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Abstract
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An expansion to the CHEOPS mission official pipeline

by André SILVA

With the CHEOPS mission launch date set for later this year, in October/November,

the official Data Reduction Pipeline (DRP) has been unveiled. In it, the data reduction

procedures are applied, alongside with aperture photometry for the target star. However,

there is still some untaped potential on the data provided by this mission.

In typical observational conditions, one might find stars in the background of the

CCD’s images that, due to the satellite rotational movement, are not in fixed positions,

but instead move through the CCD.

We believe that is possible to extract data from those stars, albeit the mission being

only focused on the targeted star. Thus, in this work, we have built ARCHI, an upgrade

to the official DRP. This pipeline is capable of applying the aperture photometry method

on all stars and, making use of a background grid, we can improve the noise in the light

curves. Furthermore, we tested the viability of using Gaussian Processes to model the

noise in the Light Curves, reduce the noise found in them and, at the same time, also

determine parameters from the planet that is transiting the star.

In this work we made use of three simulated data sets, and found that ARCHI’s light

curves had less noise than the ones produced by the DRP and that it is possible to detect

transits in the background stars. The application of the Gaussian Processes, allowed us to

build models that closely resembled the simulated light curves, and reduce the noise in

them.

Keywords: CHEOPS; Gaussian Processes; Exoplanets; Photometry; Planetary sys-

tems; Space Mission; Instrumentation.
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Uma expansão para a pipeline de tratamento de dados da missão CHEOPS

por André SILVA

Com o lançamento da missão CHEOPS marcado para o final deste ano, em Outubro/-

Novembro, a “Official Data Reduction Pipeline” (DRP) foi publicada. O objectivo desta

pipeline passa pela redução dos dados provenientes da missão, bem como a aplicação

de fotometria de abertura sobre a estrela alvo. Contudo, esta abordagem deixa de fora

bastante informação presente nas imagens da missão.

Em condições de observação tı́picas podem existir outras estrelas no fundo da imagem

que, devido ao movimento rotacional do satélite, também se encontrarão a movimentar

ao longo do tempo. Tendo em conta isto, acreditamos que seja possı́vel extrair informação

destas estrelas, embora a DRP estaja focada unicamente no estudo do alvo. Neste traba-

lho foi desenvolvida uma nova pipeline, ARCHI, que irá funcionar em cima da DRP. O

objetivo de ARCHI passa por aplicar fotometria de abertura em todas as estrelas e, com

a utilização de uma grelha de fundo, conseguimos reduzir o ruı́do existente nas curvas

de luz. Por último, iremos também averiguar a viabilidade da utilização de Processos

Gaussianos para determinar parâmetros dos planetas, bem como modelar o ruı́do e con-

sequentemente, removê-lo das curvas.

Neste trabalho foram estudados três conjuntos de dados simulados, tendo sido verifi-

cado que o ARCHI produz curvas de luz com menos ruı́do que a DRP e também que os

métodos desenvolvidos permitem obter curvas de luz vindas das estrelas de fundo. Os

Processos Gaussianos mostraram-se capazes de retornar modelos bastante semelhantes

aos dados injetados nas simulações, bem como são capazes de reduzir o ruı́do existente

nas curvas de luz.

Palavras Chave: CHEOPS; Processos Gaussianos; Exoplanetas; Fotometria; Sistemas

planetários; Missão espacial; Instrumentação.
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Chapter 1

Introduction

In this project we propose to expand the functionality of the CHEOPS mission official data

reduction pipeline (DRP), to maximize the scientific gains from its operation. As we shall

see during this Chapter, the DRP can only extract light curves with high precision from the

targeted star, without analyzing all others that may be present in the field of observation.

Furthermore, due to CHEOPS’s mission design, the satellite is rotating throughout the

observations and, consequently, so do the stars. The first goal of this work is to be able to

extract light curves with the highest precision possible, from the moving stars, in order to

find possible candidates for further studies. Our second goal, is to also estimate the noise

introduced by the rotations and determine planetary parameters from the obtained light

curves.

In this Chapter, we will expose the motivation behind the search of other planets and

introduce some of the key concepts applied throughout the thesis.

In Chapter 2 we have a in-depth explanation of the developed pipeline: “An expan-

sion foR the CHeops mission pipelIne - ARCHI”, in which all of the different components

for the photometric portion are discussed and, when possible, compared against the of-

ficial pipeline. Following, we have Chapter 3, where we will approach the thematic of

Gaussian processes and their role in the pipeline for the estimation of planetary parame-

ters.

Afterwards, in Chapter 4, we have a small discussion on the implementation of the

previously described modules, alongside a (basic) memory consumption analysis of the

algorithm.

1
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Lastly, in Chapter 5, we present the obtained results and compare them against them-

selves to find the impact of each component on the final light curve, followed by a discus-

sion on a sinusoidal signal, with period equal to half of the satellite’s rotational period,

found on some of the light curves of the background stars. The Gaussian processes are

then also discussed, alongside their results and improvements that can be made upon

them. To finalize Chapter 5 we shall also compare ARCHI’s light curves against the ones

from the DRP.

1.1 The hunt for exoplanets

The humans have long since started to look into the sky, trying to unveil the mysteries

of the cosmos, starting with Galileo in 1609, with him seeing, for the first time in human

history, the surface of the moon using a telescope. Since then, the human race has been on

a quest to explore the unknown, in hopes of finding other habitable planets and/or life.

It was in 1995 that Michel Mayor and Didier Queloz published their findings of an

exoplanet orbiting a solar-like star, 51 Peg, which was a groundbreaking achievement [1].

To accomplish it, small Doppler shifts were observed in the spectrum of a star, i.e. the star

was oscillating around a point, alongside with another object.

However, there were doubts of the validity of this discovery, due to the characteristics

of the (supposed at the time) planet. Another explanations were provided and community

was somewhat split on this topic. In the following years, further studies solidified the

finding of this planet, and others were also found using the same method [2].

The interest for exoplanets started to grow in a meaningful way right before the turn

of the millennium and, in 2010 alone, they were the topic of more than 1000 published

papers [3]. This rise in popularity was not only evident among the scientific communities,

but also within the general public, through programs that allowed a citizen to be a part of

various projects.

In the early stages of exoplanet detection, until right before the turn of the millennium,

the only efficient method was through observations of small variations of radial velocities.

However, that changed with the detection of planetary transits, which is now the most

efficient method that one can use, due to the results from the Kepler mission [4].

Contrasting earlier days, we now have specific missions dedicated to it, such as Kepler

[5], TESS [6], TRAPPIST [7], and others planned for the near future, such as PLATO [8].
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The search for habitable planets is a never ending quest, with many uncertainties.

Currently, we are searching for other habitable worlds using as a basis what we already

know, i.e. Earth. We have created a set of criteria that must be met for a discovered planet

to be classified as habitable [9], thus giving a new goal for the search of exoplanets.

1.2 CHaracterising ExOPlanet Satellite - CHEOPS mission

CHEOPS mission is the first dedicated mission to better characterize planetary transits

with ultra-high precision photometry on stars known to have transiting planets. It is one

of ESA’s mission, set to launch later this year, in October/November.

To accomplish the goal of ultra-high precision photometry, this mission is required to

reach a photometric precision of 20 ppm for Earth sized planets transiting G5 dwarf stars

with V-band magnitudes in the [6 - 9] mag range over 6 hours of integration time. For

larger planets, Neptune-size, in transiting K-type dwarf stars it should reach 85 ppm over

3 hours of integration time [10].

The stars to be studied will come from both ground-based surveys, space-based sur-

veys, such as TESS, and the community proposals for the available open time, thus re-

vealing synergy with other, already existing, missions. However, it’s important to note

that the available targets are limited by the Sun, Moon and Earth itself, as seen in Figure

1.1, due to both the scientific requirements for the mission and its low altitude orbit.

FIGURE 1.1: Illustration of the pointing constraints.
Image taken from [10].

The typical orbit during the mission

operation is a circular Sun-synchronous

orbit, at an altitude of 800 km and a rota-

tional period of approximately 100 min-

utes. The spacecraft is nadir locked and

thus it will always be rotating around

Earth, pointing towards the targeted di-

rection. This orbit configuration results

in the rotation of the background stars,

i.e. those that are not the target, instead

of them being fixed in place.

The South Atlantic Anomaly, SAA, is a region in which the inner Van Allen radiation

belt is closest to the Earth’s surface, and thus the satellite receives higher doses of radiation

[11]. In practical terms, this leads to sudden spikes in the light curves [12]. To avoid data
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contamination due to this phenomenon, all images captured by CHEOPS during it will

be discarded, which in turn leads to the possibility of finding time lapses within the light

curves.

The mission makes use of a frame transfer CCD with a 1024x1024 pixel grid but, only

a part of the image is used. The default area of interest is a 200x200 pixel region, that

can be centered on the desired area of the detector [10], which is used to save bandwidth

during the data transfer from the spacecraft to Earth. To the entire region of the CCD the

name of FullArray is given, while the smaller portion of the CCD is named SubArray.

The CCD’s focal plane was also made in such a way that we get a large Point Spread

Function (PSF), i.e. a large bi-dimensional profile that represents the light distribution,

thus facilitating the Flat Field correction. Due to jitter of the spacecraft, the PSF will not

always occupy the same CCD pixels but instead will shift between the nearby ones, thus

introducing noise due to pixel-to-pixel variations. In some cases, to avoid saturation, the

sub array can be made of a stack of images with shorter exposure time [13], which will

then be used to create a “final” image.

During a visit we can have exposure times in the range of 1 to 60 seconds. Each image,

will actually be a combination of individual exposures, whose number is automatically set

taking into account the desired exposure time [14]. Due to limitations on the amount of

data that can be transfered, all of the individual exposures are co-added, pixel by pixel,

on board and then sent to Earth. However, to avoid loosing too much information on

the target star, we have imagettes for each individual exposure. They are a small circular

cutout of the image, containing only the PSF of the target star and are used in the Data

Reduction Pipeline, henceforth referred to as DRP, for correction purposes [14].

For further details on the missions scientific requirements and payloads, one should

refer to [10, 14, 15] and for information on the outputs of the pipeline, and the data inside

each file, we refer to [16]. Lastly, since the mission is yet to see its first light, all obtained

data sets are simulated, using CHEOPSim [17], the official simulation tool.

1.2.1 Official Data Reduction Pipeline

Taking into account that this project was built as an extension for the CHEOPS mission

DRP, we must understand what it can do. However, to have a deeper understanding of

this pipeline, as well as the photometric analysis, one should refer to the article in which it

is introduced [13]. It’s important to keep in mind that the DRP is still under development
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and thus we sometimes find small problems in the data storage procedures, as we shall

see later on, in Chapter 5.

The DRP can be thought of as a collection of 3 different modules, that are applied in a

sequential order, as presented bellow:

1. Calibration: Corrects the instrumental response, by attempting to remove:

• Bias and readout noise;

• Non-linearity of the CCD;

• Gain;

• Dark current;

• Flat Field.

2. Correction: Corrects environmental effects, such as:

• Smear correction;

• Bad pixels;

• Background.

3. Photometry: Extracts the targeted star’s light curve from the images.

Since a deeper analysis of the first two modules is outside the scope of this document,

we only listed their contributions, without further discussion.

We can now look into the Photometry module with greater detail, to understand the

methodologies in use. The flux from the target star is calculated with a circular binary

mask. In order to maintain the same number of pixels in the mask, it is created once and,

afterwards, shifted with an anti aliased shifting algorithm. If we used a non-constant

mask, then we would be introducing photometric noise in the light curve. The mask

aperture is optimized through the maximization of the signal to noise ratio. This pipeline,

when used always outputs 4 different light curves:

• DEFAULT: Uses a mask with a default radius of 33 pixels;

• OPTIMAL: The mask uses the optimized radius;

• RINF: The mask has a radius equal to 80 % of the default mask size;

• RSUP: The mask has a radius equal to 120 % of the default mask size.
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In order to always have the mask centered over the central star, an iterative Gaussian

apodization method is used to estimate the star’s position in each image. This algorithm

starts by removing, from the images, contributions from nearby stars and from pixels

changing due to the jitter, for a mask placed on the point provided by on-board software.

Afterwards, the center of light, from this corrected image, is calculated, and a new mask is

centered in it. This process then repeats until a convergence criterium is met, which tends

to occurs fairly quick, under 20 iterations. This process is capable of estimating positions

with errors as low as 2x10−3 pix, as reported in [13].

The calculation of uncertainties in the light curve, is made through Equation 1.1:

Err =
√

Flux + bg + Npix ∗ Nstack ∗ (gain ∗ ron)2 + dark ∗ texposure ∗ Npix

bg = background ∗ Npix ∗ texposure

(1.1)

where Err is the uncertainty for a given point, Flux the corresponding point, Npix the

number of pixels inside the mask, dark is the dark current, ron is the read out noise,

texposure is the exposure time for each image, Nstack is the number of stacked images, back-

ground is the flux from background objects and, lastly, gain is the gain from the digital

conversion process that occurs in the CCD.

1.3 Small introduction to astrophysics

In this section a small overview of the coordinate system in use, as well as the parameters

used to characterize a planet’s orbit shall be presented and discussed.

1.3.1 The Equatorial Coordinate system

As a way to properly track celestial objects, independently of the observers position and

time of observation, one can make use of this coordinate system. Since the equatorial

plane of Earth remains approximately stable during Earth’s rotation, we can use it as

a reference plane. We can measure the angular separation between the object and the

reference plane, naming it declination, also referenced as δ or DEC.

However, we still need one other point of reference, to have two parameters to track

the object. The vernal equinox, is where the sun crosses the celestial equator, and it can

be used as a reference. If we measure the counterclockwise angular separation along the

equator, we get the right ascension, or α or RA. One can also refer to Figure 1.2, in which
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the coordinate system is schematized. Even though the reference points were said to be

fixed, in reality they are not. Due to the precession of Earth’s axis, the references suffer a

shift of 0.01 degree per year. To counteract this, when using this system, one has to know

the time at which the measurements were made, to be able to find the object’s actual

position.

FIGURE 1.2: Schematic of the right ascension and
declination for a star. Image taken from [18].

The angular separations can be rep-

resented in terms of arcminutes (ar-

cmin) and arcseconds (arcsec). As the

name might suggest, one arcminute is

equal to 1
60 of an angle, while an arcsec-

onds is equal to 1arcmin
60 .

Now that the basics of the Equato-

rial system has been laid out, we can

now calculate the distance between two

points, which is not as trivial as it might

seem. In the declination case there is no

problem, since the distance between the two points is the same, independently of where

they both are in the sphere.

However, that is not the case for differences in the right ascension. If we calculate the

difference of RA between two points near the equator and near the poles, we find different

values in both cases, with the bigger difference near the equator. Thus, to calculate this

difference, we have to map the stellar sphere into a flat map. To do it, we can use of one

the many techniques described in [19]. However, we shall calculate the distance using the

Great-circle distance, with Equation 1.2, derived in Appendix A.

Di f fRA = ∆RA ∗ cos(AverageDEC) (1.2)

1.3.2 Planetary orbits

We have three laws, that describe the motion of planets around its Sun, most known as

Kepler’s laws:

• First Law: The orbit of a planet is an ellipse, one focus of which is in the Sun;
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FIGURE 1.3: Illustration of the orbital elements, taken from [20].

• Second Law: A line segment joining a planet and the Sun sweeps out equal areas

during equal intervals of time;

• Third Law: The square of the orbital period of a planet is directly proportional to

the cube of the semi-major axis of its orbit.

Now that we know that the orbit is elliptical, we still need to know how to be able

to describe it and how to locate the planet in it. Thus, we shall introduce six parameters,

henceforth named Orbital elements, that are capable of fulfilling that role.

1. Semi-major axis - a: Half of the ellipse’s major axis;

2. Eccentricity - e: Measures the deviation, of the object’s orbit, from a perfect circle.

For a value of 0 we have a circular orbit, for values in the interval ]0,1[ we have an

elliptic orbit, for a value of 1 we have a parabolic escape orbit and, greater than 1, a

hyperbola.

3. Inclination - i: obliquity of the orbital plane, relative to some fixed reference plane;

4. Longitude of the ascending node - Ω: Where the object crosses the ecliptic, from

south to north, measured counterclockwise from the vernal equinox;

5. Argument of the perihelion - ω: direction of the perihelion (point in which the object

is closest to the sun) , measured from the ascending node in the direction of motion;

6. Time of the perihelion - τ: time in which the object crosses the perihelion.

For a more visual comprehension of the different parameters, one can look at Figure

1.3, taken from [20].

Kepler’s third law, can be written as Equation 1.3:
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T2 =
4π2

G(M + m)
∗ a3 (1.3)

, where T is the planet’s period, G is the gravitational constant, M is the star’s mass,

m the planet’s mass and a is the semi-major axis. With this, we can determine the semi-

major axis of the orbit, assuming that the orbital period and the star’s mass are known.

As an approximation, we can discard the planet’s mass, since it is usually much smaller

than the one from the star.

1.4 The Transit method

As mentioned in Chapter 1.1, the transit method is one of the most effective methods for

exoplanet detection.

This method, when combined with observations of radial velocity, which let us deter-

mine the planet’s mass, allows astronomers to estimate the radius of the planet. However,

as we shall see, it’s also needed accurate estimates of the mass, radius and limb darkening

of the star, to properly analyze the transit.

1.4.1 Fundamentals

When a planet passes in front of a star, as schematized in Figure 1.4, the measured bright-

ness of the star suffers a dip in its value due to the partial occultation of the stellar disk.

It’s possible to make an educated guess for the order of magnitude of this dip, assum-

ing that both the planet and the star have spherical shapes and that the planet’s flux is

negligible [21]:

∆F ≈
(

Rplanet

Rstar

)2

(1.4)

where ∆F is the transit’s depth.

From Equation 1.4 we can also see that an increase of this ratio is better for the de-

tection of the transit in the light curve, since a larger fall in the flux’s values is easier to

detect than a smaller one. Another important detail that one can take from this Equation,

is that the method can only provide precise information in cases in which the star’s radius

is known.

Although the detailed modeling of the signal produced by a transiting planet is com-

plex, we can still describe and interpret it in simple terms. During the phase in which
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FIGURE 1.4: Schematic of dip in the flux, due to the passage of a planet in front of the
star. Image taken from [22].

the planet is entering the “frontal” part of the star we can notice a steady decrease in the

flux. This decrease reaches a minimum when the system detector - planet - star are com-

pletely aligned. After this halfway point, the flux starts to return to the baseline value.

The duration of the transit, τF is defined as the amount of time that the entire planetary

disk is in front of the star. As we shall see later on, with greater detail in Chapter 1.4.3.2,

the star-disk, from our line of sight, is not uniform but, instead it is fainter near the edges

of the star. This phenomenon, also referred to as limb darkening, impacts the light curves

near the beginning and end of transit, when the planet is passing by those fainter areas,

thus explaining the curved shape near the mid-transit area.

During the transit, we can also define the impact parameter, i.e. the minimal projected

distance to the center of the stellar disk, as given by Equation 1.5.

b =
a

Rs
cos(inc) (1.5)

Lastly, from [23] we know that the probability of finding a transit is given by Equation

1.6

ptransit =

(
Rstar ± Rplanet

a

)(
1 + esin(ω)

1− e2

)
(1.6)

in which “+” accounts for grazing transits, i.e. when the planet is never entirely inside

the star’s disk, and “-” excludes them.
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1.4.2 Problems

One of the worst problems that we can encounter are false positives, i.e. the transit may

not be a result of a planet’s passage, but instead be caused by another astrophysical, or in-

strumental, phenomena. As an example, eclipsing binaries, i.e. two stars rotating around

their center of mass, that have their light diluted by a nearby bright star, or even eclipsing

binaries observed directly [24] can mimic a planetary signal.

In order to validate the transit, we can check if it appears on several observations

of the same star, since false positives have very low probabilities of occurring if several

transiting signals are found [21].

Although this issue poses some serious problems, it falls outside the scope of this

thesis. However, to better understand what causes them, one can refer to the many articles

on the topic, e.g [25–27].

Another limitation of the photometric method is that it depends on the planet being

aligned correctly with the observer, i.e. the orbital plane of the planet must be perpen-

dicular, or almost perpendicular, to cross the stellar disk in our line of sight, as well as

performing the observations at a time in which the transit occurs.

1.4.3 Noise sources

There are many noise sources that can negatively impact the obtained results, such as in-

strumentation noise, stellar activity, stellar granulation and oscillations [28]. In particular,

stellar activity can lead to both modulation of the flux, as well as in-transit fluctuations

that will posteriorly affect the determination of the transit’s depth.

1.4.3.1 Stellar spots

Active stars typically have dark and/or bright spots on their surface that can induce

changes to the spectral line shape [29] and thus hamper precise measurements.

These spots appear in places of the stellar photosphere in which intense concentra-

tions of magnetic flux erupt from. With the star’s rotation the spots are shifted until they

eventually decay due to turbulent diffusion. Stars with higher rotational speeds tend to

be more active and thus have larger spots, which take longer to decay due to diffusion

[30].

From [31] we know that the dark spots can impact the light curve in two different

ways: The spots not occulted by the planet lead to a decrease of the flux outside the
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transit and, the occulted ones lead to an increased flux. So, star spots also introduce out

of transit flux modulation over the timescale of stellar rotation period [32]. On the other

hand, bright spots, also known as faculae, also affect the light curves in the same manner,

but with reversed effect [29], i.e. when they are not occulted we see a flux increase. Aside

from the changes in the flux level, there is also a possibility that they can induce transit-

shaped alterations on the light curve.

Stellar spots can influence our measurements, such as the planet’s radius [30], the host

star limb-darkening coefficients [33], as well as the orbital inclination [31]. In [33] planet

radius 4% smaller than the real one were estimated, as well as changes of approximately

4% on transit duration were found, due to the anomalies in the light curve.

Typically light curve normalization occurs with the data before and after the transit,

which means that the spot contributions will enter the normalized light curve, thus affect-

ing the profile shape or, in some cases, depth of the transit [34].

