

Associação da severidade da fragilidade com o risco de complicações pós-cirúrgicas em doentes oncológicos: revisão sistemática e meta-análise

> Dissertação apresentada com vista à obtenção do 2º ciclo em Atividade Física e Saúde, da Faculdade de Desporto da Universidade do Porto, ao abrigo do Decreto-Lei nº 74/2006, de 24 de março, na redação dada pelo Decreto-Lei nº 65/2018 de 16 de agosto.

Orientador: Doutor Daniel Moreira Gonçalves

Rui Francisco de Jesus Ferreira Raposo

Porto, 2019

FICHA DE CATALOGAÇÃO:

Rui, R. (2019). Associação da severidade da fragilidade com o risco de complicações pós-cirúrgicas em doentes oncológicos: revisão sistemática e meta-análise. Porto: R. Raposo. Dissertação apresentada com vista à obtenção do 2º ciclo em Atividade Física e Saúde, apresentado à Faculdade de Desporto da Universidade do Porto.

PALAVRAS-CHAVE: FRAGILIDADE; COMPLICAÇÕES PÓS-CIRÚRGICAS; CANCRO; REVISÃO SISTEMÁTICA; META-ANÁLISE.

Agradecimentos

Ciente de que poucas palavras descreverão a minha gratidão, agradeço profundamente a todos(as) os(as) que tornaram esta viagem menos turbulenta e mais agradável.

Ao Professor Doutor Daniel Moreira Gonçalves, um agradecimento especial. Obrigado pela orientação científica desta dissertação. Obrigado pela disponibilidade, sabedoria, rigor, paciência e compreensão. Obrigado pela oportunidade, por sempre ter acreditado em mim e por me ter permitido embarcar nesta louca aventura.

Aos meus colegas de trabalho Gabriela, Mariana, Keilly, Nicolle e Rodrigo por serem uns excelentes companheiros e por terem tornado este processo de aprendizagem tão rico e significativo. Obrigado por toda a ajuda, motivação, amizade e carinho.

À Ana, a namorada e amiga de uma panóplia de aventuras e que sempre se disponibilizou para me ajudar. Obrigado pela intensidade vivida a cada momento ao teu lado. Obrigado por todo o desenvolvimento pessoal e profissional que me ajudaste a concretizar. Obrigado por me ajudares a tomar consciência dos meus objetivos e a priorizá-los. Obrigado por seres o meu porto seguro e por estares sempre presente. Obrigado por todo o carinho, paciência e amor. Tens e terás sempre um lugar muito especial no meu coração.

Ao meu irmão Ricardo por me acompanhar em mais uma etapa na minha vida. Obrigado pela compreensão nos momentos de maior indisponibilidade, pelo carinho, pelo amor, pela pessoa maravilhosa que és e pelo valor que tens. Estou grato por te ver crescer e ver a pessoa única, especial e maravilhosa que já és e que ao longo do tempo te vais aperfeiçoando. A vida é um processo de aprendizagem contínuo e tu estás a dominá-lo. És um exemplo a seguir e um ídolo para mim. Tenho muito orgulho em ti.

Aos meus pais, obrigado pela sinceridade, pelo esforço, pela força, pela paciência, pelo carinho e amor. Obrigado por estarem sempre do meu lado e

L

pelo apoio incondicional. Obrigado pela educação e pela ajuda contínua e incansável na construção do meu projeto de vida e ambições.

Aos meus avós que, juntamente com os meus pais, contribuíram imenso para a minha educação. Obrigado pelo carinho, pelo amor e por todos os momentos únicos passados juntos. Contribuíram sempre para que a minha vida fosse mais fácil e feliz.

Aos meus padrinhos e primos pelos momentos especiais, pelo carinho, pelo amor e pela amizade.

Ao Afonso e ao Luís que, apesar da minha indisponibilidade em diversos momentos, vocês serão sempre os melhores amigos. Construímos uma amizade permanece intacta. Independentemente das vezes que nos encontrámos, parece que nunca nos deixamos de ver. Sinto-me grato por todo o vosso apoio incondicional. Guardo-vos também num lugar especial no meu coração.

Aos "Los Pablos", os amigos de uma vida que me apoiam incondicionalmente. Obrigado por me ensinarem tanto e me fazerem sorrir em qualquer momento. Obrigado pela confiança, pela eterna e imensa amizade e obrigado por todas as idiotices e brincadeiras sem fim. Vocês dão valor e significado à minha vida. Com vocês tudo é mais fácil, são a "bomba de oxigénio" que necessito para que tudo corra bem. Apesar de já quase reformados e não nos vermos tantas vezes ainda temos alguma "estaleca" e todos os momentos que conseguimos juntarmo-nos valem ouro!

Ao André, ao amigo que me viu nascer e me empurrava no carrinho com meses de idade. Crescemos juntos e sinto-me grato pelos momentos inesquecíveis que partilhámos. Obrigado por fazeres parte do meu desenvolvimento e crescimento pessoal.

Ao Goji, ao meu fiel companheiro, sempre presente, atento e carinhoso. Obrigado por esperares por mim com a mesma alegria todos os dias, pela tua lealdade e todo o amor.

E finalmente, a toda a Faculdade de Desporto pelo enorme contributo na minha formação e pelas pessoas fantásticas que conheci nesta casa.

Ш

Índice

Resumo	VII
Abstract	IX
1. Introdução	1
1.1. A saúde da população: o envelhecimento	1
1.2. Cancro	2
1.3. Fragilidade	4
2. Objetivos	7
3. Revisão sistemática e meta-análise	9
4. Conclusão	65
5. Referências bibliográficas	

Índice de figuras

Figura 1 - Crescimento global do envelhecimento da população (United Nations
Population Fund, 2011)1
Figura 2 – Número médio de novos casos de cancro por ano e taxas de incidência, por idade, por 100.000 habitantes, Reino Unido, 2014-2016 (Cancer Research UK, 2019)
Figura 3 -Número estimado de casos incidentes desde 2018 a 2040, todos os cancros, ambos os sexos, todas as idades, no mundo (Global Cancer Observatory, 2019)
Figura 4 - Número estimado de casos incidentes desde 2018 a 2040, todos os cancros, ambos os sexos, todas as idades, em Portugal (Global Cancer Observatory, 2019).
Figura 5 - Evolução do número de cirurgias a neoplasias malignas, Portugal Continental (2010-2014). (Doenças Oncológicas em Números, 2015)
Figura 6 – Número estimado de cirurgias oncológicas realizadas entre 2015 e 2030 (GLOBOCAN, 2012)

Resumo

Introdução: A população tem vindo a envelhecer drasticamente nos últimos anos. As consequências deste fenómeno são visíveis na saúde dos cidadãos, nomeadamente através do aumento o número de casos de cancro. A intervenção cirúrgica corresponde à opção terapêutica com maior potencial curativa para os tumores sólidos. No entanto, não é isenta de eventos adversos, particularmente em indivíduos idosos vulneráveis, onde causam morbilidade e mortalidade. A fragilidade e a sua severidade são reconhecidas como fatores preditores de complicações no pós-operatório. Neste sentido, tem vindo a ser reconhecida a importância da avaliação da fragilidade no momento pré-cirúrgico, com o intuito identificar os doentes mais suscetíveis a complicações pós-cirúrgicas e, consequentemente, auxiliar a decisão terapêutica. De modo a esclarecer a relação entre fragilidade e a sua severidade com o risco de complicações pós-cirúrgicas em doentes oncológicos, propusemo-nos a realizar uma revisão sistemática e meta-análise.

Metodologia: A pesquisa foi realizada entre janeiro e março de 2019 e foram incluídos para análise um total de 19 estudos (7 prospetivos e 12 retrospetivos). Para a avaliação da qualidade dos artigos foi utilizada a *Newcastle-Ottawa Quality Assessment Scale*. A análise estatística foi realizada com recurso ao *ReviewManager 5.3; Copenhagen: the Nordic Cochrane Centre, Cochrane Collaboration*.

Resultados: Verificamos que o doente oncológico frágil apresenta um risco acrescido e significativo de ter complicações após a cirurgia (OR= 2.23, 95% IC: 1.91-2.60; p<0.00001; l²=88%). O risco manteve-se elevado mesmo após realizadas sub-análises, exceto para o tipo de cancro, onde verificamos que a fragilidade não se encontrou associada a complicações pós-cirúrgicas no contexto do cancro ginecológico.

Conclusão: Os nossos resultados alertam para o impacto da fragilidade e a respetiva severidade no desenvolvimento de complicações pós-cirúrgicas em doentes oncológicos, reforçando a importância da sua avaliação em contexto clínico.

PALAVRAS-CHAVE: FRAGILIDADE; COMPLICAÇÕES PÓS-CIRÚRGICAS; CANCRO; REVISÃO SISTEMÁTICA; META-ANÁLISE.

VII

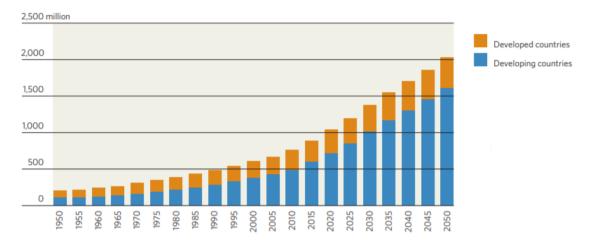
Abstract

Introduction: The population has been aging dramatically in recent years. The consequences of this phenomenon are visible in population's health, namely, in the increased number of cancer cases. Surgical intervention corresponds to the therapeutic option with the greatest curative potential for solid tumors. However, it is not adverse events free, particularly in vulnerable elderly individuals, where they cause marked morbidity and mortality. Frailty and its severity are recognized as predictors of postoperative complications. In this sense, the relevance of assessing frailty in the preoperative period has been recognized, in order to identify the most susceptible patients to postoperative complications and, consequently, to assist the therapeutic decisions. In order to clarify the relationship between frailty and its severity with risk of postoperative complications in cancer patients, we proposed to develop a systematic review and meta-analysis.

Methods: The research was conducted between January and March 2019 and a total of 19 studies were included (7 prospective and 12 retrospective). To evaluate the quality of the studies, the Newcastle-Ottawa Quality Assessment Scale was used. Statistical analysis was performed using ReviewManager 5.3; Copenhagen: The Nordic Cochrane Center, Cochrane Collaboration.

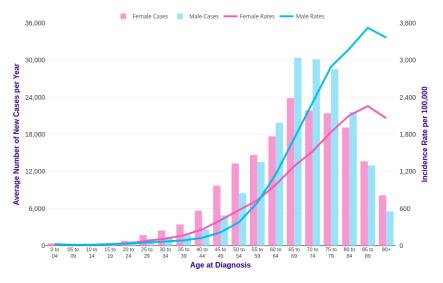
Results: We found that frail cancer patients have an increased and significant risk of complications after surgery (OR= 2.23, 95% IC: 1.91-2.60; p<0.00001; I^2 =88%). The risk remained high even after sub-analyzes, except for the type of cancer, where we found that frailty was not associated with postoperative complications in gynecological cancer.

Conclusion: Our results highlight the impact of frailty and its severity on the development of postoperative complications in cancer patients, reinforcing the relevance of their evaluation in clinical context.


KEY-WORDS: FRALITY; POSTOPERATIVE COMPLICATIONS; CANCER; SYSTEMATIC REVIEW; META-ANALYSIS.

IX

1. Introdução


1.1. A saúde da população: o envelhecimento

Os indicadores demográficos mundiais evidenciam que a população mundial cresceu significativamente até ao ano 1927 e atingiu os 2 bilhões de pessoas em 1974 (Housman & Dorman, 2005). Em apenas 25 anos, de 1974 até 1999, a população aumentou o dobro atingindo um total de 4 bilhões de pessoas (Cohen, 2003). Este aumento da população é um acontecimento nunca antes vivido (Cohen, 2003). Segundo a *United Nations Population Fund* estima-se que em 2050 o número de pessoas com mais de 60 anos ultrapasse os 2 bilhões (Figura 1).

Figura 1 – Crescimento global do envelhecimento da população (United Nations Population Fund, 2011).

Portugal, segue esta tendência e os seus habitantes vivem cada vez mais anos. Estima-se que 21% dos portugueses têm 65 ou mais anos, enquanto 14% têm menos de 15 (Ministério da Saúde, 2018). Esta realidade evidencia uma melhoria nas condições de vida, no entanto, traz consigo inúmeros problemas, como por exemplo, o baixo índice de fecundidade, a emergência de novos problemas de saúde e o aumento da prevalência de doenças crónicas (Ministério da Saúde, 2018). No mesmo sentido, estudos refletem sobre a associação positiva entre o envelhecimento populacional e o aumento do número de casos de cancro (National Services Scotland, 2019; Office for National Statistics, 2019) (Figura 2).

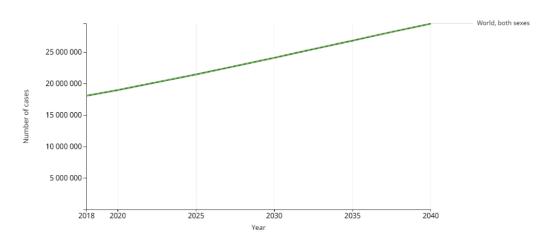
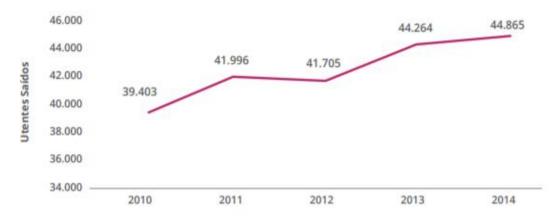


Figura 2 – Número médio de novos casos de cancro por ano e taxas de incidência, por idade, por 100.000 habitantes, Reino Unido, 2014-2016 (Cancer Research UK, 2019).

1.2. Cancro

Segundo a Organização Mundial de Saúde (OMS), cancro é definido como um crescimento descontrolado de células que pode afetar qualquer parte do corpo humano.

Dados disponibilizados, em 2018, pelo *International Agency for Research on Cancer* apontam para um aumento de 63,1% no número de casos incidentes de cancro no mundo, entre 2018 e 2040 (Figura 3).


Figura 3 -Número estimado de casos incidentes desde 2018 a 2040, todos os cancros, ambos os sexos, todas as idades, no mundo (Global Cancer Observatory, 2019)

No panorama português, estima-se que entre 2018 e 2040 a incidência de cancro aumente de 58 199 para 69 565 novos casos, correspondendo a um aumento de 19,0% (Figura 4). Neste sentido, compreende-se que a mortalidade e letalidade associadas a esta doença a tornem um problema central de saúde pública mundial.

Figura 4 - Número estimado de casos incidentes desde 2018 a 2040, todos os cancros, ambos os sexos, todas as idades, em Portugal (Global Cancer Observatory, 2019).

Esta realidade, fez aumentar o número de tratamentos de radioterapia e/ou quimioterapia, em Portugal, tanto em sessões de hospital de dia como em internamento, assim como, o número de cirurgias oncológicas realizadas (Nuno Miranda et al., 2016) (Figura 5).

Figura 5 - Evolução do número de cirurgias a neoplasias malignas, Portugal Continental (2010-2014). (Doenças Oncológicas em Números, 2015)

Dados mundiais demonstram uma tendência para o aumento do número de cirurgias oncológicas realizadas nos próximos anos (Figura 6).

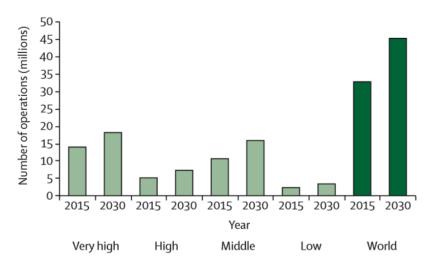


Figura 6 – Número estimado de cirurgias oncológicas realizadas entre 2015 e 2030 (GLOBOCAN, 2012).

A cirurgia é um dos principais tratamentos do cancro e desempenha um papel relevante no prolongamento da vida do doente oncológico (Holland, 2003). No entanto, esta intervenção revela-se um evento de grande *stress* para o doente e com riscos inerentes. São várias as possíveis complicações póscirúrgicas, nomeadamente, hemorragias, danos nos tecidos, infeções, entre outras, que: i) implicam uma maior utilização dos recursos de saúde (Scarborough et al., 2017); ii) interferem nos tratamentos subsequentes (Hendren et al., 2010); iii) poderão levar à morte prematura e perda de independência funcional (Booka et al., 2018; Lawrence et al., 2004) e; iv) têm impacto económico (para os doentes e/ou hospitais) (Zogg et al., 2018).

Neste sentido, compreende-se a necessidade de serem desenvolvidas estratégias que diminuam as complicações pós-operatórias e, consequentemente, potenciem a qualidade de vida do doente após estas intervenções. Destaca-se, por exemplo, da avaliação da fragilidade do doente oncológico antes da intervenção cirúrgica.

1.3. Fragilidade

A fragilidade tem sido reconhecida como uma condição clinicamente diagnosticável e caracteriza-se pela diminuição das reservas fisiológicas e funcionais em diversos sistemas e maior vulnerabilidade proporcionando menor tolerância fisiológica e psicológica para responder a um evento de grande *stress*

4

ou exposição a risco elevado de eventos adversos à saúde física e mental, como é o caso da cirurgia (Lu et al., 2016).

É consensual na literatura que a avaliação da fragilidade: i) reflete a idade biológica do individuo (que é mais discriminativa do risco de comorbilidade e mortalidade do que a idade cronológica) (Morley et al., 2013); ii) é potencialmente reversível ou atenuada por intervenções específicas (Morley et al., 2013); iii) o seu conhecimento é útil para o planeamento e realização de cuidados de saúde (Chen et al., 2014). Adicionalmente, a fragilidade e a sua severidade são reconhecidas como fatores preditores de complicações no pós-operatório (Brahmbhatt et al., 2016; Ehlert et al., 2016; Fang et al., 2017; Hewitt et al., 2015; Karam et al., 2013; O'Neill et al., 2016). Neste sentido, torna-se pertinente a sua avaliação previamente à realização de cirurgias a neoplasias, de modo a reduzir os riscos e complicações resultantes destes procedimentos. A aplicação de ferramentas de avaliação da fragilidade permitirá: i) analisar o estado (físico, psicológico, social) do doente oncológico; ii) delinear estratégias adequadas para otimizar o estado do doente oncológico antes da intervenção (pré-habilitação e redefinição alimentar por exemplo) (Mogal et al., 2017). Neste sentido, é compreensível e necessário que se investa na melhor compreensão da relação entre a fragilidade e os efeitos adversos da cirurgia, bem como no tipo de instrumentos com maior eficácia de predição, aplicável em contexto clínico, que facilite os processos de tomada de decisão no que concerne ao encaminhamento dos doentes oncológicos para intervenções cirúrgicas, podendo o doente ser direcionado para programas de otimização como por exemplo a preabilitação com exercício físico (Morley et al., 2013).

5

2. Objetivos

De modo a contribuir para o esclarecimento da relação entre fragilidade e eventos adversos pós-cirúrgicos, realizou-se uma revisão sistemática e metaanálise, com o objetivo de avaliar a associação da severidade da fragilidade com o risco de complicações pós-cirúrgicas.

