX) for every 1 ≤ p <
∞. Then, observing that dµX/d LebX ∈ L∞(LebX), Hölder inequality implies that ξX ∈ L1(µX) and

consequently we have

lim
r→0+
∫
{ξX>− logr}

ξX dµX = 0.

Observing that χ{ξX>− logr}ξX = − logdistr(⋅,SX), where χ{ξX>− logr}ξX stands for the characteristic

function of the set {ξX > − logr}, it follows that for all ε > 0 there is r > 0 such that

∫ − logdistr(⋅,SX)dµX < ε.
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Hence, using the ergodicity of µX , Birkhoff’s Ergodic Theorem yields

lim
n→∞

1
n

n−1

∑
j=0
− logdistr( f j

X(x),SX) = ∫ − logdistr(⋅,SX)dµX < ε

for µX almost every x ∈ I. ◻

On the other hand, associated to X we derive another family {PX}X∈X of two-dimensional Poincaré

return maps to the cross-section Σ. Each element PX ∶ Σ/ΓX → Σ is a partially hyperbolic map with

approximately vertical singular line ΓX , an approximately horizontal unstable direction Eu and ap-

proximately vertical stable one Es; see [19] for details. The properties of nonuniform expansion

along the centre-unstable direction and slow recurrence to the nondegenerate singular set ΓX are direct

consequences of the corresponding properties for the Lorenz maps fX . Based on techniques used in

[20], the authors showed in [17, Lemma 2.2] that µX can be lifted in a unique way to an ergodic SRB

PX -invariant probability measure νX on Σ. As a corollary of the main Theorem B - and its inspiring

application - we have

Theorem 5.1.2. Let {PX}X∈X be the family of Poincaré return maps of Lorenz flows introduced above.

Then, for each map PX , the entropy formula below holds:

hνX (PX) = ∫ log ∣detDPX ∣Eu∣dνX .

5.2 Rovella maps

By considering a vector field almost identical to that used by Guckenheimer and Williams [41], Rovella

[68] introduced a somewhat different kind of attractor, named as contracting Lorenz attractor, which is

no longer robust but persists in a measure-theoretical sense. In the sequel, the author derived a one

parameter familyR= { fa}a∈E of interval maps now bearing his name. The parameter set E is a subset

of the interval (0,1) and has 0 as a full density point, i.e.,

lim
a→0

∣E ∩(0,a)∣
a

= 1 (5.4)

Each map fa ∶ I→ I defined on the interval I = [−1,1] satisfies the following properties:

(r0) existence of singular set: fa is a C1+ local diffeomorphism outside a singular set Sa = {0} where

fa has a discontinuity. We suppose that

lim
x→0+

fa(x) = −1, lim
x→0−

fa(x) = 1;

(r1) order of singularity: there are constants α,B > 0 such that for all x ∈ I

B−1∣x∣α ≤ f ′a(x) ≤ B∣x∣α ,
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where α = α(a) depends on the parameter a ∈ E (the constant B may be chosen uniformly inR).

To simplify we shall assume α fixed as in [68]. In particular, unlike to the Lorenz singularities,

we have

lim
x→0±

f ′a(x) = 0;

(r2) negative Schwarzian derivative: there is γ < 0 such that in I/{0}

S( fa) ∶= (
f ′′a
f ′a
)
′

− 1
2
( f ′′a

f ′a
)

2

< γ;

(r3) positive Lyapunov exponents: there is λc > 1 (independent of a) such that the points ±1 have

Lyapunov exponents greater than λc:

( f n
a )′(±1) > λ

n
c , for all n ≥ 0;

(r3) basic assumption: there is ρ > 0 (small and independent of a) such that:

∣ f n
a (±1)∣ > e−ρn, for all n ≥ 1;

(r4) transitivity: the forward orbits of the points ±1 under fa are dense in [−1,1].

Fig. 5.5 Rovella map.

In [16, Theorem A], by considering a smaller set of the original Rovella parameters (that we also

denote by E), but still with full density at 0, the authors proved that Rovella maps fa with a ∈ E are

nonuniformly expanding and exhibit slow recurrence to the nondegenerate singular set. Moreover,

in [16, Corollary B] they managed to prove the existence of a unique ergodic absolutely continuous

invariant probability measure µa for the maps in this smaller set; cf. [57]. Here, we obtain a formula

for the entropy of µa, illustrating once again Theorem A.
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Theorem 5.2.1. LetR= { fa}a∈E be the family of Rovella maps considered above. Then, for each map

fa ∈ R, the entropy formula holds:

hµa( fa) = ∫ log ∣ f ′a∣dµa.

5.3 Luzzatto-Viana maps

In this section, we present families of systems first introduced in [55], originally named Lorenz-like

families with criticalities, since the authors aimed at a more global understanding of the Lorenz flow

accounting for the interaction between singular and critical behavior. More precisely, we consider

families LV f = { fa}a∈A of real maps

fa(x) =
⎧⎪⎪⎨⎪⎪⎩

f (x)−a, if x > 0

− f (−x)+a, if x < 0
(5.5)

derived from a smooth map f ∶ R+ → R+ of the form f (x) = ψ(xλ ), where 0 < λ < 1/2 and ψ is a

smooth map defined on R with ψ(0) = 0 and ψ
′(0) ≠ 0. The function f has a critical point c > 0 (where

f ′(c) = 0) which is a full density point of the f -dependent parameter set A=A( f ) ⊆R+≥c:

lim
ε→0

Leb(A∩[c,c+ε])
ε

= 1

Taking into account the several properties of the function f stated in [55] and a latter study [72] focused

on a smaller parameter subset containned in [c+ρε,c+ε] with 0 < ρ < 1 (that we still denote by A),

each element fa ∈ LV f should satisfy:

(lv0) existence of critical/singular set: fa ∶ Ia → Ia is a C1+ local diffeomorphism of the interval

Ia = [−a,a] outside a critical/singular set Sa = {0,±c} consisting of a singular point x = 0 where

fa has a discontinuity with unbounded derivative and two critical points x = ±c;

(lv1) order of critical/singular set: there is α > 0 and B > 0 such that for all x ∈ Ia/Sa, we have

B−1 dist(x,Sa)α ≤ ∣ f ′a(x)∣ ≤ B dist(x,Sa)−α ;

(lv2) local Hölder continuity of log ∣ f ′a∣: there are β ,C > 0 such that for all points x,y ∈ I/{0} with

∣x−y∣ ≤ dist(x,Sa)/2 we have

∣ log ∣ f ′a(x)∣− log ∣ f ′a(y)∣∣ ≤Cdist(x,Sa)−α ∣x−y∣β ;

(lv3) nonuniform expansion: there is σ1 > 0 (independent of a) such that for Lebesgue almost every

point x ∈ Ia, we have

limsup
n→∞

1
n
∣ log( f n

a )′(x)∣ ≥ σ1;
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(lv4) growth of derivative along the critical orbit: there is σ > 0 (independent of a) such that

∣( f n
a )′( fa(c))∣ ≥ eσn, for all n ≥ 1;

(lv5) transitivity: fa is transitive (actually, topologically mixing).

Fig. 5.6 Luzzatto-Viana maps, for several parameter values a > 0.

In a subsequent work [18], it was proved that there are a finite number of absolutely continuous

invariant probability measures for the Luzzatto-Viana maps described above. This result was improved

latter in [72], where the authors obtained the uniqueness of the ergodic absolutely continuous probability

measure µa for the smaller subset of parameters that we consider here. This is actually implied by the

main result in [72], stating nonuniform expansion (in the strong sense) and slow recurrence properties

for the maps fa ∈ LV( f ), together with classical results from [5] on hyperbolic balls. We can now state

our last application concerning Theorem A.

Theorem 5.3.1. Let LV f = { fa}a∈A be a family of Luzzatto-Viana maps introduced above. Then, for

each map fa ∈ LV f , the entropy formula below holds:

hµa( fa) = ∫ log ∣ f ′a∣ dµa.
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Background from ergodic theory

In this appendix, we briefly review some elementary concepts of ergodic theory, chiefly, the notion

of metric or measure-theoretic or Kolmogorov-Sinai entropy [45] of a measure-preserving dynamical

system, which can be understood heuristically as a measure of chaos or, more properly, the rate of

increase in dynamical complexity as the system is iterated. Proposition A.1.1 provides an interesting

alternative way of computing the entropy from a somewhat more combinatorial viewpoint and is

proved in [69], under the assumption that the transformation is invertible. As communicated personally

by J. Buzzi, such assumption is not necessary at all and we present here the proof of the result in

full generality. We refer the reader to the introductory book [58] for supplementary background on

ergodic theory necessary to this work, in particular for the classical theorems of Birkhoff, Oseledets

and Shannon-McMillan-Breimann often cited.

A.1 Entropy

A measure-preserving system (m.p.s.) is a quadruple (M,B,µ, f ) consisting of a probability space

(M,B,µ), and a measure-preserving transformation (m.p.t) f ∶ M → M. This means that µ is a

probability measure defined on a σ -algebra B of subsets of M and

f −1(B) ∈ B and µ( f −1(B)) = µ(B), for all B ∈ B.

A set B ∈ B is called invariant if f −1(B) = B. A m.p.s. (M,B,µ, f ) is said to be ergodic if for

all invariant sets B ∈ B we have µ(B) ∈ {0,1}. In other words, a system is ergodic if it cannot be

decomposed into two dynamical subsystems bearing measure-theoretical significance and therefore

ergodic systems are like the ergodic theory’s counterparts to the prime numbers in number theory. A µ

mod 0 partition P on M is a finite or countable family of pairwise disjoint measurable subsets of M

whose union has full µ-measure. We denote by P(x) the element of P containing x. Given a finite or

71
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countable family of partitions P1,P2, . . . on M, their joinning is the partition

⋁
n
P ∶= {⋂

n
Pn ∣Pn ∈ Pn for all n}.

In particular, given a partition P = {Pi} on M and n ∈N, the dynamically generated partition

Pn ∶=
n
⋁
j=0

f − j(P)

consists of sets of the form

[Pi0 , . . . ,Pin] ∶=
n
⋂
k=0

f −k(Pik) = {x ∈M ∣x ∈ Pi0 , . . . , f n(x) ∈ Pin},

for some Pi0 ,Pi1 , . . . ,Pin ∈ P . The entropy of a partition P of M with respect to µ is defined by

Hµ(P) ∶= − ∑
P∈P

µ(P) logµ(P),

and the entropy of f and a partition P with respect to µ is given by

hµ( f ,P) ∶= lim
n→∞

1
n

Hµ(Pn).

The metric or measure-theoretic entropy of f with respect to µ is the number

hµ( f ) ∶= sup
P

hµ( f ,P),

where the supremum is taken over all the (finite) measurable partitions of M.

The next result provides an interesting way of computing the entropy from a somewhat ’more’

combinatorial viewpoint providing a very nice interpretation of this concept as well. Given a finite

measurable partition P of M and a real number 0 < c < 1, denote by r(P,n,µ,c) the minimum number

of elements of Pn whose union has µ-measure at least c.