1.4.3.2 Limb darkening

As seen from our line of sight, the star-disk is not uniform, but is instead brighter in the

middle and fainter near the edge [23]. Near the edges of the star, the line of sight enters at

a small angle and we are only able to see light from the cooler higher layers, resulting in

a solar disc that appear darker near the edges [20]. It lead to an increased difficulty in the

determination of the starting and final point of the transit. This phenomenon, called limb

darkening, has been a target of many studies and models of it have been created [35–38].

To properly understand and characterize this phenomenon, one must observe the in-

tensity distribution over the stellar disk, which is doable for the Sun but not for Stars

further away from Earth [39]. For those kind of stars, one must rely on indirect methods,

i.e. determining the coefficients with the help of light curves, over which the models are

fitted.

The effects of limb darkening on the light curves are evident in Figure 1.4, in which

we see the a gradual decrease and, posteriorly, increase of the flux near the beginning and

end of the transiting event. That behavior appears due to the non-uniform brightness of

the star near its edges, i.e. when the planet is closer to the edges it blocks less flux than

when it is near the center, thus leading to a non-uniform dip in the flux, with the shape of

the dip depending on the limb darkening law determined for the star.
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1.4.4 Aperture Photometry

Now that we understand the principle behind the method, we still need a way to apply it

to images that come from a CCD. Aperture photometry can be condensed into two simple

steps [40]:

1. Find the pixels that have light from the star and sum the counts in them;

2. Estimate the background level, i.e. what we would read if the star was not there

and, afterwards, remove it from our data.

To perform the first point of this list, we must delimit a region in the sky that contains

the greater part of the observed radiation from the object under study [41]. The most basic

aperture tends to be a circular one, but others could be used, as we shall see later on this

thesis.

The second point is not as simple as it may appear to be. Many methodologies have al-

ready been developed to solve it, such as [42, 43]. This step is of utmost importance, since

it will try to account for the contributions of thermal radiation, background emissions,

cosmic radiation and contributions from the detector itself [44]. Fortunately, the CHEOPS

mission official pipeline already takes care of this step, as we have seen in Chapter 1.2.

Thus, this topic of background estimation, shall not be discussed in greater detail.

1.5 Overview of Bayesian statistics

Bayesian methods allows one to incorporate previous knowledge and opinions into the

analysis, thus being more intuitive to us than frequentist approaches [45]. In a frequentist

point of view, we assume an hypothesis as true and try to find the probability of validating

it. On the other hand, in a Bayesian mindset, we observe the existing data, trying to assess

the likelihood of the hypothesis being true.

If we go by a more formal approach, Bayesian inference is the process of fitting a

probability model to a set of data and summarizing the result by a probability distribution

on the parameters of the model and on unobserved quantities, such as predictions for new

observations [46]. Within this framework, we specify a prior distribution, which is created

with previous information available and our beliefs about the parameters before looking

at the observations. The parameters of this distribution are called Hyperparameters and
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thus we can distinguish them from parameters of the model for the underlying system

under analysis.

If we have a model, we can also define a likelihood function, which is the probability

that the observations follow from a given model evaluated at a given point in the model

parameter space [47].

We can now calculate the posterior probability Pr(H|D), for the hypothesis H given

data D, with Equation 1.7, derived from Bayes’ theorem. By using the prior probability

of the hypothesis and data, Pr(H) and Pr(D), respectively, and the probability of data

given the hypothesis, Pr(D|H) we reached the probability distribution of the unobserved

parameter, conditioned on the existing data.

Pr(H|D) =
Pr(H)Pr(D|H)

Pr(D)
(1.7)

When comparing two different models, we have to take into account the marginal

likelihood, which is obtained by integrating the posterior over the parameter space [47],

giving us the probability of observing the data, given the model. Higher marginal likeli-

hoods are connected with better models.

Typically, Bayesian inference is based on random samples from the posterior. How-

ever, if we are not able to sample directly from the posterior, we can estimate values.

For that, we can use Markov Chain Monte Carlo, henceforth MCMC. Further details on the

theory behind then method are left for other works, for example [48, 49], but a quick sum-

mary of the method, alongside a brief discussion on how to use them are presented in

Chapter 3.1.3.

In practical terms, this method starts a chain, in a location inside the parameter space.

Afterwards it proposes a new point, which is accepted or rejected, depending on the pos-

terior density. The proposals are made in such a way that convergence for the posterior

distribution is guaranteed, albeit in some situations it may take longer to achieve it [47],

depending on the complexity of the model.



Chapter 2

The Photometric analysis

As we have mentioned, the official pipeline was built to extract the light curve of the

central star, with the highest possible precision. The goal of this Chapter is to describe a

method capable of detecting the other stars present in the field of observation, extracting

the best possible light curves from them, which can then be used to search for planets in

them, thus allowing us to extract more data from the CHEOPS’s mission.

In this Chapter the methods used to determine the stars initial positions, the masks

creation, the center tracking routines, the noise metric and a method to reduce the noise

in the light curves shall be presented and discussed.

2.1 Initial detection of the stars

The first challenge we faced was how we can detect all the stars in the field. To accom-

plish this, two very different methods were devised and implemented - one based on the

previously known RA and DEC of each star, and another built on top of image treatment

techniques. For simplicity sake, the first shall be named as the fits method and the second

as the dynam method.

Lastly, we shall set a convention to name each detected star: they are named with a

zero-based numbering notation considering the distance, in pixels, from the star’s cen-

troid, in the first image, to the central point of the image. Thus, the lowest indexed star

refers to the target and, the highest one to the furthest star from the target.

15
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(A) Logarithm with base 10 of the first image, with all
the estimated centroids, from the StarCatalogue file. (B) First image of the data set, in the subarray area.

FIGURE 2.1: Initial star detection for all the stars using the fits method.

2.1.1 The fits method

As we have previously seen, during the DRP operation, the target star position, inside

the CCD, is calculated. However, there is no direct information on where the background

stars lie within the CCD.

Instead, from existing stellar catalogues, we know their right ascension and declina-

tion, alongside the scale of the images and the rotation angle of the satellite. If we cal-

culate the difference of RA and DEC between the target star and each non-target star, by

applying Equation 1.2 and convert it to pixels, we know how far away each star is from

the center.

If the distance in pixels is known, then it’s trivial to calculate the actual position of

each star: we sum the distance to the central point coordinates. However, there is still a

last detail that we have to take into account: the RA and DEC were calculated for a CCD

with a roll angle of zero, which is not guaranteed to happen on the first image of the data

set. Thus, we have to rotate the points by an angle of 360−Θinitial to arrive at the correct

centroids in the initial image, where Θinitial is defined as the rotation angle of the satellite

for the first image in the Data Set. For the central star, we can use the values from the

official pipeline, taking into account the low errors reported on the centroid detection, in

Chapter 2.5.

We can now test this method in a simulated data set, for both the FullArray and the

SubArray. However, before discussing the effectiveness of the method, we can see that for

both cases, Figure 2.1, we have more detected points than actual visible stars.

1 pixel is approximatelly 1 arcsec.
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Those points appear due to the presence of very faint stars, almost imperceptible in

the normal image. However, if we apply a logarithm with base 10 to the image, as in

Figure 2.1a, we can barely see some of them.

In the FullArray image we see that near the edges, the estimated points start to de-

viate from the actual position of the star. However, near the center we do not see these

differences from the expected locations. Such deviations may be caused by uncertainties

introduced by both the rotation of the points, the calculation of the difference in RA, that

makes use of small angle approximations and the approximations of the pixel scale. Those

assumptions may thus not hold for those specific points, due to their distance from the

center.

If we now look closely at the SubArray area, in Figure 2.1b, we also notice the existence

of more estimated points than stars.

FIGURE 2.2: First image of the data set, with the
filtered points from the fits method.

Thus, we have a pool of candidates

from which we need to weed out the

estimations for the visible stars. This

is done by first checking if the deter-

mined coordinates are within our im-

age region. The catalogue gives us the

position of each star inside CHEOPS’s

FullArray, even those outside of the Sub-

Array area, thus we need to validate if

the coordinate in the x and y axis are

within the value range of [0, 200]. If this

first condition is met, we filter them by

their magnitude, i.e, we limit the points of interest for those correspondent to a star with

a magnitude inferior than 13 mag.

By applying the filters to the image we arrive at Figure 2.2, in which only the points of

interest still remain, thus validating the method.

2.1.2 The dynam method

Even though the fits method yielded good results and managed to estimate the initial

position of each star, it can still fail or give imprecise estimations.

Assuming that the default SubArray, with a size of 200x200 px is in use.
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There are many approaches that one can use to track a moving object in images, but

feature-based approaches tend to be more robust ones. This approach will be built around

image moments, which we can think about as an weighted average of the pixel’s intensi-

ties that can be used to determine the image’s area, centroid and even some information

on the image’s orientation. A further discussion is beyond the scope of this project, but

an interested reader can refer to [50].

Using both the zeroth and first degree moments we can estimate the centroid of any

given shape, by applying Equation 2.1, in which Xc and Yc are the coordinates of the

image’s centroid.

Xc =
m10

m00

Yc =
m01

m00

(2.1)

Such algorithm can be easily implemented using Python’s OpenCV wrapper library,

as seen in [51].

Before we can apply it, we have to perform some pre-processing steps to the images,

so that they match the desired functions inputs.

In the first place, we must convert the data type of each pixel, to a more suitable format

for the OpenCV library, that shall be used to the apply the image treatment techniques. We

can convert them to various formats but, the easiest one to convert to, is from one in which

each pixel has 16 bits, to one in which each pixel has 8 bits. It’s straightforward to see that

this data type conversion is accompanied by a reduction in the image resolution, since

each pixel now holds less information.

Now that we have our image in the desired data type, we proceed to apply a binary

threshold to the image, as given by Equation 2.2, so that the stars are represented by a

value of MaxValue and the background a value of zero, thus facilitating the next step in

the process: finding the contours.

Both the contour detection and the moments calculation are handled by the OpenCV

library. Lastly, we only have to worry about false positives in the contours. Due to small

imperfections in the images, that may still pass through the data conversion type, we can

have a detection of small contours. The contours returned by OpenCV are comprised of

a list of coordinates, thar mark the detected edge. So, as a way to avoid the usage of

https://opencv.org/. Accessed: 28/8/2019.

https://opencv.org/
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(A) First image of the data set, with the points given
by the dynam method. (B) First image of the data set, in the subarray area.

FIGURE 2.3: Initial star detection for all the stars using the dynam method.

those false detections, the contours with less than 5 points are filtered out, since we do not

expect to be able to detect and track (in a reliable way) such small objects.

I f inal(x, y) =


MaxValue, if Ioriginal(x, y) > threshold.

0, otherwise.
(2.2)

Looking at Figure 2.3a, we immediately notice the lower number of determined points

inside the image, when comparing against the fits method. From Figure 2.1a, we know

that we have faint stars, outside the SubArray region, whose positions are easily given by

the fits method, since it changes the position of the star in the sky to the expected position

of that point, whitin the image.

However, when using the dynam method, we cannot find such faint stars, due to using

a image with lower resolution, as discussed. This decrease in the resolution, alongside the

threshold, are the most probable causes for the inability to detect the fainter stars.

If we now focus solely on the SubArray region, shown in Figure 2.3b, we see that the

detected points appear to be within the expected region of the real centroid, thus allowing

us to conclude that the method is working as expected.

Lastly, in the SubArray area, we managed to detect stars in the [9.21 mag; 11.1 mag]

range, seen in Figure 2.3b. Furthermore, in the region outside the SubArray we detected a

star with 12.3 mag. A possible way of being able to detect more of the fainter stars, could

be by using the logarithm of the image, instead of the image, to apply the algorithm.
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2.2 Star tracking

Following what was previously discussed, the satellite’s CCD is not always in the same

orientation but instead, it’s rotating, alongside the satellite. To properly study the back-

ground stars, we need to be able to track them consistently between images. To do so,

three different methods were devised: static, offsets and dynam, as we shall see from now

on.

2.2.1 Static method

The most straightforward solution to this problem is to simply rotate the initial centers

of each star by the change in the satellite’s roll angle between two consecutive images.

As the difference between consecutive images roll angle is not constant, but instead is

sinusoidal, seen in Figure 2.15, we have to calculate the rotation angle for each image.

The consequences of this behaviour shall be addressed later on, when comparing the

three methods, in Section 2.5.3.

In order to calculate the updated point for a given image, Pimage, we multiply the initial

point, Pinitial , by a rotation matrix with an angle, ∆θ, equal to the difference between the

current image’s roll angle and a previously chosen reference point, as depicted on Equation

2.3.

Pimage = Pinitial ∗

 cos(∆θ) sin(∆θ)

−sin(∆θ) cos(∆θ)

 (2.3)

If we set our reference as the previous image, we could be slowly introducing more

and more errors, in a “snowball effect” that would slowly increment the difference be-

tween the estimated center and the real position. Other alternative could pass by using

the rotation angle measured at the beginning of the visit, and calculate the changes taking

the star’s initial positions as the reference, in an attempt to minimize this effect.

The analysis of a small data set, with 300 images, reveals an average difference with

a magnitude of 10−15 between the points obtained while using the initial point as the

reference and the ones with the previous image as a reference, thus revealing that both of

the options could be used. Thus, we shall set our reference as the angle for the first image

in the data set.
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FIGURE 2.4: Deviations from the cen-
tral point in the image, [100,100], for

the target star.

FIGURE 2.5: Comparison of the cen-
ter obtained with the static method and
the one corrected with the calculated

offsets for one of the stars.

2.2.2 Offsets method

If we decide to see how the DRP’s centroids change over time, Figure 2.4, we notice some

significant changes. Since the static method uses the target position to rotate the back-

ground stars, in an attempt to improve it, we decided to use the changes in the DRP’s

centroids, to correct the estimated points.

So, for each image we calculate the change in the central star coordinates from the

current image, in relation to the initial position, rotate the background stars centers, using

the static method and, add the differences found in the central star coordinates to the

background ones, in an attempt to correct the jitter.

However, when applying the corrections to the central star, it would almost mimic the

DRP’s points. So, for simplicity sake, we shall use the DRP’s coordinates as the coordi-

nates for the central star. This will also allow us to see how a lower error in the centroid’s

detections impact the overall quality of the light curves.

Lastly, in Figure 2.5, we can see the impact of the corrections on the points estimated

with the static method. Even though the offsets corrections managed to improve the center

detection, we can still see that the detected point is not yet in what we could call the

optimal position. However, we can conclude that this improvement of the static method

was successful despite not being the optimal alternative.
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2.2.3 Dynamical method

Following the good results yielded by the dynam method for the initial detection of the

stars, exposed in Chapter 2.1.2, one can use it to keep tracking the stars throughout the

images.

In this iteration the centers are found with the same technique, although now with

a small inconvenience: the association of each center with the corresponding star is not

trivial. This time we can’t use the distance to the center to number the stars. For example,

a case in which two stars are at approximately equal distances from the center could lead

to a situation in which the rotation was such that the distances “switched” and thus we

could map the newly determined position to another star.

Thus, if we are not careful, the centers can switch between stars (in extreme cases).

The solution to this problem passed by building a validation system, capable of estimat-

ing the next position for each star and, afterwards, matching the determined positions to

the corresponding star. By applying the static star tracking method, we can predict the co-

ordinates of each star, for the current image. After detecting each star position, we search

the predictions, to find the closest prediction to the determined position, thus mapping a

center to a star.

2.3 Masks

After discussing the initial detection of each star and the tracking methods, we shall now

look into another essential piece of this pipeline: the masks. In this project, there are two

different masks: one is a simple circular mask, similarly to the one used in the DRP, while

the second one is based on the shape of the stars.

2.3.1 Circular

The first mask used was equal to the one of the official pipeline: a circle centered in each

star’s centroid. The circular mask was preferred over other basic geometric shapes due to

the fact that the quasi-triangular shape of the star, seen in e.g Figure 2.16, could be easily

accommodated inside a circle. The choice of a circular mask also brings the advantage of

being straightforward to change the size of it, by just changing the circle’s radius.

Other geometric shapes could be chosen such as a square mask or even a triangular

one. If we went with a square mask, then it would span over more background area than
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(A) Shape increase method applied to a small box
(black box), that was increased by one pixel.

(B) Shape increase method applied to a “plus” sign
(black box), that was increased by one pixel.

FIGURE 2.6: Examples of the shape increase method for two different structures.

the circular one, which was not ideal. Likewise, a triangular mask could offer a superior

choice for the stars away from the edges of the image but, the closer we are to it, the

worse fit the mask would be, since we would be extremely limited to expand in one of the

directions and would probably result in a lot of masks out of bounds. Another problem

that we could run into with a triangular mask, would be how to specify the size of each

side and the type of triangle used.

2.3.2 Shape

After using image processing to both determine the initial position of each star and to

follow the “moving” stars, we saw that we could also utilize the star’s shape to create a

mask. By using the process previously discussed, in Chapter 2.1.2, we can retrieve the

shape of each star, thus allowing us to build a mask with it. In order to avoid having a

mask with a varying number of pixels throughout the images, it is calculated using the

first image of the data set.

However, a problem appears: we now need to find a way to change the mask’s size,

so it can be optimized. Unlike the circle mask, in which it’s straightforward to increase its

size, we now need to find a way to increase it and to quantify such increase.

To accomplish this, one can simply add layers of pixels around the shape, until the

desired size is met. For example, an increase of 1, would add one layer of pixels around

the entire mask, and so on.
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We can see this technique in Figure 2.6a, where a layer of 1 pixel was added to a square.

Although this method works as expected for basic shapes, it introduces some errors when

we use shapes that do not have flat sides. Since the method adds a pixel around each pre-

existing pixel, we see that the final shape can sometimes be different than the initial one.

For example, in Figure 2.6b, we see a “plus” sign being increase by one. It’s noticeable

that the proportions are not exactly equal to the initial ones but, the difference should not

be very problematic and most of the problems should be solved during the optimization

process.

2.3.3 Shifting the masks

Now that we know the position of the star in each frame, having the mask accompany

the movements is trivial: we need to calculate the changes in both axis in relation to the

initial position and, afterwards, shift the initial mask by that amount.

With the masks moving, we may encounter cases in which the shift is such that the

mask goes outside of the image boundaries, thus picking up “empty” space, as seen on

Figure 2.7, for the rightmost star. Although the areas outside the image are typically small,

they can still impact the overall quality of the light curve and introduce errors, mainly due

to the fact that, in practice, a number of pixels “disappears” for that point in time.

The mask breaching the image boundaries is expected to occur for stars so close to

the edge, as in this case, in which the mask’s shape or small uncertainties in the tracking

method can lead to such a situation.

Even though most of those edge cases are handled during the mask optimization pro-

cess, discussed in Chapter 2.3.4, there are some that can not be avoided, e.g. if the base

mask already leaves the image in some points.

2.3.4 Masks optimization

After determining the initial masks, they are either equal to the star’s shape or a circle

with a previously defined radius. However, we want to find the best mask for each star,

i.e. the one that makes the best compromise of background-star area inside it. If the mask

is big, it will pick up more background noise, and thus the light curve will have an higher

flux level. On the other hand, if the mask is small, then some parts of the star will be

outside of the region and thus the light curve will have more noise or even, in some cases,

fail to have meaningful data inside it.
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FIGURE 2.7: Edge case in which the mask is outside of the image region, due to mask
shift process.

(A) Optimal circular mask. (B) Optimal shape mask.

FIGURE 2.8: Optimized masks for both the circular and shape methods.

Similarly to the official pipeline, we shall find the mask size that minimizes the noise

metric which, in this case, is the CDPP, discussed in Chapter 2.6.

In Figure 2.8 we can find the optimized masks for the 4 stars in the image. It’s impor-

tant to take note of the upper star for the shape method, Figure 2.8b, in which the mask is

very close to the star’s outer edge. This occurs due to the proximity to the border, that may

lead to the mask leaving the image area. During the optimization process such masks are

discarded when possible. Otherwise, in the edge case of having a star so near the border

that it’s impossible to not leave the image, then the lowest value possible is given to the

mask, which tends to be a mask with a size of 1.

During the optimization process we expect the noise to decrease until it eventually

hits a minimum value and, afterwards, starts increasing, as the mask starts covering a
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greater portion of the sky.

However, if the mask is much smaller than the star, i.e. if the initial value for the

mask size is unfit for the star’s size, there is no guarantee that the noise follows this be-

haviour and thus the algorithm may converge to the wrong value. Further details on this

optimization process and the challenges that it faces, are left for Chapter 4.2.2.

2.4 Background grid

Both the mask’s shape and position are the key factors to achieve light curves with less

noise. Ideally, we would like to have a image with more resolution than the one that comes

out of CHEOPS CCD. Due to the usage of shape-based algorithms for the masks and star

detection, alongside the integer conversions that must be made to convert positions into

grid coordinates, the movements on the image are limited to the grid’s nodes.

As an example, let us assume that we have estimated the star’s centroid to be in the

pixel coordinates [100.4, 100.4]. When working with images, we do not have a continuous

surface and, instead, we should think of it as a equally spaced grid, in which each node

represents a pixel. Thus, if we wish to link those coordinates with a location in the image,

we must make some approximations. Once again thinking on the pixel grid, the distance

between the grid node 100 and the 101, is all part of the same pixel and all points that fall

within it are converted to the point [100,100]. If we could increase the number of nodes in

our grid between any two pixels, we could approximate the coordinates to a node much

closer to their actual value. One simply way way to accomplish the introduction of more

nodes is to spread a pixel over a given number of pixels that would comprise a “block”.

The goal of this technique is to spread the flux of a single point to a block of points,

transforming a square with side of Noriginal pixels in each side to one with Nincreased pixels

in each side. Following this notation, we can define a scaling factor, given by Equation

2.4.

scaling f actor =
Nincreased

Noriginal
(2.4)

However, if we transformed 1 pixel to a block of 9, we would have a 9 times increase

in the flux of the entire image. So, we need to normalize the increased image, so that each

block, when summed together has the value of the pixel that it is substituting. In practice,

this means that the image is divided by the square of the scaling factor.
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FIGURE 2.9: Example of a conversion between two grids, the first one with a side with 4
pixels and, the bigger one with 12.