3. Revisão sistemática e meta-análise

Association of frailty severity with the risk of postoperative complications in oncologic patients: systematic review and meta-analysis

Raposo, Rui¹; Ehrenbrink, Gabriela¹; Nunes-Poças, Keilly¹; Guedes, Mariana¹; Cardoso, Rodrigo¹; Pauli, Nicolle¹; Lara-Santos, Lúcio²; Moreira-Gonçalves, Daniel¹

¹ Centro de Investigação em Atividade Física, Saúde e Lazer, Faculdade de Desporto da Universidade do Porto, Porto, Portugal

² Grupo de Patologia e Terapêutica Experimental, Instituto Português de Oncologia, Porto, Portugal

ABSTRACT

Background: Frailty is a biological syndrome characterized by a reduction of physiological reserves and decreased tolerance to stressful stimuli like a disease or a surgery. The prevalence of frailty increases with age and its incidence among older patients with cancer is especially high. Because cancer itself as well as anticancer therapies can impose a significant additional stress that challenges the patient's physiologic reserve, it is anticipated that frailty will cause a significant burden to cancer patients. Multiple studies have shown an important association between preoperative frailty with poor post-operative health outcomes in older cancer patients under surgery. However, it is still unclear what is the impact of pre-frailty on adverse outcomes after surgery.

Aim: This work aims to study the association between the severity of frailty and the development of postoperative complications in cancer patients undergoing surgery.

Methods: Potential studies were systemically searched through the Pubmed/Medline, Cochrane Library and Academic Google, using the keywords "frail OR frailty" AND "cancer OR oncology OR oncologic" AND "postoperative complications OR postsurgical/post-surgery complications" OR "postoperative outcomes OR postsurgical/post-surgery outcomes", between January and March 2019. All possible definitions of frailty were considered. The first author, year of publication, study design, country of research, study population, age and gender of participants, sample size, type of cancer, frailty tool, type of surgery (elective or emergency), type of surgical procedure (open and laparoscopic), postoperative complication (type/severity and timing of occurrence) and inclusion and exclusion criteria were extracted. Quality of the studies was assessed with the Newcastle-Ottawa quality assessment scale for non-randomized studies. Statistical analysis was performed in Revman (Review manager V5.3). The random-effects model was used to calculate the Odds Ratios (OR) and the 95% confidence interval (CI). PRISMA guidelines were followed. We explored the sources of heterogeneity by performing sub analysis. Funnel plots were used to

visually inspect for publication bias. Sensitivity analysis was performed by omitting every single study.

Results: From a total of 91 423 articles, 19 (7 prospective and 12 retrospective) were eligible for the meta-analysis, with a total of 247 328 participants, 41.8% male and mean age 63.6 years. Compared to patients classified as "non-frail", "frail" patients had an increased risk of postoperative complications (OR = 2.40, 95% CI 2.08-2.77; p <0.00001; I2 = 89%). When sub analysis for frailty severity was performed, there was a high risk of postoperative complications in the "frail" individuals (OR = 4.2, 95% CI 2.86-6.19; p <0.00001; I2 = 86%) and "pre-frail" (OR = 2.24, 95% CI 1.76-2.86; p <0.00001; I2 = 81%) compared to the "robust" ones. It was also found that the "frail" had a higher risk of complications compared to the "pre-frail" (OR = 2.55, 95% CI 2.09-3.11; p <0.0004; I2 = 80%).

Conclusions: Frailty and pre-frailty seems to be a major risk factor for postoperative complications in cancer patients. Pre-surgical assessment of frailty level may be useful in identifying individuals who could benefit from optimization interventions for surgery, such as pre-habilitation.

Key-words: Frailty, Postoperative complications, Oncologic.

INTRODUCTION

Cancer incidence and mortality are rapidly growing worldwide, with the 14 million new cancer cases in 2012 expected to rise to 24 million new cancer cases in 2035 (1). The reasons for these trends are complex but are thought to reflect changes in the prevalence and distribution of the main risk factors for cancer, including the aging and growth of the population (1). Indeed, the world's population is expected to grow from 6.3 billion to 8.9 billion until just 2050 and the fraction of people aged 60 years and older are projected to increase more than double by the year 2050 (2). In 2012, 47.5% of all new cancer cases worldwide were diagnosed among adults aged ≥65 and this number is estimated to increase to 70% by 2030 (3). Moreover, elderly cancer patients account for approximately 80% of cancer deaths each year (4). The growing cancer burden at older ages is likely to result in major challenges in the provision of clinical and health services that adequately meet these needs over the coming decades (5). For instance, this segment of the population is characterized by the presence of multiple comorbidities, polypharmacy and physiologic age-related changes, that may condition whether or not a certain treatment is offered (6). This is particularly worrying regarding surgery, which is a fundamental method for both curative and palliative treatment of most solid cancers (7). In fact, older cancer patients are often denied standard surgical management as they are believed to be have poor tolerance to surgical stress and thus, to be at increased risk of postoperative morbidity and mortality (7). However, this conservative attitude is not supported by the current evidence as long-term outcomes after surgical treatment do not differ according to the patient's age (8). The truth is that the older population is very heterogeneous with regard to health, functional, psychological, social, cultural and economic status, and all these factors may ultimately influence the surgical risk in this patient group (9). Thus, in order to provide optimal care and improve health outcomes, the decision of whether or not an older patient will tolerate a surgical procedure should be based on a more objective and individualized preoperative risk assessment.

There are several instruments used to assess preoperative risk, but they are highly biased by chronological age and do not take into account the patient's

13

physiologic reserve or biological age (10). In order to better understand the functional and physiologic heterogeneity among the elderly, the concept of frailty has been introduced. Frailty is defined as a dynamic status (which means it can improve or worsen) of vulnerability to endogenous and exogenous stressors, characterized by a reduction in the physical, psychological and/or social functions, exposing the individual to a higher risk of negative health-related outcomes (11) (12). The condition can be described as a vicious cycle responsible for the onset of negative health-related outcomes and a transition phase between successful aging and disability (12). The prevalence of frailty in the general population was shown to be around 10% in people aged 65 and over, rising to between 25% and 50% in those aged 85 and over (13). In communitydwelling older people, frailty was shown to be a significant predictor of falls (14), fractures (14), hospitalization (15), disability (15), poor quality of life (16), dementia (17) and mortality (18). Frailty has also been recognized as an important risk factor for adverse postoperative outcomes in older patients submitted to vascular (19), cardiac (20) and orthopedic surgery (21). Regarding cancer, more than 50% of older cancer patients are thought to be pre-frail or frail, placing them at greater risk of chemotherapy intolerance, postoperative complications and mortality (22). Thus, given the growing number of patients presenting for surgical procedures, frailty may be a valuable tool in perioperative assessment of older cancer patients by helping clinicians to tailor treatment options, facilitating shared decisions making, improving patient selection and helping to optimize patients preoperatively so as to reduce surgical complications (23).

Despite the potential clinical utility of frailty assessment, clinicians will find difficulties in the moment of choosing the instrument to assess it, as there are dozens of options, representing different definitions of frailty (24). These definitions vary in their conceptual foundations (there is no universal definition of frailty), clinical practicality (some are more time-consuming), domains (single vs. multi-domains), and assessment items (25), which compromise their comparability. Moreover, there are no consensus on which frailty assessment instrument is appropriate to a specific purpose (e.g. risk of fall, hospitalization,

14

morbidity, and mortality), context (e.g. community, primary or secondary care) (25). Specifically, in the context of cancer patients, while it has been shown that frail patients are at greater risk of postoperative complications than non-frail, it is not clear if the severity of frailty (robust vs. pre-frail vs. frail) plays a role. It also remains to be explored what frailty instruments better predict postoperative complications and if frailty similarly impacts postoperative outcomes all types of cancer.

The purpose of this systematic review and meta-analysis is to evaluate the association between frailty status and postoperative complications. By defining a priori sub-analysis by the type of frailty assessment instrument and type of cancer, we hope to better clarify how these important factors could impact the relation between frailty and postoperative complications.

METHODS

This review was designed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement (26).

Protocol and registration

A protocol for this review has not been published separately.

Eligibility criteria

Type of studies

Only published observational (retrospective and prospective) studies, reporting crude or sufficient raw data to allow calculation of the association between frailty and post-operative complications, published in English in the last 10 years were considered eligible for inclusion in the review.

Type of participants

We included studies that recruited adult patients aged 18 or older, of both sexes and any ethnicity, diagnosed with cancer and scheduled to surgery for tumor resection with and without neoadjuvant therapy. In addition, studies had to stratify and compare participants by frailty status, assessed before any treatment. Given the absence of a standard consensus on the ideal frailty metric, all possible author descriptions for inclusion were considered, with no limitations on the number of items and domains used for frailty assessment.

Type of interventions

The search was limited to studies comparing the risk of postoperative complications between frail versus non-frail or frail versus pre-frail versus robust.

Types of outcome measures

The primary outcome for this review was to compare the risk of postoperative complications according to frailty status in oncologic patients. There was no minimum length of follow-up for the studies that were eligible for inclusion in the review, but they had to report the timing and type/severity of complications.

Information source and search strategy

One author (RR) performed a systematic search in the electronic databases PUBMED, Cochrane online databases and Google Academic, using the following terms: "frail OR frailty" AND "cancer OR oncology OR oncologic" AND "postoperative complications OR postsurgical/post-surgery complications" OR "postoperative outcomes OR postsurgical/post-surgery outcomes". The search happened between January and March 2019, limited to articles written in English and published in the last ten years. The reference lists of the selected articles were also reviewed to identify relevant articles.

Study Selection

One author (RR) independently screened the titles and abstracts of the articles to identify potentially relevant studies. Whenever an article was considered relevant, the full text was reviewed. Finally, to identify potentially eligible studies, all the reference list of the included studies was also reviewed. Any disagreement was resolved by discussion and consensus with the participation of a second person (DMG).

Data Extraction

The following data was extracted by one person (RR) from selected articles: first author, year of publication, study design, country of research, study population, age and gender of participants, sample size, type of cancer, frailty tool, type of surgery (elective or emergency), type of surgical procedure (open and laparoscopic), postoperative complication (type/severity and timing of occurrence) and inclusion and exclusion criteria. The information was subsequently verified by a second person (DMG). If the data was insufficient in the original manuscript, the corresponding author was contacted for additional information.

Data items

Only numerical values reported by the studies (e.g. percentages, counts, means) were used to calculate frailty prevalence and risk of postoperative complications. We anticipated the use of different frailty instruments and different classifications of frailty (e.g. frail and non-frail; frail, pre-frail and robust; cumulative frailty). Thus, and in order to include the greatest number of articles in this review and/or to perform analysis by frailty status, we dichotomized (frail and non-frail) or trichotomized (frail, pre-frail and robust) frailty classification, following established cut-off points. Regarding dichotomization, "pre-frail" and "robust" patients were merged and considered "non-frail"; for studies using cumulative frailty (from 0 to 1), we considered "non-frail" those with a frailty index <0.2 and "frail" those with a frailty index <0.10, 0.10 to 0.21 and >0.21, respectively (28). In studies that categorized the patients in "frail, intermediate frail" or "moderately frail and not frail or robust", we combined "intermediate frail" or "moderately frail" and "not frail" or "robust" in a "not frail group" and frail in a "frail group" (29).

Study quality assessment

We used the Newcastle-Ottawa quality assessment scale for non-randomized studies to assess the quality of studies (30). This instrument evaluates three domains of nonrandomized studies: i) *selection*, encompassing representativeness of the exposed group, selection of the non-exposed group, ascertainment of exposure, and demonstration that the outcome of interest was not present at the beginning of the study; ii) *comparability*, evaluating whether confounders were adjusted for; and iii) *outcome*, assessing the adequacy of the follow-up period, cohort retention and the ascertainment of outcome data (30).

We appraised the quality of the studies by adding stars in each domain: The maximum total grade was 9, and a higher grade represented a better study quality. Any disagreement regarding the assessment of the quality of a study was discussed and resolved during a consensus meeting.

19

Summary of measures

Postoperative complications were expressed as Risk Ratio (RR) with 95% confidence intervals (CI).

Synthesis of results

Data synthesis was performed according to recommendations in the Cochrane Handbook for Systematic Reviews of Interventions, using the Review Manager software (*RevMan 5.3; Copenhagen: the Nordic Cochrane Centre, Cochrane Collaboration*). The meta-analysis of binary outcomes used study-specific frequency of events (presence or absence of postoperative complication) as outcome data and the resulting pooled estimates and confidence intervals were converted to odds ratios (OR). We calculated pooled OR and 95% confidence intervals (95% CI) using the Mantel – Haenszel method.

The random-effects mode was used because we assume that the true effect size varies from one study to the next, and that the studies in our analysis represent a random sample of effect sizes that could have been observed. Only unadjusted data was pooled. Since the binary outcomes were all adverse events, a positive OR indicated that frailty is associated with worse patient outcomes.

Assessment of heterogeneity

Heterogeneity of the effect size between studies was tested for each outcome to describe the extent of the between-study heterogeneity by using a standard Chi^2 value with a significance cut off level of P < 0.10 and by the I² statistic. An I² estimate greater than or equal to 50% with a significant value for Chi^2 , was interpreted as evidence of statistical heterogeneity (31).

Assessment of reporting biases

Funnel plots were used to visually inspect for publication bias.

Subgroup analysis

We established a priori subgroup analysis of postoperative complications by frailty severity, type of frailty instrument and type of cancer. After collecting all the information from the included studies, the following subgroup analysis were also performed: study design (prospective, retrospective), location (USA, Europe, Asia), sample size (>1000, <1000), age (>65 years), follow-up time (<30, more than 1 year, not reported).

Sensitivity analysis

Sensitivity analysis was performed by calculating the effect size after omitting every single study.

RESULTS

Selected Studies

A PRISMA flow diagram summarizing the review process is presented in **Figure 1**. A total of 91 423 articles were found. Of these. 73 were duplicates and were removed. After screening the titles and abstracts, 91 278 studies were excluded, and 52 relevant articles were assessed for eligibility. After reading the full texts, 33 articles were excluded. Reasons for exclusion are listed in **Table 1**. In total, 19 studies were selected for qualitative and quantitative evaluation.

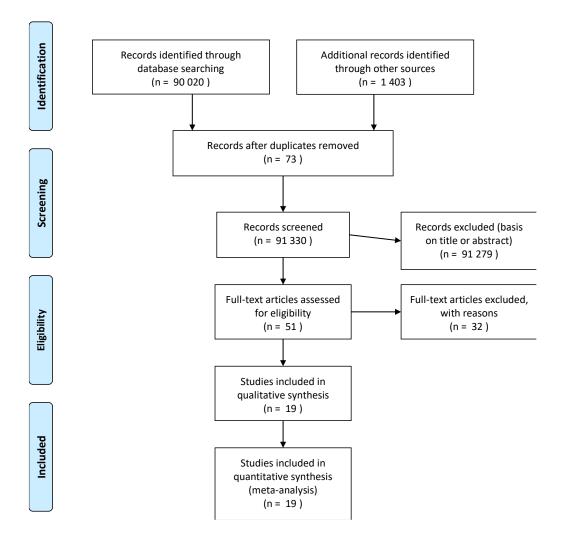


Figure 1: PRISMA Flow diagram of articles included in the present study.

Table 1: Reasons for exclusion

Study	Exclusion
Chappidi et al. 2016 (32)	Did not include post-operative complications
Fitzmaurice et al. 2017 (33)	Did not include post-operative complications
Uppal et al. 2015 (34)	Did not include post-operative complications
Nishida et al. 2016 (35)	Did not include frailty tool, exclusion criteria, post-operative complications
Ommundsen et al. 2018 (36)	Did not include post-operative complications
Ommundsen et al. 2014 (37)	Did not include post-operative complications
Abt et al. 2017 (38)	Did not include post-operative complications
Revenig et al. 2014 (39)	Did not include post-operative complications
Revenig et al. 2015 (40)	Did not include country, post-operative complications
Huisman et al. 2015 (41)	Did not include country
Revenig et al. 2013 (42)	Did not include country
Lin Hui-San, et al. 2016 (43)	It was a systematic review
Ronning et al. 2010 (44)	Irrelevant
Augustin et al. 2016 (45)	Irrelevant
LA van Vugt et al. 2014 (46)	Irrelevant
Pearl et al. 2017 (47)	Irrelevant
Kuroki et al. 2015 (48)	Did not include post-operative complications
Choe et al. 2017 (49)	Did not include post-operative complications
Landi et al. 2013 (50)	Did not include post-operative complications
Nieman et al. 2018 (51)	Irrelevant
Fagard et al. 2016 (52)	It was a systematic review
Shin Hyuk Yoo et al. 2016 (53)	Did not include study design, frailty tool
Wagner et al. 2018 (54)	Did not include country
Rinkinen et al. 2016 (55)	Irrelevant
Finlayson et al. 2012 (56)	Did not include frailty tool, post-operative complications
Salvi et al. 2016 (57)	Did not include country post-operative complications
Sunghye Kim et al. 2017 (58)	Irrelevant
Ugolini et al. 2014 (59)	Irrelevant
Jun Lu et al. 2017 (60)	Study design
Chen et al. 2016 (61)	Did not include post-operative complications
Dong-Dong Huang 2016 (62)	Did not have participants age, frailty tool
Roman Mayr 2018 (63)	Did not include country, frailty tool

Study characteristics

The detailed characteristics of the 19 studies are presented in **Table 2**. From the 19 studies, 7 were prospective (64-70) and 9 were retrospective (11, 23, 71-80). Overall, we included data from 243 328 patients, 41.8% (n=101 719) were male and 58.2% (n=141 609) were female, with an average of 63.6 years old.

Thirteen studies were conducted in the USA (America) (11, 23, 64, 66, 69, 71, 73-76, 78-80); 3 were from Europe (65, 67, 72), while the other 3 were from Asia (68, 70, 77). The reported data included those from gastrointestinal (11, 23, 67, 68, 70, 80), gynecologic (64, 74, 75), urologic (78, 79), head and neck (72, 76), abdominal (65, 66), pulmonary (77), neurologic (73), column cancer (71) and cancer in general (69).

Thirty-day post-operative complications were reported in 8 studies (23, 64, 66, 74-76, 79, 80), 1 year in 4 studies (65, 67, 69, 72), more than 1 year in 2 studies (68, 77) and not reported in 4 studies (11, 70, 71, 73, 78). Regarding the type of surgery, all the studies reported elective surgery.

A total of 8 different tools was used for evaluation of frailty: 9 studies used modified frailty index (mFl) (11, 23, 66, 68, 73, 75, 76, 78, 80), 3 used Fried phenotype (FP) (64, 69, 70), 2 used comprehensive geriatric assessment (CGA) (65, 67), 1 used simplified frailty index (SFI) (79), one used unintentional weight loss (74), one used Groningen frailty index (72), one used L3 muscle index (77) and one used spinal tumor frailty index (71). Irrespective of the frailty assessment method, the average prevalence of frailty was 17.5% (range 0.5%–41%). Overall, prevalence of postoperative complications was 38.58% (range 3.06%–76.32%) in frail patients and 19.77% (range 2.39%–48.04%) in non-frail patients.

