Compile-Time Analysis for the Parallel
Execution of Logic Programs in Andorra-I

Vitor Manuel de Morais Santos Costa

A thesis submitted to the University of Bristol in accordance with the requirements
for the degree of Doctor of Philosophy in the Faculty of Engineering, Department-of
Computer Science.

August 1993

Abstract

Logic programming languages, such as Prolog, provide a high-level view of program-
ming. These languages allow a form of programming where one declares the logic
of the problem, plus the control necessary for efficient execution. Logic programs
can take advantage of recent parallel architectures by exploiting implicit parallelism,
where and-parallelism results from the parallel execution of goals, and or-parallelism
results from the parallel execution of alternatives to the same goal.

Andorra-I is an experimental parallel Prolog system that transparently exploits both
dependent and-parallelism and or-parallelism. It implements the Basic Andorra
Model, a parallel execution model for logic programs in which determinate goals are
executed in parallel. This model not only combines two of the most important forms
of implicit parallelism in logic programs, it also allows a form of implicit coroutining.
This means that Andorra-I not only supports standard Prolog but also provides the
capabilities of flat committed-choice languages.

The main subject of this thesis is the Andorra-I preprocessor, that supports the
execution of Prolog programs in the Basic Andorra Model. The preprocessor analyses
clauses heads and builtins in the body to generate determinacy routines. These
routines are used at run-time to verify when at most a clause will match a goal: To
cater for Prolog programs containing builtins such as side-effects or some cuts that
depend on a left-to-right order of execution, the preprocessor includes a sequencer
that generates sequential annotations to guarantee the correct execution of these
builtins. An abstract interpretation module performs global analysis to assist the
sequencer in detecting the cuts and meta-predicates which need sequencing. Finally,
the preprocessor includes a compiler that generates WAM-style code for each clause.

With the aid of the preprocessor, a number of substantial Prolog applications have
already been successfully ported to Andorra-I. We discuss the performance of the
different components of the preprocessor and the performance of the Andorra-I system
as a whole, and finally we present some possible extensions to the Basic Andorra
Model.

LBL.BeA) casy/ can
UNIVERSIDADE LO PORTO |

Faculdade de Engenharia

IBLICTECA N
N.o 274{@

‘ CDU
| Data i /19

[y

Declaration

No portion of the work referred to in this thesis has been submitted in support of
an application for another degree or qualification of this or any other university or
institution of learning.

Vitor Manuel de Morais Santos Costa

Acknowledgements

Working at Bristol has been a very rewarding experience for me. Of all the many
people who have made the contributions in thesis possible, I would like to thank my
supervisor, David H. D. Warren, first. I have learned much from his vast experience
and knowledge in logic programming. His interest and the many discussions we have
had throughout my research are a major influence on this work.

I have also been very fortunate to work with Rong Yang. Her contributions to Andorra-
I have made my work possible, and her different approach to logic programming has
widened my interests in this field. Thank you very much.

I also thank Clive Williams, Gopal Gupta, Inés Dutra, Kish Shen, Péter Szeredi,
Raéd Sindaha, Sanjay Raina, Tony Beaumont, and many others at Bristol for our
many discussions and for your very good friendship. Inés and Tony have given major
contributions to our system. My Sainsbury’s walks with Gopal led me to research in
other forms of parallelism in logic programs. Talking to Kish and Raéd is always a
fruitful and welcome experience. I also thank the Andorra-I users, people such as
Steve Gregory, Andrea Domenici, and Dewi Munaf, for their comments and patience.

I am most grateful to the people who have read drafts of this thesis. David D. H.
Warren’s careful reading and suggestions have much improved this thesis. Ahmed,
André, Inés, Kish, and Rong have suggested many needed improvements.

Working at Bristol has allowed to meet and learn from people from logic programming
groups throughout the world. I particularly thank the Esprit PEPMA project for this.
My research has gained much from the ideas of people such as Reem Bahgat, Seif
Haridi, Manuel Hermenegildo, and Lee Naish. I also thank Manuel Hermenegildo for
my very fruitful visit to Madrid.

I thank Lufs Damas and all the people at my group in Porto for introducing me to
Prolog, and for our work in YAP. I say obrigado to Fernando Silva, Jodo Lopes, Nelma
Moreira, Rogério Reis, Zé Paulo Leal, and all of you, for your help and friendship
throughout these years, and especially through this last year.

My work has been made possible by the support of the Universidade do Porto,
Fundagdo Calouste Gulbenkian, and Esprit Project from the European Community, to
whom I am most grateful.

Last, but not the least, I say thank you for everything to my parents.

To Inés

Contents

List of Figures

List of Tables

1 Introduction

1.1 Logic Programming Languages
1.2 Parallelism in Logic Programs
1.3 TheBasicAndorraModel,

1.4 ThePreprocessorottt innenneeennnnn

1.5 ThesisOutline v v v i it e e et e e e e e e e e e e e e

2 Logic Programming Languages
2.1 LogicProgramst
22 ThePrologLanguage [
2.3 Other Logic Programming Languages

24 SUMIMAIY ot i it e e e e e e et ettt e e

3 Parallelism in Logic Programs

8.1 Or-Parallelism it e i e e e e e e e e e e e e e e e e
3.2 And-Parallelism v v v i e e e e e e e e e e e e e e e
83 SUMMATY . . v v v vt it et e e

4 An Introduction to the Basic Andorra Model and to Andorra-I

iv

viii

W 2t b W

12
15
21

30

32

33
38
47

48

4.1 Executing I-forn Clause programsin Parallel

42 Andorra-I. e e e e e e e e e e

Executing Prolog Programs under the Basic Andorra Model

5.1 Prolog and The BasicAndorraModel
5.2 Execution of PrologBuiltins
5.3 Engine SupportforBuiltins

5.4 Sensitive Goals v ittt e e e e e e e e e e e e e e e e e

5.5 Early ExecutionofBuiltins,
5.6 A Scheme For Correct Execution of Prolog Programs in Andorra-I

BT Summary e e e e e e e e e e e e e e e e

The Sequencer

6.1 Mode Based Analysisof Programs
6.2 Analysis Based on Abstract Interpretation
6.3 Indirectly SensitiveCalls

6.4 Control Annotations i i i i it e e e e e e e e

6.5 Performance Analysis0ttt
6.6 FurtherWork e e e e e e

6.7 SUMMArY it it e e e e e e e e e e e e e e e e e e

7 Abstract Interpretation

7.1 Background e e
7.2 The Abstract Domain e
7.3 An Example of Abstract Interpretation
7.4 Representing the abstract And/Or-tree.

7.5 Calculatingthe FixedPoint

60
61
65
71

72
78

80
81

82
83
87
89
91
95

98
99

7.6 Performance of the Abstract Interpreter

7.7 Precision of Abstract Interpretation

8 Andorra-I Prolog
8.1 Coroutining with the Andorra Selection Function
8.2 Andorra-I and the Committed-Choice Languages '.
8.3 Andorra-I and ExtensionstoProlog
84 Andorra-IProlog i e e

85 SUMIMAIY . . v v v v v e e v it e it e et e e e e e

9 The Determinacy Analyser
9.1 DetectingDeterminacy« .o i e
9.2 Determinacy Code forPureProlog
9.3 Extensionstothe Algorithm

04 DISCUSSION . & v v v v e et e e e e e e e e e e e e e e e e e

9.5 SUMMATY . .« v« v v et et ettt et et s ae e e

10 Compiler-Based Andorra-I Implementation and Performance
10.1 The Andorra-IEngineo
10.2 Principlesof Andorra-I o e
10.3 Schedulingin Andorra-Io
10.4 Compiling Andorra-I e e e e e e
10.5 Andorra-I Performance Analysiso

106 SUMMAIY « « v v o v v v e ot e e et e e e et e e s

11 Related Work
11.1 Andorra-IRelated Languages« « v v o ot v v ettt e e

129
129
134
135
138
139

140
140
142
163
169
175
177
177
179
183
185
193
200

201

112 IDIOM . . v o e e e e e e 203

11.3 The Extended Andorra Model v oo vt v i it i e e i e 208
11.4 The Andorra Kernel Language 212
115 Summaryo e e e e e e e 215
Conclusions and Future Work 216
12.1 The Preprocessor oot i it it ot it e i ieee e 217
122 LanguageIssues o i i it i e e . 218
12.3 Areas of FurtherResearch 219
Basic Operations on the Abstract Domain 221
Al Environments ittt i e e e e 221
A2 Procedure Entry e e e e 222
A3 Procedure Exit i e e 227

A.4 Interpretation of Builtins 230

List of Figures

1.1

2.1

2.2

3.1
3.2
3.3
3.4
3.5

4.1

5.1
5.2
5.3

5.4

6.1
6.2
6.3
6.4
6.5

The structure of the preprocessor, 8
Different Search-Trees forthe Same Query 15
WAM Stacks . . v v v ot e e e e e e e e e e e e e 20
Examples of Parallel Machines 33
The Binding Problem in Or-parallelism 34
Shared Bindings in Or-parallel Models 36
Parallel Execution of Multiple Concatenation 40
Computation in the AND/OR Process Model 43
The Andorra-I Architecture ‘58
And-Execution With Side-Effects, 67
A Search Tree With Side-Effects S 70

Execution of Side-Effects without Synchronisation in the Search Tree . 70

CallstoaBuiltiny 74
Read-Only Head Unification e e 85
Read-OnlyCalls ittt 86
A Program and Its Dependency Graph e 90
Fixpoint Calculation 91
Exampleof Sequencing oo 92

viil

6.6 Synchronisation through the Sequential Conjunction 93

6.7 Synchronisation through the Short Circuit technique 95
6.8 Dependencies in Short-Circuit Synchronisation 95
7.1 Correctness Conditions for Abstract Operations 102
7.2 Structure of the Abstract Domain. 108
7.3 And/Or-tree versus And/Or-graph, 113
7.4 Twocompact And/Or-graphs « o v oo i it i 114
7.5 Performance of Abstract Interpretation | ... 121
8.1 TheGameofLifeo, 130
8.2 Crossword Puzzle Solution 131
8.3 Crossword Puzzle Executionin Andorra-I 132
9.1 A procedure and corresponding determinacy code. 143
9.2 Decision-Graph Algorithm for Individual Arguments 155
9.3 Determinacy Graph for a Pure Procedure 157
9.4 Determinacy Graph for a Procedure With Compound Terms 158
9.5 Determinacy Graph for a Procedure With Binary Tests 158
9.6 Determinacy Graph Through Failure 163
9.7 Determinacy Graph for Parallel Merge. e e e e e e 165
9.8 Generating a Decision-Graph for procedures with commitsonly 166
9.9 Generating a Decision-Graph for procedures withcutsonly 167
9.10 Determinacy Graph for a Procedure WithCut. 169
10.1 Execution Model of Andorra-I oo 178
10.2 Implementing Variable Suspension in Andorra-I e e e e e 181
10.3 Updatable Variablest vin oot 182

11.1 Execution Flow in IDIOM« it i i i it it e e e e e e e e e as 205

List of Tables

6.1 Number of Procedures that call Side-effects 96

6.2 Number of sequential conjunctions versustotal 97
7.1 Size versus Runtime(inseconds) 120
7.2 Precision of Abstract Interpretation Analysis 122
7.3 IncreasingDepthto3 123
7.4 Using Call Based Abstract Interpretation 124
7.5 Using a Call based graph and Depth Level3 125
7.6 Abstract InterpretationforIAP 125
10.1 The Overall Performance of Compiler-Based Andorra-I 195
10.2 Number of resolutions in Prolog and Andorra-I.. 196
10.3 Overall performance in KLIPS 197
10.4 Comparison between SICStus Prolog and Sequential Andorra-I 197
10.5 Interpreted versus Compiled Andorra-I 198
10.6 Speedups (10 processors) in Andorra-I, JAM, Aurora, and Muse 199
10.7 Speedups (10 processors) for both and- and or-parallelism 199
Al Abstract Unification withatom 224
A.2 Abstract Unification with any Constant 224
A.3 Abstract Unification with £(...,as...) « - v o o v o oo oo oo oL 225
A.4 Abstract Unification with a set of compound terms Or(A) 225

A.5 Abstract Unification withalist L(a) 226

A.6 Abstract Unification withGround 226
A.7 Abstract Unificationwith T(L') o i 227
A.8 Examples of i'ules to calculate the least upperbound 228

A.9 Examples of promotion to T duetosharing 230

Chapter 1

Introduction

Developments in computing have been dominated by the rise of ever more powerful
hardware. Processing speed and memory capacity have increased dramatically over
the last decades. Parallel computers connect together several processing units to
obtain even higher performance. Unfortunately, progress in software has been much
less impressive. One reason is that most programmers still rely on traditional,
imperative languages, and high-level tasks are difficult to express on an imperative
language primarily concerned with how memory positions are to be updated. This
low-level approach to programming is also cumbersome when programming parallel
computers, as the details of control flow can become very complex, and as the
best execution strategy can very much depend on a computer’s architecture and
configuration. ‘

In contrast to the traditional programming languages, logic programming provides a
high-level view of programming. In this approach, programs are fundamentally seen
as a collection of statements that define a model of the intended problem. Questions
may be asked against this model, and can be answered by an inference system, with the
aid of some user-defined control. The combination was summarised by Kowalski [97]:

algorithm = logic + control

Traditionally, logic programming systems are based on Horn clauses, a natural and
useful subset of First Order Logic. For Horn clauses, a simple proof algorithm,
SLD resolution, provides clear operational semantics and can be implemented effi-
ciently. The most popular logic programming language is Prolog [35]. Throughout
its history, Prolog has exemplified the use of logic programming for applications such

Introduction 2

[

as artificial intelligence, database programming, circuit design, genetic sequencing, |
expert systems, compilers, simulation and natural language processing. Other logic
programming languages have been successfully used in areas such as constraint based
resource allocation and optimisation problems, and on operating system design.

Logic programming systems are also a good match for parallel computers. As different
execution schemes may be used for the same logic program, forms of program execution
can be developed to best exploit the advantages of the parallel architecture used. This
means that parallelism in logic programs can be exploited implicitly, and that the
programmer can be left free to concentrate on the logic of the program and on the
control information necessary to obtain efficient algorithms.

In our work we aim towards a parallel logic programming system that (i) will allow
the user to be mainly concerned with the logic of the program and with the sufficient
control to obtain an efficient algorithm; (ii) will obtain good performance versus
sequential systems; and (iii) will exploit maximum parallelism. Such systems should
be be a correct and efficient implementation of a parallel execution model giving the
most implicit parallelism possible. In this thesis, we claim that compile-time analysis
is fundamental to build such a system:

e Compilation reduces the overheads of a parallel model and is necessary to obtain
performance close to traditional Prolog systems.

e Logic programming languages such as Prolog include input/output and other
primitives that may depend on a certain execution scheme. Global analysis may
be necessary to guarantee correct execution of these primitives on sophisticated
parallel execution schemes.

We demonstrate our claims in the context of the Andorra-I system, a system that
arguably extracts the most useful forms of implicit and-parallelism. We show that
through compile-time analysis Andorra-I can obtain good performance for a wide
range of Prolog and other logic programming language applications.

We next motivate this work with a brief discussion of logic programmmg languages and
of 1mphc1t parallelism in logic programs. After this, we present the main principles of
Andorra-I and explain where compile-time analysis is most important.

L1Logic Programming Languages 3

1.1 Logic Programming Languages

Logic programs consist of Horn clauses. Horn clauses may be facts, saying that some
goal (called the head of the clause) is true, or rules, saying that some goal (again called
the head of the clause), is true if some other goals are true. Execution proceeds by
trying to satisfy goals, usually starting from an original goal given by the the user,
the query. Each goal is tried with a clause. If it matches the head of a fact, the goal
succeeds. Ifit matches the head of a rule, Prolog tries to satisfy the goals in the body.
If no head matches the goal, the goal fails. Note that several heads of clauses may
match a goal. '

Prolog uses depth-first search and always selects the leftmost goal first. Control is
mainly given through clause and goal ordering. For instance, if a goal depends on some
other goal, it should be placed after that goal in the clause. The Prolog language also
includes some control features necessary for effective programming. These include
the pruning operator cut, builtins to generate Input/Output interactions, and the
meta-predicates to test the state of the computation.

Prolog’s execution strategy is simple to understand and efficient to execute. The
price to pay is that control is expressed statically through the placement of goals in
a rule. Many problems require data to be produced and consumed cooperatively by
different entities, that is, through coroutining. Although such problems can often
be written elegantly as logic programs, Prolog’s fixed execution strategy does not
(directly) support the necessary coroutining, resulting in inefficient execution. Hence
problems with a simple and elegant logic formulation may end up as a complex and
involved Prolog program.

Prolog can be extended with extra control features, such as Prolog-II’s “geler” and
NU-Prolog’s “wait” (these two features delay execution of specific goals until certain
- conditions are fulfilled). This is a compromise solution, and as such the new features
sometimes conflict with older features, such as cut.

The committed-choice languages are a different solution. These languages were
designed to take advantage of data cooperation between goals. Whereas Prolog selects
the leftmost goal, committed-choice languages say that a goal can be selected if it
can commit to a clause, and that each clause is associated with a set of conditions
that make execution of the goal meaningful. Thus, goals are selected, not according
to the position, but according to whether the data they need to commit has been
received. This can be an important advantage over Prolog. The drawback occurs for
problems with several solutions. In Prolog the different solutions can be expressed

12 Parallelism in Logic Programs 4

as alternative clauses. In the committed-choice languages, only a single clause will
be chosen, and more complex formulations are needed. This very much restricts the
number of Prolog applications that can be easily ported to these languages.

1.2 Parallelism in Logic Programs

Two main forms of implicit parallelism have been recognised in logic programs: or-
parallelism and and-parallelism. In or-parallelism, the several matching clauses
for a goal are tried in parallel. In and-parallelism several goals are launched and
solved in parallel. Two important cases of and-parallelism can arise. In independent
and-parallelism, parallel goals must not share (or communicate via) logical variables.
In dependent and-parallelism, goals can share variables, and different restrictions to
and-parallelism apply.

Both forms of parallelism exist in logic programs, and therefore both can be exploited
from most logic programs. Still, language design may affect which forms of parallelism
are most promising.

One example is the committed-choice languages. In these languages, or-parallelism
is limited because only one solution will eventually be considered. On the other hand,
it is possible that several goals can be committed simultaneously. Thus, dependent
and-parallelism can be exploited quite naturally, simply by running all these goals in
parallel.

Prolog programs are in a different situation. Many Prolog programs return several
solutions (or at least develop several partial solutions), thus or-parallelism is fre-
quently found. Or-parallelism can be extracted quite naturally, simply by adapting
~ the depth-first search rule of Prolog. Independent and-parallelism is also quite nat-
ural. One simply recognises (usually at compile-time) two or more goals in a clause
such that they do not share variables. Prolog would execute them independently, and
independent and-parallel system can run them in parallel. On the other hand, the
dependent and-parallelism, which is so important in committed-choice systems, is not
easily implementable with a leftmost goal selection function. |

Quite a few systems that successfully exploit a single form of parallelism are available.
They include the or-parallel systems Aurora [100] and Muse [2], the independent and-
parallel system &-Prolog [76], and dependent and-parallel systems implementing
committed-choice languages such as KL1 [141] and PARLOG [40].

1.3 The Basic Andorra Model 5

These systems show that implicit parallelism in logic programs is practical and useful.
Still, they are limited in that they explore only one form of parallelism. Programs
that have many solutions will do well with Aurora or Muse, divide-and-conquer
programs will do well with &-Prolog, concurrent programs will do well with Parallel
PARLOG or GHC. But the user still has to choose the most suitable system. And if
a program exhibits several forms of parallelism, not all the parallelism will be used.
We would therefore prefer a system which would be able to extract several forms of
parallelism. Andorra-Iis such a system that exploits the two arguably most important
forms of parallelism in logic programs, or-parallelism and and-parallelism between
determinate goals.

1.3 The Basic Andorra Model

Andorra-I is based on the Basic Andorra Model, a model for the execution of logic
programs. The model classifies goals as determinate, if at most one clause matches
the goal, or nondeterminate, otherwise. The Basic Andorra Model says that:

o If determinate goals exist, one may execute them first and in parallel;

¢ If no determinate goals are available, select a nondeterminate goal.

The model has important advantages. First, it naturally supports implicit coroutining,
as goals can make other goals immediately executable by making them determinate.
This coroutining is in the style of the flat committed-choice languages. However, the
Basic Andorra Model still supports goals with many matching clauses, and thus goals
with several solutions. Indeed, the model naturally yields two forms of parallelism:

o Dependent And-Parallelism, by running determinate goals in parallel;

e Or-parallelism, by trying the different alternative clauses to a goal in parallel.

Note that dependent and-parallelism in the Basic Andorra Model arises in much the
same way as in the committed-choice style of execution, and that or-parallelism arises
in much the same way as in or-parallel Prolog systems.

1.3 The Basic Andorra Model 6

1L3.1 Language Issues in the Basic Andorra Model

One of the most important considerations in designing a logic programming system
such as Andorra-I is which language to support. One can take an existing language,
such as Prolog or the committed-choice languages, or one can propose a new language.

If one wants to support an existing language, the main alternatives are Prolog and the
committed-choice languages. Flat committed-choice languages could be supported, but
they do have the important disadvantage that they do not exploit multiple solutions.
Supporting Prolog has several advantages. First, pure Prolog programs will give
the same solutions either executed by traditional left-to-right selection function or
by selecting determinate goals first. Hence, an important class of Prolog programs
can be run very simply in Andorra-I. Second, Prolog is still by far the most popular
logic programming language, hence giving Andorra-I easy access to mainstream
logic programming. Moreover, some Prolog applications should benefit from implicit
coroutining.

We therefore support Prolog in the Andorra-I system. We do so by running the Prolog
programs according to the Basic Andorra Model. Note that if the program includes
primitives that depend on left-to-right selection of goals, then execution in Andorra-I
is more complex, as the system may need to restrict early execution of some goals in
order to generate the correct execution.

Supporting Prolog does not prevent us from obtaining the full benefits of the corou-
tining. Not only can Andorra-I take advantage of the coroutining to speed-up existing
Prolog applications, it can also obtain good performance for programs where Prolog’s
left-to-right selection function would be much too inefficient. As an important ex-
ample, consider programs written for the flat committed-choice languages. Some of
these programs are Horn clause programs that depend on coroutining to perform well.
Such programs are inefficient Prolog programs but can be ported directly to Andorra-I,
where they will run as well as in their original environment. Other committed-choice
programs need special control primitives. These programs can still be ported to
Andorra-I, as long as equivalent control primitives are provided by Andorra-I.

We can now define the precise language that we support in Andorra-I, which we
call Andorra-I Prolog. It is a logic programming language that extends Prolog
with the implicit coroutining of the Basic Andorra Model. Therefore all Prolog
programs are Andorra-I Prolog programs. In addition, Andorra-I Prolog includes new
primitives designed to support other programming models, such as the committed-
choice languages. Note that programs that include these features may not be valid

1.4 The Preprocessor 7

Y

Prolog programs.

One could be more ambitious and propose a completely new language based on this
model (and indeed several authors have done so). The main advantage of a completely
new language is that one can obtain a cleaner design. On the other hand, designing a
new, hopefully better, programming language is not easy and has some drawbacks:

e One loses the advantages of supporting Prolog, and could in fact reduce the
appeal of the parallel system. Note that one can extend a new language to
support Prolog, but in this case one will have to deal with issues that Andorra-I
tackles from the beginning.

e Research on how Prolog’s builtins can be supported in Andorra-I’s environment
can be used to design builtins and control operators that will be useful in any
logic programming environment. On the other hand, special primitives designed
to take best advantage of Andorra-I may be outdated by new execution models.

We believe that supporting Prolog in Andorra-I is not only a worthwhile goal in itself,
but also one whose results should be considered by future work in logic programming
language design.

1.4 The Preprocessor

The goal of this work was to design compile-time tools to obtain correct and efficient
execution of Prolog programs in Andorra-1. To allow the correct execution of Prolog
programs, we researched the operation of Prolog programs with traditional left-to-
right selection function, and investigated which features allow early execution of goals,
and for which features left-to-right needs to be enforced. To obtain efficient execution
of programs in Andorra-I, we designed a compiler for Andorra-I. The compiler had to
address the new characteristics of Andorra-I’s selection function, and particularly the
problem of determinacy detection.

The output of this work was the Andorra-I preprocessor. As we explained, the main
innovation of the preprocessor over previous compile-time analysis tools results from
addressing two new problems in Andorra-I: which goals can be executed early, and
which goals must not be executed early.

A goal must not be executed early if it interferes with the correct operation of some
builtin, such as a side-effect predicate or cut. This is rather hard to detect at run-time.

1.4 The Preprocessor 8

We use the principle lthat some calls in the program are “sensitive”, i.e., may behave
incorrectly if goals executed later in the left-to-right execution are executed early.
Compile-time analysis detects such calls, and detects for which goals it should restrict
early execution.

A goal can be executed early if it is determinate. Determinacy can be verified at
run-time by testing every clause for the procedure. Andorra-I uses a more efficient
solution: at compile-time it generates some code for each procedure. This code must
detect, very quickly at run-time, whether a call is determinate.

The tools we described are integrated in Andorra-I's preprocessor. The preprocessor
thus includes a sequencer, that generates code to prevent early execution of goals, and
a determinacy code analyser, that compiles code to detect determinate goals. The code
generated by the preprocessor is executed by the Andorra-I engine.

The sequencer benefits from global information generated by an abstract interpreter.
The information is mainly useful in detecting uses of cut and of meta-predicates that
are not sensitive, and thus prevents some unnecessary sequencing.

The determinacy code analyser was originally designed to compile only determinacy
code, but was since extended to fully compile the (Andorra-I) Prolog source program.
A clause compiler generates code for individual clauses. The determinacy compiler
integrates this code with the determinacy code to obtain the full procedure code. The
end-code can then be run by the Andorra-I engine.

Abstract Determinacy

Analyser

Sequencer

Y

Program ——i»

Interpretation

Program +

Program + Program + sequencing +

mode patterns sequencing determinacy

Figure 1.1: The structure of the preprocessor

Figure 1.1 presents the structure of the preprocessor is presented. Note that the first
two components are mainly concerned with restricting the early execution of goals
in Prolog programs. They could well apply to any Prolog system that allows early
execution of goals. The determinacy compiler is mainly concerned with Andorra-I
style execution, and it can (at least in part) be used for other programming languages
to be supported on the Basic Andorra Model.

The compile-time analysis we have designed is part of the full Andorra-I system.

1.5 Thesis Outline 9

[y

The Andorra-I system started from the original goal of using David Warren’s Basic
Andorra Model to obtain both and-parallelism and or-parallelism, in logic programs.
Development has been a group effort of the parallel logic programming group at
Bristol, supervised by David Warren. We can discriminate as individual components
the engine that actually executes the programs, and that was developed by Yang, the
preprocessor we already presented, the and-scheduler that manages and-parallelism,
and was also developed by Yang, the or-scheduler, that manages or-parallelism, mainly
developed by Beaumont, and the top-scheduler, developed by Dutra.

1.5 Thesis Outline

This thesis describes the Andorra-I preprocessor as part of the parallel logic program-
ming system Andorra-I, and presents the main components in of the preprocessor in
detail.

Chapter 1 is the present chapter.

Chapter 2 discusses logic programming in more detail. The Prolog language and its
implementation are discussed. Alternative logic programming languages, such as the
committed-choice languages, are also presented in more detail, and the main issues
in their implementation are discussed.

Chapter 3 discusses the issues involved in the parallel execution of logic programs, and
gives a brief survey of the research in parallel logic programming systems. Emphasis
is given to work influential in or related to the development of Andorra-I.

Chapter 4 introduces the Andorra-I system. We describe how the Basic Andorra Model
can be used to obtain both or- and and-parallelism. Andorra-I supports Andorra-I
Prolog and is designed to obtain correct and efficient execution of Prolog programs.

Chapter 5 describes in detail the problems we can found when supporting Prolog in
Andorra-I. Most important are the problems that arise due to uses of builtins or of
pruning operators that are sensitive. We explain in detail which uses of builtins are
sensitive, and present a scheme for the execution of logic programs in Andorra-I.

Chapter 6 describes the sequencer, the part of the preprocessor which generates
the annotations necessary for the correct execution of the extra-logical features of
Prolog. The algorithms of the sequencer are described in detail and its performance is
analysed.

1.5 Thesis Outline 10

.

Chapter 7 concentrates on the use of abstract interpretation by the preprocessor. The
abstract interpretation system studies the execution of programs with the left-to-right
selection function to obtain mode information that is used in the sequencer. Its design
is discussed in detail in this chapter, and its performance analysed.

Chapter 8 presents in more detail Andorra-I Prolog. The chapter presents how
the coroutining in the Basic Andorra Model can be used to run committed-choice
applications or to reduce the search-space in search problems. It also discusses
support to Prolog extensions such as delaying of goals and constraints.

Chapter 9 describes the determinacy analyser. This system generates the code which
verifies when a goal is determinate. To generate this code, the analyser must analyse
the heads of clauses and builtins in the clauses. To verify all cases of determinacy is
a hard problem. Some simplifications are necessary. Such simplifications and their
motivation are also discussed in this chapter.

Chapter 10 describes the Andorra-I engine and its performance. The chapter gives
an overview of the main data-structures designed by Yang to support parallelism in
Andorra-I and of the schedulers designed by Yang, Beaumont and Dutra to support
parallel execution. Next, the chapter presents an overview of how the Andorra-I
abstract machine and compiler was designed, and gives a short study of Andorra-1
performance.

Chapter 11 discusses some more powerful models that can improve on the Basic
Andorra Model. IDIOM expands the Basic Andorra Model to support independent
and-parallelism. The EAM and AKL provide powerful execution models which support
non-determinate dependent and-parallelism. Such models lift some of the limitations
of the Andorra-I system.

Chapter 12 presents the main conclusions of this work and suggests lines of research
for future work.

The thesis includes an appendix containing a more detailed presentation of the
operations on the abstract domain presented in chapter 7.

Chapter 2
Logic Programming Languages

The logic programming paradigm uses logical inference on the clausal form of logic to
provide a problem-solving mechanism. This mechanism stems from the investigations
into the mechanical proof of theorems, such as Robinson’s resolution rule [133]. It was
found that for an important subset of first order languages, Horn clauses, there is a
simple proof procedure, that can be easily implemented as a computer program. As
expressed by Kowalski [97], logic programming is thus about expressing problems as
logic and using a proof procedure to obtain answers from the logic. Logic programs
include two components, the logic, usually expressed as Horn clauses, and the control,
used to guarantee efficient algorithms.

The language Prolog is due to Colmerauer and others [35]. Prolog uses a particularly
simple proof procedure, which is very well suited to standard computer architectures.
Prolog has been quite successful as a general-purpose programming language. Still,
it has some limitations, one of the most serious being that Prolog’s execution rule can
be too constraining. In fact, it is sometimes the case that a problem can be easily
expressed as Horn clauses, but that using Prolog’s proof procedure on this program
will give a very bad algorithm. The belief that more flexible proof procedures would
expand the number of problems that can be solved in a declarative fashion has resulted
in several extensions to Prolog and on new logic programming languages having been
proposed. ‘

In this chapter, we first give a brief overview of the fundamental concepts in logic
programs. We present Prolog and its implementation. We also discuss some of the
many alternatives to Prolog, including the committed-choice languages.

2.1 Logic Programs 12

2.1 Logic Proé‘rams

Logic programs manipulate terms. A term is either a logical variable, or a constant,
or a compound term. Constants are elementary objects, and include symbols and
numbers. Logical variables are terms that can be attributed values or bindings.
This process is known as instantiation or binding. Logical variables can be seen as
referring to an initially unspecified object. Hence, variables can be given a definite
value (or bound) only once. Several variables can also be made to share the same
value, that is a variable may be instantiated to another variable.

Compound terms are structured data objects. Compound terms comprise a functor
(called the principal functor of the term) and a sequence of one or more terms, the
arguments. A functor is characterised by its name and by its arity, or number of
arguments. The form name/arity is used to refer to a functor. In the Edinburgh
syntax [28], terms are written as f (T1,...,Ty), where f is the name of the principal
functor and the T; the arguments. A very common term is the compound term
{(Head,Tail), written as [Head|Tail], usually called the pair or the list constructor.
The Edinburgh syntax also allows some functors to be written as operators. For
instance, the term ’+°(1,2) can also be written as 1+2. '

A term is said to be ground, or fully instantiated, if it does not contain any variables.

We define size of a term to be one if the term is a constant or variable, and one plus
the size of the arguments if the term is a compound term.

We can now define Horn clauses. Horn clauses are terms of the form:
H:- Gl,...,Gn.

H is the head of the clause and Gy,...,G, is the body of the clause. The body of a
clause is a conjunction of goals. If the body is empty, a clause is named a unit clause.
Otherwise, a clause is called a non-unit clause. The head consists of a single goal or is
empty. If the head of a clause is empty, the clause is called a query.

Goals are terms, either compound terms or constants. Goals are distinguished from
other terms only by the context in which they appear in the programs.

Logic prdgrams consist of clauses. A sequence of clauses whose head goals have the
same functor, forms a procedure. Procedures are formed with unit clauses, or facts,
and non-unit clauses, or rules.

2.1Logic Programs 13

Y

Declarative reading We give a brief definition of declarative semantics of a logic
program (see Lloyd [99] for a thorough description). In the declarative reading, each
clause in a program specifies a logic relation, where the symbol :- represents the
logical implication, and the symbol ‘) represents the conjunction. Thus, a clause of
the form:

H:— Gl,...,Gn.

can be read as: if there is a set of assignments for the variables appearing in G, to G,,
such that G; to G,, hold, H will hold.

The declarative semantics of a program give the set of all truths that can be deduced
from that program. This can be formalised in terms of standard model theoretic
semantics of first-order logic. These models try to obtain a minimal model, Mp, that
includes all the goals that are a logical consequence of a program P.

Traditionally, Herbrand interpretations [99] are used for this purpose. Given a first
order language L, the Herbrand Universe Uy, is the set of all ground terms that can be
formed out of the constants and functions symbols appearing in L, and the Herbrand
base By, is the set of all ground terms that can be formed by using predicate symbols
from L (i.e., the set of ground goals). An Herbrand interpretation I, is a subset
of By, such that the goals in the subset give the goals that are true with respect
to the interpretation. An Herbrand model for a set of formulas S is an Herbrand
interpretation which is also a model for S, that is an interpretation such that.all
formulae in S are true.

A least Herbrand model for a Horn clause program P can be obtained by intersecting
all Herbrand models for P. Van Emden and Kowalski [172] showed that the goals
in the resulting least model Mp are the goals that are the logical consequences of the
program.

The least Herbrand model can also be given in terms of fixed point semantics. First,
we define complete lattices. A complete lattice is a set S with a partial order relation
< such that there is a least upper bound, lub, and a greatest lower bound, glb, for
every subset of S.

To use fixed point semantics, we need to associate a complete lattice with any definite
(Horn clause) program P. The set of all Herbrand interpretations of P, 2B, is such
a complete lattice under the partial order of set inclusion €. The top element of this
lattice is Bp and the bottom elementis L.

2.1 Logic Programs 14

We next define a mépping, the immediate consequence operator Tp, on Herbrand
Interpretations of definite programs. The operator Tp is a mapping Ip — Ip such
that Tp(I) = {A € B, | A:— Ay,..., A, is a ground instance of a clause in P, and
{A1,...,Ax} C I}

The operator Tp is clearly monotonic. Moreover, it can be proven that it is continuous,
that is that Tp(lub(X)) = lub(Tp(X)). If it is continuous, it has a least fixed point
Ifp(Tp). This fixed point is obtained by using the theorem that the fixed point of
a continuous function T on a complete lattice is the infinite ordinal power of T,
T 1 w, where the ordinal of power 0, T 1 0 is L (or empty), the ordinal of power a,
T 1 a,is T(T 1 (e - 1)), and w is the infinite ordinal {0,1,2,...}. Van Emden and
Kowalski showed that the fixed point of Tp is equivalent to Mp and therefore that
Mp = Ifp(Tp) = Tp T w (intuitively this says that the minimal model can be obtained
by applying Tp iteratively from the unit clauses until converging).

Operational Reading One advantage of Horn clauses is that several complete, and
easy to implement, proof mechanisms are available. Traditionally, the resolution rule
is used by these mechanisms. Given two clauses, resolution creates a new clause that
is obtained by matching a negated goal of a clause to a non-negated goal of another
clause. Consider the clauses:

The resolution rule will use unification to match the goal G in both clauses to obtain
a new clause, in this case :- A,B,C.. If variables appear in the clauses, then the
resolution process will obtain the most general unifier, mgu, for the goals that are
being matched. For logic programs, the mgu is unique if it exists (if it does not exist,
the resolution rule fails).

The resolution rule can be used in a top-down or bottom-up fashion. Top-down
systems start from an initial query. This query is matched against a clause for
the corresponding predicate, and a new goal is launched according to some selection
function. For Horn clauses, one useful top-down form of resolution is SLD-resolution
(or LUSH resolution {81]). In this method, a query is matched against a clause, and
generates a new query (or resolvent) built from the remainder of the initial query and
the body of the matching goal. This process goes on recursively until either some goal
has no matching clause, or until an empty query is generated.

2.2 The Prolog Language 15

There is a simple and intuitive reading to SLD-resolution. Referring to the previous
clauses, G’ :- A, B can be interpreted as part of the definition of a procedure, and
the query :- G’?, C as a set of goals to execute, or satisfy. SLD-resolution operates
by selecting one goal of the query and calling a corresponding procedure. To satisfy
this goal, some new goals need to be satisfied, hence the new goals are added to the
query. The process is repeated until all the goals have been executed.

SLD-resolution does not specify which goal in the query should be selected. This
is the province of the selection function. Moreover, several clauses may match a
goal, hence there might be several ways to search for a solution. For a particular
selection function, an SLD-tree represents all the possible ways to solve a query from
a program, that is, the search-space of the program. It is important to remark that by
changing the selection function, one can change the search space. Consider the small
program shown in figure 2.1. The figure shows the search trees corresponding to two
different selection functions applied in the execution of the query :- a(X), b(X). The
first selects a(X) first, and needs to consider the two clauses for a/1. The second
selects b(X) first and hence only has a single matching clause for a(X).

= a(X), b(X). = a(X), b(X).
/\ a(l).
:- b(1). :- b(2). a(2). - a(2).
/ \ b(2).
failure success success .

Figure 2.1: Different Search-Trees for the Same Query

There may be several strategies for exploring a search-space.” A search rule describes
which alternative branches should be selected first. Search rules do not affect the
" search space, but they can affect how quickly one will reach the first solution (if at all).

2.2 The Prolog Language

Prolog was invented in Marseille by Colmerauer and his team [35] (a detailed account
of the origins of Prolog is given by Kluzniak and Szpakowicz [95]). Prolog systems
apply SLD-resolution, but with some simplifications. Prolog uses a fixed selection
function: the leftmost goal is always selected first. The search rule of Prolog is also
quite simple: Prolog simply explores the tree in a depth-first left-to-right manner.

2.2 The Prolog Language 16

Whenever several altérnatives for a goal are available, Prolog simply tries the first
alternative, following the textual order in the program. When an alternative fails,
Prolog backtracks to the last place with unexplored alternative, (that is, it restores the
state of the computation as before that point) and tries the first remaining alternative.

Language Features: In Prolog, programs automatically give control information
through the ordering of goals in the body of a clause and of the clauses in the definition
of a procedure. The ordering of body goals gives control information for the selection
function, whereas the ordering of clauses gives control information for the search rule.
To this, Prolog adds extra control operators, and several builtin predicates. Some
features may vary slightly for different Prolog systems.

Cut is the control operator most used in Prolog programs. Cut appears as a goalin a
clause. When activated, it simply discards all alternatives created since the procedure
has been entered.

Prolog includes several other builtins. We next give a brief description (we refer to a
Prolog manual or textbook [28, 19] for detailed descriptions).

(i) Input/Output builtins allow a Prolog system to interact with its environment.
They include the read-in program builtins, such as consult and reconsult, the term
Input and Output builtins, such as read and write, the character Input and Output
builtins, such as get and put, the stream Input Output builtins, such as open and
close, and the Dec-10 Prolog File operations, such as tell and see.

(ii) Internal Database builtins allow the user to dynamically change the Prolog
database. The most important are assert, that adds a clause to the Prolog database,
and retract, that deletes a clause from the Prolog database. The record family of

predicates add or retract terms from a separate database. |

In recent Prolog implementations, assert and retract only is valid for some predicates,
termed the dynamic predicates.

(iii) Arithmetic builtins perform the arithmetic operations. They include the expres-
sion evaluator is/2 and the arithmetic comparisons.

(iv) Term Comparison builtins compare any two Prolog terms. Mostly, they are based
on the compare/3 builtin. The results of comparing two variable depends on the Prolog
implementation.

2.2 The Prolog Language 17

1y

(v) Control builtins perform some control operations. They include the if-then-else,
->, that is a restricted version of cut; not-provable, \+, that succeeds if a goal fails;
and simple control builtins such as true, false and repeat.

(vi) Meta-Logical builtins can test and build new terms. The most well-known are
the var/1 and atom/1 family of builtins, that test the state of their arguments. The
functor/3, arg/3 and =../2 builtins can be used to create new functors, or to select
different arguments from a compound term. The name/2 family of builtins establishes
a relationship between a list of character codes and a symbol.

(vi) Set predicates give the several solutions for a goal. Some Prolog systems include
findall/3, which simply gives the solutions as computed by Prolog, but the most
important are the bagof and setof builtins, that have better semantics (117].

(vii) Other builtins are available. Programs need builtins that give program and
execution status, or debugging are important. Most Prolog systems also support some
interface to other languages, and give a notation for the definite clause grammar
formalism.

Note that the use of some of these builtins relies on knowledge of Prolog execution.
For instance, in the case of Input/Output goals one will place the goals that write the
result after the goals that perform the necessary computation.

The implementation of Prolog: Prolog adapts well to conventional computer
architectures. The selection function and search rule are simple operations, and the
fact that Prolog only uses terms means that the state of the computation can be coded
quite efficiently.

The original Marseille Prolog [7] system was an interpreter. Since then more efficient
" execution has been possible through refinements in the data structures used to
implement the language and through compilation. The DEC-10 Prolog system [179]
was the first compiled Prolog system and showed good performance, comparable to the
existing Lisp systems [187]. But the basis for most of the current implementations
of logic programming languages is the Warren Abstract Machine [180], or WAM, an
“abstract' machine” useful as a target for the compilation of Prolog because it can be
implemented very efficiently in most conventional architectures. We give next a brief
description of the WAM (we refer the reader to the several tutorials, e.g., [1, 53], for
more detailed information).

The main problems that the WAM addresses are the efficient representation of program

2.2 The Prolog Language 18

clauses, control information and representation of data (terms).

As regards data representation, the WAM represents Prolog terms as groups of cells,
where a cell can be either a value, such as a constant, or a pointer. Variables are
represented as a single cells. Free variables are represented as null pointers or as
pointers pointing to themselves. Bound variables can simply receive the value they are
assigned to, if the value fits the cell size, or made to point to the term they are bound
to. The WAM uses a copy representation for compound terms. In this representation
a compound term is represented as a set of cells, where the first cell represents the
main functor, and the other cells represent the arguments. Unification proceeds by
first comparing the two main functors and then by being called recursively for every
argument. An alternative representation to compound terms is structure sharing
(structure sharing was used in the original DEC-10 compiler). In stnicture-sharing
terms are represented as pairs, one containing the fixed structure of the term, the
skeleton, the other containing the free variables of the term. Unification proceeds
by comparing the skeletons and assigning variables in the environments. Note that
in structure sharing sharing different terms can share the same skeletons whereas
in copying each term is independent. Both representations have advantages and
disadvantages, but the WAM uses copying for several reasons that include easier
compilation and better locality [180]. '

As regards control, it concerns clause execution, clause selection and backtracking,
with clause execution including the two steps of head unification and goal launching.
Clause execution consists of head unification, followed by execution of the goals
in the body. Execution of the goals in the body is similar to the execution of a
series of subroutine calls in a procedural language, where each goal corresponds to a
function call and when the last goal is executed, control returns to the caller as in a
procedure return. Thus, subgoals in a clause can be represented as an environment.
 Environments will include control information such as the point where to return
to, and the variables that are shared between goals in the clause. An alternative
representation, goal-stacking, is to represent each goal individually, by creating a goal
frame for each goal (goal-stacking was initially considered for Prolog by Warren [181]).
Environment representation can be constructed more quickly and more incrementally,
and thus is the one used in the WAM. ’

The environments created during execution form a stack, the environment stack, with
the last environment to have been created on top of the stack. Note that terms created
during the execution of a goal may be passed by the caller. If such terms were stored
in the environment, it would not be easy to pop an environment when execution of its

2.2 The Prolog Language 19

1Y

clause is completed. The solution is to store compound terms and some variables in a
separate data structure, the heap (also known as global stack). By using the heap it
becomes possible to minimise environment size at compile-time.

When a goal fails, Prolog backtracks to the last point where it had alternative clauses.
The WAM represents alternative clauses for a goal through the choice-point data-
structure. This structure stores the states of the stacks and of the caller goal (that
is, its arguments). Prolog uses depth-first search, thus the choice-points can also be
accommodated in a stack. (The original WAM compacts the choice-point stack and
environment stack into a single stack, the local stack. For ease of understanding we
keep both stacks separate in this presentation).

When executing a goal, Prolog may bind variables of a caller goal. If the variable
was created before the last choice-point bindings may need to be undone during
backtracking (such bindings are known as conditional). Prolog keeps a separate
stack, the trail, that registers all conditional bindings. During backtracking this stack
is consulted and all such modifications undone. Note that a variable is only bound
once in Prolog. Thus, the trail needs only to store a pointer to the vanable that is
bound. When backtracking, this pointer is used to reset the value of a vanable to
unbound.

Figure 2.2 gives an overview of the stacks used by the WAM, with separate local and
choice-point stacks. The WAM maintains a set of registers with the current arguments,
the A registers, the current program pointer, P, and the current choice-point, current
environment, top of trail and top of heap, B, E, TRand H respectively. The HB and EB
registers are used when a variable is bound, in order to tell if the variable is older or
not than the current choice-point. The S register is used when the system is writing
or reading a compound term from the heap.

Finally, and as regards efficient program representation, in the WAM programs are
coded as instructions of the abstract machine. We give a very brief overview of the WAM
instruction set. Instructions can be divided into three groups, the procedural or control
instructions, the unification instructions and the indexing instructions. The control
instructions implement invocation of a new goal (execute and call) the return to the
caller goal (proceed) and the management of environments (allocate and deallocate).
Note that failure in the WAM is implicit. The unification instructions corresponds
to a specialisation of unification for a particular argument or sub-argument. Head
unification is specialised into instructions of the type get, for arguments, and unify, for
sub-arguments. Setting up an argument for a goal is specialised into put instructions.
The indexing instructions test arguments to constrain the set of clauses to try. The

2.2 The Prolog Language 20

TR

Trail Choice-Point Environment Heap
Stack Stack

Figure 2.2: WAM Stacks

choice-point manipulation instructions (try, retry and trust) create and manage
choice-points.

A WAM-based compiler will generate a set of WAM instructions that are interpreted
by an emulator. Performance of a WAM-based Prolog thus depends both on the quality
of the compiler and on the relative performance of the emulator. Recent efforts on
the implementation of Prolog have tried to improve further performance by using
direct compilation to native code and by using techniques of global analysis [174, 159].
- Native code systems gain performance by by-passing the emulator. They can also
perform machine-level optimisations. Global analysis provides information on how
arguments are actually used during execution. Its most common uses are in the
further specialisation of unification and in more sophisticated indexing.

Although these optimisations generate consistent improvements in performance, they
still use the same underlying data-structures and algorithms. Improvements of an
order of magnitude have been obtained for some test programs [174]. We would expect
this to be an upper bound for such improvements.

2.3 Other Logic Programming Languages 21

2.3 Other Logfc Programming Languages

One of the most serious criticisms of Prolog is that the selection function used by Prolog
is too restrictive. From the beginning, authors such as Kowalski {97] remarked the
effect on the size of the search space of solving different goals in different sequences.
For example, several authors showed that often the search space is reduced by selecting
the goals for which fewer clauses apply first. They include Kowalski [97], Warren and
Pereira in the Chat system [186], and Porto and Pereira in the sidetracking execution
principle [129].

A more flexible execution than the one used by Prolog can be obtained through
coroutining. Coroutines cooperatively produce and consume data [97]. Goals can also
cooperate in the same way, as the following example shows.

generate_and_test :-
value(Solution),
validate(Solution).

In Prolog, validate will wait until value fully creates a solution, hence all the
alternative values to Solution must be tried. If the goals act as coroutines, validate
can cooperate with value. It can fail as soon as a partial value to Solution is known
never to allow for a solution. Even better, validate can itself partially instantiate
Solution, and further help to reduce the search space.

Since quite early, coroutining has been seen as an alternative to the Prolog execution
rule. Languages such as Prolog-II [33], IC-Prolog [26], Epilog [130], MU-Prolog {119]
and NU-Prolog [161] were designed to give explicit coroutining.

- IC-Prolog was designed by Clark and others [26]. One goal of IC-Prolog was to
provide a rich set of control facilities. Two goals may be executed in pseudo-parallel by
time-slicing. The pseudo-parallel evaluation may be constrained by only allowing one
the goals to bind shared variables. These special annotations allow for data triggered
coroutining, where a producer can wait until the consumer suspends. IC-Prolog
also provides suspension on variables, that is, a goal can delay until a variable is
instantiated. Finally, IC-Prolog introduced guards in logic programming. In this
language, guards mean that the computation of the first goal cannot be interrupted
(thus, even if a guard succeeds, other clauses for the procedure may still be tried).

Epilog [130] allows the user to specify partial ordering of goals. Epilog introduces
a “coroutining execution”, where reductions for two goals alternate, and “delayed

2.3 Other Logic Programming Languages 22

1Y

coroutining”, where execution proceeds in cycles which should produce and completely
consume some instantiation.

The Prolog-1I language [33] was designed by Colmerauer and his group. Coroutining
is provided in Prolog-II mainly through the geler predicate that delays a goal until
some variable is instantiated. Also, the dif builtin provides a form of inequality
that delays until either when the terms are known never to unify, or if the terms
are ground. Prolog-II also adds systems of equations and inequations to the Prolog
language. These equations are delayed until they can be solved in the most efficient
way. Prolog-II is a predecessor of the constraint languages that will be discussed later.

MU-Prolog [119] and its successor, NU-Prolog [161], also attempted to give better
control than what is supported by the Prolog language. Both languages use when
declarations to delay goals until conditions on their arguments are fulfilled. These
conditions are either tests on the arguments becoming instantiated, or tests on the
arguments becoming ground. The latter are useful to implement negation as failure.
Mu-Prolog also introduced several new builtins that, in the style of dif, should be less
dependent on execution order.

Notice that there has been an evolution in the way coroutining is provided in logic
programming languages. This evolution has been from providing coroutining more
explicitly to languages where coroutining is expressed more implicitly, that is through
data-driven control. The advantages of a more data-driven approach to coroutin-
ing are fundamental to the committed-choice languages and in the constraint logic
programming languages that are discussed next.