Proposition A.1.1. Let (M,B,µ, f ) be an ergodic measure-preserving system and P a finite partition

of M. Then, for all 0 < c < 1,

hµ( f ,P) = lim
n→∞

1
n

logr(P,n,µ,c).

Proof. Clearly, Hµ(P) < ∞. By the Shannon-McMillan-Breimann Theorem, for µ-almost every

x ∈M, we have

hµ( f ,P) = lim
n→∞
−1

n
logµ(Pn(x)).

This implies that for all ε > 0 and 0 < δ < 1, there is a set X ⊆M and N ∈N such that:

1. µ(X) > δ , and
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2. for all x ∈ X and n >N, we have e−n(hµ( f ,P)+ε) ≤ µ(Pn(x)) ≤ e−n(hµ( f ,P)−ε).

In particular, if r(X ,n) is the minimum number of elements of Pn necessary to cover X , we have

δen(hµ( f ,P)−ε) ≤ r(X ,n) ≤ en(hµ( f ,P)+ε).

Moreover, given any 0 < c < 1 such that 1 > δ >max{c,1−c} > 1/2 and any set Y with µ(Y) > c, we

have

µ(X ∩Y) > c+δ −1 > 0.

Therefore, for all ε > 0, 0 < c < 1 and 1 > δ >max{c,1−c} > 1/2, there is N ∈N such that, for all n ≥N,

(c+δ −1) ⋅en(hµ( f ,P)−ε) < r(P,n,µ,c) ≤ en(hµ( f ,P)+ε).

From these inequalities, we get

hµ( f ,P) = lim
n→∞

1
n

logr(P,n,µ).

◻

Remark A.1.2. A useful consequence of the proof above is this: for all ε > 0 and 0 < c < 1, there is a

subset A ⊆M with µ(A) > c and N ∈N such that for all n ≥N the minimum number of elements of Pn

necessary to cover A is at most en(hµ( f ,P)+ε) ≤ en(hµ( f )+ε).

Combinatorial estimates

Given n,k ∈N0, the (n,k) binomial coefficient is the number

Cn
k ∶=

n!
(n−k)!k!

= n(n−1)⋯(n−k+1)
k(k−1)⋯1

.

Proposition A.1.3 below will be useful to estimate the quantity r(P,n,µ,c) (and thus the entropy),

providing an useful exponential upper bound for binomial coefficients based on the Stirling approxima-

tion:

n! ∼
√

2πn(n
e
)n,

with an ∼ bn meaning that the ratio an/bn tends to 1 as n→∞.

Proposition A.1.3. Given ε > 0, there are 0 < δ < 1, N ∈N and C =C(N,δ) > 0 such that, for all n ≥N,

Cn
[δn] ≤Ceεn,

where [r] stands for the smallest integer greater or equal than r ∈R.
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Constructing Young structures

In this appendix, for the sake of the reader’s convenience, we present the partitioning algorithm of

the reference leaf and other more or less standard check-ups, as these do not contain any particular

novelty or require substantial adaptations in this setting; however, the construction in [8, Section 5],

from where it is drawn, is improved here, in the sense that clearer arguments on the integrability of

the recurrence times and satellite estimates are provided and it serves as well for the purpose of the

construction of the Gibbs-Markov structures for endomorphisms. The material in this appendix comes

from [3] nearly verbatim.

B.1 Partition on the reference leaf

Our goal in this section is to introduce a partitioning algorithm of the reference leaf ∆0 = Bcu
δ0
(p)

given by Lemma 4.5.1 under the validity of (A1)-(A3). If necessary, we choose δ0 > 0 smaller so that

any cu-disk intersecting W3δs/4 cannot reach the top or bottom parts of C0 = C(∆0), i.e., the boundary

points of the local stable manifolds W s
δs
(x) through points x ∈ ∆0. Set ∆1 = Bcu

2δ0
(p), C1 = C(∆1) and let

Θ ∶ C1→ ∆1 be the projection along the stable disks.

From Lemma 4.5.1, given any x ∈Hn, there are 0 ≤ lx ≤ L and sets ωn,l(x) ⊂ ω̃n,l(x) ⊂Wn(x) such

that f n+lx(ωn,l(x)) u-crosses ∆0 and f n+lx(ω̃n,l(x)) u-crosses ∆1 = Bu
2δ0
(p). Notice that a priori there

may be several values of l = lx ≤ L satisfying the u-crossing condition; for the sake of definiteness, we

will always assume that l takes the smallest possible value. Notice that the set ωn,l(x) is associated to

the point x, by construction, but does not necessarily contain x.

We will lighten the notation and refer to the sets ωn,l(x) simply as ω and to sets ω̃n,l(x) as ω̃ . In

such cases, as before, we consider

Wn(ω) =Wn(x), W̃n(ω) = W̃n(x), Vn(ω) =Vn(x) and lω = l, (B.1)

where the sets Wn(x) ⊂ W̃n(x) ⊂Vn(x) are such that f n maps Wn(x) diffeomorphically to the disk of

radius δ1/9 and W̃n(x) to the disk of radius δ1/3, both centered at f n(x). Given a domain ω = ωk,l
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define for each n > k the annulus

An(ω) = {y ∈ ω̃ ∶ distk+l( f k+l(y), f k+l(ω)) ≤ δ0σ
n−k}. (B.2)

It follows directly from the definition that An(ω) ⊃ An+1(ω) ⊃ ω for all n > k. In addition to that, it

follows that f k+l(ω̃) contains a neighbourhood of the outer component of the boundary of f k+l(An(ω))
of size at least 2δ0−δ0(1+σ

n−k) = δ0(1−σ
n−k). Then using (A3) we easily get that f k(ω̃) contains a

neighbourhood of the outer component of the boundary of f k(An(ω)) of size at least δ0(1−σ
n−k)/C1.