Table 2: Characteristics of included studies.

Author, published year	Location	Study design	Type of surgery	Cancer	Sample size
Sathianathen, 2018 (79)	USA	Retrospective	Elective	Bladder	5516
Konstantinidis, 2017 (66)	USA	Prospective	Elective	Intraperitoneal	1171
Vermillion, 2017 (80)	USA	Retrospective	Elective	Gastrointestinal	41 455
A Karim Ahmed, 2017 (71)	USA	Retrospective	Elective	primary spinal tumors	1589
Kim E. Y., 2017 (77)	Korea	Retrospective	Elective	Lung	272
Cloney, 2016 (73)	USA	Retrospective	Elective	Glioblastoma	319
Erin M. George, 2015 (75)	USA	Retrospective	Elective	Uterine, cervical, ovarian	66 105
Bras, 2015 (72)	Netherland	Retrospective	Elective	Head and neck	90
Danny Lascano, 2015 (78)	USA	Retrospective	Elective	Urologic	41 681
Tan, 2012 (70)	Asia	Prospective	Elective	Colorectal	83
Courtney Brooks, 2012 (64)	USA	Prospective	Elective	Gynecologic	37
Erekson, 2011 (74)	USA	Retrospective	Elective	Gynecologic	22 214
Kristjansson, 2010 (67)	Norway	Prospective	Elective	Colorectal	185
Pandit, 2018 (11)	USA	Retrospective	Elective	Colon	53 652
Hodari, 2013 (76)	USA	Retrospective	Elective	Esophageal	2095
Mogal, 2017 (23)	USA	Retrospective	Elective	Pancreatic	9986
Makary, 2010 (69)	USA	Prospective	Elective	General	594
Jun Lu, 2018 (68)	China	Prospective	Elective	Gastric	119
Kenig, 2018 (65)	Poland	Prospective	Elective	Abdominal	165

Author, published year	Age	Male (%)	Type of complication	Frailty tool	Frailty criteria definition
Sathianathen, 2018 (79)	median 69 (62-76)	4228 (76.7)	Surgical complications which defined by NSQIP, Clavien dindo classification grade III-V	symplified Frailty Index (5 items)	0 robust, 1 mild frailty, 2 moderate frailty, 3+ frailty
Konstantinidis, 2017 (66)	≥ 70	521 (44.5)	Surgical complications which defined by NSQIP, Clavien Dindo classification grade IV	MFI (11 items)	Non frail, midly frail, severely frail
Vermillion, 2017 (80)	mean 72.4	Overall- 21840 (52.7) No frailty- 19247 (51.6), frailty- 2593 (61.7)	Surgical complications which defined by NSQIP and Clavien Dindo classification	MFI 11 items	≤0.27 Non frail, >0.27 frail
A Karim Ahmed, 2017 (71)	median 47 (21-61)	823 (51,8)	Surgical complications which defined by NSQIP	STFI (9 items)	No frailty, mild, frailty, moderate frailty, severe frailty
Kim E. Y., 2017 (77)	mean age 62.9 (dp 9.6 yr)	164 (60.3)	Overall, respiratory, cardiac	L3 muscle index	Sarcopenia, no sarcopenia
Cloney, 2016 (73)	≥ 65	N/A	overall, systemic, regional, neurological	MFI (11 items)	0 Least frail, 1 or 2 moderately frail, ≥3 most frail
Erin M. George, 2015 (75)	≥ 60	0 (women)	Surgical complications which defined by NSQIP, Clavien dindo classification grade IV	MFI (11 items)	0 non frail, 0-0.09, 0.1- 0.19 , 0.2-0.29, 0.3-0.49, ≥0.5 Frail
Bras, 2015 (72)	≥ 65	67 (74,4)	Clavien dindo classification	GFI (15 items)	≥4 frail, <4 non frail
Danny Lascano, 2015 (78)	Mean age 62 (prostatecto my, radical nephrectomy , nephroureter ectomy); mean age 59 (partial nephrectomy , cystectomy)	23 350 (100) prostatectomy; 3 466 (60.8) partial nephrectomy; 4 760 (61.1)- radical nephrectomy; 883 (61,3)- nephroureterecto my; 2 722 (80,4)- cystectomy	Clavien dindo classification grade IV	MFI (11 items)	0–0.05 non frail, 0.05– 0.10, 0.10–0.15, 0.15– 0.20, >0.20 Frail

Author, published year	Age	Male (%)	Type of complication	Frailty tool	Frailty criteria definition
Tan, 2012 (70)	≥ 75	N/A	Clavien dindo classification grade II or above	Fried (5 items)	No frailty, frailty
Courtney Brooks, 2012 (64)	≥ 65	N/A	Surgical complications which defined by NSQIP	Fried (5 items)	Not frail, intermediately frail, frail
Erekson, 2011 (74)	≥ 16	0 (women)	Surgical complications which defined by NSQIP	Unintentional wheight loss	no frailty, frailty
Kristjansson, 2010 (67)	≥ 70	83 (43)	Clavien dindo classification	CGA (6 items)	Fit, intermediate, frail
Pandit, 2018 (11)	≥ 65	33 264 (62)	In-hospital complications, hospital LOS, adverse discharge disposition, mortality	MFI (9 items)	>27 frail, ≤27 non frail
Hodari, 2013 (76)	≥ 65	N/A	The clavien-dindo classification grade IV (Respiratory and cardiovascular)	MFI (11 items)	0 non frail , 0.09 , 0.18, 0.27, 0.36, 0.45 frail
Mogal, 2017 (23)	mean 64.1 (+ - 12.4)	5121 (51.2)	Surgical complications which defined by NSQIP and the clavien dindo classification grade III and IV	MFI (11 items)	<0.27 non frail, ≥ 0.27 frail)
Makary, 2010 (69)	≥ 65	Overall 236 (40) No frailty 112 (32.4), moderate frailty 88 (47.3), frailty 36 (58.1)	Surgical complications which defined by NSQIP	Fried (5 items)	No frailty, moderate frailty, frailty
Jun Lu, 2018 (68)	≥ 80	HPMFI 39 (90.7) LPMFI 58 (76.3)	The clavien dindo classification	MFI (8 items)	Low preoperative modified frailty index (LPMFI)- Frail, High preoperative modified frailty index (HPMFI)- Non frail
Kenig, 2018 (65)	≥ 70	94 (57)	The clavien dindo classification	CGA (10 items)	No frailty, frailty

Author, published year	Inclusion criteria	Exclusion criteria	Follow-up	Results (events/total)
	Patients concomitant	Patients with		0=140/1817,
Sathianathen, 2018	bladder cancer diagnosis	metastatic	30 days after	1=254/2469,
(79)	bases on international	disease or not	surgery	2=167/1101,
	classification of diseases	elective		3+=33/123
Konstantinidis, 2017 (66)	Age fo 70 years or older and albumin level of 3 or lower	N/A	30 days after surgery	Non frail 716/48, midly frail 449/49, severely frail 6/2
Vermillion, 2017 (80)	N/A	Patients who were ASA 5, diagnosed with preoperative sepsis, undergoing emergency surgery, or missing at least one of the 11 variables used to determine mFI	30 days after surgery	≤0.27 9296/3725, >0.27 1548/4203

Spinal

decompression

and/or fusion

Patients in whom their baseline positron emission

tomography/comp

uted tomography

images were unavailable for evaluation N/A

26.3 months

Results (events/total) No frailty 140/1817, moderate frailty 421/3570, frailty 32/123 No frailty 716/48, midly frail 449/49, severely frail 6/2

No frailty 9296/3725, frailty 1548/4203

No Frailty 65/1139,

mild frailty 60/319,

moderate frailty

28/95, frailty 15/35

Sarcopenia 61/18 No

sarcopenia 211/44

No Frailty 65/1139,

mild frailty 60/319,

moderate frailty 28/95,

severe frailty 15/35

Overall Sarcopenia

61/18 No sarcopenia

211/44

Table 2: Characteristics of included studies (continued).

Primary discharge diagnosis of benign neoplasm, vertebral

column, benign

neoplasm of sacrum and

coccyx, malignant

neoplasm of sacrum and coccyx

N/A

A Karim Ahmed,

2017 (71)

Kim E. Y., 2017 (77)

Author, published year	Inclusion criteria	Exclusion criteria	Follow-up	Results (events/total)	Results (events/total)
Cloney, 2016 (73)	patients with lobar glioblastioma who underwent craniotomy	Patients with a history of lower grade glioma or recurrent disease at the time of presentation	N/A	Least frail 0= 45/3, moderately frail 1 or 2= 151/34, most frail ≥3= 47/15	No frailty 45/3, moderate frail 151/34 Frail 47/15
Erin M. George, 2015 (75)	N/A	N/A	30 days after surgery	Clavian IV 0=44045/432, 0- 0.09=9341/145, 0.1- 0.19=2555/76, 0.2- 0.29=7930/161, 0.3- 0.49=2110/79, $\geq 0.5=124/9$; Any complication 0=44045/1634, 0- 0.09=9341/447, 0.1- 0.19=2555/171, 0.2- 0.29=7930/404, 0.3- 0.49=2110/169, $\geq 0.5=124/18$	Clavian IV No frailty 53386/576, moderate frail 2555/76, frail 10164/249; Any complication. No frailty 53386/2081, moderate frailty 2555/171, frail 10164/591
Bras, 2015 (72)	patients suitable for surgical treatment, patients with both mucosal head and neck cancer and those with skin cancer of the head and neck cancer	Patients with histological different malignant tumour types and malignancies of the thyroid gland	1 month after surgery	frail (GFI≥4) 36/9 not frail (GFI<4) 54/9	Frailty 36/9, Non frai 54/9

Author, published year	Inclusion criteria	Exclusion criteria	Follow-up	Results (events/total)	Results (events/total)
				Radical	
				prostatectomy 0-	
				0.05=81/11,312 0.05-	
				0.10=109/9,256 0.10-	Radical
				0.15=24/1,656 0.15-	prostatectomy: No
				0.20=19/637 >0.20=	frailty 190/20838,
				13/219; Radical and	moderate frailty
				partial nephrectomy	43/2293, frailty
				0-0.05=66/4,390/	13/219. Radical and
				0.05-0.10=169/5,546	partial nephrectomy
		Nononcological cases		0.10-0.15=61/1,534	No frailty 235/9936,
Dennylassens	N/A			0.15-0.20=82/1,349	moderate frailty
Danny Lascano,			N/A	>0.20= 57/681;	143/2883, Frailty
2015 (78)				Nephroureterectomy	57/681.
				0-0.05=5/410 0.05-	Nephroureterectomy
				0.10=32/634 0.10-	: No frailty 37/1044,
				0.15=13/181 0.15-	moderate frailty
				0.20=15/130 >0.20=	28/311, frailty 11/88.
				11/88; Radical	Radical cystectomy
				cystectomy 0-	No frailty 195/2438,
				0.05=73/1,108 0.05-	moderate frailty
				0.10=122/1,330 0.10-	97/774, frailty 30/176.
				0.15=60/423 0.15-	
				0.20=37/351 >0.20=	
				30/176;	
		Patients who			
		declined data			
T 0040 (70)	N1/A	collection and with	30 days after	No frailty 11/60, frailty	No frailty 11/60, frailty
Tan, 2012 (70)	N/A	parkinsonism or	surgery	11/23	11/23
		taking levodopa or			
		antidepressants			

Author, published	Inclusion criteria	Exclusion	Follow-up	Results (events/total)	Results	
year	inclusion chiena	criteria		Results (events/total)	(events/total)	
		History of				
		parkinson's				
		disease, a history				
		of prior stroke, a				
		mini-mental state				
		exam score of				
	05	≤18, either				
	65 years or greater and	cardibopa/levodop		Not frail 21/5,	No frailty 21/5,	
Courtney Brooks,	a planned surgical	a, or donezepil	30 days after	intermediately frail	intermediately frail	
2012 (64)	procedure by a	hydrochloride as a	surgery	10/1, Frail 6/4	10/1, Frail 6/4	
	gynecologic oncologist	current				
		medication, an				
		inability to walk				
		15ft or a known				
		neurologic				
		disorder affecting				
		grip strength.				
		Classification of				
		male sex with				
		gynecolgic				
		procedures,		unintentional wheight		
		current		loss of more than 10%		
		pregnancy,		in past 6 mo functional		
Freikaan 2011 (74)	N/A	Previous	30 days after	status (dependent for	No frailty 21397/792	
Erekson, 2011 (74)	IN/A	operation within	surgery	activities of daily	frailty 817/25	
		30 days of current		living) No frailty		
		procedures, CPT-		21397/792, frailty 817/25		
		4, code				
		inconsistent with				
		gynecologic				
		procedure.				

Author, published year	Inclusion criteria	Exclusion Inclusion criteria criteria		Results (events/total)	l) (events/total)	
Kristjansson, 2010 (67)	Patients aged 70 years or older who were planned for surgery of a confirmed or suspected colorectal cancer	N/A	30 days after surgery	Fit=10/21 Intermediate 39/81 Frail 58/76	Fit=10/21 Intermediate 39/81 Frail 58/76	
Pandit, 2018 (11)	N/A	emergent surgery, rectal cancer	N/A	>27=5400/18241 ≤27=6586/35411	Frailty 5 400/18 241 Non-frailty 6586/35 411	
Hodari, 2013 (76)	Demographics, surgical profiles, comorbidities and preoperative and intraoperative variables	N/A	surgery after 30 days (chemoterapy), surgery after 90 days (radiotherapy)	0=795/142, 0.09=710/178, 0.18=401/126, 0.27=140/48, 0.36=36/16, 0.45=13/8	No frailty 1505/320, intermediate frailty 401/126 , Frailty 189/72	
Mogal, 2017 (23)	Lower risk patients who were operative candidates	N/A	30 days after surgery	mFI < 0.27=9349/3364 ≥ 0.27=637/309	No frailty 3364/9349 frailty 309/637	
Makary, 2010 (69)	N/A	Patients with parkinson disease, previous stroke, a mini mental status examination score and those taking carbidopa/levodop a, donepezil hydrochloride or antidepressants.	30 days after surgery	No frailty 80/346, moderate frailty 77/186, frailty 34/62	No frailty 80/346, moderate frailty 77/186, frailty 34/62	

Author, published year	Inclusion criteria	Exclusion criteria	Follow-up	Results (events/total)	Results (events/total)
Jun Lu, 2018 (68)	Patients with na age than 80 years; a diagnosis of primary gastric cancer based on a pathology report, without without evidence of distant metastases; an R0 resection and no preoperative chemoradiotherapy.	The presence of other malignancies; a preoperative or intraoperative examination showuing distant metastasis; T4b tumours; lack of a pathologically confirmed diagnosis and conversion to laparotomy	Median 37 months	HPMFI (frail) vs CVd grade I= 2/43, LPMFI (non frail) vs CVd grade I= 1/76, HPMFI (frail) vs CVd grade II= 18/43, LPMFI (non frail) vs CVd grade II= 17/76, HPMFI (frail) vs CVd grade IIIa= 2/43, LPMFI (non frail) vs CVd grade IIIa= 3/76, HPMFI (frail) vs CVd grade IIIb= 1/43, LPMFI (non frail) vs CVd grade IIIb= 0/76, HPMFI (frail) vs CVd grade IV= 1/43, LPMFI (non frail) vs CVd grade IV= 2/76, HPMFI (frail) vs CVd grade V= 0/43, LPMFI (non frail) vs CVd grade V= 0/76	HPMFI (frail) vs CVd grade I= 2/43, LPMFI (non frail) vs CVd grade I= 1/76, HPMFI (frail) vs CVd grade II= 18/43, LPMFI (non frail) vs CVd grade II= 17/76, HPMFI (frail) vs CVd grade IIIa= 2/43, LPMFI (non frail) vs CVd grade IIIa= 3/76, HPMFI (frail) vs CVd grade IIIb= 1/43, LPMFI (non frail) vs CVd grade IIb= 0/76, HPMFI (frail) vs CVd grade IV= 1/43, LPMFI (non frail) vs CVd grade IV= 2/76, HPMFI (frail) vs CVd grade V= 0/43, LPMFI (non frail) vs CVd grade V= 0/76
Kenig, 2018 (65)	Elective abdominal cancer surgery	Patients with distant metastases, peritoneal carcinomatosis and underwent laparoscopy/lapar otomy	30 days after surgery	No frailty 102/34 Frailty 63/ 48	No frailty 102/34 Frailty 63/ 48

 Table 2: Characteristics of included studies.

Risk of bias and applicability

The total score regarding quality assessment of the 19 included articles in shown in **Table 3**. The scores ranged from 7 to 9 with, a mean value of 8. The overall classification of the 19 articles was "good quality".

Quality Assessment Criteria	Acceptable (*)	Sathianathen et al. (2018) (79)	Konstantinidis et al. (2017) (66)	Jun Lu et al. (2018) (68)	Kenig et al. (2018) (65)	Kristjansson et al. (2010) (67)
		5	Selection			
	Representative of					
Representativeness of	average adult in					
exposed cohort?	community	*	*	*	*	*
	(age/sex/being at					
	risk of disease)					
Selection of the non-	Drawn from same					
exposed cohort?	community as	*	*	*	*	*
exposed conort?	exposed cohort					
Ascertainment for	Secured records,	*	*	*	*	*
exposure?	Structured interview					
Demonstration that						
outcome of interest	Only incident cases			*		
was not present at	of CRC	^	^	~	n	<u>^</u>
start of study?						
		Co	mparability			
Study controls for						
age/sex?	Yes	*	*	*	*	*
	BMI, ethnicity, family					
	H/O CRC, smoking,					
	alcohol, physical					
	activity, dietary					
	factors (red meat, fat					
Study controls for at	intake, fruits and					
least 3 additional risk	vegetables), DM	*	*	*	*	*
factors?	duration/severity,					
	aspirin/NSAID,					
	station use, Vitamin					
	D/Calcium intake,					
	hormone					
	replacement therapy					
		(Outcome			I
	Independent blind					
Assessment of	assessment, record	*	*	*	*	*
outcome?	linkage					
Was follow-up long						
enough for outcome to	Follow-up= 30 days	*	*	/	/	/
occur?	1 5110W up= 50 uays			,	,	,
00001 :	Complete follow-up,					
Adequacy of follow-up	or subjects lost to					
of cohorts?	follow-up unlikely to	*	*	*	*	*
	introduce bias					
Overall Quality Sco		9	9	8	8	8
	iviaximum=9)	э	э	õ	õ	o

Table 3: Quality assessment tool.

Table 3: Quality assessment tool (continued).