Implementation of Coroutining: coroutining languages such as Epilog or IC-
Prolog are quite complex, and thus rather more difficult to implement than Prolog.
~ Pereira suggests the use of Prolog interpreters to implement these languages [127],
but in this case the languages can hardly become an alternative to Prolog. Languages
such as Prolog-II or NU-Prolog are much closer to Prolog, as they are basically Prolog
plus suspension and resumption of goals. These features can be implemented over a
conventional Prolog engine in the following way [10, 119, 16]:

o Information on a suspended goal can be stored as a goal frame, which will contain
the arguments of the goal and control information. Goal frames can be stored
either on the heap [16] or in a separate stack [10].

e In both languages a goal suspends until some variables are bound. When these
variables are bound, the implementation must quickly find which goals were

2.3 Other Logic Programming Languages 23

suspended on them. The simple solution is for these variables to point at the
goals frames of the goal suspended on them. This is usually implemented
by associating suspension records to such variables, that also include some
bookkeeping information.

Bookkeeping information is necessary when a goal suspends on a variable that
already has at least one goal suspended on it. Most implementations will create
a new suspension record (which will point to the other suspension record) and
make the variable point to this new record. Note that when doing so variables
lose their single assignment property. Trailing such variables is also more
complex, as they may now be assigned several different values during execution.

2.3.1 The Committed-Choice Languages

The committed-choice, or concurrent, logic programming languages [146] are a family
of logic programming languages that use the process reading [171] of logic programs,
instead of Prolog’s operational semantics. In this reading, each goal is viewed as
a process and computation as a whole as a network of concurrent processes, with
interconnections specified by the shared logical variables. The process reading of pro-
grams is most useful to build reactive systems, which contrast with transformational
systems in that their purpose is to interact with their environment in some way, and
not necessarily to obtain an answer to a problem. Examples of reactive systems are
operating systems and database management systems.

Prolog queries can have several solutions, corresponding to selecting different clauses.
This has been called don-know nondeterminism to separate it from don’t-care nonde-
terminism. In don’t-care nondeterminism only a single solution is chosen, although
this solution can be selected from a set of possible solutions. -

" The most important characteristics of the committed-choice languages are (a) that
they use the process reading of logic programs, (b) that they implement don’t-care
nondeterminism, but not don’t-know nondeterminism, and (c) that goals can only
choose a clause, or commit to a clause, when certain conditions on the goal are
fulfilled. In all the committed-choice languages one can associate these conditions to
the state of instantiation the goal, hence these languages naturally offer a form of
data-driven coroutining where a goal executes only when other goals have instantiated
the variables the goal needs to commit.

The conditions for goals to commit to a clause are expressed through guarded Horn
clauses. These clauses are of the following form:

2.3 Other Logic Programming Languages 24

1Y

Head : - Guard | Body.

Both the guard and the body of a clause consist of a (possibly empty) conjunction
of goals. If a goal “satisfies” the head and guard of a clause (where the meaning of
satisfied varies with each committed-choice language), the goal can commit to that
clause.

Execution of committed-choice languages starts from an initial query. At each point,
the goals in the query test the clauses for the corresponding procedure, and try to
commit to a clause. When the goal commits to a clause, the other clauses are discarded,
and the goals in the clause’s body are added to the query. If the goal cannot commit
to a clause, it will wait until its arguments become more instantiated. It is quite
reasonable for a committed-choice program to never terminate (an example would be
an operating system). Committed-choice programs can deadlock, when no clauses can
commit, or fail, if no clauses match the goal. These two situations are usually treated
as errors.

The committed-choice languages evolved from the original efforts towards introduc-
ing coroutining and and-parallelism to Prolog, and especially from IC-Prolog. The
first proposal of a committed-choice language was Clark and Gregory’s “Relational
Language” [23], which introduced the commit operator to control don’t-care non
determinism, but the most well-known committed-choice languages are Concurrent
Prolog [143], PARLOG [24] and GHC [167]. Note that all these languages have evolved
into several dialects.

Concurrent Prolog was designed by Shapiro [143]. Concurrent Prolog uses read-only
variables: a goal must suspend until its read-only variables are instantiated. The
. next example shows a procedure to append the list in the first argument to the list in
the second argument in Concurrent Prolog:

append([X|Xs], Ys, [XI2s]) :- |,
append(Xs?, Ys, Zs).
append([J, Ys, Y¥s) :- |.

Notice the read-only annotation for the variable Xs in the recursive call. Concurrent
Prolog evolved into the CP family of languages [146]. One of the problems these
languages attempted to solve is that in Concurrent Prolog several clauses may
instantiate variables created by the caller goal before committing, which is quite an

2.3 Other Logic Programming Languages 25

expensive operation. Basic CP languages include CP(|) that allows only matching (i.e.,
no bindings of the caller’s variable in the head and the guard), and CP(:) that allows
atomic unification (atomic because if the unification fails it must be as if it had not
been tried). Several combinations of these dialects are possible. '

Clark and Gregory’s PARLOG [24] language relies on the notion of safe guards, where

the programmer guarantees that no external variables will be bound. PARLOG clas-

sifies the arguments of a procedure as input or output, according to mode declarations
provided by the programmer. The execution of a clause will wait until the input
arguments are sufficiently instantiated, and is not allowed to instantiate its output
arguments until commitment. The append procedure for PARLOG can be written in
the following form (the commits are implicit):

mode append(?,7,7).

append([X|Xs], Y¥s, [X1Z2s]) <-
append(Xs, Ys, Zs).
append([1, Ys, Ys).

Ueda’s GHC [167] (Guarded Horn Clauses) is a language where there are no explicit
annotations, but a process will suspend if attempting to bind any of the caller’s
variables during head unification or execution of the guard. GHC’s version of append
is of the form:

append([X|Xs], Ys, XZs) :-
XZs = [XIZs],
append(Xs, Ys, Zs).

append([], Ys, Zs) :- Zs = Ys.

All the main committed-choice languages have flat versions. In flat languages
guards consist only of a conjunction of some builtins such as equality, inequality and
arithmetic predicates. Flat languages are simpler to implement and understand, but
there is some cost in expressiveness and convenience. One example of a flat language
is KL1 [156], the language used in the Japanese Fifth Generation Project. The core
of KL1 is FGHC, the flat subset of GHC. To this, KL1 adds meta-call predicates to
control computations, a pragma language to control parallel execution and some other
extensions.

The decision to support a single solution simplifies the design and implementa-
tion of these languages. Arguably, don’t-care nondeterminism is sufficient for most

2.3 Other Logic Programming Languages 26

reactive systems, and indeed the committed-choice languages have been used suc-
cessfully to implement complex applications such as operating systems kernels or
compilers [144]. On the other hand, these languages lack the advantages of don’t-
know non-determinism. For instance, search programs that can be coded easily and
naturally in Prolog are much more awkward to write in these languages [163]. To ad-
dress this problem, authors have proposed simulating Prolog in the committed-choice
language [145], automatically translating Prolog programs to the committed-choice
languages [166, 30, 6], or interfacing Prolog to the committed-choice languages [25].
Although useful, such proposals are limited and not as elegant as having a language
which would give the advantages of both the committed choice languages and of
don’t-know nondeterminism. We next mention some proposals: CP[l,|,&:,;], P-Prolog,
and ANDOR-IL

CPI[},],&s3]

CP(],],&,;] [138] was introduced by Saraswat and is one of the first proposals that
introduces don’t-know nondeterminacy in the committed choice languages. Saraswat
later [139] describes this language as part of his cc formalism, where ‘it is seen
as a minor syntactic variant of cc(l,w,—,=>) over the Herbrand domain, i.e., as
Herbrand(],w,—,=>) (the arguments to the language represent the control structures of
the language). CP[|,|,&,;]includes the control structures Blocking Ask, |, that applies
to a variable and waits until the variable is instantiated, Atomic Tell (from Concurrent
Prolog), don’t-care commitment and don’t-know commitment, &. 1f a clause with a
don’t-know commit & is selected for a goal, the system must behave as if the current
resolvent has been replaced by two (disjunctive) copies. Both copies can execute in
parallel but cannot influence each other. All solutions are accepted.

In order to implement this language, Saraswat designed a translation algorithm
from CP[},|,&,;] to Prolog with freeze [139]. Or-fairness (that is a breadth-first
like search rule) is not necessary in this language, thus Prolog’s sequential search
is a sound implementation. CP[},],&;] is a very rich language, and its full parallel
implementation will likely be quite complex.

P-Prolog

Yang’s P-Prolog [194] extends the committed-choice languages with two fundamental
concepts: an exclusive relation for clauses and dont-know non-determinism.

2.3 Other Logic Programming Languages 27

Guarded Horn clauses are said to be exclusive if only one can match the goal. If a set
of clauses is not exclusive, all the alternative clauses can be tried.

P-Prolog programmers specify which clauses are mutually exclusive by dividing
clauses into subsets, where clauses in different subsets are expected to be exclusive,
and clauses in the same subset need not to be exclusive. P-Prolog originally used
versions of the : - operator to indicate the possible subsets. The :- operator indicated
a subset with a single element, the :-- indicated a subset with two elements, and so
on. In practice, P-Prolog offers the :- and the :-- operators, where the :- operator is
used for sets of consecutive exclusive clauses, and the :-- operators is used for sets of
non-exclusive clauses.

The “:” operator is used to separate the guard and the body of a clause. Note that in
practice this operator works as a sequential conjunction.

P-Prolog also includes the other primitive, useful to obtain don’t-care nondeterminism.
Merge in P-Prolog can be implemented through this primitive:

merge([X|Xs], Y, [XI1Zs]) :- merge(Y, Xs, Zs).
merge([d, Y, Y).

merge(X, [YlYs]l, [YiZs]) :- other: merge(Ys, X, 2s).
merge(X, 00, X).

The builtin other separates clauses into two groups. The second group includes the
two last clauses and is only executed if the first group suspends. The merge procedure
commits when only one clause of a group is a candidate.

P-Prolog allows non-exclusive clauses to be tried as soon as the corresponding proce-
dure is reached. If the procedure is called before all arguments have received their
final instantiation, clauses that would have otherwise failed immediately may be tried
and generate unnecessary computation. A solution is to use exclusive clauses to wait
for some conditions on the arguments, as the next example shows:

append([],X,X) :-- X \== [0 : true.
append([XIXsl, Y, [Z12s]) :-- append(Xs, Y, Zs).
append([1,0,).

The third clause is exclusive with the first two clauses. Non determinate execution
of the goal must therefore wait until either the first or the third argument are
instantiated.

2.3 Other Logic Programming Languages 28

Yang presented a scheme for the implementation of P-Prolog [192], based on or-
trees which are implemented through hash-tables, but in practice only a sequential
interpreter for exclusive clauses was implemented. The notion of exclusive clauses in
P-Prolog was an important influence in the design of the Andorra model.

ANDOR-II

Takeuchi and others at ICOT proposed an AND- OR- computation model and the
ANDOR-II language [154]. As in the programming language Pandora [4] (presented
in section 11.1.3), predicates are divided into AND-predicates and OR-predicates. An
AND-predicate is defined by a set of guarded clauses and behaves like a normal
FGHC predicate. OR-predicates are defined by non-guarded clauses, but a reduction
which instantiates the goal during head unification will be suspended until the goal is
sufficiently instantiated. AND- and OR-parallel computation starts with a conjunction
of atoms, also referred to as a world. When a nondeterministic atom is invoked, the
world proliferates into several worlds.

The ANDOR-II language uses mode declarations in the style of PARLOG. Mode
declarations are needed for both AND- and OR-predicates. In practice, modes are
used in the single-producer constraint that specifies that a variable is allowed to occur
at most once in positions with write mode in its right-hand side. This restriction allows
translation from ANDOR-II to GHC. Note that only allowing read-only unification in
OR-predicates prevents goals from being called with different modes, which can be
quite useful (e.g., the guessing phase typical of Pandora applications). :

The AND- OR- parallel computation allows for nondeterminate goals to be reduced
eagerly, that is even when determinate goals are available, and is therefore close to
CP(l,|,&,;). Although the read-only declarations mean that the system will not be

- as eager as P-Prolog, eager evaluation of non-determinate goals still means that the

search space may be larger than the one generated by selection functions that delay
non-determinate goals as much as possible, such as Andorra.

2.3.2 Constraint Languages

Constraint logic programming languages include Prolog-III [34], the CLP framework
of languages [85] and CHIP [48]. In these languages, clauses are extended to include a
special class of goals, constraints. Whereas Prolog variables belong to a single domain,
the variables appearing in constraints have values in several sets of domains. These

2.3 Other Logic Programming Languages 29

domains include real and rational numbers, intervals, booleans, lists, etc.

Standard goals are executed in the Prolog fashion, but constraints are given to a
separate constraint solver. The solver maintains a set of active constraints and
applies some simplification rules to verify how the constraint can be satisfied (a
constraint is satisfied if it is true). If a constraint is fully instantiated, a constraint

can be simply evaluated and a yes/no answer obtained. Otherwise, the constraint

solver can wait until more variables become bound, or it can go ahead and obtain the
values of the non-instantiated variables which satisfy the constraints. In this way, a
constraint solver can give the effect of coroutining mentioned previously.

Several constraint programming languages have been proposed and implemented.
Prolog-IIT [34] improves Prolog-II (arguably the first constraint logic-programming
language). It allows for constraints on lists, rational numbers, and booleans. CLP pro-
vides a theoretical framework for constraint logic programming [84]. The framework
is quite general and Prolog can be considered as particular case, where the domain are
infinite trees, and constraints are of the form A = B (that is, unifications). CLP(R) [85]
is another instance of CLP, where constraints can be used over the reals (floating-point
numbers). CHIP [48] supports finite domains, booleans and linear rationals. CHIP
allows user-defined constraints. To introduce a constraint, the programmer must
specify when it will be executed (that is, how to coroutine them). To do so, CHIP
uses delay declarations, similar to NU-Prolog’s, demons, similar to committed-choice
guards, and conditional propagation, an if-then-else that delays until the argument
to the condition is fully instantiated.

We next show a very simple CLP(R) program and query [85]:

ohm(V, I, R) :- V=1 * R.

* ?- ohm(Vi, I, R1), ohm(V2, I, R2), V =V1 + V2, R1 = 15, R2 = 5,
The solution given by CLP(R) is:
Vi = 0.75%V, I = 0.05%xV, V2 = 0.25%V,

A weakness of constraint languages is that, for most domains, it is only possible to
design a good constraint solver for a limited class of queries. For instance, there
is a good constraint solver for linear equations on the reals, but not for all types of
equations.

S e
SR SR
FRAP A

2.4 Summary 30

[N

It has been observed that Prolog can be seen as a constraint logic programming
language. But the reverse is also true, that is, the domains that are used in
constraint-logic programming can be formalised as logic programs. For instance, the
finite domains of CHIP can be formalised as a finite set of facts defining the possible
values for a variable. For such simple domains, the main advantage of constraint
languages is that they give an elegant way to specify control.

The implementation of the constraint languages is quite similar to implementations
of languages such as NU-Prolog and Prolog-II. The main novelty is the introduction of
specialised constraint solvers.

ALPS

ALPS is a class of flat committed-choice languages proposed by Maher [101]. ALPS
applies the concepts of constraint logic programming framework to the committed-
choice style of execution. ALPS also uses new commit laws which have a close
relationship to P-Prolog’s exclusive relation. A goal A in the presence of a set of
constraints C can commit to a rule if:

¢ that rule is the only one satisfied, or,

e the constraints in the head and guard of the rule are validated (in the case
of unification constraints, if the guard does not instantiate any variable in the
caller goal)

Maher observes that the two rules are consistent: if a rule is validated it is also
satisfied, and no other rule can be the only rule satisfied.

24 Summary

This chapter presented a survey of work in logic programming languages. We gave
a brief description of logic programs, and presented Prolog and its implementation.
Traditional Prolog systems always select the leftmost goal for immediate execution.
Other languages, such as NU-Prolog, Prolog-11, the committed-choice languages, and
the constraint logic programming languages exploit coroutining.

Throughout the chapter we discussed the implementation issues involved with the
different logic programming languages. We gave main emphasis to the implementation

2.4 Summ |
ary 31

L

of the original Prolog language and to the implementation of the committed-choice
languages.

Chapter 3

Parallelism in Logic Programs

Parallel computers include several processors that can work in parallel to solve
problems. Parallel computers can be organised in very different ways. In shared-
memory machines the processing units share the same memory space. An example is
the basic shared-memory machine, as displayed in figure 3.1(a). In this example the
Processing units are connected through a bus that allows them to share a memory. This
simple scheme is quite efficient, but it has the disadvantage that the bandwidth of the
bus limits the number of processors that can work in parallel. Figure 3.1(b) shows an
alternative architecture, where processing unit and memory unit pairs communicate
in a network. Such architectures can scale to a larger number of processors, but they
are unsuitable to the shared-memory model, and are usually programmed in terms
of a distributed-memory model, where each processor has its own memory and sends
messages to communicate with other processors.

Notice that recent work in virtual shared memory machines, such as the DDM [185] or
the KSR [9], show the promise of being able to connect a larger number of processors
to a virtually shared memory in a scalable way.

Forms of Parallelism in Logic Programs Parallelism in logic programs can be
exploited implicitly or explicitly. In explicit systems such as Delta Prolog [128]
special types of goals (events and splits in Delta Prolog) are available to control
Parallelism. Unfortunately, these languages do not preserve the declarative view of
Programs as Horn clauses, and thus lose one of the most important advantages of logic
pProgramming.

Implicit parallelism can be obtained through the parallel execution of several resol-

3.1 Or-Parallelism 33

CPU
MEM
MEM
CPU
MEM
CPU CPU o oo CPU CPU
MEM
(a) Shared Memory Machine (b) Distributed Memory Machine

Figure 3.1: Examples of Parallel Machines

vents arising from the same query, or-parallelism, or through the parallel resolution of
several goals, and-parallelism. All these forms of parallelism can be explored accord-
ing to very different strategies. A full review of the very many models, languages and
systems that have been proposed for the exploitation of parallelism in logic programs
is a very large task, outside the scope of this thesis. In this thesis we give a brief
overview of some systems that we believe to be more important for Andorra-I.

- 3.1 Or-Parallelism

In or-parallel models of execution, several alternative search branches in a logic
program’s search tree can be tried simultaneously. So far, quite a few models have
been proposed. In this section we concentrate on multi-sequential models, where
Processing agents (workers in the Aurora [100] notation) select or-parallel work and
then proceed to execute as normal Prolog engines.

A fundamental problem in the implementation of or-parallel systems is that different
or-branches may attribute different bindings to the same variable. In an or-parallel
system, and differently from a sequential execution, these bindings must be simulta-

P 3.1 Or-Parallelism 34

[y

neously available. The problem is exemplified in Figure 3.2, where choice-points are
represented by black circles and branches that are being explored by some worker are
represented by arrows. The two branches corresponding to workers W, and W, see
different bindings for the variable X.

Figure 3.2: The Binding Problem in Or-parallelism

A large number of or-parallel models, including different solutions to these problems
have been proposed (the reader is referred to Gupta [65] for a survey of several
or-parallel models). The models vary according to the way they address the binding
problem. Next, there follows a brief description of some or-parallel models.

Independent Prolog Engines

The binding problem can be avoided by having each worker to operate on its part of the
or-tree as independently from other workers as possible. One extreme is represented
by the Delphi model [27], each worker receives a set of pre-determined paths in
the search term, attributed by oracles allocated by a central controller. Whenever
a worker must move to an alternative in a different point of the search tree, the

. worker recomputes all state information for that alternative. Delphi allows for good
parallelism, low communication and efficient performance in coarse-grained problems.
Delphi can have problems in fine-grained tasks as full recomputation of work may
become very expensive. Moreover, Delphi still needs some measure of centralised
control to distribute work.

A different alternative, copying, is used in other systems such as Ali’s Muse system [2].
In copy scheme based implementations, whenever a worker W, needs work from a
worker W, it copies the entire stacks of W,. Worker W; will then work in its tasks
independently from other workers until it needs to request more work. To minimise
the number of occasions at which copying is needed, scheduling in Muse favours
selecting work at the bottom of tree, a strategy which seems to be quite successful at

3.1 Or-Parallelism 35

improving task granularity.

Full copy systems basically use the same data-structures as a sequential Prolog engine
during ordinary execution. Thus they do not suffer any special overheads during
ordinary execution. On the other hand, task switching becomes more expensive. Also,
suspension of work in an or-branch, necessary for side-effects and for scheduling when
work can be pruned [148), is made more difficult. In general support for builtins that
depend on Prolog’s left-to-right control, such as cut, can be more difficult in systems
such as Muse, (and even more for Delphi) as it is necessary to look at the global or-tree
to find which worker is leftmost [73].

Shared Space

Instead of each worker having its own stacks, all the workers may share the stacks.
In this case they will need to represent the different bindings for the or-branches in
some specific way. To do so, some changes must be made to the data structures used
to represent Prolog. Whereas sequential implementations of Prolog store bindings
in the value-cell representing a variable variable, these systems need to use some
intermediate data structure to store bindings to variables that are shared between
or-branches. We next diécuss two examples of shared space models, the Hash Tables
used in PEPSys, and the SRI model used in Aurora.

Hash Tables: The main characteristic of hash-table models [21] is that whenever
a worker conditionally bindings a variable, the binding is stored in a data structure
associated with the current or-branch (these data structures are implemented as
hash-tables for speedy access). Whenever a worker needs to consult the value of a
variable, instead of consulting the variable’s cell immediately it will look-up the hash-
* tables first. Figure 3.3 (a) shows the use of hash-tables: note the links between hash
windows and the fact that only some hash windows will have bindings. Note also that
whenever the value for a variable is consulted, we need only to consult the hash-tables
younger than the variable, thus look-up is not necessary for variables created after
the last hash-table. PEPSys reduces the overheads in looking up ancestor nodes by
adding the binding of a variable to the current hash table whenever that variable is
accessed. Analysis of the PEPSys showed that a maximum of 7% of the execution time
is being spent in dereferencing through the hash tables.

3.1 Or-Parallelism 36

(a) Hash-Windows model (b) Binding Array Model

Figure 3.3: Shared Bindings in Or-parallel Models

Binding arrays: In binding arrays each Prolog variable has associated to it a cell
in an auxiliary data structure, the binding array [188, 182]. In the SRI model, a
binding array is associated with each active worker, and every variable is initialised
to point to its offset in the corresponding binding-array location. Conditional bindings
are stored in the binding arrays and in the trail, but not in the environment stack
or heap. Unconditional bindings are still stored in the stacks. In this way the model
guarantees that if a variable can be bound differently by several or-branches, it must
be accessed through the binding array. Moreover, binding arrays have the important

~ Property that a variable has the same binding array offset irrespective of or-branch.

Figure 3.3 (b) shows the use of binding arrays: notice that binding arrays always grow
when you go down the search tree.

In the SRI model the stacks are completely shared, but binding arrays are private to
every processor. When a worker W, wants to work in a choice-point created by another
worker W,, it backtracks until a choice-point it is sharing with W, and then moves
down in the or-tree until it finds W,’s choice-point. Backtracking is.implemented by
inspecting the trail and resetting all entries in the binding array altered since the
last choice-point. Moving down the tree is done by setting its pointers to the ones in
the choice-point and by inspecting W,’s trail (which is shared) in order to place all the

3.1 Or-Parallelism . 37

corresponding bindings in the worker’s own binding array.

Aurora [100] implements the SRI model. Aurora is a very important influence in the
development of the Andorra-I system, and we give a more detailed description of the
Aurora implementation next.

Aurora Implementation The Aurora system [100] is based on SICStus Prolog [19].
The SICStus engine incorporates several optimisations to the WAM, particularly
several new instructions and the shallow backtracking scheme (discussed in section
9.4.3). SICStus also supports an environment and a choice-point stack. Aurora
changes the SICStus engine in several ways [18), we just discuss the most important
ones:

o each worker has two binding arrays, one for variables in the environments, the
other for variables in the heap;

e choice points are expanded to point to the binding arrays, and to include fields
relevant to the management of work in the search-tree;

e memory allocation in Aurora is changed; each worker now represents its stacks
as sets of blocks. This allows the stacks to grow without the need for relocation
of pointers.

A fundamental problem for or-parallel systems is how to schedule or-work. Aurora
uses a demand driven approach to scheduling. Basically, a worker executes a task
as a Prolog engine. When its current task is finished, the worker calls the scheduler
which tries to find work somewhere in the search-tree. The interface between the
two components has been designed to be as independent as possible of the underlying
. engine and scheduler [153]. Initial schedulers, such as the Manchester scheduler [15],
favoured distribution of work from topmost in the tree. Such strategies do not
necessarily obtain the best results, particularly when the or-tree may be pruned
by cuts or commits or when most work is fine-grained. The Bristol scheduler [8]
was initially implemented to support bottommost dispatching but has been adapted
to support several strategies, including selection of leftmost work. The Dharma
scheduler [148] favours work which is not likely to be pruned away and tries to
avoid speculative work. Both the Dharma and Bristol schedulers can use voluntary
suspension, i.e., a worker abandoning its unfinished task, to move workers from
speculative to non-speculative areas in the or-tree.

3.2 And-Parallelism) , 38 .

Results for Aurora (with the latest schedulers) show good all-solution and first-solution "
speedups on diverse applications. The static overheads caused by the parallel impl-
ementation are on the average of 15%-30%, basically due to supporting the binding
arrays and to overheads in the implementation of choice-points. Instrumentation [152]
shows that fixed overheads are more substantial than the distance-dependent over-
heads from moving around the search-tree.

Aurora has a higher sequential execution overhead than a copy based implementation
such as Muse. On the other hand, sharing the stacks gives Aurora greater flexibility.
For instance, voluntary suspension is harder to implement in a copying based system.

3.2 And-Parallelism

In and-parallel models of logic programming execution, several goals in the query
can be active simultaneously. And-parallelism can be exploited in several different
ways in logic programs. When exploring and-parallelism for multiprocessor machines
it is convenient to separate and-parallelism into independent and dependent and-
parallelism.

Whereas or-parallel computations attempt to obtain different solutions to the same
query, and-parallel computations collaborate in obtaining a solutions to a query.
Each and-parallel task will contribute to the solution by binding variables to values.
Problems can arise if the parallel goals have several different alternative solutions, or
if several parallel goals want to give attribute different values to the same value (the
binding conflict problem).

There are several solutions to these problems. Traditional independent and-parallel
systems run goals that do not share variables in parallel (Non-Strict Independent And-
" Parallelism [78) gives a more general definition of independency between goals that
allows some variable sharing)). Independent and-goals solutions need to be merged
only at the very end of their computation. Independent and-parallel goals may be
executed by Prolog engines (one example is the &-Prolog system), or independent
and-parallelism may be combined with or-parallelism in some fashion (as, say, the
AND/OR process model or the ROLOG system demonstrate).

In contrast, dependent and-parallel systems allow goals that share variables to
proceed in parallel, while (usually) enforcing some other restrictions. One example
of such systems are the parallel implementations of the committed-choice languages.
Parallelism in these languages can be exploited quite simply by allowing all goals that

3.2 And-Parallelism 39

can commit to do so simultaneously. By their very nature, committed-choice systems do
not have the multiple-solution problem, as they disallow don’t-know nondeterminism.
In this case the binding conflict disappears, since if two goals in the current query give
different values for the same variable, then the query is inconsistent and the entire
computation should fail.

We next discuss some examples of and-parallelism in logic programming systems.
We discuss and-parallelism in the committed-choice languages, with emphasis on
the implementation issues. We mention some independent and-parallel models and
systems, and we briefly refer to some proposals to exploit dependent and-parallelism
between nondeterminate goals. Exploiting and-parallelism between determinate
goals, as performed in the Basic Andorra Model [183] and PNU-Prolog [120] is
explained in more detail outside this chapter.

3.2.1 And-Parallelism in the Committed-Choice Languages

In the committed-choice languages, all goals that can commit may run in parallel
and generate new goals in parallel. Parallelism in these languages is thus at the
goal-level. An ideal execution model for such languages could be based on a pool of
goals. Whenever a worker is free it looks in the pool of goals and fetches a goal. If the
goal does commit to a clause, the worker should add the goals in the body to the pool.
Otherwise, the worker would look for another goal.

Consider now a very simple FGHC program:

append([X[Xs], Ys, XZs) :-
XZs = [Xlzs],
append(Xs, Ys, Zs).

append([], Ys, Zs) :~ Zs = Ys.

append4(L1, L2, L3, L4, NL) :-
append(L1, L2, I1),
append(L3, L4, I2),
append(I1, I2, NL).

The append/3 procedure was presented in the previous chapter. The procedure
append4/5 appends four lists, by first appending the lists by pairs, and then appending
the result.

3.2 And-Parallelism 40

[y

Consider now the query append4([1,2],[],[3],[4],L). One and-parallel execution
with three workers is shown in figure 3.4. The workers executing the left two calls to
append/3 execute independently. The leftmost and rightmost call to append/3 execute
in “pipeline”, that is, the leftmost call generates bindings for L1 which allow the
rightmost call to commit.

ap4([1.2],[1.[3].[4],L)-

A 4

ap([1.2].[1.L1). ap([3].[4],L.2). ap(L1, L2, L).
4
ap([2].[],.L17). ap([}.[4],.L.2).
ap([l.[.L1™) True ap([2]L17][3]1L2',L).
True ap([l.[3.4].L")
True

Figure 3.4: Parallel Execution of Multiple Concatenation

This very simple example shows the flexibility of the committed-choice languages.
Parallelism between independent goals can be exploited naturally. More interestingly,
logical variables can be used in quite a natural way to give both sharing and
synchronisation between goals one wants to execute in parallel.

Note that verifying if a goal should commit is a very simple process in the flat
languages: just performing head unification and some builtins. Thus the parallelism
that is exploited in flat committed-choice languages is quite fine-grained.

We next discuss two implementations of the committed-choice languages that have
been quite successful for shared-memory machines. Both systems use abstract ma-
chines similar to the WAM, but with strong differences on how goals are manipulated.
Kimura and Chikayama’s KL1-B abstract machine [92, 141, 140] implements KL1.
Crammond’s JAM [41] is an abstract machine for the implementation of parallel PAR-

3.2 And-Parallelism 41

LOG, including deep guards (although there is no or-parallelism between deep guards)
and the sequential conjunction. JAM is based on a light weight process execution
model [40].

Both systems use a goal-stacking implementation where for each goal, goal records
store all the arguments plus some bookkeeping information, instead of the WAM's
environment representation. Goal stacking was first proposed to represent and-
parallelism in the RAP-WAM [74], described later. Goal records can be quite heavy,
in the JAM they have a total of eleven fields. In the KL1-B goals are stored in a
separate heap. In the JAM goal records are divided in a set of arguments, stored in
the argument stack, and the goal structure, stored in the process stack. Both systems
store all variables in the heap. Parallel Parlog supports the sequential conjunction
that are implemented with a special data structure, environments. l

We briefly mention some of the more important alterations to the WAM:

¢ Manipulation of goals: Whereas Prolog can always immediately pick the leftmost
goal, in committed choice languages goals can be in several states. The KL1-B
classifies these states as ready, or available for execution, suspended, or waiting
for some variable to be instantiated, and current, or being executed. The JAM
follows similar principles.

¢ Suspension on variables: Committed-choice languages allow multiple waiting,
so a goal may suspend on several variables. The opposite is also true and
several goals may suspend on the same variable. Both languages associates to
each variable a linked list of suspension records, or suspension notes. In the
KL1-B each suspension record contains a pointers to the suspension flag record,
itself consisting of a pointer to the goal record plus the number of variables
the goal is suspending. The JAM also uses indirect addressing to guarantee
synchronisation between several variables whilst accessing goal records. One
useful optimisation of JAM is that goals suspended on a single variable are
treated in a simpler way.

e Organisation of clauses: Clauses are divided into a guard, where unification is
read-only (passive in KL1-B notation) unification and can suspend, and the body
where (as in Prolog) unification can bind external variables (active in KL1-B’s
terminology) or be used for argument preparation. New instructions are need
to support passive unification instructions (these instructions need to consider
suspension). Both abstract machines use a special suspension instruction that
is called when the goal cannot commit.

o Backtracking: In committed-choice languages, there is no true backtracking.

3.2 And-Parallelism 42

Therefore, the trail and choice points can be dispensed with. (In JAM backtrack-
ing may occur in the guard but as the goals in the guard cannot bind external
variables it is not necessary to implement a trail.) Both abstract machines
still include try instructions, but they do not manipulate choice-points. The
disadvantage of not having backtracking, is that it is impossible to recover space
and hence there is a strong need for dynamic memory recovery, such as the
recovery of unreferenced data structures through the MRB bit [22] and garbage
collection [39, 124].

Shared-memory parallel implementations of both languages have to perform locking
whenever writing variables because other processors may want to write on the
variables simultaneously. To reduce locking, structures are first created and unified
to temporary variables; only then they are unified with the actual arguments. Finally
scheduling of and-work in these languages is dominated by locality considerations.
Each processor has its own work queue, and manages its own parts of the data areas
(again, similar ideas were proposed for the RAP-WAM [74]). Depth first scheduling is
favoured for efficiency: evaluating the leftmost call first allows better reusage of the
goal frames. JAM supports better scheduling [42] by allowing the local run queues
to be in part private to each worker. On the Sequent Symmetry multiprocessor,
JAM performs 20% to 40% faster than the corresponding implementation of the
KL1-B [164].

3.2.2 Independent And-Parallelism

The literature includes quite a few models that support independent and-parallelism,
(often also supporting or-parallelism). Conery’s AND/OR process model [36] was
influencial in the development of these models. In Conery’s model, or-processes are
- created to solve the different alternative clauses, and and-processes are created to
solve the body of a goal. The and-processes start or-processes for the execution of the
goals, and join the solutions from the or-processes for the different goals. The model
restricts or-parallelism by only starting or-processes for the remaining clauses or if no
more or-processes in the current clauses remain to output the solutions. The structure
of the model is shown in Figure 3.5, based on Figure 3.7 of [36].

In Conery’s model a dependency graph between goals indicates which goals depend on
which goal. The cost of process creation and to maintain the dependency graph means
that this model has severe overheads in relation to a sequential Prolog system.

The REDUCE/OR Process Model was designed by Kalé [90]. The REDUCE-OR tree

3.2 And-Parallelism 43

<= OR process

-akbékec.

<= Processes to solve
literals in goal

Figure 3.5: Computation in the AND/OR Process Model

is used instead of the AND-OR tree to represent computation. OR nodes correspond
to goals, REDUCE nodes correspond to clauses in the program with special notation
for generators of variables and several or-nodes for the same goal, corresponding to
different bindings of their arguments. REDUCE nodes maintain partial solution sets,
PSS, initially empty, that are used to avoid recomputation. Sequencing between goals
is given by data join graphs in the style of Conery’s dependency graphs. Or-parallelism
is explored both when a goal is first executed, or when solutions from a goal generate
several instances (the latter case is not explored in Conery’s model). The ROPM model
has been implemented on multiprocessors using structure-sharing to implement a
binding environment

that prevents references from a child to its parent node [131]. Benchmark results
suggest significant overheads in the implementation of the model, but almost linear
speedups in suitable benchmarks due in some cases to AND- and in some cases to
OR-parallelism. '

The overheads in implementing dependency (or join) graphs may be quite substantial.
DeGroot [47] proposed a scheme where only goals which do not have any run-time
common variables are allowed to execute in parallel. To verify these conditions,
DeGroot suggested the use of expressions that are added to the original clause and
at run-time test the arguments of goals to verify independence. DeGroot’s work was

3.2 And-Parallelism 44

[y

refined by Hermenegildo into the CGEs [74] and &-Prolog’s parallel expressions [114].
We next give an example of a linear parallel expression in the &-Prolog language:

(ground(X), indep(z, W -
a(X,Z2) £ b(X, W) ;
a(X,z2), b(X, W))

If the first two conditions hold, the two goals a(X,Y) and b(X,W) are independent and
can execute in parallel, otherwise they are to be evaluated sequentially. The ground
condition guarantees that the shared variable will not contain unbound variables
at run-time, and the indep variable guarantees that Z and W do not share run-time
variables. ‘

(conditional graph expressions), which are usually expressed in the following form:
({condition) = goaly & goaly & ... & goal,)

and have the meaning that if (condition) is true, goals goaly, ..., goal, are to be
evaluated in parallel, otherwise they are to be evaluated sequentially. The (condition)
is a conjunction of the form ground([vy,...,vs]), which checks whether the variables
v1,.. .,y are bound to ground terms, or indep(v;, v;), which checks whether the set of
variables reachable from v; and v; are disjoint.

3.2.3 &-Prolog

The &-Prolog system implements independent and-parallelism for Prolog. It is based
on an execution scheme proposed by Hermenegildo and Nasr [77] which extends
backtracking to cope with independent and-parallel goals. As in Prolog, the scheme
" recomputes the solutions to independent goals if previous independent goals are
nondeterminate.

The &-Prolog language extends Prolog with the parallel conjunction and goal delaying.
One objective of corresponding system-was to have sequential execution as close to
Prolog as possible. To do so, &-Prolog maintains much of the Prolog data structures.
&-Prolog programs are executed by a number of PWAMSs running in parallel [74]. The
instruction set of a PWAM is the SICStus Prolog instruction set, plus instructions that
include the CGE tests and instructions for parallel goal execution. Synchronisation
between goals is implemented through the parcall-frames, data-structures that repre-
sent the CGEs and that are used to manage sibling and-goals. The resulting system

3.2 And-Parallelism 45

[}

has very low overheads in relation to the corresponding sequential system, SICStus,
and shows good speedups for the selected benchmark programs, including examples
of linear speedups.

An essential component of &-Prolog is the &-Prolog compiler. This compiler can use
global analysis to generate CGEs. (Notice that for some programs this may still be
difficult, and &-Prolog allows hand-written annotations). Abstract interpretation is
used to verify conditions such as groundness or independence between variables are
always satisfied. If they are, the CGE generator can much simplify the resulting
CGEs, and avoid the overheads inherent in performing the CGE tests.

The &-Prolog system was designed to support full Prolog. Similar to or-parallel
systems, parallel executions of goals may break the Prolog sequence of side-effects.
Several solutions have been proposed for this problem, the one actually used in
&-Prolog is simply to sequence computation around side-effects.

Independent and-parallel systems were initially designed to only support and-
parallelism between goals that do not share variables. This restriction can be lifted
for non-strict and-parallelism, where although several goals can share a variable only
one goal can bind it [78].

3.2.4 Independent And/Or models

The PEPSys [21] model and Gupta’s Extended And-Or Tree model [64] are two
models designed to implement independent and- and or-parallelism in a shared-
memory framework. Both use CGEs to implement and-parallelism, and combine
or-parallelism with and-parallelism by extending respectively hash tables and binding
arrays. The several solutions from the independent and-parallel computations are
. implemented through a special cross-product node, which can be quite complex to
implement. In fact, the PEPSys system only truly implements deterministic and-
parallel computations [20].

New proposals for combined and-or parallelism use backtracking to obtain the sev-
eral and-parallel solutions (thus, and as in &-Prolog, some recomputation is per-
formed) citengc93. Such systems should be easier to implement than PEPSys or the
Extend And-Or Tree Model, as they can exploit the technology of &-Prolog and the
or-parallel systems, and as they do not need to calculate cross-products. They include
Gupta and Hermenegildo’s ACE [63], a model that combines Muse and &-Prolog,
and Gupta’s PBA model [66], a model that combines Aurora and &-Prolog. One

3.2 And-Parallelism 46

other important advantage of these models is that they are quite suitable to the
implementation of Full Prolog [67].

3.2.5 Some Dependent And-Parallel Models

Several models that allow dependent and-parallelism between non-determinate goals
have been proposed in the literature. In order to solve the binding problems all these
models impose some ordering between goals.

In Tebra’s optimistic and-parallel model [160], the standard Prolog ordering is used.
During normal execution all goals are allowed to go ahead and bind any variables.
When binding conflicts arise between two goals, the goal that would have been
executed first by Prolog has priority, and the other goal is discarded. In the worst case
quite a lot of work can be discarded, and the parallelism can become very speculative.
Other optimistic models reduce the amount of discarded work by using other orderings
of goals, such as time-stamps [123].

Goals can also be classified according to producer-consumer relationships. In these
models, producer goals are allowed to bind variables, and consumer goals wait for
these variables. Goals can be classified as producers for a variable statically [31, 149],
or dynamically [147]. In Somogyi’s system [149], extended mode declarations statically
determine producer-consumer relationships. In the Codognets’ IBISA scheme [31],
it is suggested a system where variables in a clause are marked with read-only
annotations in the style of Concurrent Prolog. In Shen’s DDAS [147] model, dynamic
relationships between producers and consumers are obtained by extending the CGE
notation. The extended CGEs now mark some variables as dependent, and the system
dynamically follows these variables to verify which goals are leftmost for them. If
a goal has the leftmost occurrence of a dependent variable it is allowed to bind the
* variable, but otherwise it delays.

The producer-consumer models become very complex when the producer or consumer
have to backtrack. Both Somogyi’s scheme and especially IBISA apply ideas of
“intelligent backtracking” to reduce the search space. DDAS uses a recomputation
scheme that is based on Hermenegildo’s recomputation scheme for backtracking {77].
Shen claims that recomputation is simpler to implement and results in an execution
closer to sequential Prolog, the target language for DDAS. |

The consumer-producer models support independent and-parallelism as a subset. In
addition, dependent and-parallelism between deterministic computations (as long as

3.3 Summary 47

the producer-consumer relations between goals are fixed) can be exploited naturally.
Finally, the models offer dependent and-parallelism between non-determinate depen-
dent goals. This is a very interesting advantage of these systems (maybe the main
advantage), but not without problems. Models using “intelligent backtracking” may
be too complex and may need too much communication between goals. Models using
recomputation may do too much speculative computation that may be simply discarded
when the producer backtracks. Moreover, fixed consumer-producer relations may not
be the best way to extract non-determinate and-parallelism. Results from a parallel
implementation of these models should help in clarifying these issues.

3.3 Summary

Parallelism is an important way to speed up execution of logic programs. Two main
forms of parallelism appear in logic programs, or-parallelism and and-parallelism.
This chapter discussed these two different forms of parallelism, and presented several
different models that exploit them, either separately or in combination.

Throughout the chapter we gave emphasis the implementation issues involved with
the implementation of parallelism, and particularly to the or-parallel system Aurora,
and to the Parallel PARLOG system. These implementations were very influential in
the development of the Andorra-I system.

Chapter 4

An Introduction to the Basic
Andorra Model and to Andorra-I

The previous chapter described several parallel logic programming models and sys-
tems. Particularly successful are the parallel logic programming systems that exploit
or-parallelism. These systems have one-processor performance performance close to
sequential Prolog systems, obtain good speedups for quite a few applications, and
support the full Prolog language.

We also showed that and-parallel systems have evolved quite differently. Committed-
choice languages use an elegant and reasonably efficient model of computation,
that gives and-parallelism quite naturally, but that sacrifice the ability to search
for multiple solutions that is such an important characteristic of Prolog systems.
Systems that exploit independent and-parallelism, such as &-Prolog, do obtain good
performance and are still compatible with Prolog, but arguably they have less appeal
than the flexible and general way in which parallelism is exploited in the committed-
~ choice languages.

In this chapter we present a solution to the problem of supporting and- and or-
parallelism for general Horn clauses programs, the Basic Andorra Model, and then
present Andorra-I, a parallel logic programming system that implements the Basic
Andorra Model and that supports Prolog programs.

4.1 Executing Horn Clause programs in Parallel 49

[y

4.1 Executing Horn Clause programs in Parallel

Ultimately, the reason for the success of logic programming rests in the elegance and
simplicity of SLD-resolution. We would like a parallel system to inherit these two
important attributes of SLD-resolution.

At each moment SLD-resolution works on a set of alternatives, or more formally,
on a disjunction of resolvents. Each resolvent is a conjunction of goals to solve.
We will write a resolvent as (A, ..., An) (we assume every variable to be quantified
existentially). Prolog uses depth-first search and a left-to-right selection function,
that is, it always selects the leftmost goal from the leftmost resolvent.

We have seen that or-parallel Prolog systems use a very simple generalisation of
Prolog’s strategy. Instead of working on a single alternative at a time, we can work
on several alternatives simultaneously. Note that within each alternative we can still
select the leftmost goal, thus many or-parallel systems can be seen as several Prolog
systems, each one finding work from a pool of untried alternatives.

We would like the same simplicity for and-parallel systems. That is, we would like
to select some goals in parallel, unify them with their matching clause(s), and return
a new resolvent, succeed, or fail. Committed-choice systems do show that such and-
parallelism exists in logic programs, and that it is a very powerful and flexible forms
of parallelism.

Committed-choice goals can execute in parallel, and can communicate in quite sophis-
ticated ways, because goals always agree on the values of variables. In other words,
goals must commit to a single clause, hence if a goal binds a variable to some value,
then this binding is the binding for the variable and all other goals can immediately
use it to commit. On the other hand, in Prolog programs the same goal may have
- several alternative bindings to a variable. If goals are not sure on what value they
want to give to variables, how can they communicate through them?

Independent and-parallel systems give a simple answer to this dilemma. Only goals
that do not communicate can execute in parallel. For instance, an independent
and-parallel system would allow the two first calls to append/3 to execute in parallel,
because they do not share variables, but would force the third call to wait for the first
two. Such systems can obtain good performance and can support Prolog, but lose
important forms of parallelism. |

There is an alternative that allows one to exploit dependent and-parallelism in full

4.1 Executing Horn Clause programs in Parallel 50

logic programs. The key observation is that at some time some goals in the resolvent
may be determinate, that is, may have at most one single matching clause. Any
solution must agree with the clause chosen by any such determinate goal, or in other
words, it must agree with the bindings we make when selecting a determinate goal.
Therefore, while we are executing determinate goals only, we have the same properties
that allow us to exploit dependent and-parallelism in the committed-choice languages.

The Basic Andorra Model uses this principle to allow both or-parallelism, and and-
parallelism between determinate goals. In this model:

e Goals can execute in and-parallel, provided they are determinate;

o If no (selectable) goals are determinate, we can select one nondetérminate goal,
and explore its alternatives, possibly in or-parallel.

Note that the model clearly separates and-parallelism and or-parallelism. In fact,
this separation allows a simple description of the model in terms of rewrite rules on
the usual disjunction of alternative resolvents. We call each resolvent R, where each
resolvent is a conjunction of goals A (we also use the name D for a determinate goal).

o (Selectable) determinate goals of a goal may be reduced in and-parallel:
(Al,...,D],...,D,’,...,An) = (Al,...,Bl,...,Bj,..., ;,...,BL,...,A"’)

e Otherwise, some goal is chosen and the resolvent may fork into a set of resolvents:
(A1y..,D1yev oy An) = (Bryeu oy Bjyeo iy A) V.oV (Bl Bhy ooy An)

where we chose to select the leftmost goal.

e The previous two rules may apply in parallel (or-parallelism):

if R, = R,;V...VR;and Ry = R, V...V Ry then

o oVRV..VRy V... ...VRV..VRV...VRy VR, V...

Note that the first rule provides for parallelism, in the style of the committed-choice
languages, as these have a single resolvent. The second rule provides for search,
as in Prolog. The second and the third together are the execution model for an
or-parallel Prolog system. By joining the three, we can say that the Basic Andorra
Model integrates and-parallelism, in the style of the committed choice languages, with
or-parallelism, in the style of Prolog or-parallel systems.

4.1 Executing Horn Clause programs in Parallel 51

[

4.11 The Structure of the Andorra Computation

The Basic Andorra Model describes where parallelism can be exploited. To actually
exploit parallelism, several workers must be simultaneously active in the search tree.
Consider any two such workers, W; and W:

e IfW; and W, are working in and-parallel, that is, if they are reducing determinate
goals from the same resolvent, then any binding from W; must be observable by
W3, and vice-versa.

e If W; and W, are working in or-parallel, that is, if they are reducing goals from
two different resolvents, then any bindings from W; must not be observable by
W, and vice-versa.

To address this problem, one solution (proposed in the Andorra-I engine)is to structure
the workers into teams. Workers within a team reduce goals in and-parallel. Teams
of workers place themselves at different resolvents, and therefore work in or-parallel.

The organisation into teams closely reflects the nature of the Basic Andorra Model,
where several and-parallel reductions proceed in or-parallel. It also simplifies the
implementation, first because each worker does not need to scan the computation for a
resolvent with available work whenever it reduces a goal, thus increasing granularity;
second because workers in the team can easily find out with which other workers
they need to communicate, thus simplifying synchronisation and reducing contention;
third, because teams behave as purely or-parallel workers, and because workers
within a team behave as pure and-parallel workers, thus enabling easy adaption of
techniques from or-parallel systems and from parallel committed-choice languages,
respectively.

Note that the number and size of teams should reflect both the resources available to
the computation, and the amount and kind of parallelism available. In general these
variables will vary during execution, and therefore the number and size of teams
should also vary during execution.

4.1.2 Selection Functions for the Basic Andorra Model

In the Basic Andorra Model and-parallelism is obtained by running determinate goals
in parallel. Which and-parallel goals can be run in parallel depends on which parallel

4.1 Executing Horn Clause programs in Parallel 52

[}

goals we can select, that is, it depends on which selection function we use. In general,
one will choose a selection function according to the language one wants to support, but
it should be clear that the selection function that best fits the model, and particularly
that gives the most and-parallelism, is the one where we allow all determinate goals to
be immediately selectable. We call the selection function that follows these principles,
the Andorra selection function. '

o Andorra selection function: select a determinate goal, if one is available.

The Andorra selection function is the preferred selection function for a system im-
plementing the Basic Andorra Model. This is partly because we are allowed to run
all determinate goals in parallel, and therefore can obtain maximum and-parallelism,
but also because this selection function gives a natural form of implicit coroutining,
where bindings may passed from right to left during the execution of two goals, as
well as left to right as in standard Prolog. Often the search space is reduced, relative
to a left-to-right selection function, because execution of determinate goals may make
other goals determinate, and so on.

Note that the advantages of selecting determinate goals first have been well known
since the early days oflogic programming. Ultimately, the idea of selecting determinate
goals first is an instance of a more general principle, mentioned in section 2.3, the idea
that one can obtain better search by selecting the goals with the fewest alternatives
first.

Although we have described the Andorra selection function as a single selection
function, in fact we still have a choice on which nondeterminate goal to select first.
We can say that the Andorra selection function is not a single solution function, but
a family of selection functions. We will use Andorra selection function to refer to any
- member of this family.

Although selecting determinate goals first has the very important advantages we
mentioned, it may create difficulties when we want to support full Prolog. The problem
arises in Prolog programs which use builtins that rely on Prolog’s traditional left-to-
right selection function. Such programs may not work correctly when determinate
goals execute before the leftmost goal. A system supporting Prolog must therefore
restrict the Andorra selection function somewhat, as we shall see later.

4.2 Andorra-I 53

4.2 Andorra-I

We have so far presented the Basic Andorra Model. We will now present an actual
implementation of these principles, the Andorra-I system:

o The Andorra-I system is a parallel logic programming system that implements
the Basic Andorra Model and that fully supports Prolog.