Now that we can increase the images, we face a second challenge: we have to be able

to transform the coordinates from the normal grid to the increased one.

Let us assume that we have a grid with a side of 3 pixels and wish to convert it to one

in which the size has 6 pixels. So, each pixel is converted into a block of 4 pixels. If we

now wish to convert pair of coordinates inside this normal grid to the bigger one, we face

a problem: which one of the 4 pixels should be chosen for to represent it. We could define

the center as the intersection of the 4 individual pixels but, to simplify, we can impose

constraints to the grid size. If we always make sure that the background grid has an odd

number of pixels, in each side, each block will have a well-defined center. Under those

conditions, the point in the normal grid, Pinitial is converted to Pf inal through Equation 2.5:

Pf inal =

⌊
scaling f actor

2

⌋
+ Pinitial ∗ scaling f actor (2.5)

In Figure 2.9 we see an image with a square with a side of 4 pixels being converted

into one with side of 12. In this example, the original image had 1 pixel with a non-zero

value and, after the conversion, we have a block of 9 pixels with a non-zero value in its

place.

After proving that the method is working as expected, we can apply it to one image

and attempt to assess the quality of the conversion. To do so, we decided to apply a simple

test: a circular mask, with radius of 20, was placed on the point [100,100] on the normal

image and we calculated the flux that passed through it. Afterwards, we increased the

image and the mask, with a grid of 600 points in each side, and recalculated the flux.

Comparing both measurements, we find a difference of 3.8e-9, which is small enough to
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not warrant concerns, thus, validating the capability of this method to increase both the

masks and the images, without introducing significant changes on the final result.

Lastly, there is a detail that we must keep in mind: we can see the increase in the grid

size, as an increase in the correlated points, i.e. if one pixel is transformed to 9, then those

9 pixels are equal to the first one, as well as all the errors associated with that pixel, even

after normalizing the block of pixels, to make sure that we do not introduce flux into the

images.

2.5 Errors in the centroid determination

Given the low errors in the detection of the central star, reported by the DRP [13], we

shall now compare our results against the position of the centers used as input for the

simulator.

However, before we can calculate them, we have to retrieve the “truth” values. In the

simulation data we have the information for the center’s position in each image. Looking

at the simulation outputs, with the injected data, we see values for the PSF center, with a

cadence of 1 second. Due to the spacecraft jitter during the rotation, the X and Y position

of the PSF’s center is not always the same and thus we have to calculate the mean value

of those positions to reach a value that we shall take as the true position of the centroid.

Now that we have the real centers for the target star, we can calculate the errors for the

initial detection and see how the three different star tracking methods impact the errors.

Lastly, for the background stars, since we do not have any stored information, we shall

only compare them amongst themselves.

2.5.1 Initial Detection

If we look at Figure 2.10, we can see the differences between the points obtained with the

dynam method and with the fits. At a first glance, the points appear to be almost equal,

with slight differences between them. However, when we look at Table 2.1 we see that it’s

not the case.

In Table 2.1, we see that fits method presents much lower errors than the dynam one.

Remembering back from Chapter 2.1.1, the fits method, for the target star, uses the DRP’s

centroid estimation. Thus, we clearly see that the method applied in the official pipeline
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FIGURE 2.10: Comparison between the initial points determined with the dynam method,
in blue, and the fits method, in red.

TABLE 2.1: Deviations, in pixels, for both initial detection methods, when
comparing against the “truth” position of the centroid. The calculations were

done for three different values of background grids.

Method
Background grid

0 600 1200
Delta X Delta Y Delta X Delta Y Delta X Delta Y

fits -0.0246 -0.0396 -0.0738 -0.1188 -0.1477 -0.2375
dynam 1.4508 -0.2942 4.1747 -0.8960 8.8566 -1.3070

produces the best estimations. To test the accuracy with the background grid active, we

need to convert the true values with Equation 2.5.

In Figure 2.11 we can see the behaviour of the errors with the increase of the back-

ground grid. Starting with the fits initial detection method, we see that, the errors stay

approximately equal for all background grid values. This result was expected, since the

only differences introduced by the grids, in this method, is the scaling of the values calcu-

lated over the original image. If the estimated points and the true points increase by the

same amount, we see no changes in the percentage of error.

However, that is not the case for the dynam method. At first, the increase of the grid

size yields a significant reduction in the errors for the vertical axis. Unfortunately such

is not the case for the horizontal axis, in which we can notice a gradual increase in the

errors. Comparing the magnitude of the decrease and the increase, we see that the gains

for the vertical axis far surpass the losses for the horizontal one.
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(A) Using the fits initial detection mode. (B) Using the dynam initial detection mode.

FIGURE 2.11: Errors, in the vertical and horizontal axis, for the first image in the data
set. A comparison is made between the two presented methods, only for the target star.

We can also see that, as far as the error in the detection is concerned, using a back-

ground grid bigger than 600, i.e. a grid of 600x600, does not yield any significant im-

provements, but increases the computational burden. Later on, in Chapter 5, we shall see

how the background grid actually impacts our light curves.

2.5.2 Tracking errors

Now that we have characterized the initial detection methods, we can look at the tracking

methods. In order to keep the comparisons constant between the three methods, we shall

always use the same initial detection method: the one with the lowest error - fits method.

The results of this test can be seen in Figure 2.12, in which we see the errors for all

images, except the first one. The offsets, which for the central star is the DRP’s estimations,

yields the lowest, and almost constant, errors. Similarly, the dynam method also gives

constant estimations of the central point, albeit with higher errors. We also notice that the

deviations in this method are more related to the vertical axis, than with the horizontal

one.

Lastly, the static method yields the worst results, as one would expect, since it applies

no corrections on the target star’s centroids. Furthermore, since the initial point is also

subjected to the rotation applied by this method, it can easily “jump” between nearby

pixels, thus introducing the visualized pattern.



2. THE PHOTOMETRIC ANALYSIS 31

FIGURE 2.12: Evolution of the errors in the estimated centroid’s position, for the three
star detection methods. For the initial detection method we used the fits method, which

is presents the lowest errors, as seen in Chapter 2.5.

2.5.3 Comparison between star tracking methods

Now that we have seen how the target star detection and tracking is impacted by the

corresponding methods, we still have to see the behaviour for the background stars. Un-

fortunately, we do not have information regarding their true position, thus prohibiting a

proper analysis of the methods. However, we shall perform a more basic analysis: we

shall compare the relative position of each estimated point inside the star’s shape. This

analysis will be performed over 2 different data sets.

Further along this thesis, in Chapter 5, the impact of each method on the produced

light curves shall be better studied and thus allow a better comparison between them.

We can start by looking into a small data set, with only 300 images. We expect the

dynam method to be able to consistently follow the stars. On the other hand, both the

static and offsets methods are expected to suffer some deviations, due to relying on the

rotation angle values to find the next value.

In Figure 2.13 we see the results yielded by each method for two different points in

time. Starting with the earliest one, Figure 2.13a, we find small but almost irrelevant

deviations between the positions estimated with each method.

Contrasting this result, if we look at the centers at a later time, in Figure 2.13b, we

now see that the points obtained with the static method are almost out of the stars, with

the offsets slightly nearer to the center.
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(A) Centroids estimated by each method, for the 40th
image.

(B) Centroids estimated by each method, for the 55th
image.

FIGURE 2.13: Centroids estimated by each method, for two different images: One in
which the static method yields a good estimation and one, in which it yields a bad esti-

mation. This analysis was done with a data set with 300 images.

(A) Centroids estimated by each method, for the 40th
image.

(B) Centroids estimated by each method, for the
1940th image.

FIGURE 2.14: Centroids estimated by each method, for two different images: one near
the beginning of the data set and, the other, near the last one. This analysis was done

with a data set with 2000 images.

With this behavior in mind, we can now look into a bigger data set, with 2000 im-

ages. In Figure 2.14 we once again picked two images, one near the beginning of the data

set, and one near the end. Albeit not as apparent, the same behaviour is found: for the

first image, we notice the three estimations clumped together, although the offsets method

presents some deviations. At a later stage, we find significant differences between the

points, with the ones from the static method almost outside of the star.
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After verifying the same phenomenon in two different data sets, we can got back to

the earliest data set, in order to try to find a pattern capable of justifying it.

FIGURE 2.15: Differences between two consecutive
roll angles. The black lines represent the points cor-
responding to the the images of Figure 2.13 and 2.16.

Looking into the roll angle differ-

ences between consecutive images, in

Figure 2.15, we find a sinusoidal oscil-

lation. If we compare the pattern with

this oscillation, we see that the case in

which the estimations are close together

occurs when we are near the minimum

of this signal and, when away from this

region, we have a dispersion of the esti-

mations.

To test this hypothesis, we collected

another two images, from the same

dataset, Figure 2.16, that had roll angle

differences under the same conditions and checked to see if the pattern still holds.

Unsurprisingly, we found this pattern, thus validating our hypothesis: Around the

minimum, periodic, values of the roll angle differences, we find a region around which

the differences are small and thus the rotation-based algorithms work properly. Outside

of those valleys, we start to find deviations that not even the corrections applied on the

offsets method can counteract.

There were no further attempts to characterize this region, since the tests could not be

automated in a reliable way due to the fact that there is no clear criteria on what makes

a good center determination. One possible way to understand it better could be com-

paring the rotation-based methods against the dynam one, and find where the differences

between start to be noticeable.
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(A) Centroids estimated by each method, for the 85th
image.

(B) Centroids estimated by each method, for the 105th
image.

FIGURE 2.16: Centroids estimated by each method, for two different images: One in
which the static method yields a good estimation and one, in which it yields a bad esti-
mation. The images are from the data set also shown in Figure 2.13, but at a later time.

2.6 Noise metric - CDPP

In order to estimate the noise in the light curves, an adaptation was made to the algo-

rithm applied in NASA’s Kepler mission: Combined Differential Photometry Precision,

or CDPP. During the MSc’s thesis of Pedro Silva [52], the algorithm was ported to be used

for the CHEOPS mission, and it shall be used as the noise metric to compare the qual-

ity of the light curves obtained with the developed method against those given by the

CHEOPS’s mission official pipeline, DRP.

In Christiansen et al words [53]: “A CDPP of 20 ppm for 3-hr transit duration indicates

that a 3-hr transit of depth 20 parts per million (ppm) would be expected to have a signal-to-noise

ratio (S/N) of 1, and hence produce a signal of strength 1 σ on average”, which is the ideal

metric to quantify the noise existent on the light curve and, it can be interpreted as the

effective white noise seen by a transit pulse [53]. In its calculation, the important factor is

the near-term trend changes in brightness instead of the long-term ones [54].

For further details on the algorithm itself, one can refer to the works of [53, 55], where

the algorithm is properly introduced and discussed. However, for a brief introduction on

the methodology behind it, I will now refer to one of its many adaptations, in [56]:

• Start by passing a 2 day quadratic Savitsky-Golay (SavGol) filter to the flux, which

should be more than enough to avoid fitting the transits in the Light Curves, as we

shall see further below;
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• Remove outliers outside 5 σ;

• Divide the data into chunks of data, which have the points correspondent to the

integration time. Afterwards the standard deviation is calculated for each one of

them;

• Take the median of the standard deviations and divide by the square root of the

number of chunks, obtaining the desired photometric precision.

However, since all the referenced papers were made for the Kepler mission we had to

introduce some changes to the window lengths in use. Similarly, regarding the Savitsky-

Golay filter, its application results in a suppression of the white noise and thus, in Kepler’s

case they have to scale the CDPP by a factor of 1.168 [57]. In CHEOPS’s case we are

using the same ratios between the different parameters of the filters, thus having the same

suppression of the expected rms from white Gaussian Noise, as reported in [57].

The goal behind the SavGol filter is different between the two missions. Whilst in the

Kepler mission the transits are expected to be a small part of the light curve, on CHEOPS

we expect them to be a more significant part of it. For the Kepler mission, the SavGol

filter is made in such a way that the window has more points than the transit, but not

enough to start fitting the astrophysical noise in the light curve. If the conditions are met,

the filter should be able to pass through the transits, without fitting them, and thus the

CDPP is calculated without removing them, which should not be impactful due to them

being much smaller than the light curve. On the ported version, for the CHEOPS mission,

this filter is now expected to fit the transit without fitting the noise present on the light

curve, which introduces some constraints on the window sizes, as discussed in [52].

To calculate the CDPP with a time scale of 30 minutes we shall use the following

values:

• Calculation window: 30 minutes - Integration time.

• winlen: 10 minutes - Size of the convolution window;

• Savgol filter window: 41 minutes - Should be two times the number of points that

correspond to the integration time. However, it was determined, empirically, in [52]

that this value was the optimal one for removing transits from smaller data sets,

since 61 points started removing noise from the light curve.
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At the time of writing, this implementation used the image number instead of the

time correspondent to the image to calculate the noise. So, one can imagine that it will

not fare well if the data sets have temporal gaps in them, or for bigger data sets we might

find that the Savgol window is not good. In such cases, we shall switch to the DRP’s

implementation of CDPP

The official DRP reports the usage of a modified CDPP algorithm, which does not

make use of the Savitsky-Golay and, consequently, does not take into account the possible

transit in the light curve. So, the noise estimation is made over the noise and transit at

the same time and, if possible, we would like to steer away from this metric whenever

possible.

2.7 Uncertainties

In Chapter 1.2.1 we presented the equation to calculate the uncertainties in each point of

the light curve.

As we have seen, in this Chapter, the utilization of the background grid will lead

to an increase of the image size and, consequently, the mask size. For equation 1.1 we

must calculate the number of pixels inside the image. Before we can apply it, we must

retrieve the relevant parameters from the DRP’s outputs. Even though most of them are

straightforward to retrieve, the background and dark are not. Both of them suffer the same

problem: in the DRP outputs, we can only find the values for the central star, without

having the values outside of this region.

As discussed in Chapter 2.4, the increase of the grid leads to an increase in the corre-

lated points. Furthermore, since all the parameters stored in the files are calculated over

a 200x200 region, we will have a dimension mismatch and thus overestimate the uncer-

tainties. As an example, when using a background grid of 1000, we will have a mask size

much bigger than when we are not using a background grid. Thus, we must convert the

number of pixels from the increased grid to the normal one, which can be accomplished

by dividing the number of pixels in the mask by the square of the increasing factor, which

gives a corrected mask size.
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2.7.1 Background

The background stored in the DRP outputs, is given by Equation 2.6, where background is

the background level, mask pixels is the number of pixels in the mask used to calculate the

light curve and Exposure time is the exposure time of each image.

stored bg = background ∗ Exposure time ∗mask pixels (2.6)

With this knowledge, we want to extract the background per pixel, to calculate the

uncertainties for our mask of choice. One aspect to take into account, would be the fact

that the DRP’s background calculation is made over the image outside a region delimited

around the target star, i.e. it also factors the background stars. We could try to improve

the background calculation with the masks and star tracking techniques so far described

but, we would be introducing errors due to the movement throughout the CCD pixels

and, some parts of the DRP would need to be re-implemented to allow us to work with

images without background correction already applied on.

Thus, as an approximation, we shall assume that the background is valid for our case

and, if we divide the stored bg by the number of pixels inside the DRP’s mask, we get an

estimation of the background*Exposure time.

2.7.2 Dark

Similarly to the background, the dark stored in the outputs is only calculated for the region

near the central star, using the image outside the applied mask.

The actual values are stored in temporary files during the DRP operation and, after-

wards, deleted. Thus, to have this information, we would have to recalculate it. Even

though the dark value is not stored, in DRP’s outputs we can find the dark component in

the uncertainty calculation, given by Equation 2.7.

Since we know the radius of the circular mask used for our data set, we can simply

divide this stored value by the number of pixels inside the mask, and thus have a rough

estimation of the dark. However, DRP makes use of 4 different masks and, if we are not

careful, nearby stars can impact its value. Thus, in an attempt to minimize the contam-

inations, we can calculate the median of the estimated dark for each one of the 4 DRP’s

apertures, and regard it as the dark value.
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stored dark = dark ∗ Exposure time ∗mask pixels (2.7)

The downside of this method is that it assumes that we have an uniform dark, that is

equal for both the target and the background stars, which may not hold as true. But, due

to the difference in the orders of magnitude of the dark and of the flux level being so big,

the small imperfections should have no meaningful impact in the estimated uncertainties.



Chapter 3

Gaussian processes

3.1 Introduction to Gaussian Processes

Before we begin this section it’s important to note that this is only a (very) brief introduc-

tion of Gaussian processes, without the usual mathematical rigor that accompanies them

and, for a more detailed description, one should refer to [58], a book written for “grad-

uate students and researchers in machine learning at departments of Computer Science,

Statistics and Applied Mathematics”.

A Gaussian process is a generalization of the Gaussian probability distribution [58]

and, unlike a probability distribution which describes scalars or vectors, a stochastic pro-

cess controls the properties of functions. This process is completely specified by its mean

function (m(x)) and covariance functions (kernel) and can be defined as:

f (x) ∼ GP(m(x), k(x, x′)) (3.1)

where m(x) is the mean function and k(x,x’) is the kernel.

They are a very versatile tool, capable of working with any given number of inputs,

and can model processes that are combinations of aperiodic, periodic and quasi-periodic

signals, [47]. In astronomy, they have been used in numerous works to model systematics,

e.g. [59, 60].

As we shall see further along, in Chapter 5, the light curves have noise that is intro-

duced by the satellite’s jitter and rotation, and thus we will attempt to model and remove

it from the light curves.

39
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3.1.1 Covariance function

The Covariance function, or Kernel, will control the behaviour of the GP, such the smooth-

ness and (in)variance with translations.

Even though we can use any kernel that we wish, we have to take a consideration into

account: it has to be a symmetric and positive semi-definite matrix [61]. So, in order to

comply with these requirements, one must introduce a white noise term to the diagonal

of our kernel (the noise is expected to be uncorrelated so we don’t have to introduce the

compensation on all elements).

We have many kernels to choose from but, since this thesis does not need a more

detailed explanation and understanding of all the different kernels, one should once again

refer to [58] if more information is needed.

Even with the existence of a great number of different kernels, they might still not

be good enough to describe the desired behaviour. For example, if we are working with

bi-dimensional data and we wish to use a kernel that has different behaviours over each

dimension. In such cases, we can combine kernels, i.e. adding them or multiplying them

either to other kernels or with a constant value.

We can classify the standard kernels in one of two different ways, “stationary” or

“non-stationary”. As the name suggests, the first kind is invariant to translations, while

the second kind depends on the input position. The stationary kernels are a function of

“x - x’ ”, which means that equal translations induce equal changes in the kernel.

The Exponential squared kernel, depicted in Equation 3.2, is a stationary kernel and

one of the most used in the kernel machines field [58], assuming a smooth and infinitely

differentiable function [62]. Following [63], in which this kernel was also used to create a

systematics model, we shall also use it.

ExpSquare(x− x′) = θ2 ∗ exp
(
− (x− x′)2

2γ2

)
(3.2)

This kernel has two hyperparameters, theta and γ. The first is the amplitude and will

modulate the vertical axis changes, while the second is the length-scale, controlling the

decay in the correlation between two points separated by x - x’.

If we now fix the amplitude of the kernel and just change the length-scale, as in Figure

3.1a, we see that smaller length-scales values will lead to a kernel capable of changing

quickly, while higher length-scales will in turn signify a “slower” kernel, not as capable

of keeping up with high frequency oscillations.



3. GAUSSIAN PROCESSES 41

(A) Squared Exponential kernel for different length-
scales, in the 1D case.

(B) Multiplication of two Squared Exponential ker-
nels, for the 2D case.

FIGURE 3.1: Visualization of the Squared Exponential kernel.

As we have said, if we want a kernel that varies across more dimensions, we can

simply multiply two kernels that only depend on one of the dimensions, as seen in Figure

3.1b, in which two Exponential Squared kernels with the same amplitude and length scale

were combined. We can describe this bidimensional kernel through Equation 3.3 and, in

practice, it tells us that the function value f(x,y) is expected to be close to f(x’, y’) if and

only if both x and y are close to x’ and y’, respectivelly [64, 65].

k2D(x, y, x′, y′) = kx(x, x′) ∗ ky(y, y′) (3.3)

3.1.2 Mean function

We can think of the mean function as a way to express our beliefs on the function before

looking at data, and thus control forecasts in regions for which we have no data [66] or, in

other words, it’s our model. The most common mean function is a flat mean (read zero)

function, which typically reflects the (lack of) knowledge on the function itself.

In our case, we shall apply a little trick and also assume a flat mean function. Before

we delve deeper into it, we have to first create a reliable model of the expected light curve

of a stable star with a transiting planet, as in Figure 1.4.

To solve this problem we can create this model with Python’s batman package [67] and,

assuming that we know some values of the star and the planet (Table 3.1), we can create

a model of the transit, as seen in Figure 3.2.
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FIGURE 3.2: Example light curve, cre-
ated with the batman package.

Parameter Value

RP/RS 0.1

a/RS 15

Inclination 87 deg

TABLE 3.1: Parameters used to create
the model in Figure 3.2.

Now that we have a model of the expected light curve and the measured light curve,

we can subtract one from another and, if the derived parameters are close enough to the

real ones, we should have a value of almost zero for each point. We find an almost zero

instead of a zero because we still have noise, which is not accounted by the theoretical

model.

If we pay closer attention to Figure 3.2, we see that the model light curve is normalized,

i.e. outside of the transit we have a value of 1, which is not the case for our light curves.

Thus, we will need to also normalize our light curve, which is not as trivial as it might

seem, as we shall see in Chapter 3.2.

3.1.3 Markov Chain Monte Carlo - MCMC

If we wish to sample and provide sampling approximations of the posterior probabil-

ity density function, our best option is to use numerical methods, amongst which, the

Markov Chain Monte Carlo (MCMC) method is widely used.