Bearing in mind this, we consider δ1 > 0 and 0 < σ < 1 as in (A2) and C1,δ0 > 0 as in (A3) and take

δ2 = δ0+
δ1

2
C1, (B.3)

a large N0 ∈N such that

C1σ
N0 < 1 (B.4)

and a large N1 ∈N such that

δ2σ
N1 ≤ δ0 and

2δ1

9
σ

N1 ≤ δ0(1−σ
N1)

C1
. (B.5)

We will construct inductively sequences of objects (Pn)n, (∆n)n and (Sn)n related to the sets (Hn)n.

For each n, we take Pn as the union of elements of the partition constructed at step n - all of them

domains of the form ω = ωn,l - and ∆n the set of points which do not belong to any element of the

partition constructed until time n. The set Sn contains domains which could have been chosen for the

partition but intersect already other elements previously chosen.

First step

We start our inductive construction at time N0 for some N0 sufficiently large. Since HN0 is a compact

set by (A1), there must be a finite set FN0 ⊂HN0 such that

HN0 ⊂ ⋃
x∈FN0

WN0(x).

Consider x1, . . . ,x jN0
∈ FN0 and, for each 1 ≤ i ≤ jN0 , a domain ωN0,li ⊂WN0(xi) as in (A3), such that

PN0 = {ωN0,l1 , . . . ,ωN0,l jN0
}

is a maximal family of pairwise disjoint sets contained in ∆0. These are precisely the elements of the

partition P constructed in our first step of induction. Set

∆N0 = ∆0/ ⋃
ω∈PN0

ω.
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For each ω ∈ PN0 , define

SN0(ω) = W̃N0(ω) ⊃ω,

with W̃N0(ω) defined as in (B.1). Define

SN0(∆0) = ⋃
ω∈PN0

SN0(ω),

and for ∆
c
0 = Σ/∆0

SN0(∆c
0) = {x ∈ ∆0 ∶ dist(x,∂∆0) < 2δ1σ

N0}.

Finally, set SN0 = SN0(∆0)∪SN0(∆c
0). This completes the first step of the induction

General step

Given n >N0, assume that Pk, ∆k and Sk have already been defined for all k with N0 ≤ k ≤ n−1. Let Fn

be a finite subset of the compact set Hn such that

Hn ⊂ ⋃
x∈Fn

Wn(x). (B.6)

Consider x1, . . . ,x jn ∈ Fn and for each 1 ≤ i ≤ jn a domain ωn,li ⊂Wn(xi) as in (A3) for which

Pn = {ωn,l1 , . . . ,ωn,l jn
}

is a maximal family of pairwise disjoint sets contained in ∆n−1 such that for each 1 ≤ i ≤ jn we also

have

ωn,li ∩
⎛
⎝

n−1
⋃

k=N0

⋃
ω∈Pk

An(ω)
⎞
⎠
= ∅. (B.7)

The sets in Pn are the elements of the partition P obtained in the n-th step of the construction. Set

∆n = ∆0/
n
⋃

k=N0

⋃
ω∈Pk

ω (B.8)

Finally, we define the sets Sn. Let N0 ≤ k ≤ n and consider a domain ω =ωk,l ∈ Pk. If n < k+N1 define

Sn(ω) = W̃k(ω)

and for n ≥ k+N1,

Sn(ω) = {y ∈ ω̃ ∶ 0 < distk+l( f k+l(y), f k+l(ω)) ≤ δ2σ
n−k}. (B.9)

Define in a similar way

Sn(∆0) =
n
⋃

k=N0

⋃
ω∈Pk

Sn(ω), (B.10)
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and

Sn(∆c
0) = {x ∈ ∆0 ∶ dist(x,∂∆0) < δ1σ

n}.

Let Sn = Sn(∆0)∪Sn(∆c
0). This completes the inductive step. For definiteness, set ∆n = Sn = ∆0 for each

1 ≤ n <N0. Finally, define

P = ⋃
n≥N0

Pn.

By construction, the elements in P are pairwise disjoint and contained in ∆0. However, it is still not

clear that they form a Leb mod 0 partition of ∆0 since it is theoretically conceivable a priori that P may

not have full measure in ∆0. Nevertheless, this will follow from the results we present in the sequel.

Key relations

Proposition B.1.1 below - stating that points in Hn which have not been taken by an element of the

partition until the moment n necessarily belong to Sn - is a key property. First of all, observe that for

each x ∈Hk and y ∈Hn with n ≥ k we have

⎧⎪⎪⎨⎪⎪⎩

Wn(y)∩Wk(x) ≠ ∅⇒Wn(y) ⊂ W̃k(x)
W̃n(y)∩W̃k(x) ≠ ∅→ W̃n(y) ⊂Vk(x)

(B.11)

To see this, recall that by (A2) we have

diam( f k(Wn(y))) ≤
2δ1

9
σ

n−k ≤ 2δ1

9
. (B.12)

Then assuming that Wn(y) intersects Wk(x), we necessarily have that f k(Wn(y)) intersects f k(Wk(x)),
which by definition is a disk of radius δ1/9 around f k(x). Together with (B.12), this implies that

f k(Wn(y)) is contained in the disk of radius δ1/3 centred at f k(x), and so, as Wn(y) and Wk(x) are

both contained in Σ, the first case of (B.11) follows. The second case can be proved similarly.