Andorra-I was designed to take full advantage of the Basic Andorra Model. This
means both exploiting parallelism, and exploiting implicit coroutining as much as
possible. Through these principles, Andorra-I should fulfil two goals:

o Better performance in current Prolog applications.

¢ Good performance in problems that have a clear and elegant logic formulation,
but where a left-to-right selection function will either result in infinite search, or
in a very large search space.

As regards the first goal, we can see Andorra-I as optimising traditional Prolog
systems, or or-parallel systems. As regards the second goal, we can see Andorra-I as
also extending the scope of traditional Prolog systems. We summarise these two goals
by saying that Andorra-I supports an extension of Prolog:

¢ Andorra-I Prolog, the user language for Andorra-I, mainly extends Prolog with
the implicit coroutining that results from selecting determinate goals first.

From the point of the view of the user, builtins such as side-effects, meta-predicates,
~ and cuts in Andorra-I Prolog will give exactly the same results as in a traditional
Prolog system. The main difference will arise when we consider a conjunction of goals,
say (A,B). Whereas traditional Prolog systems would always execute A first, and then
B, Andorra-I may select B first, if found to be determinate.

4.2.1 The Basic Andorra Model in Andorra-I

We have presented the main goals of the system. Now, we will discuss how the system
can take the best advantage of the model to improve execution of logic programs, and
particularly, of Prolog.

4.2 Andorra-I 54

The first question is how should one implement the Basic Andorra Model. We first
note that the model gives implementations a large degree of freedom:

e the model does not give a “strict” definition of determinate goal;
e the model does not specify which determinate goals are selectable;

o the model does not specify which goal to choose when no selectable determinate
goals are available.

Different implementations may take different advantage of this flexibility. For
instance, we may concentrate on having minimal overheads by only selecting deter-
minate goals if they can be found very quickly. Or we can concentrate on reducing the
search space by always selecting the goal with the least number of alternatives first.

In our case, the goal is to support Prolog correctly, and efficiently. We can make the task
of supporting Prolog correctly easier, by selecting the same goals as Prolog whenever
we can. For instance, we can select the leftmost goal when no non-determinate goals
are available. In practice, this is not sufficient. As we shall see later, we also need a
mechanism to prevent early execution of some determinate goals.

For Prolog compatibility to be useful, Andorra-I must also be able to do better than
conventional Prolog systems. To understand the problem, first notice that the time
T a logic programming system needs to execute a program can be described by the
equation:

T = NR/(SLIPS x PAR)

. where N R is the number of reductions, SLIPS are the number of logical inferences
per second each worker would perform, and PAR is average amount of parallelism in
the program, or parallel speedup. For Andorra-I to perform better than, say Prolog,
we need for Andorra-I to have a lower number of inferences, an higher amount of
parallelism, or an higher LIPS rate per worker. Clearly, all these vary from program
to program, but we can give some general comments on each factor:

¢ PAR

The main new advantage, particularly over proven or-parallel systems, is and-
parallelism. We would therefore like to run as many determinate goals in
parallel as possible.

4,2 Andorra-I . 56

practice, Andorra-I mainly uses a more flexible construct, the sequential conjunction,
to disallow early execution of goals:

¢ A conjunction of goals is declared sequential, if the right-side of the conjunction
can only execute after the left-side of conjunction completes.

Maximum parallelism and coroutining is obtained in Andorra-I by only declaring as
sequential the conjunctions that need to execute in this way. The system therefore
tries to generate the minimal number of sequential conjunctions that guarantee
correct execution of Prolog programs.

Note also that users are allowed to introduce sequential conjunctions. This is justified
partly because the user may not want any coroutining for some parts of the program,
and partly because sequential conjunctions can sometimes increase the granularity of
and-parallel tasks [60], which will reduce overheads in exploiting and-parallelism.

Determinacy in Andorra-I

The question of which goals are determinate is a very fundamental question in the
design of Andorra-I. In practice, goals can commit to a clause because of several
reasons. Consider a short example:

a(ll, -, ., .

a([X|y], P, Ls, [XINY]) :- X > P, a(Y, P, NY).

a([xlyl, P, Ls, [XINY]) :- X =< P, in(X, Ls), a(Y, P, NY).
a([XIyl, P, Ls, NY) :- X =< P, notin(X, Ls), a(Y, P, NY).

The first argument receives a list of values. The fourth argument returns a list of
values, such that they are either larger than the second argument, or that they are
members of a list of values given by the third argument. The example is interesting
because it gives increasingly more complex examples of determinacy:

[a([], 59 [2]) L)-

The goal is determinate, and we can find that out just by noticing that only head
unification of the first clause can succeed. Determinacy through head unification
is the more basic form of determinacy, and clearly should be always supported.

4.2 Andorra-I 57

e a([7], 5, [2], L).

The goal is determinate. Although head unification can succeed for three clauses,
the call 7 =< 5 should always fail, hence only the second clause can succeed. It
is reasonable to expect that a determinacy system will recognise determinacy
through such builtins, as they are precisely used quite often to distinguish
between different clauses.

e a([7], 3, [2], L).

We expect the goal to be determinate, as only the fourth clause will match, but we
at least need to execute in(7, [2]) to verify this. If executing in(7, [2]) is fast
this would be useful. On the other hand, if in/2 has a more complex definition
we can spend quite some time executing this goal, maybe only to discover that
the goal was not determinate.

The two first cases correspond to flat determinacy. They are clearly the easiest to
recognise, and also the cases where detecting determinacy will incur less overheads.
As these cases are also the most common, Andorra-I has been designed to recognise
only flat determinacy.

We should remark that flat determinacy in Andorra-I is quite similar to the flat guards
in the committed-choice languages. In fact, the same reasons that have made the flat
committed-choice languages so important also argue for flat determinacy.

There is one disadvantage to flat determinacy. Sometimes Prolog programmers may
write goals that are determinate because of some user defined tests, which may be
quite simple. Flat determinacy cannot directly recognise these goals as determinate.
This means that in order to extract maximum and-parallelism and coroutining in the
current Andorra-I, programmers may need to be aware that Andorra-I only recognises
flat determinacy.

4.2.2 The Architecture of Andorra-I

We can now present the architecture of Andorra-I. As most other logic programming
systems, Andorra-I includes two main components, the compile-time subsystem, the
preprocessor, and the run-time subsystem, the engine and its schedulers.

The structure of the system is shown in figure 4.1. The preprocessor extends traditional
compilation techniques to address the new problems of determinacy detection, and of
specifying goals that cannot execute early at compile-time. The engine and schedulers

4.2 Andorra-I 58

Andorra-l Prolog

Abstract Int

Sequencer

Determinacy Prep.

Compiler

[P

Andorra-l Target Language

Figure 4.1: The Andorra-I Architecture

run compiled or interpreted programs, and address the complex issues of parallel
execution of goals.

The preprocessor and the engine are the main subject of the next few chapters. (An
overview of the system is also given in [135, 137, 136]). Meanwhile, we will give a
brief description of their operation:

o The sequencer and the abstract interpreter detect at compile-time which Prolog
goals cannot be executed early, even when determinate. Their output is the
original Andorra-I Prolog program, plus some sequential conjunctions.

e The determinacy analyser and compiler generate abstract code suitable for
execution by the emulator in the engine. Their output is therefore Andorra-I
abstract machine code.

o The engine actually executes the program. Workers are grouped onto teams, as
discussed before. Each worker can request or-parallel work, and-parallel work,
or it can reorganise teams, via the corresponding schedulers.

System components such as the sequencer and abstract interpreter are designed for to

4.3 Summary 59

[y

support sequential Prolog semantics. Prolog features such as cuts and other builtins
also demand support from the compiler, engine, and even scheduler.

Still, one should note that the main effort in the compiler, determinacy analyser, engine
and schedulers is concerned with efficient support for coroutining and parallelism.
This means that in practice, although directed at Prolog, the Andorra-I system can
be easily reconfigured to support other languages that could take advantage of the
Basic Andorra Model, such as the committed-choice languages, or even languages
designed only to exploit the model. Andorra-I currently provides limited support for
such languages by allowing direct access to the compiler and determinacy analyser,
through the Andorra-I Target Language.

4.3 Summary

The chapter described the Basic Andorra Model, a parallel execution model for logic
programs that combines and-parallelism with or-parallelism by executing determinate
goals in and-parallel and by extracting or-parallelism from nondeterminate goals.

The chapter also described the first implementation of the model, Andorra-I, and ex-
plained the main constraints and characteristics of its design, as a logic programming
system that can support Prolog.

Chapter 5

Executing Prolog Programs
under the Basic Andorra Model

In this chapter we analyse in detail the problems that arise when executing Prolog
programs in Andorra-I. Andorra-I differs from a sequential Prolog system in that it
allows or-parallel execution of alternatives, and early execution of determinate goals,
possibly in parallel. We present the actual problems in some detail, and show that
although some of them can be efficiently solved at run-time, others need support from
global analysis of the program at compile-time.

Compile-time analysis is necessary because early execution of goals may prevent
correct execution of some builtins. We derive a scheme that uses both compile-tiine
and run-time analysis to guarantee correct and efficient execution of Prolog programs.
First we specify the run-time conditions the engine needs to support Prolog. Second,
we identify for which calls to builtins we need to disallow early execution of goals.

We show that to recognise these goals we need global analysis. Third, we give the
~ conditions that allow early execution of any Prolog goal, including builtins.

We can then present our scheme for the execution of Prolog programs in Andorra-I.
The scheme restricts some possible parallelism, but still gives scope for or-parallelism,
coroutining and and-parallelism in many Prolog applications.

5.1 Prolog and The Basic Andorra Model . 61

5.1 Prolog and The Basic Andorra Model

Can we simply feed a Prolog program to a system implementing the Basic Andorra
Model? Both the left-to-right and the Andorra selection functions are sound, and
should give the same answers to a query, except for infinite loops. But as we have
seen, there are important differences in how they generate these answers. The
number of steps needed to compute the solutions may be different, and if one is not
careful, the interactions and the order between interactions may also be different.

We have seen that Andorra-I reduces these differences by selecting the leftmost goal
whenever it cannot select determinate goals. This means that alternatives will be
tried in the same order as for Prolog, thus guaranteeing that solutions'will come out
in the same order. But we still have an important difference. Determinate goals that
would only be executed very late by Prolog can be executed immediately by the Basic
Andorra Model.

Early evaluation of goals may interfere with builtins. It may affect side-effect builtins,
such as write/1, or meta-predicates, such as var/1. To guarantee correct execution,
Andorra-I prevents early execution of some goals (we discuss which next in the
chapter). Note that parts of the program that do not call builtins, and which we hope
will form the meat of most programs, should still be run according to the model (in
general, we call Prolog programs or procedures that do not call builtins pure).

This approach should therefore give the most coroutining, and the most parallelism,
that the model can correctly exploit from the original Prolog program. The parallelism
should be always beneficial, and we claim that in most cases, the coroutining is
beneficial. To explain why, consider a simple example:

g = aX), b(X).

a :- a(1). b(1).
a :- a(2).

Besides parallelism, executing b/1 first gives two advantages:

e We only have to execute the determinate goal b/1 once. In contrast, Prolog would
select the goal twice.

¢ We constrain the search space for a/1. Prolog would need to try the two clauses
for a/1, whereas by executing the determinate goal first we can execute a/1 once.

5.1 Prolog and The Basic Andorra Model ‘ 62

The two advantages can be very important. They are particularly impressive if the
search space grows exponentially, as in these cases we may able to reduce the number
of branches to be tried quite dramatically, and also we may also be able to reduce the
number of goals to try in each branch.

Do these advantages apply to every program and query? If the computation succeeds,
executing a determinate goal early is safe because it can never increase the number
of reductions, as we would need to execute the goal at least once. On the other hand,
if the computation fails executing determinate goals early may actually delay us from
recognising failure. Consider the following example:

g :-a, b.

a :- failt. b.
a :- fail2.

Executing the determinate goal b/0 early is not worthwhile, because a/0 will fail
regardless. Note that there are examples where although the computation fails
and Prolog would never select a determinate goal, we can still benefit by selecting
determinate goals first. Consider the next example:

gX) := a(X), b(X), c(X).

a(1). b(@3). c().
a(2). b(4).

Prolog would fail before calling c/1. But calling ¢/1 first is still useful, because we can
- show determinately that we can never find a common value for X.

In a perfect world we would have a perfect solution, one which would guarantee that
our Andorra execution would never need more steps, or reductions, than Prolog, but
that would still allow us to take maximum advantage of the model. Such a solution
would only prevent execution of “selfish” determinate goals in branches that fail, that
is, it would only disallow early execution of determinate goals that do not help the
search space in branches that fail. The problem is that to find out which goals cannot
execute early we need first to know which branches will eventually fail, and if we
knew which branches fail beforehand, there would be no point in trying such branches
at all!

5.1 Prolog and The Basic Andorra Model . 63

In practice, we have two choices:

o We can try to guarantee better execution than Prolog, by reducing further the
amount of coroutining we allow. For instance, we could execute N determinate
goals in parallel if, and only if, these were the N leftmost goals.

Such solutions must be more restrictive than necessary, because otherwise we
would know which branches fail. They must also be more complex than simply
running the program in the Basic Andorra Model. Hence, for the sake of possibly
a few programs, we need to make the model more complex, and less useful.

e We can simply accept the fact that, as most other optimisations, Andorra style
execution will work better most of the time, but not always.

The second solution is the most reasonable, and it fits well with our other goal of
extracting the most parallelism. Therefore, we will apply it, even if that means taking
the risk of performing a larger number of reductions for some programs.

An exception where we would not like to take this risk, is the worst case where the
computation should fail, but Andorra-I enters an infinite loop of determinate goals.
Haridi and Brand [71] give an example of such a program:

?- p(X), loop.

p(X) :- fail1i. loop :- loop.
p(X) :- fail2.

Note that the problem of detecting whether the determinate phase will never terminate
~ is simpler than the problem of detecting whether a determinate goal would ever be
executed by Prolog. Therefore, in this case, we can obtain some more practical
solutions:

1 Haridi and Brand propose a counter that would limit the number of reductions
in the determinate phase. This is not a very elegant solution, and the number of
acceptable reductions would have to vary from program to program.

2. One can eagerly force nondeterminate reductions as in CP[l,|,&,;] [138], P-
Prolog [194] or ANDOR-II [154]. By “eager” execution of nondeterminate reductions,
one means forcing a nondeterminate reduction when determinate reductions are still
possible. The nondeterminate reduction can be activated as soon as some conditions

5.2 Execution of Prolog Builtins . 65

5.2 Execution of Prolog Builtins

We previously said that correct execution near builtins can be obtained mainly by
executing some parts of the program as Prolog would. We have not yet said which
parts of the program, nor have we specified exactly which goals cause the problems.
We next explain the actual problems in some detail.

5.2.1 Problems With the Early Execution of Builtins

We first consider the problems arising from early execution of some builtins. Clearly,
early execution of side-effects in Andorra-I should be disallowed. Consider a procedure
test/2.

test(X, Sol) :- write(’Y? ’), read(Y), algi(X, Y, Sol).

If we allow early execution of read(Y) we can ask for input before we write the prompt.
Even worse is the next example:

test(X, Sol) :- algi(X, Sol), write(’Sol: ’), write(Sol).

The builtins assume left-to-right ordering, and executing them before the goal algi(X,
Sol) produces incorrect output.

There is a simple solution to this problem. Andorra-I associates each builtin to some
specialised determinacy code that tells when the the builtin to execute early. In the
case of side-effect builtins this code simply says the builtin can never be executed
~ early, that is, that it must wait until becoming leftmost.

It is not always the case that a builtin should wait until leftmost. Consider the
following clause, from fibonacci/2.

fibonacci(N, F) :-
N>1,
Ni is N -1, N2 is N - 2,
fibonacci(N1, F1),
fibonacci(N2, F2),
F is F1+F2.

5.2 Execution of Prolog Builtins 66

We expect N to be bound when we execute fibonacci/2. Clearly, there is no reason why
the two first calls to is/2 should not execute in parallel immediately. Moreover, if we
would wait until all calls to is/2 become leftmost, we would unnecessarily eliminate
most and-parallelism from fibonacci/2.

5.2.2 Problems With the Early Execution of Goals Near a Builtin

The novel difference between the Andorra-I execution and a traditional sequential
Prolog system corresponds to the early execution of determinate goals. Determinate
goals can affect builtins if (i) the determinate goal fails before the builtin could execute,
or if (ii) the determinate goal binds arguments to a builtin.

We first consider the case where a determinate goal fails. We use as example a
procedure that writes all the elements of a list, up to and including the first element
that appears only once.

write_until_single([G|List]) :-
write(G),
in(G, List),
write_until_single(List).

in(G, [GILI).
in(G, [0GIL]) :- G \== 0G, in(G, L).

Suppose the query write.until single([1,2,1]). Its execution is shown in figure
5.1, where oval boxes represent calls to side-effects, and square boxes represent other
goals. In a left-to-right execution, two elements of the list are written, and then the
goal fails. If determinate goals are allowed to go ahead, the determinate calls in/2
and writeuntil_single will execute before any calls to write/1. But the call in(2,
[11) will fail before the query calls write/1! Hence no side-effects will be generated in
an execution that selects determinate goals first, whereas Prolog would execute write
twice.

In the example, the side-effects pending to the left should have gone ahead even when
the goal determinately fails. To address this immediate problem, one could verify if a
goal to the left is a side-effect before allowing a determinate goal to fail. This simple
solution does not address other programs, as the next example shows:

write_pretty_until_single([G|List]) :- write_pretty(G),

5.2 Execution of Prolog Builtins 67

wus((1,2,1}])

in(1,12,1)]) wus([2,1])

in(2, (1)) wus([1])

|

Fail

Figure 5.1: And-Execution With Side-Effects

in(G, List),
write_pretty_until_single(List).

The procedure write_pretty/1 calls write/1 and is non-determinate. But, in this
case the side-effects in write_pretty should be finished before in(2, [1]) is allowed to
fail. We therefore need to recognise whether there are any goals to the left that call
side-effects. This information can only be obtained by global analysis.

Consider now the problem where a determinate goal binds arguments to a builtin
such as a meta-predicate. The following simple procedure is an example:

reg.for_perm_var(Reg, Next, Regs) :-
permanent_var(Reg),

new_reg(Reg, Next, Regs).

permanent_var(Reg) :-
var(Reg), !,
fail.

permanent_var(y(_)).

new_reg(y(R), Next, Regs) :-
add_to_list(R, Next, Regs).

The procedure reg_for_perm_var could be part of a Prolog compiler. Variables in a

5.2 Execution of Prolog Builtins 68

clause are classified as either permanent or temporary. Permanent variables have
been found by a previous step and bound to the term y(.). Temporary variables
are still unbound. The procedure must find a new register position for permanent
variables. It first calls permanent_var to verify the variable is permanent. Ifit is, the
procedure new_reg obtains a new register for the permanent variable.

Imagine a query regfor perm_var(Reg, 0, [1). If executed left-to-right, the query
will fail. If the determinate goal new.reg(Reg, 0, []) is executed first, it will bind
the variable Reg to y(.). Eventually, permanent_var/1 is called as permanent_var (y(_))
and succeeds!

The problem here is the builtin var/1. The builtin succeeds in the left-to-right call,
because the variable has been unbound, but fails if the variable has been bound
by early execution of goals to the right. Note that some side-effects also have this
problem, for instance in:

reg_for_perm_var(Reg, Next, Regs) :-
write(Reg),
permanent_var(Reg),

new_reg(Reg, Next, Regs).
The write/1 goal prints out different values in a left-to-right and determinate-goals-
first execution.
Programs that use cut to implemenf the functionality of var/1, may also return

different results if some goals are executed early. As a simple example, consider:

noisy :~ test(X), valid(X).

test(hello) :~ !.
test(.).

valid(bye).

A left-to-right execution binds X to hello, prunes the next alternative, and fails when
calling valid/1. On the other hand, if the determinate goal valid is executed first,
the first clause for test fails, no pruning is performed, the second clause can be taken,
and the computation succeeds.

5.2 Execution of Prolog Builtins 69

This problem arises because in the left-to-right execution test forces a value for X.
Clearly, if X was bound by some other goal, say G, before test is called, either the
determinate goals and G agree, and test can be executed as soon as X is bound, or the
determinate goals and G disagree, and the computation would fail regardless of which
alternative test chooses.

We have seen that early execution of goals can interfere with builtins in one of two
fails:

e Early failure can prevent side-effects.

o Early bindings affects cuts, meta-predicates and side-effects that assume their
arguments to be unbound.

A drastic solution to this problem would be to simply disallow early failure and early
bindings in Prolog programs. We believe that such an approach is too restrictive, and
propose instead to restrict early execution only on the points of the program where it
is really necessary.

The key observation is that only some calls are sensitive to early failure or early
bindings, namely the calls to procedures with cut that force bindings, calls to side-
effect predicates, and calls to certain meta-predicates (such as var/1). Our approach
is to prevent any execution of goals to the right of such a point until all goals to the
left have been completely executed. This is arguably somewhat more than we need.
It would be sufficient to allow execution to the right provided early failure and eérly
bindings are either prevented or encapsulated so that they will not affect the execution
to the left. However this is more difficult to achieve and arguably not worth the cost.

5.2.3 Problems With the Early Execution of Alternatives Calling
Builtins

Finally, we consider the problems arising from the interaction between builtin ex-
ecution and or-parallelism. We demonstrate the problems through a very simple
program:

program(X, Sol) :- write(’Y? ’), read(Y), algi(X, Y, Sol).
program(X, Sol) :- write(’Z? ’), read(Z), alg2(X, Z, Sol).

5.2 Execution of Prolog Builtins X 70

write(Y?), write(Z2?)
read (Y) read(Z)
algl(...) alg2(...)

Figure 5.2: A Search Tree With Side-Effects

The corresponding search-tree is shown in figure 5.2. Imagine now that there are
two teams T and T3, executing the two alternatives at the same speed. If we do not
require synchronisation between the branches of the search tree, there are several
possible executions, one of them shown in figure 5.3. In this case, the user would be
very confused about to which team it was answering!

w1 write(Y?) read(Y) algl(x, Y, Sol)

w2 write(22) read(z) alg2X, 2z, Sol)

_IL=|llllllIll]lllllllllllllll -

Time
Figure 5.3: Execution of Side-Effects without Synchronisation in the Search Tree

The problem is a well-known problem in or-parallel systems. The solution is to delay
a side-effect goal until all side-effects to the left in the tree have been executed. As in
general it is hard to know which goals can call side-effects, most or-parallel systems
simply wait until all branches to the left have been finished.

5.3 Engine Support for Builtins 71

This solution is implemented by Andorra-I without any special compile-time support.
Whenever trying to execute a side-effect goal, the Andorra-I engine must first call the
or-scheduler to verify if the branch is currently leftmost. Ifit is, the side-effect can go
ahead, but otherwise it will have to wait.

5.3 Engine Support for Builtins

From the previous discussion, it is clear that Andorra-I should include for each builtin:

1. The code that actually implements the builtin.

2. Determinacy code, that says when the builtin can be executed. For builtins such
as side-effects, the determinacy code says the builtin can be executed only when
leftmost. For other builtins we would like to allow early execution.

3. Code for synchronous execution. This code is necessary for side-effects to verify
whether the side-effect is being called in the leftmost branch of the search-tree,
and is not necessary otherwise.

This code solves the problems with early execution of side-effects, and the problems
with or-parallelism. The problem of sensitive calls needs compile-time analysis.

5.3.1 Andorra-I Execution of Cut and Commit

Cut is a very special builtin. We would expect execution of cut by the Andorra-I
to be similar to execution of cut by Prolog. Thus, given a goal 4 calling the clause
- H:-G,!, B, the execution of the corresponding cut proceeds in two steps:

o after head unification between A and H the current choice-point is stored;

o when all goals in G have executed, all choice-points created after the stored
choice-point are removed.

Andorra-I must introduce extra restrictions due to and- and or-parallelism.

¢ In an or-parallel execution, other teams may be trying alternatives to the left
when we reach a cut. A cut can only execute if all cuts that may themselves

5.4 Sensitive Goals 72

A

prune it have been executed. Moreover, the cut should prune all alternatives to
the right, but never alternatives to the left [73].

¢ Andorra-I prevents execution of any goals in B, that is of any goals to the right
of the cut, until the cut has been performed.

The first restriction follows the conditions for Aurora. The second condition prevents
problems with programs such as:

t(X, L) :- member(X, L), !, fail.
t(_,).

and in general follows the idea that it is only worth executing the goals in B after
knowing which path will be selected.

Commit is a pruning operator that assumes no ordering in the execution of clauses.
Commit is executed in a similar way to cut, but there is a main difference:

¢ In an or-parallel execution, commit will prune branches that are to its left.

Extra coroutining and and-parallelism can be obtained by using cut and commit to
make goals determinate. We discuss the necessary conditions later.

5.4 Sensitive Goals

- We have shown that execution of goals to the right of a sensitive call may be dangerous.
A goal is sensitive if early execution of goals to its right can result in different results.
No goals that call pure Prolog routines can be sensitive. Thus, only the following goals
can be sensitive:

o calls to side-effects;
e calls to other builtins, such as meta-predicates;

e calls to procedures that include cuts or commits.

5.4 Sensitive Goals ‘ : 73

Calls to side-effects are in general sensitive to failure of goals to the left (we call them
fail-sensitive). As it is in general quite difficult to know if a goal will fail or not, we
will always assume they are sensitive. Some calls to side-effects, meta-predicates
and goals that use cut are sensitive to early bindings of variables (we call them
var-sensitive).

If a call to a builtin is fail-sensitive, as any call to a side-effects goal is, we cannot allow
early execution of goals. We next discuss whether we can do better for var-sensitive
only calls to builtins.

5.4.1 Var-Sensitive Calls to Builtins

A call to a builtin is var-sensitive if the builtin does not allow early binding to its
arguments. In general, calls to builtin other than side-effects will be either (a) invalid,
if the builtin cannot be correctly executed, (b) var-sensitive, or (c) var-safe.

We first give a precise definition of var-safe call. A call for a builtin, B, is var-safe
iff executing B first and then binding one of its arguments, say X;, gives the same
solution as binding the argument X; first and then calling B. In other words:

VXi,T B(X1,...,Xiye.,Xn) , Xi=T ~ Xi=T , B(X1,..., Xi,.., Xn)

where the operator ~ holds if any solution to its left-side is also a solution to the
right-side, up to renaming of variables. '

Clearly, var-safe calls allow early bindings to their arguments, and therefore early
execution of goals. Therefore, we can allow early execution of determinate goals
without any restrictions, as long as we guarantee that in the original execution
" builtins were only called when var-safe.

Note that pure Prolog goals are always var-safe. They also obey the converse property:
VX,,T Xi=T , B(X1,...,Xi,..., Xn) ~ B(X1,o.0,Xire. s Xn) » Xi=T

Together, these two properties guarantee that we can switch execution of any two pure
goals, and therefore that any selection function will return the same results.

In contrast, var-safe calls to builtins do not necessarily obey the second property. In
other words, if we remove bindings to a var-safe call, the call may not be var-safe. For

5.4 Sensitive Goals 74

instance, the call to atom/1in X = £(_), atom(X) is var-safe, but the call to atom/1 in
atom(X), X = £(.) is not necessarily var-safe. In general, we can switch execution
execution of a var-safe call with some other goal only as long as the call is guaranteed
var-safe.

For each builtin, we can find a range of calls that will be invalid, var-sensitive, or
var-safe depending on whether the value of the call’s arguments belong to a certain
range. We correspondingly define three domains for the arguments to a builtin. Figure
5.4 shows one example.

Argument Instantiation

Invalid

Var-Sensitive

Var-Safe
/

Figure 5.4: Calls to a Builtin

Usually, invalid calls correspond to the builtin not being sufficiently instantiated to
execute correctly (for instance, a call (X is .) is invalid). More instantiated calls
may be executable, but var-sensitive. Finally, if sufficiently instantiated the call is
var-safe. Note that calls to a goal may never be invalid. For instance, calls to var/1
are always executable. Calls to a goal may also never be sensitive. For instance, calls
to is/2 can be invalid, or var-safe. Note also that if all arguments to a builtin are
ground, the call could be invalid or var-safe, but never var-sensitive.

We next establish these domains for the most important builtins:
(i) The Unification, X = Y, is always var-safe.

(ii) The Arithmetic Builtins must have the arguments they use to be ground before
they can execute. Therefore, calls to these builtins can be either invalid or var-safe.

5.4 Sensitive Goals 75

(iii) The Term Comparison Builtins are most often var-sensitive. E.g., X == a will
fail whereas the more instantiated call a == a will succeed. We can be sure a call is
var-safe if its arguments are ground, or if the result to the comparison is known by
comparing the instantiated part of the arguments. For instance, the call a(_) == b(.)
is var-safe because we only compare the the main functors of the first argument, but
the call a(X) == a(Y) is clearly sensitive to any bindings for X and Y.

(iv) The Meta-Predicates such as var/ 1_and atom/1 will be var-safe if their arguments
are instantiated. For instance, atom(a(.)) will give the same results as atom(a(b(.))).

Builtins such as functor/3, arg/3, =../2 can only be used correctly when they are
sufficiently instantiated, and calls to them must be either invalid or var-safe.

(v) The Meta-Call is invalid before its argument is bound. As soon as the main functor
is known, further instantiation will not affect the execution of the meta-call proper.

(v) The Set predicates such as setof/3 and bagof/3 are designed to be var-safe. Still,
we can have some problems if we allow for existentially quantified variables to be
bound. To explain these problems, consider the builtin findal1/3, used in some Prolog
systems. With this builtin, all variables that are unbound at the time of the call are
treated as existentially quantified. As a result, findall can be used to implement the
var (X) meta-predicate, as shown by Naish [117]:

var(X) :- findall(_, X =1 ; X =2), [_,.1).

The problem arises because some existentially quantified variables may or not be
unbound when the goal is called. If such variables exist, findal11/3 will be sensitive
to them.

~ Note that the problem does not arise with the free variables of setof/3 and bagof/3.
Different bindings to these variables correspond to different solutions, as one would
expect for pure goals.

5.4.2 Cut

The problems we face for cut are similar to the problems we face for other builtins.
Consider a goal G that calls a cut. We would like for G to obey the property obeyed by
a var-safe call to a builtin:

5.4 Sensitive Goals) 76

VX, T G(X1,eo s Xisee 0y Xa) » Xi=T ~ Xi=T , G(X1,-o0, Xire.r, Xn)

We claim that a goal G is var-safe if its cuts are quiet. We define a cut to be quiet
if it cannot nondeterminately restrict external variables, that is, if any bindings to
external variables that take place before executing the cut are determinate. Otherwise,
we say the cut is noisy.

We next show that goals with quiet cuts are indeed var-safe. First, we show the
simpler case where all goals called from G are either pure, or var-safe calls to builtins:

The goal G was pruned by a quiet cut. This cut must force some determinate bindings,
say G6 and a certain path in the search tree for G, say P. By definition of determinate
binding, any other more instantiated solution for G, say G, must either unify with
Gé or fail. If G and G§6 unify, and all goals called from G are var-safe, the path P can
still be taken for Gf. Further any previous path that failed for G will also fail for G4,
hence the cut must still force P. Therefore, if G6 and G§ unify, G§ must commit to the
same path as G. If G6 and G§ do not unify, G4 must always fail.

There are two cases when we move X = T to before the goal. First, X = T fails when
executed after the cut. If we execute X = T before G and it also fails, we clearly obtain
the same result. If we execute X = T before G and X = T succeeds, we have already
shown we must still choose the same path to prune. The remaining computation
is pure Prolog plus var-safe goals, and we should therefore obtain the same results
whether we execute X = T first.

Consider now that X = T succeeds if executed before the cut. Therefore, X must still
unify with any determinate bindings forced by the cut. Again, when we executeX = T
first we must choose the same path to prune, and therefore obtain the same results. O

We use induction to show the case where G contains N goals with cuts:

We have already shown the base case with N = 0. Consider now the case of a goal G
that contains I — 1 calls to goals with quiet cuts. If all cuts are quiet, then all goals
called from G must be var-safe, hence from the previous argument G must also be
var-safe. O

Note that we have only shown that we can execute early goals that would be called
after G. We can allow early execution of goals to the left of the cut, as we are
guaranteed to choose the same solutions, and therefore to prune to the same path.

5.4 Sensitive Goals 77

We clearly can also allow early execution of goals to the right of cut, if pruning has
already taken place. We cannot allow goals to the right of the cut to execute before
the cut, as, if we would, we could prune to a different path, or fail to prune (see the
case of the combination cut-fail shown in page 72).

We have shown that we can allow early execution of goals before or during quiet cuts.
This means that we can allow early execution of goals in Prolog programs where all
cuts were quiet. Coroutining is therefore only dangerous in the presence of procedures
with noisy cuts, such as the procedure test/0 shown in page 68.

5.4.3 Commit

We define quiet commit and noisy commit in a fashion similar to quiet and noisy
cut. A quiet commit can only restrict external variables determinately, whereas noisy
commit can restrict external variables in an arbitrary fashion.

Although both are pruning operators, their operation is quite different, as commit can
pick an arbitrary solution. We use the following example to explain the differences:

t(X) :- com(X), X = 2.

com(1) :- |.
com(2) :- |.

If £(X) is called with X unbound, the commit is noisy in the left-to-right execution. In
the example, commit could choose either the first or second clause, and the computation
could either succeed or fail. In contrast, cut would always choose the first clause. On

_ the other hand, if the determinate goal X = 2is allowed to execute first, we can only

commit to the second clause.

There is a fundamental difference between noisy cut and noisy commit. This difference
is made clearer if we consider early execution of determinate goals, that is of goals
that introduce bindings which would always need to be made for the computation to
succeed. A noisy cut may prevent us from selecting a path in the search tree that
would agree with these bindings. A noisy commit may also prevent us from selecting
such a path, but can also commit to the correct path. In the example, a noisy cut in
com/1 would force us to select the first clause, when the second clause is the one that
agrees. With a noisy commit we could select either the first or the second clause: we
may fail, as cut would, but we may also be lucky and hit the right solution.

5.5 Early Execution of Builtins 78

Consider now a commit that is quiet in the left-to-right execution. Early execution
of goals will generate extra bindings. If the commit is quiet, either these bindings
agree with the (determinate) bindings necessary to commit, or there is no way to
commit. Therefore, if left-to-right execution can commit to a set of clauses, Andorra
style execution will either fail, or can only commit to the same paths in the search tree.

Early execution of goals before noisy commits is clearly less of a problem than before
a noisy cut. Early evaluation of determinate bindings mainly blocks commit from
choosing paths that lead to failure. Eventually, some programs that might fail in,
say, Aurora may never fail in Andorra-I. On the other hand, most programmers would
consider a program that sometimes fails and sometimes succeeds buggy! Still, in
the Andorra-I system, we have taken a conservative approach and decided to prevent
these differences by treating noisy commits in the same way as noisy cuts.

5.5 Early Execution of Builtins

We have previously shown that there are good reasons why side-effects can only be
executed when leftmost, but that by allowing early execution of other builtins we can
obtain more coroutining and and-parallelism.

In Andorra-I, a builtin can be executed as soon as:

e the builtin has a single answer, and,

e the builtin is var-safe.

The first condition agrees with our principle of only executing early determinate goals.
* The second condition guarantees that if we execute the builtin now, we will obtain the
same solutions than if we execute the builtin when, say, leftmost.

Most builtins are always determinate, and can therefore be executed as soon as they
are var-safe. An exception might be calls to bagof/3 and setof/3, where problems
might arise if the callee binds free variables nondeterminately. In fact, to do so the
callee needs to be itself nondeterminate, hence it will itself delay, and execution of
bagof/3 or setof/3 needs to wait until solutions for the callee are found.

5.5 Early Execution of Builtins 79

5.5.1 Early Execution of Goals With Cut

We can execute a cut as soon as it is quiet. The problem arises with what is the
meaning of determinate execution of cut. Clearly, by pruning alternatives the cut
itself makes a goal determinate, and therefore any quiet cut should be immediately
executable. '

In fact, Andorra-I uses only flat determinacy, that is, a goal is considered to be
determinate if only head unification and builtin execution for at most one clause
succeeds. We follow the same principles for cut:

A cut is executable early and makes a goal determinate when (i) it is quiet; (ii)
head unification or builtin execution has failed for all previous clauses; and (iii) head
unification and builtin execution guarantees this cut will be taken.

The last condition can only be fulfilled if all calls to the left of the cut are calls to
builtins.

5.5.2 Early Execution of Goals With Commit

We could go ahead and make any goal with commits automatically determinate. The
problem, as we discussed earlier, is that execution of a noisy commit may constrain
some bindings which will later on disagree with determinate bindings and thus
eventually lead to failure. Pruning while commit is still noisy would thus mean that
computations which always succeed with a left to right selection function, could now
sometimes fail. We therefore only allow commit to make a goal determinate if the
commit is quiet.

- As for cut, Andorra-I only supports early execution of flat commits. The rules need
not be as restrictive as for cut:

A commit is executable early and makes a goal determinate when (i) it is quiet; and
(ii) head unification and builtin execution guarantees commit can succeed.

5.6 A Scheme For Correct Execution of Prolog Programs in Andorra-I 80

5.6 A Scheme For Correct Execution of Prolog Programs in
Andorra-I

We can now give a scheme for the correct execution of Prolog programs in Andorra-I:

(i) Compile-Time: We generate annotations that prevent early execution of goals that
interfere with sensitive calls. A simple way to do so is by disallowing execution of any
goal to the right of a sensitive call until the call is finished.

(ii) Run-Time Conditions: Given the compile time-annotations, we execute calls to
pure goals as soon as they are determinate, calls to procedures with cut and commit
as soon as they are determinate or as soon as cut and commit can force a single clause
quietly, calls to side-effects only when leftmost, and calls to other builtins as soon as
they are var-safe and have a single solution.

The scheme assumes that we can detect at compile-time all sensitive calls. This is
easy for side-effects, but harder for noisy cuts or noisy builtins, and in general, we
may not be sure if a call to a cut or meta-predicate is sensitive or not. Even if we are,
the same program call may sometimes be sensitive and sometimes not be sensitive.
The following rules apply:

o Compile-Time: if a call may be noisy, then we must assume it is.

¢ Run-Time: if a supposedly noisy call is found to be var-safe at run-time, we
can execute it as any other var-safe call. The argument is that we prevented
at compile-time early execution of goals from binding arguments to this goal.
Therefore, the call was actually var-safe in a left-to-righ_t execution. In practice,
Andorra-I has specialised determinacy code for each builtin, which also verifies
a call to a builtin is var-safe.

We should note that the key to our ability to extract coroutining and dependent
and-parallelism is that we only sequence for sensitive calls. We would like to remark
that the notion of sensitive call is more than a convenience for the execution of Prolog
programs in Andorra-I. It agrees with, and reinforces, both good Prolog programming
practice, and previous research on the flexible execution of logic programs.

(i) The problems with var-sensitive builtins are well-known. To allow coroutining in
MU-Prolog, authors such as Naish [119] define new predicates, similar to atom/1 or
the term comparison builtins, and that are only executed when var-safe.

5.7 Summary 81

[y

(ii) Cut is probably the single most controversial feature of Prolog. Still, our work
agrees with good programming practice for cuts, mainly with the principle that a cut
should be executed as soon as it is determined the current path in the proof tree is
correct, and not later, and with the principle that (whenever possible) one should avoid
meta-predicates of the form:

p(Var, ...) :- var(Var), !, fail.
p(L, «...).

By delaying pruning one can make a cut noisy. By using the var builtin one makes
the cut noisy.

(iii) Commit has been used in several logic programming languages, particularly (but
not only) the committed-choice languages. There is a clear relation between quiet
commit and say the safe execution of commit in PARLOG [60]. In PARLOG guard is
said to be safe if it only tests values of variables obtained by input matching; it is not
allowed to bind any input variable. PARLOG verifies guard safety at compile-time
(GHC implements a similar system, where the guard will suspend if trying to bind
external variables). Safe guards are more restrictive than what is necessary, but they
guarantee efficient implementation and precise synchronisation.

Note that quiet commits are more expressive than PARLOG’s safe guards in that they
allow binding of external variables, as long as that binding is unique. In this sense
they are very close to ALPS’ commit [101].

5.7 Summary

This chapter presented a scheme for the execution of Prolog programs calls in the
Basic Andorra Model. For pure logic programs, both Andorra-I and the left-to-right
selection function of Prolog will return the same results, except for the case of infinite
computations. The problems with or-parallelism can be addressed at run-time in the
same fashion as for Aurora.

The problems with early execution of goals need more care. Sensitive goals are goals
that prevent others from executing early. We found that side-effects, meta-predicates,
and noisy cuts are sensitive. Finally, we showed that the notion of sensitive goal
agrees and generalises previous work on good logic-program design.

Chapter 6
The Sequencer

Given the principles described in the previous chapter, the task of the sequencer is to:

¢ Detect which goals are sensitive in the Prolog execution.

¢ Generate annotations to prevent early execution of goals that can interfere with
sensitive goals.

The preprocessor considers all calls to side-effects sensitive. In order to detect if a
call to a procedure using cut is noisy or if a call to some other builtin is sensitive, the
preprocessor must detect whether the call’s arguments are sufficiently instantiated. To
do so, the preprocessor uses mode information, either obtained from user annotations,
or from results from abstract interpretation.

To generate annotations the sequencer must first detect which goals, if evaluated

- early, will interfere with sensitive calls. The sequencer basically:

1. detects all goals that are ancestors of sensitive goals,

2. and disallows executions of goals to the right of an ancestor

For some programs this is more than necessary, and in practice the preprocessor does
allow early execution of some goals to the right.

6.1 Mode Based Analysis of Programs 83

6.1 Mode Based Analysis of Programs

Prolog programs do not include annotations to tell if cuts are quiet or noisy, or if
uses of the meta-calls such as atom/1 are quiet. The preprocessor must obtain this
information either from mode declarations introduced by the programmer, or from
the results of abstract interpretation. We next discuss how user declarations and the
results from abstract interpretation are used by the preprocessor to detect if a cut may
be noisy.

6.1.1 Mode Declarations Based Analysis of Cuts

Mode declarations tell if the arguments to an Andorra-I Prolog procedure are input,
output, or don’t-know. The mode declarations are:

+ represents a read-only, or input argument. A user can declare an argument to
be read-only if the argument will not be bound or its instantiation tested by
execution of the call.

- represents a write-only, or output, argument. The value is not intended to affect the
execution of the procedure. Unification against this argument may be postponed
until after execution of the procedure.

7 represents a read-write, or don¥-know, argument. No information is provided about
the state of the argument or how the argument will be used in the call. This is
the default mode.

As an example, consider the following definition for delete/3:

1= delete(+,+,~).
delete(X, [XIL], L).
delete(X, [Hd|L], [HdINL]) :- delete(X, L, NL).

The Prolog query delete(a, [a,b,c], L) isa valid query. On the other hand, the
queries delete(X, [a,b,c], L) and delete(a(X), [a(1),a(2)], X) do not obey the
mode declarations because the first argument will be bound during execution of
delete/3.

6.1 Mode Based Analysis of Programs 84

[

As regards output mode declarations, the query delete(a, [b,c], b) does not respect
the output mode declaration, although calling the procedure with the third argument
bound will give the same results. On the contrary, for the procedure:

:= max(+,+,-).
max(X, Y, X) :- X >=Y, 1,
max(X, Y, Y).

allowing early bindings for the third argument can result in an incorrect answer, as
max(4,3,3) shows.

Prolog mode declarations only affect efficiency for pure Prolog procedures, but they
can affect correctness for procedures with builtins or cuts. We next discuss how early
execution of goals affects mode declarations.

+ arguments: we can guarantee that an argument will be as instantiated for Andorra-
I as it would be for a left-to-right execution if we only execute the procedure when
leftmost.

- arguments: early instantiation of goals means that arguments that would be
unbound in Prolog may be bound in Andorra-I. Still, execution will return the same
results, except if we have sensitive calls in the procedure. In this case, early bindings
to output arguments may result in incorrect execution. Therefore, the preprocessor
delays unification with output arguments in a procedure until after any cut or sensitive
builtin in the procedure.

6.1.2 Mode Based Analysis of Cuts

Cuts in a procedure where all arguments are input or output must be quiet, as they
cannot force bindings to the input or the output arguments. If some arguments are
don’t-know, we need to check if unification can constrain variables appearing in these
arguments.

We need therefore to verify if either head unification or execution of goals in the body
can bind variables.

The algorithm in figure 6.1 succeeds if head unification cannot constrain external
variables, and fails otherwise. The algorithm uses two sets of variables, VI, describing
which variables appear only in input arguments, and V D, describing variables which

6.1 Mode Based Analysis of Programs 85

VI—90
VD <9
for each argument a; do
Vs « vars(a;);
if mode(q;) = '+’ then begin
if VDN Vs # 0 FAIL;
elseVI —VIUVs;

end;
if mode(q;) = '? then begin
if nonvar(a;) FAIL;

elseif Vsn (VIUVD) # ¢ FAIL;
elseVD —VDuUVs;
end
end;

Figure 6.1: Read-Only Head Unification

cannot be bound, and two auxiliary functions: vars(T') gives the set of variables
appearing in the term T, and nonvar(T) tells if the term T is instantiated. The
algorithm verifies if head unification may instantiate a don’t know argument directly,
via unification of that argument to a non-variable term, or indirectly, via variable
to variable unification with some other argument. Output arguments are ignored.
Notice that all these conditions can be simplified to ignoring output unification and
verifying if the don’t know arguments are singleton variables.

The second step is to verify if goals in the guard of the cut can bind external variables.
The sets VD and VI from the previous algorithm are used here to refer respectively
* to variables which cannot be safely instantiated and to variables which may be. The
algorithm must verify for every subgoal before the cut if any external non-instantiated
variable, which may only come from V D, can be instantiated. Figure 6.2 describes the
algorithm.

Note that the algorithm follows the Prolog execution pattern. Consider a general call
C. First, the algorithm verifies if any variable from V D appears in C. If so, the
variable may be instantiated and the algorithm fails. Otherwise, the algorithm had
to consider the case of new variables created in C: they can only share with variables
from VI, which we know cannot be bound, so they can themselves be safely added to
VI. This algorithm proceeds until no more calls are left in the guard of the cut.

et oo s .

6.1 Mode Based Analysis of Programs 86

for each call C do
Vs « vars(C);
ifVsn VD # 0 FAIL;
else VI - VIUVs;
end;

Figure 6.2: Read-Only Calls

Mode information for a call C can improve the algorithm. In particular, variables in
input arguments, even if in V D, cannot receive extra bindings during execution of the
call. Note that one must be careful about C’s newly created variables, as they can
share with one of V D’s variable appearing as an input argument, and therefore they
must be included in V' D.

Determinate Bindings

Note that even if a pruning operator binds external variables, the pruning operator
can be quiet as long as all the different alternatives for the goal give the same bindings
to the external variables. In general, to verify this case demands even more precise
information than for finding whether external variables are to be bound, and therefore
cannot be verified by the preprocessor. The main exception is for arguments that
take the same value in all heads of a procedure. They will always result in the same
bindings and can never make the pruning operator noisy.

Builtins in the Scope of a Cut

We can say that a sensitive call to a builtin makes the cut noisy. For instance, consider
the procedure:

a(X, Y) :- var(X), !, Y = var.
a(X, X).

We can say that the call to var/1 is sensitive, and that it makes the cut noisy (because
the cut prunes on X being unbound). To verify if a call to a builtin is noisy we check all
variables appearing in its arguments:

6.2 Analysis Based on Abstract Interpretation 87

[y

o Ifthe variable appears in an input argument, it must be bound and cannot make
the call sensitive

e If the variable is always unbound, we can check for which argument it appears
and if the argument is tested by the builtin.

e Otherwise, the call may be sensitive.

Builtins can also be used to test the instantiation of variables. For instance, if the
builtin is of the form X is Exp, we add rules to the effect that the variables in Exp
must be ground before the call, and that the variables in X will be ground after the
call. Therefore, all these variables can be safely included in VI.

6.1.3 Sensitive Calls to Builtins

The general rule for calls to builtins correspond to the rules for builtin discussed
previously. We therefore need to apply the algorithm in Figure 6.2 until we reach
the call to the builtin, and then verify if the call may be noisy, using the algorithm
presented above.

As explained before, we can use information on some builtins to obtain better perfor-
mance.

6.2 Analysis Based on Abstract Interpretation

The sequencer can use both mode declarations from the user and mode patterns from
~ the abstract interpretation together to find sensitive goals. The sequencer first tries
analysis based on the results from abstract interpretation. If this analysis fails, the
mode declarations are used. We next describe how the mode patterns from abstract
interpretation are used to detect quiet cuts and to say if a call to a builtin can be
sensitive.

6.2.1 Analysis of Cuts

The analysis of cuts based on abstract information uses the same basic algorithms as
for user mode declarations but takes advantage of the more detailed mode patterns

6.2 Analysis Based on Abstract Interpretation 88

[y

that can result from abstract interpretation. Abstract interpretation obtains the
different call patterns for the various calls to the same procedure, plus the input and
output Prolog call patterns for every goal in the guard of the pruning operator.

The information provided by the abstract domain is described in the next chapter.
For this purpose, it is sufficient to say that the instantiation of an argument may
be a variable Var, or an instantiated term with a main functor and possibly some
instantiated arguments, or a term T(L) which can take any value, that is, be either
instantiated or a free variable.

Output Arguments The first step is to check which arguments will never affect
execution. This occurs if unification for an argument always succeeds, and if the
argument cannot be tested by any goals in the guard. The latter holds true if in
all calls to the procedure the argument is instantiated to a single occurrence of an
unbound variable. The sequencer verifies this condition, but in some cases it can also
do better, as the next examples based in the use of difference lists shows:

process_list([], End-End).

process_list([Hd|Taill, Begin-End) :-
process_hd(Hd, Begin-Middle), !,
process_tail(Tail, Middle-End).

process_list([_|Taill, Begin-End) :-
process_tail(Tail, Begin-End).

In this case, if it is known that the call patterns for the second argument are either
of the form T(.) — T(.), or of the form Var, unification to the second argument is
always known to succeed and the argument is output. The sequencer thus includes a
- step which, for every argument, basically verifies if unification with that argument is
known to always succeed. If so, the argument is declared output.

Head Unification After processing the output modes, each call pattern is compared
with the heads of clauses containing cuts in order to verify if the clause can bind
external variables. The algorithm is a specialisation of the abstract unification
algorithm used by the abstract interpreter and at each point it tests for one of three
conditions: (a) the pattern is not unifiable to the head of the clause, (b) the pattern
unifies with the head of the clause but it cannot bind external variables, or (c) an
external variable may be bound. Only in case (c) should the algorithm fail.

6.3 Indirectly Sensitive Calls 89

An external variable may be bound either if (i) a term of the form T(i) in the calling
pattern is unified with a non variable term or a non-singleton variable, or (ii) if a term
of the form Var in the calling term is unified to a non variable term or a non-singleton
variable that does not match Var, i.e., the head variable should only appear in places
where Var appears.