Quality Assessment	Acceptable (*)	Cloney et al.	Tan et al.	Makary et al.	Courtney- Brooks, et al.	Vermillion et al. (2017)
Criteria		(2015) (73)	(2012) (70)	(2010) (69)	(2012) (64)	(80)
				Selection		
	Representative of					
Representativeness of	average adult in community	*	*	*		
exposed cohort?	(age/sex/being at					
	risk of disease)				*	*
Selection of the non-	Drawn from same					
exposed cohort?	community as	*	*	*		
	exposed cohort				*	*
Ascertainment for	Secured records,	*	*	*		
exposure?	Structured	~	•	•	*	*
Demonstration that	interview					
outcome of interest	Only incident					
was not present at	cases of CRC	*	*	*		
start of study?					*	*
,				Comparability		
Study controls for	.,	*	*	*		
age/sex?	Yes	-	-	-	*	*
	BMI, ethnicity,					
	family H/O CRC,					
	smoking, alcohol,					
	physical activity,					
	dietary factors (red					
	meat, fat intake,					
Study controls for at	fruits and					
least 3 additional risk	vegetables), DM	~	•	•		
factors?	duration/severity,					
	aspirin/NSAID, station use,					
	Vitamin D/Calcium					
	intake, hormone					
	replacement					
	therapy				*	*
				Outcome		l
Assessment of	Independent blind					
outcome?	assessment,	*	/	*		
	record linkage				*	*
Was follow-up long	Follow-up= 30					
enough for outcome to	days	/	/	/		
occur?					*	*
	Complete follow-					
Adequacy of follow-up	up, or subjects lost			,		
of cohorts?	to follow-up	<u>^</u>		/		
	unlikely to				*	*
	introduce bias					
Overall Quality	Score (Maximum=9)	8	7	7	9	

Table 3: Quality assessment tool (continued).

Quality Assessment Criteria	Acceptable (*)	Erekson et al. (2011)	Erin M. George et al. (2016)	A Karim Ahmed et al. (2017)	Bras et al. (2015)	Danny Lascano, B.A. (2015)
				Selection		•
Representativeness of exposed cohort?	Representative of average adult in community (age/sex/being at risk of disease)	*	×	×	*	*
Selection of the non- exposed cohort?	Drawn from same community as exposed cohort	*	*	*	*	*
Ascertainment for exposure?	Secured records, Structured interview	*	*	*	*	*
Demonstration that outcome of interest was not present at start of study?	Only incident cases of CRC	*	*	*	*	*
,		Comparability				
Study controls for age/sex?	Yes	*	*	*	*	*
Study controls for at least 3 additional risk factors?	BMI, ethnicity, family H/O CRC, smoking, alcohol, physical activity, dietary factors (red meat, fat intake, fruits and vegetables),hormone replacement therapy	*	*	*	*	*
				Outcome		
Assessment of outcome?	Independent blind assessment, record linkage	*	*	*	*	*
Was follow-up long enough for outcome to occur?	Follow-up= 30 days	*	*	/	*	/
Adequacy of follow- up of cohorts?	Complete follow-up, or subjects lost to follow-up unlikely to introduce bias	*	*	1	*	*
Overall Quality Sc	core (Maximum=9)	9	9	7	9	8

Table 3: Quality assessment tool (continued).

Quality Assessment	A + - - (*)	Pandit et al. (2018)	Hodari et al	Mogal et al (2017)	
Criteria	Acceptable (*)	(11)	(2013) (76)	(23)	Jun Lu (2018) (68)
				ection	
	Representative of				
D	average adult in				
Representativeness	community				
of exposed cohort?	(age/sex/being at				
	risk of disease)	*	*	*	*
Selection of the non-	Drawn from same				
exposed cohort?	community as				
exposed conon?	exposed cohort	*	*	*	*
Ascertainment for	Secured records,				
exposure?	Structured interview	*	*	*	*
Demonstration that					
outcome of interest	Only incident cases				
was not present at	of CRC				
start of study?		*	*	*	*
Study controls for					
age/sex?	Yes	*	*	*	*
	BMI, ethnicity, family				
	H/O CRC, smoking,				
	alcohol, physical				
Study controls for at	activity, dietary				
least 3 additional risk factors?	factors (red meat, fat				
Idelois?	intake, fruits and				
	vegetables),hormone				
	replacement therapy	*	*	*	*
			Out	come	
	Independent blind				
Assessment of	assessment, record				
outcome?	linkage	*	*	*	*
Was follow-up long					
enough for outcome	Follow-up= 30 days				
to occur?		/	*	*	/
	Complete follow-up,				
Adequacy of follow-	or subjects lost to				
up of cohorts?	follow-up unlikely to				
	introduce bias	*	*	*	*
Overall Quality Sc	ore (Maximum=9)	8	9	9	8
		0	9	9	0

Synthesis of the results

Frailty and postoperative complications

The risk of post-operative complications between frail and non-frail was possible to obtain in 19 studies (11, 23, 64-80). In 10 studies (64, 66, 67, 69, 71, 73, 75, 76, 78, 79), we had to dichotomize the data, while in 9 studies (11, 23, 65, 68, 70, 72, 74, 77, 80), the data was already presented accordingly. Of these, 5 showed no increased risk (66, 72-74, 77). The cumulative analysis showed a significant association of frailty with postoperative complications (OR= 2.23, 95% CI: 1.91-2.60; p<0.00001) but the heterogeneity was found to be high (I^2 =88%; p<0.00001) (**Figure 2**). In order to explore the sources of heterogeneity, we performed several sub-analyses.

	Experin	nental	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
A Karim Ahmed et al. 2017	15	35	153	1553	3.4%	6.86 [3.44, 13.68]	_
Bras et al. 2015	9	36	9	54	1.8%	1.67 [0.59, 4.71]	
Cloney et al. 2016	15	47	37	196	3.2%	2.01 [0.99, 4.10]	
Courtney-Brooks, et al. 2012	4	6	6	31	0.6%	8.33 [1.23, 56.67]	· · · · · · · · · · · · · · · · · · ·
Danny Lascano, B.A. 2015	111	1164	968	40517	9.1%	4.31 [3.51, 5.29]	-
Erekson et al. 2011	25	817	792	21397	6.2%	0.82 [0.55, 1.23]	
Erin M. George et al. 2015	591	10164	2252	55941	10.5%	1.47 [1.34, 1.62]	•
Hodari 2013	72	189	446	1906	7.5%	2.01 [1.47, 2.75]	
Jun Lu 2018	22	43	22	76	2.8%	2.57 [1.18, 5.59]	
Kenig 2018	48	63	34	102	3.2%	6.40 [3.14, 13.03]	
Kim, E.Y. et al. 2017	18	61	44	211	3.7%	1.59 [0.84, 3.02]	+
Konstantinidis et al. 2017	2	6	97	1165	0.7%	5.51 [1.00, 30.44]	
Kristjansson et al. 2010	58	76	49	102	3.6%	3.49 [1.81, 6.72]	
Makary et al. 2010	34	62	157	532	4.7%	2.90 [1.70, 4.95]	
Mogal 2017	309	637	3364	9349	9.7%	1.68 [1.43, 1.97]	+
Pandit 2018	5400	18241	6586	35411	10.8%	1.84 [1.77, 1.92]	•
Sathianathen et al. 2018	32	123	561	5387	6.1%	3.03 [2.00, 4.57]	
Tan et al. 2012	11	23	11	60	1.8%	4.08 [1.43, 11.64]	
Vermillion et al. 2017	1548	4203	9296	37252	10.7%	1.75 [1.64, 1.87]	•
Total (95% CI)		35996		211242	100.0%	2.23 [1.91, 2.60]	•
Total events	8324		24884				
Heterogeneity: Tau ² = 0.06; Ch		4. df = 18		0001): P =	= 88%		-ttttt
Test for overall effect: Z = 10.32				//	/*		0.02 0.1 1 10 5 Non-Frail Frail

Figure 2: Forest plot for the association between frailty and postoperative complications.

Priori-defined sub-analysis

Frailty severity and postoperative complications

In order to analyze the risk of post-operative complications by frailty severity (frail versus pre-frail versus robust), the data was trichotomized in 10 studies (64, 66, 67, 69, 71, 73, 75, 76, 78, 79) while in 9 studies (11, 23, 65, 68, 70, 72, 74, 77,

80) the data was already presented accordingly. Frail patients were shown to be at greater risk than prefrail patients in 5 studies (64, 67, 71, 78, 79) and then robust patients in 9 studies (66, 67, 69, 71, 73, 75, 76, 78, 79). The pooled analysis showed that the risk of postoperative complications in the frail group was significantly higher than the pre-frail (OR: 1.96; 95% CI: 1.33-2.89; I^2 =86%; p<0.00001) and robust group (OR: 4.20; 95% CI: 2.45-7.21; I^2 =95%; p<0.00001). The risk of postoperative complications in the pre-frail group was also significantly higher than the robust group (OR: 2.09; 95% CI: 1.65-2.64; I^2 =83%; p<0.00001) (**Figure 3**).

Marcha and Cash annua	Experin	nental	Cont	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events		Events		Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
16.1.1 Frágil vs Pré frágil							
A Karim Ahmed et al. 2017	15	35	88	414	3.1%	2.78 [1.37, 5.65]	_
Cloney et al. 2016	15	47	34	151	3.1%	1.61 [0.78, 3.32]	+
Courtney-Brooks, et al. 2012	4	6	1	10	0.5%	18.00 [1.24, 260.92]	
Danny Lascano, B.A. 2015	111	1164	311	6261	4.7%	2.02 [1.61, 2.53]	-
rin M. George et al. 2015	591	10164	171	2555	4.8%	0.86 [0.72, 1.03]	
lodari 2013	72	189	126	401	4.3%	1.34 [0.94, 1.93]	
un Lu 2018	0	0	0	0		Not estimable	
onstantinidis et al. 2017	2	6	49	449	1.1%	4.08 [0.73, 22.86]	
ristjansson et al. 2010	58	76	39	81	3.2%	3.47 [1.75, 6.89]	→
lakary et al. 2010	34	62	77	186	3.6%	1.72 [0.96, 3.07]	—
athianathen et al. 2018 Subtotal (95% CI)	32	123 11872	421	3570 14078	4.1% 32.6%	2.63 [1.74, 3.99] 1.96 [1.33, 2.89]	•
otal events	934		1317				
leterogeneity: Tau ² = 0.27; Chi	i ^z = 64.33	df = 9 (F	<pre>< 0.0000</pre>	01); P = 8	6%		
est for overall effect: Z = 3.41 (
6.1.2 Frágil vs Robusto							
Karim Ahmed et al. 2017	15	35	65	1139	3.1%	12.39 [6.06, 25.33]	
lonevetal. 2016	15	47	3	45	1.7%	6.56 [1.75, 24.62]	
Courtney-Brooks, et al. 2012	4		5	21	0.9%	6.40 [0.89, 45.99]	<u> </u>
Danny Lascano, B.A. 2015	111	1164	657	34256	4.7%	5.39 [4.37, 6.65]	+
Frin M. George et al. 2015	591	10164	2081	53386	4.9%	1.52 [1.39, 1.67]	•
lodari 2013	72	189	320	1505	4.4%	2.28 [1.66, 3.13]	
un Lu 2018	0	.00	020		1.170	Not estimable	
Constantinidis et al. 2017	2	6	48	716	1.1%	6.96 [1.24, 38.95]	
<ristiansson 2010<="" al.="" et="" td=""><td>58</td><td>76</td><td>10</td><td>21</td><td>2.3%</td><td>3.54 [1.30, 9.70]</td><td></td></ristiansson>	58	76	10	21	2.3%	3.54 [1.30, 9.70]	
fakary et al. 2010	34	62	80	346	3.6%	4.04 [2.31, 7.06]	
Sathianathen et al. 2018	32	123	140	1817	4.1%	4.21 [2.72, 6.53]	
	32						
Subtotal (95% Cl)	32	11872		93252	30.8%	4.20 [2.45, 7.21]	•
	934		3409		30.8%	4.20 [2.45, 7.21]	•
Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.58; Chi	934 ii² = 170.8	11872 0, df = 9	3409	93252		4.20 [2.45, 7.21]	•
iubtotal (95% CI) iotal events leterogeneity: Tau² = 0.58; Chi iest for overall effect: Z = 5.20 (934 ii² = 170.8	11872 0, df = 9	3409	93252		4.20 [2.45, 7.21]	•
ubtotal (95% CI) otal events leterogeneity: Tau ² = 0.58; Chi est for overall effect: Z = 5.20 (6.1.3 Pré frágil vs Robusto	934 ii² = 170.8 (P < 0.000	11872 0, df = 9 101)	3409 (P < 0.00(93252 001); I ^z =	95%		•
iubtotal (95% CI) iotal events leterogeneity: Tau ² = 0.58; Chi iest for overall effect: Z = 5.20 (6.1.3 Pré frágil vs Robusto , Karim Ahmed et al. 2017	934 ii ^z = 170.8 (P < 0.000 88	11872 0, df = 9 001) 414	3409 (P < 0.00) 65	93252 D01); I ² = 1139	95% 4.4%	4.46 [3.16, 6.29]	▲
Subtotal (95% CI) Total events leterogeneity: Tau ² = 0.58; Chi rest for overall effect: Z = 5.20 (6.1.3 Pré frágil vs Robusto Karim Ahmed et al. 2017 2006 et al. 2018	934 ii² = 170.8 (P < 0.000 88 34	11872 0, df = 9 101) 414 151	3409 (P < 0.00) 65 3	93252 001); I ² = 1139 45	95% 4.4% 1.8%	4.46 (3:16, 6.29) 4.07 (1.19, 13.95)	▲
Subtotal (95% CI) Total events leterogeneity: Tau ² = 0.58; Chi rest for overall effect: Z = 5.20 (6 .1.3 Pré frágil vs Robusto (Karim Ahmed et al. 2017 Cloney et al. 2016 Sourtney-Brooks, et al. 2012	934 i ² = 170.8 (P < 0.000 88 34 1	11872 0, df = 9 101) 414 151 10	3409 (P < 0.00) 65 3 5	93252 001); I ² = 1139 45 21	95% 4.4% 1.8% 0.7%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54]	
Subtotal (95% CI) Total events leterogeneity: Tau ² = 0.58; Chi rest for overall effect: Z = 5.20 (6.1.3 Pré frágil vs Robusto Karim Ahmed et al. 2017 Noney et al. 2016 Sourthey-Brooks, et al. 2012 Danny Lascano, B.A. 2015	934 ii ² = 170.8 (P < 0.000 88 34 1 311	11872 0, df = 9 001) 414 151 10 6261	3409 (P < 0.00) 65 3 5 657	93252 001); I ² = 1139 45 21 34256	95% 4.4% 1.8% 0.7% 4.8%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07]	+
iubtotal (95% CI) iotal events leterogeneity: Tau ² = 0.58; Chi iest for overall effect: Z = 5.20 (6.1.3 Pré frágil vs Robusto Karim Ahmed et al. 2017 cloney et al. 2016 courtney-Brooks, et al. 2012 vanny Lascano, B.A. 2015 irin M. George et al. 2015	934 i ^a = 170.8 (P < 0.000 88 34 1 311 171	11872 0, df = 9 001) 414 151 10 6261 2555	3409 (P < 0.00) 65 3 5 657 2081	93252 001); I ² = 1139 45 21 34256 53386	95% 4.4% 1.8% 0.7% 4.8% 4.8%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08]	+
Subtotal (95% CI) Total events leterogeneity: Tau ² = 0.58; Chi rest for overall effect: Z = 5.20 (6 6.1.3 Pré frágil vs Robusto (Karim Ahmed et al. 2017 Cloney et al. 2016 Courtney-Brooks, et al. 2012 Danny Lascano, B.A. 2015 Fin M. George et al. 2015 Hodari 2013	934 ii ² = 170.8 (P < 0.000 88 34 1 311 171 126	11872 0, df = 9 001) 414 151 10 6261 2555 401	3409 (P < 0.00) 65 3 5 657 2081 320	93252 001); I ² = 1139 45 21 34256 53386 1505	95% 4.4% 1.8% 0.7% 4.8%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.33, 2.17]	+-
subtotal (95% CI) total events leterogeneity: Tau ² = 0.58; Chi iest for overall effect: Z = 5.20 (6.1.3 Pré frágil vs Robusto 4. Karim Ahmed et al. 2017 Joney et al. 2016 courtney-Brooks, et al. 2012 vanny Lascano, B.A. 2015 irin M. George et al. 2015 Iodari 2013 un Lu 2018	934 i² = 170.8 (P < 0.000 88 34 1 311 171 126 0	11872 0, df = 9 001) 414 151 10 6261 2555 401 0	3409 (P < 0.00) 65 3 5 657 2081 320 0	93252 001); I ² = 1139 45 21 34256 53386 1505 0	95% 4.4% 1.8% 0.7% 4.8% 4.8% 4.6%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.33, 2.17] Not estimable	+ + + +
Subtotal (95% CI) Total events leterogeneity: Tau ² = 0.58; Chi rest for overall effect: Z = 5.20 (6.1.3 Pré frágil vs Robusto (Karim Ahmed et al. 2017 Cloney et al. 2018 Dountrey-Brooks, et al. 2012 Dounty Lascano, B.A. 2015 rin M. George et al. 2015 Iodari 2013 un Lu 2018 Konstantinidis et al. 2017	934 i² = 170.8 (P < 0.000 88 34 1 311 171 171 126 0 49	11872 0, df = 9 001) 414 151 10 6261 2555 401 0 449	3409 (P < 0.00) 65 3 5 657 2081 320 0 48	93252 001); i ² = 1139 45 21 34256 53386 1505 0 716	95% 4.4% 1.8% 0.7% 4.8% 4.8% 4.6% 4.1%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.32, 2.17] Not estimable 1.70 [1.12, 2.59]	+
Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.58; Chi Test for overall effect: Z = 5.20 (16.1.3 Pré frágil vs Robusto K Karim Ahmed et al. 2017 Cloney et al. 2016 Countrey-Brooks, et al. 2012 Danny Lascano, B.A. 2015 Frin M. George et al. 2015 Hodari 2013 Lonstantinidis et al. 2017 Kristjansson et al. 2010	934 i² = 170.8 (P < 0.000 88 34 1 311 171 171 126 0 49 39	11872 0, df = 9 001) 414 151 10 6261 2555 401 0 449 81	3409 (P < 0.000 65 3 5 657 2081 320 0 48 10	93252 001); i² = 1139 45 21 34256 53386 1505 0 716 21	95% 4.4% 1.8% 0.7% 4.8% 4.8% 4.6% 4.1% 2.4%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.33, 2.17] Not estimable 1.70 [1.12, 2.59] 1.02 [0.39, 2.67]	+
Subtotal (95% CI) Total events leterogeneity: Tau ² = 0.58; Chi rest for overall effect: Z = 5.20 (6 6.1.3 Pré frágil vs Robusto karim Ahmed et al. 2017 Cloney et al. 2016 Courtney-Brooks, et al. 2012 Danny Lascano, B.A. 2015 irrin M. George et al. 2015 iodari 2013 un Lu 2018 Constantinidis et al. 2017 (ristjansson et al. 2010 fakary et al. 2010	934 i² = 170.8 (P < 0.000 88 34 1 311 171 126 0 49 39 39 77	11872 0, df = 9 001) 414 151 2555 401 0 449 81 186	3409 (P < 0.000 65 3 5 657 2081 320 0 48 10 80	93252 001); I ² = 1139 45 21 34256 53386 1505 0 716 21 346	95% 4.4% 1.8% 0.7% 4.8% 4.8% 4.6% 4.1% 2.4% 4.2%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.33, 2.17] Not estimable 1.70 [1.12, 2.59] 1.02 [0.39, 2.67] 2.35 [1.60, 3.45]	+
subtotal (95% CI) total events leterogeneity: Tau ² = 0.58; Chi iest for overall effect: Z = 5.20 (6.1.3 Pré frágil vs Robusto Araim Ahmed et al. 2017 Cloney et al. 2016 courtney-Brooks, et al. 2012 vanny Lascano, B.A. 2015 irin M. George et al. 2015 iodari 2013 un Lu 2018 constantinidis et al. 2017 (ristjansson et al. 2010 lathianathen et al. 2018	934 i² = 170.8 (P < 0.000 88 34 1 311 171 171 126 0 49 39	11872 0, df = 9 001) 414 151 10 6261 2555 401 0 449 81	3409 (P < 0.000 65 3 5 657 2081 320 0 48 10	93252 001); i² = 1139 45 21 34256 53386 1505 0 716 21	95% 4.4% 1.8% 0.7% 4.8% 4.8% 4.6% 4.1% 2.4%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.33, 2.17] Not estimable 1.70 [1.12, 2.59] 1.02 [0.39, 2.67]	+ + + + + +
Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.58; Chi Fest for overall effect: Z = 5.20 (16.1.3 Pré frágil vs Robusto A Karim Ahmed et al. 2017 Cloney et al. 2018 Countrey-Brooks, et al. 2012 Danny Lascano, B.A. 2015 Erin M. George et al. 2015 Hodari 2013 Jun Lu 2018 Constantinidis et al. 2017 Kristjansson et al. 2010 Kakary et al. 2010 Sathianathen et al. 2018 Subtotal (95% CI) Fotal events	934 i ² = 170.8 (P < 0.000 88 34 1 311 171 126 0 0 49 39 77 421 1317	11872 0, df = 9 101) 414 151 10 6261 2555 401 0 449 81 186 3570 14078	3409 (P < 0.00) 65 3 5 657 2081 320 0 48 10 80 140 3409	93252 001); ² = 1139 45 21 34256 53386 1505 0 716 21 346 1817 93252	95% 4.4% 1.8% 0.7% 4.8% 4.6% 4.6% 4.1% 2.4% 4.2% 4.7% 36.6%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.33, 2.17] Not estimable 1.70 [1.12, 2.59] 1.02 [0.39, 2.67] 2.35 [1.60, 3.45] 1.60 [1.31, 1.96]	
subtotal (95% CI) total events leterogeneity: Tau ² = 0.58; Chi cest for overall effect: Z = 5.20 (6.1.3 Pré frágil vs Robusto (Karim Ahmed et al. 2017 Cloney et al. 2016 courtney-Brooks, et al. 2012 Janny Lascano, B.A. 2015 irdin M. George et al. 2015 iodari 2013 un Lu 2018 Constantinidis et al. 2017 (ristjansson et al. 2010 tathianathen et al. 2018 subtotal (95% CI) total events leterogeneity: Tau ² = 0.09; Chi	934 i ^a = 170.8 (P < 0.000 888 34 1 311 126 0 49 39 77 421 1317 i ^a = 51.56	11872 0, df = 9 101) 414 151 2555 401 0 449 81 186 3570 14078 , df = 9 (F	3409 (P < 0.00) 65 3 5 657 2081 320 0 48 10 80 140 3409	93252 001); ² = 1139 45 21 34256 53386 1505 0 716 21 346 1817 93252	95% 4.4% 1.8% 0.7% 4.8% 4.6% 4.6% 4.1% 2.4% 4.2% 4.7% 36.6%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.33, 2.17] Not estimable 1.70 [1.12, 2.59] 1.02 [0.39, 2.67] 2.35 [1.60, 3.45] 1.60 [1.31, 1.96]	
Subtotal (95% CI) Total events leterogeneity: Tau ² = 0.58; Chi rest for overall effect: Z = 5.20 (6.1.3 Pré frágil vs Robusto k Karim Ahmed et al. 2017 Cloney et al. 2018 Dountrey-Brooks, et al. 2012 Dounty Lascano, B.A. 2015 Frin M. George et al. 2015 Hodari 2013 Konstantinidis et al. 2017 Kristjansson et al. 2010 Makary et al. 2010 Sathianathen et al. 2018 Subtotal (95% CI) Total events leterogeneity: Tau ² = 0.09; Chi rest for overall effect: Z = 6.11 (934 i ^a = 170.8 (P < 0.000 888 34 1 311 126 0 49 39 77 421 1317 i ^a = 51.56	11872 0, df = 9 001) 414 151 2555 401 0 449 81 186 3570 14078 , df = 9 (F 001)	3409 (P < 0.00) 65 3 5 657 2081 320 0 48 10 80 140 3409	93252 001); I [₽] = 1139 45 21 34256 53386 1505 0 716 21 346 1817 93252 01); I [₽] = 8	95% 4.4% 1.8% 0.7% 4.8% 4.8% 4.8% 4.8% 4.2% 4.2% 36.6% 3%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.32, 2.17] Not estimable 1.70 [1.12, 2.59] 1.02 [0.39, 2.67] 2.35 [1.60, 3.45] 1.60 [1.31, 1.96] 2.09 [1.65, 2.64]	
Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.58; Chi Fest for overall effect: Z = 5.20 (16.1.3 Pré frágil vs Robusto K Karim Ahmed et al. 2017 Cloney et al. 2018 Courtney-Brooks, et al. 2017 Cloney et al. 2018 Courtney-Brooks, et al. 2015 Hodari 2013 Jun Lu 2018 Konstantinidis et al. 2017 (ristjansson et al. 2010 Makary et al. 2010 Sathianathen et al. 2018 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = 0.09; Chi Fotal (95% CI)	934 i ² = 170.8 (P < 0.000 88 34 1 311 171 126 0 49 39 77 421 1317 1317 1317 i ² = 51.56 (P < 0.000)	11872 0, df = 9 101) 414 151 2555 401 0 449 81 186 3570 14078 , df = 9 (F	3409 (P < 0.000 65 3 5 657 2081 320 0 48 10 0 80 140 80 140 3409 2 < 0.0000	93252 001); I [₽] = 1139 45 21 34256 53386 1505 0 716 21 346 1817 93252 01); I [₽] = 8	95% 4.4% 1.8% 0.7% 4.8% 4.6% 4.6% 4.1% 2.4% 4.2% 4.7% 36.6%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.33, 2.17] Not estimable 1.70 [1.12, 2.59] 1.02 [0.39, 2.67] 2.35 [1.60, 3.45] 1.60 [1.31, 1.96]	
Subtotal (95% CI) Total events leterogeneity: Tau ² = 0.58; Chi rest for overall effect: $Z = 5.20$ (6.1.3 Pré frágil vs Robusto 4. Karim Ahmed et al. 2017 Cloney et al. 2016 Courtney-Brooks, et al. 2017 Cloney et al. 2016 Courtney-Brooks, et al. 2012 Janny Lascano, B.A. 2015 iodari 2013 un Lu 2018 Constantinidis et al. 2017 (ristjansson et al. 2010 Sathianathen et al. 2010 Sathianathen et al. 2018 Subtotal (95% CI) Total events leterogeneity: Tau ² = 0.09; Chi rest for overall effect: $Z = 6.11$ (Fotal (95% CI) Total events	934 i ² = 170.8 (P < 0.000 888 34 1 311 126 0 49 77 421 1317 i ² = 51.56 (P < 0.000 3185	11872 0, df = 9 1001) 414 151 10 6261 2555 401 0 449 81 186 3570 14078 14078 , df = 9 (F 1001) 37822	3409 (P < 0.000 (P < 0.000 65 3 5 657 2081 320 0 48 10 80 140 80 140 80 140 80 2 < 0.0000	93252 0001); ² = 1139 45 21 34256 53386 1505 0 716 21 346 1817 93252 01); ² = 8 200582	95% 4.4% 1.8% 0.7% 4.8% 4.8% 4.6% 4.1% 2.4% 4.2% 4.2% 36.6% 3%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.32, 2.17] Not estimable 1.70 [1.12, 2.59] 1.02 [0.39, 2.67] 2.35 [1.60, 3.45] 1.60 [1.31, 1.96] 2.09 [1.65, 2.64]	
Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.58; Chi Test for overall effect: Z = 5.20 (16.1.3 Pré frágil vs Robusto A Karim Ahmed et al. 2017 Cloney et al. 2018 Courtney-Brooks, et al. 2012 Danny Lascano, B.A. 2015 Trin M. George et al. 2015 Hodari 2013 Konstantinidis et al. 2017 Kristjansson et al. 2010 Makary et al. 2010 Sathianathen et al. 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.09; Chi Test for overall effect: Z = 6.11 (934 i ^a = 170.8 (P < 0.000 88 34 1 1266 49 39 77 421 1317 1251.56 (P < 0.000 3185 i ^a = 324.2	11872 0, df = 9 001) 414 151 2555 401 2555 401 0 449 81 186 3570 14078 , df = 9 (f 001) 37822 2, df = 29	3409 (P < 0.000 (P < 0.000 65 3 5 657 2081 320 0 48 10 80 140 80 140 80 140 80 2 < 0.0000	93252 0001); ² = 1139 45 21 34256 53386 1505 0 716 21 346 1817 93252 01); ² = 8 200582	95% 4.4% 1.8% 0.7% 4.8% 4.8% 4.6% 4.1% 2.4% 4.2% 4.2% 36.6% 3%	4.46 [3.16, 6.29] 4.07 [1.19, 13.95] 0.36 [0.04, 3.54] 2.67 [2.33, 3.07] 1.77 [1.51, 2.08] 1.70 [1.32, 2.17] Not estimable 1.70 [1.12, 2.59] 1.02 [0.39, 2.67] 2.35 [1.60, 3.45] 1.60 [1.31, 1.96] 2.09 [1.65, 2.64]	+ + + + + + + + + + + + + + + + + + +