This method iteratively constructs a Markov Chain, using the posterior distribution as

its equilibrium distribution, i.e. the distribution to which the chains will converge to [47].

A chain, that we can think of as a walker, is started from a point in the parameter space

and proposes a new one, which is accepted or rejected, based on the posterior density

ratios between the two locations.

Since we are using a finite chain, the starting location, in the parameter space, can

affect how it converges. For example, if the chain starts far away from the posterior, then it
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takes time before it starts sampling from the high-probability posterior space [47]. In order

to diminish the effects of the starting position, we can discard a percentage of our chains.

The portion of the chain that is discarded depends on the context of the problem. This

practice of discarding a portion of the chains shall, henceforth, be referred to as “burn-in”.

Furthermore, typical approaches make use of many chains at the same time, thus allowing

to start from different initial positions. There are many approaches for the creation of the

initial values, as we shall see in Chapter 3.1.3.1.

A more in depth explanation of the algorithm is outside the scope of this text, and an

interested reader should refer to [47] for a general and high level overview of the method

, and [68] for specifics on emcee, a Python package that implements a MCMC sampler.

3.1.3.1 On the practical application of the MCMC

In order to use the MCMC method, we shall use the emcee Python package, that is widely

used in astrophysics literature. Now, we will look over some of the key details that one

should keep in mind when working with these methods.

In the first place, we need to initialize the walkers and, for that, we have (at least) three

different approaches:

1. Start the walkers at a sampling of the prior;

2. Start the walkers around a point, in the parameter space, that is expected to be close

to the maximum probability point;

3. Start from a sampling of the prior distribution and go trough a ‘burn-in’ phase in

which the prior is continuously transformed into the posterior.

If the process is going well, the acceptance fraction, i.e. fraction of proposed steps that

are accepted, should be in the [0.2 - 0.5] interval and, if it reaches a very low value, it’s a

clear indicator that we have a problem [68].

We should also run a large number of samplers, until performance problems start to

arise, which leads to the compromise of using the greater of:

1. Smallest number of samplers for which the acceptance fraction during the burn-in

is still acceptable.

2. Number of samples that we want in the end.
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3.1.4 Problems of Gaussian processes

Although Gaussian processes are a powerful tool, they still have some associated draw-

backs. The main problem passes by the computational burden that accompanies them.

Those costs are derived from the size of the data set in use and from the complexity of

our model. If we introduce more freedom in our model, through an increased number of

parameters and hyperparameters, we will have a more complex model but, we will also

increase the cost of the marginalization process.

The biggest bottleneck present in this process is the inversion of the covariance matrix,

that has aO(N3) time complexity, following the Big-O notation [47, 69]. For this thesis, the

george Python library shall be used to implement the Gaussian Processes and, if the size

of the data sets in use is such that we cannot apply the Gaussian Processes in a reasonable

amount of time, then we could apply the GPs over parts of the light curve, as described

in [60].

With the usage of a computational cluster, there was no need to implement this tech-

nique. However, it is an interesting approach, especially if we only want to fit the planet’s

parameters. If we also want to properly model the noise in the LC, we do not know if

such approach could be viable, or how the results would compare to those obtained with

the full light curve. It’s also important to keep in mind that all the tested data sets had, at

maximum, around 3000 points which we can still consider a reasonable amount of points.

Lastly, due to the high number of kernels available, as seen in e.g. [58], the task of

choosing the right kernel for the problem in hand is not always trivial. The kernel choice is

typically made through experience and intuition or, if we do not have them, then through

a combination of the basic kernels [70].

3.2 Light curve normalization

3.2.1 Ideal case

In a ideal case, we would have no contribution of neither solar spots nor instrumental

effects on the light curve (LC) and thus, the out-of-transit regions would be almost flat,

similarly to the model of the light curve presented in Figure 3.2. Under those conditions,

or near them, if we divided the light curve by the median of the out-of-transit region we

should be able to obtain a normalized light curve.
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FIGURE 3.3: Light curve normalization, with division by the median of the flux. In blue,
we performed a division by the mean of the first 60 points, in Orange, the mean was
calculated over the first 20 points and, in Black, using the median of the entire light curve.

Even though this division is capable of normalizing the light curve, under such con-

ditions, it fails in two different points: first, the number of points used to calculate the

median influence the overall shape of the normalized LC, as seen in Figure 3.3. Secondly,

we do not know, a priori, where the transit occurs within the LC and thus, we could

consider it in the median, thus not fully normalizing the LC and instead introducing a,

previously non-existing, trend on the LC.

3.2.2 Linear trend removal

After seeing that the division by the median was not a good approach to the problem,

we decided to try a different approach. As an approximation, we shall assume that the

contribution from the stellar spots is linear throughout time, which is not necessarily true,

especially if the spot stops contributing to the light curve during the observations.

Since we are attempting to remove a linear trend from our LC, we can choose two

different regions in the light curve, outside of the transit, and fit a line that passes through

them. Instead of using a single point, we use use two blocks of 10 points and perform a

linear regression .

If we choose both edges of the light curve, present in Figure 3.4, fit a line to them

and, posteriorly, we divide the LC by this line, we find that the normalized light curve is

almost flat, as seen in 3.4b.

Now, that we have validated that a division by the fitted line yields normalized light

curves, we have two different cases to take into account:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html; Ac-
cessed: 14/8/2019

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
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(A) Fitted line overlapped with the light curve.

(B) Comparison between normalized light curves. In
Blue the one normalized with the fitted line and,
in Orange, the one using the median of the first 20

points.

FIGURE 3.4: Normalization of the LC, with a linear fit outside the transit region.

1. The transit is away from the edges of the LC;

2. The transit is near the edges.

Unfortunately, there was no time to develop a transit detection technique and thus, at

the time of writing, the choice of region from which the points for the linear fit are chosen,

is manually defined. It follows that, if we are not careful when choosing the points, the

normalization process will end up exacerbating the trend in the data, instead of removing

it.

3.3 On the application of the Gaussian Processes

3.3.1 Choosing the kernel

As we have seen in Chapter 2 and will see in Chapter 5.1.2 the satellite’s rotation is closely

tied to many of the phenomenon seen in the light curves, so we shall use it as the input

for our kernel. Instead of using the rotation angle, we could use the time of observations.

However, the linearity of time does not describe well the circular nature of the rotation

angle and the periodicity of the noise.

Furthermore, this technique, with the rotation angle of the satellite, has already been

applied for the Kepler mission, showing good results [59]. However, in that case the satel-

lite never completed a single lap around its center, since the spacecraft’s thrusters are used
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every few hours, returning the roll angle to its nominal value. In such case, the start po-

sition and the final one are not expected to be correlated, which simplifies the application

of the Gaussian Processes, as we shall now see.

In CHEOPS case, as we have seen, the satellite is rotating around its line of sight, and

thus the CCD is continuously rotating. Furthermore, not only do we have the transforma-

tion in the angle that occurs when the CCD’s orientation return to its original orientation,

i.e. it passes from θ = 360 to θ = 0, but also the ones induced by the SAA and/or Earth

occultations, as we can see in Figure 3.5.

FIGURE 3.5: Rotation angle of the satellite for a Data Set with SAA induced temporal
gaps.

We can classify our data as directional data, i.e. the noise found on the light curves

depend on the satellite’s orientation, at any given time. We can also refer to this kind

of data as circular data, and it can be found in many fields, such as in political science

[71], image processing [72], weather analysis [73], geology [74], astronomy [75], amongst

others.

To tackle these kinds of problems with Gaussian Processes, one has to carefully choose

an approach. The typical models, do not take into account the disk’s geometry in their

kernel and, in the literature we find multiple approaches to solve this problem, such as

polar GPs [76] and wrapped GPs [77]. Even though both approaches reveal themselves

promising, we did not have the time to implement and test either of them.

Instead, we shall make use of a similar approach, with a 2D kernel. If we think about

a unitary circumference, we know that it’s possible to specify a point in it, using the sine

and the cosine of the angle between that point and our angle of reference.

As we have seen in Chapter 3.1.1 we can multiply two unidimensional kernels to

create a 2D kernel, in which two functions values, f(x,y) and f(x’,y’) are only expected to

be close if both x and y are close to x’ and y’, respectively. Since we expect the noise, in

any given point, to be correlated with the noise from adjacent points, we can apply this
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bi-dimensional kernel over the sine and cosine of the rotation angle, as in Equation 3.4,

thus guaranteeing that the correlation is high between points with almost equal sin(θ)

and cos(θ) or, in other words, when they are near each other.

k2D(x, x′) = λ ∗ ksin(x, x′) ∗ kcos(x, x′) (3.4)

where λ is the amplitude Hyperparameter, ksin the kernel whose input is the sine of

the rotation angle and, kcos has the cosine of the angle as its input.

Lastly, in order to take into account the white noise, we add the previously calculated

uncertainties in the Light curve to the diagonal of our kernel, thus complying with the

kernel limitations presented in Chapter 3.1.1.

3.3.2 Creation of our model

Now that we have chosen the kernel, we have to choose what are the parameters of our

model. We decided to use the following:

• Planet’s radius, RP;

• Semi-major axis, a;

• Orbital inclination, inc;

• Time of the inferior conjunction, t0.

The orbital period is not determined with the GPs, but instead with Equation 1.3. As

previously mentioned, while working on a Bayesian setting, we can express our prior

beliefs on the values of the parameters, i.e. constrain them to be within a given region in

parameter space. Constraining the hyperparameters from the kernels is not as intuitive,

and thus, we shall give them a broad range of values that they can take. The parameters

used to create the transit model, however, are easier to constrain. In Table 3.2 we expose

the default constraints that can be used for the Data Sets, introduced in Appendix C,

studied during this thesis.

As we have said, the constraints applied on the kernel’s hyperparameters are relaxed,

with a wide range of possible values, whilst the ones from our model have a more well-

defined bounds. The kernel’s bounds are defined with the natural logarithm, due to george

inner workings, that store them as the logarithm instead of the value.



3. GAUSSIAN PROCESSES 49

TABLE 3.2: Bounding limits for both the kernel and the model parameters.

Parameter Lower bound Upper bound

Kernel
log(γcos) -20 10
log(γsin) -20 10
log(λ) -20 0

Model

RP 0 0.2
a 1 6

inc 0 90
t0 Min(time) Max(time)

Lastly, we just need to find the initial values of our model. As we have previously said,

given enough time, every starting position will converge to the correct one. However, the

better the starting position, the less time will be spent until convergence. In order to avoid

having a parameter much larger than the rest, we decided to shift our time array, so that

we measure the time from what we define as the central transit, thus t0 initial guess will

be a value of zero. To define the central transit, we decided to use a very basic approach.

After normalizing the light curve, we find the point in time if which the the minimum

value of the flux is reached, which should be near or very near the mid section a transit in

the light curve.

3.3.3 Practical application of the GPs

Now that we have defined a model and a kernel for the GPs, we can apply them, as

schematized in Figure 3.6. The first step is to normalize the LC and afterwards, initialize

the MCMC chains.

Even though there are many different methods to create the initial position of each

walker in the parameter space, as discussed in Chapter 3.1.3, we have decided to create

a ball around the most likely values. To do so, we use a sample from numpy’s standard

normal distribution , multiply it by 1e-8 and sum to what we believe that are the most

likely parameter values, thus creating a distribution of values around our initial guess.

Now that we have the initial position, for each chain, we pass to the two burn-in

stages and the production stage. Fundamentally, the three of them are equal, i.e. the same

process occurs. In each stage, the sampler proposes parameters, that are tested to see if

they lie within the delimited regions defined in Table 3.2. If they are, we need to set the

new parameters in the GP and to recompute the kernel. Afterwards, we create a transit

https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.random.randn.html.
Accessed: 20/8/2019

https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.random.randn.html
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FIGURE 3.6: Schematic of the Gaussian Processes.

model with them and subtract them from the normalized light curve and, with this, we

should be left with only the noise, for which we can then calculate the likelihood of it,

given our model.

After the first burn-in stage we create a new ball in the parameter space, now around

the position of the best walker. This burn-in stage is done in an attempt to guarantee that

the walkers all started in reasonable values, in the second-burn in stage.

We will not work with the likelihood, but instead with its natural logarithm, which

we shall henceforth refer to as loglikelihood. If any of the parameters is not within the

region, then its loglikelihood takes the value of minus infinity (−∞). Otherwise, we use

the calculated value

The last step, after performing the three stages, is to sample our kernel, which should

give us a good estimate of the noise, in each point. Instead of only performing a single

sampling procedure, we shall take more samples and calculate the median value. Which

can then be used to remove noise from the light curve.

3.3.4 How to present our results

After completing the production stage, we do not have a final value, but instead a distri-

bution. To achieve a concrete value, alongside the correspondent uncertainties, we shall

use the method recommended in the emcee documentation [78]: compute the 16th, 50th,

and 84th percentiles of the samples in the marginalized distributions. We shall take the 16th

percentile value as lowest possible value for the parameter and, the 84th as the highest
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possible value. The 50th percentile, or median, will be used as the final value and we can

find the true values, for each data set, in Appendix C.

In order to assess the chain’s convergence, we can plot each value taken by each indi-

vidual walker, for each parameter, during the production stage.

Furthermore, to visualize correlations between parameters, we use corner.py [79, 80],

which is a widely used package in astronomical literature, normally used to show results

from MCMC processes. The MCMC routine, as we have seen, gives us a distribution of

values, for each parameter. This package, corner, plots each parameter of the GP against

all others. As an example, one can look at Figure 5.32.

The diagonal line in the plot represents the parameter plotted against itself. If the

MCMC process went without problems, we expect to see a clear peak, in a Gaussian-

like fashion. The other entries in the graph, easily allow us to search for correlations. If

two parameters are correlated, we should see a line in their intersection, indicating that

a change in one of them, induces a change on the other one. In this plot, we can also see

how each value is distributed in the parameter space.





Chapter 4

An expansion foR the CHeops

mission pipelIne - ARCHI

As we have seen so far, we have two main components in this pipeline: photometry, which

aims to extract the light curves from all of the stars in the field and Gaussian Processes

(GPs), which have the goal of correcting effects linked with the satellite’s rotation and

determining planet’s parameters. In this section, we shall see how they are implemented

and connected together.

In order to initialize all that is needed and to control the behaviour of the modules, we

built two Controllers, that make an easy to use interface. At the end of this document, in

Appendix E, a code snippet is given, showcasing ARCHI’s user interface.

The Controllers are implemented independently, in such a way that we can use the GPs

without needing to run the photometry by, in those cases, loading a output of a previous

run. In order to maintain this modularity, custom classes were created to handle and store

all the data necessary for correct functioning of both parts.

At the time of writing of this document, the code is not available publicly but, if it

eventually changes to open-source, it will be listed under my github account ∗, alongside

all the relevant documentation. All code was written in Python3 since the official pipeline

was built with it and, as an expansion to it, the same language was used to avoid possible

future compatibility issues.

∗https://github.com/Kamuish
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https://github.com/Kamuish


54 AN EXPANSION TO THE CHEOPS MISSION OFFICIAL PIPELINE

4.1 Data objects

The need to share information between modules required the creation of custom classes,

capable of handling the data in a easy and organized way, so that we can access it when-

ever necessary.

We have three basic classes:

• Star class: stores all information of any given star. Such as, the name, centroid po-

sition for each image, the masks, the extracted light curve and the outputs of the

Gaussian processes.

• Masks: The masks are stored inside this class, responsible for storing the information

and performing all mask related operations, such as applying the shifting process,

as described in Chapter 2.3.3. If the low memory mode is enabled, only the first and

the current masks are stored, with all others being discarded after no longer being

needed.

• GP Data: Stores the outputs of the Gaussian Processes, which are then used to per-

form all the analysis and create all relevant figures.

In a higher level, we have a “master” class, named “Data”. This class is responsible for

the various critical tasks and has a public interface that is used to control the operations

performed on the data, as schematized in Appendix B.1.1. A discussion on all functional-

ities are beyond the scope of this document, but the most important functions are:

• load parameters: Loads all the required data from the provided fits files, then creates

a Star object for each detected centroid and, finally, creates the chosen mask.

• load from txt: Loads the data from a text file created by a previous photometric ex-

traction. This function allows us to run the GPs without first running the photom-

etry module. It also loads the minimal necessary information that the GPs use and

expect to have in this object, essentially mimicking the normal photometry function-

ing.

• update stars: Performs a step in the photometry routine for the specified image. Be-

fore exiting this function, checks to see if the updated mask overlaps the region that

is not part of the image. If we find a overlap, then a flag of out of bounds is set for the

relevant star, indicating that the mask in use is not appropriate.
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We also have a class-level error flag, that each method checks before running. If it’s

set, then the method is not executed and a value of -1 is returned.

The main purpose of this class is to be passed to both Controllers, inside which it is

used to get relevant information and, filled with the results.

4.2 Photometric controller

4.2.1 Main functionalities

As previously stated, this controller is used as a simple interface to the “outside world”,

that allows us to optimize the photometric algorithm and run it. A schematic of the user-

facing interface is given in Appendix B.2.

When this class is instantiated, all the passed parameters are validated, to check if

the paths to the needed files exist, check all numeric inputs to see if they are concordant

with the expected values and, lastly, validates the configurations for the mask type, initial

detect mode and star tracking mode.

As we shall see in Chapter 5, the best configurations for the target star, may not be the

same for the background stars, and vice-versa. So, we might have cases in which we wish

to have a combination of mask type - initial detection - tracking methods active for the

target star and another for the background ones

Thus, all those parameters allow to pass either a global configuration, applied for all

stars or, specify different values for the central star and for the background ones, as seen

in Figure 4.1 and explained in Chapter 4.5.

FIGURE 4.1: Usage of both masks at the same time. The shape mask for the target star and
the circle mask for the background stars.
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After validating the parameters, if the optimization keyword is set then the process

launches immediately, as described in Chapter 4.2.2 . It’s possible to disable this opti-

mization, by passing a specific keyword that’s disabled by default. The optimization can

also be triggered at any time through a specific function. Afterwards, the user simply has

to call the run function so the typical photometry process runs.

This routine, sequentially applies all the discussed steps until now on each image. For

a visual aid, one can refer to Figure 4.2, in which a broad schematic of the entire process

is shown.

FIGURE 4.2: High level schematic of the photometric routine.

This sequence starts by loading the necessary data from the fits files, followed by the

initial detection of the stars, depending on the chosen method(s) to be used. Right af-

terwards, we create the masks and an array with the positions outside the image, so we

know in which areas the masks cannot enter. After all of the initialization steps are com-

pleted, we pass to the main routine where, for each star in each image, we update the

star’s position, shift the mask, and, lastly, calculate the flux that passes through it.

The background grid is applied behind the scenes, when requesting an image. How-

ever, we can quickly run into a problem: If we increase the images, it’s obvious to see
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that the memory footprint would increase accordingly. So, if we are not careful, we can

quickly run out of memory. Thus, to contain this problem, a low memory mode was de-

vised: When requesting the i-th image in the data set, we remove all images that occurred

more than 2 images ago, i.e. at a given point in time, j, we only have in memory the im-

ages from j-2 to the end of the data set. The impact and costs of this approach shall be

seen in Chapter 4.3.

During this process the Data object, discussed in Chapter 4.1, is filled with the various

outputs of the different stages.

4.2.2 Optimization Process

The optimization process is one of the most important factors for achieving low noise on

the extracted light curves, since it allows us to tweak the mask size. The process is quite

simple, since it consists in running the algorithm with different masks sizes, and searching

the one that minimizes the CDPP. Through the configuration file, the user has to pass a

list with two values: the minimum mask size to be tested and the maximum one.

To speed up this process, it was implemented in a concurrent way, allowing to have

multiple factors being tested at once. However, due to Python’s Global Interpreter Lock,

or GIL, the threads do not work in a truly concurrent way but, instead, at any given

time only one thread is active and running. It’s possible to bypass this lock, by using

the multiprocessing module, to spawn different processes that will run the algorithm, with

the downside of each process being independent from the rest, i.e. in practice it launches

multiple instances of python, each running the desired function.

Now that we have a framework upon which we can work, we have to distribute the

factors to be tested between all of the spawned processes, run the algorithm and send back

the results back to the parent process, which will then merge all the information together

and analyze it.

The distribution of values is made so that the workload is evenly distributed by all

processes. This can be easily accomplished with a built in function in the numpy module,

that can split a list into a specific number of different lists .

If the CDPP is deemed invalid, i.e. if the mask went outside of the image region, then

we attribute an arbitrarily high noise level, such as 2e7, so it’s certain that any valid values

will have a far lower noise and thus a valid mask is chosen.

∗https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html - Accessed:
3/09/2019

https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html
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FIGURE 4.3: Evolution of the noise for different mask sizes, during the optimization
process, using a shape mask with dynam initial detection method, dynam tracking method
and a background grid of 600. The black points represent the value for each mask, while
the red ones are the optimal mask size. For Star 2 and 3 we have less values since higher

sized masks would leave the image region and thus are not valid.

During early stages of the implementation we noticed that if the configuration values

were not the most appropriate ones, the maximum value would be set as the optimal size,

even if the noise continued to show a downwards trend past the upper limit of this inter-

val. To avoid these cases, if any star has a mask size that lies within a tolerance range of

the maximum value, the search for the optimal size shall continue, now with a lower limit

of the previous maximum value and an upper limit of two times the previous maximum.

This repetition has a user-defined maximum number, but we found that limiting it to 5

times is enough to find the best sizes for all the stars, when considering background grids

smaller or equal to 1800 points.

As a way to also save computational resources, all stars whose optimal mask size lies

further away from the upper edge are disabled, i.e. there are no calculations made for that

specific star other than the initial configurations.