6.2.2 Calls to Builtins

For calls to builtins, the sequencer can use the input and output patterns provided by
abstract interpretation. The algorithm is basically the one presented for user mode
declarations. The main difference is that one may, by comparing input and output
patterns, verify if an external variable has been bound during execution of the goal.
Thus some of the optimisations that were before used for builtins become unnecessary
as they are now provided for free. Finally, information about sharing of variables can
be used to restrict the number of variables to add to VD in each step.

6.3 Indirectly Sensitive Calls

After detecting all sensitive calls, the sequencer must find out for which calls early
execution of right-siblings may be dangerous, the indirectly sensitive calls.

The set of all sensitive and indirectly sensitive calls can be defined as the fixed point of
an operator Sp(I) = {A € Bp : A:— A;,..., Ay AA; € I, enabled(A;)}, where enabled
means that either A; is an ancestor of a side-effect, or that A; is an ancestor to a noisy
cut or sensitive meta-predicate that shares variables with the head A (either directly
or indirectly). The initial value for I is the set of all sensitive calls.

The operator Sp is obviously a monotonic mapping on a finite lattice. Thus it has a
least fixpoint, which can be obtained by one of the several fixpoint algorithms that
have been proposed in the literature [169, 157, 122].

The sequencer uses a simple algorithm to obtain the.fixpoint. As in Ullman’s
algorithms [169], the sequencer first constructs a dependency graph.

Basically, the nodes of a dependency graph are either the procedures of a program, or
all calls in the program. If the nodes are procedures there is an arc from a node p to
a node q if there is a rule with head ¢ and with a subgoal whose procedure is p. If
the nodes are calls there is an arc from a node p to a node g if the procedure whose

6.3 Indirectly Sensitive Calls 90

sibling(X,Y) :- parent(X, 2Z), parent(Y, 2Z), @at@d cousin
X \== Y, \ /

cousin(X, Y) :- parent(X, Xp), parent(Y, Yp),
sibling(Xp, Yp).
cousin(X, Y) :- parent(X, Xp), parent(Y, Yp) g
! cousin(Xé, Yp;. ’ ! SIbI/ng
related(X, Y) :- sibling(X, Y).
related(X, Y) :- related(X, 2), parent(Y, 2).
related(X, Y) :- related(2, Y), parent(X, 2).

parent

Figure 6.3: A Program and Its Dependency Graph

rule contains the call p is called by the subgoal g. An example of a simple dependency
graph for a family database is given in Figure 6.3 (based on Figure 3.2 of [169]).

A program is recursive if its dependency graph contains one or more cycles. A
procedure, or call, is recursive if it is in one or more cycles (related and cousin in
Figure 6.3), nonrecursive otherwise (parent and sibling in Figure 6.3). The main
problem in fixpoint computation is how to avoid spending too much time in recursive
procedures, i.e., how to optimise analysis of recursive programs.

The fixpoint algorithm used by the sequencer has a first step which sorts the depen-
dency graph according to the dependency relations. The sorting is based on a partial
order relation < such that p < ¢ if ¢ can call p but p cannot call g. The sorting process
proceeds in phases: first all leaf calls are selected (those which do not result in any
more calls). Next the ones only making leaf calls, and so on. The process deadlocks
when it meets mutual recursion (i.e., a call p calling a call ¢ which in turn calls p). In
this case, one of the remaining calls is arbitrarily selected and the process continues.

The actual fixpoint calculation algorithm is a variant of Ullman’s semi-naive (or
. incremental) fixed point calculation algorithm that follows the sorted list of calls. The
algorithm uses two data-structures, the initial ordered list of calls, Tg, and the final
ordered list of calls T,, and is presented in figure 6.4.

The function add_to_set, adds its argument to the fixpoint. The crux of the algorithm is
the function should_be_in_set(C;). Given the calls currently defined in the set, it says
if the C; must be in the set. Currently, the system includes C; in the set if there are
any goals in the set that are directly called by C; and either (i) one of these goals may
result in a side effect or (ii) one of the modes for C; is don’t-know. If all the modes for
C; are input or output, then the input modes cannot cause problems by definition, and
unification with the output modes can be delayed until after execution of the call.

6.4 Control Annotations 91

Yo < [C1y.--:Chy -+ +Chls
Tn <« To;
repeat
To — Tn;
for i « 1 to length(To) do
if (should be_in_set(C;)) then begin
add_to_set(C;);
Tn — Ta\Ci;
end;
end;
until Yo = Ty;

Figure 6.4: Fixpoint Calculation

The work in each iteration may be reduced by removing all the calls that appearin T
before the first mutually recursive call, as it is always the case that we find if these
calls belong to the set or not in the first iteration. But for most programs the iteration
process converges very quickly, usually in one or two iterations, and this optimisation
is probably unnecessary.

Note that this algorithm does not deal with sharing of variables very precisely. That
is, all right-siblings are assumed to share variables with the sensitive goal, whereas
in practice they might be independent. A better solution could be used if one knew
which goals share which variables. Unfortunately, only abstract interpretation using
the operational semantics of the Basic Andorra Model could give a general answer to
this problem, and implementing such a feature would make the current preprocessor
much more complex.

6.4 Control Annotations

The last phase of the sequencer generates the control annotations necessary to
guarantee correct execution of the program. The task of the annotations is to delay
goals to the right of the sensitive or indirectly sensitive call until either the sensitive
call has been fully executed or it is known that any sensitive calls below the indirectly
sensitive call have been executed safely. We use the sequential conjunction for this

purpose.

6.4 Control Annotations 92

6.4.1 The Sequential Conjunction

“Sequential conjunction” prevents evaluation of any goals to its right until all calls
to its left have been completely executed. The operator was previously used in
languages such as PARLOG to give sequencing (e.g., near side-effects), and to increase
granularity [60].

We preserve the operator ¢,” for the default, parallel, conjunction and reserve the
operator ‘::> for sequential conjunction. We allow free mixing of sequential and
default conjunctions in a clause, with the sequential conjunction operator not grouping
as strongly as default conjunction; thus the clause a :- b, ¢ :: d, e. should be
readasa :- ((b, ¢) :: (d, e)).

The algorithm to sequentialise sensitive calls with the sequential conjunction is quite
simple. Ifa sensitive call or indirectly sensitive call is the last call in a clause, nothing
is done. Otherwise the conjunction to the left of the call is made sequential.

In figure 6.5 we show an example program. The original Prolog program reads a
query, preprocesses it and executes it to obtain a solution. The solution is then used
for some calculation. We assume that the procedures preprocess/2, calculate/1and
combine/2 are pure Prolog procedures

prog(Z) :~ read(X), query(Y, 2) :-
preprocess(X, Y), write(Y),
query(Y, 2), read(W),
calculate(Z). combine(Y, W, 2).

Figure 6.5: Example of Sequencing

The results of the algorithm for this example are represented in figure 6.6. Notice
that in this case only the parallelism between preprocess/2 and query/1 is left.

Note that in Andorra-I putting a sequential conjunction after a goal is only necessary
if one of its right-siblings can become determinate. Otherwise, the right-siblings can
never execute early. Thus, the goal read (W) is never determinate and there is no need
to protect the goal write(Y) from its early execution. The sequencer only generates
a sequential conjunction after some goal it (a) at least one of its right sibling may
become determinate, and (b) if such a right-sibling is not after some other sequential

6.4 Control Annotations 93

prog :- read(X) :: query(Y, 2) :-
preprocess(X, Y), write(Y),
query(Y, Z) :: read(W) ::
calculate(Z). combine(Y, W, Z).

Figure 6.6: Synchronisation through the Sequential Conjunction

conjunction. This optimisation avoids overheads due to supporting the sequential
conjunction in the current Andorra-I engine.

The sequential conjunction can be more restrictive of parallelism than some other
techniques to be discussed next (namely, than the short-circuit technique). Although
one should remark that most of the parallelism is likely to arise from the areas of the
program where no side-effects or noisy cuts exist, and that these areas should still be
clear of sequential annotations.

There are some important advantages to the sequential conjunction. Firstly, it is
useful for purposes other than just for supporting Prolog programs. By using the
sequential conjunction the preprocessor thus does not need to make any special
demands to the Andorra-I engine.

Secondly, the sequential conjunction makes it rather easy for a user to understand
which goals have been sequenced. This is particularly useful in the cases when the
sequencer has been too pessimistic and sequenced too many goals. In this case, the
programmer can simply remove the unnecessary sequential conjunctions.

- 6.4.2 Other Control Annotations

We next discuss other control annotations considered for use by the sequencer. They
include the delay declarations, short-circuits and semaphores. Of special interest is
the short-circuit technique.

The Delay Declarations such as NU-Prolog’s when declarations [119] could be used
to do sequencing. The declarations necessary for this would be:

6.4 Control Annotations 94

e waiting until a goal becomes leftmost (this can be trivially implemented); this
would be used for side-effect builtins.

¢ waiting until a goal becomes leftmost or some conditions, such as an argu-
ment becoming instantiated, are satisfied; this is convenient for noisy pruning
operators and sensitive meta-calls.

The main advantage of control declarations is that order constraints are less restric-
tive for sequencing due to noisy operators and sensitive meta-calls. An important
disadvantage is that conditions like waiting for groundness may induce significant
overheads.

The Short-Circuit technique has been used to provide sequencing in committed-
choice applications [146]. The idea is quite simple. Each goal is extended with two
extra arguments, Left and Right. Goals can execute if they have the token, which
is originally placed in the leftmost goal. When a goal succeeds, Left = Right, and
if Left has the token the token goes through. When a goal G creates subgoals, the
leftmost’s Left becomes its parents Left, G;’s Right becomes G;;,’s Left, and the last
subgoal’s Right is G’s Right.

The short-circuit technique can be adapted for the sequencer. The algorithm is as
follows. A global chain is constructed for the entire program. If a call is indirectly
sensitive, it receives the Left, Right switch, and must wait until Left is instantiated.
If a call is not sensitive but to the left of a sensitive call it receives only the Right
variable, and must wait until the variable is instantiated (this corresponds to waiting
until the side-effect to their right is finished). Only sensitive calls, including the
pruning operators, are allowed to instantiate Left = Right. Figure 6.8 shows for this
simple example the sequentialisation introduced by the synchronisation variables.
- Goals are represented only by their first character. The arrows represent dependencies
caused by the sequentialisation: when a goal is executed the targets of the arrows can
be executed immediately. Notice that when the read/1 goal in query is executed, both
the calculate/1 and the combine/2 goals can be executed immediately.

The main advantage of this method is that all computation to the right of sensitive
goal can start as soon as the goal executes. But there are some problems. Firstly,
one has the overhead of adding extra arguments to goal. Secondly, the technique
is somewhat more complex and demands extra determinacy code in relation to the
sequential conjunction. Moreover, it also makes it almost impossible for the user to
improve the sequenced program. Lastly, the short-circuit technique assumes a single

6.5 Performance Analysis 95

prog(Z) :- read(X, token, SO), query(Y, Z, SO, Sf):-
preprocess(X, Y, S0), write(Y),
query(Y, Z, SO, Sf), read(W, Si, Sf),

calculate(Z, Sf). combine(Y, W, Z, Sf).

Figure 6.7: Synchronisation through the Short Circuit technique

e
-
e
.

.

read prepragess uery

0

Figure 6.8: Dependencies in Short-Circuit Synchronisation

top-level goal. In order to query any other goal, extra program transformations may
be necessary.

- The semaphores technique (see Muthukumar and Hermenegildo [112]) uses similar
principles to sequentialise independent and-parallel execution of programs.

6.5 Performance Analysis

We next analyse the performance of the sequencer for some applications. The
applications consist of the flight allocator FlyPan [3], two versions of the Warplan plan
generator [178], two versions of an extract of the Boyer-Moore theorem prover, initially
written in LISP [54] and adapted to Prolog by Evan Tick, a logic synthesis program

6.5 Performance Analysis 96

[y

based on heuristic search, a program to detect road markings originally written by
Lydia Schaaser, a protein database program, the intuitionistic predicate logic theorem
prover of Sahlin et al., the Berkeley PLWAM Prolog compiler, Shen’s AND/OR parallel
simulator, the SICStus Prolog compiler and the CHAT natural language system. The
versions of Boyer differ in that the first, original version uses the builtins arg and
functor to create and decompose terms, whereas the second version uses the builtin
=.. to implement the same operations. The benchmarks were selected as a sample of
interesting applications of Prolog.

Table 6.1 shows the procedures that call side-effects. The last column presents the
percentage of procedures that call side-effects and gives an idea of how much of the
program is dedicated to Input/Output and related operations. The preprocessor avoids
generating sequential conjunctions by declaring some of these procedures to be “never

determinate”.
Total | Side-Effects %
Procedures

fly_pan 44 1| 2%
warplan 20 2| 10%
warplan2 28 13 | 46%
boyer 28 21 1%
dboyer 27 2| 7%
satchmo 23 12 | 52%
road.markings 46 4| 9%
protein 68 3| 4%
nand 60 5| 8%
intuitionistic 80 10 | 13%
plwam 270 27 | 10%
sim 344 78 | 23%
sicstus 376 76 | 20%
chat 449 28 | 6%

Table 6.1: Number of Procedures that call Side-effects

Typically, Prolog programs read their input, perform a computation, and then present
the output. The input and output operations will be about 10% of the source program.
The actual percentage of program time spent in input and output operations will often
be less than that, particularly for large applications. Input and output operations
take usually linear time on their arguments, whereas the actual inner computation
will usually grow much faster.

The main exception to this rule are the programs that do assert or retract. In
these programs, side-effects may be embedded inside the inner computation and the

6.5 Performance Analysis 97

sequencer will tend to disallow most early execution of goals.

Table 6.2 gives the total number of conjunctions which need to be run sequentially
in the program. Notice that side-effects have already been processed, and thus
conjunctions are sequentialised mainly due to noisy cuts or meta-predicates. Three
different approaches were used. Firstly, a pessimistic case where all cuts were noisy
and all possibly sensitive calls were considered to be sensitive. Secondly, after using
mode information from abstract interpretation. Thirdly, after including some mode

declarations.

Total | No Analysis | With Abst. Int. | User Annotations
fly.pan 921 29 32% 12 13% 1 1%
warplan 45 8 18% 8 18% 8 18%
warplan2 51 13 25% 11 22% 11 22%
boyer 24 6| 25% 6 25% 2 8%
dboyer 21 6 29% 3 14% 3 14%
satchmo 18 4| 22% 4 22% 1 6%
road_markings 163 | 33 20% 8 5% 8 5%
protein 153 | 70| 46% | 50 33% | 41 27%
nand 178 | 51 29% 4 2% 4 2%
intuitionistic 186 | 45 24% | 44 24% | 37 20%
plwam 712 | 267 38% | 254 36% | 246 25%
sim 1263 | 396 | 31% | 370 29% | 355 28%
sicstus 1632 | 404 25% | 361 22% | 336 21%
chat 660 | 205 | 31% | 185 28% | 67 10%

Table 6.2: Number of sequential conjunctions versus total

Note that counting conjunctions gives only a rough measure of how successful the
system is. Some conjunctions might be executed more often than other, and some
conjunctions might separate more important computations than others.

Without mode information or abstract interpretation, about 20% to 30% of all conjunc-
tions are made sequential. In fact, the number of conjunctions executed sequentially
is larger than this, as the system does not generate sequential conjunctions before
non-determinate goals. Except for programs with large, pure Prolog computations
(such as chat) one cannot expect much and-parallelism.

Abstract interpretation reduces the number of conjunctions to sequentialise. The
actual results depend on how well abstract interpretation recognises the actual
modes. The programs dboyer, nand and protein show good results. In contrast,
abstract interpretation does not do so well for programs such as fly.pan or boyer. In
the next chapter we give a more detailed analysis of the abstract interpreter.

6.6 Further Work 98

Finally, the final results were obtained through hand-written mode declarations and
quiet cut declarations. These results show that for most of the test programs, and as
long as modes data is precise, the sequencing introduced by the system is not a serious
problem. For other programs, such as warplan and plwam, that frequently test whether
variables have been instantiated, sequencing results in a Prolog-style execution.

6.6 Further Work

The previous discussion has shown that the main limitations of the sequencer mostly
originated from the limitations of the abstract interpreter. In general, more precise
data from the abstract interpreter should lead to less sequencing. Other optimisations
are possible:

Unfolding Different modes for calls in a program may be treated differently, for
instance by creating two separate procedures for calls that may sometimes be sen-
sitive, but sometimes not. To implement this technique one needs precise pattern
information, hence it will be connected to designing a more flexible AND-OR graph for
abstract interpretation.

Allowing Early Execution of More Goals As explained in section 6.3, early
executions of more goals could be allowed if the sequencer knew about variable
sharing in the Andorra-I execution. This depends on finding either top-down models
for abstract interpretation that can follow the basic Andorra model, or in the worst
case bottom-up models that can provide information about maximum aliasing [132].
In such cases it should be possible to reduce the number of calls to delay.

6.6.1 Flexible Execution of Builtins

The task of the sequencer is to guarantee correct execution of Prolog programs, or in
other words, to guarantee that builtins will be executed according to Prolog’s order.
Where necessary, the programmer might accept a more flexible semantics for builtins,
and indeed might accept an unordered execution of builtins. For instance, reads
or writes to two different files might proceed simultaneously or updating different
predicates in the data base might proceed in parallel.

6.7 Summary . 99

In general, it is very hard if not impossible to capture more than some limited cases
of this in a compile-time tool, as thorough knowledge of the programmer’s intentions
is usually necessary. The uses of assert in the implementation of the set predicates
is one case where one can accept flexible execution of builtins. Other cases where
the side-effects only affect some procedures in the programs include asserting and
retracting dynamic predicates that are only known to one or two “modules” in a
program, and the use of temporary files. Abstract interpretation can detect localised
uses of dynamic predicates, but only user information can give absolute certainty on
whether some file is just a temporary program file.

6.7 Summary

This chapter described the sequencer. The task of this module of the preprocessor is
to guarantee correct execution of Prolog programs through compile-time analysis of
the source program.

The sequencer’s algorithm proceeds in three steps. First, the original sensitive calls
are found. Second, information about sensitive calls is propagated in an AND-OR graph
representing the program. Finally, annotations (currently sequential conjunctions)
are generated to restrict the coroutining.

We also discussed the performance of the sequencer. The results showed the se-
quencer to be dependent on either user modes or in modes obtained from abstract
interpretation. Finally, we proposed some possible improvements to the sequencer.

Chapter 7 |

Abstract Interpretation

Early execution of goals in Prolog programs can result in incorrect answers. One
important case is if the pruning operators in the program are noisy, that is, if they
force certain bindings of external variables by pruning (different) alternative bindings.
Unfortunately, Prolog programs do not specify if pruning is noisy or quiet. In the
absence of user input, it is therefore the preprocessor’s task to obtain this data.

The preprocessor can use program analysis to determine if a pruning operator is to be
executed quietly by Prolog. A pruning operator for a procedure P is guaranteed to be
quiet if one of the next two conditions holds for all executions of the program: (i) it
is found that all external variables (i.e., variables appearing in a goal calling P) are
never to be instantiated by the procedure before pruning occurs; or (ii) it is found that
these variables may be bound, but any other alternative bindings will be equivalent
(the variables are constrained, but determinately).

Case (i) corresponds to the traditional notion of input arguments: that is, of arguments
that are supposed to be tested by a procedure, but not instantiated by it. One important
example of input argument is where the argument are known to be ground, (i.e., fully
instantiated). Ground arguments are quite frequent, and groundness is one of the
easiest conditions to determine at compile-time.

Even when variables may be constrained in a non-determinate fashion before execution
of a pruning operator, this constraining may not be supposed to affect the actual
execution (by Prolog) of the procedure. This is the case of output arguments: the state
of an output argument should not affect execution of the corresponding procedure,
hence it cannot make pruning operators noisy.

7.1 Background 101

Thus, to detect quiet and noisy cuts, one needs to, at compile-time, analyse the
source Prolog program. The standard technique used in the global analysis of logic
programs is abstract interpretation. This is a very general methodology. Firstly, the
computations denoted by a program are described in an universe of abstract objects.
Secondly, an “abstract execution” in this abstract universe is called to detect the
relevant program properties. In the case of Prolog, one can abstract the operational
semantics to approximate both the entry and exit substitutions obtained during
program execution. Lastly, such data can be used to obtain the “modes” of use of the
arguments, and thus to find which pruning operators are quiet and which ones are
noisy.

Notice that our goal is to detect if cuts are quiet in the left-to-right execution. Andorra-
I can execute goals in advance, but will not delay Prolog goals. Hence, goals calling
procedures with cuts will eventually receive all the bindings they would receive from
the standard Prolog execution, hence if the cuts were quiet in traditional Prolog, and
if they are receiving at least the same bindings for their arguments, then they must
be quiet in Andorra-I.

The abstract interpreter used in the preprocessor is the subject of this chapter. The
main issues in the design of the system are discussed in detail: the representation of
the relationships between goals in the program, the abstraction data types and the
iteration algorithm used to obtain the solution. The performance of the abstract in-
terpreter is then discussed. The ensuing discussion shows how further improvements
to the abstract interpreter can be obtained.

7.1 Background

~ Abstract interpretation was proposed by the Cousots [37] as a framework generalising

many of the techniques used in global analysis of programs. The technique was first

presented in the context of the imperative languages. It assumes the program has

been given some collecting semantics, i.e., some model which records at the various

program points the values of all (and only those) parameters encountered during

program execution. Formally, these semantics can be specified as the fixed point
mon

Ifp(F) of a monotone operator, FF € L — L, on a complete lattice L(C,.L,T,u).
Abstract interpretation simply aims at giving an upper approximation, A, to this fixed

point ! fp(F).

In practice, most abstract interpretation systems simplify the problem. Essentially,
we can always represent a program as a set of equations X = F(X). This set of

7.1 Background 102

equations is simplified into a new set of equations X = F(X), where F ¢ L %% T,
and I, the abstract domain, is some partially ordered set (poset) L(C, L,u). The new
equations must be such that they can be solved iteratively starting from the infimum
A,

The connection between the semantic domain I and its abstract version L can now be

mon

formalised by a Galois connection: L="I. a € L % T is the abstraction function, and
7 € L™= L is the concretisation function. a and v are monotone functions such that:

Ve e LyeL:(a(z)Cy) < (z Ev(y))

If the abstraction of z is subsumed by the abstract value ¥, then y must include z as
one of the values it approximates, and vice-versa.

We can guarantee that I fp(F) is a correct approximation of [fp(F) (in the sense that
Lfp(F) Ev(Ifp(F)))ifao F oy C F. In other words, for an abstract value V, as shown
in the bottom-right corner of Figure 7.1, applying the abstract operation F must result
in a more general value than abstracting the result of the concrete operation F for any
of the values V that V abstracts (as shown in the bottom-left corner of Figure 7.1).

F

O~ O

o b
OZO- O

Figure 7.1: Correctness Conditions for Abstract Operations

. The previous condition guarantees correctness of abstract interpretation. Termination
of abstract interpretation can be achieved by imposing finiteness conditions on the
abstract domain I. In particular, it is sufficient that all chains in I are finite.

The initial work by the Cousots [37] presented abstract interpretation in the context
of imperative languages. Several examples of data flow analysis (such as expression
availability and liveness analysis), type verification and synthesis, and program
testing were shown to be concrete examples of abstract interpretation. Abstract
interpretation has also been used in the analysis of Prolog. As a semantics-based
analysis of programs, abstract interpretation is very much dependent on the type of
semantics on which it is based. In the case of logic programs, two semantics are most
important:

7.1 Background 103

¢ Declarative Semantics: Given a program they give the consequences of the
program.

o Operational semantics: Given a program, they describe the operations the
machine will carry out to execute the program.

As discussed in section 2.1, a model theoretic approach to logic semantics used a
fixed point Mp to obtain the minimal model of the program. Abstract interpretation
based on declarative semantics follows a similar algorithm to obtain an approximation
to Mp. T, is commonly evaluated in a bottom-up fashion. Corresponding abstract
interpretations follow the same strategy and are usually called bottom-up abstract
interpretations. Bottom-up abstract interpretation inherits the elegance of Logic
Programming’s declarative semantics, and Marriot and Sgndergaard [104] show
several examples of its use in program specialisation and error detection. One
problem with Herbrand interpretations is that they only provide ground solutions.
The declarative semantics of Falaschi et al. [51] support the introduction of non-ground
terms and have been used by Giocabazzi et al. to do ground dependency and type
analysis [59, 132].

Bottom-up systems provide success-substitutions for programs. In many cases, such
as program compilation or parallelism detection, one is interested in finding the entry
substitution for goals. This can be performed by using the operational semantics of
Prolog. Because Prolog uses SLD-resolution, this type of abstract interpretation is also
known as top-down abstract interpretation. Mellish [109] introduced the first example
of abstract interpretation of logic programs. He applied his scheme to the analysis
of modes, determinacy and sharing [110]. The model was later founded in terms of
traces [108]. Mode inference systems have been used for some Prolog compilers [80,
196, 103). Other initial work includes Sato et al. that presented a scheme based
on an abstract item set construction [142]; Jones and Sgndergaard [89], that used
- denotational semantics to construct the collecting semantics, they also presented occur-
check reduction as a new application [150]; Manilla and Ukkonen, that used a simple
mode set to do flow analysis [102]; and Debray and Warren [46] introduced a practical
mode analysis scheme with a detailed discussion of aliasing (a refined algorithm
is given by Debray [45]). Aliasing connects to the problem of compile-detection of
sharing between variables, one of the most important applications of global analysis
because it can considerably reduce overheads in the implementation of independent
and-parallelism. Sophisticated domains have been developed to represent sharing,
and have been applied to actual systems such as &-Prolog [83, 111]. Other important
work includes Bruynooghe’s general framework for abstract interpretation [12]; this
framework was applied for several abstract domains and applications, including

7.1 Background 104

type inference and compile-time garbage collection [14]. Finally, other applications
include Gallagher, Winsborough and others use of abstract interpretation for program
specialisation [56, 55, 191], and Taylor and Van Roys’s use of abstract interpretation to
detect empty reference chains for variables, useful for efficient Prolog compilation [158,
176].

In our case, we were basically interested in finding if the execution of goals could
instantiate variables. This can happen during head unification, or due to the operation
of some builtins. We were also interested in the more general problem of finding out
if calling a goal would result in instantiating of some (and which) of its arguments.
We were thus interested in the operational semantics, and consequently in top-down
abstract interpretation. We founded our system on Bruynooghe’s framework [12]
which gives a general description of the abstract interpretation process in terms of a
finite abstract And/Or-tree. The framework starts from a concrete And tree (or proof
tree), corresponding to the SLD derivation of a concrete goal. Generalised And trees
are defined as having nodes Q (goals) that are adorned to the left by a call substitutions
7; and to the right by an exit substitution 7;4;, with the domain of 7;, Ti+1 a subset of
var(Q). The basic operations on the tree are:

o procedure entry occurs when a leaf P is unified with a clause H — B,,...,B,. If
n = 0 (empty body) the resulting substitution 7, is called a success substitution.

o if the call P is for a builtin, a new substitution 7;4, is obtained. The operation is
named interpretation of a builtin.

e given a tree with a call P adorned to the left but not to the right, a new
generalised And tree is obtained by adorning P to the right. If P is the last call
of its clause, the new substitution is also the success substitution of the body;
otherwise it is the call substitution for the next call. This operation is named
procedure exit.

Consider a set of queries Q)y,...,Q),. Some of the resulting generalised And trees
will differ only in the substitutions they contain. We build abstract And trees by
replacing single substitutions with sets of substitutions ©. Notice that all notions of
generalised And trees can be carried over.

Finally, to cope with the nondeterminism corresponding to the fact that a predicate
may be defined by several clauses, we introduce the notion of abstract And/Or-trees.
In these trees, each call is associated to an Or-node. The Or-node contains a branch
for every clause in the corresponding procedure. Hence an abstract And/Or-tree

7.2 The Abstract Domain 105

[y

represents a set of abstract And trees: each element of this set can be obtained by
selecting a branch at each Or-node.

Given a set of queries QO, the goal of abstract interpretation is to construct a correct
abstract And/Or-tree. By correct one means it should describe all concrete And-trees
which can occur when executing a query in Q©. The framework guarantees that given
an abstract domain and correct implementations of the basic operations, one can build
an abstract And/Or-tree which is guaranteed to be a correct approximation to the
program. Following this framework, the basic steps in the design and implementation
of an abstract interpretation system become:

1. Design an abstract domain which (a) is an interesting approximation to the terms
built in the program and (b) guarantees termination;

2. Implement the basic operations on this abstract domain: procedure entry,
abstract interpretation of builtins and procedure exit;

3. Design a representation of the And/Or-tree: in most cases for efficiency the
And/Or-tree is represented as a graph;

4. Design an algorithm to calculate the fixed point starting from the initial query.

In the next sections we show how we implemented a practical mode analysis system
by discussing each of the previous points in detail. We also discuss some practical
implementation questions.

7.2 The Abstract Domain

To design an abstract domain, we need to define a set of abstract terms that will, firstly
provide useful information for our purposes, and secondly, guarantee termination.
Termination is guaranteed if the set of possible abstract substitutions B$“(Bi")
is a partially ordered set without infinite sequences a; < az.... As a practical
consideration, the more complex the abstract domain, the more expensive will be its
implementation and the more inefficient the resulting implementation.

The previous paragraph makes it clear that one has to decide on a compromise between
precision and efficiency. The designers of early systems were interested in simple
mode patterns, and thus settled on simple abstract domains. As an example, a very
simple domain is given by Debray and Warren [46] consisting of the elements bottom;

7.2 The Abstract Domain 106

totally ground terms; totally uninstantiated terms (i.e., unbound variables); and the
top element. '

This simple mode system does indeed provide a first approximation for our purposes:
if a term is ground it cannot be instantiated, if an argument is always an unbound
variable, unification with it can be postponed until after a cut. On the other hand, it is
very imprecise, and we believed that we could gain advantage from more information,
particularly when analysing flat cuts. Considering the previous work on designing
abstract domains, several different lines of research can be found: simple extensions to
the groundness domain, domains specialised in detecting sharing between variables,
domains specialised in detecting the structure of run-time terms.

As extensions to the ground/var domain, Mellish proposed IU, corresponding to terms
with totally uninstantiated components, Richard Warren et al. include nv (190, 79]
corresponding to terms known to be instantiated.

During execution program variables may, or may not, share run-time variables. This
is called the aliasing problem and it relates to the important problem of detecting at
compile-time conditions for independent and-parallel execution of goals [76].

In the context of occur check reduction, Sgndergaard presented an abstract domain
that represents (a) if instantiations for two run-time variables may share and (b) if a
run-time variable may occur several times in the same substitution [150].

A very interesting abstract domain for sharing was also presented by Jacobs and Lan-
gen [83]. Muthukumar and Hermenegildo present corresponding abstract unification
algorithms [111]. The abstract domain represents the fact that run-time variables
may be shared by several arguments. This is represented through sets of sharing
information, where a set [4, B] belongs to the abstract substitution if, at run-time,
the two variables 4 and B may share. For example, consider a goal g(X,Y, Z), and
~ a corresponding abstract substitution {[X1,[Y],[X,Y]}. This substitution represents
that (a) there may be variables occurring only in X and only in Y; (b) there may
be variables occurring in both X and Y; (c) there are no variables occurring in Z,
hence Z is instantiated to a ground term. In practice this domain is very specialised
for detecting sharing, and thus does not provide any information about the internal
structure of terms, not even about freeness (i.e., if a compile-time variable is bound).
A recent extension by Muthukumar and Hermenegildo [115] adds freeness, basically
by combining this domain with traditional mode information.

Abstract domains can be designed to describe the structure of terms at run-time,
usually by a combination of mode and type information {13, 6]. In particular,

7.2 The Abstract Domain 107

Janssens [88] gives a thorough description of two such domains, that differ on their
treatment of aliasing. In her system, simplifications necessary to obtain a practical
canonical form for type terms and to guarantee convergence: a compactness condition
is used to restrict the type graphs that can be built. For efficiency restrictions are
also made on the depth of type graphs and on the possible labels for sets of types.
Aliasing is represented explicitly. Bansal’s [6] domain is also a full type system, but
uses type variables to represent free variables. Bansal claims that, therefore, the
aliasing problem is not present in his domain.

Type systems provide the most complete information about the state of arguments
and are therefore closest to our requirements. They do have a serious problems: type
terms can easily become very complex expressions, hence they are rather complex and
expensive to implement. Moreover, type systems will be most useful it the program
follows some kind of type discipline, but this is often flouted by Prolog programs (e.g.,
the use of builtins such as the =.. builtin [116]). Therefore, we decided to implement
a simpler system.

In our system, we initially decided to obtain only simple mode information, using an
explicit representation of abstract substitutions to represent sharing. We eventually
discovered that, for many applications, mode information was insufficient, and decided
to implement a compromise system. Our full abstract domain is in fact similar to
a domain independently proposed by Taylor [158]. It can give information more
detailed than simple modes, but it is still manageable and indeed we have been able
to interpret large Prolog programs.

7.2.1 The Structure of the Lattice

The abstract domain we use is as follows. Typewriter font designates a constant
- or functor appearing in the program and italic font designates a type defined in the
abstract domain:

1. L: bottom element;
an actual constant, i.e., [1, a, 3;

Constant: the set of all constants, either atom or integer;

& LN

functor(typey,...,type,): a term with main functor functor and whose argu-
ments are of type, ..., type,, respectively;

5. List(type): alist of zero or more items belonging to type type;

7.2 The Abstract Domain 108

Ground

constant

Figure 7.2: Structure of the Abstract Domain

6. Or({type1,...,typen}): where types typei,...,type, are exclusive types of the
form 2, 3 or 4;

7. Ground: the set of all ground terms;
8. Var(Label): a variable, and Label represents sharing information;

9. T(Label): top element, represents any term, and Label represents sharing
information.

Figure 7.2 illustrates the structure of the abstract domain.

Unless specified, type may be any element of the abstract'domain, except for the
. restriction that terms below a certain depth must be of type 2, 3, 7, 8 or 9, i.e., cannot
have further structure. The relation of order between all the elements of the abstract
domain is made clear in Figure 7.2. The fundamental differences from a typical
ground modes system are:

o Compound terms are introduced in this lattice. They provide a more detailed rep-
resentation for non-recursive data structures, particularly useful in describing
non-ground data structures.

e Lists are introduced as an example of a recursive data structure. They are a very
common data structure in Prolog programs and moreover they provided some
insight on the problems in implementing a full type-mode system.

7.2 The Abstract Domain 109

[y

We next detail some important problems in the design of the abstract domain. A
detailed description of the implementation of the abstract operations on this domain
is given in Appendix A.

Detailed Discussion of the Abstract Domain

The abstract domain includes individual constants and Constant, that represents any
constant. Notice that in other systems, e.g., Taylor’s [158], there is a separation
between numerical and other constants. We do not believe this to be useful for our
system.

The abstract domain includes compound terms. The abstract terms may represent a
set of compound terms with the same functor, or a set of compound terms with one
of several functors, or with arity zero (the Or element). A previous version of our
system used, not Or, but a Functor element. This abstract term did not represent
functor names, instead Functor(types,...,type,) represented all the terms with an
arity smaller or equal to the arity of Functor. In practice, also representing the terms
with an arity smaller than the arity of Functor proved to be cumbersome, whereas
preserving the functor names was shown to be very useful, say for analysing metacalls.
The main disadvantage of Or abstract terms is that the number of elements in an Or
may become quite large, e.g., a WAM compiler might have one different functor per
WAM [180] instruction.

The abstract domain specifies that every element inside an Or must have a defined
functor (it cannot be an uninstantiated variable). This restriction allows easier
reasoning about this category of terms, and thus easier implementation, whilst it does
not interfere with our goal of detecting sensitive calls: usually, if a term is possibly a
variable, then it may possibly be restricted by the execution.

Lists are a very frequent type in logic programs and our system has been quite
successful in detecting them. Almost every large Prolog program uses lists (although
many use difference lists with uninstantiated tail). The combination of List and Or
has been shown to be particularly successful.

In contrast to Taylor’s [158] domain, the abstract domain allows complex terms inside
complex terms (up to a certain depth). Our motivation was to detect cases where the
main functor or some argument of the term is tested, but not the entire term. The
obvious disadvantage is that the terms constructed during abstract interpretation
become much more complex.

7.3 An Example of Abstract Interpretation 110

Sharing in our Abstract Domain

The Var term corresponds to free variables. Each Var abstract term includes a label
L, shared by all free variables that must be bound to that same value. In contrast,
alabel L' for T represénts the class of terms that may share free variables with this
term. In other words:

Ly = Ly = y(Var(Ly)) = v(Var(L2))

1 # Ly = vars(y(T(LY))) N vars(v(T(Ly))) = 0

where vars(T) gives all the run-time variables occurring in 7. From these definitions,
it trivially follows that VVar(L), T(L'): L # L', in other words the two sets of labels do
not intersect.

This distinction is fundamental to correctly handle aliasing between terms. Note
that aliasing in the abstract domain results from unification of free variables in the
concrete domain, and that all concrete free variables are represented in the abstract
domain either as Var or in T. The aliasing labels between T elements correspond
to Sgndergaard’s sharing information [150], whereas sharing between variables is
similar to the way sharing is treated in say Warren and Hermenegildo’s MA2 [190].

7.3 An Example of Abstract Interpretation

The operation of the abstract interpreter is better exemplified through a small example.
We use the well-known quicksort program using difference lists. The program is shown
. in the following figure.

sort([], S, S).

sort([Pivot|Ls], Sf, S0) :-
split(Ls, Pivot, LSs, LLs),
sort(LSs, Si, S0),
sort(LLs, Sf, [Pivot|Si]).

split((], _, 00, 0).
split([El|Els], Pivot, [E11E1Ss], ElLs) :-
El < Pivot,

7.3 An Example of Abstract Interpretation m

split(Els, Pivot, E1Ss, ElLs).
split([E1|E1ls], Pivot, El1Ss, [E1|ElLs]) :-

El >= Pivot,

split(Els, Pivot, E1Ss, ElLs).

A typical abstract query to this program would be of the form sort (List(Ground)
1), that is, to sort a list of ground elements.

The abstract iteration process is an iterative process, where new declarations are
added to a table of mode declarations until a fixed point is reached. The first iteration
starts from an empty table.

Initially, the abstract query is matched to the first clause for sort. Abstract unification
is performed between the abstract query and the clause head. Abstract unification
proceeds argument by argument. The only possible unifier between any list and the
empty list is the empty list, hence both second and third arguments of sort must
match. The result of abstract unification is thus sort([], [1, [1), and the pair
(sort(List(Ground), -, (1), sort([1, [1, []))is entered to the table.

After having completed the first clause, the system proceeds to match the second
clause. The result of the abstract unification is in this case the substitution Pivot =
Ground, Ls = List(Ground), and S0 = [J. This abstract substitution is now applied
to the call for split/4, resulting in the following abstract call split(List(Ground),
Ground, _,). The call matches with the first clause of split giving the exit
substitution split([1, Ground, [1, [1). The state of the table at this point will'be:

Entry Substitution Exit Substitution
sort sort(L(@), -, 00) sort([1, 0O,)
Split Split(L(G) ’ Gr -3 -) Split([] ’ G’ [] ’ [])

The next step is to execute the second clause for split. Head unification generates
the bindings E1 = Ground, Els = List(Ground), Pivot = Ground. The arithmetic
comparison between two ground terms can succeed or not, for abstract execution we can
assume it does. Finally, split is reactivated. The current call is split(List(Ground),
Ground, ., .). This callis as general as the one stored in the table, and the algorithm
returns the value on the table as the abstract exit substitution.

Having completed the last call in the sp1it/4, we can obtain an exit substitution for
the clause. This exit substitution is obtained by calculating the current values for the
variables appearing in the head of the clause, giving sp1it(List(Ground), Ground,

7.3 An Example of Abstract Interpretation 112

[Groundl, [1). Notice that this is different from the exit substitution in the table.
Calculating the least upper bound of the two gives split(List(Ground), Ground,
List(Ground), [1). This is stored in the table as the current exit substitution.

Execution of the third clause has similar results, but affecting the last argument of
split. The table after abstract execution of the four clauses now becomes:

Entry Substitution Exit Substitution
sort sort(L(G), -, [1) sort([1, O, D
split |[split(L(@), @G, -, .) | split(L(®), G, L(G), L(®))

After obtaining an exit substitution for sp1it, the algorithm can apply that substitution
back in the second clause for sort. The result is that both variables LSs and LLs become
bound to List (Ground). The next call for sort is thus of the form sort (List(Ground) ,
-» [0), and the exit substitution from the table can be used. Finally, the last call to sort
is of the form sort(List(Ground), -, [Ground]l). This new call is now compared to
the table, and a least upper bound, sort (List(Ground), _, List(Ground),is obtained.

This new substitution is more general than the previous, and a new call to sort is made.
This time, abstract execution of the first clause returns sort([1, List(Ground),
List(Ground)). This abstract exit value is used to calculate the exit substitution
for the second clause, which is now sort ([Ground], List(Ground), List(Ground)).
The least upper bound of this exit substitution with the one currently in the table
returns sort (List(Ground), List(Ground), List(Ground)). At this point, the state
of the table is:

Entry Substitution Exit Substitution
sort || sort(L(G), -, L(G)) sort(L(@), L(G), L(®))
split || split(L(@), G, -, .) | split(L(®), G, L(G), L(®))

The values in the table give the final exit substitution for sort. We thus have
completed the first iteration.

A second iteration is launched, now based on the modes in the table. The results of the
second iteration confirm the values from the first, and abstract interpretation theory
guarantees we have reached the fixed point and obtained the modes for the program.

7.4 Representing the abstract And/Or-tree 13

[y

b(v) b(g) b(v) c(g) b{v)

[T 7T

d(g) d(v) d(v) d(g) d(v)

Figure 7.3: And/Or-tree versus And/Or-graph

7.4 Representing the abstract And/Or-tree

A fundamental problem in the design of an abstract interpretation system is how to
represent the abstract And/Or-tree. Consider the program:

a(X,Y) :~ b(X), b(Y). b(X) :~ d(X).
a(X,Y) :- c(X), b(Y). c(l). d(l).

The left tree in figure 7.3 gives a concise representation of an And/Or-tree for execution
in the simple abstract domain {T, Ground, Var, L}, or more concisely, {t, g, v,b}, of the
. abstract query a(g, v).

First, notice that some branches of the tree are duplicates. A more compact represen-
tation is possible by folding these branches onto a single branch. The resulting data
structure is an And/Or-graph. The one corresponding to the initial And/Or-tree is also
shown in figure 7.3.

There is no loss of precision in this transformation. But, unfortunately, for non-trivial
programs the And/Or-graph can still be too detailed. Further constraining of the
number of nodes in the graph is thus necessary. More compact graphs are presented
in figure 7.4. In the left figure, each node corresponds to a procedure call in the
program clauses. As both calls to d(X) are launched from the clause for b, they are

7.4 Representing the abstract And/Or-tree 114

a(g,v) a(g,v)

b{g) b(v) c(g) b{v) b(t) c(g)

d(t) d(t)

Figure 7.4: Two compact And/Or-graphs

folded in a single node. In the figure to the right, each node must correspond to a
different procedure. Thus all nodes for b are now merged into a single node. The two
compact graphs are named call-level and procedure-level representations.

There is a loss of precision in both cases, but more severe in the case of procedure-
level representation. Other intermediate representations are also possible (see
Janssens [88]). Muthukumar and Hermenegildo {111] suggest that call-level abstract
interpretation is particularly useful for the detection of independent and-parallehém.
We have implemented both call-level and procedure-level representations, and verified
that call-level graphs are indeed more precise, but still not sufficiently accurate for
some problems (as discussed in section 7.6). '

~ And/Or-graphs are usually implemented as memo tables. (An alternative is use to
streams [177] but that depends on support from some coroutining facilities), One can
store the memo table in the Prolog database or use a dictionary. Choosing the first
solution is less elegant, but allows the use of backtracking in the implementation of
the abstract interpreter, with the corresponding advantage of needing less memory
space.

7.5 Calculating the Fixed Point 115

7.5 Calculating the Fixed Point

Abstract interpretation can be seen as the process of decorating the And/Or-graph
with the abstract entry and exit substitutions. In Bruynooghe’s algorithm {12), this
process is executed top-down. For each call P, the algorithm distinguishes four cases:

1. builtins, in this case abstract interpretation for built-ins is performed;

2. nodes P with no ancestor node with a call for the same predicate, in this case
perform procedure entry;

3. nodes P for which there is an ancestor P’ with a call for the same predicate such
that all Bi* = B/ (up to renaming). In this case, one uses a renaming of B;*“!
as the output substitution. If B}”“‘ is not available, return L. Notice that if at
some later point one obtains values new values B;-’“‘ such that B;?"‘ C B;-“‘, one
has to repeat the computation based on P. In this case it is said that the node P
refers back to the ancestor P’.

4. nodes such that there is an ancestor P’ but for which the previous case does not
apply. In this case, execute as in 2. Bruynooghe introduces further restrictions
if the depth of restriction exceeds a certain limit: if B;® £ Bi" proceed as in 3
otherwise calculate B™ U Bi* and proceed as in case 2.

When procedure or call-level representations are introduced, the important restriction
on the recursion level becomes a restriction on if it is the first visit to that call or
procedure.

In our system we basically implement a version of this algorithm. With procedure-

level representation, only one call for P can exist, which simplifies the implementation
~ of cases 2 and 3. Otherwise, to correctly implement case 2 for every call C the system
looks up the database for a call C’ with matching entry substitution (we call this
operation look-up).

A problem occurs when the same call receives several different entry substitutions,
i.e., it may result from several different branches in the And/Or-graph. In this case,
when a new substitution B}i" for a call P is received, one might have to redo all the
branches depending on this call. To simplify the implementation, we use a step-by-step
algorithm: for each step, execution proceeds top-down left-to-right; if modes for a goal
change, the algorithm marks this step as not having converged, but does not try to
redo other branches calling that goal. In order for the algorithm to converge, each step

7.5 Calculating the Fixed Point 116

.

is allowed to use the abstract substitutions of the previous step when looking at a new
goal: Essentially it calculates the least upper bound with the entry modes from the
previous step, and the initial output substitution is initially the output substitution
calculated in the previous step (this is useful for recursive calls). The final algorithm
is:

1. Initialise every B, B;* to L.
2. Initialise Converged to true and VP : ancestor(P) = false.

3. Execute using a left-to-right depth-first search rule. For the current call P:

(a) If the current Bi* C B;™ replace Bi" by Bjn, else go to step 3b. If
ancestor(B;) is false, set ancestor(B;) to true, and do procedure entry. If
ancestor(B;) is true, the exit substitution is B;"“‘, and this node refers back
to the node that set ancestor(B;) to true.

(b) Set B;" and B to Bj™ U B{*, B** to B;°*. Set Converged to false and
ancestor(B;) to true. Perform procedure entry.

4. When all goals have been executed, if converged is true, exit. Otherwise, go to 2.

The main disadvantage of the algorithm is that when a step fails to converge the
algorithm must recompute from the beginning. The advantages are that it is simple
to implement and, that compared to an algorithm which would recompute branches
immediately, it is not very vulnerable to situations where a call would be recomputed
several times only to eventually find out that some other branch not yet tried generates
a new substitution and forces a new recomputation.

7.5.1 Other Fixed Point Algorithms

In our system we were interested in obtaining a simple, easy-to-implement algorithm.
More sophisticated and complex algorithms have been proposed in the literature.
O’Keefe proposed an elegant algorithm where nodes are ordered by dependency
relations and their values are initialised either to L or a value obtained from rules. A
stack is used to maintain and propagate the nodes that change [122]. Unfortunately,
to maintain the stack one cannot use backtracking.

Several fixed-point computation algorithms, specifically designed for abstract interpre-
tation of logic programs, have been proposed more recently [113, 174, 98]. Essentially,
Muthukumar’s algorithm {113] does immediate recomputation of the first, topmost

7.5 Calculating the Fixed Point 117

calls when their modes change. Tb prevent extraneous computations, he classifies
clauses as recursive or non-recursive. Non-recursive clauses are tried first and give
a base approximation. Computation for a recursive call is then repeated until it
reaches a local fixed point. Local fixed points propagate up the tree until they form
a total fixed point. The representation is slightly more complex: mainly it needs
to classify procedures; local-fixed points are still vulnerable to changes somewhere
else in the program, although classification of procedures should prevent most cases.
Both Muthukumar (113], and Le Charlier et al. [98] use a dependency graph to avoid
redoing computation.

Our system was designed to keep the fixed point algorithm as simple as possible.
Even so, and as used by Muthukumar’s, there is a very good advantage in doing
non-recursive clauses first: the non-recursive clause can generate a first solution to
the procedure. This solution can be used by the recursive clauses. As a result, the
number of iterations can be decreased. To gain some of the advantages of this we
apply a very simple principle in our algorithm: clauses for a procedure which include
calls to the procedure itself (directly recursive) are tried after any non-direct recursive
clauses.

7.5.2 Unfolding the And/Or graph

We previously have assumed that the nodes of the And/Or-graph are fixed. Unfolding
the And/Or-graph can be useful in two situations. First, when the same goal is called
with “very different” modes. In this case, instead of directly calculating the least
upper bound, one can process separately both entries. A similar situation occurs
when two exit substitutions for the same call are “very different”. Again the two exits
substitutions can be processed separately. A simple definition for “very different” is if
one argument is in one case a free variable, in the other a non-variable term.

Van Roy [174] gives an interesting example of the need for unfolding. The example is:

main :- a(9,a, _, _, =, -y —» —» s =)

a<ol =) m) wm) =) =) m) =) =) -)'

a(N, A, A, C, D, E, F, G, H, I, J) :- N1 is N-1,
a(N1, A, C, D, E, F, G, H, I, J, A).

AQUARIUS will treat each call «(4,...) separately and hence is able to ascertain that
the exit substitution for the initial substitution will have all its elements ground.

7.6 Performance of the Abstract Interpreter 118
We have applied this optimisation to our system. We define a function modes_closeness
that verifies when two entry modes are “different”. If so, we create a new alternative
node for the different mode set. Note that as the process converges, two nodes which
were initially “different” may move up the lattice and cease being “different”. To
address this problem, at step 2 of the previously described algorithm, we verify if the
nodes do not obey modes_closeness, and if so, merge them. -

7.6 Performance of the Abstract Interpreter

The literature includes several references to the performance of abstract interpretation
systems [79, 158, 103, 176]. We now analyse the practicality of our abstract interpreter,
first by giving a brief complexity analysis and then by studying its performance on
several benchmark programs.

7.6.1 Practicality of Abstract Interpretation

The complexity of abstract interpretation is a function of the complexity of the
fixed point algorithm, and of the complexity of each operation. O’Keefe [122] gives
O(dmaz x size of problem) as a worst case complexity for any fixed point calculation
algorithm (in the worst case, it would do one operation for all the elements of the
lattice). In our case dmaz, the size of the lattice, corresponds to the maximum length
of a chain a(4L,...,1)C ...C a(T,...,T), and size of the problem corresponds to the
number of nodes of the problem (in our case, the number of nodes in the And/Or-graph).