Figure 3: Forest plot for sub-analysis of postoperative complications by frailty severity.

Frailty instrument and postoperative complications

The association of frailty and postoperative complications was determined in 9 articles (11, 23, 66, 68, 73, 75, 76, 78, 80) with mFI, 3 with FP (64, 69, 70), 2 with CGA (65, 67) and 5 with others frailty tools (71, 72, 74, 77, 79). The cumulative analysis showed that frail patients had an OR of 2.02 as defined by the mFI (95% CI: 1.72-2.37; I^2 =91%, p<00001), OR of 3.30 as defined by FP (95% CI: 2.08-5.23; I^2 =0%, p<0.00001) and an OR of 4.65 as defined by the CGA (95% CI: 2.56-8.42; I^2 =34%, p<0.00001) (**Figure 4**).

	Experin	nental	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events		Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
23.1.1 Modified Frailty Index							
Cloney et al. 2016	15	47	37	196	3.2%	2.01 [0.99, 4.10]	
Danny Lascano, B.A. 2015	111	1164	968	40517	9.1%	4.31 [3.51, 5.29]	
Erin M. George et al. 2015	591	10164	2252	55941	10.5%	1.47 [1.34, 1.62]	+
Hodari 2013	72	189	446	1906	7.5%	2.01 [1.47, 2.75]	
Jun Lu 2018	22	43	22	76	2.8%	2.57 [1.18, 5.59]	
Konstantinidis et al. 2017	2	6	97	1165	0.7%	5.51 [1.00, 30.44]	
Mogal 2017	309	637	3364	9349	9.7%	1.68 [1.43, 1.97]	+
Pandit 2018	5400	18241	6586	35411	10.8%	1.84 [1.77, 1.92]	•
Vermillion et al. 2017	1548	4203	9296	37252	10.7%	1.75 [1.64, 1.87]	•
Subtotal (95% CI)		34694		181813	65.1%	2.02 [1.72, 2.37]	•
Total events	8070		23068				
Heterogeneity: Tau ² = 0.04; Ch	i² = 92.62	df = 8 (F	P < 0.000	01); P= 9	1%		
Test for overall effect: Z = 8.57							
		-					
23.1.2 Fried scale							
Courtney-Brooks, et al. 2012	4	6	6	31	0.6%	8.33 [1.23, 56.67]	
Makary et al. 2010	34	62	157	532	4.7%	2.90 [1.70, 4.95]	
Tan et al. 2012	11	23	11	60	1.8%	4.08 [1.43, 11.64]	———
Subtotal (95% CI)		91		623	7.0%	3.30 [2.08, 5.23]	•
Total events	49		174				
Heterogeneity: Tau ² = 0.00; Ch	i ² = 1.28, i	df=2(P	= 0.53); P	²=0%			
Test for overall effect: Z = 5.06	(P < 0.000	101)					
23.1.3 Comprehensive Geriatr	ic Asses	sment					
Keniq 2018	48	63	34	102	3.2%	6.40 [3.14, 13.03]	
Kristiansson et al. 2010	58	76	49	102	3.6%	3.49 [1.81, 6.72]	
Subtotal (95% CI)		139	40	204	6.8%	4.65 [2.56, 8.42]	•
Total events	106		83				-
Heterogeneity: Tau ² = 0.06; Ch		if = 1 (P		² = 34%			
Test for overall effect: Z = 5.06			0.22/11				
1001101010101010102.2 - 0.00	(, 0.000						
23.1.4 Other Frailty Tools							
A Karim Ahmed et al. 2017 ST	FI 15	35	153	1553	3.4%	6.86 [3.44, 13.68]	
Bras et al. 2015 GFI	9	36	9	54	1.8%	1.67 [0.59, 4.71]	
Erekson et al. 2011 U. Weight		817	792	21397	6.2%	0.82 [0.55, 1.23]	-+-
Kim, E.Y. et al. 2017 L3 MI	18	61	44	211	3.7%	1.59 [0.84, 3.02]	
Sathianathen et al. 2018 SFI	32	123	561	5387	6.1%	3.03 [2.00, 4.57]	
Subtotal (95% CI)		1072		28602	21.1%	2.13 [0.98, 4.60]	
Total events	99		1559				
Heterogeneity: Tau ² = 0.66; Ch		df = 4 (F		01); P = 8	9%		
Test for overall effect: Z = 1.92				<i>,</i> ,	-		
Total (95% CI)		35996		211242	100.0%	2.23 [1.91, 2.60]	•
Total events	8324		24884				
Heterogeneity: Tau ² = 0.06; Ch		4 df= 19		0001): /=-	- 88%		++
Test for overall effect: Z = 10.32			/ (· · 0.0	0001/11-			0.05 0.2 1 5 20
Test for subgroup differences:			3 (P = 0.0	12) IZ = 70	14%		Non-Frail Frail
restor subgroup unefellices.	0.01 - 10	. 4, ui –	5 (r = 0.0				

Figure 4: Forest plot for sub-analysis of postoperative complications by frailty instrument.

Type of cancer and postoperative complications

The association of frailty and postoperative complications was reported in 6 studies (11, 23, 67, 68, 70, 80) for gastrointestinal cancer, 3 studies (64, 74, 75) for gynecologic cancer, 2 studies (78, 79) for urologic cancer, 2 studies (72, 76)

for head and neck cancer, 2 studies (65, 66) for abdominal cancer, 1 study (71) for column cancer, 1 study (73) for neurologic cancer, 1 study (77) for pulmonary cancer and 1 study (69) for cancer in general. Pooled data suggests a significant OR of frailty with postoperative complications in the setting of gastrointestinal (OR=1.81; 95% CI: 1.68-1.95; I^2 =46%, p<0.00001), urologic (OR=3.78; 95% CI: 2.70-5.29; I^2 =56%, p<0.00001), head and neck (OR=1.98; 95% CI: 1.47-2.67; I^2 =0%, p<0.00001) and abdominal cancer (OR=6.26; 95% CI: 3.25-12.07; I^2 =0%, p<0.0007), but not for gynecologic (OR=1.34; 95% CI: 0.73-2.46; I^2 =82%, p<0.35) (**Figure 5**).

	Experin	nental	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
22.1.1 Gastrointestinal							
Jun Lu 2018	22	43	22	76	2.8%	2.57 [1.18, 5.59]	———
Kristjansson et al. 2010	58	76	49	102	3.6%	3.49 [1.81, 6.72]	
Mogal 2017	309	637	3364	9349	9.7%	1.68 [1.43, 1.97]	+
Pandit 2018	5400	18241	6586	35411	10.8%	1.84 [1.77, 1.92]	•
Tan et al. 2012	11	23	11	60	1.8%	4.08 [1.43, 11.64]	
Vermillion et al. 2017	1548	4203	9296	37252	10.7%	1.75 [1.64, 1.87]	
Subtotal (95% CI)		23223		82250	39.4%	1.81 [1.68, 1.95]	•
Total events	7348		19328				
Heterogeneity: Tau ^a = 0.00; Chi Test for overall effect: Z = 15.39			= 0.10); F	²= 46%			
22.1.2 Gynecologic							
Courtney-Brooks, et al. 2012	4	6	6	31	0.6%	8.33 [1.23, 56.67]	
Erekson et al. 2011	25	817	792	21397	6.2%	0.82 [0.55, 1.23]	-+
Erin M. George et al. 2015	591	10164	2252	55941	10.5%	1.47 [1.34, 1.62]	<u>.</u>
Subtotal (95% CI)		10987	0055	77369	17.2%	1.34 [0.73, 2.46]	-
Total events	620		3050				
Heterogeneity: Tau ² = 0.19; Chi Test for overall effect: Z = 0.94 (P = 0.004); I* = 829	6		
22.1.3 Urologic							
Danny Lascano, B.A. 2015	111	1164	968	40517	9.1%	4.31 [3.51, 5.29]	-
Sathianathen et al. 2018 Subtotal (95% CI)	32	123 1287	561	5387 45904	6.1% 15.2%	3.03 [2.00, 4.57] 3.78 [2.70, 5.29]	
Total events	143	1207	4500	43304	1.3.2 /0	J.10 [2.10, J.23]	↓ ▼
Heterogeneity: Tau ² = 0.04; Chi Test for overall effect: Z = 7.76 (= 2.28,		1529 = 0.13); F	= 56%			
22.1.4 Head and Neck							
Bras et al. 2015	9	36	9	54	1.8%	1.67 [0.59, 4.71]	
Hodari 2013	72	189	446	1906	7.5%	2.01 [1.47, 2.75]	
Subtotal (95% CI)		225		1960	9.3%	1.98 [1.47, 2.67]	◆
Total events	81		455				
Heterogeneity: Tau ² = 0.00; Chi Test for overall effect: Z = 4.49 (= 0.73); F	= 0%			
22.1.5 Abdominal							
Kenia 2018	48	63	34	102	3.2%	6.40 [3.14, 13.03]	
Konstantinidis et al. 2017	2	6	97	1165	0.7%	5.51 [1.00, 30.44]	
Subtotal (95% CI)	_	69		1267	4.0%	6.26 [3.25, 12.07]	•
Total events	50		131				
Heterogeneity: Tau ² = 0.00; Chi Test for overall effect: Z = 5.48 (= 0.87); i	²=0%			
22.1.6 Other Cancers (pulmon	ar, neuro	ologic, co	olumn)				
A Karim Ahmed et al. 2017 Col		35	153	1553	3.4%	6.86 [3.44, 13.68]	
Cloney et al. 2016 Neurologic	15	47	37	196	3.2%	2.01 [0.99, 4.10]	⊢ ⊷
Kim, E.Y. et al. 2017 Pulmonar		61	44	211	3.7%	1.59 [0.84, 3.02]	+
Makary et al. 2010 General	34	62	157	532	4.7%	2.90 [1.70, 4.95]	
Subtotal (95% CI)		205		2492	15.0%	2.81 [1.55, 5.12]	
Total events	82		391				
Heterogeneity: Tau ² = 0.26; Chi Test for overall effect: Z = 3.40 (P = 0.02);	I≊= 71%			
Total (95% CI)		35996		211242	100.0%	2.23 [1.91, 2.60]	•
Total events	8324		24884			. ,	
Heterogeneity: Tau ² = 0.06; Chi Test for overall effect: Z = 10.32	= 151.4			0001); I² :	= 88%		0.01 0.1 1 10 100
Test for subgroup differences: (5 (P < 0.0	00001), I ²	= 85.0%		Robust Frail

Figure 5: Forest plot for sub-analysis of postoperative complications in frail patients by type of cancer.