In Figure 4.3 we see the evolution with the shape mask size for all the stars in a simu-

lated data set. The optimization was made over a initial value range of [1-10]. Since the
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first two masks found optimal values near the upper edge of this region, the routine was

repeated, to see if better values existed further ahead, which was true for Star 0, finding

an optimal mask with size of 17. For Star 1 the same was not true, but it still validated the

size 15 as the best one. Regarding Star 2 and 3 we easily notice that we have less values,

result of being nearer to the image edge and thus bigger sizes are more likely to pass over

it. In all stars we notice the previously discussed trend of noise decrease until a minimum

value is found, with a slight increase from that point on. In order to avoid recomputing

the optimal value each time that we wish to run ARCHI over the same data set, the op-

timal values alongside the configuration parameters are stored locally. Afterwards, and

without any user input, they will be loaded, if the active configuration has already been

optimized or, if not, an error is raised, indicating the need to run the optimization routine

before proceeding.

As we have discussed, the design of the shape mask does not allow for partial increases

in the size. However, that’s not the case for the circle mask, whose radius can be increased

in fractions. So, for this mask, after finding the optimal value, a second optimization step

is launched, now searching the values within 1 unit from the optimal one, in steps of 0.1

units. We have found that gains from using smaller steps were not enough to justify the

increase in the computational cost.

During the entire optimization process, we attempt to save as much computational

resources as possible, by disabling stars and enabling the low-memory mode, in order to

store only the essential information in memory. As another measure, all checks to the

parameters validity are also bypassed during this stage.

4.3 Benchmarks

Now that the photometric portion of the code was discussed, we shall take a closer look

at the computational resources used by it. Since we can’t perform memory-based bench-

marks on the computational cluster, we shall try to create a general formula and, after-

wards, compare it against the results yielded by a memory profiler. All of the results were

obtained on a Intel R© CoreTM i7 6700HQ Processor, with 16 GB of ram.

For this estimation we shall only take into account the objects that will have the great-

est impact in memory, which are the images and all the arrays with the same size as them.
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(A) Memory consumption for the algorithm
in the low memory mode, without a back-

ground grid.

(B) Memory consumption for the algorithm
in the normal memory mode, using a back-

ground grid of 600 points.

FIGURE 4.4: Memory consumption of the algorithm using the normal memory mode.
Both tests were made for 4 stars, in a data set with 300 images.

Normal mode

In the normal mode, we have N images, each being a 200x200 array. Since in this mode all

masks are stored in memory, we will have the same number of masks, and a single array

with the size of an image to store the regions in which we cannot have masks in.

If we use the nbytes property from a numpy array, we know that a 200x200 array uses

0.32 MB of memory. If we are using a background grid, each array will have (scaling f actor)2

more points, which will have an equal impact on the memory size of the array.

So, in Equation 4.1 we have an estimation of the maximum memory in use during the

routine, for all stars.

Memmax = (1 + Nstars) ∗ NImages ∗ 0.32 ∗ (scaling f actor)2 (4.1)

where 1 + Nstars correspond to the Nstars masks and the corresponding image.

We then tested this memory model for a data set with 300 images and 4 stars in total, as

seen in Figure 4.4. By calculating the estimated maximum memory values, with Equation

4.1, we arrive at an estimate of 480 MB for the case without grid, in Figure 4.4a and 4320

MB for the background grid of 600 points, in Figure 4.4b, which are concordant with the

graphs.

With these results, we find a worrisome increase in the memory consumption, which

can be problematic if we want to run the optimization process with more than a few

processes at the same time, or with bigger background grids.
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Low memory mode

As a way to mitigate this memory problem, a low memory mode was implemented. While

it is active only two masks are stored: the first one, so it can be shifted and the most recent

one, so it can be used to perform the photometry.

Taking this into account, we can update the memory model from Equation 4.1, to the

one in Equation 4.2:

Memmax = (NImages − 2) ∗ 0.32 + 2 ∗ (1 + Nstars) ∗ 0.32 ∗ (scaling f actor)2 (4.2)

where NImages− 2 is the number of non-increased images and 2 ∗ (1+ Nstars) is the number

of the masks with increased size and the two images, that also have the increased size.

The peak of memory consumption occurs when we have NImages − 2 with the original

size and 2 with the increased size. This occurs at the start of the data set and, afterwards,

the consumptions should be always decreasing. However, we find that memory con-

sumption stabilizes after reaching the maximum value. When removing an element from

a numpy array we can do it in (at least) two different ways: we either slice the first ele-

ment of the array or use numpy’s delete function . The later, does not actually remove an

element, but instead creates a new array without the given values, which as a significant

cost associated with it, when considering the computational time. The former, in a practi-

cal fashion, removes the element from the array in an efficient way, but the memory is not

freed. So, we decided to value more the gains in computational time over the small gains

in memory.

If we test the model, we get an estimation of 99 MB for the run without the background

grid and an estimation of 125 MB for a grid of 600 points. However, when we look at the

memory profile, in Figure 4.5a and 4.5b we find, similarly to the normal runs, a difference

of approximately 120 MB between the estimates and the profiler results, which arises due

to the variables used to store all other relevant information, that are independent of the

grid’s size.

Although the model is not perfect, the different between the profiles from the normal

memory mode and the low memory mode are significant and improve the optimization

process.

∗https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.delete.html. Accessed
on: 29/8/2019

https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.delete.html
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(A) Memory consumption for the algorithm
in a low memory mode, without a back-

ground grid.

(B) Memory consumption for the algorithm
in a low memory mode, using a background

grid of 600 points.

FIGURE 4.5: Memory consumption of the algorithm using the low memory mode. The
units are MiB, which is almost a one to one conversion to MegaBytes. Both tests were

made for 4 stars, in a data set with 300 images.

4.4 Gaussian Processes controller

Following the Photo Controller design principles, we created a simple interface, schema-

tized in Appendix B.3, that accepts a Data object as input and, with a single command,

lets the user apply the GPs. This application can be done over all stars or, over a specific

one.

Before being able to run the GPs, we have to give it some information about the star:

• Mass;

• Radius;

• Limb darkening type;

• Limb darkening coefficients.

with the limb darkening information following what was specified in the documenta-

tion of the batman module [67]. Furthermore, if the expected values of the fitted parame-

ters are known, we can also provide them, and errors are calculated and marked on the

corner plot, thus allowing us to see if the true values for each parameter are within the

distributions.

4.5 Inputs

Now that we have seen how the different parts of ARCHI work individually, we will now

see how we can configure it. The configuration is made through a yaml file, that is loaded



4. AN EXPANSION FOR THE CHEOPS MISSION PIPELINE - ARCHI 63

with the Photo Controller initialization. A properly commented version of this file is given

in Appendix E.1 and, in here we will see, with a closer look, some of the parameters.

As previously mentioned, the target star and the background ones can have different

configurations from one another. To do so, when specifying the desired mask, initial de-

tection mode or star tracking mode, two different valid values can be put there, separated

by a plus sign, e.g. “shape+circle” would produce a shape mask for the target star and a

circular one for the background stars.

Ideally, when using this kind of configuration, we could be able to search the file with

the previously calculated mask sizes, optimized for each method, and search there for

the values for the target and background stars. Unfortunately, due to time constraints it

was not possible to do so and thus, even if the different components have already been

optimized individually, the optimization routine must still be called for the chosen com-

bination.

Furthermore, ARCHI can load all of the necessary data from the DRP’s output folder,

without having to manually enter the paths for the files that are used. Instead, and as-

suming that the DRP’s folder structure stays the same, it’s only needed to provide the

path to the folder that contains those outputs. When any of the controllers is initialized,

the configuration values pass through a validation stage, in which the inputted values

are compared against the expected ones. If any discrepancies are found, then ARCHI’s

execution halts and it returns to the user a list of the wrong parameters.

4.6 Outputs

The last module in the ARCHI project, is the data storage one. This module accepts a Data

object as input, assuming that it has any kind of data inside it. Before we can do data-

specific processing, we have to make sure that the we have an organized folder structure,

as in Figure 4.6 to store all the graphs.

Most of the time the code should be executed in the computational cluster, Supernova,

especially if the GPs are going to be used or background grids with more than 600 points

need to be optimized. The workload manager used in this cluster, SLURM [81], makes

use of jobs to submit code, that then waits to be executed at a convenient time. Each job is

attributed an unique identifier, jobID, that allow us to distinguish between two different

jobs. This unique identifier will allow us to create a new folder inside which we shall store

the outputs.
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FIGURE 4.6: Folder structure used to store all the data extracted from the Data object.

In this directory, we find the name of the folder that comes out of the official pipeline,

“CHEOPSim job6502.txt”. In it, we find informations of the chosen light curve (from the

4 available) to compare our data against. Alongside this information, we also have the

mjd time corresponding to each point and the roll angle of the satellite.

It’s also on this folder level that the outputs of the pipeline will be stored, under the

name “ARCHI output” followed by the correct file extension. In the “optimization info”

we have the noise, for each star and each mask size. Take note that in this file the sizes

are not by numerical order, but instead by the order from which they leave the various

processes used during ARCHI’s optimization routine. The last text file, “photo info.txt”

stores informations related to the run, as well as the noise of each curve. Furthermore, we

have a image, named “star names.jpg”, that is used to map each star to the corresponding

name.

To simplify the representation of the structure, we only included data on the tar-

get star. If more were in use, the data inside any star folder would mimic the one

seen inside Star 0. In this folder we have outputs from both photometry and Gaussian

processes. In ‘ARCHI curve’ we have the light curve from the corresponding star. In

‘ARCHI official compare’ we compare the ARCHI light curve against the one extracted

from the CHEOPS official pipeline.

Afterwards we see a ‘gp parameters.txt’, that has the estimated values for each param-

eter, alongside the uncertainties for each of them and, if the true values were provided, a
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calculation of the error, and a “gp results.txt” in which the corrected light curve and the

noise samples are stored. Lastly, we have a folder - “graphs gp” - to store all images that

result from the Gaussian Processes:

• chains.png - Chains for the production stage;

• fit.png - Normalized light curve, overlaped by the best fitted model;

• sampled noise.png - Median of the noise samples from the GP;

• clean curve.png: Normalized light curve without the noise that was sampled from

the GP;

• triangle.png - corner plot with all the parameters from the model and from the Ker-

nel;





Chapter 5

Discussion

5.1 Photometric comparisons

Now that the implemented methods have been discussed, we have to characterize them

and see how they fare against each other and against the results from the DRP.

At first, we will analyze the so-called “normal” runs, i.e. without using the back-

ground grid. Afterwards we shall introduce them, and see how they impact the light

curves.

Due to the sheer number of possible combinations of mask type - initial detection -

center tracking - background grid, the graphics and tables are mostly presented in Ap-

pendix D, whilst in this Chapter only some of them will be looked into.

In this Chapter, we shall study three different Data Sets:

• Data Set A: features a single transiting planet in the central, main target star, and

will be mostly used to compare ARCHI’s methods against themselves;

• Data Set B: has transits in both the target star and Star 1 and will be used to compare

ARCHI’s curves against the ones from the DRP;

• Data Set C: features transits in the target star, Star 1 and Star 2 and shall be used to

validate transit detection on the background stars.

For more information on the Data Sets, Appendix C has a compilation of the star’s

parameters alongside the inject planets.

This analysis will consist in the comparison between the light curves, which is after-

wards complemented with an analysis of the CDPP and the uncertainties in each light

67
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curve. Unless explicitly stated that we are using the DRP’s CDPP algorithm, we shall

make use of the one ported from Kepler mission, always with a 30 minute time scale.

In order to differentiate the combinations of initial detection modes and star tracking

modes, we shall use the convention < Initial detection > − < Star Track > to refer to

them, where “Initial detection” refers to the methods presented in Chapter 2.1 and “Star

Track” to the ones presented in Chapter 2.2.

As discussed beforehand, the data is simulated using the CHEOPS official simulator

tool, and thus the Data Sets emulate typical conditions. Furthermore, the data sets were

crafted with a different number of planets and planet parameters, in an attempt to try to

characterize the methods in a broad set of conditions.

5.1.1 Data set A

5.1.1.1 Normal runs

Our analysis will start with the shape mask, in Figure 5.1, where we see that, for the target

star, there are minimal differences in the shape of the light curves, with the most major

ones being in the flux level.

However, when comparing the noise of each light curve, we find big discrepancies.

As one can see in Table 5.1, the static method yields the worst results for the target star.

Both the dynam and offsets method are capable of presenting similar curves, assuming that

the initial detection methods are equal. It’s noteworthy that the dynam-offsets combination

manages a 2 ppm reduction when comparing against the dynam-dynam.

Regarding the mask size, we see that there isn’t much difference between the methods,

although smaller sizes are preferred, since they pick up less background noise.

Looking globally at all light curves, in Figure 5.1, and the mask’s size, in Table 5.1,

is clear what the effect of the mask size is over the flux level. Smaller masks result in

smaller flux levels, as seen with the dynam-dynam case: For Star 0,1 and 2 this mask used

the smallest grid and, consequently has the lower flux level. If we look at the other end of

the spectra, bigger masks are always the curves with the highest flux.

For the background stars we find that the dynam star tracking method surpasses the

other two, by a wide margin, not only in the noise, but also in the mask size, with the sole

exception of Star 3, as we shall see later on.
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FIGURE 5.1: Light curves obtained with all the combinations of methods, using a shape
mask and a background grid of zero.

TABLE 5.1: Table with the noise, in ppm, for all the Light curves (seen in Figure 5.1),
using a background grid of 0 and a shape mask. In green we have the masks with the
lowest noise and the corresponding sizes. Contrastingly, in red we have the masks with

the highest noises and their sizes.

Methods Noise (ppm) Mask’s size
Initial Track 0 1 2 3 0 1 2 3

fits static 83.8 331.8 173.9 3797.7 14.0 10.0 10.0 1.0
fits dynam 63.8 273.5 122.2 1138.9 14.0 8.0 6.0 1.0
fits offsets 56.9 292.7 174.6 1873.5 15.0 9.0 9.0 3.0

dynam static 73.9 310.9 166.1 793.5 14.0 8.0 8.0 3.0
dynam dynam 54.8 251.7 112.7 281.1 11.0 5.0 6.0 2.0
dynam offsets 52.6 335.5 199.6 518.3 12.0 12.0 10.0 4.0

If we look closely at the results from the static and offsets star tracking methods, we find

a sinusoidal behaviour. This periodic pattern is also seen on the dynam method, although

not as noticeable.

Interestingly, in Star 2 we can clearly see that the background signal has different peri-

ods, depending on the star tracking method applied. The dynam star tracking method has

a signal with a period roughly two times greater than the other ones. Since the period is

equal for the offsets and static star tracking method, we can attribute this difference to the

centroids oscillations during the images, as we have seen in Chapter 2.5.3.

Remembering back from Chapter 2.5.3, the methods based on rotating the points, suf-

fered from periods in which the estimations fell far away from the star’s center. Thus,
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since the dynam method is not dependent on the rotation angle, we can assume that it’s

affected by less systematics caused by the rotation. The root causes behind this signal will

be explored further along this work, in Chapter 5.1.2.

Returning to the comparison of the applied methods, we see that with a dynam-dynam

combination will allow the usage of smaller masks, thus picking up less background and

reducing uncertainties. For Star 2, the initial detection has no impact on the mask size

when using a dynam star tracking method.

The last star in this data set, Star 3, shows the biggest differences between the methods.

In the first place, it’s important to note that due to the closeness to the image’s edge, the

mask optimization process was restrained, leading to the creation of a sub-optimal mask.

Since there is no workaround for this limitation, we will now see how the configurations

impact the mask size, noise and overall shape of the constrained light curve.

A first glance at the light curves lets us see that the combination fits-static yields the

worst results, with the easily seen dips in the flux. Similarly, the dynam-static combination

also shows a slight dip in the flux, although less perceptible. The difference between

these two curves stems from the fact that the initial detection methods, for both of them,

are different, and thus estimate different positions for the centroid. Due to the nature of

the static method, this small difference will propagate throughout the images and result

in the seen difference. Similarly, the mask size is also different for both methods, with the

fits-static only allowing a mask of size of 1 , while the dynam-static allows a size of 3.

Contrarily to what was said for the other stars, for Star 3 a smaller mask is not nec-

essarily the best one. As we have seen, the static method estimates points that oscillate

within the star. This effect, coupled with the distance from this star to the image’s edge,

are enough for the mask to go outside the bounds. Taking this into account, one could

expect that the best curve would then be the one that maximized the mask size, which is

not entirely accurate. The biggest mask is produced by the offsets method that, as we have

seen before, is also impacted by the rotation angle of the satellite. The impact can be such

that even though a bigger mask is in use, a significant portion of the PSF still remains

outside the mask.

Globally speaking, the dynam initial detection method yields lower noises than the

fits, presenting a considerable difference. Regarding the tracking method, we see that the

static one is the worst, for the target star. We also see that the corrections introduced by
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FIGURE 5.2: Comparison, between the light curves from the circle and shape mask, using
the best method from the light curves.

TABLE 5.2: Comparison, between the light curves from the circle and shape mask, using
the method combination that minimizes the noise, for each star.

Mask type
Noise (ppm)

Star 0 Star 1 Star 2 Star 3
shape 52.6 251.7 112.7 281.1
circle 52.4 250.0 107.8 102.0

the offsets method are not working as well as expected, since the noise is, in some cases,

worse than the one obtained with the static method.

For the circle mask, in Figure D.2, we once again find the same relative results amongst

the possible combinations, with similar noise levels and light curve’s shape, including the

periodic signal on Star 1 and 2. However, it’s noteworthy that the fits initial detection

method is preferred for the background stars, whilst the best combination possible for the

target star remains the same.

Now that we have seen that both masks exhibit almost the same behaviour, we can

see how they fare against each other. In Figure 5.2 and Table 5.2, we have a comparison

between both masks, using the best method combination for each one of them.

When comparing the two masks, we find almost minimal differences in the noise,

except for the outermost star, in which the circle mask yields less than half of the shape

mask’s noise.

Since both curves have different flux values, it’s best to look at the relative uncertain-

ties, i.e. the uncertainties divided by the flux, so that we know how much of the signal

they represent. In Figure 5.3, we see that despite the lower flux level of the shape mask,
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FIGURE 5.3: Comparison of the uncertainties, divided by the flux, for best method com-
bination when using a circle mask and a shape mask.

it has higher uncertainties, than the shape mask, for the target star. For Star 1 and Star 2,

the uncertainties in each method are quite similar, despite the difference in the flux level.

From the target star, we can also see that the uncertainties are dominated by photon noise,

since we can still see the shape of the transit.

5.1.1.2 Background grids

Having seen how the different methods affected the Light Curves, without the back-

ground grid, we will now see if it is capable of improving the photometric precision.

For this Data set, we will compare 5 different background grids: 600; 1000; 1400; 1800

and 2200. The tables with the noise, in ppm, obtained for each method are provided in

Appendix D.1, alongside the curves for a grid of 600, using both masks.

Figure D.1 and D.3 show us that a background grid of 600 does not produce obvious

alterations on the curves, although the noises do not show the same.

In Figure 5.4 we see that the usage of the smallest possible grid, of 600, translated into

a decrease in the noise level, for most combinations of initial detection and star tracking

techniques applied in the target star.

Despite the positive evolution of the noise for all dynam and offsets star tracking meth-

ods, we notice that the static actually worsens with bigger grids. This effect may be related

to the fact that in the bigger grids the centroid’s coordinates can oscillate more between

pixels and thus the mask is worsened by the rotation applied in each frame.
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FIGURE 5.4: Behavior of each combination of initial detection and star tracking method
with the increase of the background grid, using a circle mask.

It’s also noteworthy that this method yields a sharp increase in the noise level for the

target star, when using a grid of 1800, which may be caused by a possible failure of the

optimization process, since the same behaviour is not observed for the grid with 2200

points.

For the background stars, the background grid has almost no effect on the noise level

and, in some cases, bigger grids result in tracking problems, as seen with the static method

for the target star. The best method, for these stars, is the dynam, that consistently yields

the lowest noise levels. The rotation based methods, i.e. static and offsets, both present

higher noise levels and, under some circumstances sudden increases, as seen with the

offsets method for Star 3.

Focusing back on the target star, we notice that after the background grid passes the

size 1000, we find both negative and positive gains in relation to the previous grid. The

oscillations on the noise level may be an indicator that we have reached the lowest pos-

sible noise using the developed techniques and thus the noise is converging to a value in

the 47 to 51 ppm region.

The fact that no improvements are seen for the background stars may indicate that

due to their non-static position, they are not impacted by the background grid and that a
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normal image is enough to reach the maximum, or near maximum, precision.

In the normal grid, when converting from the determined centroid’s position to a grid

coordinate, we loose some information and thus, two different tracking methods could

give the same result due to the approximations. With bigger grids, even though there are

still approximations, the conversion will be more accurate, thus impacting the rotation-

based algorithms. This effect, is the most likely cause of the increased noise found for the

rotation based methods, with the increase of the background grid.

FIGURE 5.5: Behavior of each combination of initial detection and star tracking method
with the increase of the background grid, using a shape mask.

Similarly to the circle mask, the shape mask shows the same patterns, Figure 5.5, thus

also validating the hypothesis that a minimal noise plateau exists. Albeit it is still possible

to find some of the noise spikes for the rotation based methods, they are not as frequent

as before.

The introduction of the background grid has an overall positive effect on the light

curves, as seen in 5.6. The best combination of initial detection and star tracking meth-

ods allows a decrease in noise, for most stars. However, Star 3 does not show the same

trend, but instead the noise increases with the background grid. As referenced before, the

closeness to the image’s edge is a possible explanation for this effect.
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FIGURE 5.6: Evolution of the achievable minimum noise with the increase of the back-
ground grid, for Data Set A.

While the shape mask is the best for the target star, representing a slight improvement

when comparing against the circle one, the circle mask is the best for the background stars.

Lastly, we can also see how the uncertainties behave for different sizes of background

grid. For this test, we shall use a shape mask, with a dynam initial detection method and a

dynam star tracking method.

In Figure 5.7 we find that, for the target star, only one grid achieves a decrease in the

uncertainties, relative to the flux level. With the sole exception of the grid with a size of

1400, all others increase the uncertainties by a small amount. It’s noteworthy that the grid

of 1400 manages to introduce a significant decrease, when comparing against all others.