We now need to consider the operations in the abstract domain. Of the several
operations performed, the most important are abstract unification, projection of an
- abstract term from the environment, comparison of abstract terms, and calculation of
the least upper bound. Abstract unification in our domain is proportional to the size
of the input terms times the maximum size of the environment: each argument of a
term is considered once, so this operation is linear on the size of the term, but access
to the environment takes time proportional to the environment size (at least, in the
current implementation). Comparison between abstract terms and calculation of the
least upper bound take linear time on the size of the abstract term, whilst projection
of the current environment into a term takes time proportional to the size of the
environment times the size of the term. The size of the environment is a function of
the number of variables appearing in a corresponding abstract clause, and of the size
of the abstract substitutions for each variable. In the worst case, this size can grow

7.6 Performance of the Abstract Interpreter 119

exponentially with the depth of the abstract domain.

The complexity of the system will be, in the worst case, the product of the number
of operations performed times the complexity of each operation. Briefly, this can be
described as:

O(dmaz x size of And/Or graph X (size of abstract goal)?)

A conclusion from this brief analysis is that execution time will grow very quickly with
the depth of the abstract domain, and not so quickly with the number of the nodes in
the abstract domain. In practice, the growth will be rather limited, as many terms
can converge (say to T quite quickly) and as a good fixed point calculation algorithm
will avoid doing the same computation several times. We next discuss how varying
the maximum depth and the size of the And/Or-graph affects performance in actual
real application benchmarks.

Table 7.1 gives the times needed to perform abstract interpretation for the suite
of benchmarks used for the sequencer. The times were obtained under SICStus
Prolog 2.1 running in a Sun SPARCserver 470. The first three columns give three
different measures of program size: number of lines in the source files, number of
calls in the program, and the time (in seconds) necessary to compile the programs to
SPARC assembly code. The next columns give the times (in seconds) to do analysis
by four different versions of the abstract interpreter. The first two use a call-level
representation of the And/Or-graph, with respectively maximum term depth of two
and three, and the second use a procedure-level representation, respectively with
maximum depth of either two or three.

It is interesting to compare compilation times with analysis times (this is shown
~ graphically for the four versions of the compiler in Figure 7.5). In general, our
system is slower than the SICStus compiler. This result agrees with Taylor’s and Van
Roy’s [158, 176], in suggesting that precise abstract interpretation can be expensive.
Notice that performance of our system could still be much improved (immediate
improvements are by using even better fixed-point algorithms and by improving the
data representation for environments). Also parallelism (particularly or-parallelism
in exploring the And/Or-graph) can be envisioned as a means to speed up the search.

The time ratio of call-level to procedure-level abstract interpretation can vary sub-
stantially. In general it gets worse for longer programs. Increasing the maximum
depth of terms can even have a worse effect on execution time, as expected. Notice
that in many cases abstract terms will be quite simple (e.g., of the form atom, Var or

7.7 Precision of Abstract Interpretation 120

Size as Graph Type
Procedures Calls

Lines of | Calls: | ISP Max. Depth: | Max. Depth:

Text: compile: 2 | 3 2 I 3

fly_pan 917 155 24 3.1 43| 5.9 8.0
warplan 192 98 0.98 - 9.0 - 19.5
warplan2 698 206 1.5 - 10.0 - 23.6
boyer 411 62 2.7 4.6 7.4 7.0 12.9
dboyer 418 59 27 4.3 69| 6.0 11.3
satchmo 187 74 1.15 || 2.8 7.6 | 4.7 10.8
road-markings 799 268 68| 3.6 70| 6.9 12
protein 2287 537 86| 64 8.3 | 10.5 12.5
nand 706 271 4.3 9.4 12.7 | 21.6 | 33.7
iltp 905 408 7.7 || 27.7 85| 109 586
plwam 3031 | 1439 15 || 30.9 35 75 82
simul 4268 | 2036 24 80 378 | 289 | 14749
sicstus 4354 | 2252 26 78 128 | 464 1186
chat 4891 | 1266 39 79 170 | 144 544

Table 7.1: Size versus Runtime (in seconds)

T), and will have fixed depth. Finally, performance varies strongly with each program,
and does not depend directly on size. For each program, it depends strongly on how
easily the fixed point computation can find the correct solution, and on the complexity
of the abstract terms the system manages to detect.

7.7 Precision of Abstract Interpretation

We can now address the value of abstract interpretation. We first give a classical
~ application, mode analysis. The number of ground and unbound arguments gives
a good idea of the precision of the system in detecting noisy cuts (a performance
analysis was given in section 6.5). As an aside of some interest, we also discuss the
effectiveness of this tool for detecting independent and-parallelism.

Table 7.2 shows what modes were found by abstract interpretation. We first show
the modes obtained by using a simple procedure based And/Or-graph. The table
presents the number of ground, unbound, bound (but possibly not to a ground term)
and unknown arguments.

The results are very good for programs that process ground terms such as nand,

7.7 Precision of Abstract Interpretation 121

Abstract Interpretation/Compilation Ratios

60 F
40 / Proc: lev., L«

/ Proc: lev. 3
Call: lev
20 Call: l’v 1

N
PP
L
o
B R
\‘\
\‘-\
\I \
\\\
7L

0.5
1 2 4 6 10 20 30 40
Compilation Times

Figure 7.5: Performance of Abstract Interpretation

dboyer and protein. The boyer program is an example of the impact of builtins. The
interpreter is able to handle =.. much better than functor,arg, and the results are
thus much better. For the three last programs, the results for iltp are probably also
due to the use of functor,arg, and because ipltp uses open recursive data structures.
The results for plwam are actually good considering that this compiler uses the logic
variable intensively for meta-programming. The results for chat are limited again
by the use of functor,arg, and by difference lists. Comparing with other systems,
the results for boyer and nand are slightly better than the results obtained by Van
Roy [176].

 1.7.1 Depth Level and Call Graphs

Table 7.3 shows the effect of increasing the depth of the maximum abstract term in
the analysis from 2 to 3. There are some improvements, but not very substantial.

Table 7.4 shows the effect of using a call-based graph, instead of the procedure-based
graph. The improvements in this case are more substantial. Note that because there
are many more nodes, there are more calls in the graph.

Table 7.5 shows the effects of combining the two improvements. The results are quite

7.7 Precision of Abstract Interpretation 122

Total || Modes (percentage of arguments)
ground | var l nonvar I any
fly.pan 137 55 | 22 5 18
warplan 69
warplan2 117
boyer 72 3| 24 13 61
dboyer 71 72 28 0 0
satchmo 65 5 29 37 29
road_-markings | 145 6 39 0 0
protein 197 55| 29 13 3
nand 292 76 | 24 0 0
iltp 274 15| 16 32 38
plwam 831 14 1 23 16 48
simul 1810 23| 24 8 46
sicstus 1533 18 | 24 9 49
chat 2105 18 | 37 6 40

Table 7.2: Precision of Abstract Interpretation Analysis

similar to using abstract term maximum depth of 2..

The conclusion is that there is a definite advantage in using call graphs: precision
for non T terms improves up to more than 10%. More detailed description of terms
has less significance and only iltp benefits seriously. Although the usual caveat that
other programs may behave very differently applies, the results do suggest that for
our system there is no big gain in using a depth of more than two, but there is a
gain in using a more detailed description of the And/Or-graph, such as the call-level
representation.

. Independent And-Parallelism Evenif arguments are detected to be T, the system
is still able to produce some sharing information that can be used to detect indepen-
dent and-parallelism. We adapted the abstract interpretation system to &-Prolog’s
compiler [76]. Sharing and groundness information is used by the &-Prolog compiler
to generate CGEs according to the CDG method [114]. The results of using our system
of abstract interpretation in &-Prolog’s compiler are compared with Muthukumar and
Hermenegildo’s sharing interpreter [111] in table 7.6.

The results show that the system is comparable to the sharing interpreter. In fact,
it performs better in matrix where it verifies the ground test in the CGE that creates
most of the parallelism (though the new freeness abstract interpreter should be able
to eliminate that test [115]). Better results could be obtained considering data about

7.8 Analysis and Future Work 123

Total Modes (percentage of arguments)
ground I var I nonvar | any

fly_-pan 137 || 55 22 5 18
warplan 69 6 19 25 51
warplan2 117 || 43 15 18 24
boyer 72| 3 24 13 61
dboyer 71 72 28 0 0
satchmo 65 5 29 45 (+8) |22 (-8)
road.markings 145 | 6 39 0 0
protein 197 || 55 29 14 (+1)| 3
nand 292 || 76 24 0 0
iltp 274 || 15 16 32 37 (-1
plwam 831 | 14 24 (41) |18 (+2) | 44 (4)
simul 1816 || 25 (+2) |25 (+1)| 14 (+6) | 35 (-9)
sicstus 1529 || 18 25 (+1) | 10 (+1) | 47 (-2)
chat 2104 || 18 37 6 39

Table 7.3: Increasing Depth to 3

when two terms are known to share.

7.8 Analysis and Future Work

So far, we have described the design and implementation of a practical system for
abstract interpretation. The goal of this system was to use abstract interpretation
in order to find noisy cuts and sensitive builtins. Current results show that (a) the
system is robust, (b) for most programs the system is able to obtain useful data, and (c)
there is definitely still room for improvement. This section anélyses firstly immediate
improvements which experience showed to be of interest and lastly how fundamental
changes could improve the system.

7.8.1 Refinements

There are several obvious improvements to the system. As regards low-level consid-
erations, improving the representation of environments and the representation of the
memo-table should result in much better performance. More significant improvements
are possible in the:

7.8 Analysis and Future Work 124

Total Modes (percentage of arguments)
ground | var I nonvar I any

fly_pan 287156 (+1)128 (+1)| 9 (+4) |12 (-6)
warplan
warplan2
boyer 721 6 (+3)119 (-5) |20 (+7) |56 (-5)
dboyer 97 176 (+4) |24 (4| O 0
satchmo 137 3 (-2)|238 (-6) |37 37 (+8)
road_markings | 225 | 6 39 0 0
protein 530 |61 (+6) {26 (3)|12 (| 1 (-2)
nand 810 || 76 25 (1) O 0
iltp 921 ({20 (+5) |14 (-2)]| 32 34 (49
plwam 2061 || 18 (+4) | 23 (-1) | 20 (+4) |40 (-8)
simul 3555 || 23 25 (+1) |10 (+2) |42 (-4
sicstus 4467 || 21 (+3) | 24 8 (1|47 (-2
chat 3983 1119 (+1) (89 @(+2)| 6 35 (-5)

Table 7.4: Using Call Based Abstract Interpretation

Abstract Domain Two limitations affect the abstract domain: detailed analysis of
sharing and the need for full type information. As regards sharing, a simple solution
is to use information from a different abstract interpreter, e.g., Muthukumar and
Hermenegildo’s [111]. A more sophisticated approach would be to use their approach
in the domain proper. As regards full types, one can contemplate an evolution to full
(and complex) recursive types in the style of Janssens’ [88], or the simpler solution of
extending the abstract domain.

The benchmarks show that three new abstract types could improve performance.
First, a new element between Var and T could indicate that a term is a variable, even
when sharing is not precisely known. Second, a type subsuming Or could be used to
- represent the output of functor/3 and other (frequent) cases where the main functor’s
name is unknown.

The main limitation of the abstract domain is its inability to represent open recursive
data structures, i.e., recursive data structures with free variables. An important
example are difference-lists, which are quite common in Prolog programs (almost as
common as the use of complete lists). The obvious solution would be to include a new
type specialised for difference lists. A simpler alternative is based on the concept
of linear terms, i.e., terms where variables are guaranteed to appear only once. In
this case we would extend the abstract domain Or to include variables known not to
appear in the other elements.

7.8 Analysis and Future Work 125

Total - Modes (percentage of arguments)
ground | var | nonvar | any
fly_pan 287 (56 (+D |23 +1)| 9 G+ |11 (D
warplan 161 8 20 35 36
warplan2 273 || 47 16 19 18
boyer 99 I 6 (+3)[18 (6) |20 (+7) |56 (-5)
dboyer 97 (176 (4[24 (4] O 0
satchmo 1371 4 (1|23 (-6)|44 (7|29
road_-markings | 225 |[6 39 0 0
protein 530 (61 (+6) (26 (-3)[12 (1)} 1 (-2
nand 810 |75 (+1) |25 (-1)}| O 0
iltp 921 | 20 (+5) | 14 (+2) | 32 33 (-5)
plwam 2061 || 18 (+4) {22 (-1 |22 (+6) |38 (-10)
simul 3555 || 25 (+2) |27 (+3)| 16 (+8) |32 (-14)
sicstus 4465 || 21 (+3) | 24 8 (-1)}47 (-2
chat 3994 || 19 (+1) |39 (+2)| 7 (1)} 34 (-6)

Table 7.5: Using a Call based graph and Depth Level 3

CGEs indep tests ground tests

share | struct || share | struct
gsort 1 0 0 0 0
matrix 5 1 0 5 5
boyer 5 5 5 3 3

Table 7.6: Abstract Interpretation for IAP

Improving Performance In section 7.5.1 several fixed point algorithms are dis-
cussed. Algorithms such as Muthukumar’s [113] and Le Charlier et al.’s algorithm [98]
seem particularly interesting in that dependency graphs should reduce unnecessary
recomputation. Although one can expect a more complex algorithm to reduce the num-
* ber of inferences to perform, more complex algorithms will have higher overheads.

Abstract compilation is an elegant transformation that can be simply described as a
specialisation of a program for the particular abstract domain being considered [46].
One can go a step further and compile the program into WAM-like code [155].
Implementing a Wam emulator in C can give one or two orders of magnitude speed-up.
This is quite interesting for a stable version of the system, but loses the flexibility of
the Prolog implementation.

7.8 Analysis and Future Work 126

Unfolding the And/Or-graph In subsection 7.5.2 we analysed the advantages of
creating new nodes in the And/Or-graph when the same predicate is called with
different modes. A related problem is typical in the use of functor and arg, say the
case of copy_term:

copy_term(X,Y) :-
functor(X, Na, Ar),
functor(Y, Na, Ar),
copy_term_it(Ar, X, Y).

copy_term_it(0, _,).
copy.term_it(N, X, Y) :-

N>O0,

arg(N, X, 4),

arg(N, Y, B),

cp(A, B),

N1 is N-1,

copy_term_it(N1, X, Y).

consider the abstract call copy-term(a(g,g),-). The term Y is built argument by
argument, and the current abstract interpreter will approximate _U a(.,.) U a(g,-) U
a(g,9) as T. In this case one would like to keep the intermediate calls away and return
only the final solution a(g, g). To do so, the system needs to provide: '

o Precise Interpretation of BuiltIns: in the example above the range of arities from
functor should be given. Other builtins one needs to support are is, arithmetic
comparisons, and arg.

e Detailed Conditions for Creating a New Node: this is a similar problem to
partial evaluation. A simple and useful condition is to allow only deterministic
unfolding, that is, a new node that is not sufficiently “different” would only be
created if it was the only possible matching goal.

Our experience shows that performance of the abstract interpreter is so far constrained
by three main problems: difference lists, the use of functor and arg to build and
destroy terms, and limitations in the And/Or-graph. Solving these problems should
significantly improve the quality of abstract interpretation.

7.9 Summary 127

7.8.2 The Future

Recent work on abstract interpretation is placing more emphasis on theoretical frame-
works and on abstract interpretation of concurrent or constraint logic programming
languages. Of some interest is the use of magic sets to obtain answer substitutions
from bottom-up analysis [121, 91]. Initial algorithms seem to be not more precise
than conventional frameworks, although they do result in more elegant implementa-
tions. A problem with magic sets is that they operate by transforming the original
program clauses, thus the naive application of magic sets will generate the compact
procedure-level and/or-graph.

It would be interesting to do operational-semantics based abstract interpretation
for the Basic Andorra model (this is related to doing abstract interpretation for the
committed-choice languages). In both cases, the difficulty is that execution order
is not fixed and may indeed vary from run to run. Therefore, it is difficult to
build the correct and/or-graph. Moreover, it becomes less clear what is the correct
mode for a goal, as a goal may be called with several different modes, according to
the way it is scheduled. In the case of the Basic Andorra model, one also has to
find out which calls are non-determinate. This adds a further level of complexity.
This work may be aided by techniques similar to the ones developed by Ueda and
Morita [168], that provide mode dependencies between goals, or by recent work on
abstract interpretation of the committed-choice languages and of the constraint logic
programming languages (105, 32, 29, 57, 82, 49, 5].

The Cousots have suggested that using widening/narrowing might provide better
results than Galois connections [38]. In general, this corresponds to having a
more flexible approach to global analysis of program. In particular one would use
infinite domains, and one could combine global analysis with program transformation
(Gianotti and Hermenegildo propose a simple but useful system [58]). Such “flexible”
- techniques are probably necessary for the precise analysis of large, complex programs.

7.9 Summary

This chapter presented one of the components of the preprocessor, the abstract
interpreter. This component is used in the analysis of Prolog programs. The resulting
mode information is used by other modules of the preprocessor.

Abstract interpretation is a methodology used in the global analysis of programs.

7.9 Summary 128

Our system used top-down abstract analysis to detect the input and output patterns
of goals. The system is based on Bruynooghe’s framework. The abstract domain
improves on ground and var abstract domains by representing compound terms and
the recursive data type lists. The abstract domain is also able to represent sharing.
Execution of the program is represented through an And/Or-graph. This graph is

implemented in two compact forms, one where each node corresponds to a procedure

in the program, the other where each node corresponds to a call to a procedure in
the program. A fixed-point iteration algorithm that proceeds until finding the correct
approximation is also implemented in our system.

The performance data presented showed the system to be slower than a Prolog
compiler, but still able to analyse real Prolog applications. The results of the analysis
tend to be better for smaller benchmarks. Analysis of the applications show the main
limitations to be the And/Or-graph, some limitations on the abstract domain, and
some limitations on the processing of builtins. Finally, some improvements to the
abstract interpreter were suggested.

Chapter 8

Andorra-I Prolog

The user language for Andorra-I is Andorra-I Prolog, a language that extends Prolog
with the implicit coroutining available in the Andorra selection function. We have so
far showed how Andorra-I can support Prolog applications and still allow parallelism.
We will now concentrate on the extensions that Andorra-I Prolog offers over Prolog,
that is, on the advantages of the implicit coroutining in Andorra-I.

We show that the implicit coroutining of Andorra-I can be particularly useful for
problems which have a simple declarative formulation, but where a rigid left-to-right
selection function is inadequate. We give two important examples. The first example
shows how coroutining is needed to run a committed-choice style program efficiently.
The second example shows the coroutining can dramatically reduce the search épace
for a logic program.

The flexibility of the Andorra-I system raises the question of whether Andorra-I Prolog
should also be extended to support programs written for committed-choice languages
such as Flat PARLOG or FGHC, or for programs written for coroutining languages
such as NU-Prolog, or the constraint logic programming languages. We present the
main issues in fully supporting these languages.

8.1 Coroutining with the Andorra Selection Function

We first give an example of how the Andorra selection function gives rise to coroutining
in the style of the committed-choice languages. The example (due to Warren [183]) is
a unidimensional version of Conway’s game of Life. In the game of life a set of cells

e mm o

8.1 Coroutining with the Andorra Selection Function 130

evolves for a number of steps. Each cell can be either on or off. A cell is on if one
and only one neighbour is on in the previous step, and off otherwise. The evolution of
the 8-cells board for a specific initial state is shown by figure 8.1. Notice that the last
state is stable, that is, the state of the cells will not change further.

PRS- B l:l NEEssEE. T SO

Figure 8.1: The Game of Life

A simple program that describes the cell automaton is shown next. The top-level
procedure life/1 gives the setting of the board. The argument to life/1 is the
number of steps to execute. The procedure cell/4 describes a new step for a cell.
If Steps is 0, the life of the cell is over. Otherwise, the first three arguments to
cell contain the states from the initial up to the last step of the cell and of its two
neighbours. The second argument contains the cell itself, whereas the first argument
contains the left neighbour and the third argument the right neighbour. Finally, event
says that a cell, the middle argument, is on if only one of its neighbours is on.

life(Steps):-

L1 = [offILL1], L2 = [offILL2],

L3 = [off|LL3], L4 = [onl|LL4],

LS = [on|LLS], L6 = [on|LL6],

L7 = [offILL7], L8 = [off|LL8],

cell(L1, L2, L3, Steps), cell(L2, L3, L4, Steps),
cell(L3, L4, L5, Steps), cell(L4, L5, L6, Steps),
cell(L5, L6, L7, Steps), cell(L6, L7, L8, Steps),
cell(L7, L8, L1, Steps), cell(L8, L1, L2, Steps).

cell([X1IL1], [x21L2], [X3|L3], Steps):- Steps > O,
StepsLeft is Steps-1,
L2 = [NX2|NL2],
event (X1, X3, NX2),
cell(L1, L2, L3, StepsLeft).

8.1 Coroutining with the Andorra Selection Function 131

cell{lJ], (], L], 0).

event (off, off, off).
event(off, on, on).
event(on, off, on).
event(on, on, off).

Executing this logic program in Prolog would be very inefficient. Prolog would do the
unifications and then start the leftmost call to cell, that is it would try to obtain the
evolution of the cell 2. In the first step, Prolog would be able to establish that the
cell 2 will be off. In the second step, Prolog would not know the state of the cells 1
and cell 3, thus it will need to guess for cell 2. The guessing will be repeated for the
next steps. This guessing will be expensive and unnecessary, as the game of life is a
determinate process.

Executing this program in both the Basic Andorra Model and the committed-choice
languages will generate a very different behaviour. When life is executed, all the
unifications and the calls to cell become available for execution. All of them are
determinate (or would be able to commit in committed-choice language notation), so
any call can execute. Notice that calls to cell will always be determinate, but calls to
event will only be determinate when both neighbours are instantiated (that is, if the
previous step has been performed on them). But all these neighbours will eventually
instantiate their variables; thus all the event goals will become determinate, and
Andorra will do the whole computation determinately.

The coroutining inherent to the Basic Andorra Model is also advantageous in search
problems.

d (\d d
0 0 n

R

Figure 8.2: Crossword Puzzle Solution

A simple example is the crossword generation program based on Van Henten-
ryck [173]). The generator uses a database of words, in this case “on”, “do”, “d”
and “o0”, and the goal is to distribute them across the crossword board. The board is
represented as a rule and words are represented as facts. Figure 8.2 shows how these

words are distributed to form a puzzle.

8.1 Coroutining with the Andorra Selection Function 132

board(Vi, V2, H1, H2) :-
size(V1, 2), size(V2, 1),
size(H1, 1), size(H2, 2),
letter(1, Vi, A), letter(2, Vi, B), letter(l, V2, C),
letter(l, H1i, A), letter(l, H2, B), letter(2, H2, C),

letter(1, do, d).
letter(2, do, o).
letter(1, n, n).

letter(l, on, o).
letter(2, on, n).
letter(1, d, d).

size(do, 2).

size(n, 1).

size(on, 2).
size(d, 1).

The rule for board establishes the relations between all the cells of the crossword
puzzle. The facts for 1etter simply establish that the third argument is the character
occurring in the word given by the second argument at the position given by the first
argument. The facts for size give the size of each word.

size(vl, 2)

vi L on Vi = do

letter(l, on, A)

A =o

!

letter(l, H1l, o)

letter{2, on, B)

B=n

letter(l, do, A)
A= d

A letter(l, do, B)
’
,' r B =o

!

letter(l, H2, n)

4
4
4
”

letter(l, H2, o)

Hl = on H2 = n Pid H2 = on

/ I\ Ve \

size (on, 1) letter(2, n, C) size(n, 2) ,' letter(2, on, ©)

size(on, 2)
C =n

S—

fail fail fail

letter(l, V2, n)

H2 = n

}

.
.
.
* size(n, 1)
)

aize (H1, 1)
) |

H1'= d H2 = n
L4 ¥

¥
I letter(l, d, d) I I letter(i, n, d)I

Figure 8.3: Crossword Puzzle Execution in Andorra-I

Figure 8.3 shows the Andorra execution. Each box shows one reduction, lighter boxes
show determinate reductions, darker boxes nondeterminate reductions. Andorra will

8.1 Coroutining with the Andorra Selection Function 133

first make a choice on, say, the leftmost size goal. The choice can be between one of two
facts, size(on, 2) and size(do, 2). Selecting the fact size(on, 2) makes the two
goals letter(1, V1, A) and letter(2, Vi, B) determinate, which in turn make the
goals letter(1, H1, A) and letter(l, H2, B) determinate, which in turn make the
goals size(H1, 1) and size(H2, 2) and letter(2, H2, C) fail. In contrast, selecting
the fact size(do, 2) will again make the goals letter(1, Vi, A) and letter(2,
Vi, B) determinate. Notice that, whereas binding the variable B makes a further
goal determinate, the binding for A is unable to make the goal letter(l, Hi, &)
determinate as two clauses match this goal letter(1, H1, d). Eventually execution
obtains determinate bindings for the variables B2 and ¢, and makes a choice to obtain
the bindings for H1.

The program would deadlock in the committed-choice languages becausé some choices
must be made by one of the size goals. Prolog would blindly try all the alternatives
for the first size goal, then for the second size goal, and so on. Figure 8.3 shows the
Andorra execution. Andorra-I still needs to try the alternatives for the first goal in
table, size(V1, 2), but the search is better informed. For instance, after choosing
Vi = dvo, Andorra-I determinately infers the bindings for the variables B, H2, C, and
V2, and only needs to make a choice for 1. The end result is that Andorra-I has to
perform much fewer reductions.

The coroutining in Andorra-I gives several advantages over Prolog:

¢ Because it executes the determinate goals first, Andorra-I can reduce the number
of alternatives to try.

e Determinate goals need to be tried only once, rather than re-executed at different
branches of the search space.

¢ Andorra-I is not sensitive to the textual order of determinate goals, although it
still cares about the textual order of nondeterminate goals.

There has been much interest in applying the Andorra selection function as a better
strategy for search problems. Yang showed how the coroutining of Andorra’s execution
can be exploited in cryptography applications [193]. These advantages are one of
the motivations for the language Pandora [4], that uses the Basic Andorra Model
to extend the PARLOG language. Section 11.1.3 contains a brief description of
Pandora. Pandora programs show examples where the early execution of determinate
goals gives some (though not all) of the advantages of constraint logic programming
languages, whilst remaining in the Horn clause framework.

8.2 Andorra-I and the Committed-Choice Languages 134

8.2 Andorra-I and the Committed-Choice Languages

We have previously shown that some programs written for the committed-choice
language can run easily in Andorra-I. In fact, and while running determinate goals,
Andorra-I's execution mechanism is similar to the one used by the committed-choice
languages. We would like to take advantage of this to run the applications developed
for the committed-choice languages, but taking care not to make Andorra-I just a
hodge-podge of all logic programming languages available.

We discuss the main features of the flat committed-choice languages individually.
Note that there are quite a few committed-choice languages, with different features.
Important differences are on the conditions to commit to a clause, and on when to
perform output unification. To simplify our discussion, we compare Andorra-I Prolog
with Flat PARLOG, taking care to remind the reader that many of the features we
discuss for PARLOG are common with most other committed-choice languages.

Both Flat PARLOG and Andorra-I Prolog can use flat commit to enable commitment
to a clause. Whereas in Andorra-I Prolog, commit applies as soon as it is quiet,
in PARLOG a goal can commit to a clause only if head unification and goals in the
body of the clause can execute without binding external variables. The two commits
are therefore not equivalent. For instance, a program which may work in Andorra-I
may deadlock in Flat PARLOG. Conversely, a program which may terminate in Flat
PARLOG, may run forever in Andorra-I. Consider the simple program:

mode strict(?).

strict(any) <- strict(Y).

This program will deadlock in PARLOG, but will start an infinite loop in Andorra-L
Programs may also succeed in Andorra-I but deadlock in PARLOG:

mode eager(?).

eager(any) .

The PARLOG definition of commit gives more direct control over when to execute goals,
whereas the Andorra-I definition arguably agrees more with the notion of commit as
a pruning operator designed to discard uninteresting paths in the search tree.

8.3 Andorra-I and Extensions to Prolog 135
Both Andorra-I Prolog and PARLOG support sequential conjunction, albeit with a
different syntax. PARLOG supports sequential-search, that means that some clauses
may only be tried if other clauses fail (other languages use otherwise for similar

purposes). Most (but not all) of the functionality of sequential-OR is provided by cut
in Andorra-1. :

Finally, PARLOG uses different meta-predicates than Prolog. One example is the
built-in data/1. This is similar to nonvar/1, but will wait until its arguments are
bound. If the program does never deadlock, Andorra-I will only select determinate
goals, and therefore execute nonvar/1 as data/1. On the other hand, PARLOG also
offers the built-in var/1, that succeeds immediately if its argument is a variable.
Clearly, programs that use this form of var/1 depend on the committed-choice model
of execution. The Andorra-I system does provide a low-level builtin to support
this form of var/1, but as they assume committed-choice style execution they are
incompatible with Prolog, and therefore Andorra-I could only support them either
through a different preprocessor, or through direct access to the low-level facilities of
the system.

Committed-choice languages include other features such as atomic unification, read--
only variables, meta-calls and pragmas for work management, with different lan-
guages supporting quite different features. Trying to support all the features of all
these languages would be impractical, and would make our original goal to support
Prolog more difficult. We therefore decided to support in Andorra-I Prolog only the
features that fit well with our goal of supporting Prolog. In practice this means that
most flat programs that use commit, the sequential-OR and sequential-AND, and
some meta-predicates, will run also as Andorra-I Prolog programs. If meta-predicates
such as the parallel var/1 are used, one currently has to use the low-level features
available in the Andorra-I Target Language.

8.3 Andorra-I and Extensions to Prolog

Several languages, such as NU-Prolog or Prolog-II, extend Prolog with facilities for
coroutining. One quite important facility is the delay declaration used in MU-Prolog,
variants of which have since been used in several Prolog systems. One example of a

delay declaration is:

name(Atom, List) when Atom or ground(List).

8.3 Andorra-I and Extensions to Prolog 136

The declaration means that a call to atom/2 in NU-Prolog can only execute if either
its first argument is bound, or if its second argument is fully instantiated. Note that
execution of programs with delayed goals is quite different from left-to-right execution.
For instance, programs for these languages may flounder, that is, deadlock, if the
conditions for some goals are never fulfilled. NU-Prolog supports Prolog features such
as cut, and problems also arise when sensitive goals interact with delayable goals.
The programmer is expected to avoid any possible interactions, mainly by avoiding
cut.

The Andorra-I engine provides the basic machinery necessary to support delay dec-
larations. Given this support, we can run most programs with delayable goals
in Andorra-I, with the exception of delayable goals that are sensitive or indirectly
sensitive. To explain why, consider the following program.

:- d(X, Y) when X.

g(Xx,Y) :-
da(x,Y),
X = a,
Y=0>».

ddx, Y) :- var(Y).

and the query g(X,Y). The answer to this query depends on whether Y was bound
before d/2 was woken up, and it is not even clear which answer should be given
by Prolog. For instance, interpreted SICStus Prolog will give a different answer
to g(X,Y) than compiled SICStus Prolog (the problem arises because the compiler
optimises unification and the two goalsX = a, Y = bare executed as a single goal by

~ the compiler).

In general delaying sensitive goals is a bad idea, even for traditional Prolog systems,
and there is no point in supporting this in Andorra-I.

We next discuss how the preprocessor can support Prolog programs extended with
delay declarations, assuming that we never delay sensitive goals. We show how
to implement sequencing for such programs, and how the engine can support delay

declarations.

e Prolog programs with delay declarations still need sequencing, as non-delayed
goals obey the same restrictions as before. Consider now a sequenced program:

8.3 Andorra-I and Extensions to Prolog 137

g :- a(X, Y) :: d(Y, X).
a(X, Y) :- b(X), c(V).
:= b(X) when X.

c(Y) :- var(Y).

The call b(X) is for a delayed goal, which can only execute after some goal (in
this case d/2) binds the variable X, and c/1 is a sensitive goal. Clearly, c¢/1 must
be executed before d/2, but the sequential conjunction also seems to imply that
b/1 can only be executed after d/2.

In fact, the sequential conjunction is only needed because ¢/1 is sensitive. The
correct sequencing is to allow d(X,Y) to execute as soon as as c(X) executes.

The solution to this problem is to observe that if delayable goals are not con-
strained by any ordering, there is no advantage in waiting for them. Therefore,
the sequential conjunction should not wait for delayed goals. In the example,.
d/2 will only wait for b/1, observing the correct semantics.

o The Andorra-I engine does not directly support delaying of goals, but it does
allow for a goal to be delayed until determinate, through the low level declaration
det_only. We next show how we can use det_only together with the pruning
operators to obtain the functionality of delay declarations

We give an example for a freeze/2 builtin (originally from Prolog-II [33]), that
delays execution of a goal in the second argument until the first argument is
bound. Code for freeze/2 in Andorra-I with det_only is:

:- det_only freeze/2.
freeze(V, G) :- nonvar(V), ! , call(G).

freeze(_, _).

This code will execute when the first argument is bound. Two clauses are needed
because otherwise freeze will always be determinate.

The NU-Prolog wait declarations for the version of name/2 we have shown before
can be implemented through commit and the declarations.

:- det_only name/2.

8.4 Andorra-I Prolog 138

name(Atom, List) :- nonvar(Atom), | , name_Code(Atom, List).
name(Atom, List) :- ground(List), | , name_Code(Atom, List).

Finally, it is important to remark that we can use these principles to support constraint
languages, such as CHIP or the CLP languages. Constraints can be considered as
delayable goals, that are executed by the constraint solver. Andorra-I does include
a finite-domains constraint solver, and Gregory and Yang describe the advantages of
constraint style programming in Andorra-I [61].

8.4 Andorra-I Prolog

We conclude by summarising Andorra-I Prolog. Andorra-I Prolog is an extension of
Prolog:

e That therefore supports Prolog programs;

¢ That can use coroutining to improve the search space of programs, and to run
committed-choice applications

Andorra-I Prolog does introduce new features:

¢ Mode declarations, that are similar to the modes declarations found in other
Prolog systems.

o The sequential conjunction, that guarantees left-to-right execution between some
goals

e Quiet cuts and quiet commits, that provide a safer way to prune. The user
can declare that a cut or commit is quiet, or the system can try to deduce it by

compile-time analysis.
o Extensions to support constraint systems, currently finite-domain variables in
the CHIP style [48]. Andorra-I Prolog can also support delay declarations.

Coroutining and quiet pruning operators are the most important extensions to Prolog.
Further examples of the performance advantages of coroutining are shown in section

10.5.

8.5 Summary 139

&

As regards quiet pruning, the main advantage of quiet pruning is that guarantees
that the same solutions will be pruned in the presence of coroutining. The benefits of
quiet pruning therefore apply not only to Andorra-I, but also to other languages that
use coroutining.

8.5 Summary

In this chapter we presented the advantages of the coroutining possible with the Basic
Andorra Model. We showed that Andorra-I can give much of the functionality of
committed-choice languages. We also showed that Andorra-I Prolog can support pre-
vious coroutining extensions to Prolog systems, and also constraint logic programming
extensions.

Chapter 9
The Determinacy Analyser

To obtain coroutining and and-parallelism, Andorra-I must be able to detect if goals
are determinate. This is the task of the determinacy analyser. For pure Prolog
procedures, a goal is determinate when either a single clause matches the goal, or
when the goal must fail. If the procedure includes cuts or commits, the pruning
operators may make the goal determinate by pruning all but one matching clause.

The chapter first discusses the determinacy problem. Then follows a description
of the determinacy algorithms used in the preprocessor. A suggestion for further
improvements and a comparison with systems tackling similar problems is also made.

9.1 Detecting Determinacy

Determinacy for a pure Prolog procedure results from having at most one clause to
" match the input. A straightforward algorithm to verify if a call is determinate at run

time is:

1. Test all clauses in the program. If only one matches the input goal, output a
commit to that clause. If none matches, output that the goal fails. Otherwise go

to step two.

2. Wait until a variable appearing in the call is instantiated. Go to step one.

We still need to address what is meant by “testing” a clause. A discussion on how
much work should be tried to determine the determinacy of goals is part of section

9.1 Detecting Determinacy 141

4.2.1. The conclusion was that efficient testing can be implemented by verifying
only the heads of clauses and builtins in the bodies of clauses (the so-called flat
determinacy). Furthermore, it is simpler to make the algorithm read-only, that is, to
avoid binding external variables during determinacy analysis. The same reasoning
as for the committed-choice languages applies here: (i) binding external variables is
harder to implement because each clause will need to have its own environment, as
the bindings should only be available to other goals after committing to a clause; (ii)
binding external variables can only make a goal determinate in the cases where the
same external variable occurs at several places in the goal, as otherwise binding the
external variable will succeed for every clause. These are the definitions we follow in
this chapter.

The algorithm presented before is quite inefficient because whenever a variable in
the call is instantiated, all clauses would be tried anew. It is possible to improve on
this, for example by remembering if a clause has been shown not to match. Further
optimisations are possible, but the resulting algorithms will still force to test all the
clauses one by one.

We decided to implement an alternative algorithm for detecting determinate calls, -
based on the observation that a clause becomes the only solution to a goal because an
argument or group of arguments becomes instantiated. Moreover, for each argument,
we can detect if a clause is a single solution by extending the indexing algorithm used
in the implementation of Prolog. The basic idea of the algorithm is thus to generate
at compile-time a decision graph, in our case formed by an “or” of decision trees
corresponding to each argument. We shall call the decision graph for the detection of
determinacy a determinacy tree.

It is interesting to compare the complexity of both approaches. In the first case, the
basic operation is comparing the goal with the head of a clause. According to the
~ previous discussion, it can be implemented as a read-only unification, and therefore
takes time proportional to the size of the input goal. Execution of builtins in the
body of the clause will usually take constant time. The worst case time for the naive

algorithm is then:
T « n * v * Size(G)

where T is the actual time we need to prove (or disprove) determinacy, which is
proportional to the product of n, the number of clauses, v, the number of variables
that were instantiated and forced a retry of the goal, and Size(G), the size of the goal
(see section 2.1 for a definition of size of a term). Note that the size of a goal will grow

9.2 Determinacy Code for Pure Prolog 142

as the goal is further instantiated, but it is always smaller than the size of the goal
when most instantiated. We also know that the actual number of variables in the goal
is always less than the size of the goal, hence v must be less than the size of the goal.
We thus have the following approximation:

T < K * n * Size(G)?

This tells us that, in the worst case, the naive algorithm takes time proportional to
the number of clauses and to the square of the size of the input goal, or in other words
it is O(n * Size(G)?).

Complexity analysis for a problem related to generating determinacy code, namely the
problem of indexing using a minimal number of parameters and not needing to use
choicepoints, was made by Hickey and Mudambi [80]. They prove that the problem
is NP-complete. Palmer and Naish [126] also give an elegant demonstration that the
actual problem of generating a complete determinacy tree is NP-hard, resulting in
large increases for compilation time and code size.

The combinatorial explosion we mentioned before arises only in a few cases, mainly
when a goal becomes determinate through variable combinations of several arguments,
or through connections between subarguments of different structures. In most
applications, determinacy is easily detected from looking at a single arguments or
at a simple combination of arguments, and considering complex combinations of
arguments would only result in more complex code that can actually slow-down run-
time execution. To obtain a simpler and more practical system, the preprocessor
generates code that detects the more important cases of determinacy, but that may
ignore some determinate goals. For most programs this seems to be quite sufficient.

9.2 Determinacy Code for Pure Prolog

In Figure 9.1 we show an example of how the preprocessor compiles determinacy code
for a small database.

p(a, a, a).
p(b» a, a)’
P(a, b) a)'

p(a, a, b).

9.2 Determinacy Code for Pure Prolog 143

L= SO ,,.arg.2,3 a,a - d1
« 9.1 b d.2 ;
else —p wait

else —- fail

o Qe Walit

. o arg. 2 be— . 3

else —p- falil
%, a —s wait

"% arg.3 b d.4

else —p fail

Figure 9.1: A procedure and corresponding determinacy code.

The figure shows the determinacy tree for the procedure. The dashed lines represent
choices for arguments, that is how different arguments can be used to detect determi-
nacy, and the arrows represent choice on values of an argument. Choices on values
select a clause or set of clauses based on some value. Notice that choices for values are
exclusive. In contrast, arguments are not exclusive and at run-time several arguments
may be tried simultaneously. For instance, as soon as any of three arguments becomes
instantiated, the engine will try the corresponding decision tree. The example also
shows a situation where the analyser needs to expand an argument’s decision tree, in
this case because in order to verify if the goal p(a, a, a) is determinate we need to
test all its arguments. Notice that testing two arguments together does not make any
clauses goals determinate (either goals are determinate because of a single argument
or because of the three arguments) and therefore no specific code was generated for
them. Finally, the combination of the three arguments that is needed to verify that
the goal p(a, a, a) is determinate might have been called from the trees for any
argument, but the analyser only associated it with the tree for argument one. All
~ these optimisations are necessary to constrain the size of the output code and avoid

duplication of work.

The exits of the decision graph correspond to either verifying that the call should fail,
or that it should commit to a clause, or that it should wait. The last case means that
there is no way of making the call determinate, or some other alternative argument
should be used to verify if the clause is determinate (the case in this example).

The actual algorithm used by the analyser is made more complex by the need to
handle compound terms, full unification and builtins. The resulting algorithms and
the actual instruction set use many of the ideas originally developed in the contexts

9.2 Determinacy Code for Pure Prolog 144

of indexing in Prolog [180, 175] and decision trees used in compiling committed-choice
languages [93]. The algorithm proceeds in three steps. First, it generates a decision
tree for each argument. If all the tips of an argument’s decision tree correspond to
committing to a clause or failing, then the argument provides a way to find if the
clause is determinate, the tree is satisfactory and compilation for that argument may
terminate. Otherwise the analyser will try to expand the remaining tips by looking
at other arguments, until either the tree is satisfactory or no more arguments are
available. Finally, the actual code is generated in the classical way.

We next discuss each step in detail.

9.2.1 Generating the Argument’s Decision Tree

The algorithm does not generate decision trees for each argument directly. Instead,
the algorithm first finds out for which clauses and in what way an argument alone
can make the clauses a single solution. It does that in a way similar to the algorithms
used to generate decision trees for FCP [93], and we thus use a similar notation to
describe the variables used by the algorithm. "

The first step is normalisation. Basically, normalisation replaces the head of a clause
by a trivial head and a set of equality tests or builtins. Equality tests are of the form
X = T, where X is a variable and T a simple term, i.e., a variable, a constant or a
compound term in which the arguments are pairwise different variables. To these
tests are then added all the tests corresponding to builtins in the body. Currently the
system considers the following builtins as tests:

arithmetic comparisons: corresponding to the builtins =:=, <, >, <, etc;
" term comparisons: corresponding to the builtins ==, @<, @>, etc;

type builtins: corresponding to builtins integer, atom, etc.

We shall call these builtins tests. The preprocessor only considers tests placed before

a pruning operator.

The result of normalisation is a canonical-form procedure, consisting of canonical-form
clauses each of the form (i, G) for clause number i with guard G, with guard G being
a set of tests (or a conjunction of literals). The head arguments are always named
Z1,..., 2y for a procedure of arity n. Finally, variables occurring in a position j of a

9.2 Determinacy Code for Pure Prolog 145

compound term occurring inside some compound term inside the argument ¢ is named
Z;,.. ;- For example, the clause:

a(a,b(B, c(C))).
would be transformed into the canonical-form clause:

a(Z1,2,) = Z1 = 4,22 = bW(Z23,2Z22), Z22 = ¢(Z2,21).

We also need to establish a partial order among variables appearing in the tests.
Intuitively, if a variable represents a compound term, the variables representing the
subterms will be after the variable representing the full term. We call the relation >,
(for example, Z; 5 >, siZ5). ‘

Arguments and Tests: Given an argument j and a clause C = (i, A), we say that a
test g in A belongs to the argument j if and only if it is a function of Z; or if there is a
test ¢’ such that ¢’ belongs to j and g >y ¢/, that is:

g € (j,i,A) = (g€A/\(g(...,ZJ‘,...)V(ag(...,Zk,...)EA/\Zk2¢.Zj)))

Furthermore, we say that a set of tests G from a clause A belongs to j if every test g
in A belongs to j. The set of all these tests is denoted (j, i, 4), where j is argument
number and i and A represent the clause. For example, for the procedure shown next:

a(x, f(a)) :- atom(X).
a(X, £(b)) :- integer(X).

| We obtain the following sets:

(1,1, {atom(Z1), Z2 = f(Z21), 221 = a}) = {atom(Z1)} _
(2,1, {atom(Z1), Z2 = f(Z2,1), 220 = a}y = {Z2= f(Z21), 221 = a}
(1,2, {integer(Z1), Z2 = f(Z21)s Z2q = b)) = {integer(Z1)}

(2,2, {integer(Z1), 22 = f(Z2,1), Z21 = b}) {22 = f(Z21), 222 = b}

Notice that the same test may belong to several arguments: a test such as, say, an

equality test, may use several different arguments.

9.2 Determinacy Code for Pure Prolog 146

Exclusive tests Following Kliger, we say that, for two tests g and ¢, g implies ¢, or
g = ¢', if for every substitution 6, g6 is true implies that g’6 is true.

We say that two tests g and ¢’ are exclusive, or g L ¢', if there is no substitution 6 such
that both g8 and ¢'6 are true.

Exclusive sets of tests We generalise for sets of tests by saying that two set of tests
G=g1...9, and G’ = ¢} ...g!, are exclusive, thatis, G L G'if there is no substitution
6 such that both g1 A ... A g0 and gj0 A ... A g,,0 are true.

One important property of exclusive sets of tests if that if we add tests to a set G
exclusive to some other set G/, then the union will still be exclusive to G/, that is:

GLG =>GUALG

This property holds because we assume tests are only executable when sufficiently
instantiated.

For an argument j, given two clauses C;, and Cj, and the corresponding belonging
test sets (j, i1, A1) and (j, 2, A2) we say that the clauses C;, and C;, are exclusive for
the argument j, C;, L; Ci, if and only if the corresponding tests sets are exclusive.

Note that if the condition L; holds between two clauses for some argument j, then
by sufficiently instantiating the argument the two clauses will exclude each other.
E.g., in the previous example both the first and second clauses are exclusive for both
arguments (C; L; Cz and C; 12 C2). This means that by spﬁiciently instantiating
either the first or the second argument only one clause will match.

Minimal Sets of Exclusive Tests Given that two clauses exclude each other for an
argument j, it is of interest to know which tests are responsible.

To do so, we define minimal exclusive set of tests. Given an argument j and two
clauses C;, = (i1, 4;,) and Ci; = (i2, Ai,) the set of tests G, is said to be a minimal set

of exclusive tests for that argument and those clauses if and only if:

9.2 Determinacy Code for Pure Prolog 147

G A

i C Ay
A
G;, L A,
A

“I(BG:-‘ | Gfl CGi, A G:-l 1 Aiz)

In relation to the previous example, the minimal sets of exclusive tests for the first
argument, in relation to clause 1 and 2, are:

Gy, = {atom(Z1)}, G, = {integer(Z:1)}

There are also minimal exclusive sets for the second argument, which are:

Ga, = {Z2 = f(Z22), Zay = a}, G2, = {Z2 = f(Z2,1), Z21 = b}

Notice that there may exist several solutions for the same argument. We next give an
example:

b(f(a, b),).
b(£f(d,),).

In this case, there are two minimal sets of exclusive tests for each clause, which are:

Gy = {% = f(Z11,Z12): Zrpn=a} Gz = {2, = f(Z11,212), Z1,1 = d}

In both cases, the tests in G; can exclude the second clause and the tests in G can

exclude the first clause.

Residual A clause is said to be a single solution to a goal if matching the clause
implies that all other clauses fail. For an argument j to make a clause single solution
it is necéssary that the tests in this clause will be exclusive with the tests in every
other clause. We use the notion of residual of a clause in relation to an argument to

define this.

9.2 Determinacy Code for Pure Prolog 148

.

The residual of a clause in relation to an argument, R;(C;) is the set of all the clauses
such that there is no minimal set of exclusive tests for that argument. If R;(C;) is
empty we say that the argument j makes the clause C; single-solution. If:

Yi, R;(CiH)=19

that is, if the argument j makes all clauses single-solution, we say that the argument
is sufficient for determinacy. In contrast, if,

Vi,j#£i, CjeR;Ci)

that is, if there is no case when two clauses are mutually exclusive for the argument
j, we say the argument is useless for determinacy.

In the previous examples, for the procedure a/2, both the first and second argument
are sufficient for determinacy, whereas for the procedure b/2 the first argument is
sufficient for determinacy, but the second argument is useless.

9.2.2 The Determihacy Algorithm for Individual Arguments

The first step of the determinacy algorithm is to create an array indexed by argument
and clause numbers. For each entry of that array, the determinacy algorithm stores
(i) the residual for that clause and argument and (ii) the union of all the minimal sets
of exclusive tests between the clause and all the other clauses. Note that if all the
tests in the union are satisfied, then only the clauses in the residue can succeed.

Before we describe when arguments are combined, it is important to explain how one
" verifies if two clauses are exclusive for some argument.

Adding Tests to Compare Clauses

Suppose we are looking at the argument j and comparing two clauses, C; and C;. We
have found that the current tests G1, G2 are insufficient, and we need some more tests

to make the two clauses mutually exclusive.

The tests will have involved the variables Z;,...,Z;,.k. Wwith the usual order >,
between variables. We classify tests into three categories. Simple tests correspond

9.2 Determinacy Code for Pure Prolog 149

[y

to building a term, and are of the form Z = a or Z; = f(Zj1,...,2Zjn), unary tests
correspond to tests with only one argument (such as atom(X)), binary tests to tests
with two arguments. In general, unary and structure tests are easier to analyse,
compile and to execute, and the algorithm tries them first.

Our algorithm expands two sets of tests G, and G in clauses C; and C; so that the
two sets will become exclusive. To do so, it uses four sets of tests Gy, G2, NG; and
NG, where NG, are the tests from A; not in Gy, and similarly for NG;, and two sets
of variables Z; and 2,. It also uses two sets of variables Z, such that Z is in a set 2
if Z >, Z; and Z appears as an argument of a g € G. The set 2, corresponds to the
variables from G; and the set 2, to the variables from G,.

The algorithm tries first to expand G; and G, with simple tests, by considering
variables Z in the 2, such that there is no Z’ for which Z >4 Z’. If a simple test
is found for one such Z, the test is removed from the NG; and added to G;, and the
variables appearing in the the right-hand side of the test are added to Z,. IfG; and G;
are still not exclusive, the algorithm tries to fetch a simple test for Z from NG, to Ga.
If there are no such tests the algorithm backtracks and tries a different Z from 2. If
there is one such test but G; and G, are still compatible, the algorithm calls itself on.
the new arguments. When no more simple tests remain, the tries unary tests, using
a similar technique. If no more unary tests are available, the algorithm tries binary
tests.

This algorithm does not necessarily give a minimal set of tests (because it always uses
compound tests first), but it gives the tests that are more efficient to try first.