Sub-analysis by severity of postoperative complications (Clavien-Dindo)

The severity of post-operative complications by Clavien-Dindo (CD) was reported 10 studies. Seven studies (23, 66, 75, 76, 78-80) reported data regarding CD class III and IV complications and 3 studies (67, 70, 72) included all the classes (I to IV). One study (66) did not show increased risk of CD class III and IV in frail patients (OR=5.51; 95% CI: 1.00-30.44) and another one (72) for CV I-IV (OR=1.67; 95% CI: 0.59-4.71) (**Figure 6**). Cumulative analysis showed that frail patients have an increased risk of postoperative complications with CD classification of III-IV (OR=2.40; 95% CI: 1.88-3.06; I²=91%, p<0.0001) or CD I-IV (OR=3.96: 95% CI: 1.60-9.82; I²=64%, p<0.003).

Experim	nental	Con	trol		Odds Ratio	Odds Ratio
Events		Events	Total	Weight		M-H, Random, 95% Cl
-IV						
111	1164	968	40517	14.4%	4.31 [3.51, 5.29]	+
249	10164	653	55941	15.2%	2.13 [1.83, 2.46]	· · · · · · · · · · · · · · · · · · ·
72	189	446	1906	12.7%	2.01 [1.47, 2.75]	-
2	6	97	1165	1.8%	5.51 [1.00, 30.44]	
260	637	2592	9349	15.0%	1.80 [1.53, 2.12]	-
32	123	561	5387	10.9%	3.03 [2.00, 4.57]	
1223	4203	6668	37252	15.9%	1.88 [1.75, 2.02]	· · · ·
	16486		151517	86.0%	2.40 [1.88, 3.06]	•
1949		11985				
Chi² = 63.5	51, df = 6	(P < 0.00)001); I ^z =	91%		
3 (P < 0.0	0001)					
v						
9	36	9	54	4.0%	1.67 (0.59, 4.71)	
47	58	36	102	6.0%	7.83 [3.62, 16.95]	
11	23	11	60	4.0%	4.08 [1.43, 11.64]	
	117		216	14.0%	3.96 [1.60, 9.82]	
67		56				
Chi² = 5.52	2. df = 2 (P = 0.06)	; I² = 64%			
7 (P = 0.0	03)					
	16603		151/33	100.0%	2.60 [2.04, 3.30]	•
		(P < 0.00)001); I ² =	88%		0.01 0.1 1 10 100
						Non-Frail Frail
s: Chi ^z = 1	.09, df=	1 (P = 0.3)	30), I ^z = 8	.6%		
	Events LV 111 249 72 260 32 1223 1949 Chi² = 63.6 3 (P < 0.0	LIV 111 1164 249 10164 72 189 2 6 260 637 32 123 1223 4203 16486 1949 Chi ² = 63.51, df = 6 3 (P < 0.00001) V 9 36 47 58 11 23 117 67 Chi ² = 5.52, df = 2 (7 (P = 0.003) 16603 2016 Chi ² = 76.66, df = 9 1 (P < 0.00001)	Events Total Events 111 1164 968 249 10164 663 72 189 446 2 6 97 260 637 2592 32 123 561 1223 4203 6668 1949 11985 11985 Chi² = 63.51, df = 6 (P < 0.00	Events Total Events Total IV 111 1164 968 40517 249 10164 653 55941 72 189 446 1906 2 6 97 1165 260 637 2592 9349 32 123 561 5387 1223 4203 6668 37252 16486 151517 1949 11985 ChiP=63.51, df=6 (P < 0.00001); IP=	Events Total Events Total Weight IV 111 1164 968 40517 14.4% 249 10164 653 55941 15.2% 72 189 446 1906 12.7% 2 6 97 1165 1.8% 260 637 2592 9349 15.0% 32 123 561 5387 10.9% 1223 4203 6668 37252 15.9% 16486 151517 86.0% 1949 11985 Chi² = 63.51, df = 6 (P < 0.00001); I² = 91%	Events Total Events Total Weight M-H, Random, 95% CI HV 111 1164 968 40517 14.4% 4.31 [3.51, 5.29] 249 10164 653 55941 15.2% 2.13 [1.83, 2.46] 72 189 446 1906 12.7% 2.01 [1.47, 2.75] 2 6 97 1165 1.8% 5.51 [1.00, 30.44] 260 637 2592 9349 15.0% 1.80 [1.53, 2.12] 32 123 561 5387 10.9% 3.03 [2.00, 4.57] 1223 4203 6668 37252 15.9% 1.88 [1.75, 2.02] 16486 151517 86.0% 2.40 [1.88, 3.06] 1949 1949 11985 2.40 [1.88, 3.06] 1.88 [1.75, 2.02] Chi²= 63.51, df = 6 (P < 0.00001); I² = 91%

Figure 6: Forest plot for postoperative complications in frail patients as stratified by Clavien-Dindo III-IV or I-V.

Sub-analysis by study design

The association of frailty and occurrence of any postoperative complications was reported in 7 prospective studies (64-70) and 12 retrospective studies (11, 23, 71-80). Only 1 prospective (66) and 4 retrospective studies (72, 73) (74) (77) did not show a significant increased risk in frail patients. The cumulative analysis

showed an OR of 3.68 (95% CI: 2.72-4.97; $I^2=0\%$; p<0.00001) for prospective studies, while retrospective studies showed an OR of 1.99 (95% CI: 1.70-2.33; $I^2=88\%$; p<0.00001) (**Figure 7**).

	Experim		Con			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
20.1.1 Prospective							
Courtney-Brooks, et al. 2012	4	6	6	31	0.6%	8.33 [1.23, 56.67]	
Jun Lu 2018	22	43	22	76	2.8%	2.57 [1.18, 5.59]	
Kenig 2018	48	63	34	102	3.2%	6.40 [3.14, 13.03]	
<onstantinidis 2017<="" al.="" et="" td=""><td>2</td><td>6</td><td>97</td><td>1165</td><td>0.7%</td><td>5.51 [1.00, 30.44]</td><td></td></onstantinidis>	2	6	97	1165	0.7%	5.51 [1.00, 30.44]	
<ristjansson 2010<="" al.="" et="" td=""><td>58</td><td>76</td><td>49</td><td>102</td><td>3.6%</td><td>3.49 [1.81, 6.72]</td><td></td></ristjansson>	58	76	49	102	3.6%	3.49 [1.81, 6.72]	
Makary et al. 2010	34	62	157	532	4.7%	2.90 [1.70, 4.95]	
Tan et al. 2012	11	23	11	60	1.8%	4.08 [1.43, 11.64]	
Subtotal (95% CI)		279		2068	17.4%	3.68 [2.72, 4.97]	•
Total events	179		376				
Heterogeneity: Tau ² = 0.00; Ch			= 0.56); P	²=0%			
Test for overall effect: Z = 8.46	(P < 0.000	01)					
20.1.2 Retrospective							
A Karim Ahmed et al. 2017	15	35	153	1553	3.4%	6.86 [3.44, 13.68]	
Bras et al. 2015	9	36	9	54	1.8%	1.67 [0.59, 4.71]	
Cloney et al. 2016	15	47	37	196	3.2%	2.01 [0.99, 4.10]	
Danny Lascano, B.A. 2015	111	1164	968	40517	9.1%	4.31 [3.51, 5.29]	-
Erekson et al. 2011	25	817	792	21397	6.2%	0.82 [0.55, 1.23]	-+-
Erin M. George et al. 2015	591	10164	2252	55941	10.5%	1.47 [1.34, 1.62]	•
Hodari 2013	72	189	446	1906	7.5%	2.01 [1.47, 2.75]	
<im, 2017<="" al.="" e.y.="" et="" td=""><td>18</td><td>61</td><td>44</td><td>211</td><td>3.7%</td><td>1.59 [0.84, 3.02]</td><td></td></im,>	18	61	44	211	3.7%	1.59 [0.84, 3.02]	
vlogal 2017	309	637	3364	9349	9.7%	1.68 [1.43, 1.97]	+
Pandit 2018	5400	18241	6586	35411	10.8%	1.84 [1.77, 1.92]	
Sathianathen et al. 2018	32	123	561	5387	6.1%	3.03 [2.00, 4.57]	
/ermillion et al. 2017	1548	4203	9296	37252	10.7%	1.75 [1.64, 1.87]	•
Subtotal (95% CI)		35717		209174	82.6%	1.99 [1.70, 2.33]	•
Fotal events	8145		24508				
Heterogeneity: Tau ² = 0.05; Ch		9. df = 11	(P < 0.0	0001): P=	= 91%		
Test for overall effect: Z = 8.45		•	, <u>5.0</u>				
Fotal (95% CI)		35996		211242	100.0%	2.23 [1.91, 2.60]	•
Total events	8324		24884				
Heterogeneity: Tau ² = 0.06; Ch		1 df= 19		0001): 🖻 -	- 88%		+ + +
Test for overall effect: Z = 10.3:			/ (i = 0.0		0070		0.02 0.1 1 10
Fest for subgroup differences:			1 (D - 0 C	0040 18-	00.000		Non-Frail Frail

Figure 7: Forest plot for postoperative complications in frail patients as stratified by prospective and retrospective studies.

Sub-analysis by location of studies

The association of frailty and occurrence of any postoperative complications was reported in 3 studies from Europe (65, 67, 72), 13 from the USA (11, 23, 64, 66, 69, 71, 73-76, 78-80) and 3 from Asia (68, 70, 77). The cumulative analysis shows a significant association of frailty with postoperative complications in studies from Europe (OR=3.61; 95% CI: 1.83-7.15; I^2 =56%; p=0.002), from the USA (OR=2.10; 95% CI: 1.78-2.47; I^2 =91%; p<0.00001) and from Asia (OR=2.27; 95% CI: 1.37-3.78; I^2 =91%; p<0.0001) (**Figure 8**).

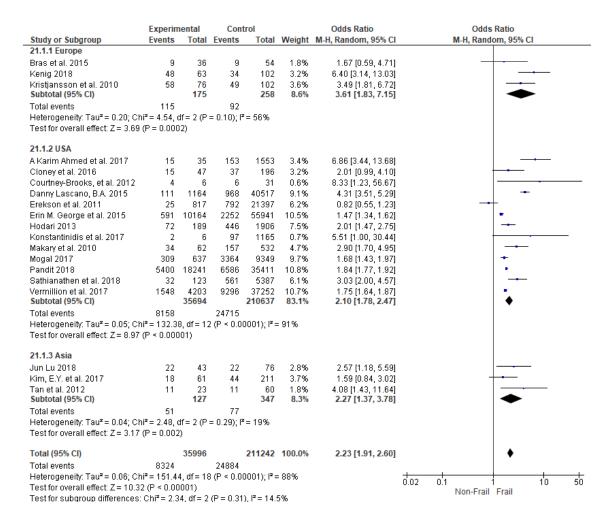


Figure 8: Forest plot for postoperative complications in frail patients as stratified by place of the study.

Sub-analysis by sample size

Ten studies (11, 23, 66, 71, 74-76, 78-80) had reported the association of frailty and the occurrence of postoperative complications with a sample of less than one thousand patients and nine studies (64, 65, 67-70, 72, 73, 77) had reported the association with more than one thousand patients. The cumulative analysis of the data showed a significant association of frailty with postoperative complications of both lower (OR= 2.04; 95% CI: 1.72-2.42; p<0.00001; l²=93%; p<0.00001) and higher sample sized studies (OR= 2.87; 95% CI: 1.91-2.60; p<0.00001; l²=34%; p<0.00001).

	Experin	nental	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
8.1.1 >1000							
A Karim Ahmed et al. 2017	15	35	153	1553	3.4%	6.86 [3.44, 13.68]	
Danny Lascano, B.A. 2015	111	1164	968	40517	9.1%	4.31 [3.51, 5.29]	-
Erekson et al. 2011	25	817	792	21397	6.2%	0.82 [0.55, 1.23]	
Erin M. George et al. 2015	591	10164	2252	55941	10.5%	1.47 [1.34, 1.62]	•
Hodari 2013	72	189	446	1906	7.5%	2.01 [1.47, 2.75]	-
Konstantinidis et al. 2017	2	6	97	1165	0.7%	5.51 [1.00, 30.44]	
Mogal 2017	309	637	3364	9349	9.7%	1.68 [1.43, 1.97]	+
Pandit 2018	5400	18241	6586	35411	10.8%	1.84 [1.77, 1.92]	•
Sathianathen et al. 2018	32	123	561	5387	6.1%	3.03 [2.00, 4.57]	
Vermillion et al. 2017	1548	4203	9296	37252	10.7%	1.75 [1.64, 1.87]	•
Subtotal (95% CI)		35579		209878	74.6%	2.04 [1.72, 2.42]	•
Total events	8105		24515				
Heterogeneity: Tau ² = 0.05; Ch	ni² = 126.8	6, df = 9	(P < 0.00	001); I ^z =	93%		
Test for overall effect: Z = 8.21	(P < 0.000	001)					
8.1.2 <1000							
Bras et al. 2015	9	36	9	54	1.8%	1.67 [0.59, 4.71]	
Cloney et al. 2016	15	47	37	196	3.2%	2.01 [0.99, 4.10]	
Courtney-Brooks, et al. 2012	4	6	6	31	0.6%	8.33 [1.23, 56.67]	
Jun Lu 2018	22	43	22	76	2.8%	2.57 [1.18, 5.59]	
Kenig 2018	48	63	34	102	3.2%	6.40 [3.14, 13.03]	
Kim, E.Y. et al. 2017	18	61	44	211	3.7%	1.59 [0.84, 3.02]	+
Kristjansson et al. 2010	58	76	49	102	3.6%	3.49 [1.81, 6.72]	
Makary et al. 2010	34	62	157	532	4.7%	2.90 [1.70, 4.95]	
Tan et al. 2012	11	23	11	60	1.8%	4.08 [1.43, 11.64]	
Subtotal (95% CI)		417		1364	25.4%	2.87 [2.09, 3.96]	•
Total events	219		369				
Heterogeneity: Tau ² = 0.08; Ch			° = 0.14);	I² = 34%			
Test for overall effect: Z = 6.45	(P < 0.000)01)					
Total (95% CI)		35996		211242	100.0%	2.23 [1.91, 2.60]	•
Total events	8324		24884			1	· ·
Heterogeneity: Tau ² = 0.06; Ch		4 df= 19		0001): 17 =	- 88%		+ + + + + +
Test for overall effect: Z = 10.3:				0001/11-	00.0		0.02 0.1 1 10 50
Test for subaroup differences:			(P = 0.0)	3) I 2 = 70 i	8%		Non-Frail Frail
reaction subgroup unerences.	0.01 - 0.4	o, ar = 1	(i = 0.00	n. i = 70.	0.00		

Figure 7: Forest plot for postoperative complications in frail patients as stratified by sample size.

Sub-analysis by age

The association of frailty and postoperative complications in patients with 65 or more years old was determined in 11 studies (11, 64-70, 72, 73, 76), thus excluding other studies that included younger patients. Three articles (73) (66) (72) did not show significant association between frailty and postoperative complications. Pooled analysis showed an OR of 2.63 (95% CI: 2.02-3.44; I^2 =60%; p=0.0001) of postoperative complications for frail patients older than 65 (**Figure 8**).

	Experin	nental	Cont	rol		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl	
25.1.1 > or equal 65 years									
Bras et al. 2015	9	36	9	54	5.1%	1.67 [0.59, 4.71]			
Cloney et al. 2016	15	47	37	196	8.7%	2.01 [0.99, 4.10]			
Courtney-Brooks, et al. 2012	4	6	6	31	1.8%	8.33 [1.23, 56.67]			
Hodari 2013	72	189	446	1906	17.1%	2.01 [1.47, 2.75]			
Jun Lu 2018	22	43	22	76	7.7%	2.57 [1.18, 5.59]			
Kenig 2018	48	63	34	102	8.7%	6.40 [3.14, 13.03]			
Konstantinidis et al. 2017	2	6	97	1165	2.2%	5.51 [1.00, 30.44]			-
Kristjansson et al. 2010	58	76	49	102	9.5%	3.49 [1.81, 6.72]			
Makary et al. 2010	34	62	157	532	11.8%	2.90 [1.70, 4.95]			
Pandit 2018	5400	18241	6586	35411	22.3%	1.84 [1.77, 1.92]		•	
Tan et al. 2012	11	23	11	60	5.0%	4.08 [1.43, 11.64]			
Subtotal (95% CI)		18792		39635	100.0%	2.63 [2.02, 3.44]		•	
Total events	5675		7454						
Heterogeneity: Tau ² = 0.08; Ch	i² = 25.07,	df = 10	(P = 0.00	5); l² = 6	0%				
Test for overall effect: Z = 7.10	(P ≺ 0.000)01)							
Total (95% CI)		18792		39635	100.0%	2.63 [2.02, 3.44]		•	
Total events	5675		7454						
Heterogeneity: Tau ² = 0.08; Ch	i ² = 25.07,	df = 10	(P = 0.00)	5); l² = 6	0%		0.01 0.1	1 1 10	100
Test for overall effect: Z = 7.10	(P < 0.000	001)					0.01 0.	Robust Frail	100
Test for subgroup differences:	Not appli	cable						Robust Fidli	

Figure 9: Forest plot for postoperative complications in frail patients older than 65 years.

Sub-analysis by follow-up period

The association of frailty and postoperative complications was determined in 13 articles (23, 64-67, 69, 70, 72, 74-76, 79, 80) with the follow-up 30 days after surgery, 2 articles (68, 77) with a follow-up of more than one year after surgery and 4 articles (11, 71, 73, 78) did not reported the timing of follow-up. Three articles did not observe a significant risk of complications at 30 days after surgery (74) (66) (72) and one article at a follow-up above 1 year (77). The cumulative analysis showed a significant association of frailty with postoperative complications at 30 days (OR= 2.01, 95% CI: 1.68-2.40; $I^2=80\%$; p<0.00001) and above 1 year after surgery (OR= 1.93, 95% CI: 1.18-3.17; $I^2=0\%$; p<0.009) (**Figure 10**).