For the bigger grids, 1800 and 2200 we find a slight increase, when comparing against

the case without a background grid. Since those differences are small, they could be in-

troduced by the approximations made when calculating them, as described in Chapter

2.7.

For the background stars, we do not find noteworthy differences between the grids,

except for Star 1, in which the largest grid increases, by a small amount, the uncertainties.

When comparing the uncertainties from the background stars against the target, we

find that, in the background stars the uncertainties are larger, in relation to the signal. This
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FIGURE 5.7: Evolution of the uncertainties, relative to the flux level of the corresponding
LC, with the increase of the background grid.

may be due to them being fainter, and thus the signal is weaker, or due to the fact that the

values used in the calculations are estimates and thus are not entirely correct for the stars

in the background.

5.1.1.3 Comparison against the DRP

Now that we have compared all of ARCHI’s internal options, we can compare the best

configurations, against the OPTIMAL curve from the DRP. We notice that without using

a background grid, ARCHI can achieve a slightly lower noise level than the DRP, as seen

in Figure 5.8. After introducing a background grid of 1800, which is the one that both

minimizes the noise, we achieve a light curve with a noise level approximately 5 ppm

lower.

Unfortunately, due to a bug on the DRP, this data set did not store the calculated

uncertainties, thus limiting the comparison between ARCHI and the DRP. For the other

data sets, this bug was not present and we will be able to see which pipeline yields the

lowest uncertainties.
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FIGURE 5.8: Comparison between
DRP’s OPTIMAL light curve and
ARCHI’s light curve, without using
the background grid and with a back-

ground grid of 1800.

CDPP type DRP Kepler

ARCHI
0 199.1 52.6

1800 196.8 47.6

DRP 200.8 52.9

TABLE 5.3: Noise calculation using the
DRP’s CDPP algorithm, for both the
DRP’s OPTIMAL light curve and the
best ARCHI’s light curve, using DRP’s
CDPP algorithm and the CDPP algo-

rithm from the Kepler mission.

Lastly, we can compare the DRP’s CDPP algorithm against the one ported from the

Kepler mission. In Table 5.3 we notice that both with and without the background grid,

that the ARCHI produced light curves present lower noise values. The DRP’s version also

shows the decreasing trend in the noise, albeit smaller for larger time scales.

It’s fair to conclude that ARCHI’s performance for the target star is comparable to the

one from the DRP, when utilizing the DRP’s implementation of the CDPP algorithm. Even

when applying the ported DRP from the Kepler mission, the differences are not as evident,

but ARCHI still show a lower noise level.

5.1.1.4 A closer look into the CDPP

As referenced before, in Chapter 2.6, the application of the CDPP algorithm to the light

curves removes it’s shape. In the target star’s case the Savitsky-Golay filter will remove the

transit, to calculate the noise.

In Figure 5.9 we see that the SavGol filter can reliable remove the transit from the light

curve, thus allowing us to only characterize the noise present in it. For the background

stars, we do not have transits, but once again we find, in Figure 5.10, that the light curve

shape is removed with the filter.

Although the sinusoidal signal is properly removed, the noise value does not corre-

spond to the data in the signal. As we shall see later on, in Chapter 5.1.2, this signal is

created by contributions from the target star during the satellite’s rotation. Although this
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FIGURE 5.9: SavGol filter applied on the light curve from the target star, for Data Set A.

FIGURE 5.10: SavGol filter applied on the light curve from Star 1, in Data Set A.

TABLE 5.4: Comparison between the CDPP with the SavGol filter and the CDPP imple-
mented in the DRP, for Data Set A, using a shape mask, a dynam-dynam combination and

without a background grid.

Star 1 Star 2 Star 3
SavGol 251.66 112.7 281.11

DRP 415.48 162.65 429.29

CDPP value is still a valid measure of the light curve quality, it does not correspond to the

reality since we are removing meaningful contribution in the signal.

If we now compare this version of the CDPP against the one from the official pipeline,

as in Table 5.4, we see that the DRP’s version of the CDPP algorithm yields far higher

noises, as expected.
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5.1.2 The sinusoidal signal from the background stars

As we are working with the images corrected by the DRP, we expected to see white noise

or, if they existed, transits, in the background stars. Instead, we have found a well defined

signal in them. On top of the existence of this signal, we see different behaviours for the

different stars, with different periods and amplitudes in all of them.

The analysis applied in this section will use a shape mask, with the initial detection

being made with the dynam method, and the star tracking with also the dynam method.

In order to better study the signal in question, we decided to use Data Set A, since it’s

the one that has less gaps in time, thus allowing us to better see the signal evolution with

both the observation time and the satellite’s rotation.

Taking into account the background stars movement throughout the observation, we

know that after a certain period of time, approximately 100 minutes, the stars complete a

lap around the target star. Since in this data set the background stars give± 3 laps around

the target one, we know that the cause behind the peaks occurs in each lap, thus indicating

a problem that may arise from some imperfection in the data correction procedure applied

by the DRP.

Furthermore, if we fit a sinusoid to the light curves, we find two different periods, as

shown in Figure 5.15. For star 1 and 3, we find a period of 0.03 days, which is roughly

50 min and, for Star 2, a period of 0.07 days, or roughly 100 min. From Chapter 1.2 we

know that the satellite takes about 100 min to complete a full revolution. Thus, we have a

signal that repeats every complete turn of the CCD, and two others that can be seen twice

during a single turn.

5.1.2.1 Relative rotation

In order to start understanding the origin of the signal, we can study each star during

it’s first lap, and attempt to see if the peaks are found for the same locations within the

CCD. By defining the origin of our angles, θ = 0, as the vertical line of the central star, as

schematized in Figure 5.11, we can set a starting location to start analyzing the flux.

Since only one of the stars start in the zero location and taking into account that we

wish to compare the flux of each star in the same angle, measured from our reference, we

have to wait until each star reaches that point.

Looking the the light curves from the first lap, in Figure 5.12, we notice that Star 1 has

peaks for θ = 90 and θ = 250. Star 2, also shows its only peak for theta near 250, although
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FIGURE 5.11: Orientation of the angles
for study the stars in the same points. FIGURE 5.12: Light curves for all of the

background stars, during the first lap
around the central star.

not as noticeable. However, we find that the singular peak from Star 2 is concordant with

the one from Star 1. Contrarily to both other stars, in Star 3, the flux hits its minimum

values when the two others are in their maximum value.

Since this analysis did not bring us nearer an explanation, we shall now explore mul-

tiple alternatives. We shall start by looking at CCD wide corrections applied by the DRP:

background, Flat Field or even the corrections for bad pixels. Afterwards, we will look into

the possibility of it being explained by contaminations from the target star.

5.1.2.2 Contributions from the background

The first, and most obvious answer to this problem, would be some leftover contributions

from the background, that were not removed during the DRP’s operation. Extracting the

background level, as in Chapter 2.7.1, we can compare it against the light curves levels, as

in Figure 5.13.

If we start by looking at background values, we see two different peaks, with different

amplitudes. At the time of this analysis, the DRP’s background estimation is made using

an aperture, outside which an histogram is calculated and, afterwards, a Gaussian is fit-

ted, in order to estimate the background contribution per pixel. Since in this data set, we

have a close-by star, near the target star, there is a realistic chance that this star is, peri-

odically, weaving inside and outside this aperture, and thus influencing the background

per pixel. There is also a chance that the peaks are explained by the simulated stray light,

although there is no way to prove it with the current data sets. In the future, when such
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FIGURE 5.13: Comparison between the light curves and the background level, for each
star. In black we have the light curve and, in red, the background level.

information is added to the simulated data sets, we can run more extensive tests. A more

in-depth study of the background and the applied corrections could be made but, it’s

outside the scope of this thesis.

For Star 1 and 3 we can find a strong correlation between the background and the pe-

riodical oscillations, albeit not as much for the second star. However, near the secondary

peaks, we can still see some anomalies in the light curve. When comparing the scales,

we notice that amplitude of the background signal is far lower than the amplitude of the

oscillation.

Since the background correction was built with only the target star in mind, the back-

ground estimation takes into account the background stars and, as we have mentioned,

there is the possibility of stars entering and exiting the aperture region throughout the

images. Even though the oscillations are not explained by variations in the background,

some of the noise is introduced with it, due to the under/over estimations introduced by

the rotating background stars.

5.1.2.3 Flat Field

Since the oscillations are found in all of the background stars, we decided to check another

correction applied over the entire image: the Flat Field. In here we shall apply the masks,

determined for each star, over the Flat Field and sum the entirety of the Flat Field inside

the mask. If we do it for all masks, i.e. the ones determined for each image, we can see
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FIGURE 5.14: Comparison between the light curves and the Flat Field level, for each
star. In black we have the light curve and, in green, the Flat Field, inside each mask and

multiplied by the median of the LC.

how the Flat Field varies on the areas over which the background stars pass. As a way to

quickly estimate the possible impact of the Flat Field, we can multiply it by the median of

the light curve, to see if the variations are concordant with the periodic signal in the data.

Since we are using simulated data sets, we can use the truth values that were injected

in the simulation.

When looking at the Flat Field we notice some similarities to the background shape,

with some big peaks, interluded with small ones in between. Once again, it’s hard to find

a correlation between the two signals, since there is no clear pattern linking the variations

in the Flat Field with the signals found on the light curves.

However, for Star 3 we can find a small correlation between the minimum values,

despite the rest of the signal not matching as nicely.

Once again, it’s not clear that the Flat Field is being applied correctly to the back-

ground stars, but since we have not found proofs of it’s impact, we assume it to be negli-

gible.

5.1.2.4 Bad pixels

After discarding the background and the Flat Field as the probable sources of the signal,

we performed a study of the number of bad pixels inside each mask, during the observa-

tion period. We mainly searched for two types of bad pixels: “partially dead pixels” and
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FIGURE 5.15: Number of bad pixels, for each star, inside the mask used for each image.
The black curve is the number of bad pixels and, the blue lines were placed in equally
spaced positions, separated by 50 points, i.e separated by half of the satellite’s rotational

period.

“hot pixels”. We decided to exclude the telegraphic pixels, since none crosses the path of

Star 1, thus invalidating it as the possible cause.

A first look at Figure 5.15 shows that the number of partially dead pixels is approxi-

mately periodic, with a peak every 50 images, which is roughly 50 minutes or, half of the

satellite’s orbital period, which is concordant with the found signal. The masks also cross

the hot pixels, although only once per each lap, almost at the same time as the partially

dead pixels.

Comparing the partially dead pixels throughout time and the light curve of each back-

ground star, Figure 5.16, we fail to find a meaningful correlation between the two graphs.

Although some maximums are coincident, some are peaks of the light curve are found

with the a minimum value of partially dead pixels inside the mask.

Without a strong correlation between the signals, we reach the conclusion that the

dead pixel correction is working as expected, and that they have no significant impact on

the light curves.

5.1.2.5 Cross contamination from the central star

Due to the size of the target star’s PSF and due to the closeness of the nearby stars, we

can hypothesize that during the rotation, the masks from the background stars enter the

target’s PSF, picking up flux and thus impacting the results.

As a preliminary test, we shifted the masks in such a way that they would only pick up

background, without the stars. This shifted mask, henceforth called as “trail mask”, had
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FIGURE 5.16: Number of bad pixels, for each star, inside the mask used for each image.
The black curve is the light curve for the star, the red curve is a sinusoid fitted to the data

and, in blue, the number of partially dead pixels.

FIGURE 5.17: Example of a shifted mask, to study contaminations from the target star.

to be in different positions for each mask, since we want to avoid running into/passing

near other stars. So, the only obvious region of the image available was the bottom, as

exemplified on Figure 5.17.

Shifting the three masks to the empty area bellow the target star, as depicted in Figure

5.17, we can then study the background signal. Since there is not star, it’s already know

that the flux level will be different, but we are only interested in looking at differences in

amplitude and the overall shape of the light curve.

It’s clear, in Figure 5.18, that the signal picked up by the trail mask is concordant with

the oscillation inside our light curves, thus strengthening the belief that the target star is

contaminating the background stars. Furthermore, we see that for Star 1 and 2, that the
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FIGURE 5.18: Flux calculated over each star mask phased so that it only picks up back-
ground.

(A) PSF of the target star with the entire mask of Star
1 inside it.

(B) PSF of the target star, with parts of Star 2 mask
inside it, and the beginning of Star 1’s second passage

through the PSF.

FIGURE 5.19: Representation of the logarithm with base 10 of the central star’s PSF, with
the masks passing through it, in two different points in time.

oscillation’s amplitudes diminish with the distance to the target star, thus also pointing to

the existence of, at least, some contamination.

Although this hypothesis starts to seem more likely, we now have another unan-

swered question: If the central star is inducing alterations on the background stars, why

do we only find them in a small part of the light curve?

Fortunately, since we are working with synthetic data, we have access to the true PSF

used in the simulator, and can thus compare the mask’s position against the PSF’s shape.

As the PSF’s shape is not uniformly distributed around the star’s center, we have a

region that extends further out. Star 1 and 2 managed to transverse this region, thus

picking up flux from the central star. The closest star, due to the distance to the center,
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also enters the shorter PSF’s edge, thus explaining the period equal to half of the satellite’s

rotation period: in each lap around the target star, it enters twice the PSF of the target star.

Regarding the furthest star, Star 3, we see that it does not enter the PSF of the target

star. Furthermore, against what was seen with the two other stars, the signal’s amplitude

does not decrease with the distance to the center, but instead increases, thus invalidating

the contamination as the root cause.

So, for this star, we hypothesize that a combination of imperfections in the background

and PSF corrections, alongside the mask limitation due to the closeness to the image’s

edge and jitter are the most likely explanations for what we see here.

Although we have proposed an explanation for this signal, it’s a subjective analysis.

It’s entirely within reason that the background and the Flat Field are also responsible for

some part of the signal found in the light curves, however they should be minimal and

almost inconsequential.

5.1.3 Data set B

Now passing to our second data set, we can try to validate the previously taken conclu-

sions for the best combination of methods, to minimize the noise. In Figure 5.20 we can

see the extracted LCs, with a shape mask and a dynam-dynam combination. We find that,

for the target star, the transit is shallow, but can still be seen. Regarding Star 2, which

should have a transit in it, we are not able to see it in the light curve, which was expected,

due to the planet’s small size coupled with it being in a background star and thus the

observational conditions are not the ideal ones.

The best mask for each star, as we can see in Figure 5.21, stays almost the same, with

the outlier being Star 2. However, recalling from Data Set A, both masks presented quite

similar noise values so, small changes in the conditions of the Data Set can dictate which

is best.

When comparing the light curves, Figure 5.22b, we find that despite the DRP’s LC

presenting a lower flux level, it’s the one that presents the highest relative uncertainties.

Similarly to Data Set A, we find that the LC obtained without using the background grid

has a lower uncertainty level, than the one obtained with a background grid of 1800.

Comparing ARCHI’s light curve against the OPTIMAL one from the DRP, in Figure

5.22a, we notice that the noise for ARCHI’s curve is half of the one in the optimal curve.

This difference in the noise level was unexpected, since for Data Set A, we have only
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FIGURE 5.20: Light curves from the Data Set B, using a shape mask, a dynam-dynam com-
bination and without a background grid.

FIGURE 5.21: Evolution of the achievable minimum noise with the increase of the back-
ground grid, for Data Set B.

found a difference of approximately 5 ppm between the two LCs. Thus, to validate these

results, we decided to apply the DRP’s version of the CDPP that, as discussed before,

calculates the noise in conjunction with the transit.
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(A) Comparison between ARCHI’s best light curve
for the target star, against the DRP’s OPTIMAL light
curve. In green we have the OPTIMAL LC from the
DRP, whilst in black and blue we have ARCHI’s LCs
without using a background grid and using one with

a size of 1800, respectively.

(B) Comparison between ARCHI’s light curve uncer-
tainties with a grid of 0 and 1800 against the uncer-
tainties from the DRP’s OPTIMAL light curve. Once
again, the uncertainties are divided by the flux level

of the corresponding LC.

FIGURE 5.22: Comparison between ARCHI and the DRP for Data Set B. In here we find
that ARCHI’s curves have approximately half of the noise present on the ones from the

DRP.

TABLE 5.5: Noise calculation using the DRP’s CDPP algorithm, for both the DRP’s OP-
TIMAL light curve and the best ARCHI’s light curve, for Data Set B. The CDPP was
calculated for a time scale of 30 minutes and 2.5 hours, while using the DRP’s version

and, with Kepler’s versions we used the typical time scale of 30 minutes.

Pipeline DRP Kepler
Time scale 30 min 2.5 hours 30 min

ARCHI
0 51.44 24.33 59.2

1800 44.68 20.71 53.9
DRP 111.57 48.36 129.0

When looking at Table 5.5, we notice that the noise without removing the transit from

the data set is lower than when we remove it, which should not occur. It’s not possible to

have a lower noise metric when considering the transit and the noise, than when consid-

ering only the noise, thus proving our suspicions that the ported Kepler’s CDPP does not

fare well with temporal gaps in the data.

Looking at Figure 5.23 we notice that the SavGol filter, once again, fits perfectly the

transit, assuming an uniformly spaced time. However, this assumption by the CDPP al-

gorithm, does not take into account the gaps introduced by either the SAA passage or

Earth occultations. Thus, the application of this filter over the LC, may be removing or

adding noise, depending on the values before and after the time gaps. Another explana-

tion for these results can be the existence of the linear trend in the light curve, that has a

greater impact in one of the algorithms. Since this discussion is outside the scope of this
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FIGURE 5.23: Comparison of the SavGol filter, assuming an evenly space MJD time,
against a target light curve from Data Set B.

thesis, we shall use the DRP’s CDPP to calculate the noise from now on. With this, we

have to perform the optimization routine all over again, now with the new optimization

metric.

With this new metric, in Figure 5.24 we find the same patterns as in Data Set A, with

the noise decreasing with the size of the background grid, until a lower limit is met.

Strangely, we can also see the biggest grid for the outermost star, Star 3, also produces

a far worse result than not using a background grid whatsoever. There is no clear motive

for this to happen.

Although we can find differences in the overall noise level, we notice that the relative

variation between the noise level for each grid still holds.

Comparing all of the possible combinations against themselves, Appendix D.2, we

see that the noise levels follow the same pattern as found for Data Set A. The offsets and

dynam methods present similar results for the target star while, for the background ones,

the dynam star tracking method, once again, is the best option.

Regarding the best mask for each grid, we can notice some small differences when

comparing against the previous data set. Foremost, it’s important to note that only Star

3 prefers the circle mask while, for the other 3 stars, we notice an inverse pattern: where,

previously, the shape mask was better, now the circle one is and vice-versa. Figure 5.25

shows us that the differences for the target Star and Star 2 are almost meaningless, al-

though Star 2 presents an higher difference for the last grid. Star 1, in a global way, is the

one that presents the biggest differences between the two masks.

If we pay a closer attention to Figure 5.21 we see that, for the background stars, the

shape mask already is the best choice, for certain grids. This disparity between the data
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FIGURE 5.24: Evolution of the achievable minimum noise with the increase of the back-
ground grid, for Data Set B, with the DRP’s CDPP algorithm.

FIGURE 5.25: Comparison between the minimum noise achievable with the circle and
shape mask, for Data Set B, with the DRP’s CDPP algorithm.
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sets can be attributed to the simulated noise, and even to the difference in sizes between

them. Thus, it’s recommended that when using ARCHI, both masks should be optimized,

in order to find the best Light Curves.

Now that we optimized the light curves using a different method we find, in Figure

5.26, that we have almost no obvious differences between these and the ones obtained

with the Kepler’s CDPP algorithm, except a lower noise, due to the re-optimization pro-

cess.

(A) Comparison between the DRP’s OPTIMAL light
curve, against ARCHI’s best light curves without a
grid and a grid of 1800, for Data Set B, using the

DRP’s CDPP algorithm.

(B) Comparison between ARCHI’s light curve uncer-
tainties with a grid of 0 and 1800 against the uncer-

tainties from the DRP’s OPTIMAL light curve.

FIGURE 5.26: Comparison between ARCHI and the DRP for Data Set B, while using
DRP’s CDPP algorithm.

It’s noteworthy that ARCHI’s light curves present approximately 55% of the DRP’s

noise without using a background grid and, when we introduce it, with a size of 1800,

this noise reduction passes to approximately 61 %. On top of that, both of ARCHI’s light

curves present lower uncertainties, relative to the LC flux level, than the DRP.

5.1.3.1 Data Set C

The past two Data Sets have already allowed us to compare the methods against them-

selves and against the DRP. However, since we have not yet managed to find transits in

the background stars, we shall use this one. However, take note that it will only be a very

brief analysis to validate the light curves from the background stars, without a further

analysis of the Data Set.

In Figure 5.27 we see that a bigger planet is capable of being detected in the back-

ground stars. The smallest one, is found in Star 1, with a radius equal to the one from
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FIGURE 5.27: Light curves, from Data Set C, while using a shape mask, with a dynam-
dynam method combination and without a background grid.

Jupiter. In Star 2, we see bigger dips in the flux than in the previous case, which is con-

cordant with the fact that its radius is bigger. This Data Set allowed us to validate the

capability of detecting transits in the background stars.

5.1.4 Overview of the results

The three studied data sets, albeit covering very different cases, still do not account for

many of the possible cases that one might find when the mission sees its first light. As

an example, we have not seen if a star on the outermost star is capable of being detected,

despite the high noise level that accompanies that LC, due to the edge closeness. Further

along in Chapter 5.3, we shall propose new steps, for the future, on how to better analyze

the found results and how to improve ARCHI. However, despite the shortcomings of the

presented analysis, we can still draw some conclusions.

Even though we did not have enough data to compare the shape mask against the cir-

cle mask, we have found that they are almost equivalent, in terms of noise in the LCs and

in terms of relative uncertainties. For the central star, we found that our dynam method
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and the one from the DRP’s, used in the offsets method, also give almost equal results, de-

pending on the background grid in use. On the background stars, the dynam star tracking

method was the only that could track the stars, in a reliable way, independently of the

background grid in use.