Verifying if Two Tests Are Exclusive

To implement the previous algorithm we also need a function to verify whether two sets
of tests are exclusive. The preprocessor uses an inference mechanism to implement
it. This mechanism tries to find one value that satisfies both sets of tests, and if there

is no such value, it succeeds.

In general, the problem of finding whether two sets of tests are mutually exclusive
is equivalent to the problem of determining a solution to a general set of Prolog
primitives and thus insolvable. In fact, some measure of completeness can be obtained
for Herbrand tests, but the introduction of arithmetic tests does limit completeness.

In the worst case, to find if the arithmetic tests exclude a clause, one may have to

solve arbitrarily complex problems, such as the Fermat problem [80]:

9.2 Determinacy Code for Pure Prolog 150

S

fermat(X, Y, Z, yes) :-
integer(X), integer(Y), integer(Z), integer(N),
X>0,Y>0,2>0,
XN + Y°N =:= Z°N, N > 2.

format(_, _, ., no).

The first clause should always fail because Fermat’s conjecture, that there is no integer
only solution to the equation XV + YV = Z¥, is true.

In the preprocessor we were interested on finding practical heuristics that approach
the problem. These heuristics are not necessarily complete but should handle most of
the practical cases.

Simple tests can be compared by simply applying them to two initial terms and then
verifying if they are still unifiable.

Unary tests are somewhat more complex. After both sets of simple tests are applied,

unary tests are at first tried on the resulting term. If they succeed, then the unary

tests from both sets are compared. For example, if one set of tests includes atom(X)"
and the other integer(X), the sets are exclusive.

The most complex tests to support are the binary tests. They include equalities, that
is tests of the form X = Y, and more general comparisons. If both arguments of the
tests are instantiated, then it is possible to decide if they are exclusive. Otherwise, the
system resorts to a set of heuristics which try to process the most common cases. These
cases include comparisons resulting in non-intersecting ranges of possible values for
the same variable and different tests with the same arguments.

Obviously, all these heuristics are not complete. For example, transitivity of tests is
" not handled by the current rules, as this example from Korsloot and Tick [96] shows:

a(X, Y) :- X < Z.
a(X, Y) :-X>Y, Y>Z.

The example is practice handled by the preprocessor’s normalisation algorithm.

Even when two sets of tests are not always exclusive, it would still be of interest to
study when the two sets of tests are mutually exclusive. The current preprocessor
does not include this feature, mainly because it would be complex to implement and

could result in a much larger determinacy code.

9.2 Determinacy Code for Pure Prolog 151

[y

9.2.3 Combining Arguments

If all the arguments are either sufficient for determinacy or useless for determinacy,
there is no point in combining several different algorithms. Otherwise, more determi-
nate goals may be found by combining several arguments. Combining arguments will
be useful if it does provide new information, that is if by combining arguments either
some clause will become exclusive with all other clauses, or no clause will match.
Moreover, combining arguments is only useful if it is not tried somewhere else before.

We next present an algorithm to find combinations of arguments that detects whether
clauses can become a single solution to a goal, through looking at multiple arguments.
The algorithm works on a set of combinations of arguments that if expanded may
make more clauses a single solution.

The algorithm uses the following variables: As and Aso, the set of argument com-
binations to expand, and N As, the set of argument combinations that should not be
further expanded. The algorithm uses a store I'((j)), such that for an argument or
combination of arguments: ’

L((7) = {(i1,82) | (31 L i2)}

That is, the stores hold all pairs of clauses that are not exclusive for that argument or
combination of arguments.

e Initialisation: we set N As to be the set of single arguments that are either
sufficient or useless for determinacy, and As = Aso is set to the remaining

arguments.
e While As is not empty:

- Select one z = {a,...,aj—1} from As; As := As\{z};
— For every element aj, of Aso not appearing in z, form ay = {a1,...,aj-1,ax}
and:
1. if a subset of y appears in N As, skip the next steps: notice that only the
sets whose last element is aj need to be tested;
2. T(y) := [(z) N T({a;});
3. if ClausesIn(I'(y)) < ClausesIn(T'(z)) then store y as a solution for the

clauses made single solution

9.2 Determinacy Code for Pure Prolog 152

4. if T(y) = O v I(y) = I(z) then NAs := NAsU {y} else As := AsU {v}:
either the combination needs to be further expanded, or there is no point
in expanding it.

The main goal of the algorithm is to prune combinations of arguments as much as
possible. To do so, the algorithm uses the set N As to store all useless or sufficient
combinations of arguments, and tests any new combinations with this set. Still in
the worst case it is possible that all combinations are useful, and that the algorithm
may generate all the 2°7* combinations. This results from the exponential nature of
the problem, and is avoided in the preprocessor by providing a depth bound on the
number of arguments to combine.

The function ClausesIn gives all the clauses that are still not determinate. It can be
defined quite simply as:

{i,j}U ClausesIn(§') S =5"U{i,j}

ClausesIn(S) = { 0 5 =0

This function is used in step 3 to verify if intersecting more arguments makes any
more clauses a single solution. If so, the combination is immediately stored in a
table and associated to the clauses. This table associates clauses to combinations of
arguments that make them determinate and is the actual output of the algorithm.

Example We nextgivea small example of the algorithm, with the procedure:

c(1, 1, 1,).
c(1, 2, 2,).
c(2, 2, 3,).

The third argument is sufficient for determinacy, and the fourth is useless, therefore
the initial values for As is {{1}, {2}} and for N Asis {{3}, {4}}. We first select z = {1}
and expand it to form the sets {1,2},{1,3} and {1,4}. We first try y = {1,2}.

No element of y appears in NAs, thus we can calculate a new store. This gives
I(y) = I(z) N T({2}) = (1,2)N (2,3) =10, and ClausesIn(y) = 0. Previously, for the first
argument only the third clause was a single solution, now all the clauses will become

a single solution.

9.2 Determinacy Code for Pure Prolog 153

[y

Finally, N As :={{3},{4}}u{{1,2}}, and As := {{2}}. All remaining combinations of
arguments are disabled by step 1 and the algorithm terminates with the result that
when looking at the first and second clauses from the first argument we should proceed
to look further at the second argument.

Ligatures

In step 2 it is implicit that intersecting the non-excluding clauses as calculated in the
first part is sufficient to find the effect of joining two arguments. This is not always
true, as the next example shows:

a(X, X).
a(1, 2).

Initially, both arguments are unable to use the equally test, resulting in I'((1)) =
{(1,2)} and T'((2)) = {(1,2)}. The intersection of these two sets would result in
I'({(1,2)) = {(1,2)}, whereas the two clauses are actually exclusive.

The problem is that some tests are only useful when one only looks at several
arguments together. We call these tests ligatures.

In our current implementation, while calculating the residuals, the algorithm also
looks at tests of the form test(Z;, Z;) and uses simple tests to verify if they exclude
other clauses. If so, they are stored in a table of ligatures. This table groups pairs
of arguments and tests, and gives the clauses that become mutually exclusive when
such tests hold. When step 2 is called, this table is checked, and if ligatures exist for
the new argument the corresponding pairs are deleted from the intersection. In the
example, a ligature exists for the pair of arguments (1, 2) and results in deleting the
A pair of clauses (1,2}, thus making the combination of arguments successful.

It is possible that ligatures may be more sophisticated, for example connecting two
arguments deep down a compound term. In practice this situation does not seem to
arise often, and we do not search for these cases in the current algorithm.

9.2.4 Compiling Decision Trees

The final step of the algorithm is to generate the actual sequence of instructions that
are followed by the engine to find determinacy code. In this chapter we discuss the

9.2 Determinacy Code for Pure Prolog 154

compilation algorithms. How the Andorra-I engine supports the determinacy code can
be found in chapter 10.

At this stage, it is already known the tests and their combinations necessary to make
clauses a single solution. The aim of this algorithm is therefore to organise these
tests into an efficient data-structure, typically a tree or graph. The algorithm tries to
minimise (i) code size, by only placing tests in the least number of places, and (ii) the
depth of the tree, in order to minimise the number of operations needed at run-time
to find determinacy.

To describe the algorithm we first to define the literal residue, Ri(C,g), of a clause
C = (i, A) with respect to a test g as:

(i,A\g) GeA
)] otherwise

R[(C, g) = {

In other words, the literal residue simply removes the test from the clause whenever
present, or returns empty.

The algorithm works argument by argument. For each argument, it selects a test, and
the clauses that include that test (for which the literal residue is non-empty). It then
creates a node in the decision tree for the test, with two alternatives corresponding to
success or failure of the test. For the success case, the algorithm tries to discriminate
among the clauses that match the test, by calling itself only for these clauses but
without the test. For the failure case, the algorithm calls itself on the clauses that do

not include the test.

When no more tests are left for a clause or set of clauses, the argument must check
the collisions table built by the previous steps. The cases are: (a) the tests lead to a
* single clause and further the argument makes that clause a single solution, hence the
algorithm can generate a commit instruction; (b) there is no way the tests can make
the clause(s) determinate, and the algorithm must generate a suspend instruction; (c)
further arguments are needed. In the last case, some bookkeeping is performed, and

the algorithm is called again for the next arguments.

The algorithm is presented by the function decision-graph in Figure 9.2. Its arguments
are P, consisting initially of all the pairs argument and clause for the arf.,rument J»
Suspend saying where to go if analysis of the argument must sto.p, Fail sz%ymg wh.ere
to go if the current test fails, and Table the collision table that includes 1.nforx.natxon
about which clauses are determinate for the argument, and about which (if any)

9.2 Determinacy Code for Pure Prolog 155

decision-graph(P, j, Suspend, Fail,Table)
if (P = 0) then return(Fail);
if (P = {{(i,0 >})
- we can generate code for a single clause
- either if the procedure has a single clause
- or if only a single clause matches the test
return(single-clause(P, j, Suspend, Fail, Table);
else
- multiple clauses
g := find-test(P));
if((g=0)
- no more tests, extra arguments need to be tried
return(many-clauses(P, j, Suspend, Fail, Table));
else
- there is a test g:
- generate code for the case test succeeds
Pyes 1= {<iv AI) | (ivA,) = Rui({1, A),g)};
Gyes := decision-graph(Pyes, J; Pro. Suspend, Table);
- generate code for the case test fails
Poo = {(i,4) | 0 = Ri((i, A), 9)}
G, := decision-graph(Pro, j, Fail, Suspend, Table);
- link the resulting code
return(node(Pyes, Pro, Suspend, Table));

Figure 9.2: Decision-Graph Algorithm for Individual Arguments

combinations of arguments are necessary to make them determinate. Its outputis a

- graph. Inner nodes are quadruples consisting of a test, and three links telling where

to go if the test succeeds, fails or must suspend. Outer nodes are instructions to
commit to a clause, fail or give up analysis in this branch.

For every call the Suspend argument is made to point to the decision graph generated

for the next argument. The last argument is made to point to the constant wait

meaning that there are no more ways to make the goal determinate.

The function single-clause is called when only a clause with no tests is left. In that
case, the function check-collision-table checks Table to verify if more arguments are
necessary. If so, a new call to decision-graph is made for those extra arguments.

9.2 Determinacy Code for Pure Prolog 156

If several alternative combinations of arguments exist, then the algorithm behaves
as the one for the entire procedure, by generating code for each combination and
combining them in a such a way that if one combination of arguments does not make
the goal determinate, another combination will be tried.

The function find-test has to search P for tests. If no or a single test is available, then
the function is trivial. Otherwise, it is sometimes important to select a good test first.
Basically, it is necessary to follow the partial order >, between variables in tests.
Further ordering of the remaining tests is discussed in section 9.2.7.

The function many-clauses is similar to single-clause, but manipulates several clauses.
It may happen that only some of these clauses can be made determinate. Even then,
the algorithm must call decision-graph for all the clauses, in order to be able to
propagate failure correctly. If no tests exist and the clauses can never be determinate,
the function generates a leaf with value suspend.

The function check-collision-table operates on the collision table. It receives as
arguments the collision-table itself, the argument, and the clause number. It then
checks if there are any combinations of arguments for that clause involving that
argument number. To avoid duplication of code, it is very important that a combination
of arguments will only be used once. This is implicitly implemented in the algorithm.

Examples We use the procedure c/4 (from page 152) to exemplify code generation.
The code is a disjunction for the three possible cases, corresponding to the first, second,

and third argument.

Consider the first argument. The function decision-graph can select the test Z; = 1
first. The literal residues for that test include two clauses, the first and second clause:

There are two possible cases now.

o Calling decision-graph for the literals residues when the test succeeds gives two
clauses but no remaining tests for that argument. Thus, the function find-test
returns no more tests and many-clauses is tried. This function returns that by
trying tests from the second argument the clauses become single-solution, and
the algorithm moves on to the second argument. The test Z; = 1 is selected
first. In the yes case, the algorithm calls decision-graph with an empty residue,
and can commit to the first clause. In the no case, the algorithm goes to test

the second clause. Selecting the test Z; = 1 returns two alternatives, either

committing to the second clause if the test succeeds or failing.

9.2 Determinacy Code for Pure Prolog 157

[y

e After removing the clauses such that Z, = 1, only the third clause and the test
Zy = 2 are left. The algorithm thus can commit to the third clause if the test
succeeds, and fail otherwise.

The result for the second argument alone is that one can commit to the first clause if
Z, = 1, but cannot commit to a clause if Z; = 2. If both tests fail, one can fail.

The results for the third argument are that one can commit to the first clause if Z3 = 1,
to the second if Z3 = 2, and to the third if Z3 = 3.

1 —= c.1
1 -------------------- sasde arg. 2 2 . —— CI. 2

2—cl.3 else —» wait

‘ else — fajl
’ 1 —cl. 1

Sommemes > arg. 2 2 — wait

*s else — fail
. 1 —s cl. 1

2 —»cl.2
\arg.3

3 — cl.3
Figure 9.3: Determinacy Graph for a Pure Procedure

The resulting graph is shown in Figure 9.3.

The next example shows how the determinacy code processes structures. The example

is the procedure:

q(L[_D.
q(l.,.1).
q(l.,.,-1).

n in Figure 9.4. The first step of the determinacy

The resultin aph is show ‘
. o to make the clauses determinate are

preprocessor recognises that the tests necessary

9.2 Determinacy Code for Pure Prolog 158

[y

[j — ol 1
(A —>Zm<] —c.2
arg. 1 < else m—————— Il — c.3
else ———= fail else —= 7, .. <
' else —» fail

Figure 9.4: Determinacy Graph for a Procedure With Compound Terms

Z1 = []J, Z12 = [, for the first clause, Z; =[], Z1,2 = [{], Z122 = I, for the second
clause, and Z; = [, Z1.2 = []J, Z1,2,2 = [|] for the third clause. The third step groups
these tests into the graph shown in a simplified form by Figure 9.4.

Finally, we show an example of binary tests, in this case used to compare arguments
(modes are used to reduced code size, as discussed in section 9.3.3).

:- mode partition(+, +, -, -).

partition([1, -, 00, [D).
partition([X|Xs], A, Smaller, [XILarger]) :-
A< X,
partition(Xs, A, Smaller, Larger).
partition([X|Xsl, A, [X|Smaller], Larger) :-
A >= X,
partition(Xs, A, Smaller, Larger).

0 ol 1 Zl'l>.22——>cl.2
arg. 1 L Zia
Z,, =< Z,—cl3

else — fail

Figure 9.5: Determinacy Graph for a Procedure With Binary Tests

5. The graph only considers the first two arguments.
ed, the first step of the algorithm detects that the
for determinacy. The third step then

The graph is presented in Figure 9.
If the first argument is instantiat
tests Z, < Z;, and Z; >= 7y, are necessary
groups this step into the graph shown in Figure 9.5.

9.2 Determinacy Code for Pure Prolog 159

.

9.2.5 Failure

It is convenient to explain propagation of failure in some detail. The Fail label tells
where to go if the entire procedure fails. Initially, the function decision-graph is called
with Fail set to fail, meaning that no clause satisfies the goal, and therefore that the
goal should fail. Each call to decision-graph creates a node with two subtrees, the yes
and no trees. The yes tree fails to the result of the no tree, and the no tree fails to the
fail point for the caller.

Note that because we assumed that, for the yes tree, the leaf test has succeeded, then
it is sometimes possible to prove that the entire, or at least segments of, the no tree
could be avoided, and failure inside the yes tree could jump directly to Fail. This is
implemented in Kliger and Shapiro’s [93] residual trees by using the idea of negative
residuals, R,,,. The implemented version of the preprocessor supports a residual Ry,
which tells what clauses are available after failure of a test.

9.2.6 Suspensions

Suspension of goals may happen in two cases. In the first case, an argument of a
test may still be uninstantiated, and the current branch of the determinacy tree must
suspend and wait until the argument is instantiated. In the second case, it may be
found that analysis of the current branch of the determinacy tree does not lead to any
way of making the goal determinate. Note that in the latter case, there may still be
some active branches that may make the clause determinate, so it is still possible that
the goal will become determinate in some other way.

In order to handle suspension efficiently, the analyser needs to know how the engine
implements suspension and resumption of work. Korsloot and Tick present a detailed
" discussion of several strategies [96]. In our case, the main priority is to avoid redoing
work when a suspended goal is reactivated. To do so we need two guarantees offered
by the Andorra-I engine. Firstly, if the engine suspends work at some point, it may
resume execution from the same point; secondly, if the engine restarts work from a
certain point P;, and the point to go if suspending was S, and if it continues again up

to a point P,, where the point to try after suspending is again S, the machine will not

execute the code starting from $; again.

e engine does not always always guarantee the first rule. The size of
n 3.2.1) is fixed, and it is not always possible to store
t. This may happen with two types of tests, compound

In practice th
a suspension record (see sectio
there all the arguments of a tes

9.2 Determinacy Code for Pure Prolog 160
tests and binary tests. For such cases, the analyser has to generate code such that
the engine will suspend at a previous point where all the arguments were available
(instead of suspending where it stopped), and hence needs to redo some work.

The second guarantee avoids repeating execution of argument trees. Consider a
decision tree with N argument sub-trees, one for each argument. According to the
algorithm, if executing the decision tree for argument i — 1 suspends, it will point
at the decision tree for i. The first time the algorithm is called, imagine execution
reaches argument i — 1 and then suspends. It will thus next try argument i, and
maybe suspend again. Suppose now that argument i — 1 is restarted and suspends
again. In this case the engine prevents execution of the tree for i, and no work is
redone.

A simple alternative scheme would be to have all trees pointing at exit, thus avoiding
any possibility of redoing work. In this case there would have to be a separate
operation to start all the alternative branches of the tree. This would need slightly
more complex support from the engine than what is needed now, albeit needed for less
points in the program. Hence we believe the current solution is more efficient.

9.2.7 Optimisations

We next discuss the most important optimisations performed by the system.

Merging Nodes

The main issues in optimisation are how to merge nodes to create switch nodes, how to
delete extraneous testing, and the issue of how to propagate failure in order to detect

determinacy.

As in indexing for the WAM, the main optimisation of this system is to merge simple
testes of the form Z = constant or Z = f(...) into a large node, which we will call the

switch node. Switch nodes consist of two tests: first the type of the argument, i.e., if
the argument is a constant, a structure or a pair, and then for each type, its value.

There are several advantages to this optimisation:

e switching on these tests will now be done in fixed-time, not in a time proportional

to the number of tests;

o the resulting code is much more compact;

9.2 Determinacy Code for Pure Prolog 161
¢ finally, and because it is known that all the tests in the switch exclude each

other, then all the subtrees for the switch node must exclude each other, so they
can all inherit the same Fail point.

Switch nodes are very common as most programs contain some switch nodes and
many do not need any other testing. In terms of the algorithm, the following changes
are relevant:

e The function find-test may return either a set of simple tests and associated
clauses for the same variable, or a single pair test clauses.

o In the first case, a switch node is generated. The switch node connects to a
subtree for each possible argument, plus an alternative branch in case all the
tests fail. This last branch is connected to the fail label. Each subtree is
generated as before, but they all receive the same fail label.

e The switch node is implemented in WAM style by a “test on type” node, calling
two “switch on argument” nodes. The first verifies if the argument is a constant,
a pair or a compound term. The second are called if the argument is a constant -
or compound term, and select respectively on the value of the constant or on the
main functor of the compound term. Notice that the “switch on argument” nodes
are only generated if there is at least one test, otherwise the corresponding label
from the “test on type” node is connected to the otherwise alternative.

Otherwise Commitment

Our algorithm is geared at finding the tests in a clause that make it the single solution
for the goal. But sometimes, although no tests can make a goal determinate, a clause
" can still become a single solution simply because all the other clauses have failed. A

typical example is shown next:

member (X, [XI_1).
member(X, [_|L]) i- member(X, L).

The example shows a rather frequent situation. If Z; = Z2, both clauses match the
input, and the goal is not determinate. But if Z; # Z»,1 then the first clause fails and

the goal can determinately commit to the recursive clause.

9.2 Determinacy Code for Pure Prolog 162

[y

Because our algorithm is designed to minimise the number of tests that are performed
to find determinacy, it is sometimes the case that some tests necessary to exclude
clauses may be discarded. The following changes avoid this:

o In the first step; we include tests, not as long as they exclude all other clauses,
but as long as they exclude all but one clause.

o Expansion of arguments and ligatures should be used and stored in the table
if they result in the clause becoming a single solution or if there is only an
alternative clause.

o When compiling tests for a clause, if the clause is nondeterminate because of
only one other clause C;, and if the current Fail label is fail then the fail branch
for the current test should point to Cj.

We next show another example of this situation. The procedure is shown next:

aa, X, X).
a(X, a, X).
a(X, X, a).

Note that if all three first arguments are instantiated then the only nondeterminate
query is a(a, a, a), all other queries have a single matching clause, if at all. The
actual code generated by the preprocessor is shown in Figure 9.6. :

The goal can commit to the second clause if either the first argument is not bound to
a and the first argument does not unify with the second, and similarly for the other

arguments.

A more complex situation arises from implicit failure. Consider the following simple

program [151]:

father(terach, abraham). father(terach, nachor).

father(terach, haran).
father(haran, lot).
father(haran, yiscah).

father(abraham, isaac).
father(haran, milcah).

X,X) should fail (there is no one father of himself) and therefore

The goal father(
Y Unfortunately, the current algorithm will

should be recognised as determinate.

9.3 Extensions to the Algorithm 163

a — wait

arg. 1 YES? wait

' 4

'o' ' else — X1 =X2
L4 .
a —» wait NO? cl. 2
4
, .
' .
RACU, —arg. 2 < YES? wait
A 3
A 3
. else —» X2 = X3
A 3
‘\ . NO7?cl. 3
R a —— wait)
‘
s
0 wai
A arg. 1 < YES? wait
else — X1 = X3

NO?cl. 1

Figure 9.6: Determinacy Graph Through Failure

generate code that will wait until one of the arguments becomes instantiated. This in
turn results from the fact that the test Z; = 2, has no matching clause is not explicitly
registered in the program, and therefore is not considered by the algorithm.

This last example shows the limitations of not being able to bind external variables
to detect determinacy. In section 9.4.2 we present a more detailed discussion of this
general problem and of possible solutions. Obviously, there is a solution for this
specific problem, which is to verify if a condition like Z; = Z; or Z; # Z; can never
hold, and generate an extra test node comparing the two arguments in that case.

9.3 Extensions to the Algorithm

The three main exténsions necessary when detecting determinacy for Andorra-I are

generating code for procedures using commits or cuts and the user mode declarations.

We discuss their implementation in detail.

9.3 Extensions to the Algorithm 164

.

9.3.1 Procedures using Commit

In Andorra-I flat commits can be used to say that a clause is the only solution for a
goal. A commit is defined to be flat when all goals before the commit (the guard of the
commit) are test goals. A goal may commit to a clause defined with a flat commit if
all unifications and builtins performed before the commit can succeed without binding
any external variables, or if the clause is the only solution for the goal.

The Algorithm

Our approach to compiling procedures with pruning by commit extends the algorithms
used for pure procedures. Briefly, these algorithm select which clauses to commit to,
and then a simple compilation algorithm compiles the guards of the clauses. The
resulting algorithm is thus:

o The first step, establishing arguments’ decision trees is left as is.
¢ The second step, combining decision trees for arguments, is left as is.

e The compilation algorithm is changed so that if a leaf has a commit associated
to it, then the tests before the commit which have not been tried so far will be
compiled as a guard. If these tests succeed, the compilation generates a commit
node; if one of the tests fail, either (a) the clause was determinate without the
commit, and the analyser goes back to the usual algorithm to find the fail label,
or (b) the clause was only determinate because of the action of the commit and
the analyser generates a suspend node. The algorithm is shown in figure 9.8.
The code assumes that every clause has a commit.

¢ Finally the analyser has to generate code for each guard. The code is very similar
to the code generated by a Prolog or a PARLOG compiler.

The resulting determinacy code is very similar to code using decisiop graphs for
committed choice languages [94], the main difference is that we select the tests that
were used in the first phase to do indexing. An example is shown in the figure 9.7.

The example shows the determinacy code for the parallel merge pr ocedure (v?ry we%l
known in committed choice languages). The determinacy code we generate waits u1'1t11
one until of the two first arguments becomes a list, and commits to the corresponding
clause. This is the expected behaviour in the committed choice languages [60].

9.3 Extensions to the Algorithm 165

{] eme—p clause 1
parmerge([], L2, L3) :- |,
3.

12 =L P arg. 1 (_I_] — clause 2
parmerge([H|L1], L2, L3) :- |,

L3 = [H|Ls3], o

parmerge(Ll, L2, Ls3). o° else — o wait
parmerge (L2, [], L3) :- |, "~.'

L2 = L3, - "o, () =——» clause3
parmerge(Ll, [H|L2], L3) :- |, o, i

L3 = [H{Ls3], 4 arg.2 (_I_] —» clause 4

parmerge(Ll, L2, Ls3).

olse ——w walt

Figure 9.7: Determinacy Graph for Parallel Merge.

Failure and Commit The previous algorithm does not always detects determi-
nate failure. Consider the previous example. In this case, the algorithm may
suspend simultaneously on the first or second arguments. Say that one of the ar-
guments becomes instantiated to a value different from the pair or empty list, e.g.,
parmerge(tree(,_,.), L, 0) or parmerge(L, tree(.,.,.), 0). In both cases, there
are still some clauses available and the goal should not fail. Consider now the goal
parmerge(tree(.,-,-), tree(.,-,.), 0). This goal should fail, but the problem is that
the test node for the second argument is called under two different circumstances:

o when the first argument suspends and the algorithm tries committing via the
second argument;

e when the decision tree for the first argument fails.

In this example we have the second case. The problem here is that if the test in the
second switch node fails again, then the two cases should result in different actions:

o the goal should wait for a solution until the first argument becomes instantiated;

o the goal should determinately fail.

It is possible to separate the two cases at compile time, but in the worst case we
would be forced to duplicate execution of many of the guards. A run-time solution is
proposed by Kliger and Shapiro [93]. Briefly, the implementation of FCP(,;,?) uses

a suspension table, initially empty. The suspension table stores positions where the

algorithm suspended. Whenever a node fails, the implementation withdraws the

corresponding position from the table and tests if it is empty. If not, other nodes are

still available and there may still be a solution for that goal. Otherwise, the goal has
determinately failed. The suspension table is used for other purposes in FCP(],;,?). In

the case of Andorra-I a counter would be sufficient.

9.3 Extensions to the Algorithm

166

commit-graph(P, j, Suspend, Fail,Table)
if (P = 0) then return(Fail);
if (P = {(;,®})
- code for a single clause
return(try-clause-pruning(P, Suspend, Suspend);
else
- multiple clauses
g := find-test(P));
if((g =0
- no more tests, extra arguments need to be tried
if (= arity)
- no more arguments, generate a sequence of “try” nodes.
P=CuUP,;
Continuation = commit-graph(P’, j, Suspend, Fail,Table);
return(try-clause-pruning(c, Continuation, Continuation));
else
=i+
P’ = find-new-args(P, j', Table);
return(commit-graph(P’, j', Suspend, Suspend, Table));
else

- there is a test g:
- generate code for the case test succeeds

Pyes = {(, AI) I (i A,) = Ru({, A), Nk

Glyes := commit-graph(Pyes, J; Pno, Suspend, Table);
- generate code for the case test fails

Pro := {(i?A) [0= Rl((i’A)ag)};

G o := commit-graph(Pro, J, Fail, Suspend, Table);
- link the resulting code

return(node(Pyes, Pros S uspend, Table));

Figure 9.8: Generating a Decision-Graph for procedures with commits only

9.3 Extensions to the Algorithm 167

cut-graph(P, j, Suspend, Fail,Table) -
if (P = 0) then return(Fail);
if (P = {{(i,0)})
- code for a single clause
return(try-clause-pruning(P, Suspend, Fail);
else
- multiple clauses
P’ .= find-section(P, j));
- find the last clauses:
P":= P\P',
- generate code for the last clauses:
F :=cut-graph(P", j, Suspend, Fail,Table);
- generate code for the first clauses:
return(section-graph(?’, j, Suspend, Fail, Table);

Figure 9.9: Generating a Decision-Graph for procedures with cuts only

9.3.2 Procedures using Cut

To be consistent with the standard meaning of cut, the determinacy code may commit
to a clause with a flat cut if that cut does not bind any external variables, and all
previous clauses are guaranteed to fail. The main new concept introduced by the cut
is thus the concept of previous clause, that is, of an ordering between clauses. We thus
extend the pure procedures determinacy analysis algorithm in the following ways:

o The first and second steps are kept.

e A new step goes about each clause and verifies if all previous clauses had (a) a
cut associated with them or (b) excluded the current clause for one argument i.
If so, a cut is associated with the leaves for that clause.

m is changed to separate clauses into sections. Sections
hich the current argument either always
n most cases procedures have only one
two sections, there is a test in every

o The compilation algorith
are contiguous groups of clauses for w
has, or always has not a simple test. I

section, there is a test in every clause, or
section except in the last section that functions as a catch-all clause [28].

e procedure cut-graph, that generates code

Figure 9.9 shows a description of th
are compiled one by one. Inside a section

for procedures with cuts. Sections

9.3 Extensions to the Algorithm 168

there may be two cases, (a) there may be tests for the argument and in this case
the function is very similar to commit-graph, but being careful to always respect
clause ordering, or (b) no tests are available. In case (b) indexing may be tried
on other argument, or code may be simply generated as a sequence of tries of
guards.

e Finally the analyser has to generate code for each guard The algorithm is
identical to the one used for commits.

The actual execution of a flat cut by the engine is similar to the execution of code
supporting optimised shallow backtracking in Prolog [17]. The analyser uses the
decision tree for an argument as indexing code, and then for each clause, compiles the
head and builtins before the cut into special instructions. At runtime, the indexing
code is tried first, selecting the subset of clauses to try. The engine will then execute
head unification and the builtins for each clause sequentially. Execution of head
unification or a guard will suspend if it needs to bind an external variable. If head
unification and all builtins succeed, the call will commit to that clause. If one of them
fails, the next clause will be tried, until no more remain, and the call fails.

The next procedure gives a simple example of the use of cut to promote determinacy.

notequal(A, A) :~ !, fail.
notequal(qqq(.), .) :- !, fail.
notequal(_, qqq(.)) :- !, fail.

notequal(_, _).

The resulting code is shown in Figure 9.10. The first and second steps do not find
ways to make the clause determinate, and it is the cut analysis that does most of the
work in detecting how the cut makes goals determinate. The code inside the boxes

verifies when the head and guard of the cut is read-only.

9.3.3 User Deciarations

Andorra-I uses Prolog style mode declarations give information on the state of in-
stantiation of arguments. Input mode declarations say that an argument will be
instantiated when goals for the procedure are called, output mode declaration say that
the output arguments should not interfere with execution of the procedure.

9.4 Discussion 169

read-only guard for ci 1 —————w-YES?cl. 1

l NO?

arg 1 = qqq(_)

YES? —=t read-only guard for cl 2 — YES? cl. 2
NO?
A
read-only guard for cl 3 j————» YES? cl. 3
NO?cl. 4

Figure 9.10: Determinacy Graph for a Procedure With Cut.

Only output mode declarations affect the determinacy analyser; the analyser simply
ignores the output arguments, thus avoiding wasted work in testing arguments which
probably will never become determinate.

The decision to ignore input mode declarations deserves some discussion. Inlanguages
like PARLOG [60] or Mu-Prolog [118] input declarations are used to delay execution
of a procedure until the input arguments are instantiated. Such behaviour could
indeed have easily been implemented in the Andorra-I preprocessor. We decided not
to, attending to the fact that our mode declarations are supposed to represent ‘the
execution of programs initially written for Prolog, and thus should not be mistaken
with input declarations used to control execution. There is no reason, though, why
future preprocessors for other languages could not enforce such restrictions, and the
current machinery could be used in a straightforward manner to support such “strict”

input arguments.

9.4 Discussion

The determinacy analyser has been implemented and used to compile a wide variety
of applications for Andorra-I. The results have been quite successful, and for all
programs we tried the analyser has been able to generate correct code.

We next discuss the two main questions that arise in the use of the analyser. We

9.4 Discussion 170

first discuss how the complexity of the algorithms used in the preprocessor affects
performance of the system, and we next discuss how the preprocessor could be adapted
to detect all determinate goals. We finally present an overview of the background

work that was important in the development for our system and compare the system
with related work.

9.4.1 Complexity Analysis and Performance

A simple complexity analysis for the determinacy analyser gives, for each step:

e As regards construction, in the first step we need to compare each clause with
every other clause. A simple implementation would be of O(n?), where n is the
number of clauses. A more sophisticated implementation using hashing or trees
could perform better in the average case.

While comparing clauses, as a first approximation one can say that each step
would take in the worst case O(t?), where ¢ is maximum the number of tests in .
the clause. This result assumes that the inference mechanism takes constant
time given two tests and compares all tests. Sophisticated inference mechanisms
need to test combinations of tests and will not obey this approximation.

o Considering the “merge” step, the worst case is the case where all combinations
of arguments need to be generated. In this case, complexity would be O(n?+2™),
where m is the arity, and n is the number of clauses.

o Finally the complexity of the code generation step can be obtained from the fact
that each test generated by the previous step will always be considered, but only
once. In this case, the complexity of this step results from the number of tests
generated by the previous step. Considering that n tests were generated for each
combination of the arguments, then the worst case is O(n * 2").

o Asregards the introduction of cuts and commits, it generates a new linear factor
on the number of clauses n. Complexity analysis for the compilation process is

not much changed.

Notice that the entire algorithm has been designed to avoid generating combinations
of clauses, unless absolutely necessary. In practice it is extremely rare that all

combinations of arguments will be generated, and most of the time spent by the

analyser is spent on the actual code code generation, and particularly on the first step, |

as comparing tests is quite time consuming.

9.4 Discussion m

9.4.2 Simplifications Performed by the Preprocessor

The current system makes simplifications while generating the determinacy code.
These simplifications are necessary in order to generate efficient code, but one loses
the ability to detect all determinate goals, and in fact we currently only guarantee
that a determinate goal will be always recognised if the conditions for determinacy
are made explicit, by using the cut or commit.

Although in our experience the current system does seem to be able to recognise most
cases of determinacy, it may still be desirable to be able to guarantee that, at least
for some predicates, all determinate calls will be recognised. Considering that any
decision tree based algorithm will either result in exponential code, or will avoid an
explosion of code by making simplifications, and also the difficulties of having exact
inference mechanism for all types of tests available in logic programming languages,
we believe that the best solution for a complete implementation of determinacy is to
use our algorithm only to constrain the number of clauses to try, and then return to
the original definition of determinacy, that is to simply wait until all clauses except
one are guaranteed to fail.

The extensions we need for the analyser to support this algorithm are simple.
Indexing can be provided by reusing the current algorithm, and replacing tips which
do not result in committing to a clause or failing by calls to an algorithm directly
implementing the definition of determinacy.

An interesting optimisation results from the observation that we need only to know
that two clauses can still match to prove that a call is not determinate. The analyser
thus only needs to generate code to manage a pool of two “test” clauses. Initially, two
clauses are immediately added to the pool. Whenever one of them fails, it is removed
from the pool, and one of the remaining clauses outside the pool is added to the pool.
If no clauses are left outside, the algorithm commits to the clause remaining in the
pool. This algorithm has two basic advantages over a naive algorithm: (a) it may test
fewer clauses in the case where the goal will never become determinate; (b) it will

have less run-time overheads, as analysis will only suspend for two clauses at most,

and therefore suspension records will only have to be created for these two clauses.

The actual code to verify when a call fails can be initially implemented in Andorra-I
will wait until head unification fails, followed by

fail. Most of the principles used to compile
a straightforward manner to verify

as a call to a special routine which
code to verify whether certain builtin goals .
guards for cuts or commits can also be applied in

when a call fails.

9.4 Discussion 172

.

We next show how code for a pool of four clauses would look like:

init_pool <1>
add_pool <3>
add_pool <4>
close_pool <6>

The instruction init_pool starts a pool for the goal. The instructions add_pool add a
new clause to the pool. Finally the close_pool instruction adds a clause to the pool
and closes the pool, guaranteeing that no more clauses are available.

9.4.3 Related Work

Our work in determinacy analysis has been influenced by two main sources. The
work on indexing and sophisticated indexing techniques developed for Prolog, and
on the compilation techniques developed for the Flat Concurrent Logic Programming
Languages, particularly for FCP. We discuss them now in detail.

For procedures with several clauses, by default conventional implementations of
Prolog will create a choice point and try each clause in sequence. In many cases, the
input goal is such that by doing simple tests one can easily verify that only a few
clauses can match. Most Prolog systems thus introduce indexing, initially a technique
where one argument of the input goal is tested to reduce the number of clauses to try.

Indexing appeared in Warren’s DEC-10 Prolog system [179]. In this case, indexing
consists of tests on the first argument. Similar ideas are followed by the WAM, with
indexing also performed on the first argument [180]. The tests performed on the first
argument consist of a test on type, to verify if the term is a pair, a general compound
term or a constant. Ifthe argument is a general compound term or a constant, hashing
may be performed on the main functor of the compound term or on the value of the
constant.

Studies show that choice poirit creation and maintenance have a serious impact on
the performance of most Prolog programs [162, 106, 165, 107], and that further
optimisations can be applied to the WAM. Several improvements have indeed been
proposed for the WAM, although most of them preserve the basic indexing scheme of
the WAM [11, 16]. Slightly more ambitious modifications are proposed in the YAP
Prolog compiler, particularly tests are also made on the first arguments of pairs [134].

9.4 Discussion 173

Even more ambitious schemes extend indexing by considering several arguments,
looking inside compound terms, and considering tests in the body of the clause. The
scheme proposed by Van Roy and others [175], uses indexing on several arguments
to form a selection tree. In their algorithm, only the top functors are considered and
shallow backtracking is proposed as a solution to reduce overheads in choice-point
creation. '

In contrast, Hickey and Mudambi [80] propose a more powerful scheme which compiles
the heads of clauses in such a way that most cases of determinate goals will be
recognised. First, unification of output arguments is delayed until the body of the
clause. Switching trees are then constructed by considering exposed positions, initially
consisting of the goal’s arguments and eventually including arguments from compound
terms or constructed by the tree itself, and expanding them if the corresponding
subtrees differ in at least two rules. The algorithm is applied recursively until there
is a single solution or no more positions can be expanded. In the former case, the
positions of the clause which have not yet been considered are compiled and finally
there is a jump to the body of the clause. In the latter case, a sequence of try-retry
instructions is used to link the code for all the clauses.

This indexing scheme was also shown to generate exponential code for some examples.
The authors propose a quadratic indexing algorithm where a graph is constructed
instead of a tree to prevent this situation.

More recently, Zhou et.al. propose a matching tree scheme for the compilation of
Prolog [196]. Matching trees are constructed by merging common test patterns among
clauses. Arguments of compound terms and builtins can be used to construct a
matching tree.-

Kliger and Shapiro argue that such schemes are not cost effective for the compilation
of Prolog programs [93]. Firstly, in many cases choice-points are really necessary, and
~ a sophisticated indexing scheme will not help. Second, unless the mode declarations
are known, there is a risk of doing indexing on output arguments, which will never be
instantiated.

The advanced indexing systems we discussed claim to overcome the last difficulty by
using global analysis, in the form of abstract interpretation, to provide the modes of
use for the program. As regards the first problem, the authors claim that important
benefits can be obtained solely by reducing the number of clauses to try, and that the
cases where goals become determinate are numerous enough to justify their systems.

In practice, most current Prolog systems preserve the simpler indexing scheme of the

9.4 Discussion 174

WAM, or variations thereof, with some systems trying instead to make shallow back-
tracking more efficient (as suggested by Van Roy and others). Shallow backtracking
schemes are implemented in well-known Prolog systems such as SICStus [17]. In this
scheme, a choice point is only completely built when an user-defined goal is launched.
This way, the overhead of backtracking due to failure in head unification is minimised.
The advantages of shallow backtracking systems is that they result in code-size similar
to Prolog while avoiding the disadvantages of fleshing a full choice-point.

Kliger and Shapiro also suggest that sophisticated indexing would be more useful
for the flat committed-choice languages, where the above mentioned problems do not
arise. They initially proposed decision trees as a way to compile FCP(|,:,?) programs.
Decision trees are constructed by considering tests appearing in the clauses. For
each test and a group of procedures a restriction, later called residual, is essentially
defined as the remaining clauses after removing the procedure, and the otherwise-
restriction, later named as otherwise-residual as the clauses that do not match the
test. Compilation proceeds by selecting tests and calculating residuals until no more
tests are available.

One problem with decision trees is that the resulting code may increase exponentially.
These cases do seem to occur, although not frequently. Decision graphs [94] are
an answer to the problem. Decision graphs introduce an additional edge labelled
continue, that connect the subgraphs emanating from a vertex to their otherwise
sibling. The main idea in decision graph is that a clause induces at most one path on
the graph. The key modification to the decision tree algorithm is thus that a clause is
propagated from a vertex to at most one edge: if a clause does not care about one test it
is propagated to the otherwise subgraph, whereas in the decision tree the clause would
be propagated to every subgraph. The authors also emphasize that it is important to
select the best tests first. A simple heuristic is given to choose a “best” test. Basically,
one first chooses a test for which the most clauses care. If many such tests exist, one
~ selects the one with minimal variability, that is a test with the smallest number of
possible results.

Considering the usefulness of these methods for detecting determinacy, one problem
that immediately arises is that all these methods depend on having a fixed mode for
calling a procedure. But it can be the case in Andorra-I that the same procedure may
be called with several different modes, and in every case we want to find determinacy.
In this sense, the Basic Andorra Model is more eager to commit to a clause than, say,
a committed choice language, and any algorithm to detect determinacy has to support
this. Notice that if the modes of use are fixed we can use the previous techniques, and
in fact our compilation algorithm for commits is very similar to the decision graph

9.5 Summary 175

S

technique, whereas for cuts it approaches Prolog indexing, with shallow backtracking
being replaced by simple read-only tests.

Furthermore, in the previous discussion the techniques were seen as an aid to the
efficient compilation of the corresponding languages. In systems implementing the
Basic Andorra Model, there is a difference on emphasis as determinacy detection is a
fundamental part of the execution model itself.

In our case we decided to concentrate on determinacy detection, and to delay analysis
of how to integrate efficient compilation and determinacy code generation until this
problem was fully resolved. In this case, we believe that our main problem was trying
to generate the most compact code possible, and to avoid explosions of code size to
which these approaches are vulnerable. Similar problems are considered in another
recent implementation of the Basic Andorra Model, the NUA-Prolog system [126].
NUA-Prolog also does separate indexing for each argument and then uses clause sets
to combine the several clauses. One characteristic of NUA-Prolog is the use of modes:
only when the input modes are sufficiently instantiated will the goal be executed.

A different approach for the compilation of Pandora is proposed by Korsloot and
Tick [96]. The authors adapt Kliger’s method to compile Pandora don’t-know proce-
dures. As in the decision graph algorithm, before a node is created it is compared
with other expanded nodes, and in case an equivalent node appears somewhere else
an edge to the equivalent node is returned instead.

Although the authors claim completeness, given the appropriate inference mechanism
for comparing tests, no justification is made for the case discussed in 9.2.7. Because
their algorithm does not have many simplifications, it is quite likely to generate large
code, particularly for problems involving compound terms.

9.5 Summary

This chapter described the determinacy analyser. First the fundamental issues in
determinacy were discussed, and an algorithm for the detection of determinacy for
pure Prolog procedures was given. The algorithm finds which tests are necessary to
make arguments determinate, how to combine decision trees from different arguments
to make clauses a single solution to a procedure, and how to generate the actual code
for each argument’s decision trees. Issues including optimisation of decision trees,
ligatures, and suspension and resumption of the analysis were also discussed.

9.5 Summary 176

Next it was discussed how modes can be used to reduce the amount of determinacy
code, and how the algorithm can be expanded to handle procedures with cuts and
commits. The actual definitions of when cuts and commits can be used to make goals
determinate was discussed in detail.

Finally, the system was analysed in terms of complexity and of the necessary sim-
plifications. A dynamic algorithm was presented. Related work was discussed and
compared when relevant.

Chapter 10

Compiler-Based Andorra-I
Implementation and
Performance

This chapter presents the design of the Andorra-I engine and schedulers, and discusses
its performance. The initial implementation of the engine was an interpreter written
in C. More recently, a compiled version of Andorra-I was implemented. The engine
was extended with an emulator that executes WAM-like instructions generated by the
Ppreprocessor.

The chapter first gives an overview of how the Basic Andorra Model can be executed.
The fundamentals of the Andorra-I engine are then presented, with emphasis given to
the new issues in Andorra-I. An overview of the scheduling issues for Andorra-I is also
given. We give a description of how Andorra-I is compiled, by describing the Andorra-I
~ abstract machine and giving an overview of the compiler. The chapter finally presents
data on Andorra-I's performance for a set or interesting applications and benchmarks.

10.1 The Andorra-I Engine

Andorra-I programs are executed by teams of abstract processing agents called work-
ers. Each worker usually corresponds to a physical processor. Each team, when active,
is associated with a separate or-branch in the computation tree and is in one of two
computation phases:

10.1 The Andorra-I Engine 178

Determinate For a team, as long as de’;erminate goals exist in the or-branch, all
such goals are candidates for immediate evaluation, and thus can be picked up
by a worker. This phase ends when no determinate goals are available, or when a
determinate goal fails. In the first case, the team moves to the non-determinate
phase. In the second case, the corresponding or-branch must be abandoned, and
the team will backtrack in order to find a new or-branch to explore.

Nondeterminate If no determinate goals exist, the leftmost goal (or a particular
goal specified by the user) is reduced. A choicepoint is created to represent the
fact that the current or-branch has now forked into several or-branches, while
the team itself will explore one of the or-branches. If other teams are available,
they can be used to explore the remaining or-branches.

Figure 10.1 shows the execution phase in terms of a pool of determinate goals.
The figure shows that the determinate phase is abandoned when either no more
determinate goals are available or when the team fails, and the determinate phase
is reentered either after creating a choice point, or after backtracking and reusing a

choice point.
reduce
create choice point

Determinate Goals

Determinate Phase : Nondeterminate Phase

Figure 10.1: Execution Model of Andorra-I

During the determinate phase, the workers of each team behave similarly to those
of a parallel committed-choice system; they work together to exploit and-parallelism.
During the non-determinate phase, and on backtracking, only one particular worker
in the team is active. We call this worker the master and the remaining workers
slaves. The master performs choicepoint creation and backtracking in the same way
as an or-parallel Prolog system.

10.2 Principles of Andorra-I 179

10.2 Principles of Andorra-I‘

The Andorra-I engine was designed by Yang. The implementation techniques used
in Andorra-I are largely based on JAM, a parallel implementation of PARLOG [40],
as regards the treatment of and-parallelism, and on the or-parallel Prolog system,
Aurora [100], as regards the treatment of or-parallelism. However, the integration of
both types of parallelism does introduce a number of new impleméntation issues.

10.2.1 Data Areas and Memory Management

The main data structures of Andorra-1 follow the efficient stack management tech-
niques developed for Prolog, and are in general similar to Aurora. That is, we have
four stacks, local stack, heap, choicepoint stack and trail. As regards the local stack,
in order to exploit and-parallelism easily, and following most implementations of
committed-choice languages, goal stacking is used. Goal records are similar to KL1-
B’s goal records, but contain different bookkeeping information. The heap contains
all compound terms, some (but not all) run-time variables and as in JAM, the data
structures for suspension of goals. As in SICStus Prolog, the choicepoint stack con-
tains choicepoints and the trail contains markers to all conditionally bound variables.
In addition, since Andorra-I follows the SRI model in exploiting or-parallelism, it
uses binding arrays to represent the variable binding environments of or-branches.
Finally, to help support and-parallelism, Andorra-I uses run queues to contain goals
that are runnable during and-parallel computation.

Space in the four stacks and the binding array can be recovered by backtracking.
Andorra-I also recovers space in the local stack when the goal which is on the top of
stack is determinately reduced.

All the workers within a team share the same heap, local stack, choicepoint stack,
trail and binding array. The first four data areas for each team are visible to the other
teams. During or-parallel execution they become “cactus stacks”, as each team grows
its own section of the stack.

Andorra-I distributes space on each stack among the workers of a team using a chunk
scheme. In this scheme, the stacks and binding array are divided into chunks which
allow each worker to allocate space independently; a worker claims a new chunk from
the master of its team whenever its current chunk is full. Because the master is solely
responsible for managing space on the stacks, a slave can easily move to another team
without having to worry about space management issues. Chunks are reallocated at

10.2 Principles of Andorra-I 180

each new choice-point: this way choice-points become more compact and it is possible
for a variable’s offset in the binding array to continue to represent its seniority (e.g.,
for the purposes of variable to variable bindings) as in Aurora. The drawback of the
chunk scheme is that chunk overflow has to be checked whenever a stack is extended,
including when creating new variables or structures. However, tests show that the
overhead imposed by the chunk scheme is within a reasonable range, about 6% in the
interpreted version.

Each worker has its own run queue. The union of all run queues in the team represents
a distributed common pool of work for the team. The actual management of the run
queues is the province of the and-parallel scheduler, described later.

At the end of the determinate phase, Andorra-I must be able to quickly find the correct
nondeterminate goal to execute, which is normally the leftmost one. Andorra-I uses
a data-structure, the sideways-linked chain, to link together all goals [136]. The
sideways-linked chain allows easy access to the leftmost goal and easy updating, but
needs the updatable variables described later.

10.2.2 Data Structures for Suspension of Goals

Similarly to the JAM, Andorra-I uses suspension records to mark suspended goals. For
each variable with suspended goals a linked list of suspension records, the suspended
goal list, stores one record for each point where a goal suspended on that variable.
When a new goal suspends, its suspension record is added to the head of the list.
When a variable with suspended goals is bound, each record is executed.