	Experin	nental	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
6.1.1 30 days after surgery							
Bras et al. 2015	9	36	9	54	1.8%	1.67 [0.59, 4.71]	
Courtney-Brooks, et al. 2012	4	6	6	31	0.6%	8.33 [1.23, 56.67]	· · · · · · · · · · · · · · · · · · ·
Erekson et al. 2011	25	817	792	21397	6.2%	0.82 [0.55, 1.23]	
Erin M. George et al. 2015	591	10164	2252	55941	10.5%	1.47 [1.34, 1.62]	•
Hodari 2013	72	189	446	1906	7.5%	2.01 [1.47, 2.75]	
(enig 2018	48	63	34	102	3.2%	6.40 [3.14, 13.03]	
(onstantinidis et al. 2017	2	6	97	1165	0.7%	5.51 [1.00, 30.44]	
(ristjansson et al. 2010	58	76	49	102	3.6%	3.49 [1.81, 6.72]	
1akary et al. 2010	34	62	157	532	4.7%	2.90 [1.70, 4.95]	
logal 2017	309	637	3364	9349	9.7%	1.68 [1.43, 1.97]	+
Sathianathen et al. 2018	32	123	561	5387	6.1%	3.03 [2.00, 4.57]	
an et al. 2012	11	23	11	60	1.8%	4.08 [1.43, 11.64]	
/ermillion et al. 2017	1548	4203	9296	37252	10.7%	1.75 [1.64, 1.87]	•
Subtotal (95% CI)		16405		133278	66.9%	2.01 [1.68, 2.40]	•
otal events	2743		17074				
leterogeneity: Tau ² = 0.05; Ch 'est for overall effect: Z = 7.60 : .1.2 more than 1 year after s	(P < 0.000			,			
lun Lu 2018	22	43	22	76	2.8%	2.57 [1.18, 5.59]	
(im, E.Y. et al. 2017	18	61	44	211	3.7%	1.59 [0.84, 3.02]	
Subtotal (95% CI)	10	104		287	6.5%	1.93 [1.18, 3.17]	•
otal events	40		66				•
Heterogeneity: Tau ² = 0.00; Ch Fest for overall effect: Z = 2.61			= 0.35); i	²= 0%			
.1.3 not reported							
Karim Ahmed et al. 2017	15	35	153	1553	3.4%	6.86 [3.44, 13.68]	
loney et al. 2016	15	47	37	196	3.2%	2.01 [0.99, 4.10]	⊢ •−
)anny Lascano, B.A. 2015	111	1164	968	40517	9.1%	4.31 [3.51, 5.29]	-
'andit 2018 Gubtotal (95% CI)	5400	18241 19487	6586	35411 77677	10.8% 26.5%	1.84 [1.77, 1.92] 3.17 [1.68, 5.97]	
	5541		7744				-
otal events							
leterogeneity: Tau² = 0.36; Ch	ni² = 76.76		P < 0.000	01); I² = 9	6%		
leterogeneity: Tau² = 0.36; Ch est for overall effect: Z = 3.56	ni² = 76.76		P < 0.000			2.23 [1.91, 2.60]	•
Total events Heterogeneity: Tau ² = 0.36; CP Fest for overall effect: Z = 3.56 Fotal (95% CI) Total events	ni² = 76.76)4)	° < 0.000 24884		6% 100.0%	2.23 [1.91, 2.60]	•

Figure 10: Forest plot for postoperative complications in frail patients older than 65 years by time of follow-up.

Sensitivity analysis

We performed sensitivity analysis by re-calculating the OR after omitting every single study and, as shown in **Table 4**, frailty continued to be associated with increased risk of postoperative complications.

 Table 4: Sensitivity analysis of the meta-analysis and systematic review.

		OR		Не	terogeneity
Study that was removed	Total	IC	P value	l ²	P value
A Karim Ahmed et al. 2017 (71)	2.13	(1.84-2.48)	P<0.00001	88%	P<0.00001
Bras et al. 2015 (72)	2.24	(1.92-2.62)	P<0.00001	89%	P<0.00001
Cloney et al. 2016 (73)	2.24	(1.92-2.62)	P<0.00001	89%	P<0.00001
Courtney-Brooks, et al. 2012 (64)	2.21	(1.90-2.57)	P<0.00001	89%	P<0.00001
Danny Lascano, B.A. 2015 (78)	1.98	(1.74-2.26)	P<0.00001	79%	P<0.00001
Erekson et al. 2011 (74)	2.36	(2.03-2.75)	P<0.00001	88%	P<0.00001
Erin M. George et al. 2015 (75)	2.35	(1.99-2.78)	P<0.00001	87%	P<0.00001
Hodari 2013 (76)	2.25	(1.92-2.64)	P<0.00001	89%	P<0.00001
Jun Lu 2018 (68)	2.22	(1.90-2.59)	P<0.00001	89%	P<0.00001
Kenig 2018 (65)	2.14	(1.84-2.49)	P<0.00001	88%	P<0.00001
Kim, E.Y. et al. 2017 (58)	2.26	(1.93-2.64)	P<0.00001	89%	P<0.00001
Konstantinidis et al. 2017 (66)	2.21	(1.90-2.58)	P<0.00001	89%	P<0.00001
Kristjansson et al. 2010 (67)	2.19	(1.88-2.56)	P<0.00001	88%	P<0.00001
Makary et al. 2010 (69)	2.20	(1.88-2.57)	P<0.00001	89%	P<0.00001
Mogal 2017 (23)	2.31	(1.96-2.73)	P<0.00001	89%	P<0.00001
Pandit 2018 (11)	2.39	(1.94-2.95)	P<0.00001	89%	P<0.00001
Sathianathen et al. 2018 (79)	2.18	(1.87-2.55)	P<0.00001	88%	P<0.00001
Tan et al. 2012 (70)	2.20	(1.89-2.57)	P<0.00001	89%	P<0.00001
Vermillion et al. 2017 (80)	2.37	(1.95-2.88)	P<0.00001	89%	P<0.00001

Publication bias

Publication bias was assessed visually using a funnel plot and there was no significant evidence of publication bias (**Figure 11**).

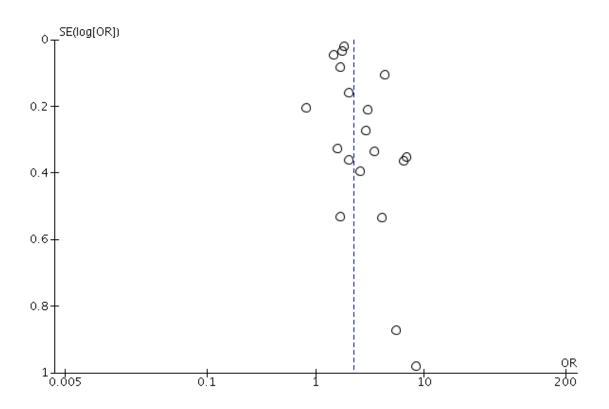


Figure 11: Funnel plot of frailty and postoperative complications.

DISCUSSION

The purpose of this systematic review and meta-analysis was to evaluate the association between frailty status and postoperative complications. By including 19 articles and a total of 243 328 patients, we found that frailty was associated with increased risk of postoperative complications in cancer patients. The risk was present in both frail and pre-frail patients, was consistent across different frailty instruments and was present in patients with different types of cancer.

Frailty has been conceptualized in the literature as a loss of physiologic reserve leading to increased vulnerability to stressors. It is associated with characteristics such as impaired mobility, weakness, malnutrition, comorbidity, polypharmacy, cognitive impairment, depression and social isolation (81-83). So, a frail patient responds to a surgery or a chemotherapy with a more severe homeostasis disorder, putting more functional pressure on their organs and physiological system.

Not being able to deal with the functional pressure, the stress imposed by surgery or chemotherapy can result in dysfunction or failure of organs and physiological system, which may lead to premature death of the patient or the development of complications (81-83). Postoperative complications are of major concern as they have both clinical effects during the immediate postoperative period and long-term effects on quality of life impairment and increased mortality (84). Moreover, they are one of the main reasons for delay in time to initiation of adjuvant chemotherapy, which will reduce the chances of survival (84).

Early identification of patients at higher risk should be a priority. Our findings support the utility of preoperative assessment of frailty status, as frail was associated with higher risk of postoperative complications, even after sensitivity analysis. Previous meta-analysis has provided similar conclusions in specific surgical subspecialties such as vascular (19), cardiac (20), orthopedic surgery (21) and also in cancer (22).

One of the novelties of our review is that it suggests that the risk of postoperative complications is already present in pre-frail patients, suggesting a "dose-response" relationship between the severity of frailty and the risk of complications, highlighting the need to consider tools that allow grading frailty

severity. However, care should be made as the heterogeneity remained high. One possible cause could be due to the diversity of instruments that were used by the different studies.

Frailty, as defined by FP, mFI or CGA, was associated with a higher risk of post-operative complications but only FP and CGA presented low heterogeneity. Thus, studies using the mFI are one possible source of heterogeneity as they were the most numerous in our analysis. In addition, while frailty defined by FP and CGA seem to be effective to be used in the preoperative assessment of cancer patients (high OR and lower heterogeneity), this interpretation should not be done. Indeed, it has been shown that different instruments provide different results (limited agreement) even if applied in the same population (85). It would be interesting to perform observational studies comparing, in the same population, the diagnostic accuracy for prediction adverse events after surgery with FP, mFI, CGA and others.

In addition, we also found that retrospective studies were an important source of heterogeneity and all these studies used mFI except two articles (66, 68). In fact, studies using mFI usually obtain their data through historical records and relevant information might be missing (leading to poor classification) or was introduced by different persons (leading to more subjectivity). This can also explain why we found high heterogeneity in higher sample sized. Indeed, 7 out of 10 studies with sample size above 1000 used mFI to assess frailty. Another potential source of heterogeneity was the time of follow-up.

Furthermore, our study shows that frailty was associated with a higher risk of complications after surgery in patients with different cancer types, including gastrointestinal, urologic, head and neck and abdominal (low-to-moderate heterogeneity), but not for gynecological.

Future studies should address if these differences are due to cancerspecific issues as, for instance, cachexia is highly prevalent among the first 3 (86). Frailty and cachexia are two different syndromes, but they can be present concurrently in the same patient, which might have additional implications (87). Finally, follow-up time was also an important source of heterogeneity, particularly for 30 days-postoperative complications.

Overall, our work suggests that screening for frailty could be an additional value in preoperative risk assessment in oncologic patients to: 1) determine surgical risk and assist in treatment decisions; 2) refer frail patients to optimization/capacitation programs to prepare them for the surgery or chemotherapy, such as a pre-habilitation program. The goal would be to increase the tolerance of their organs and physiological systems to aggression.

LIMITATIONS

There are some limitations in our systematic review that should be taken into count. A considerable heterogeneity across the studies was observed and our analysis was not adjusted for possible cofounding factors (e.g. age, gender, severity of disease). In some articles, insufficient information was available for calculating OR. Despite the corresponding authors were contacted, we did not obtain the information, which invalidated their inclusion in the systematic review.

CONCLUSIONS

This systematic review and meta-analysis suggest that frailty is associated with a higher risk of postoperative complications in oncologic patients. Thus, given the growing number of patients presenting for surgical procedures, frailty may be a valuable tool in perioperative assessment of older cancer patients by helping clinicians to tailor treatment options, facilitating shared decisions making, improving patient selection and helping to optimize patients preoperatively so as to reduce surgical complications.

ACKNOWLEDGEMENTS.

Not applicable.

FUNDING.

Not applicable.

ETHICS APPROVAL.

Not applicable.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

2. Cohen JE. Human population: the next half century. Science. 2003;302(5648):1172-1175.

3. White MC, Holman DM, Boehm JE, Peipins LA, Grossman M, Henley SJ. Age and cancer risk: a potentially modifiable relationship. Am J Prev Med. 2014;46(3):S7-S15.

4. Ethun CG, Bilen MA, Jani AB, Maithel SK, Ogan K, Master VA. Frailty and cancer: Implications for oncology surgery, medical oncology, and radiation oncology. CA Cancer J Clin. 2017;67(5):362-377.

5. Pilleron S, Sarfati D, Janssen-Heijnen M, Vignat J, Ferlay J, Bray F, et al. Global cancer incidence in older adults, 2012 and 2035: a population-based study. Int J Cancer. 2019;144(1):49-58.

6. Nobili A, Garattini S, Mannucci PM. Multiple diseases and polypharmacy in the elderly: challenges for the internist of the third millennium. J Comorb 2011;1(1):28-44.

7. Sullivan R, Alatise OI, Anderson BO, Audisio R, Autier P, Aggarwal A, et al. Global cancer surgery: delivering safe, affordable, and timely cancer surgery. Lancet Oncol. 2015;16(11):1193-11224.

8. Audisio RA, Pope D, Ramesh HS, Gennari R, Van Leeuwen BL, West C, et al. Shall we operate? Preoperative assessment in elderly cancer patients (PACE) can help A SIOG surgical task force prospective study. Crit Rev Oncol Hematol. 2008;65(2):156-163.

9. Puts MT, Tapscott B, Fitch M, Howell D, Monette J, Wan-Chow-Wah D, et al. A systematic review of factors influencing older adults' decision to accept or decline cancer treatment. Cancer Treat Rev. 2015;41(2):197-215.

10. Watt J, Tricco AC, Talbot-Hamon C, Rios P, Grudniewicz A, Wong C, et al. Identifying older adults at risk of harm following elective surgery: a systematic review and meta-analysis. BMC Med. 2018;16(1):2.

11. Pandit V, Khan M, Martinez C, Jehan F, Zeeshan M, Koblinski J, et al. A modified frailty index predicts adverse outcomes among patients with colon cancer undergoing surgical intervention. AM J Surg. 2018;216(6):1090-1094.

12. Cesari M, Prince M, Thiyagarajan JA, De Carvalho IA, Bernabei R, Chan P, et al. Frailty: an emerging public health priority.J Am Med Dir Assoc. 2016;17(3):188-192.

13. Song X, Mitnitski A, Rockwood K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J Am Geriatr Soc. 2010;58(4):681-687.

14. Kojima G. Frailty as a predictor of future falls among community-dwelling older people: a systematic review and meta-analysis. J Am Med Dir Assoc. 2015;16(12):1027-1033.

15. Kojima G. Frailty as a predictor of hospitalisation among communitydwelling older people: a systematic review and meta-analysis. J Epidemiol Community Health.2016;70(7):722-729.

16. Kojima G, Iliffe S, Jivraj S, Walters K. Association between frailty and quality of life among community-dwelling older people: a systematic review and meta-analysis. J Epidemiol Community Health. 2016;70(7):716-721.

17. Kojima G, Taniguchi Y, Iliffe S, Walters K. Frailty as a predictor of Alzheimer disease, vascular dementia, and all dementia among communitydwelling older people: a systematic review and meta-analysis. J Am Med Dir Assoc. 2016;17(10):881-888.

18. Kojima G, Iliffe S, Walters K. Frailty index as a predictor of mortality: a systematic review and meta-analysis. Age Ageing. 2017;47(2):193-200.

19. Wang J, Zou Y, Zhao J, Schneider DB, Yang Y, Ma Y, et al. The Impact of Frailty on Outcomes of Elderly Patients After Major Vascular Surgery: A Systematic Review and Meta-analysis. Eur J Vasc Endovasc Surg. 2018;56(4):591-602.

20. Tran DTT, Tu JV, Dupuis JY, Bader Eddeen A, Sun LY. Association of frailty and long-term survival in patients undergoing coronary artery bypass grafting. J Am Heart Assoc. 2018;7(15):e009882.

21. Schmucker AM, Hupert N, Mandl LA. The Impact of Frailty on Short-Term Outcomes After Elective Hip and Knee Arthroplasty in Older Adults: A Systematic Review. Geriatr Orthop Surg Rehabil. 2019;10:2151459319835109.

22. Handforth C, Clegg A, Young C, Simpkins S, Seymour M, Selby P, et al. The prevalence and outcomes of frailty in older cancer patients: a systematic review. Ann Oncol. 2014;26(6):1091-1101.

23. Mogal H, Vermilion SA, Dodson R, Hsu F-C, Howerton R, Shen P, et al. Modified frailty index predicts morbidity and mortality after pancreaticoduodenectomy. Ann Surg Oncol. 2017;24(6):1714-1721.

24. Faller JW, do Nascimento Pereira D, de Souza S, Nampo FK, de Souza Orlandi F, Matumoto S. Instruments for the detection of frailty syndrome in older adults: A systematic review. PLoS One. 2019;14(4):e0216166.

25. Buta BJ, Walston JD, Godino JG, Park M, Kalyani RR, Xue Q-L, et al. Frailty assessment instruments: systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res Rev. 2016;26:53-61.

26. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine. 2009;6(7):e1000097.

27. Chappidi MR, Kates M, Patel HD, Tosoian JJ, Kaye DR, Sopko NA, et al. Frailty as a marker of adverse outcomes in patients with bladder cancer undergoing radical cystectomy. Urol Oncol. 2016;34(6):256e1-6.

28. Abt NB, Richmon JD, Koch WM, Eisele DW, Agrawal N. Assessment of the Predictive Value of the Modified Frailty Index for Clavien-Dindo Grade IV Critical Care Complications in Major Head and Neck Cancer Operations. JAMA Otolaryngol Head Neck Surg. 2016;142(7):658-664.

29. Han B, Li Q, Chen X. Effects of the frailty phenotype on post-operative complications in older surgical patients: a systematic review and meta-analysis. BMC Geriatricsvolume. 2019;19(1):141.

30. Wells GA, Shea A, O'Connell D, Peterson J, Welch, Losos M. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2014. University of Ottawa, Canada.

31. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. (editors). Cochrane Handbook for Systematic Reviews of Interventions version
6.0 (updated July 2019). Cochrane, 2019. Available from www.training.cochrane.org/handbook.

32. Chappidi MR, Kates M, Patel HD, Tosoian JJ, Kaye DR, Sopko NA, et al., editors. Frailty as a marker of adverse outcomes in patients with bladder cancer undergoing radical cystectomy. Urol Oncol. 2016. 34(6):256.e1-6.

33. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol.2017;3(4):524-548.

34. Uppal S, Igwe E, Rice LW, Spencer RJ, Rose SL. Frailty index predicts severe complications in gynecologic oncology patients. Gynecol Oncol. 2015;137(1):98-101.

35. Nishida Y, Kato Y, Kudo M, Aizawa H, Okubo S, Takahashi D, et al. Preoperative sarcopenia strongly influences the risk of postoperative pancreatic fistula formation after pancreaticoduodenectomy. J Gastrointest Surg. 2016;20(9):1586-1594.

36. Ommundsen N, Wyller T, Nesbakken A, Bakka A, Jordhoy M, Skovlund E, et al. Preoperative geriatric assessment and tailored interventions in frail older patients with colorectal cancer: a randomized controlled trial. Colorectal Dis. 2018;20(1):16-25.

37. Ommundsen N, Wyller TB, Nesbakken A, Jordhoy MS, Bakka A, Skovlund E, et al. Frailty is an independent predictor of survival in older patients with colorectal cancer. Oncologist. 2014;19(12):1268-1275.

38. Abt NB, Xie Y, Puram SV, Richmon JD, Varvares MA. Frailty index: Intensive care unit complications in head and neck oncologic regional and free flap reconstruction. Head Neck. 2017;39(8):1578-1585.