By definition, for each ω ∈ Pk, with k ≥N0, we have

W̃k(ω) ⊃ Sk(ω) ⊃ Sk+1(ω) ⊃ ⋯ (B.13)

and for n ≥ k+N1 we even have

Wk(ω) ⊃ Sn(ω). (B.14)

It follows immediately from the definitions and B.11 that for all k2 ≥ k1 ≥N0 and ω1 ∈ Pk1 , ω2 ∈ Pk2 we

have

Sk2(ω2)∩W̃k1(ω1) ≠ ∅⇒ Sk2(ω2)∪ω2 ⊂Vk1(ω1) (B.15)

and for all n ≥N1

Sk2+n(ω2)∩Wk1(ω1) ≠ ∅⇒ Sk2+n(ω2)∪ω2 ⊂ W̃k1(ω1). (B.16)
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Proposition B.1.1. For all n ≥N0, we have Hn∩∆n ⊂ Sn ∶= Sn(∆0)∪Sn(∆c
0).

Proof. Consider the finite set Fn ⊂Hn used to define the elements in Pn. Given z ∈Hn∩∆n, there must

be some y ∈ Fn such that z ∈Wn(y). Let ωn,l be the domain associated to Wn(y) as in (A3). It is enough

to show that Wn(y) ⊂ Sn(∆0)∪Sn(∆c
0). If ωn,l ∈ Pn, then Sn(ωn,l) = W̃n(y) ⊃Wn(y) and so we are done.

If ωn,l ∉ Pn, then at least one of the following situations holds:

1. ωn,l ∩ω ≠ ∅ for some ω ∈ Pn.

In this case, we have Sn(ω) = W̃n(ω) and Wn(y)∩Wn(ω) ≠ ∅. hence, using (B.11) we get

Wn(y) ⊂ W̃n(ω) = Sn(ω) ⊂ Sn(∆0).

2. ωn,l ∩An(ω) ≠ ∅, for some N0 ≤ k < n and ω ∈ Pk.

Observe that by definition we have An(ω) ⊂ ω̃ ⊂Wk(ω). Assume first that n−k <N1. Then, as

in the previous situation,

Wn(y) ⊂ W̃k(ω) = Sn(ω) ⊂ Sn(∆0).

Assume now that n−k ≥N1. We claim that in this situation

Wn(y) ⊂ ω̃. (B.17)

Indeed, it follows from the observations after the Definition B.2 that the set f k(ω̃) contains a

neighbourhood of the outer component of the boundary of f k(An(ω)) of size at least

δ0(1−σ
N1)

C1
.

On the other hand, by definition of Wn(y) and (A2) we have

diam( f k(Wn(y))) ≤
2δ1

9
σ

n−k ≤ 2δ1

9
σ

N1 . (B.18)

Recalling (B.5) and observing that in the situation we are considering the set f k(Wn(y)) intersects

f k(An(ω)), we have f k(Wn(y)) ⊂ f k(ω̃). Then, since Wn(y)∩ ω̃ ≠ ∅ and f k maps ω̃ bijectively

onto its image we deduce (B.17). Now, letting 0 ≤ lω ≤ L be the integer associated with the

domain ω , using (A3) and (B.18) we obtain

diam( f k+lω (Wn(y))) ≤
2δ1

9
C1σ

n−k. (B.19)

Since the set f k+lω (Wn(y)) intersects f k+lω (An(ω)), we have for each w ∈ f k+lω (Wn(y)),

dist0(w,∆0) ≤ δ0σ
n−k + 2δ1

9
C1σ

n−k = δ2σ
n−k.
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This shows that Wn(y) ⊂ Sn(ω) ⊂ Sn(∆0).

3. ωn,l ∩∆
c
0.

This in particular implies that Wn(y) intersects ∂∆0. From (A2) we get

diam(Wn(y)) ≤
2δ1

9
σ

n,

and so Wn(y) ⊂ Sn(∆c
0). ◻

Metric estimates

Here we obtain some metric estimates concerning the satellites Sn. First of all, notice that there exists

some uniform constant C2 > 0 such that for every n ≥ 1, every hyperbolic predisk Vn(ω) and every

Borel sets A1,A2 ⊂Vn(ω) we have

1
C2

m(A1)
m(A2)

≤ mn( f n(A1))
mn( f n(A2))

≤C2
m(A1)
m(A2)

, (B.20)

and for any Borel sets A1,A2 ⊂ f n(ω̃n,l), with ωn,l ⊂ ω̃n,l as in (A3), we have

1
C2

mn(A1)
mn(A2)

≤ mn+l( f l(A1))
mn+l( f l(A2))

≤C2
mn(A1)
mn(A2)

. (B.21)

This can be deduced easily from the distortion properties in (A2) and (A3).

Lemma B.1.2. There exists C > 0 such that for all n ≥ k ≥N0 and all ω ∈ Pk we have

m(Sn(ω)) ≤Cσ
n−km(ω).

Proof. Consider first the case n ≥ k+N1. Letting l = lω recall that

Sn(ω) = {y ∈ ω̃ ∶ 0 < distk+l ( f k+l(y), f k+l(ω)) ≤ δ2σ
n−k}.

Moreover, f k+l maps ω̃ diffeomorphically to a disk of radius 2δ0 and ω to a disk of radius δ0 concentric

with f k+l(ω̃). Then, there must be some uniform constant D > 0 such that

mk+l( f k+l(Sn(ω))) ≤Dσ
n−k.