In terms of the relative uncertainties, the introduction of the background grid does

not improve the methods and, in some cases, ends up worsening them. Similarly, we

have failed to find a meaningful noise reduction in the background stars, when using the

background grid, despite the good results for the target star.

Comparing our results against the DRP’s OPTIMAL LC, with DRP’s CDPP algorithm,

we found small improvements in the first case, with an improvement of ± 1 ppm. For

Data Set B, we have found an improvement of ± 60 ppm. The last Data Set, allowed us to

conclude that it’s possible to detect transits within the background curves.

Lastly, we have also proved that for stars near the target one, the PSF of the central

star has a shape such that the background stars enter it, and we find contributions in their

light curves.

5.2 The impact of the Gaussian processes

In this Section, we shall now explore the application of the GPS for the presented Light

curves. Following the structure of the Photometry analysis, we shall start by comparing

some of ARCHI’s methods using Data Set A, with Data Set B we shall compare ARCHI

against the DRP and, lastly, with Data Set C, we shall showcase the capability of the

method adapting to a light curve with multiple transits in it.

In order to properly characterize the GPs, we shall compare the estimated light curve,

for each combination, as well as the errors against the tabled values, taken from the

CHEOPSim manual [17]. For Data Set A we have used 2000 runs for each of the stages,

alongside 256 walkers. For Data Set B and C, due to their sizes, we used 128 walkers and

4000 runs for each stage.

5.2.1 Data Set A

Before we can start analyzing the outputs of the GPs, we have to see how the model

created with the tabled values fare against the determined light curves and against one of

the estimated LC models.
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In Figure 5.28 we see that the transit model created with the truth values, does not

follow neither ARCHI’s curve nor the injected transit, thus making us doubt about the

validity of what we shall consider as the “true” values. However, looking at the fitted

model, the injected transit and the original LC we find that they are concordant with each

other. In Appendix C we performed a linear interpolation to determine the star’s radius

and, the simulator may not use a linear interpolation, but instead choose the radius based

on a different interpolation method. Thus, if we do not have the correct radius of the

star, then the planet’s radius, which is expressed in units of the stellar radius, will not

be correct. Taking this into account, we shall refrain from calculating error values, and

instead perform a more qualitative analysis of the results.

FIGURE 5.28: Comparison between one of ARCHI’s LCs, with the injected transit and
the model obtained with the tabled values. The injected transit was normalized using
ARCHI’s normalization process, described in Chapter 3.2.2. The red curve is the one
injected by the simulator tool, the black one is one of ARCHI’s light curves, in orange we
have the fitted model for this LC and, lastly, the blue curve is the transit that we should

be seeing, based on Table C.2.

Now choosing the best LC from the target star, i.e. the one with the lowest noise,

for each background grid, we can see how the differences impact the fitted parameters. In

Figure 5.29 we find similar values for the different grid sizes, except for the time of inferior

conjunction, t0. If we remember that this parameter is expressed in days, we notice that

the from the lowest value to the highest one are± 0.0159 days, which translate to roughly

23 minutes, which does not represent a great difference between them.

This difference stems from the fact that during the normalization process, we use the

point with the lowest flux to center the time array to measure times from the mid-transit



5. DISCUSSION 95

point. Thus, for different combinations of methods, this lowest point is in different posi-

tions, and the t0 parameter takes different values so that the mid-transit region occurs in

the correct region.

FIGURE 5.29: Fitted parameters, alongside the correspondent uncertainties, for the
ARCHI’s LC with the lowest noise for each of the previously studied background grids.

In order to compare fitted models, we shall set t0 to zero, so that the transit’s lowest

point is always in the same place. In Figure 5.30 we cannot find any differences between

the Light Curves. However, when zoomed in, we notice the slight differences that in-

cur due to the different estimations for each parameter. With this, we can conclude that,

in terms of the planet’s parameters, all of the produced light curves are almost equiva-

lent. If we had certainty of the true values, it would be possible to see if the best fit was

concordant with the LC with the lowest noise.

We shall now turn our attentions to the analysis of a singular application of the GPs,

for the light curve extracted with a circle mask, a dynam-offsets combination and without

using a background grid. In the first place we have to make sure that convergence was

achieved and, to do so, we start by looking at the values explored by the walkers during

the production stage, in Figure 5.31.
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(A) Comparison of all fitted LCs, for each background
grid, for Data Set A. (B) Zoom of the mid-transit region.

FIGURE 5.30: Comparison between all of the models created with the parameters fitted
for each of studied background grids. For each background grid, we applied the GPs for

the LC with the lowest noise level.

FIGURE 5.31: Values explored by the walkers in the production stage.

Looking at the chains allows us to have a preliminary idea of the state of convergence

of the GP. In this case, we notice that all values are approximately stable during this stage,

without any outliers. Furthermore, we notice that the value ranges are somewhat small,

indicating the all the walkers were exploring a small space around a given point.

However, the corner plot in Figure 5.32, allows us to have a clearer idea, and search

for correlations between parameters. Firstly starting with the planet’s parameters we note

that only the orbital inclinations deviate from the expected Gaussian shape. Remembering

from Chapter 3.3.2, the orbital inclination upper limit was set to 90 degrees. This closeness

to the upper limit, does not allow the walkers to freely explore around in this region,

creating the sudden cut of the distribution. As expected, the “true” values do not match

the fitted values but, once again, we shall disregard that, due to the difference found

between the injected transit and the model created with those values.

It’s also noteworthy that the kernel parameters, γsin and γcos converge to the same
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value, which is to be expected in our domain, due to the equal periodicity of the sine and

cosine.

FIGURE 5.32: Corner plot of all of the GP’s parameters. In red we can find the median
of the distribution, in green the “true” values found in Appendix C, and the dashed lines
represent the 6th and 84th quartile. This analysis was done for the light curve extracted

using a circle mask, a dynam-offsets combination and without a background grid.

The last step with the GPs is to draw samples, and attempt to remove noise from

the light curves. In order to accomplish this goal we sampled the kernel 100 times and

calculated the median, for each position. Applying this step and removing the estimated

noise from the original Light Curve, we arrive at Figure 5.33a, in which we see that the

correction has managed to reduce the noise.

Although we have managed to decrease the noise, we can still see some of the small

peaks found in the out-of-transit regions. Looking at the overall shape of the corrected
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(A) Corrected light curve, from Data Set A.
(B) Median of 100 samples taken from the GP, com-
pared against the normalized Light Curve without

the fitted model.

FIGURE 5.33: Application of GPs to a LC obtained with a circle mask and a dynam-offsets
method combination, for Data Set A.

TABLE 5.6: Impact of the Gaussian Processes, with the increase of the background grid.
The GPs were used with a circle mask with a dynam-offsets combination.

Grid size LC noise Corrected LC noise
0 54.9 47.6

600 50.4 42.9
1000 49.6 42.3
1400 50.7 43.5
1800 50 43
2200 50.6 43.6

LC, we find that it now follows much closely the injected transit. If we look at the noise,

we find that the overall shape of the samples are concordant with the noise fluctuations,

without passing by all the points. Furthermore, we see that the correction applied to the

large and periodic variations managed to remove them.

As previously mentioned, we do not have the DRP uncertainties for this Data Set and,

since it’s not possible to apply the GPs without them, we shall leave that part, once again,

for Data Set B.

In Table 5.6 we see how the GPs impact the curve from each background grid, while

using always the same configuration: a circle mask with a dynam-offsets method combi-

nation. The GPs, when applied over the background grids all yield very similar results,

around 43 ppm. When using them, we have a decrease of around 6 ppm in the noise,

which is also found for the curve without the background grid.

Lastly, if we look at other configurations from this Data Set, we find an unusual be-

havior. Depending on the chosen light curve, we find an over-fit of the kernel parameters,
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TABLE 5.7: Comparison between the results obtained with a circle mask and a dynam-
offsets combination, against the ones obtained with a shape mask and a dynam-dynam

combination-

LC Original Corrected
circle 54.9 47..6
shape 54.8 25.4

passing by all points of the noise values used as the inputs of the GP. This over-fit leads

to GP following each point, instead of attempting to model the behavior.

(A) Corrected light curve, from Data Set A.
(B) Median of 100 samples taken from the GP, com-
pared against the normalized Light Curve without

the fitted model.

FIGURE 5.34: Application of GPs to a LC obtained with a shape mask and a dynam-dynam
method combination, for Data Set A, without using a background grid. In this case, we

have an over-fit of the kernel, estimating values almost equal to the given inputs.

In Figure 5.34b we see that the noise estimates by the GP are almost equal to the input

values, thus revealing that instead of modeling the behavior, the kernel is such that closely

follows the inputs. This is further evidenced by looking at the correspondent corner plot,

in Figure 5.35.

Looking at Table 5.7 we see that the correction, for the LC obtained with the shape

mask has the noise reduced to half of its original value. This can also be seen in Figure

5.34a, in which the corrected light curve presents almost no variations and closely follows

the fitted model and Figure 5.34, where the samples match, almost completely, the given

inputs.

The corner plot, Figure 5.35 and the estimated values in Table 5.8 reveal some infor-

mation for which we cannot create a solid hypothesis to explain. In the first place, we see

that the planet’s parameters are close to the previous models. However, when we look at

the kernels, we now see that the one applied over the sine has a length scale that is almost



100 AN EXPANSION TO THE CHEOPS MISSION OFFICIAL PIPELINE

FIGURE 5.35: Corner plot of all of the GP’s parameters. In red we can find the median
of the distribution, in green the “true” values found in Appendix C, and the dashed lines
represent the 6th and 84th quartile. This time, we used a light curve extracted with a shape

mask, a dynam-dynam method combination and without using the background grid.

double of the one found with a circle mask. Furthermore, the cosine kernel also shows

a secondary peak, behind the 16th percentile region, near the same values. Interestingly,

using light curves produced by a shape mask with a dynam-dynam combination, but with

the background grid enabled, do not show the same pattern and in them we, once again,

find almost equal length scales on both kernels.

If we compare the planet parameters for both of these runs we find that the not only

are the planet parameters quite similar, but also the uncertainties found with each method

are very close to one another. With this, we can conclude that the quality of the planet’s

parameters is not tied with the kernel parameters.
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TABLE 5.8: Comparison of the GP parameters for both cases under study. The “circle”
entry is referent to the LC obtained with the shape mask and a dynam-offsets combinations.
The “shape” refers to the LC obtained with the shape mask and a dynam-dynam method

combination.

Parameter
Mask

Circle Shape
rp 0.0832+0.0004

−0.0004 0.0829+0.0004
−0.0005

a 2.8585+0.1352
−0.1433 2.8166+0.1200

−0.1843

inc 85.0165+1.2230
−2.3556 85.4175+1.7005

−2.6235

λ −17.449+0.4144
−0.5594 −16.8385+0.1186

−0.1220

γcos −0.9708+1.3473
−1.0333 −2.6759+2.4713

−1.0354

γsin −2.7538+1.8492
−0.6127 −11.1152+0.3787

−0.4103

However, we do not see the same when looking at the kernel hyperparameters. The

amplitudes of both kernels are also quite similar, contrasting the differences found in the

length scales. Not only are the differences significant between the two cases, but also the

uncertanties in the kernel’s hyperparameters are quite high in general, except for the sine

kernel, when using a shape mask.

5.2.2 Data Set B

Now passing onto our second data set, in which we shall compare an ARCHI’s curve,

obtained with a background grid of 600, a circle mask and a dynam-dynam combination,

against the DRP’s OPTIMAL light curve. Remembering from Chapter 5.1.3, DRP’s curve

had much more noise than the ones extracted using ARCHI.

In Figure 5.36 we find a comparison between the two normalized light curves and the

correspondent models that were fitted to them. At first, is evident that the DRP’s curve

has more outliers than the one from ARCHI. This bigger distribution of points in the light

curve, lead to a model with a smaller planetary radius, evidenced by the smaller dip in

flux, during the transiting event. Contrastingly, ARCHI’s light curve result in a model

that appears to be good, although it’s not possible to quantify how good.

If we perform a closer analysis of the fitted values, with Table 5.9, we notice that the

differences between them are somewhat significant, even when taking into account the

uncertainties. When comparing the uncertainties in the planetary parameters, we notice

that they are slightly higher than in Data Set A, but that is due to the lower signal to noise

ratio in this Data Set.
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FIGURE 5.36: Comparison between two different light curves. In Blue, we have the DRP’s
OPTIMAL LC and, in Black, ARCHI’s LC, obtained with a background grid of 600, a circle
mask and a dynam-dynam combination. Furthermore, we can also see the fitted models:

In orange the one from DRP’s LC and, in red, the one from ARCHI.

TABLE 5.9: Comparison of the GP parameters for both cases under study, for Data Set
B. Two different light curves were used: ARCHI’s light curve while using a background
grid of 600 and a circle mask with a dynam-dynam combinations and the OPTIMAL light

curve from the DRP.

Parameter
Pipeline

ARCHI DRP
rp 0.0391+0.0010

−0.0011 0.0318+0.0017
−0.0016

a 3.8350+0.9382
−1.1493 3.0849+1.1339

−0.4752

inc 82.3237+1.0214
−1.9145 82.4538+4.0672

−2.1141

λ −18.2861+0.5233
−0.7096 −14.5948+0.0437

−0.0444

γcos 0.7165+2.3097
−1.4259 −14.2322+0.4201

−0.4299

γsin −2.3761+0.5660
−0.6741 −12.8851+0.1584

−0.1643

The main difference that we find when comparing both light curves is the kernel’s

hyperparameters. In ARCHI’s case we find similar values to those found for Data Set A

but, in the DRP’s case we, once again, find small values for the length scales. Although,

in this case, the length scales of both kernels are approximately equal, instead of having
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TABLE 5.10: Comparison between the CDPP from the DRP’s LC and ARCHI’s LC. This
comparison is made before and after applying the GPs and calculated with the DRP’s

CDPP algorithm, for a time scale of 30 minutes.

LC Original Corrected
ARCHI 44.4 43.3

DRP 111.7 9.7

one kernel with a length scale much smaller than the other one. Thus, we expect to find,

one more time, an over-correction of the light curve.

FIGURE 5.37: Correction of the LCs, using the samples drawn from the GP. In red we
have the injected transit, in green the fit with ARCHI’s LC and in orange the fit with
DRP’s LC. We find that the time for the central trasit, both cases are not near the transit.
In the DRP’s case, due to the high noise seen in the LC, the point with the minimum flux
is near the middle of the LC. In ARCHI’s case, there was a bug in which the t0 calculation

was made before normalizing the light curve.

In Figure 5.37 we see that the DRP’s LC does not present as many outliers as before the

correction, being much flatter outside the transit. However,we find that the fit made with

ARCHI is much closer to the injected transit than the one from the DRP. Comparing the

noise in each light curve, in Table 5.10 we see that the correction applied over ARCHI’s

LC barely had any effect, only reducing 1 ppm. Contrastingly, in the DRP’s case, the noise

reduces more than 10 times, from 111 ppm to 10 ppm.
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As discussed, we do believe that this huge reduction in the noise is caused by an over

fit of the kernel hyperparameters, and that the presented light curve is over-corrected.

5.2.3 Data Set C

This Data Set has light curves with the transits near the borders of the image, thus invali-

dating the normal usage of the normalization process since, in this case, it would choose

points from within the transit. To solve this, we had to change, manually, the points that

were going to be used to estimate the normalization line. Adding to this, Data Set C is the

one with the most images and, due to time constraints, it was not possible to analyze all

three light curves. Instead, we decided to only study Star 2 of this Data Set.

The analysis was done without a background grid, and using a shape mask, with a

dynam-dynam combination.

FIGURE 5.38: Model created with the fitted models, for a LC with multiple transits. In
black we have ARCHI’s LC, extracted during a shape mask, a dynam-dynam combination

and without using a background grid. This LC is from Data Set C, for Star 2.

Looking at Figure 5.38 we see that our model is well adjusted to all transits that occur

in the light curve, and that the model can work, even if multiple transits are present in the

light curves, as long as the normalization process works as expected and does not use a

mid-transit region for the creation of the line that normalizes the LC.

5.2.4 Overall remarks

In this section we looked at the GPs applied over ARCHI’s light curves and the OPTIMAL

light curve, from the DRP. In the first place it’s important to note that the transit models,

created with the estimated parameters, overlap the light curves, thus proving that the
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parameters are close to their real values. However, further characterization of the results

was not possible, due to a mismatch between the truth values and the injected transits.

Despite these good results, the removal of noise from the light curves is trickier to

characterize. We have found that the kernel hyperparameters can suffer drastic changes

when comparing light curves from the same data set. In most cases we find that the length

scale of both kernels are close to one another. However, in some cases, we find that the

length scales go to very small values, which leads to the sampled values following, almost

perfectly, the input values and thus over-correct the light curves.

Even though we did not have the time to fully understand what is causing those ab-

normalities in the kernel behaviour, we postulate that this occurs due to our model con-

sisting of only the transit model and the GP, that will attempt to model everything else

that is not the transit. A more complete model, with a kernel for white noise and another

for other variations that occurs over the observation, in a non-periodic fashion, would

allow us to only sample the kernel that is associated with the rotational movement and

only correct that kind of noise. Lastly, we have found that the parameter’s determination

is not dependent on the kernel parameters, i.e. even when we find over-corrections, the

estimated parameters give models that are concordant with the light curves.

5.3 ARCHI’s limitations and the next steps

Starting with the photometric module, the most obvious problem passes by the fact that

CHEOPS, in a typical observation, is configured for the target star without taking into

account the background ones. This means that we can find cases in which the exposure

time is such that the star’s magnitude leads to saturation of the CCD, which will lead to

us not being able to extract meaningful information. Under those conditions we do not

know how the shape based algorithms behave nor the effects on the surrounding stars

and thus, more tests should be made to characterize ARCHI when working under those

conditions.

Furthermore, as we have seen in Chapter 2.1.2, the shape detection method can fail

for faint objects in the image, thus revealing that for short exposure times, we may not be

able to reliably track some stars.

Following the good results presented by the DRP and the apparent plateau found with

the increase of the background grids, we could improve the performance by implement-

ing some of the DRP’s methodologies. The first proposal is to improve the mask shifting
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with DRP’s anti aliased shifting algorithm. Due to the good results shown by the DRP’s

center detection, for the target star, we could also make a study of the feasibility of port-

ing it to work with the background stars, or to be used as an improvement of the dynam

star tracking method. As we have seen, contamination from nearby stars is a problem

that we face and, similarly to the DRP, we could also try to estimate and correct their

contributions.

Regarding the noise metric ported from the Kepler mission by my colleague Pedro,

discussed in Chapter 2.6, it also needs to be improved to account for the temporal gaps

that appear due to the SAA. Even though the SavGol filter showed that it can remove

the transit from the light curves reasonably well, we could still improve this step, maybe

through the application of a box-fitting algorithm (BLS) [82], if viable, or through the

usage of Gaussian Processes. Although the later would raise the computational costs of

the pipeline.

Another direction that could be also explored is the improvement of the DRP’s data

reduction algorithms. As an example, the background estimation algorithm could be

improved by removing the background stars from the histogram used to estimate the

background.

The Gaussian processes, albeit being functional, still have room for improvements. In

the first place, the normalization routine is a basic one and it easily fails, as seen with Data

Set C. Once again, a transit detection routine would allow us to avoid those regions. Not

only that, but our model is still incomplete and is not able to fully characterize the noise

and, sometimes, it leads to an over-fit. In this work we have assumed that the noise was

periodic, and treated it in such way. It’s true that a big portion of the noise is correlated

with the rotation angle, although we also have star variability, among other effects that

are correlated with the time and not expected to be periodic.

Furthermore, the kernels in use, albeit being able to fit the noise in the Light curves,

are not focused for circular domains. We expect that a better kernel could also improve the

GPs performance. In Chapter 3.1.3.1 we have also seen ways to validate the convergence

of the chains which, unfortunately, there was not enough time to properly implement.

Lastly, the analysis of the GPs is still incomplete since, as we have seen, the injected

parameters did not match with the injected light curve, limiting our ability to properly

characterize the fitted parameters.
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To finalize, it’s important to keep in mind that the real data from the CHEOPS mission

is yet to come and that the simulations, albeit useful, are not completely accurate. Thus,

with CHEOPS’s first light, ARCHI will, more than likely, need to be tweaked to extract

the most of the available data.





Chapter 6

Conclusion

The main goals of the project have been completed, we have managed to extract light

curves from the background stars, as well as reduce the noise in them with Gaussian

Processes. Alongside those goals, we also fitted planetary parameters with good results.

In this work we studied three different data sets, each with a different purpose. The

first one, Data Set A, allowed us to see that the target star produced the best results with

either the DRP’s star tracking algorithm or the one implemented on ARCHI, depending

on the size of the background grid. For the background stars, the dynam method, i.e. the

one based on the analysis of the star’s shape, was clearly the superior choice, revealing

lower noise levels than the other ones. Furthermore, we found that applying background

grids with more than 1800 points in each side does not translate into lower noise but,

instead, it stabilized. The same is found for the uncertainties. When comparing against

the DRP, we found that ARCHI’s best curve translates into a 5 ppm reduction in the noise.

Furthermore, we found that the target star’s PSF irregular shape lead to a contamination

in the signal of the closest light curve with period equal to two times the one from the

satellite. The contamination was also found for the second closest star, although it only

entered once the PSF region. On the star that is further away, we could also see a similar

signal, although no reasonable explanation could be found.

In the second Data Set, Data Set B, we obtained a reduction of 60 ppm, when compar-

ing against the DRP’s OPTIMAL light curve. Furthermore, we found that ARCHI’s light

curves, without using a background grid and with a background grid of 1800, managed

lower relative uncertainties than the DRP’s light curve. Lastly, with Data Set C we proved

that ARCHI can detect transits on the background stars. However, since we did not sim-

ulated a Data Set with a planet orbiting a star close to the image’s edge, we have yet to
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validate transit extraction for stars under those conditions.