39. Revenig LM, Canter DJ, Master VA, Maithel SK, Kooby DA, Pattaras JG, et al. A prospective study examining the association between preoperative frailty

and postoperative complications in patients undergoing minimally invasive surgery. J Endourol. 2014;28(4):476-480.

40. Revenig LM, Canter DJ, Kim S, Liu Y, Sweeney JF, Sarmiento JM, et al. Report of a simplified frailty score predictive of short-term postoperative morbidity and mortality. J Am Coll Surg. 2015;220(5):904-911.e1.

41. Huisman M, Audisio R, Ugolini G, Montroni I, Vigano A, Spiliotis J, et al. Screening for predictors of adverse outcome in onco-geriatric surgical patients: a multicenter prospective cohort study. Eur J Surg Oncol. 2015;41(7):844-851.

42. Revenig LM, Canter DJ, Taylor MD, Tai C, Sweeney JF, Sarmiento JM, et al. Too frail for surgery? Initial results of a large multidisciplinary prospective study examining preoperative variables predictive of poor surgical outcomes. J Am Coll Surg. 2013;217(4):665-670.e1.

43. Lin H-S, Watts JN, Peel NM, Hubbard RE. Frailty and post-operative outcomes in older surgical patients: a systematic review. BMC Geriatrics. 2016;16(1):157.

44. Ronning B, Wyller TB, Seljeflot I, Jordhoy MS, Skovlund E, Nesbakken A, et al. Frailty measures, inflammatory biomarkers and post-operative complications in older surgical patients. Age Ageing. 2010;39(6):758-761.

45. Augustin T, Burstein MD, Schneider EB, Morris-Stiff G, Wey J, Chalikonda S, et al. Frailty predicts risk of life-threatening complications and mortality after pancreatic resections. Surgery. 2016;160(4):987-996.

46. van Vugt JLA, Reisinger KW, Derikx JP, Boerma D, Stoot JHMB. Improving the outcomes in oncological colorectal surgery. World J Gastroenterol. 2014;20(35):12445.

47. Pearl JA, Patil D, Filson CP, Arya S, Alemozaffar M, Master VA, et al. Patient frailty and discharge disposition following radical cystectomy. Clin Genitourin Cancer. 2017;15(4):e615-e21.

48. Kuroki L, Mangano M, Allsworth J, Menias C, Massad L, Powell M, et al. Pre-operative assessment of muscle mass to predict surgical complications and prognosis in patients with endometrial cancer. Ann Surg Oncol. 2015;22(3):972-979.

49. Choe YR, Joh JY, Kim YP. Association between frailty and readmission within one year after gastrectomy in older patients with gastric cancer. J Geriatr Oncol. 2017;8(3):185-189.

50. Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M, et al. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing. 2013;42(2):203-209.

51. Nieman CL, Pitman KT, Tufaro AP, Eisele DW, Frick KD, Gourin CG. The effect of frailty on short-term outcomes after head and neck cancer surgery. Laryngoscope. 2018;128(1):102-110.

52. Fagard K, Leonard S, Deschodt M, Devriendt E, Wolthuis A, Prenen H, et al. The impact of frailty on postoperative outcomes in individuals aged 65 and over undergoing elective surgery for colorectal cancer: a systematic review. J Geriatr Oncol. 2016;7(6):479-491.

53. Yoo SH, Roh JL, Choi SH, Nam SY, Kim SY. Incidence and risk factors for morbidity and mortality in elderly head and neck cancer patients undergoing major oncological surgery. J Cancer Res Clin Oncol. 2016;142(6):1343-1351.

54. Wagner D, Marsoner K, Tomberger A, Haybaeck J, Haas J, Werkgartner G, et al. Low skeletal muscle mass outperforms the Charlson Comorbidity Index in risk prediction in patients undergoing pancreatic resections. Eur J Surg Oncol. 2018;44(5):658-663.

55. Rinkinen J, Agarwal S, Beauregard J, Aliu O, Benedict M, Buchman SR, et al. Morphomic analysis as an aid for preoperative risk stratification in patients undergoing major head and neck cancer surgery. J Surg Res. 2015;194(1):177-184.

56. Finlayson E, Zhao S, Varma MG. Outcomes after rectal cancer surgery in elderly nursing home residents. Dis Colon Rectum. 2012;55(12):1229-1235.

57. Salvi R, Meoli I, Cennamo A, Perrotta F, Cerqua FS, Montesano R, et al. Preoperative high-intensity training in frail old patients undergoing pulmonary resection for NSCLC. Open Med (Wars). 2016;11(1):443-448.

58. Kim S, Duncan PW, Groban L, Segal H, Abbott RM, Williamson JD, et al. Patient-reported outcome measures (PROM) as a preoperative assessment tool. J Anesth Perioper Med. 2017;4(6):274.

59. Ugolini G, Ghignone F, Zattoni D, Veronese G, Montroni I. Personalized surgical management of colorectal cancer in elderly population. World J Gastroenterol. 2014;20(14):3762.

60. Lu J, Cao Ll, Zheng CH, Li P, Xie J1, Wang JB, et al. The preoperative frailty versus inflammation-based prognostic score: which is better as an objective predictor for gastric cancer patients 80 years and older? Ann Surg Oncol. 2017;24(3):754-62.

61. Chen FF, Zhang FY, Zhou XY, Shen X, Yu Z, Zhuang C-L. Role of frailty and nutritional status in predicting complications following total gastrectomy with D2 lymphadenectomy in patients with gastric cancer: a prospective study. Langenbecks Arch Surg. 2016;401(6):813-822.

62. Huang DD, Chen XX, Chen XY, Wang SL, Shen X, Chen XL, et al. Sarcopenia predicts 1-year mortality in elderly patients undergoing curative gastrectomy for gastric cancer: a prospective study. J Cancer Res Clin Oncol. 2016;142(11):2347-2356.

63. Mayr R, Gierth M, Zeman F, Reiffen M, Seeger P, Wezel F, et al. Sarcopenia as a comorbidity-independent predictor of survival following radical cystectomy for bladder cancer. J Cachexia Sarcopenia Muscle. 2018;9(3):505-513.

64. Courtney-Brooks M, Tellawi AR, Scalici J, Duska LR, Jazaeri AA, Modesitt SC, et al. Frailty: an outcome predictor for elderly gynecologic oncology patients. Gynecol Oncol. 2012;126(1):20-24.

65. Kenig J, Mastalerz K, Mitus J, Kapelanczyk A. The Surgical Apgar score combined with Comprehensive Geriatric Assessment improves short-but not long-term outcome prediction in older patients undergoing abdominal cancer surgery. J Geriatr Oncol. 2018;9(6):642-648.

66. Konstantinidis IT, Chouliaras K, Levine EA, Lee B, Votanopoulos KI. Frailty correlates with postoperative mortality and major morbidity after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2017;24(13):3825-3830.

67. Kristjansson SR, Nesbakken A, Jordhoy MS, Skovlund E, Audisio RA, Johannessen HO, et al. Comprehensive geriatric assessment can predict

complications in elderly patients after elective surgery for colorectal cancer: a prospective observational cohort study. Crit Rev Oncol Hematol. 2010;76(3):208-217.

68. Lu J, Zheng HL, Li P, Xie JW, Wang JB, Lin JX, et al. High preoperative modified frailty index has a negative impact on short-and long-term outcomes of octogenarians with gastric cancer after laparoscopic gastrectomy. Surg Endosc. 2018;32(5):2193-2200.

69. Makary MA, Segev DL, Pronovost PJ, Syin D, Bandeen-Roche K, Patel P, et al. Frailty as a predictor of surgical outcomes in older patients. J Am Coll Surg. 2010;210(6):901-908.

70. Tan KY, Kawamura YJ, Tokomitsu A, Tang T. Assessment for frailty is useful for predicting morbidity in elderly patients undergoing colorectal cancer resection whose comorbidities are already optimized. Am J Surg. 2012;204(2):139-143.

71. Ahmed AK, Goodwin CR, De la Garza-Ramos R, Kim RC, Abu-Bonsrah N, Xu R, et al. Predicting short-term outcome after surgery for primary spinal tumors based on patient frailty. World Neurosurg. 2017;108:393-398.

72. Bras L, Peters T, Wedman J, Plaat B, Witjes M, van Leeuwen B, et al. Predictive value of the G roningen F railty I ndicator for treatment outcomes in elderly patients after head and neck, or skin cancer surgery in a retrospective cohort. Clin Otolaryngol. 2015;40(5):474-482.

73. Cloney M, D'Amico R, Lebovic J, Nazarian M, Zacharia BE, Sisti MB, et al. Frailty in geriatric glioblastoma patients: a predictor of operative morbidity and outcome. World Neurosurg. 2016;89:362-367.

74. Erekson EA, Yip SO, Ciarleglio MM, Fried TR, gynecology. Postoperative complications after gynecologic surgery. Obstet Gynecol. 2011;118(4):785.

75. George EM, Burke WM, Hou JY, Tergas AI, Chen L, Neugut AI, et al. Measurement and validation of frailty as a predictor of outcomes in women undergoing major gynaecological surgery. BJOG. 2016;123(3):455-461.

76. Hodari A, Hammoud ZT, Borgi JF, Tsiouris A, Rubinfeld IS. Assessment of morbidity and mortality after esophagectomy using a modified frailty index. Ann Thorac Surg. 2013;96(4):1240-1245.

77. Kim E, Lee H, Kim K, Lee JI, Kim Y, Choi WJ, et al. Preoperative Computed Tomography–Determined Sarcopenia and Postoperative Outcome After Surgery for Non-Small Cell Lung Cancer. Scand J Surg. 2018;107(3):244-251.

78. Lascano D, Pak JS, Kates M, Finkelstein JB, Silva M, Hagen E, et al., editors. Validation of a frailty index in patients undergoing curative surgery for urologic malignancy and comparison with other risk stratification tools. Urol Oncol. 2015;33(10):426:e1-12.

79. Sathianathen NJ, Jarosek S, Lawrentschuk N, Bolton D, Konety BR. A simplified frailty index to predict outcomes after radical cystectomy. Eur Urol Focus. 2019;5(4):658-663

80. Vermillion SA, Hsu FC, Dorrell RD, Shen P, Clark CJ. Modified frailty index predicts postoperative outcomes in older gastrointestinal cancer patients. J Surg Oncol. 2017;115(8):997-1003.

81. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146-M156.

82. Lang PO, Michel JP, Zekry D. Frailty syndrome: a transitional state in a dynamic process. Gerontology. 2009;55(5):539-549.

83. Xue QL. The frailty syndrome: definition and natural history. Clin Geriatr Med. 2011;27(1):1-15.

84. Brown SR, Mathew R, Keding A, Marshall HC, Brown JM, Jayne DG. The impact of postoperative complications on long-term quality of life after curative colorectal cancer surgery. Ann Surg. 2014;259(5):916-923.

85. Aguayo GA, Donneau A-F, Vaillant MT, Schritz A, Franco OH, StrangesS, et al. Agreement between 35 published frailty scores in the general population.Am J Epidemiol. 2017;186(4):420-434.

86. Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancerassociated cachexia. Nat Rev Dis Primers. 2018;4:17105.

87. Gingrich A, Volkert D, Kiesswetter E, Thomanek M, Bach S, Sieber CC, et al. Prevalence and overlap of sarcopenia, frailty, cachexia and malnutrition in older medical inpatients. BMC Geriatrics. 2019;19(1):120.

4. Conclusão

Depois de realizar este estudo podemos concluir que este é um pequeno contributo em direção à prevenção de complicações pós-operatórias de doentes oncológicos através da avaliação da fragilidade. A identificação precoce das complicações pós-operatórias deve ser prioritária e o nosso trabalho suporta a utilidade da avaliação da fragilidade em período pré-operatório.

O nosso estudo permite concluir que:

- O risco de desenvolver complicações pós-operatórias se encontra presente não só nos doentes frágeis como também nos pré-frágeis. Isto destaca a necessidade de se considerar ferramentas que avaliem o grau de severidade da fragilidade;
- O risco permaneceu elevado mesmo após terem sido realizadas outras subanálises, como para o tipo de instrumento de avaliação, severidade das complicações, localização dos estudos, tamanho da amostra, tempo após cirurgia;
- O tipo de cancro parece influenciar as complicações pós-operatórias, não tendo sido observado risco significativo no caso do cancro ginecológico;
- A heterogeneidade mostrou-se alta e uma das razões pode dever-se à grande diversidade de ferramentas utilizadas para a avaliação da fragilidade. Das ferramentas associadas a um maior risco de complicações o Índice de Fragilidade Modificado apresentou elevada heterogeneidade.
- O facto de grande parte dos estudos serem retrospetivos, mostrou também ser uma importante fonte de heterogeneidade. Esta pode ocorrer devido á utilização dos dados obtidos retrospetivamente nos registos clínicos, onde pode faltar informação ou, pelo facto de ter sido introduzido por outras pessoas.

Em suma, os resultados da nossa revisão sistemática e meta-análise sugerem que a avaliação da fragilidade é útil na determinação do risco cirúrgico, tendo potencial para auxiliar nas decisões de tratamento e encaminhar os doentes frágeis e pré-frágeis para programas de otimização com o objetivo de capacitar o doente para o tratamento, aumentando a tolerância do sistema fisiológico à agressão.

5. Referências bibliográficas

- Booka, E., Takeuchi, H., Suda, K., Fukuda, K., Nakamura, R., Wada, N., & Kitagawa, Y. (2018). Meta-analysis of the impact of postoperative complications on survival after oesophagectomy for cancer. *British Journal* of Surgery Open, 19;2(5), 276-284.
- Brahmbhatt, R., Brewster, L. P., Shafii, S., Rajani, R. R., Veeraswamy, R., Salam, A., Dodson, T. F., & Arya, S. (2016). Gender and frailty predict poor outcomes in infrainguinal vascular surgery. *Journal of Surgical Research*, 201(1), 156-165.
- Chen, X., Mao, G., & Leng, S. X. (2014). Frailty syndrome: an overview. *Clinical Intervention in aging*, 19(9), 433-41.
- Cohen, J. E. (2003). Human population: the next half century. *Science*, 14(302), 1172-1175.
- Ehlert, B. A., Najafian, A., Orion, K. C., Malas, M. B., Black, J. H., & Abularrage,
 C. J. (2016). Validation of a modified Frailty Index to predict mortality in vascular surgery patients. *Journal of Vascular Surgery*, 63(6), 1595-1601.
- Fang, Z. B., Hu, F. Y., Arya, S., Gillespie, T. W., & Rajani, R. R. (2017). Preoperative frailty is predictive of complications after major lower extremity amputation. *Journal of Vascular Surgery*, 65(3), 804-811.
- Hendren, S., Birkmeyer, J. D., Yin, H., Banerjee, M., Sonnenday, C., & Morris, A.
 M. (2010). Surgical complications are associated with omission of chemotherapy for stage III colorectal cancer. *Disease of the Colon & Rectum*, 53(12), 1587-1593.
- Hewitt, J., Moug, S. J., Middleton, M., Chakrabarti, M., Stechman, M. J., & McCarthy, K., (2015). Prevalence of frailty and its association with mortality in general surgery. *The American Journal Of Surgery*, 209(2), 254-259.
- Housman, J., & Dorman, S. (2005). The Alameda County study: a systematic, chronological review. *American Journal of Health Education*, 36(5), 302-308.

- Karam, J., Tsiouris, A., Shepard, A., Velanovich, V., & Rubinfeld, I. (2013). Simplified frailty index to predict adverse outcomes and mortality in vascular surgery patients. *Annals of Vascular Surgery*, 27(7), 904-908.
- Holland, F. (2003). American cancer society, 6th edition. United States of America: BC Decker.
- Lawrence, V. A., Hazuda, H. P., Cornell, J. E., Pederson, T., Bradshaw, P. T., Mulrow, C. D., & Page, C. P. (2004). Functional independence after major abdominal surgery in the elderly. *Journal of the American College of Surgeons*, 199(5), 762-772.
- Lu, Y., Tan, C. T., Nyunt, M. S., Mok, E. W., Camous, X., Kared, H. Fulop, T. Feng, L., Ng, T.P. & Larbi, A. (2016). Inflammatory and immune markers associated with physical frailty syndrome: findings from Singapore longitudinal aging studies. *Oncotarget*, 7(20), 28783.

Ministério da Saúde (2018), Retrato da Saúde, Portugal.

- Mogal, H., Vermilion, S. A., Dodson, R., Hsu, F. C., Howerton, R., Shen, P., & Clark, C. J. (2017). Modified frailty index predicts morbidity and mortality after pancreaticoduodenectomy. *Annals of Surgical Oncology*, 24(6), 1714-1721.
- Morley, J. E., Vellas, B., Van Kan, G. A., Anker, S. D., Bauer, J. M., Bernabei, R., Cesari M., Chumlea, W.C., Doehner, W., Evans, J., Fried, L. P., Guralnik, J. M., Katz, P. R., Malmstrom, T. K., McCarter, R. J., Robledo, L. M. G., Rockwood, K., von Haehling S., Vandewoude, M. F. & Walston, J. (2013).
 Frailty consensus: a call to action. *Journal of the American Medical Directors Association*, 14(6), 392-397.
- National Services Scotland. (2019). *Detect Cancer Early Staging Data: Year 7 (1 January 2017 to 31 December 2018)*, Consult. 24 setembro 2019, disponível em https://www.isdscotland.org/Health-Topics/Cancer/Publications/2019-08-13/2019-08-13-DetectCancerEarly-Report.pdf.
- Miranda, N., Portugal, C., Nogueira P. J., Farinha, C. F., Oliveira, A. L., Soares,
 A. P., Alves, M. I., Martins, J., Mendanha, T., Rosa, M. V., Silva, C. &
 Serra, L. (2016). Doenças Oncológicos em Números 2015: Programa

Nacional para as Doenças Oncológicas. Consult. 24 setembro 2019, disponível em https://www.dgs.pt/estatisticas-de-saude/estatisticas-de-saude/publicacoes/portugal-doencas-oncologicas-em-numeros-2015-pdf.aspx.

- O'Neill, B. R., Batterham, A. M., Hollingsworth, A. C., Durrand, J. W., & Danjoux, G. R. J. A. (2016). Do first impressions count? Frailty judged by initial clinical impression predicts medium-term mortality in vascular surgical patients. *Anaesthesia*, 71(6), 684-691.
- Office for National Statistics. (2019). *Cancer registration statistics, England*: 2017. Consult. 24 setembro 2019, disponível em https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialc are/conditionsanddiseases/bulletins/cancerregistrationstatisticsengland/2 017.
- Scarborough, J. E., Schumacher, J., Kent, K. C., Heise, C. P., & Greenberg, C. C. (2017). Associations of specific postoperative complications with outcomes after elective colon resection: a procedure-targeted approach toward surgical quality improvement. *JAMA Surgery*, 152(2),e164681-e164681.
- Zogg, C. K., Ottesen, T. D., Kebaish, K. J., Galivanche, A., Murthy, S., Changoor, N. R., Zogg D. L., Pawlik T. M., Haider A.H. (2018). The Cost of Complications Following Major Resection of Malignant Neoplasia. *Journal* of Gastrointestinal Surgery, 22(11), 1976-1986.