Taking δ > 0 a uniform lower bound for the measure of disks of radius δ0, it follows from (B.20) and

(B.21) that
m(Sn(ω))

m(ω) ≤C2
2

mk+l( f k+l(Sn(ω)))
mk+l( f k+l(ω)) ≤ C2

2D
δ

σ
n−k. (B.22)
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Consider now the case n < k+N1. Since Sn(ω) ⊂Vk(ω), from (B.20) we get

m(Sn(ω)) ≤C2m(ω). (B.23)

Finally, choose C ≥C2
2D/δ sufficiently large so that C2 ≤Cσ

N1 . Using (B.22), (B.23) and noticing that

σ
N
1 ≤ σ

n−k for n < k+N1, we easily obtain the desired conclusion. ◻

Lemma B.1.3. ∑∞n=N0
m(Sn) <∞.

Proof. First we consider the terms in Sn(∆0). Recalling (B.10) and using Lemma B.1.2, for each

n ≥N0 we may write

m(Sn(∆0)) ≤
n

∑
k=N0

∑
ω∈Pk

m(Sn(ω))

≤
n

∑
k=N0

∑
ω∈Pk

Cσ
n−km(ω)

=C
n

∑
k=N0

σ
n−km

⎛
⎝ ⋃ω∈Pk

ω
⎞
⎠
.

Hence

∑
n≥N0

m(Sn(∆0)) = ∑
n≥N0

∑
k≥0

σ
km( ⋃

ω∈Pn

ω) = 1
1−σ

m(∆0).

On the other hand, recalling that

Sn(∆c
0) = {x ∈ δ0 ∶ dist(x,∂∆0) < δ1σ

n},

we may find C > 0 such that m(Sn(∆c
0)) ≤Cσ

n. This obviously gives that the sum of the corresponding

terms is finite. ◻

Conclusion

We can now conclude that P is an m mod 0 partition of ∆0. By definition of the sets ∆n, it is enough to

show that the intersection of all these sets has zero Lebesgue measure. Assume by contradiction that

m( ⋂
n≥N0

∆n) > 0.

It follows from (A1) that there must be some set B ⊂ ∆0 with Leb(B) > 0 such that for every x ∈ B we

can find infinitely many times n1 < n2 < . . . (in principle depending on x) so that x ∈Hnk ∩∆nk for each

k ∈N. It follows from the Proposition B.1.1 that

x ∈ Snk(∆0)∪Snk(∆c
0), for all k ∈N0. (B.24)
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On the other hand, using Lemma B.1.3 and Borel Cantelli Lemma we easily deduce that for Lebesgue

almost every x ∈ ∆0 we cannot have x ∈ Sn(∆0)∪Sn(∆c
0) for infinitely many values of n. Clearly, this

gives a contradiction with the fact that m(B) > 0 and (B.24) holds for every x ∈ B.

B.2 The Young structure

Consider the m∆0 mod 0 partition P into domains ωn,l ⊂ ∆0 and the function R ∶ ∆0→N constant on the

elements of P given by R(ωn,l) = n+ l. Define

Γ
s = {W s

∂s
(x) ∶ x ∈ ∆0}, (B.25)

and Γ
u as the set of all local unstable manifolds contained in C0 which u-cross C0. We thus define

our set Λ with hyperbolic product structure as the intersection of these families of stable and unstable

leaves. This hyperbolic structure is measurable since the stable disks γ
s
δs/2
(x) depend continuously (in

the C1 topology) on x ∈ ∆0, and therefore the holonomy maps are measurable.

Defining Λω = C(ω)∩Λ, for each ω ∈ P , we have a countable partition of Λ into s-subsets. Set

R∣Λω = R(ω) for each ω ∈ P . Each ω ∈ P returns to C0 intersecting the stable disk γ
s
δs/2
(p). Also, we

have chosen δ0 > 0 so that any cu-disk intersecting γ
s
δs/2
(p) is at distance greater than δs/4 from the

top and the bottom of C0. Since we may choose the recurrence time R arbitrarily large, we may ensure

that the stable disks return inside C0 in the corresponding recurrence time. Hence, the Markov property

(Y1) is satisfied.

The contraction property (Y2) is obvious in this case, for stable disks are uniformly contracted

when forward iterated.

The expansion property (Y3) is ensured by the conditions (A2)-(A3), but only for the domains

in the unstable disk ∆0 ∈ Γ
u. Given any other γ ∈ Γ

u and Λω , we have ω = ωn,l for some x ∈ Hn and

0 ≤ l ≤ L. Then, by Lemma 4.4.4 n is a (σ1/2,r)-hyperbolic time for all z ∈ω . Since we have chosen

δs < δ1, it follows that n is a (σ1/4,r)-hyperbolic time for the points in ω
′ = γ ∩Λω . This shows that we

may think of ω
′ as a domain of the type ω

′
n,l for which (A3) holds, associated to predisks of points in a

set H′n satisfying (A1)-(A2) with n a (σ1/4,r)-hyperbolic time. So, the expansion property (A3) follows

for these domains. It is worth noticing that we also have C > 0 and 0 < β < 1 such that

log
detD f R∣Txγ

detD f R∣Tyγ
≤Cβ

s( f R(x), f R(y)). (B.26)

We may need to take bigger β < 1, but still uniform on all leaves γ ∈ Γ
u and x,y ∈ γ . Chosing γ0 = ∆0 in

(Y5), the bounded distortion property follows.