There is a problem when a goal suspends on several variables: several workers may
try to restart the same goal, or the engine may try to restart an executed goal. In
. both JAM and KL1-B an intermediate structure is created. In Andorra-I a special
field of the goal records and the suspension records is used, the Ex field. Figure 10.2
shows the use of this field in the goal records (the ones on top) and in the suspension
records (the ones at the bottom). Ex is initially a free variable in the goal record (see
GR3). When the goal suspends the first time, Ex is made to point to an Ex field in
the suspension record (see GR1), new suspensions are made to point at this same
Ex record (see GR2), which is instantiated to the atom _end when the goal is finally
executed. When waking up a goal, Andorra-I tests if Ex is instantiated: if so the
goal is skipped, otherwise the determinacy code for the goal is restarted. Only when
the determinacy code commits to a clause are the Ex fields bound. This technique is
probably less efficient than JAM’s indirect pointer. JAM also optimises suspension on

10.2 Principles of Andorra-I 181

sneusawil

Ex

V1 V2 V3

Figure 10.2: Implementing Variable Suspension in Andorra-I

a single variable, a scheme that could also be adapted to Andorra-I.

10.2.3 Variables

Variables in Andorra-I reside in goal records or in the heap. As in Aurora, a variable
is represented by a variable cell, initialised with a specific tag plus the offset of a new
cell in the binding array. According to the SRI model, an unconditional binding G.e.,
made to a variable younger than the last choice point) is written into the variable
cell; a conditional binding is written into the binding array, with the variable cell kept
unchanged. The offset in the variable cell has two uses. It indicates the location in
the binding array where the conditional binding is stored, and also represents the age
" of the variable, necessary to compare seniority of variables.

Updatable Variables |

In Andorra-I, updates to certain fields of system data structures need to be backtrack-
able. The suspended goal list is one example. To update the list in constant time, each
time a new suspension record is added to the list a direct pointer to the end of the list
is used. Thus, during forward execution, Andorra-I repeatedly overwrites the end of
the list in order to extend it. On backtracking, the system needs to restore the list to

10.2 Principles of Andorra-I 182

[y

the state it had before the last choicepoint.

AYaVYe

NN NN
Heap/Local Binding Trail . .
P Array Choel;ct::ciomt

Figure 10.3: Updatable Variables

Updatable variables implement backtrackable updates. An updatable variable can be
assigned to more than once. As for bindings, an assignment is said to be unconditional
if no choicepoint has been created since the variable was created, otherwise it is
conditional. Updatable variable are represented as value cells, which store any values
assigned unconditionally, together with an offset to a binding array location, which
stores any values assigned conditionally (see figure 10.3). The binding array location
also contains the number of the last choicepoint that existed at the time the conditional
assignment was made. Successive conditional assignments corresponding to the same
choicepoint do not have to be individually trailed. Only the first binding is trailed by
recording on the trail the address of the variable and its previous conditional value
(taken from the binding array). Andorra-I also leaves space for its ultimate new
conditional value; this is filled in when the next choicepoint is created, by scanning the
new trail entries. The trail entries thus ultimately contain both old and new values.
" The old values are restored into the binding array on backtracking, i.e., when a team
moves up the search tree. The new values are installed into the binding array when a
team moves down the search tree.

Updatable variables have been successfully applied in Andorra-I wherever we needed
to implement backtrackable system data structures. They are also useful for other
purposes, such as representing finite domain variables [61].

10.3 Scheduling in Andorra-I 183

10.2.4 Andorra-I Extensions

Andorra-I must implement the sequential conjunction and the cut. The seqitential
conjunction is implemented through the sideways-linked chain. Sequentialised goals
wait until the side link variable of their parent goal dereferences to a sequential
conjunction goal.

The cut and commit are implemented in a way similar to the WAM. A pointer to the
choice point at the time of the cut is stored and all choice points up to that point are
pruned. Note that some pruning operators will be executed by the determinacy code:
in that code the engine will not try to reexecute the guard of the cut and will limit
itself to launching the goals in the body part of the clause.

10.3 Scheduling in Andorra-I

There are three independent schedulers in Andorra-I: the and-scheduler, the or-
scheduler and the top-scheduler. The and-scheduler schedules the and-parallel work
to be performed by workers within a team, the or-scheduler schedules the or-parallel
work to be performed by the teams themselves and the top-scheduler schedules the
distribution of workers by teams.

10.3.1 The And-Scheduler

The and-scheduler was designed by Yang and is similar to the one used in PAR-
LOG [42]: each worker has a private and a public queue. Work is sent to the private
queue unless the public queue is empty. If a worker’s queues are empty, it will try to
find work in the public run queues of other workers in its team. For flexibility, the run
queues in Andorra-I are designed to be accessible from both the front and the back.
The engine always takes tasks from the front of the queue, but it can release tasks
either to the front or to the back of the queue so that some tasks have higher priority
than others (the programmer can specify this through annotations).

Synchronisation in a Team A team needs to synchronise either when a worker
finds a failure or all the unexecuted goals are non-determinate. Andorra-I implements
synchronisation through a set of flags shared by the team.

10.8 Scheduling in Andorra-I 184

[y

One of the flags indicates failure: any worker can set it to true. All workers test
frequently (every reduction) if this flag is set. After the failure signal is accepted,
workers can independently (i.e., in parallel) undo the bindings they made during the
previous determinate phase. The master starts the non-determinate reduction only
after all slaves have finished undoing their bindings. '

Each worker has a run queue, hence detecting that there are no determinate goals is
more complex than if a common queue was used. The current implementation uses a
centralised method similar to JAM’s. Every slave verifies if everyone else’s run queue

is empty. If so, it enters a wait_for master state. Only the master can acknowledge
deadlock.

10.3.2 The Or-Scheduler

Or-parallel scheduling in Andorra-I is provided by the same schedulers that do
or-scheduling for Aurora; no adaptation was necessary since Andorra-I was made to
conform to the Aurora scheduler interface [153]. Notice that, as far as the or-scheduler
is concerned, an Andorra team behaves as an Aurora worker and no knowledge of the
structure of a team is necessary. Andorra-I has been using the Bristol scheduler [8].

10.3.3 The Top-Scheduler

The Andorra-I top-scheduler, designed by Dutra [50], is a fundamental component“. of
the Andorra-I system. This scheduler is responsible for the management of teams.
During execution, the top-scheduler can create new teams, discard teams or move
workers from one team to another. The top-scheduler dynamically adapts to situations
where or-parallelism is dominant by creating more teams, to situations where and-
~ parallelism is dominant by concentrating workers in a few teams, and to situations
where some teams have more work than others by shuffling workers around teams.

Results for the top-scheduler [50] show that it performs as well as user distribution of
teams in applications where one form of parallelism is dominant that it can perform
better than using a fixed configuration of workers when both forms of parallelism are
present.

10.4 Compiling Andorra-I 185

104 Compiling Andorra-I

The initial version of Andorra-I was an interpreter. In order to obtain better
performance a compiled version of Andorra-I was developed. The Andorra-I compiler
is a part of the preprocessor. It compiles Prolog clauses into WAM-like abstract
machine instructions. These instructions are then executed by an emulator which is
part of the engine. We next present the abstract machine and describe how code for
the abstract machine is generated by the compiler.

10.4.1 The Andorra-I Abstract Machine

The Andorra-I abstract machine is a WAM-style abstract machine for the execution of
logic programs in the Basic Andorra Model. Development of this abstract machine was
heavily influenced for Crammond’s abstract machine for Parallel PARLOG, JAM [41].

The instruction set assumes the existence of a program counter, PC, giving the next
instruction to execute, of a structure pointer S, pointing to the current argument in
a compound term being currently written or read, of argument registers, A1, 42,...,
pointing to arguments in the current goal, and of temporary registers, Xi,X2,...,
available to store temporary registers. Differently from the WAM or JAM, temporary
and argument registers may be different. Argument registers may be temporary
registers, or may be positions in a goal frame placed in the goal stack.

Andorra-I is a goal-stacking system (versus the WAM environment based system).
The JAM uses environments to implement the sequential conjunction, which is
currently implemented as a separate goal in Andorra-I. Being a pure goal-stacking
implementation, the Andorra-I abstract machine does not need permanent variables.

Choicepoint Manipulation Instructions

The following instructions create and manipulate a choice-point:

try L
retry L
trust L

10.4 Compiling Andorra-I 186

Asin the WAM, the instruction try creates a choicepoints, the instruction retry reuses
the choicepoint, and the instruction trust reuses the choicepoint and discards it.

Determinacy Instructions

The first determinacy instruction verifies if an argument is instantiated, if so, it copies
the argument to a temporary register, otherwise, the emulator creates a suspension-
frame and jumps to alternative code.

if_g_var_sus A;i,Xj,Lsus
if g.var.sushi Aj,Xj,Lsus
if_s_var_sus 51,Xj,Lsus

if s.var.sus.hi Si,Xj,Lsus

The _hi instructions create a high-priority goal-frame (meaning that the and-scheduler
should favour the corresponding goal over other goals).

The next instructions are called after the arguments are found to be instantiated.
They correspond to simple test nodes in the determinacy graph. The first three
instructions switch according to the type of the arguments, the last two according to

its value.
switch.on_term Xj,Ls,Ll1,Le
switch.on list Xj,Lrist,Lni1.Lot

switch on.constant Xj,{{C1,L1},.--{Cn,sLn}}
switch.on.structure X;,{{S1,L1},.--,{Sn,Lln}}

Binary tests demand more work from the determinacy analyser. In this case, one
extra argument or subargument in some structure must be fetched from the goal. The
. instructions must be able to access an argument inside a goal and verify if sufficiently
instantiated to execute the builtin, and are similar to the previous instructions.
Finally, the test is executed with the next instruction:

call.bip BIP,Lyes,Llno

This instruction has two addresses, one taken if the builtin succeeds, the other taken
otherwise.

wait

10.4 Compiling Andorra-I 187

The instruction wait is called when there are no more ways to make a goal determinate
and the determinacy code must suspend until the goal becomes more instantiated.

We next show an example of determinacy code for the procedure shown in page 152.
The determinacy code generated by the compiler for this procedure is:

if_h_var_sus Lo,1,1
switch_on_term 1,L1,fail,fail
L1
switch_on_cons 2,fail,{{1,L2},{2,L3}}
L2
if_h_var_sus Lo,2,1
switch_on_term 1,L4,fail,fail
L4
switch_on_cons 2,fail,{{1,L5},{2,L6}}
Lo
' if_h_var_sus L7,2,1
switch_on_term 1,L8,fail,fail
L8
switch_on_cons 2,fail,{{1,L5},{2,L7}}
L7
if_h_var_sus wait,3,1
switch_on_term 1,L9,fail,fail
LS
switch_on_cons 3,fail,{{1,L5},{2,L6},{3,L3}}

The labels L6, L5 and L3 correspond respectively to the compiled code for the second,
first and third clauses. Note the use of the special label wait as place to execute when
a test suspends and there are no alternative ways to make a goal determinate. Only
when executing the code for wait will a goal actually suspend.

Read-Only Unification Instructions

The determinacy analyser calls the compiler to generate code for guards. This code
basically tests if the arguments are sufficiently instantiated, that is if unification is
read-only. The instruction will dereference its argument. If the argument is bound
it executes much like a normal WAM instruction. If the argument is unbound it will
create a suspension record and jump to the code indicated by the label Lgys. If the test
fails it will jump to the code indicated by the label Ltaj.

10.4 Compiling Andorra-I 188

wait_variable Aj,Xi,Lsus,Lfail wait_variableground Aj,X;i,Lgus,Lfail

wait_value Xn,Ai,Lsus,Lfail |
wait_constant C,A;,Lsus,lfail wait.nil Aji,Laus,Lfail

wait_structure F,A;,Lsus,Lfail waitlist A;i,Lsus,Lfail

For instance, the instruction wait.constant will simply try to match its argument
with a constant. Two cases deserve a more detailed explanation. Some tests can
only be performed if their arguments are ground, thus the wait_variable_ground
instruction. The wait_value instruction corresponds to read-only unification between
any two terms.

The next instructions correspond to subarguments of compound terms. They are
similar to the previous instructions: l

read x.variable Xj,Lsus,Llfail read x_variable ground X;

read x_value Xj,Lsus,Lfail

rqad_constant C,Lsus,Lfail readnil Lsus,Lfail
read_structure F,Lgus,Lfail read. list Aj

The instructions correspond to the different cases for subarguments of structures. We
next give an example of guard compilation for the procedure:

a([a,X1, £(X), Y) :- integer(Y), !,

The resulting code is:

wait_list 1,wait,L1 % a(l i
read_constant a,wait,L1 h a %
read_list wait,L1 oo,
read_x_variable 4 A 4
read_nil wait,L1 /A
wait_structure £/1,2,wait,L1 ho £(
read_x_value . 4,wait,L1 A X),
wait_x_variable 3,3,wait,L1 YooY :-
bip_.1 integer,3,wait,L1 % integer(Y), !,
hooo.

Several forms of wait instruction are shown. Notice that the wait x_variable instruc-
tion must test if its argument is instantiated, otherwise bip_1 could call the builtin

10.4 Compiling Andorra-I 189

integer/1 with an unbound variable as the argument, and the procedure could commit
to the clause before the actual value of the third argument was known.

Read-Write Unification Instructions

These unification instructions are called during head unification or when executing
the builtin =/2. Contrarily to the previous instructions, they are allowed to bind their
arguments. The main instructions are:

get_value An,A4 get.x_value Xj,A4
get_x_variable An,Aj '
get_constant C,Ai get_list A;
get_structure F,Aji end_structure
get_list_var.var Xj,Xk,A; getlist_var.val Xj,Xk,A;
get_list_val var Xj,Xk,Aj getlist_val.var Xj,Xg,Aj

There are two versions of get_value, one corresponding to unifying with a temporary
register, the other with an argument register. The instructions in the two last lines
were introduced in JAM and speedup compilation for the common cases of pairs of
variables.

The next instructions correspond to subargument unification. The first instructions
are similar to the WAM’s instructions.

unifyx_variable Xn unify x_value Xn
unify constant C unify nil

unify_void

unify list unify_structure F
unify last _x_variable Xj unify lastx.value Xj
unify last_constant C unify last.nil

unifylast_void

The unify list and unify_structure instructions are used when the last subargu-
ments in the term are respectively a list or a compound term. In this case unification
carries on directly with the list or the compound term.

An important problem is locking of newly created terms. If their argument is an
unbound variable, get_list or get_structure need to create a new term that will

10.4 Compiling Andorra-I

190

be eventually unified to the variable. Andorra-I avoids excessive locking by only
actually unifying the newly created structure with the variable when the term has
been fully created. The last instructions were designed for this purpose (note that
the unify_1ist and unify_structure instructions are also last instructions).

We next show a simple example of unification code for Andorra-I. The example is

shown first:

h([a,f(X) ’X] ’ f(X)Y) » Y) .

The code generated by the Andorra-I compiler is shown next:

get_list

unify_constant a
unify_list

unify_x_variable 4
unify_list

unify_x_value 5
unify_last_nil

get_structure £/1,4
unify_last_x_variable 5
get_structure £/2,2
unify_x_value 5
unify_last_x.value 3
proceed

% h(l

% a

o,

h T

h ’

h X

o1,

% T = £(

h X)

A 4 ¢

/ X, }
%). . :

The unify_list instructions result in much more compact code. A small disadvantage
is that if the first argument is unbound it will only be assigned the list when the

* instruction unify_last.nil is executed.

Write-Only Unification Instructions

The write-only unification instructions are an exact copy of the WAM unification

instructions. They are as follows:

put_x_variable Xp,Aj
put_constant C,Ai
put_structure F,Aj

putx_value Xp,A;
put.nil Aj
put_list Aj

10.4 Compiling Andorra-I 191 | |
The instructions simply place a variable, constant, or pointer to a compound term in

the heap in an argument register. Andorra-I tries to store variables in the goal frame,

thus the instruction put_x_variable will try to initialise a variable in the goal frame.

writex_variable X writex._value X,
write_structure F write list
write_constant C writenil

The write instructions perform the same operation as the put instruction, but they
perform these instructions on the subarguments of a compound term.

Goal Management Instructions

In Andorra-I goals may be launched from the body of a clause, or if the clause is a fact,
the goal may simply succeed. The several instructions are as follows:

create F create.one F
create_first F createlast F,NgoalssNargs
neck NGoals

proceed

The several versions of the create instruction are useful to determine when a goal
frame can be reused, or when the arguments of a goal should be placed in the
temporary registers instead of the goal stack. If a goal calls a single goal, the
create.one instruction is used (note that if the operation is determinate, the new goal
can reuse the goal frame of the other one). If several goals exist in the body of a clause,
the goals are launched in reverse order. Thus the createfirst instruction is the last
to be called, and the create_last the first. Andorra-I tries to optimise register usage
by placing the arguments for the leftmost call directly on the temporary registers.

We next show code for a very simple example procedure,

a(X) :- b(X), c(X), d(X).

The compiler generates the following code:

10.4 Compiling Andorra-I 192

create_last da/1,3,3 % d(
put_x_value 1,1 X
create c/1 h c(
put_x_value 1,1 hWoX)
create_first b/1 % b(X)
neck 3

For each goal, the code creates a goal frame, and then stores the arguments. The first
instruction, create_last, has some bookkeeping information on the number of goals
that will be launched and on the total number of arguments for these goals. Note that
in this clause the compiler assumes that initially 4; is stored in Xj, and that the goal
for b/1 is launched last but executed first, hence the arguments for b/1 will be left in
the temporary registers. Thus there is no need to do a put_x_value for b/1. Finally,
the instruction neck closes down the code for the leftmost goal and results in executing
a new goal.

10.4.2 The Andorra-I Compiler

The code shown previously is generated by the Andorra-I clause compiler. The clause
compiler is an extension to the determinacy analyser that generates code for the head
and body of a clause. The clause compiler originates from the AKL compiler [86], but
has been adapted to the Andorra-I Abstract Machine described previously.

The determinacy analyser is responsible for the compilation of a procedure. The
determinacy analyser calls the clause compiler once for every clause, receiving back
a label with the address of this code. If the leaves of the determinacy code are of the
form “commit to a clause” then the code will jump to the clause’s label. If the leaf for
the determinacy code is of the form “test if the clause can succeed in read-only mode”,
the clause compiler is called for this clause with this special mode.

A procedure can also be called from a nondeterminate goal. The determinacy
analyser recognises two cases. First, every procedure has a chain of try, retry, and
trust instructions, with one instruction for every clause. This chain is the default
nondeterminate code. The determinacy analyser also associates a special sequence
of try, retry and trust instructions to the points in the determinacy code where the
number of remaining matching clauses is significantly less than the total number of
clauses. Ifa nondeterminate goal was suspended at one of these points, this sequence
of try, retry and trust instructions is tried instead of the default one.

10.5 Andorra-I Performance Analysis 193

S

Compilation of a clause proceeds in several steps:

e The clause is reduced to a canonical form. The ordering of goals in the body
is reversed; sequential conjunctions and pruning operators are transformed
into special goals; finally, goals are rewritten into a form designed to facilitate
compilation. |

o A simple register optimiser is called. The register optimiser is only interested in
variables appearing in the head of the clause or in the first goal of the body, and
it tries to place those variables in registers such that it will avoid generating
instructions such as get_x_variable. The optimisation algorithm is similar to
the one presented by Debray [43].

e The actual instructions are generated. Instructions for the head are generated
first, followed by instructions for each goal in the body. When generating
instructions for a goal the compiler may be in one of three modes. In head mode
the compiler generates instructions for read-write unification, in body mode the
compiler generates instructions to place arguments in goals, and in guard mode
the compiler looks at read-only arguments.

Some special care is taken to generate good code for common builtins such as
unification, =/2, and for builtins appearing in the guard of a cut or commit.

¢ The registers which have not been allocated in the optimising step are allocated
by a very simple register allocator.

The current compiler is quite simple but reasonably robust. Better results could be
obtained by adding further optimisations to the compiler.

10.5 Andorra-I Performance Analysis

This section presents performance data obtained by Yang et.al. for Andorra-I. All
timings were made on a Sequent Symmetry containing twelve processors. Each
Andorra-I worker was supported by a separate processor.

10.5.1 Overall Performance

The data was obtained from a series of substantial Andorra-I applications and from
some common benchmarks [195]. The applications have been mentioned in the

o
|
y
i
o

10.5 Andorra-I Performance Analysis 194

[y

previous chapters and include the aircraft flight scheduling system, the road edge
recognising algorithm from the vision group at Bristol University, the deductive
database system for reasoning about protein structure, and the natural language
question answering system Chat-80. We also include two industrial applications
originally developed for British Telecom: a workforce management system and a
clustering algorithm. '

The benchmarks include the famous naive reverse benchmark, the 5x4x3_puzzle [163],
warplan [178], a scanner originally developed for AKL[86], and a substitution decoding
system developed for Andorra-I by Yang [193].

The twelve programs include a mix of Prolog style, committed-choice language style
and Andorra style programming. The overall performance of Andorra-1 for these
benchmarks is shown in Table 10.1. Basis for comparison is the performance of
“parallel Andorra-I” running on a single processor. This version is contrasted to the
“sequential Andorra-I”, that is to Andorra-I without the data-structures necessary
to support parallel execution (scheduler, SRI model, locking and chunking scheme).
The leftmost table shows the performance of a popular state-of-the-art Prolog system,
SICStus Prolog, when meaningful. The tables to the right show the performance of
“parallel Andorra-I” using ten processors and the performance (best and worst cases)
and the performance of the Parallel PARLOG system (where applicable).

The performance results from Andorra-I are very positive. Although the system is not
optimised, it shows a sequential performance typically 3 slower than SICStus, and
1.5 slower than Parallel PARLOG. Moreover, the system’s ability to extract different
forms of parallelism allows it to give good speedups for very different applications.

One should notice the flexibility of the Basic Andorra Model. By exploring parallelism
Andorra-I can do well for Prolog applications and committed-choice language appli-
~ cations. Andorra-I also gives good results for applications which are hard to write
in Prolog or the committed-choice languages but that benefit from the Basic Andorra
Model.

We next discuss those results in more detail.
10.5.2 Computation Size

Andorra-I and Prolog use different selection functions, and one can expect different
computation sizes. Table 10.2 lists the number of resolution required for the bench-

10.5 Andorra-I Performance Analysis 195

prog name SICStus 2.1 | Sequential Parallel Andorra-I JAM
Andorra-I | 1processor | 10 processor | 1 processor

best | worst

nrv400 2.17 1.26 1 8.25 | 8.07 1.25

bt_cluster 3.27 1.29 1 9.37 | 9.02 1.81

bt_wms 2.75 1.23 1 3.32 | 3.30

road_markings 4.39 1.67 1 6.24 | 531

chat_80_db5 2.24 1.26 1 7.30 | 6.59

5x4x3_puzzle 6.56 1.47 1 9.66 9.56

warplan 4.43 1.65 1 1.20 | 1.08

protein_all 3.90 1.51 1 6.81 5.51

protein._1st 3.25 1.48 1 2.78 2.02

fly_pan 0.02 1.25 1 6.88 5.07

scanner 1.48 1 5.47 441

cipher 1.51 1 5.65 | 4.67

(Relative Speed)

Table 10.1: The Overall Performance of Compiler-Based Andorra-I

mark program in both Prolog and Andorra-I. We count each successful reduction and
a call to a builtin predicate as one resolution. The table also shows the number of
reductions performed by an Andorra-I system executing with ten processors.

For determinate benchmarks, such as nrv400, the number of resolutions is identical in
Prolog and Andorra-I, as one would expect. For some non-determinate benchmarks,
such as chat_80.db5, 5x4x3_puzzle and warplan, early execution of goals does not
change the search space much. But a benchmark such as f1y_pan shows that early
execution of determinate goals can constrain the search-spacé. The program fly_pan
was designed for the Basic Andorra Model, and thus running it under Prolog’s depth-
first left-to-right order is very inefficient. The benchmark protein, although originally
designed for Prolog, also benefits from the Basic Andorra Model. The benchmarks
scanner and cipher are examples of two applications where it is meaningless executing
the program under Prolog’s selection function.

The last column in table 10.2 shows that for most applications, and as one would
expect, the search space of the sequential and parallel versions is quite similar.
The exceptions are due to speculative or-parallelism, that is or-branches that will be
pruned and thus never taken in the sequential execution, but that might be taken
(before being pruned) by idle teams in the parallel system.

10.5 Andorra-I Performance Analysis 196

prog name Prolog Andorra-I

1 processor | 10 processors
nrv400 80612 80612 80612
bt_cluster 498617 498617 - 498617
bt.wms 889183 889183 889183
road_markings 23338 23338 45376
chat_80.db5 6373 6373 6373
5x4x3_puzzle 135108 135108 135108
warplan 48102 47792 429511
protein_all 125898 106132 117902
protein_lst 26334 18846 66685
fly_pan 7976002 41019 42319
scanner NA 118467 118215
cipher NA 10324 11096

Table 10.2: Number of resolutions in Prolog and Andorra-I

10.5.3 LIPS

Traditionally, logic programming systems use LIPS, Logical Inferences per Second, as
a measure of performance. Table 10.3 gives the performance of the system in terms of
thousands of LIPS, or KLIPS.

Notice that where the search-space is very different (e.g, in £1y_pan) the LIPS rating
is not directly comparable.

In general, a ten processor Andorra-I system can go up to 89 KLIPS on a Symmetry
machine. The variation in LIPS can be explained by several factors. Programs
where inferences are more expensive are programs that create more choice-points, or
programs that suspend often and where goals need to be pushed to the goal stack.

10.5.4 Sequential Performance

Table 10.1 gives a perspective on how well Andorra-I does versus a state-of-the-art
Prolog system, SICStus Prolog. Table 10.4 details these results by comparing the
sequential version of Andorra-I versus SICStus Prolog.

Table 10.4 shows “sequential Andorra-I” being about 1.7 to 4.5 slower than SICStus.

10.5 Andorra-I Performance Analysis

prog name SICStus 0.7 | Seqential Parallel Andorra-I
Andorra-I | 1 processor | 10 processors
| best | worst
nrv400 23.3 13.5 10.7 | 886 86.7
bt_cluster 16.3 6.5 5.0 46.9 | 45.1
bt.wms 13.0 5.8 4.7 1581 15.7
road_markings 8.9 3.4 20| 248 211
chat_80.db5 4.2 2.4 1.9 13.8 12.5
5x4x3_puzzle 8.8 2.0 1.3 13.0 12.9
protein.all 6.2 2.0 1.3 102 | . 82
protein_1st 6.2 2.0 14 13.4 9.7
fly_pan 14.8 3.9 3.1 224 | 16.5
scanner NA 5.0 3.4 18.4 | 14.8
cipher NA 1.9 1.2 7.5 6.2

Table 10.3: Overall performance in KLIPS

prog name SICStus 2.1 | Seq. Andorra-I | Ratio
time in ms time in ms
nrv400 3459 5940 | 1.71
bt_cluster 30490 77320 | 2.53
bt-wms 68090 152020.1 2.32
road.markings 2600 6840 | 2.63
chat_80_db5 1500 2670 | 1.78
5x4x3_puzzle 15300 68280 | 4.46
warplan 6849 18370 | 2.68
protein_all 20189 52110 { 2.58
protein_lst 4250 9330 | 2.19
fly_pan . 543520 10430 | 0.02
scanner NA 23600
cipher NA 5510

Table 10.4: Comparison between SICStus Prolog and Sequential Andorra-I

10.5 Andorra-I Performance Analysis 198

Andorra-I does better on the determinate branches where it is about 2.5 times slower,
depending on overheads from goal frame manipulation, and from suspending non-
determinate goals. Andorra-I does worse for non-determinate benchmarks, mainly
because of inefficiencies in the engine when executing non-determinate goals. Note
that Andorra-I does relatively better in some non-determinate examples because it
can use the determinacy code for indexing. '

It is interesting to compare the compiled and interpreted version. The results are
shown in table 10.5.

prog name Par. Andorra-I (1 worker) | Ratio
(time in ms) interpreter compiler

nrv400 33920 7510 | 4.52
bt_cluster 364283 99720 | 3.56
bt_wms 1345340 187060 | 7.19
road_markings 25530 11420 | 2.24
chat_80.db5 12130 3360 | 3.61
5x4x3_puzzle 214290 100390 | 2.13
protein_all 100390 78840 | 1.27
protein.1st 18420 13840 | 1.33
warplan 32710 30370 [1.08
fly_pan 63150 13020 | 4.85
scanner 130460 35070 | 3.72
cipher 11150 8310 | 1.34

Table 10.5: Interpreted versus Compiled Andorra-I

The differences for the compiled version confirm our previous observations. The
compiler will do better where the almost-fixed overheads, such as suspension and
choice-point manipulation, will not be significant. Thus, the good results in nrv400.
" The particularly good results in bt_wms are due to better compilation of determinacy
code in the compiled version, plus some extra optimisations.

10.5.5 Parallel Speedups,

Table 10.1 showed the speedups obtained by Andorra-I using ten processors. These
speedups originate from and-parallelism, or-parallelism or both forms of parallelism.
Table 10.6 gives a more detailed view of the parallelism by comparing Andorra-I with
and-parallel only or or-parallel only systems. Table 10.6 gives the best speedup of
each system for some benchmarks. The or-parallel systems are Aurora and Muse, the

10.5 Andorra-I Performance Analysis

199

and-pé.rallel system is Crammond’s Parallel PARLOG.

prog name Andorra-1 | JAM | Aurora | Muse
nrv400 8.25 8.37

bt_cluster 9.37 9.70

chat_80_db5 7.30 7.30 5.91
5x4x3_puzzle 9.66 9.51 8.69
warplan 1.20 2.63 1.06
protein_all 6.81 9.49 8.64
protein_1st 2.78 4.10 3.12

Table 10.6: Speedups (10 processors) in Andorra-I, JAM, Aurora, and Muse

The speedups show that Andorra-I does almost as well as the one form of parallelism
only systems for most benchmarks. The main exceptions are systems where the
or-parallel system Aurora benefits from more advanced schedulers that perform much
better for speculative work (such schedulers can be ported to Andorra-I).

It is also of some interest to show how Andorra-I benefits from combining or- and
and-parallelism. Table 10.7 shows the results obtained from trying the system with
and-parallelism only, or-parallelism only and both forms of parallelism. The selected
benchmarks have both forms of parallelism.

prog name | And Parallel Only | Or Parallel Only | And + Or Parallel
fly_pan 6.29 1.16 6.88
scanner 5.07 2.83 5.47
cipher 2.52 5.43 5.65

Table 10.7: Speedups (10 processors) for both and- and or-parallelism

The results were obtained with a top-scheduler [50], that is, by dynamically adapting
the configuration of teams in order to extract the best available parallelism. Clearly
by combining the several forms of parallelism Andorra-I can obtain better speedups
than by exploiting a single form of parallelism.

10.6 Summary 200

10.6 Summary

This chapter described Andorra-I's engine and schedulers and analyses its perfor-
mance. The design of the engine extends previous work on the or-parallel system
Aurora and on the implementation of the committed choice languages such as PAR-
LOG, and adds new features such as the chunk scheme, updatable variables and the
sideways-linked chain. Andorra-I also uses several schedulers. The or-scheduler was
originally designed for Aurora, the and-scheduler uses ideas from Parallel PARLOG
and the top-scheduler is responsible from the configuration of teams.

The Andorra-I compiler compiles to a WAM-like abstract machine code that is emulated
by the engine. The abstract machine includes instructions to support read-only
unification, read-write unification, and write-only unification. Control instructions
manipulate goals. Several abstract machine instructions have been developed to
support the determinacy code and the manipulation of choice-points.

Finally, the chapter presented performance data for Andorra-I. The data showed the
Andorra-I performance to be quite good, both in its sequential performance and in its
ability to exploit parallelism. It also showed that Andorra-I can be used to reduce the
search space.

Chapter 11

Related Work

In this chapter we present several languages and systems that relate to our work in
Andorra-1, and particularly to the Basic Andorra Model. We present the NUA-Prolog
system (an evolution of the Parallel NU-Prolog system), Andorra and Flat Andorra
Prolog, and Pandora.

We also discuss computational models that try to improve on the Basic Andorra
Model. IDIOM [68] adds to the Basic Andorra Model independent and-parallelism,
therefore providing a practical framework for the exploitation of all three forms of
parallelism. Warren’s Extended Andorra Model [184] provides a powerful and elegant
computational model for the implicit exploitation of both and- and or-parallehsm in
logic programs. AKL [72, 86] is a novel programming language that uses the same
principles, but where the control constructs are more explicit.

11.1 Andorra-I Related Languages

The Basic Andorra Model can also be used as the basis for new logic programming
languages. We briefly comment on a few languages that are based in, or close to the
Basic Andorra Model.

1L1L1 Parallel NU-Prolog and NUA-Prolog

Parallel NU-Prolog [120] provides parallelism for a deterministic subset of NU-Prolog.
Declarations are used to specify where one can exploit parallelism. The lazyDet

11.1 Andorra-I Related Languages 202

declarations are used for deterministic procedures in the style of P-Prolog, whereas
the eagerDet declarations are used for committed-choice style procedures. Naish
suggests using a preprocessor to provide the declarations. The style of execution
is similar to the Basic Andorra Model: non-deterministic procedures cannot execute
while and-deterministic goals are executing in parallel, but only fully deterministic
procedures are considered for parallel execution. Naish also proposes an all-solution
predicate in the style of PARLOG [25].

The Parallel NU-Prolog was eventually extended by Palmer and Naish to form the
NUA-Prolog system [126]. This new system includes Andorra predicates, given by
the declaration andorra, and that may have modes associated. The marker predicates
$sa and $fa are used to explicitly start and finish an Andorra execution (outside
this boundary Andorra goals behave as normal goals). An and-parallel version of
the NUA-Prolog system has been implemented and obtained speedups similar to
Andorra-I.

1L.1.2 Andorra Prolog and Flat Andorra Prolog

The language Andorra Prolog [71] was presented by Haridi and Brand as a new
language able to combine Prolog and Committed Choice Languages. Andorra Prolog
relies on the Basic Andorra Model. In this language, clauses are of the form
H: -G,,Gy., and only G;, the guard, is used to test for determinacy. Don’t care
non-determinism is exploited by adding the commit operator “|”, as in FGHC (guards
to the commit must be flat and every clause in the procedure must have a commit).
The commit operator may also appear in the body of the clause. In this case it will
not be used for determinacy and it will be implemented as Aurora’s commit. Only
a limited form of cut is allowed in this language. Finally, delay declarations force a
goal to be executed only when determinate. Flat Andorra Prolog [70], also known as
 AP(;,)), includes only the guard operators, commit (now only used in guards) and the
wait operator that replaces delay declarations. The construct H: -G : Bp, means
that non-determinate resolution of a goal will wait until H and G4 have succeeded.

The language Andorra Prolog can be seen as a subset of Andorra-I Prolog. Flat
Andorra Prolog diverges further from traditional Prolog, and was a stepping stone in
the design of AKL [72], discussed later in this chapter.

11.2 IDIOM 203

1L13 Pandora

The Pandora language was designed by Bahgat and Gregory [4]. Pandora uses
the Basic Andorra Model to extend PARLOG. Pandora relations may be either and-
parallel or deadlock. And-parallel (or don’t-care or committed-choice) relations are
defined by normal PARLOG procedures (called and-parallel procedures). Deadlock or
don’t-know relations may be called from anywhere except from the guard of an and-
parallel relation. They are defined by an unmoded procedure, that is without mode
declarations, which comprises a sequence of clauses of the form p(ty,...,t,) « D : B,,
where D is a det-guard. Det-guards are flat guards, that is they only include some
predefined primitives, whereas B may be any Pandora conjunction. The definition of
deterministic goals (corresponding to the Basic Andorra Model’s determinate goals) in
Pandora is given using det-guards:

A goal for pis deterministic if and only if at least £ — 1 clauses have false (unsatisfiable)
det-guards, where k is the number of clauses in p’s definition.

Bahgat presents several applications of Pandora [3]. From the original paper,
particular emphasis has been given to problems in constraint logic programming,
and the authors show an elegant implementation of domain variables. The Pandora
language has been implemented on top of PARLOG (thus, and-parallel procedures may
be nonflat), but the example Pandora programs have also been translated to Andorra-I
Prolog. In her thesis [3], Bahgat presents an abstract machine for the implementation
of Pandora, PAM, based on Crammond’s abstract machine for Parallel PARLOG. It
was considered that in most applications of Pandora and-parallelism would outweigh
or-parallelism, hence PAM is designed to exploit only dependent and-parallelism.

Pandora does not specify which non-determinate goal to select, but Bahgat proposes
a meta-level deadlock handler as part of the language. Such a feature would
. provide better search, but it might result in serious overheads and interfere with
and-parallelism.

11.2 IDIOM

IDIOM integrates independent and-, dependent and- and or-parallelism. IDIOM
tries to use the concepts that have been demonstrated to be successful for systems
exploiting individual forms of parallelism. In this way one can be reasonably confident
that a final implementation will be efficient, at least for those programs which exploit

1.2 IDIOM 204

only one kind of parallelism. For the programs which exploit more than one kind of
parallelism one can still hope that the integrated system would be efficient given that
the properties of logic programs which give rise to the three forms of parallelism are
largely orthogonal. This principle has been applied before in Andorra-L.

The integrated framework IDIOM (Integrated Dependent- Independent- and Or-
parallel Model), is based on the Basic Andorra Model and on Gupta’s Extended And-Or
Tree Model [64] (although other models for the exploitation of both independent and-
parallelism and or-parallelism can be supported [63, 62]). From the former we borrow
the principle of eager execution of determinate goals and of or-parallel execution of
pon-determinate goals; from the latter we borrow techniques for parallel execution of
independent (non-determinate) goals, and ways for combining their solutions. Since
IDIOM is based on the Basic Andorra Model it supports both Prolog like languages as
well as (flat) Committed Choice Languages (such as FGHC). Throughout the design of
IDIOM special emphasis was given to the support of Prolog.

11.2.1 The Computational Model

Like the Extended And-Or Tree Model, IDIOM uses Conditional Graph Expressions
(CGEs) [75] (see section 3.2.2 for a detailed discussion) to express independent-and
parallelism.

IDIOM executes determinate goals first. When no more determinate goals are
available, then either an non-determinate reduction or the independent execution of
several goals may be started. Forward execution in IDIOM thus alternates between
3 phases(see figure 11.1): the Dependent And-parallel Phase (DAP), the Independent
And-parallel (IAP) phase, and the Or-parallel (ORP) phase. In the DAP phase all goals
which can be determinately reduced are evaluated in and-parallel (including those
inside the CGEs) until none are left. One goal (say, the leftmost) is then examined
to see if it is (i) a simple goal; or (ii) is part of a CGE. In case (i) a non-determinate
reduction is tried while in case (ii) independent and-parallelism is initiated. In
the ORP phase the first alternative to the goal is selected (other alternatives being
available for or-parallel processing), head unification is performed, and the DAP phase
is entered again. In the IAP phase, firstly the condition in the CGE is evaluated.
If true, the components of the CGE are made available for independent-and parallel
processing. In practice an implementation would select one, (possibly the leftmost),
component for immediate execution and make the remaining components available as
independent-and parallel work. The ORP phase is then entered for that component of
the CGE; and one goal of the selected component, say the leftmost, will be reduced non-

1.2 IDIOM 205

(# determinate goals > 0)

dependent and-par
phase (DAP)

(# determinate goals = Q) AND
(leftmost goal IS CGE)

(# determinate goals = 0) AND
(leftmost goal IS NOT CGE)

independent and-par
phase (IAP)

(pick first goal of the

first component)

or-par phase (ORP)
(pick first alternative)

Fig 1: Phases in Parallel Execution

Figure 11.1: Execution Flow in IDIOM

determinately, thus allowing for or-parallelism inside independent and-parallelism. If
the condition in the CGE evaluates to false, the ORP phase is entered immediately to
one goal of the CGE (usually the leftmost) in or-parallel. Execution of the continuation
of the CGE is possible when a solution for the entire CGE (that is, for all the
components of the CGE) is found. The resulting solution is then made available to
the environment of the CGE which then starts execution of the remaining goals in the
DAP phase. The control algorithm is abstracted in Figure 11.1.

Recomputation: the previous discussion assumes a mechanism for the calculation
of the cross-product. The original mechanism for IDIOM [68] was the one proposed in
the Extended And-Or Tree model, where a special cross-product node is used to prevent
recomputation of solutions. Simpler algorithms such as the one used in &-Prolog [77],
later extended in the ACE [63] and the PBA [62] models, also apply. Such mechanisms
have the disadvantage that they recompute solutions, and hence they may generate
more computation than a model which does not recompute solutions, but they have
the important advantages of being simpler and more efficient to implement, and of
providing better support for Prolog [67].

11.2 IDIOM 206

11.2.2 An Example

To illustrate execution in IDIOM we take the program which finds “cousins at the same
generation who have the same genetic attributes”, a modification of a program from
Ullman [169]. Given two persons and a list of attributes common to both persons, the
program succeeds if it find a common ancestor and returns the set of attributes that
are common to the cousins and to all the ancestors of the cousins up to and including
the common ancestor.

The top-level procedure sg(X1, X2, Pi, Pf) defines the relation “cousins at the same
generation with the same genetic attributes”. It receives as the first two arguments
the names of two persons, X1 and X2, and as a third argument a list of attributes
they are know to share, Pi. If X1 and X2 are the same person X, the relation returns
the intersection of the attributes Pi with the attributes of the person X. Otherwise,
the same relation is called recursively for a parent of X1 and for a parent of X2. The
procedures set_xion and in define intersection of two sets (note that the two sets do
not contain duplicates). Finally, the assertion parent(X, Y) means Y is the parent of
X, attributes(X, Px) means Px is a list of attributes of X, and set_xion(S1, S2, S3)
represents that set S3 is the result of intersection of sets S1 and S2.

The program is shown next.

sg(X, X, Pi, Pf) :- attributes(X, Px), setxion(Px, Pi, Pf).
sg(X, Y, Pi, Pf) - X # Y,

parent(X, Xp), attributes(Xp, Pxp),

parent(Y, Yp), attributes(Yp, Pyp)),

set xion(Pi, Pxp, Pxi), setxion(Pxi, Pyp, Pii),

sg(Xp, Yp, Pii, Pf). '

setxion(Si, S2, S3) :- setxion(S1, S2, [], S3).

setxion([], -, In, In).

setxion([X|T], S, In, Out) :- in(X, S, In, IR),
set_xion(T, S, IR, Out).

in(_, [], In, In).

in(X, [XI1J, In, [XIInl).

in(X, [YIT], In, Out) :- X # Y, in(X, T, In, Out).

parent(fred, frank).

1.2 IDIOM 207

attributes(fred, [brown-hair, green-eyes, large-build]).

In this example there is independent and-parallelism in the second clause of sg/4
(that is, when a parent is found for both X and Y), and the CGE annotator would
annotate the second clause for sg. The corresponding program, where the & operator
is used to represent independent and-parallelism, is shown next:

sg(X, X, Pi, Pf) :- attributes(X, Px), setxion(Px, Pi, Pf).
sg(X, Y, Pi, Pf) :- X # Y, .
(indep(X, Y) => (parent(X, Xp), attributes(Xp, Pxp)) &
(parent(Y, Yp), attributes(Yp, Pyp))),
set_xion(Pi, Pxp, Pxi), setxion(Pxi, Pyp, Pii),
sg(Xp, Yp, Pii, Pf).

Consider the query:
7- sg(fred, john, [brown-hair, green-eyes], Att).

where the third argument is a list of attributes common to fred and john, and we want
to find out if they are cousins of the same generation and if so, the common genetic
attributes inherited from their common ancestor.

We start from the query goal. We check if it is determinate, which indeed it is,
since only the second clause matches. Head unification is then performed and the
" body of the second clause is inserted in the goal-chain. Only the set_xion(Pi, Pxp,
Pxi) subgoal is determinate (since Pi is known) so it is reduced next. The call to
in from within set_xion soon suspends; however, the recursive call to set.xion can
still continue determinate execution as long as there are list-elements available in
Pi. This will result in a number of calls to in all of which would be suspended
on Pxp. Eventually, no determinate goals are left, and the DAP phase is exited.
Since the leftmost subgoal is a CGE, the IAP phase is entered. The independence
condition evaluates to true, and parallel execution of the two components is started.
The parent goals are executed in or-parallel, and for each alternative of parent the
corresponding attributes goal is executed determinately. As soon as an attributes
goal is executed, and a binding for Pxp is generated, all the suspended in goals are

11.3 The Extended Andorra Model . 208

rendered determinate and thus awakened; but their execution is delayed until the
execution of the CGE is over [68]. Rather, the cross-product is computed and a tuple
is selected for executing the continuation of the CGE. The determinate execution of
the delayed in goals can then be started. (The two alternatives for the two parent
goals, give rise to four cross-product tuples, which are pursued in (or-) parallel. The
execution of the continuation of the CGE is the same for all tuples.)

As soon as the execution of in instantiates Pxi and causes the first list-element to
appear in it, the second call to set_xion becomes determinate and begins execution.
As more and more list-elements of Pxi are generated by the multiple in goals, they
are determinately consumed by the second set_xion. Notice that the recursive call
to sg was determinate as soon as the CGE was done, since Xp and Yp were known,
and could also start executing. As soon as an element of Pii is available, the first
set_xion call inside recursive call to sg becomes determinate and can begin execution.
Thus, it is as if a data pipeline has been set up between calls to set_xion, calls to in
and the recursive call to sg, which indeed gives rise to dependent-and parallelism.
Or-parallelism is exploited in the execution of the parent goals, and independent-and
parallelism in the execution of the CGE. Thus, all three forms of parallelism are
exploited in the IDIOM-based execution of this program.

11.3 The Extended Andorra Model

The Extended Andorra Model (EAM) was designed by Warren [184] to extract all
forms of parallelism available in logic programs while also minimising the number of
inferences performed. The EAM extends the Basic Andorra model in that it allows the
non-determinate and-parallel execution of goals as long as.they do not bind external
variables.

The EAM is formally defined using a set of rewrite rules which manipulate and-or
trees, represented with the aid of and-, or and choice-boxes.

And-box: [3X1,..., X : 0&C1& ... &Cn
Or-box: {C; V...V Cn}

Choice-box:{G1%C1 V ...V Gn%Cn}

And-boxes are created when launching a new clause, the variables X; to X, represent
the variables created in the box and o represents the constraints on external variables.

11.3 The Extended Andorra Model 209

Or-boxes correspond to several clauses and choice-boxes are used to delimit the scope
of the pruning operator % (which may be a cut or commit).

The basic operations of the EAM are:

Reduction: G — {[3Y7 : 01 %C1] V...V [} : 1 %Chl};

Promotion: [3X : A&[Y,W : Z = §(W)&C]& B]
— [3X,W: X = (W)&A%([TY : C)&B];

Substitution: [X,Z : Z = §(W)&C] — [3X : C];

Forking: [3X : {C1 V...V C,}&G] — {[3X : C1&G] V...V [3X : Co&Gl}

Reduction expands a goal G into an or-box, promotion allows the promotion of con-
straints from an inner and-box to an outer and-box, substitution applies a constraint
on a variable and forking distributes a conjunction across a disjunction.

11.3.1 Control in the EAM

Basically, the EAM uses a control scheme where an and-box suspends if it constrains
an external variable. Forking is the operation that can lead to duplication of work,
hence it is only applied when all the other operations cannot be applied further (this
follows the Extended Andorra principle that delays guessing a variable’s binding
as long as possible). If several goals can produce a non-determinate binding for a
variable, the leftmost one will be chosen. Notice that, before forking is started, a
binding for variable X has to generated by one of the C;. After forking this binding
can be promoted in the newly created and-box. A forking step followed by a promotion
step is called global forking.

The EAM allows the parallel early execution of non-determinate goals. In some cases,
this may create speculative and-work, as some other goals might fail. This may
result in a larger search space or even lead to non-termination. Ideally one would
like to provide an implicit control mechanism to prevent this problem. Detecting
speculative work depends knowing a priori whether the computation will terminate,
which is very difficult to know beforehand (in fact it might be undecidable because the
EAM allows any computation to go ahead as long as it does not bind variables, and
in general deciding if a goal will fail is undecidable). In practice, an approximation
through global analysis should be possible. In the current definition, the sequential
conjunction may be used by the programmer to prevent speculative computation.

11.3 The Extended Andorra Model 210

[y

One of the aims of the Extended Andorra Model is to perform the least number of
reductions to obtain the solutions for a goal. To obtain this effect one often wants to

do computations for different goals as independently as possible, and eventually only
combine the solutions for the different goals as late as possible. This is similar to the
issues of cross-product calculation found in independent and-parallelism (see section
3.2.2).

Notice that in order to obtain maximum independence between goals it is necessary to
limit the number of goals that can be allowed to delay global forking. That is, global
forking should happen as soon as the goals that can bind the variable, and only these
goals, cannot apply any other operations. A solution to classify these goals is to give
scope to variables, possibly obtained through rewriting clauses in mini-scope form.

11.3.2 Lazy Copying

In the previous description, a goal will suspend when nondeterminately trying to bind
an external variable, irrespective of whether it is the producer (the goal that generates
bindings for) or the consumer (the goal that reads bindings for) that variable. If the
producer, there is no need for it to suspend. The EAM tries to gain more parallelism
by letting the producer continue. This is implemented not by creating a physical copy
for every alternative of the producer but by creating pointers to the consumer goal.
The single copy of the consumer goal is called the phantom goal. Physical copying is
done only when the consumer is completely suspended. The copy of the consumer is
done in the lazy fashion, hence the name lazy copying. The forking rule now becomes:

[3X : {C1V...VCa}&G] — {[3X : C1&G,] V...V [3X : Co&Gy}

where G, is a reference to a single goal. One can do even better, by copying parts of G
as soon as they suspend.

The EAM now includes a classification scheme for variables as guessable, non-
guessable or others, which provides control for lazy-copying. This classification might
be provided by the programmer, or generated automatically.

A variable is annotated as guessable if it is certain it is going to be guessed non-
determinately. In this case, as soon as a binding is generated by a producer for a
guessable variable global forking with lazy copying is performed. In contrast, global
forking on non-guessable variables is only performed if there is no way to restart the
computation.

1.3 The Extended Andorra Model 211

11.3.3 An Example of the EAM

We next discuss a simple example of the operation of the EAM (taken from [69], itself
based in an example from [184]). The program and query are:

sublist (],).

sublist ([XIL], [XIL1]) :-
sublist(L, L1).

sublist ([XIL], [YIL1]) :-
sublist([X|L], L1).

?7- sublist([X,Y},[c,a,t,s]), sublist([X,Y],[1,a,s,t]).

The predicate sublist succeeds if the first argument is a sublist of the second
argument.

Without lazy copying, the EAM will operate by first executing the two goals indepen-
dently. Both sublist goals will create branches for the several possible alternatives,
but both will eventually suspend when trying to promote bindings for X. Eventu-
ally, the entire computation will stop and wait for nondeterminate promotion. The
nondeterminate promotions will result in the left goal attributing values to X: after
substitution these values will be combined with the values from the right call to
sublist and eventually only X = « is found to match. The process is then repeated
for Y resulting in finding the solutions Y =tand Y =s.

In order to use lazy copying, one should provide annotations to specify that the
variables X and Y are guessable by the left call to sublist. In this case, the first calls
to sublist is allowed to immediately bind X (that is, to guess X). After they do so, it
can copy the parts of the other call to the sublist goal that have already suspended.
Lazy copying gives more parallelism because the left sublist is allowed to proceed
earlier. A disadvantage is that eager execution of the producer may generate extra
work, because in this case the search space of the producer is not being as tightly
constrained by the consumer.