The application of the Gaussian Processes has revealed itself to be successful, with the

application of a bi-dimensional Exponential Squared kernel, over the sine and cosine of

the satellite’s rotation angle. Using it, we found that the models are close to the injected

light curves, albeit it was not possible to quantify the noise in each of the fitted parameters,

due to a mismatch between the configuration values and the injected transit.

Regarding the removal of noise by drawing samples from the GPs, we have managed

to do it, albeit finding a behavior in the kernel for which we cannot produce a complete

explanation, but suspect that it may be related to a short coming in the creation of our

model for the noise. Depending on the methods, used to obtain a light curve, from within

the same Data Set we can have an over-fit of the kernel and thus, the samples follow, very

closely, the input values. Using the light curves that did not result in an over fit of the

kernel, we found an improvement of 7 ppm for the first Data Set and of 1 ppm for the

second one. The last Data set, allowed us to validate the model used to fit the planet’s

parameters, when multiple transits occurred in the same light curve.



Appendix A

Great-circle distance derivation

From [83] we can express the coordinates as seen in Equation A.1. We can now calcu-

late the distance between two points, with right ascensions(αi) and declinations (δi). It’s

important that we do not forget that we only use a small part of the CHEOPS’s original

image and thus we have, in practice, values for the RA and DEC not very far apart from

each other. Using Pythagoras theorem, it’s easy to calculate the distance between two

points if we know the size of the displacements in each direction.

X = cos(δ)cos(α)

Y = cos(δ)sin(α)

Z = sin(δ)

(A.1)

In this case, we are only interessed in the changes in RA or, in other words, we can say

that the z coordinate has zero change. Thus, we have Equation A.2.

dist = 2
√

∆X2 + ∆Y2 (A.2)

Furthermore, since we know that we are working with small angles, we can thus as-

sume that the declinations are approximately equal, and can be considered to be equal to

their average.

δ1 ≈ δ2 ≈ δavg (A.3)

By joining A.3 and A.2:
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dist
cos(δavg)

= 2
√
(cos(α2)2 − cos(α1)2)2 + (sin(α2)2 − sin(α1)2)2)(

dist
cos(δavg)

)2

= 2− 2 ∗ (cos(α2)cos(α1) + sin(α2)sin(α1))(
dist

cos(δavg)

)2

= 2− 2 ∗ cos(α2 − α1)

(A.4)

Recalling, from the beginning of this chapter, we said that not only the DEC was small,

but also the RA changes were small, which means that α2 − α1 will be a near zero value

and we can apply the small angle approximation in A.4, arriving at Equation A.5.

dist = cos(δ) ∗ (α2 − α1) (A.5)



Appendix B

Software diagrams

B.1 Data storage classes

B.1.1 DATA class

In Figure B.1 we see the schematic of the DATA class, which is where all inputs and out-

puts of the pipeline are stored inside. The full lines represent the public methods, avail-

able to be accessed outside of the class. The dashed lines represent internal function calls

to private methods made by the public interface. The dotted lines represent class proper-

ties, used to retrieve information from the stars or from the internal status of the class, i.e.

if errors were found or if the photometry routine was not used for this object.

113



114 AN EXPANSION TO THE CHEOPS MISSION OFFICIAL PIPELINE

FIGURE B.1: Schematic of the DATA class. Full lines represent public methods, dashed
lines calls to private methods and dotted lines class properties.
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B.2 Photo controller

In Figure B.2 we have a schematic of the user facing interface of the Photo Controller object.

The internal optimize function is a private method to the class but, from the outside, we

can still manually trigger the optimization with the “optimize” function.

FIGURE B.2: Schematic of the Photo controller user interface.

B.3 Gaussian Processes

FIGURE B.3: Schematic of the GP controller user interface.





Appendix C

A brief look into the simulated data

sets

In order to fully characterize ARCHI, we used two different data sets, mimicking different

situations. We shall use the following notation:

• RN : Neptune’s radius;

• RJ : Jupiter’s radius;

• RS: Star’s radius;

• R�: Sun’s radius;

• RP: Planet’s radius.

The three data sets, named A, B and C, all use the same configuration of stars, as seen

in Figure C.1, alongside their name convention. Since we are dealing with simulated Data

sets, the star’s radius, mass and limb darkening coefficients are given in Table 7 to 12 from

[17], depending on the temperature of the star itself. If the value itself is not specified, we

performed a linear interpolation with the data immediatly before and after.
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FIGURE C.1: Naming convention for the simulated stars in Data Set A, B and C.

TABLE C.1: Magnitude of each simulated star.

Star Magnitude [mag] Teff [K] Radius [R�] Mass Msun
Limb darkening

coeff1 coeff 2

0 9.23 6400 1.39529 1.27823 0.33645 0.30224

1 11.1 5660 0.981 0.98 0.4607 0.4038

2 10.0 5808 1.048 1.037 0.4169 0.2572

3 9.75 4076 1.094 1.343 0.5433 0.7238

Even though the star’s configuration is the same, both the number of planets and their

parameters are different, as we will now see.

C.1 Data set A

TABLE C.2: Parameter of the planets injected on Data set A.

Star Planet Radius Period Impact parameter [ 1
RS

] RP [ 1
RS

] a [ 1
RS

] inc [deg]

0 1.106 RJ 0.941 days 0.25 0.07958 3.14027 85.4338
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C.2 Data set B

TABLE C.3: Parameter of the planets injected on Data set B.

Star Planet Radius Period Impact parameter [ 1
RS

] RP [ 1
RS

] a [ 1
RS

] inc [deg]

0 0.5 RJ 0.85 days 0.25 0.03597 2.93441 85.11271

2 1 RN 2 days 0 0.0253 5.1911 90

C.3 Data set C

TABLE C.4: Parameter of the planets injected on Data set C.

Star Planet Radius Period Impact parameter [ 1
RS

] RP [ 1
RS

] a [ 1
RS

] inc [deg]

0 1.165 RJ 0.941 days 0.3 0.08383 3.14027 84.51800

1 1 RJ 5 hours 0 0.1535 2.1309 87.3103

2 1.5 RJ 8.5 hours 0.1 0.0957 1.4270 90





Appendix D

Photometric results

Taking into account the number of graphs and tables yielded by the algorithm, this Ap-

pendix contains the full information obtained with the different combinations of mask -

initial detection - star track that we have.

In the tables, the combination that yields the lowest noise levels is highlighted in

green, alongside the mask size that gives those results. Contrastingly, in red we have

the combination with the highest noise levels and corresponding mask size.

For Data Set B, due to clear superiority of the dynam star tracking method for the

background stars, and due to the closeness of the static and offsets methods for those stars,

we decided to only use the dynam and offsets star tracking methods.
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D.1 Data Set A

D.1.1 Shape mask

Background grid of 600

FIGURE D.1: Light curves obtained with all the combinations of methods, using a shape
mask and a background grid of 600. The name of each curve is used to identify the initial

detection method and, afterwards, the star tracking method.

TABLE D.1: Table with the noise, in ppm, for all the Light curves (seen in Figure D.1)
using a background grid of 600 and a shape mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits static 77.7 308.4 163.0 2741.1 42.0 28.0 26.0 4.0

fits dynam 53.5 268.7 117.0 728.2 17.0 20.0 16.0 4.0

fits offsets 50.1 309.9 185.0 9453.0 16.0 23.0 21.0 1.0

dynam static 69.2 282.5 165.0 543.0 42.0 25.0 24.0 11.0

dynam dynam 50.2 255.3 102.7 396.7 17.0 15.0 13.0 5.0

dynam offsets 48.8 414.1 292.5 841.7 15.0 22.0 18.0 10.0
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Background grid of 1000

TABLE D.2: Table with the noise, in ppm, for all the Light curves, while using a back-
ground grid of 1000 and a shape mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits dynam 50.9 266.5 107.9 782.6 37.0 37.0 28.0 6.0

fits offsets 49.8 285.7 169.8 1846.1 23.0 45.0 42.0 15.0

fits static 77.1 306.4 162.4 2677.7 62.0 46.0 45.0 7.0

dynam dynam 48.2 248.2 108.2 339.2 23.0 21.0 25.0 9.0

dynam offsets 47.4 338.4 197.9 373.9 26.0 56.0 47.0 21.0

dynam static 68.8 296.3 160.9 474.7 70.0 36.0 37.0 18.0

Background grid of 1400

TABLE D.3: Table with the noise, in ppm, for all the Light curves (while using a back-
ground grid of 1400 and a shape mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits dynam 49.8 263.3 107.4 721.2 37.0 48.0 39.0 9.0

fits offsets 50.0 283.6 171.7 1869.3 33.0 61.0 60.0 21.0

fits static 76.2 305.6 161.6 2628.7 87.0 63.0 62.0 10.0

dynam dynam 48.8 246.2 101.8 322.7 39.0 30.0 36.0 13.0

dynam offsets 49.1 338.0 197.5 363.4 32.0 81.0 66.0 29.0

dynam static 70.1 292.1 160.7 577.1 94.0 50.0 57.0 24.0



124 AN EXPANSION TO THE CHEOPS MISSION OFFICIAL PIPELINE

Background grid of 1800

TABLE D.4: Table with the noise, in ppm, for all the Light curves (while using a back-
ground grid of 1800 and a shape mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits static 76.5 304.0 162.6 2557.3 124.0 81.0 79.0 13.0

fits dynam 48.5 263.9 110.1 732.5 44.0 63.0 52.0 11.0

fits offsets 49.7 284.7 171.2 2006.8 43.0 84.0 78.0 26.0

dynam static 69.2 292.9 162.8 552.5 127.0 64.0 72.0 32.0

dynam dynam 47.0 249.3 106.7 348.1 41.0 38.0 46.0 16.0

dynam offsets 47.8 335.2 199.2 362.2 47.0 104.0 91.0 37.0

Background grid of 2200

TABLE D.5: Table with the noise, in ppm, for all the Light curves (while using a back-
ground grid of 2200 and a shape mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits static 218.6 304.5 452.3 2721.5 47.0 100.0 44.0 15.0

fits dynam 47.3 264.9 109.4 714.5 62.0 82.0 62.0 14.0

fits offsets 49.2 283.7 171.5 2012.7 51.0 96.0 96.0 32.0

dynam static 69.2 293.0 161.8 543.8 155.0 78.0 90.0 39.0

dynam dynam 47.3 246.1 104.5 335.6 50.0 45.0 56.0 20.0

dynam offsets 48.3 413.0 582.7 371.3 50.0 82.0 47.0 45.0
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D.1.2 Circle mask

Background grid of 0

FIGURE D.2: Light curves obtained with all the combinations of methods, using a cir-
cle mask and a background grid of zero. The color code is used to identify the initial

detection method and, afterwards, the star tracking method.

TABLE D.6: Table with the noise, in ppm, for all the Light curves (seen in Figure D.2)
using a background grid of 0 and a circle mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits static 59.6 303.9 129.4 757.8 30.6 18.0 23.0 16.0

fits dynam 55.7 250.3 110.7 102.0 20.8 15.0 19.0 15.8

fits offsets 54.7 322.5 164.5 1305.4 22.2 21.0 22.0 15.0

dynam static 55.4 310.6 139.1 227.5 31.1 20.0 24.0 18.0

dynam dynam 52.4 250.0 107.8 112.7 21.5 15.7 16.0 15.9

dynam offsets 54.9 342.6 184.1 360.3 25.4 23.0 24.0 17.0
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Background grid of 600

FIGURE D.3: Light curves obtained with all the combinations of methods, using a cir-
cle mask and a background grid of zero. The color code is used to identify the initial

detection method and, afterwards, the star tracking method.

TABLE D.7: Table with the noise, in ppm, for all the Light curves (seen in Figure D.3)
using a background grid of 600 and a circle mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits static 59.0 276.7 116.0 642.2 92.0 57.0 70.0 48.0

fits dynam 51.6 247.7 105.3 106.2 49.0 46.0 54.0 47.0

fits offsets 50.7 769.3 251.6 2230.6 53.0 47.0 56.0 43.0

dynam static 55.7 276.6 126.4 194.4 92.0 58.0 62.0 55.0

dynam dynam 52.2 252.3 104.1 112.5 49.0 46.0 55.0 47.0

dynam offsets 50.4 554.5 182.4 283.7 52.0 50.0 68.0 52.0
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Background grid of 1000

TABLE D.8: Table with the noise, in ppm, for all the Light curves, while using a back-
ground grid of 1000 and a circle mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits dynam 50.0 247.6 104.5 108.4 80.0 75.0 90.0 78.0

fits offsets 51.0 328.3 162.0 8312.0 78.0 108.1 109.0 31.0

fits static 58.3 273.9 115.7 573.6 154.0 94.0 116.0 82.0

dynam dynam 50.7 247.1 105.9 113.6 81.0 77.0 91.0 78.0

dynam offsets 49.6 345.1 182.6 321.5 78.0 115.0 116.0 85.0

dynam static 56.4 288.5 126.9 202.0 153.0 96.0 103.0 91.0

Background grid of 1400

TABLE D.9: Table with the noise, in ppm, for all the Light curves, while using a back-
ground grid of 1400 and a circle mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits dynam 51.2 246.9 104.3 108.2 114.0 106.0 129.0 109.0

fits offsets 50.2 302.4 161.4 1451.9 118.0 144.0 153.0 102.0

fits static 58.3 274.6 118.9 545.4 215.0 130.0 144.0 115.0

dynam dynam 51.0 246.5 104.6 110.9 114.0 109.0 127.0 109.0

dynam offsets 50.7 342.8 183.6 340.0 110.0 153.0 162.0 119.0

dynam static 56.4 287.0 127.4 212.0 214.0 135.0 145.0 127.0
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Background grid of 1800

TABLE D.10: Table with the noise, in ppm, for all the Light curves, while using a back-
ground grid of 1800 and a circle mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits static 185.0 273.2 114.7 629.2 156.9 167.0 208.0 148.0

fits dynam 50.4 246.3 103.6 107.9 147.3 136.0 162.0 140.0

fits offsets 50.6 301.8 161.9 8297.9 151.6 186.0 196.0 56.0

dynam static 56.2 285.8 127.2 200.3 274.9 173.0 185.0 164.0

dynam dynam 49.8 248.3 104.5 110.1 146.2 137.0 162.0 140.0

dynam offsets 50.0 338.6 184.4 340.6 141.6 197.0 207.0 153.0

Background grid of 2200

TABLE D.11: Table with the noise, in ppm, for all the Light curves, while using a back-
ground grid of 2200 and a circle mask.

Methods Noise (ppm) Mask’s size

Initial Track 0 1 2 3 0 1 2 3

fits static 58.2 272.4 115.1 566.6 337.0 205.0 255.0 181.0

fits dynam 49.4 247.1 104.8 108.2 177.0 165.0 200.0 171.3

fits offsets 50.3 8599.8 568.3 8386.2 172.0 55.0 172.9 68.0

dynam static 56.2 286.0 127.1 199.1 335.7 212.2 227.0 201.0

dynam dynam 49.8 245.0 103.5 110.0 179.0 170.0 197.0 171.5

dynam offsets 50.6 408.3 290.8 321.9 173.0 198.0 203.0 186.5
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D.2 Data Set B

FIGURE D.4: Evolution of the noise with the increase of the background grid, for each
possible combination and a circle mask, in Data Set B, with the DRP’s CDPP algorithm

FIGURE D.5: Evolution of the noise with the increase of the background grid, for each
possible combination and a shape mask, in Data Set B, with the DRP’s CDPP algorithm.





Appendix E

How to use ARCHI

E.1 Configuration values

1 ##########################################

# Paths #

3 ##########################################

5 # folder in which the fits files are stored

base_folder: ""

7 # path to save and search for the optimized radius file

optimized_factors: ""

9 # folder to store the graphs and related information

results_folder: ""

11 #name of the curve to be used as the comparison basis. Options pass by: DEFAULT;

OPTIMAL; RINF; RSUP

official_curve: "OPTIMAL"

13

##########################################

15 # General configurations #

##########################################

17

# method used on the mask creation. shape/circle

19 method: "shape"

#How the initial centers are determined. possible values: fits/dynam

21 initial_detect: "fits"

# uses opencv to calculate the center of each star for each frame dynam/offsets/

static
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23 detect_mode: "dynam"

# Calculate uncertainties in each point

25 uncertainties: 0

# size of the background grid. Has to be multiple of 200

27 grid_bg: 0

29 ##########################################

# Optimization confs #

31 ##########################################

33 # enable optimization of the increase factors

optimize: 0

35 # number of times that the optimization process is expanded

optimization_extensions: 6

37 # Number of cores to use for the optimization process. if it’s running on a

laptop, it’s recommended to use 2 or 3

optim_processes: 3

39 # fine search for the mask best size. The step keyword has no effect over this

process

fine_tune_circle: 1

41 # values that the factor can take -> used in the optimization process

val_range: [1,10]

43 # Step used to increase the masks, during the optimization process

step: 1

45

##########################################

47 # Run time processes #

##########################################

49

# 0 if the code is being run on computer with GUI

51 headless: 0

# Use the low memory mode

53 low_memory: 0

# K2 or DRP

55 CDPP_type: "K2"

# compares the method against the official pipeline

57 debug: 1

# Show photometric curve for each star
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59 show_results: 1

# shows the images and masks in real time

61 plot_realtime: 0

63 ##########################################

# Data storage/ file handling #

65 ##########################################

67 # create various pictures to the reports

report_pictures: 0

69 # export the photometric data to a txt as well as the one from the official

pipeline

export_text: 1

71 # export the photometric data to a fit file, as well as relevant information

export_fit: 0

73 # export images and information to a pdf file

export_pdf: 0

E.2 Simple Photometry run

In order to use ARCHI, one has to start by setting the desired configurations in the con-

figuration file, presented in Appendix E.1. After that step, it’s only needed to call the

desired functions, to achieve the desired functionality. In the script given bellow, it’s as-

sumed that the user wants to pass some information via the command line. However, if

one does not wish to do so, the user simply has to manually change the parameters to the

desired values.

import ARCHI

2 import sys

4

def start_process():

6 """

Uses both the Photo_controller and the GP_controller to run a full routine of

analysis under a data set. One can pass the configuration values from

8 the command line, when calling the script.

10 """
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12 # Command line arguments passed to the script by supernova/user

job_number = sys.argv[1]

14 first_burn = int(sys.argv[2])

second_brun = int(sys.argv[3])

16 prod = int(sys.argv[4])

procs = int(sys.argv[5])

18

20 data_fits = ARCHI.Data()

22 # Photometry part

controller = ARCHI.Photo_controller(job_number, config_path="/home/amiguel/

work/configs/config_cluster.yaml")

24

data_fits = controller.run(data_fits)

26

# Gaussian Processes

28

gp_cont = ARCHI.GP_controller(burns=[first_burn, second_brun, prod],

job_number=job_number,

30 results_folder=controller.parameters["results_folder"

], nwalkers=128)

32 # Set the parameters of the star that hosts the planet under analysis

gp_cont.set_star_parameters({

34 0: {

’RS’: 1.3952941176470586,

36 "MS": 1.2782352941176471,

’limb_type’: "quadratic",

38 "limb_coefs": [0.33645483523200004,

0.3022439091652]

}

40 })

42 # set the truth values

expected_results = [0.07958153054340054, 3.140278199264141,

85.11270640107678]



E. HOW TO USE ARCHI 135

44

gp_cont.add_expected_results(0, values=expected_results)

46

# Initial guess of the parameters that will be fitted

48

init_guess = [{’rp’: 0.07, ’a’: 3.0, ’inc’: 80.0, ’t0’: 0}]

50 data_fits = gp_cont.run_gps(data_fits, nthreads=controller.parameters[’

optim_processes’],

initial_guess=init_guess,

52 stars=[2])

54 # Store all of the available information

ARCHI.store_data(data_fits, job_number, **controller.parameters)

56

if __name__ == ‘__main__’:

58 start_process()
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semékers, and S. Udry, “TRAPPIST: TRAnsiting Planets and PlanetesImals Small

Telescope,” The Messenger, vol. 145, pp. 2–6, Sep. 2011.

[8] H. Rauer and A. M. Heras, “Space missions for exoplanet science: PLATO,” in Hand-

book of Exoplanets. Springer International Publishing, 2018, pp. 1309–1330.

[9] V. S. Meadows and R. K. Barnes, “Factors affecting exoplanet habitability,” in Hand-

book of Exoplanets. Springer International Publishing, 2018, pp. 2771–2794.

[10] CHEOPS - Definition Study Report.

[11] L. P. da Silva, G. Rolland, V. Lapeyrere, and M. Auvergne, “Radiation effects on

space-based stellar photometry: theoretical models and empirical results for CoRoT

space telescope,” Monthly Notices of the Royal Astronomical Society, vol. 384, no. 4, pp.

1337–1343, mar 2008.

[12] L. Pinheiro da Silva, V. Lapeyrere, and P. Bernardi, “Photometric Calibration,” in

The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding, ser. ESA

Special Publication, M. Fridlund, A. Baglin, J. Lochard, and L. Conroy, Eds., vol.

1306, Nov 2006, p. 309.

[13] O. S. M. S.Hoyer, P.Guterman and JC.Meunier, “Data reduction pipeline of cheops

mission.”

[14] CHEOPS Observers Manual.

[15] Data reduction procedures for the on-ground payload calibration.

[16] CHEOPS: Data Products Definition Document.

[17] CHEOPSim User Guide.

[18] “Schematic of the right ascension and declination,” Online in http:

//blog.leapmotion.com/introducing-planetarium-design-science-behind-vr-

widgets-showcase/. Accessed in: 01/07/19.

[19] M. Kennedy and S. Kopp, “Understanding map projections,” in Understanding Map

Projections. ESRI Press, 2001.

http://blog.leapmotion.com/introducing-planetarium-design-science-behind-vr-widgets-showcase/
http://blog.leapmotion.com/introducing-planetarium-design-science-behind-vr-widgets-showcase/
http://blog.leapmotion.com/introducing-planetarium-design-science-behind-vr-widgets-showcase/


BIBLIOGRAPHY 139
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