It remains to show the absolute continuity property (Y4). Given γ,γ ′ ∈ Γ
u, consider Θγ,γ ′ as in

(4.1). Set γi = f i(γ) and xi = f i(x) for each x ∈ γ and i ≥ 0 and similar for x′ ∈ γ
′. We have (Θγ,γ ′)∗mγ
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absolutely continuous with respect to mγ ′ and its densities ξγ,γ ′ is given by

ξγ,γ ′(x′) =
∞

∏
i=0

detD f ∣Tx′i
γ
′
i

detD f ∣Txiγi
,

for each x′ ∈ γ
′, where x is the point in γ such that Θγ,γ ′(x) = x′. Now observe that as f is a C1+β

diffeomorphism, the fiber bundles Es and Ecu are Hölder continuous on Ω. Thus, using that the stable

disks are uniformly contracted, we may find C0 and 0 < β0 < 1 such that for all x ∈ γ and x′ ∈ γ
′ with

x′ ∈ γ
s(x) we have for all n ≥ 0

log
∞

∏
i=n

detD f ∣Tx′i
γ
′
i

detD f ∣Txiγi
≤C0β

n
0 . (B.27)

Choose n ∼ s(x,y)/2. For each x′,y′ ∈ γ
′ we may write

log
ξγ,γ ′(x′)
ξγ,γ ′(y′)

=
n−1

∑
i=0

log
detD f ∣Tx′i

γ
′
i

detD f ∣Ty′i
γ ′i
+

n−1

∑
i=0

log
detD f ∣Tyiγi

detD f ∣Txiγi
+
∞

∑
i=n

log
detD f ∣Tx′i

γ
′
i

detD f ∣Txiγi
+
∞

∑
i=n

log
detD f ∣Tyiγi

detD f ∣Ty′i
γ ′i
.

(B.28)

Denote Ji(x) = ∣detD f ∣Tf i(x)γi∣, for all 0 ≤ i < n and x ∈ γ . In the light of Remark 4.4.9, we have that

logJi is (Z,ζ)-Hölder continuous for some Z > 0. Then, there is some uniform constant C′ > 0 such

that
n−1

∑
i=0

log
detD f ∣Tyiγi

detD f ∣Txiγi
=

n−1

∑
i=0
(logJi(y)− logJi(x)) ≤

n−1

∑
i=0

C′d(( f i(x), f i(y))ζ .

Since we have chosen n ∼ s(x,y)/2, the points f i(x) and f i(y) have at least s(x,y)− i simultaneous re-

turns to Λ, for 0 ≤ i < n. So, using (Y3) we easily find C′′ > 0 such that d( f i(x), f i(y))ζ ≤C′′β ζ(s(x,y)−i).

Recalling s(x,y)−n ∼ s(x,y)/2, we get for β1 = β
ζ/2 and some C1 > 0

n−1

∑
i=0

log
detD f ∣Tyiγi

detD f ∣Txiγi
≤C1β

s(x,y)
1 .

The same conclusion can be drawn to the finite sum involving x′i,y
′
i in (B.28) above. Using (B.27) and

recalling that n ∼ s(x,y)/2, we obtain appropriate bounds for the infinite sums in (B.28). Altogether,

these estimates yield the second part of the absolute continuity property (Y4).

B.3 Integrability of the recurrence time

In the previous sections we have constructed an m mod 0 partition of the disk ∆0

P = ⋃
n≥N0

Pn,

where each element of Pn is a domain of the type ωn,l given in (A3), associated to some point in Hn

and 0 ≤ l ≤ L. Besides, we have introduced a recurrence time function R ∶ ∆0 →N, defining for each
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n ≥N0 and each y ∈ωn,l ∈ Pn

R(y) = n+ l. (B.29)

The goal of this section is to prove that the recurrence time function R ∶ ∆0 → N is integrable with

respect to the Lebesgue measure m0 on ∆0. Recall that the quotient map F on ∆0 introduced in

(4.3) is Gibbs-Markov and therefore has a unique ergodic F-invariant measure ν0 which is absolutely

continuous with respect m0. Moreover, the density of ν0 with respect to m0 is bounded away from zero

and infinity by constants. Hence, it is enough to show that R is integrable with respect to ν0. Consider

(Hn)n as in (A1)-(A3). Define R0 = 0 and more generally Rk =∑k−1
j=0 R○F j, for each k ≥ 1. We say that

a sequence (H∗n )n of sets in ∆0 is F-concatenated in (Hn)n if

x ∈H∗n Ô⇒ F i(x) ∈Hn−Ri ,

whenever Ri(x) ≤ n < Ri+1(x), for some i ≥ 0. While we may actually take H∗n =Hn for all n ≥ 1, in the

endomorphims’ case of Chapter 3, this notion is nevertheless relevant in the partially hyperbolic context

of Chapter 4, as we shall see, owing to the fact that points in the same stable leaf do not necessarily

share the same hyperbolic times. We say that (H∗n )n is a frequent sequence if there exists θ > 0 such

that for m0-almost every x ∈ ∆0 we have

limsup
n→∞

1
n

#{1 ≤ j ≤ n ∶ x ∈H∗j } > θ . (B.30)

The proposition below gives a useful abstract criteria to verify the integrability of the recurrence time

function R in terms of the concepts just introduced.

Proposition B.3.1. Let F ∶ ∆0 → ∆0 be a Gibbs-Markov map with respect to a partition P , and

R ∶ ∆0→N be constant in the elements of P . Assume that there exist

1. a frequent sequence (H∗n )n of sets in ∆0 that is F-concatenated in (Hn)n;

2. a sequence (Sn)n of sets in ∆0 such that ∑n≥1 m0(Sn) <∞;

3. L ∈N such that Hn∩{R > L+n} ⊂ Sn, for all n ≥ 1.

Then R is integrable with respect to m0.

Proof. As observed above, it is enough to show that R is integrable with respect to ν0. Assume

by contradiction that R ∉ L1(ν0). Since R is a positive function, it follows from Birkhoff’s Ergodic

Theorem that

lim
k→∞

1
k

k−1

∑
i=0

R(F i(x)) → ∫ Rdν0 =∞, (B.31)

for ν0 almost every x ∈ ∆0. Since ∑n≥1 m0(Sn) < ∞, it follows from Borel-Cantelli Lemma that ν0

almost every x ∈ ∆0 belongs in a finite number of sets Sn. Define s(x) = #{n ≥ 1 ∶ x ∈ Sn} for x ∈ ∆0.
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Using that dν0/dm0 is bounded above by a positive constant and Birkhoff’s Ergodic Theorem, we have

for ν0 almost every x ∈ ∆0

1
k

k−1

∑
i=0

s(F i(x)) → ∫ sdν0 = ∑
n≥1

ν0(Sn) <∞. (B.32)

Since (H∗n )n is F-concatenated in (Hn)n, given i ≥ 0 and Ri ≤ j <Ri+1, we have F i(x) ∈H j−Ri , whenever

x ∈H∗j . We cannot have R(F i(x)) < j−Ri, for otherwise we would have

Ri+1−Ri = R(F i(x)) < j−Ri ≤ Ri+1−Ri.

Set k = j−Ri. Since we assume Hk ∩{R > k+L} ⊂ Sk, we have F i(x) ∈ Sk or R(F i(x)) = k+ l for some

0 ≤ l ≤ L. Thus, the number of integers j with Ri ≤ j < Ri+1 such that x ∈H∗j is bounded by the number

of integers k such that F i(x) ∈ Sk or F i(x) ∈ {R = k+ l}, for some 0 ≤ l ≤ L. This means that

#{Ri ≤ j < Ri+1 ∶ x ∈H∗j } ≤ 1+ s(F i(x)).

Given n ≥ 1, define r(n) =min{Ri ∶ Ri > n}. For each n ≥ 1, we have

#{1 ≤ j ≤ n ∶ x ∈H∗j } ≤
r(n)

∑
i=0
(1+ s(F i(x))) ≤ r(n)+

r(n)

∑
i=0

s(F i(x)).

Therefore,
1
n

#{ j ≤ n ∶ x ∈H∗j } ≤
r(n)

n
⎛
⎝

1+ 1
r(n)

r(n)

∑
i=0

s(F i(x))
⎞
⎠
. (B.33)

Observe that if r(n) = k, then by definition we have Rk−1 ≤ n < Rk. Hence,

Rk−1

k
≤ n

r(n) <
Rk

k
= Rk

k+1
(1+ 1

k
) ,

which together with (B.31) gives

lim
n→∞

n
r(n) = lim

k→∞

Rk

k
= lim

k→∞

1
k

k−1

∑
i=0

R(F i(x)) =∞. (B.34)

It follows from (B.32), (B.33) and (B.34) that

lim
n→∞

1
n

#{1 ≤ j ≤ n ∶ x ∈H∗j } = lim
n→∞

r(n)
n
= 0,

which clearly contradicts the fact that (H∗n )n is a frequent sequence. ◻

Now, it remains to check the properties of Proposition B.3.1 in the setting of partially hyperbolic

systems with singularities. Indeed, we have the unstable disk ∆0 belonging in Γ
u and the bounded

distortion property (Y5) holding for ∆0. From the construction, we have seen that there exists a
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sequence (Sn)n of satellites in ∆0 with ∑n≥1 m0(Sn) <∞ such that Hn∩{R >N0+n} ⊂ Sn for all n ≥ 1.

In order to apply Proposition B.3.1, we need to obtain a frequent sequence (H∗n )n of sets in ∆0 that is

F-concatenated in (Hn)n. In order to do that, define for each n ≥ 1

H∗n = {x ∈H ∶ n is a (σ ,r)-hyperbolic time for x}. (B.35)

It follows from Lemma 4.4.1 that for m0 almost every point x ∈ ∆0 we have

limsup
n→∞

1
n

#{1 ≤ j ≤ n ∶ x ∈H∗j } ≥ θ .

This shows that (H∗n )n is a frequent sequence of sets in ∆0. On the other hand, since we have δs < δ1,

and

x ∈HnÔ⇒ f j(x) ∈Hn− j, for all 0 ≤ j < n,

where Hn = {x ∈H ∶ n is a (σ3/4,r)-hyperbolic time for x, it follows from Lemma 4.4.6 that

x ∈H∗n , y ∈ γ
s
δs
( f j(x))Ô⇒ y ∈Hn− j, for all 0 ≤ j < n. (B.36)

Take as usual R0 = 0 and Ri =∑i−1
k=0 R○Fk for i ≥ 1. Given x ∈H∗n , let i ≥ 0 be such that Ri(x) ≤ n <Ri+1(x).

We have F i(x) =Θ○ f Ri(x)(x), where Θ is the projection from C(∆0) to ∆0 along stable disks. Hence,

F i(x) ∈ γ
s
δs
( f Ri(x)(x)). It follows from (B.36) that F i(x) ∈ Hn−Ri . Thus, the sequence (H∗n )n is F-

concatenated in (Hn)n and the integrability of the recurrence times follows from Proposition B.3.1.
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