11.4 The Andorra Kernel Language 212

1.3.4 Discussion

Gupta has implemented a Prolog interpreter for the EAM [69]. His examples show that
the EAM can lead to a substantial reduction on the number of inferences, even when
comparing to the Basic Andorra model. Lazy copying can provide more parallelism.
Even considering the overheads caused by the extra complexity of the model, one can
" expect that the EAM will allow implicit parallelism in applications where the current
models are rather limited.

There are currently no implementations of the Extended Andorra Model. Still, we
believe that the tools we developed for Andorra-I should be useful for the Extended
Andorra Model. The principles of the sequencer should still apply when the Extended
Andorra Model is used for parallel execution. Results of abstract interpretation will be
of interest to generate scope information for variables. Finally determinacy analysis
should still be useful in prevent unnecessary or-boxes.

114 The Andorra Kernel Language

Kernel Andorra Prolog, designed by Haridi and Janson [72], is a language framework
based on similar ideas to the Extended Andorra Model. The framework adds guard
operators to delimit local execution and supports constraint operations [139]. The
Andorra Kernel Language (AKL) [72, 86] is a general concurrent logic programmmg
language based on Kernel Andorra Prolog.

Clauses in AKL always have a guard. All the clauses in the same procedure must
have the same guard operator, which can be cut, commit or wait. The wait operator
is similar to Saraswat’s don’t-know commit [139]. The computation model for AKL is
again defined in terms of and-boxes and(C)y where V is the set of variables local to
the and-box, or-boxes and choice-boxes. And-boxes are said to be quiet if they do not
contain bindings (constraints) for external variables. The main execution rules are:

1. Local forking: A = choice(and(G1)v,%Bi,...,and(Gy)v,%Bx)

2. Determinate promotion:
and(R, choice(Cv%B), S)w = and(R,C, B, S)vuw

3. Nondeterminate promotion:
and(Ty, choice(R,Cv : B, S), To)w =
or(and(Ty,C, B, T2)vuiv, and(Ty, choice(R, §), T2),w)

11.4 The Andorra Kernel Language 213

[y

The first rule corresponds to the rewrite of an goal A, the second correspond to the
simplification of a box when Cy is solved (and if a pruning operator if it is quiet). The
last rule promotes a wait-guarded goal with a solved guard when R or S is non-empty
as long as the rewrite is done within a stable and-box. An and-box is stable if (i)
no other rule is applicable to any of its subgoals, and (ii) the and-box satisfies the
constraint satisfiability condition that no possible changes in the environment will

-lead to a situation where a non-trivial rule is applicable in the and-box. Other rules
include rules for the cut, commit, several synchronisation rules and rules for the
aggregation operator bagof.

In general, determining if an and-box is stable is undecidable. Janson and Montelius’
sequential AKL system [87] uses the simple rule that the all and-boxes must be stable
if the entire computation has stopped. A more powerful condition is that an and-box
must be stable when there are no constraints on any external variables.

AKL allows local bindings to external variables. That is, the guard of a goal is
allowed, to bind external variables which are then only locally visible. Local bindings
can sometimes detect failure as in:

a(1,2). a(2,2).

7- a(X,X).

Execution of this query will result in committing to the second clause without any
need to do nondeterminate promotion, usually a very expensive operation. Note that
allowing local bindings in the execution of guards may lead to much wasted work if the
goal was not sufficiently instantiated, cf. the case of deep cuts, where if the arguments
are not sufficiently instantiated the computation may loop.

1L4.1 Pruning in AKL

The original version of AKL only accepted “quiet” cuts and “quiet” commits, where
the definition of quietness in AKL is more restrictive than ours. An occurrence of Cy
(that is, a conjunction of goals with local variables V) in G is quiet in AKL if §(C) does
not restrict the environment of Cy outside V [52]. This definition does not include
the cases where Cy restricts the environment determinately. In this work, we use the
name silent pruning to represent this form of quiet pruning.

Comparing both forms of pruning, silent pruning has the advantage that it can be

11.4 The Andorra Kernel Language 214

implemented locally, that is, it needs not to test whether alternative clauses can bind
a variable. This makes run-time checking of silent pruning much easier (verifying if a
binding is determinate is in general as complex as verifying if a goal is deterministic),
hence silent pruning is arguably more appropriate for a language that heavily relies
onit. On the hand, quietness as we defined it is a more general solution to the problem
of whether coroutining is possible in the presence of pruning, and therefore to our task
-of supporting Prolog.

11.4.2 An Analysis of AKL

A sequential compiled AKL system was implemented by Janson and Montelius [87].
Nondeterminate promotion is done on the leftmost goal when the entire computation
suspends. For determinate programs performance is about four times slower than
SICStus Prolog [86]. This is partly due to the use of copying in the implementation of
AKL. Also, better compilation of flat guards (in the style of Andorra-I) is expected to
improve performance for many applications.

One issue in AKL programming is the possibility of looping. The language makes
control explicit, thus it is the programmer’s task to prevent such situations. On
the other hand, the sophistication of the execution rule and particularly the fact
that local bindings to external variables are allowed can make control quite difficult
to understand (particularly in a parallel implementation). A solution proposed by
Palmer [125] is to use mode declarations to specify when and-boxes can be executed.

The AKL allows exploitation of independent and-parallelism. It is sufficient to isolate
the independent and-parallel guards as guards of newly created goals. Obviously,
such scheme depends on an accurate definition of stability, that is stability between
and-boxes corresponds to each and-goal not interfering (in other words, they should
. be independent), and the implementation must provide the machinery to calculate the
cross-product of solutions (in terms of AKL terminology, run-time machinery must
now support parallel nondeterminate promotions).

Janson and Montelius [86] discuss how AKL subsumes the language GHC (although
GHC is in practice more similar to the Extended Andorra Model, as goals in the
guard cannot even make local bindings to external variables) and can support Prolog.
There is already some work in parallel versions of AKL, one by Palmer supporting
and-parallelism [125] and another by Van Acker and others supporting AND/OR
parallelism [170]. In both cases, the authors’ initial claim is that the parallel
implementation of AKL will not be too complex.

1L5 Summary 215

1.5 Summary

This chapter described three approaches to extending the Basic Andorra Model,

IDIOM, the EAM, and AKL. IDIOM aims at adding conventional independent and-

parallelism to the Basic Andorra Model. Also, the design of IDIOM has tried to reuse
previous experience on parallel systems as much as possible.

The Extended Andorra Model aims at extracting the maximum parallelism, whilst
doing the best possible search. The model specifies rewrite rules on and-or boxes. A
new technique, lazy copying, is also introduced to maximise parallelism. AKL is a
programming language based on ideas similar to the Extended Andorra Model, but
where control is more explicit.

Chapter 12

Conclusions and Future Work

The Andorra-I system was designed for the parallel execution of logic programs,
and particularly of Prolog programs. Andorra-I obtains and-parallelism by running
determinate goals in parallel, and or-parallelism by trying the alternatives to non-
determinate goals in parallel. Experience in using Andorra-I has led to the following
main conclusions:

e Andorra-I performs well and exploits parallelism successfully for Prolog appli-
cations, committed-choice style applications, and new, “Andorra style”, applica-
tions.

e The coroutining in the Basic Andorra Model can reduce the search space of ldgic
programs. This holds true for some Prolog programs, and has been exploited in
the “Andorra style” applications.

These good results depend to a large extent on the operation of the preprocessor:

o The determinacy property of goals can be detected efficiently at run-time by
using special determinacy code. '

o Compile-time analysis allows the execution of Prolog programs in Andorra-I.

This chapter analyses the main contributions of this work, and discusses two funda-
mental issues, programming languages for Andorra-I, and directions on how to extract
more parallelism from logic programs.

12.1 The Preprocessor 217

12.1 The Preprocessor

In designing Andorra-I, we believed that it would be more useful to have a system
that could support existing logic programming languages, instead of trying to relying
on a new, alternative, logic programming language, to support parallel execution in

the Basic Andorra Model. We concentrated on Prolog as it is the most popular logic
' programming language.

The main contribution of this work is the idea of using a preprocessor to convert from a
logic programming language, such as Prolog, to a logic programming system supporting
a different execution mechanism from the one for which Prolog was originally designed.
Although the preprocessor was designed for Prolog, other preprocessors could be
designed to support different programming languages such as the committed-choice
languages or coroutining languages.

We have found that the early execution of determinate goals can interfere with the
correct execution of Prolog builtins in an Andorra-I environment. Examples include
some uses of cut, the meta-predicate var/1, and the side-effects predicates. The
preprocessor thus includes a sequencer that prevents early execution of goals that can
interfere with these builtins.

Results show that although the actual sequencing varies from application to applica-
tion, so far it does not seem to be a major constraint on parallelism, as it usually only
affects a few parts of the program (the exception being programs that heavily change
the database and programs that heavily use sensitive meta-predicates).

The sequencer needs precise information on how the cut and some meta-predicates
are to be used. We designed an abstract interpreter to collect mode patterns that can
in turn be used to study the operation of the program. Besides simple groundness or
freeness information, the abstract interpreter generates information on the structure
of arguments, that is if they are lists, atoms or compound terms.

The current abstract interpreter performs well (and sometimes very well) for quite a
few applications, but it can alsp fail to recognise modes in some applications. Although
abstract interpretation is limited by the fact that it must generate correct results for
all possible runs of the program, experience shows that most of the problems with
the current system result from limitations in the abstract domain and in program
representation. Despite this, the abstract interpreter is one of the most powerful
currently available, and there is a question of how far can one go in improving the
analysis and still obtaining acceptable preprocessing times.

12.2 Language Issues 218

[y

The preprocessor generates the code that is called at run-time to detect when a goal is
determinate. This code recognises when a goal is determinate either because a single
(or no) clause matches, or due to the operation of a cut or commit. The code was
designed to be efficient, and to minimise any overheads Andorra-I would introduce
when testing determinacy of goals. Thus some simplifications were introduced in the
design of the analyser.

The Andorra-I performance shows that, in practice, the code recognises a very high
percentage of all determinate goals. Moreover, the time spent in the determinacy code
seems to be only a small percentage of the total execution time.

A compiler-based version of Andorra-I was necessary for a performance comparable
to current Prolog systems. A WAM-like abstract instruction set was designed for
this purpose, and the preprocessor includes a clause compiler. Although the compiler
would benefit from further optimisations, it is now sufficiently robust to process a
large number of applications.

12.2 Language Issues

The preprocessor provides independence between the engine and the languages used
to program it. The preprocessor has allowed programs originally written for Prolog to
be run in Andorra-I.

The main difference between Prolog execution and Andorra-I execution is the corou-
tining. Is this coroutining important? There is quite a large set of committed-choice
programs that demand it. Moreover, programs designed for Andorra-I show that the
coroutining can substantially reduce the search-space for many applications. These
applications usually also have substantial or- and and-parallelism. In chapter 10 we
looked at several “Andorra style” programs, either initially developed for Andorra-I,
or developed for similar languages such as Pandora and AKL. The applications given
also exemplify how constraint-like programming can be implemented in Andorra-I,
by associating constraints to determinate goals. Note that some Prolog programs can
also take advantage of the coroutining.

A problem with Prolog is that Prolog programs do not make explicit whether cuts are
quiet, or whether builtins are sensitive. This information is needed for Andorra-I,
hence the need for sequencing. In the worst cases user intervention may be convenient,
especially if the abstract interpreter failed to recognise all the modes.

12.3 Areas of Further Research 219

[y

Our experience with executing Prolog programs in Andorra-I allowed us to reach some
conclusions on characteristics of Prolog programs that can perform well in parallel
environments:

o There should be a clear separation between what is the logic of the program, and
what is the control.

¢ Pruning should in general be quiet. Extra restrictions (such as the silent commit)
can be allowed, but it is very important that pruning will be quiet.

o Finally, a program may in certain circumstances need to perform side-effects or
noisy cuts. Their scope should be clear from the context and their effects easy to
understand.

The fundamental idea is locality of control: ideally, the meaning of a Prolog construct
should be clear just from looking at the procedure where it is placed. We believe that
such ideas are valid for any logic programming language.

12.3 Areas of Further Research

Throughout, this thesis has mentioned how the individual components of the prepro-
cessor can be improved. Better results from the abstract interpreter should be quite
useful, as they would further reduce the cases where human intervention is necessary.
Improvements in the compiler (and also in the determinacy analyser) should result in
an improved Andorra-I base performance.

Still, the main limitation of Andorra-I is that coroutining and and-parallelism can
~ only be exploited between determinate goals. There are several possible solutions to
this problem.

First, one can broaden the definition of “determinate goal” in Andorra-I, to recognise
the goals where one clause becomes the solution, either because some Prolog goals
fail and exclude the other clauses, or because some Prolog goals succeed and result in
pruning. Some restrictions would be needed in order to preserve efficiency. One simple
such scheme would be to extend the determinacy analyser to analyse simple goals
which would not bind external variables. Note that a different approach (although in
the same vein) would be to transform the Prolog program so that more goals would be
determinate. It would be a worthy subject of research to find out how much Prolog
programs can benefit from these schemes.

12.3 Areas of Further Research 220

The IDIOM model (described in section 11.2) addresses a wider range of and-
parallelism. This model combines dependent and-parallelism between determinate
goals with independent and-parallelism. As independent and-parallelism between
determinate goals is automatically exploited by Andorra-I, the main benefit of IDIOM
is exploiting any independent and-parallelism between nondeterminate goals. This
form of parallelism does seem to appear widely in Prolog programs.

Although the two previous solutions expand the amount of and-parallelism that
Andorra-I can exploit, they only partially address the problem of how to get the most
and-parallelism out of a logic program. The Extended Andorra Model (see 11.3)
provides a more thorough solution to this problem. This model gives dependent
and-parallelism between non-determinate goals and subsumes independent and-
parallelism. The drawbacks will be a more complex, and possibly more expensive,
implementation. Similar principles are followed by the AKL, for which an early
sequential implementation is available. It will be worthwhile to design and implement
parallel logic programming systems based on the Extended Andorra Model and of the
AKL, and compare them to current systems as Andorra-1.

Early systems such as Aurora and JAM proved that parallel logic programming can be
useful and practical, but followed very different paths to do so. Andorra-I shows that
one can obtain the best of these two different worlds. The Extended Andorra Model
and other models show that parallel logic programming is taking steps to remove
any restrictions on what parallelism can be exploited, towards the ultimate goal of
maximum parallelism with minimal user intervention.

Appendix A

Basic Operations on the Abstract
Domain

In this appendix we present the implementation of the fundamental operations for the
abstract domain used in the abstract interpreter. We first present the fundamental
implementation issue of how to represent the abstract execution of a clause, and then
present the several operations on the abstract domain.

A.1 Environments

In Bruynooghe’s framework, execution of a clause is represented by a set of abstract
substitutions fi, . . ., 8. corresponding to entry and exit of every subgoal in the clause.
Considering the set V of all program variables appearing in the clause, and a goal Q
constructed by having each variable in V appear as an argument to Q, f1,...,0, can
be seen as applying abstract substitutions 0,,...,0, to the variables in Q.

In our system, for each clause we use an environment £ where the substitutions © are
explicitly represented by pairs Label/AbstractTerm. To obtain an entry substitution
B; we define a function project(Goal, £). Abstract unification between a subgoal Goal
and its exit substitution §; is used to create the corresponding exit environment £ ! for
the subgoal.

Environments £ are implemented as dictionaries of pairs L/T, where L is a label and
T an abstract term. There is an unique value for each label. Dictionaries are updated
by abstract unification, and avoid the problems corresponding to the direct use of logic

A.2 Procedure Entry 222

variables [190].

Currently, the preprocessor implements environments as lists of pairs of the form
variable to assignment. Labels are simply implemented as Prolog variables, as it is
easier in Prolog to create a new variable than a new constant. Moreover, if ever two
abstract terms are made to share the same label, one can rely on straightforward
_unification. Environments are updated by pushing the new substitution to the top of
list. An alternative to the use of lists would be binary trees. The main advantage of
binary trees would be to provide logarithmic time access to a pair (instead of linear).
This should provide faster access, particularly because environments can grow to be
quite large.

A.2 Procedure Entry

The process of procedure entry in our system consists of four steps: (a) project the
variables from the caller environment € to obtain 3;; (b) verify if the call should be
made; (c) create an or-node with branches for each clause; (d) for each clause do abstract
unification with the head and if successful create a corresponding environment £’. We
discuss each step in detail.

Step (a) is implemented by the function project(Goal, £). For every variable appearing
in Goal this function looks up its corresponding abstract substitution from £. Deref-
erencing must be made for a variable, in case there is a chain of labels, and for all
the arguments of a compound term. The system ensures that all the labels (Prolog
variables) appearing in the implementation of 3; do not appear in the implementation
of £.

- Step (b) depends on the iteration algorithm and is discussed in detail later.

Step (c) is implemented by finding all clauses for the corresponding procedure, and
executing them one by one. The algorithm tries each clause sequentially.

The most complex step is the implementation of abstract unification.

A.2.1 Abstract Unification

Given two terms A and B, corresponding to the two sets of concrete terms 7(4) and
~(B), abstract unification tries to find X = a(mgu(y(4),7(B))), or at least a correct

A.2 Procedure Entry 223

approximation X C Y.

Our system represents abstract substitutions as a set of substitutions in an envi-
ronment £. Therefore, successfully unifying two abstract terms A and B results in
updating the environment & with the necessary substitutions. The new, updated en-
vironment, will be called £;. The algorithm for abstract unification thus corresponds
. to the following Prolog procedure:

abstract_unify(A, B, EO, EF) :-
deref (A, EO, T1),
deref (B, EO, T2),
abstract_unify_derefd(Ti, T2, EO, EF).

deref is used by the implementation to obtain the current value of a term from the
current environment. abstract_unify_derefd implements the real unification of two
abstract terms. This procedure receives two terms and the original environment, and
crates the new environment £;.

abstract_unify_derefd can be described in terms of a set of rules that are given two
abstract terms and that update a binding environment. The next tables show the
rules for abstract unification between a term of the type in the first column to a term
A in the presence of the environment £. The rules return the new abstract bindings
that replace previous abstract bindings in the environment.

The simplest case corresponds to unifying a constant with an abstract term. We show
this case in table A.1. The table consists of five columns. The first column give the
values for the term B in the environment £ we are unifying A with, and the second
column gives what conditions are tested by abstract unification. The third and fourth
~ column describe the result, in terms of the value that both A and B will take after
abstract unification and of any extra constraints on the environment £.

Clearly, the rules for abstract unification with a defined constant mimic unification
closely. Either the term has a main functor, and it is verified if it can unify, or it
is bound to the constant. If a variable var(L) is bound to a constant, all variables
sharing the same label must take the same value:

p(T,L) — {¥(v'/Var(L)) € £ : ¥'|T}

p(T, L) enforces this constraint. A similar operation is not needed if one unifies the

A.2 Procedure Entry 224

” OtherArg. I Test I Result | ExtraConstraints
atom’ atom’' = atom | atom
atom’ # atom | L
Constant atom
£(...) L
Or(B) Constant € B |[atom
Constant ¢ B || L
List(...) |atom=] (]
atom # [] 1
Var(L) atom | p(atom,L)

Table A.1: Abstract Unification with atom

constant with a term of the form T(L'), because our domain cannot guarantee that
two terms T sharing the same labels will also always share every variable.

The case for Constant, the set of all constants is similar, but now we cannot assume a
particular value for the constant. The rules are shown in Table A.2.

" OtherArg.. l Test “ Result EztraConstraints ”

atom’ atom’
Constant Constant
£(...) 1
Or(B) Constant € B || Constant
Constant ¢ B || L
List(...) (] ,
Var(L) Constant | p(Constant, L)

Table A.2: Abstract Unification with any Constant

The rules for abstract unification of compound terms are based on the principle that
terms that can have the same functor will match, and then abstract unification
proceeds for all the arguments of the term. The simplest rules correspond to abstract

terms of the form £(...,q;,...), where the main functor is known. They are shown in
table A.3.

The two constraints a and u should be explained. Two compound terms can only unify
if their arguments unify. A guarantees that all the arguments unify. The rule u
corresponds to the case where we want to unify a pair of the form [a;]a;] with a list

A.2 Procedure Entry

295

I[OtherArg. Test " Result EztraConstraints

£(...,biy...) £(o.0y65..0) | V9, {c;: ¢; = a(ai, b;)}

gleveyers) . 1

Oor(B) £(...,biy.. }) € B || £(.-.5eiy..) | {ei: e = a(ai, bi)}
f(...,b,‘,...})¢3 1

List(b) f(...) = [a1]ag] fe1]e2) 1 = a(ay, U(b)) A ez = a(az, List(b))
f(.)#4 L

Var(L) £(...,ai,...) | p(£(...,a;,...), L)

Table A.3: Abstract Unification with £(...,a;,...)

L(b). The list is the only recursive abstract term. To unify it with a normal term, we
need first to unfold the list into a term of the form [b;]|List(b)], where b; is constrained

to be an instance of the argument of the list.

The rules for abstract unification with the abstract term “set of compound terms” are

presented in table A.4.
|r0therArg. I Test | Result I EztraConstraints "
Or(B) or(C) C={£(...,ai...):
f(...,a;,...) €A
£(...,b;,...) €B,
{ei : c; = a(ai, b:)}}
List(b) Constant € AA[ailaz] € A | L
Constant € AA[alag] € Al]
Constant € A A [a1]az] € A || [e1]e2] c1 = a(ag, U(B))A
cz = a(az, List(b))
Constant € A A [a1]az) € A || Or({Constant, | c1 = a(a1, U(b))A
[e1le2]} c2 = afaq, List(b))
Var(L) Or(A) p(Or(A), L)

Table A.4: Abstract Unification with a set of compound terms Or(A)

To unify two Or terms one needs to find the terms whose main functor appears in
both Or terms and then construct a new Or(C) term. This term can be simplified if C
consist of a single element (to the element itself) or if C is empty. The simplification
rules are made clear in the case of unifying Or with a List. The result can consist '
either of a list constructor or of []. The table details the necessary operations, which

A.2 Procedure Entry 226

generalise on unifying a list with a term of the form [|.].

We now consider unification with lists, as presented in table A.5.

I[OtherArg. ’ Test ” Result I EztraCanstraints"
List(b) List(c) | ¢ = a(a,b)
Var(L) List(a) | p(List(a), L)

Table A.5: Abstract Unification with a list L(a)

Unification of two lists simply corresponds to unifying their arguments.

Table A.6 shows abstract unification to a term of the form Ground. Basfcally, we need
to preserve the structure of the term B, plus the fact that all possible variables in the
term have now become fully instantiated. For instance, if a sub-term is of the form
V(L) this corresponds to the fact that all variables in the term will be instantiated to
ground. The rules are shown in table A.6.

[LOtherArg. | Test ” Result | EztraConstraints ”
atom atom
Constant Constant
£f(...,b;...) £(...,¢,...) | Vi, {c; : ¢; = a(Ground, b;)}
Or(B) Oor(C) {ci € C: ¢; = a(Ground, b; € B)}
List(b) List(c) ¢ = a(Ground, b)
Ground Ground
Var(L) Ground p(Ground, L)

Table A.6: Abstract Unification with Ground

~ Table A.7 shows abstract unification to T(L'). Basically, all noninstantiated arguments
in the other term are promoted to T(L’) and made to share with the same values. An
important case is when we abstract unify two T terms. As a result of the abstract
unification, the two terms will now share, and the two top terms must have the same
label. This is guaranteed by the constraint j(T(L"), T(L").

In general, most abstract unification rules constrain the abstract terms and thus
provide more precise information. The notable exception is unification with a term of
the form T: unification of abstract terms that can include possibly unbound variables
with T actually increases the sets of elements represented by the term T (because we
do not know if the variables may or not have been bound, and to which values).

A.3 Procedure Exit 227

" OtherArg. l Test ” Result EztraConstraints
atom atom
Constant Constant
£(...,0:..0) (... ¢...) | Vi, {ei i ci = a(T(L),)}
Or(B) or(C) {c;€C:c; =a(T(L"),b; € B)}
List(b) List(c) c=a(T(L'),b)
Ground Ground
Var(L) top(L") P(T(L"), L)
T(L") top(L') J(T(L), T(LY))

Table A.7: Abstract Unification with T(L’)

A.3 Procedure Exit

Procedure exit corresponds to decorating the right side of a node with an abstract
substitution. Within the chosen representation of the abstract And/Or-tree, this
abstract substitution is calculated by obtaining the least upper bound of the abstract
substitutions for each clause. These are themselves obtained by projecting the exit
abstract substitution of the last goal to the head variables of the clause.

The new operation is the calculation of an upper bound. For simplicity of the
implementation this is usually a worse approximation than the correct least upper
bound. '

A.3.1 Calculating the Least Upper Bound (U)

" The algorithm proceeds in two steps. First, it calculates a first structure of the least
upper bound. Second, if verifies if the sharing conditions for any abstract terms of
the form Var(L) hold (i.e., it verifies it two terms Var(L) with the same label are
guaranteed to be the same variable). If they are not, the terms must be promoted, in
our case to T(L’).

Most of the rules of formation of structure are straightforward. Some of the most
interesting are shown in table A.8 (these rules presume that the labels of both
arguments are named apart).

The rule for the bottom element is trivial: the least upper bound of a term with bottom

A.3 Procedure Exit 228

+

| T, | T, | Test " lub(T1,T2) 4]

1 T, ‘ T,

Var(L) Var(L') Var(L")

Var(L) T, Ty # Var(L") T(L")

T(L) T, T(L")

Ground T, vars(v(T2)) = 0 || Ground

Ground T, vars(y(T2)) # 0 || T(L")

(([

1] [b15..-5bn] List(byu...Uby)

§i List(b) List(b)

atom atom; atom; = atomg atomy

atom; atom; atom; # atomp Constant

atom £(...) Or({£(...),Constant})
atom Or(B) Constant € C or(C)

atom; Or(B) Constant ¢ C Or(C U Constant)

atom List(b) Or({[b'|b], Constant})
f(...,a,-,...) f(...,0,..) f(...,a,'lJb,',...)

£(...) g(...) or({£(...),g(.-9})

£(...) Or(B) £(...)¢B or(cu f(...)
£(...,a;,..)or(B) . [£(...,b;..)€EB Or(B\{£(..)}U£(...,a;Ub;...)
la1,...,an] | List(b) List(a; U...Ua, Ub)

[a1]a2] List(b) Or({[b' U a1]b U ap], Constant}
List(a) £(...) £(...) # [b1]b2] or({£(...),[d'|a}, Constant})
List(a) List(b) List(a Ub)

Table A.8: Examples of rules to calculate the least upper bound

is the term itself. The two rules for Var say that if the other term is a Var the least
upper bound is, at least a Var, otherwise it must be the T element. The lub of anything
- with T is clearly T. The lub of an abstract term T with Ground is only Ground if T
describes ground terms, otherwise it must be T. A special case corresponds to the
atom []. When combined with a list constructor, [] is used to generate the abstract
type List. The rules are simpler for other constants: if combined with a different
constant they generate Constant; if combined with a compound term they generate or;
if combined with an Or they 1mply that Constant must be contained in the arguments
to the resulting Or; if combined with List they result in an Or. Rules for the Constant
abstract type are very similar.

Concerning the rules for compound terms. The least upper bound of two compound
terms with the same functor has the same functor and the arguments are combined

A.3 Procedure Exit 229

recursively. If the compound terms have different functors, an Or term is built. When
combining a compound term with an Or, the algorithm verifies if a term with the same
functor exists below the Or. If so, the arguments of these two terms are combined.
Otherwise, the term is added to the Or. When combining a compound term with a
list, particular care is given to terms of the form [a;]az]. If they are true lists, the least
upper bound is also a true list. If they are not true lists (e.g., open lists) an Or is
created. An Or is also created when considering the general case of least upper bound
of a compound term and a list.

The least upper bound of two terms List is a List whose argument is the abstract
upper bound of both lists. The calculation of upper bounds between a List and a term
of the form Or, or between terms of the form Or are not described here, but can be
obtained as a simple generalisation of the previous rules.

These rules are used recursively up to a certain depth. When this limit is reached,
much simpler rules is used: the result of the least abstract bound operation can only
be a constant, Ground, Var, or T, but can never be a compound term, a List or an Or.
This corresponds to the depth limit on abstract terms, which guarantees finiteness of
the domain domain, and hence termination.

Sharing The previous rules are not complete. They do not describe how to calculate
the new labels for the terms of the form Var(L") or T(L").

To compute labels for T one has simply to guarantee that all labels in abstract terms
that have been updated to the same T term, share a single label.

To compute labels for Var one has two problems. The first one concerns the rule
lub(Var(L),T;) = T(L"). If this rule is applied to one argument of the form Var(L),
then, in all other places where a term of the form Var(L) appears, the least upper
bound must always be T(L").

Problems may also arise with the rule lub(Var(L), Var(L')) = Var(L"). The reason is
that we must guarantee that if one subterm of the least upper bound if of the form
Var(L"), whenever Var(L") is bound to some value, all other subterms of the form
Var(L") should be bound to the same value. This situation is particularly subtle when
constructing recursive terms, in this case the List.

Table A.9 shows some examples of this problem (V is used instead of Var and 7 is used
instead of L; for readability). '

A.4 Interpretation of Builtins 230

T Ty - Tub(Ts, T5)

VD, V(@) v V) [a(Tan), Ta)

a(a(V(1)), V(2)) | a(V (1), V(1)) || a(0r({a(V(1"),5(T(2)}, T(2"))
VLIV | a(0.0) a(List(T(1")), List(T(1"))

Table A.9: Examples of promotion to T due to sharing

The first two columns show the arguments to lub. The third column shows the
correct least upper bound. In the first example it is necessary to promote both
arguments because binding one argument will not necessarily result in binding the
other (therefore an abstract term of the form Var cannot be used, although we know
the least upper bound is a variable).

The second example demonstrates a more subtle problem, where a variable appears
both inside and outside an Or term. In this case, binding the occurrence outside the
Or should result in binding the inner occurrence. Unfortunately, the opposite is not
possible and we have to promote the variable to T.

Finally, the last example concerns occurrences of variables in lists. Variables are
allowed inside lists, but in this case their meaning is not a set of variables that always
share, but a set of sets of variables that always share, one for each element of the list.
Because the use of rename may force the creation of new variables during abstract
unification, it is not allowed for a Var term appearing in a list to have a scope larger
than the List. The alternative would be during abstract unification and projection to
unfold both lists, and this cannot be guaranteed to be correct in our domain.

These transformation rules lose some information. A simple solution would be to
extend the abstract domain with a new type to represent variables which might or
. not share. A disadvantage of this new abstract type is that unification of one element
could result in promoting the other elements sharing the same label to T.

A.4 Interpretation of Builtins

Interpretation of builtins consists of (a) verifying that the arguments to the builtin
are correct and (b) simulating the execution of the builtin.

The first operation usually consists of a type check applied to the arguments of the
builtin. In some cases, say for the builtin is, if it is found that the second argument

A.4 Interpretation of Builtins 231

LY

is Var, the interpreter generates an error. In other cases, say for the builtin atom, if
the argument is Var, the builtin is simply made to return the empty substitution, i.e.,
to fail.

Simulating the execution of a builtin can be more complex. In general, the operation
of a builtin may result in (i) changing the instantiation of its arguments, (ii) providing
extra control to the program, (iii) changing the external environment to the program,
(iv) changing the program database, or (v) generating a new computation for some
predicate P.

Consequence (i) can be simulated by performing abstract unification with a skeleton
representing the consequences of the program. For instance, the builtin =. ., can be
simulated by performing abstract unification of the input arguments with the term
T(L)= ..[Cons|List(T(L))]. In some cases, more precise analysis is possible. For =..,
if the first argument is £(...) then the builtin itself could be executed. In practice,
separate rules are generated for each builtin, and the amount of effort devoted to each
builtin depends on its importance in real programs.

Consequence (ii) concerns the pruning operators. Unfortunately, the system is in
general not precise enough to know when pruning is performed, and in practice
ignores pruning. Notice that this does not affect the correctness of the system, only
that more solutions are considered.

Consequence (iii) results from builtins such as vrite or read. External actions are
of no interest to the abstract interpreter, which is only interested in the internal
operation of the program.

Consequence (iv) in Prolog relates to the use of assert, retract or similar predicates.
Debray gives a detailed discussion of the problem [44]. Basically, he defines predicates
as static if they are not affected by asserts or retracts, and tries to determine which
predicates can be asserted or retracted (this is trivial if the Prolog system forces
dynamic declarations). The most important conclusion concerns stable programs, i.e.,
programs where the use of assert does not create new uses of assert, and which can
be analysed. An important case of stable programs are programs where only facts are
asserted. Our system tries to verify this condition, if it it not guaranteed to hold it
generates warnings but continues analysis regardless.

Finally, consequence (v) concerns mainly the use of call. In this case the abstract types
£(...) and Or are very useful in reducing most metacalls to normal calls. Otherwise,
the system again generates warnings, as abstract interpretation may not provide a
correct approximation to the program.

Bibliography

[11 H. Ait-Kaci. Warren’s Abstract Machine — A Tutorial Reconstruction. MIT
Press, 1991.

[2] K. A. M. Ali and R. Karlsson. The Muse Or-parallel Prolog Model and its Perfor-
mance. In Proceedings of the North American Conference on Logic Programming,
pages 757-776. MIT Press, October 1990.

[3] R. Bahgat. Non-Deterministic Concurrent Logic Programming in Pandora.
World Scientific, 1993.

[4] R. Bahgat and S. Gregory. Pandora: Non-deterministic Parallel Logic Pro-
gramming. In Proceedings of the Sixth International Conference on Logic
Programming, pages 471-486. MIT Press, June 1989.

[5] M. G. d. 1. Banda and M. V. Hermenegildo. A Practical Approach to the Global
Analysis of CLP Programs. In ILPS93, pages 437-455, 1993.

[6] A. K. Bansal and L. Sterling. An Abstract Interpretation Scheme for Iden-
tifying Inherent Parallelism in Logic Programs. New Generation Computing,
7(2,3):273-324, 1990.

[7] G. Battani and H. Meloni. Interpréteur de Langage de Programmation Prolog.
Internal report, Groupe Intelligence Artificielle, Université Aix-Marseille II,
September 1973.

[8] A.Beaumont, S. M. Raman, P. Szeredi, and D. H. D. Warren. Flexible Scheduling
of OR-Parallelism in Aurora: The Bristol Scheduler. In PARLE91: Conference
on Parallel Architectures and Languages Europe, volume 2, pages 403—420.
Springer Verlag, June 1991.

[9] G. Bell. Ultracomputers: a Teraflop Before its Time. Communications ACM,
35(8):26-47, 1992.

BIBLIOGRAPHY | 233

[10] P. Boizumault. A General Model to Implement Dif and Freeze. In E. Shapiro,

editor, Third International Conference on Logic Programming, London, pages
585-592. Springer-Verlag, 1986.

[11] K. A. Bowen, K. A. Buettner, I. Cicekli, and A. K. Turk. The Design of a High-
Speed Incremental Portable Prolog Compiler. In Third International Conference
on Logic Programming, number 225 in Lecture Notes in Computer Science,
pages 650-656. Imperial College, Springer-Verlag, July 1986.

[12] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. The Journal of Logic Programming, 10(2), February 1991.

[13] M. Bruynooghe and G. Janssens. An Instance of Abstract Interpretation In-
tegrating Type and Mode Inference (Extended abstract). In Proceedings of the
Fifth International Conference and Symposium on Logic Programming, pages
669-683, August 1988.

[14] M. Bruynooghe, G. Janssens, A. Callebault, and B. Demoen. Abstract Interpre-
tation: Towards the Global Optimisation of Prolog Programs. In Proceedings
1987 Symposium on Logic Programming, pages 192-204. IEEE Computer Soci-
ety, September 1987.

[15] A. Calderwood and P. Szeredi. Scheduling or-parallelism in Aurora — the
Manchester scheduler. In Proceedings of the Sixth International Conference on
Logic Programming, pages 419-435. MIT Press, June 1989.

[16] M. Carlsson. Freeze, Indexing, and Other Implementation Issues in the Wam.
In J.-L. Lassez, editor, Proceedings of the Fourth International Conference'on
Logic Programming, MIT Press Series in Logic Programming, pages 40-58.
University of Melbourne, "MIT Press”, May 1987.

[17] M. Carlsson. On the efficiency of optimised shallow backtracking in Compiled
Prolog. In Proceedings of the Sixth International Conference on Logic Program-
ming, pages 3-15. MIT Press, June 1989.

[18] M. Carlsson and P. Szeredi. The Aurora abstract machine and its emulator.
SICS Research Report R90005, Swedish Institute of Computer Science, 1990.

[19] M. Carlsson and J. Widen. SICStus Prolog User’s Manual. Technical report,
Swedish Institute of Computer Science, 1988. SICS Research Report R88007B.

[20] J. Chassin de Kergommeaux. Measures of the PEPSys Implementation on the
MX500. Technical Report CA-44, ECRC, January 1989.

BIBLIOGRAPHY 234
[21] J. Chassin de Kergommeaux and P. Robert. An Abstract Machine to Implement
Or-And Parallel Prolog Efficiently. The Journal of Logic Programming, 8(3),

May 1990.

[22] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC.
In J.-L. Lassez, editor, Proceedings of the Fourth International Conference on
Logic Programming, MIT Press Series in Logic Programming, pages 276-293.
University of Melbourne, "MIT Press”, May 1987.

(23] K. L. Clark and S. Gregory. A Relational Language for Parallel Programming.
In Arvind, editor, ACM Conference on Functional Programming Languages and
Computer Architecture, pages 171-178. Acm, October 1981.

[24] K. L. Clark and S. Gregory. PARLOG: Parallel Programming in Logic. ACM
TOPLAS, 8:1-49, January 1986.

[25] K. L. Clark and S. Gregory. PARLOG and Prolog United. In Proceedings of the
Fourth International Conference on Logic Programming, pages 927-961, May
1987.

[26] K. L. Clark, F. G. McCabe, and S. Gregory. IC-PROLOG - language features.
In K. L. Clark and S. A. Tirnlund, editors, Logic Programming, pages 253-266.
Academic Press, London, 1982.

[27] W. F. Clocksin. Principles of the DelPhi parallel inference machine. Computer
Journal, 30(5):386-392, 1987.

[28] W. F. Clocksin and C. Mellish. Programming in Prolog. Springer-Verlag, 1986.

[29] M. Codish, M. Falaschi, and K. Marriott. Suspension analysis for concurrent
logic programs. In K. Furukawa, editor, Proceedings of the Eighth International
Conference on Logic Programming, pages 331-345, Cambridge, Massachusetts
London, England, 1991. MIT Press.

[30] M. Codish and E. Shapiro. Compiling OR-parallelism into AND-parallelism.
In E. Shapiro, editor, Third International Conference on Logic Programming,
London, pages 283-297. Springer-Verlag, 1986.

[31] C. Codognet and P. Codognet. Non-deterministic Stream And-Parallelism Based
on Intelligent Backtracking. In G. Levi and M. Martelli, editors, Logic Program-
ming: Proceedings of the Sixth International Conference, pages 83-79. The MIT
Press, 1989.

[32] C. Codognet, P. Codognet, and M.-M. Corsini. Abstract Interpretation for
Concurrent Logic Languages. In Logic Programming Proceedings of the 1990
North American Conference, pages 215-232. MIT Press, October 1990.

BIBLIOGRAPHY 235

[y

[33] A. Colmerauer. Theoretical Model of Prolog II. In M. van Caneghen and D. H. D.
Warren, editors, Logic Programming and its Applications, pages 3-31. Ablex
Publishing Corporation, 1986.

[84] A. Colmerauer. An Introduction to Prolog-111. Communications ACM, 33(7):69-
90, July 1990.

(35] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un systéme de com-
munication homme-machine en francais. Technical report cri 72-18, Groupe
Intelligence Artificielle, Université Aix-Marseille II, October 1973.

[36] J.S. Conery. Parallel Execution of Logic Programs. Kluwer Academic Publishers,
Norwell, Ma 02061, 1987.

[37] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Conference Record of the 4th ACM Symposium on Principles of Programming
Languages, pages 238-252, 1977.

[38] P. Cousot and R. Cousot. Comparison of the Galois Connexion and Widen-
ing/Narrowing Approaches to Abstract Interpretation. In ICLP91 Pre-
Conference Workshop on Semantics-Based Analysis of Logic Programs, Uni-
versita di Pisa, Dipartimento di Informatica, June 1991.

[39] J. A. Crammond. A Garbage Collection Algorithm for Shared Memory Parallel
Processors. International Journal of Parallel Processing, 17(6), December 1988.

[40] J. A. Crammond. Implementation of Committed Choice Logic Languages on
Shared Memory Multiprocessors. PhD thesis, Heriot-Watt University, Edin-
burgh, May 1988. Research Report PAR 88/4, Dept. of Computing, Imperial
College, London. :

[41] J. A. Crammond. The Abstract Machine and Implementation of Parallel Prolog.
Technical report, Dept. of Computing, Imperial College, London, June 1990.

[42] J. A. Crammond. Scheduling and Variable Assignment in the Parallel Parlog
- Implementation. In 1990 North American Conference on Logic Programming,
pages 642-657. MIT Press, October 1990.

[43] S. K. Debray. A Simple Code Improvement Scheme for Prolog. In Sixth
International Conference on Logic Programming, pages 17-32. MIT Press, June
1989.

(44] S. K. Debray. Flow Analysis of Dynamic Logic Programs. The Journal of Logic
Programming, 7(2):149-176, September 1989.

BIBLIOGRAPHY 236

LY

[45] S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Pro-
grams. ACM Transactions on Programming Languages and Systems, 11(3):418—
450, July 1989.

[46] S. K. Debray and D. S. Warren. Automatic Mode Inference for Logic Programs.
The Journal of Logic Programming, 5(3):207-229, September 1988.

[47] D. DeGroot. Restricted and-parallelism. In H. Aiso, editor, International Con-
ference on Fifth Generation Computer Systems 1984, pages 471-478. Institute
for New Generation Computing, Tokyo, 1984.

[48] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.
The Constraint Logic Programming Language CHIP. In International Confer-
ence on Fifth Generation Computer Systems 1988, pages 693-702. ICOT, Tokyo,
Japan, Nov. 1988.

[49] V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish. Freeness analysis
in the presence of numerical constraints. In Warren [189], pages 100-115.

[50] I Dutra. A Flexible Scheduler for the Andorra-I System. In LNCS 569, ICLP'91
Pre-Conference Workshop on Parallel Execution of Logic Programs, pages 70-82.
Springer-Verlag, June 1991.

[51] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A New Declarative
Semantics for Logic Languages. In Proceedings of the Fifth International
Conference and Symposium on Logic Programming, pages 993-1006. MIT Press,
August 1988.

[52] T. Franzén. Logical Aspects of AKL. Sics research report r91:12, Swedish
Institute of Computer Science, October 1991.

(53] J. Gabriel, T. Lindholm, E. L. Lusk, and R. A. Overbeek. A Tutorial on the
Warren Abstract Machine for Computational Logic. Research Paper ANL-84-84,
Argonne National Laboratory, June 1985.

[54] R. P. Gabriel. Performance and evaluation of Lisp systems. MIT Press, 1985.

[55] J. Gallagher and M. Bruynooghe. The Derivation of an Algorithm for Program
Specialization. In Proceedings of the Seventh International Conference on Logic
Programming, pages 732-746. MIT Press, June 1990.

(56] J. Gallagher, M. Codish, and E. Shapiro. Specialization of Prolog and FCP Pro-
grams Using Abstract Interpretation. New Generation Computing, 6(2,3):1569—
186, 1988.

BIBLIOGRAPHY 237

(57] R. Giacobazzi, S. Debray, and G. Levi. A generalized semantics for constraint
logic programs. In Proceedings of the International Conference on Fifth Gen-
eration Computer Systems, pages 581-591, ICOT, Japan, 1992. Association for
Computing Machinery.

(58] F. Gianotti and M. Hermenegildo. A Technique for Recursive Invariance Detec-
tion and Selective Program Specialization. In LNCS 528, Programming Lan-
guage Implementation and Logic Programming 1991, pages 323-334. Springer-
Verlag, August 1991.

[59] R. Giocabazzi and L. Ricci. Pipeline Optimizations in AND-Parallelism by
Abstract Interpretation. In Proceedings of the Seventh I nternational Conference
on Logic Programming, pages 291-305. MIT Press, June 1990.

[60] S. Gregory. Parallel Logic Programming in PARLOG. Addison-Wesley, 1987.

[61] S. Gregory and R. Yang. Parallel Constraint Solving in Andorra-I. In Interna-
tional Conference on Fifth Generation Computer Systems 1992, pages 843-850.
ICOT, Tokyo, Japan, June 1992.

[62] G. Gupta. Paged Binding Array: Environment Representation for And-Or
Parallel Prolog. Technical Report TR-91-24, University of Bristol, Computer
Science Department, October 1991.

[63] G. Gupta and M. V. Hermenegildo. ACE: And/Or-parallel Copying-based Exe-
cution of Logic Programs. In LNCS 569, ICLP’91 Pre-Conference Workshop on

Parallel Execution of Logic Programs, pages 146-158. Springer-Verlag, June
1991.

[64] G. Gupta and B. Jayaraman. Compiled And-Or Parallelism on Shared Memory
Multiprocessors. In Proceedings of the North American Conference on Logic
Programming, pages 332-349. MIT Press, October 1989.

[65] G. Gupta and B. Jayaraman. On Criteria for Or-Parallel Execution Models
of Logic Programs. In Proceedings of the North American Conference on Logic
Programming, pages 604-623. MIT Press, October 1989.

[66] G. Gupta and V. Santos Costa. And-Or Parallelism in Full Prolog with Paged
Binding Arrays. In LNCS 605, PARLE’92 Parallel Architectures and Languages
Europe, pages 617-632. Springer-Verlag, June 1992.

[67] G. Gupta and V. Santos Costa. Complete and Efficient Methods for Supporting
Side-Effects and Cuts in And-Or Parallel Prolog. In PDP 92, pages 288-295.
IEEE, November 1992.

BIBLIOGRAPHY 237

L)

[57] R. Giacobazzi, S. Debray, and G. Levi. A generalized semantics for constraint
logic programs. In Proceedings of the International Conference on Fifth Gen-
eration Computer Systems, pages 581-591, ICOT, Japan, 1992. Association for
Computing Machinery.

[58] F. Gianotti and M. Hermenegildo. A Technique for Recursive Invariance Detec-
tion and Selective Program Specialization. In LNCS 528, Programming Lan-
guage Implementation and Logic Programming 1991, pages 323-334. Springer-
Verlag, August 1991.

[59] R. Giocabazzi and L. Ricci. Pipeline Optimizations in AND-Parallelism by
Abstract Interpretation. In Proceedings of the Seventh International Conference
on Logic Programming, pages 291-305. MIT Press, June 1990.

[60] S. Gregory. Parallel Logic Programming in PARLOG. Addison-Wesley, 1987.

[61] S. Gregory and R. Yang. Parallel Constraint Solving in Andorra-1. In Interna-
tional Conference on Fifth Generation Computer Systems 1992, pages 843-850.
ICOT, Tokyo, Japan, June 1992.

[62] G. Gupta. Paged Binding Array: Environment Representation for And-Or
Parallel Prolog. Technical Report TR-91-24, University of Bristol, Computer
Science Department, October 1991.

[63] G. Gupta and M. V. Hermenegildo. ACE: And/Or-parallel Copying-based Exe-
cution of Logic Programs. In LNCS 569, ICLP’91 Pre-Conference Workshop on
Parallel Execution of Logic Programs, pages 146-158. Springer-Verlag, June
1991.

[64] G. Gupta and B. Jayaraman. Compiled And-Or Parallelism on Shared Memory
Multiprocessors. In Proceedings of the North American Conference on Logic
Programming, pages 332-349. MIT Press, October 1989.

[65] G. Gupta and B. Jayaraman. On Criteria for Or-Parallel Execution Models
of Logic Programs. In Proceedings of the North American Conference on Logic
Programming, pages 604-623. MIT Press, October 1989.

[66] G. Gupta and V. Santos Costa. And-Or Parallelism in Full Prolog with Paged
Binding Arrays. In LNCS 605, PARLE’92 Parallel Architectures and Languages
Europe, pages 617-632. Springer-Verlag, June 1992.

[67] G. Gupta and V. Santos Costa. Complete and Efficient Methods for Supporting
Side-Effects and Cuts in And-Or Parallel Prolog. In PDP ’92, pages 288-295.
IEEE, November 1992.

BIBLIOGRAPHY 238

(68] G.Gupta, V. Santos Costa, R. Yang, and M. V. Hermenegildo. IDIOM: Integrating
Dependent and-, Independent and-, Or-parallelism. In Logic Programming:

Proceedings of the International Logic Programming Symposium, pages 152—
166. MIT Press, October 1991.

[69] G.Gupta and D. H. D. Warren. An Interpreter for the Extended Andorra Model.
Preliminary report, Department of Computer Science, University of Bristol,
November 1991.

[70] S. Haridi. A Logic Programming Language based on the Andorra Model. New
Generation Computing, 7(2,3):109-125, 1990.

[71] S. Haridi and P. Brand. Andorra Prolog—an integration of Prolog and committed
choice languages. In International Conference on Fifth Generation Computer
Systems 1988. ICOT, 1988.

[72] S. Haridi and S. Jansson. Kernel Andorra Prolog and its Computational Model.
In D. Warren and P. Szeredi, editors, Proceedings of the Seventh International
Conference on Logic Programming, pages 31-46. MIT Press, 1990.

[73] B. Hausman, A. Ciepielewski, and A. Calderwood. Cut and Side-Effects in
Or-Parallel Prolog. In International Conference on Fifth Generation Computer
Systems 1988, pages 831-840. ICOT, 1988.

[74] M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer
Architecture Design and Efficient Implementation of Logic Programs in Parallel.
PhD thesis, Dept. of Electrical and Computer Engineering (Dept. of Computer
Science TR-86-20), University of Texas at Austin, Austin, Texas 78712, August
1986.

[75] M. V. Hermenegildo. An Abstract Machine for Restricted And-Parallel Execution
of Logic Programs. In E. Shapiro, editor, Third International Conference on Logic
Programming, London, pages 25-39. Springer-Verlag, July 1986.

[76] M. V. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting
Independent And-Parallelism. In Proceedings of the Seventh International
Conference on Logic Prog('amming, pages 253-268. MIT Press, June 1990.

[77] M. V. Hermenegildo and R. I. Nasr. Efficient Management of Backtracking in
AND-parallelism. In Third International Conference on Logic Programming,
number 225 in Lecture Notes in Computer Science, pages 40-54. Imperial
College, Springer-Verlag, July 1986.

BIBLIOGRAPHY 239

[y

[78] M. V. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism.
In Proceedings of the Seventh International Conference on Logic Programming,
pages 237-252. MIT Press, June 1990.

[79] M. V. Hermenegildo, R. Warren, and S. K. Debray. Global flow analysis as a
practical compilation tool. The Journal of Logic Programming, 13(1, 2, 3 and
4):349-366, 1992.

[80] T. Hickey and S. Mudambi. Global compilation of Prolog. The Journal of Logic
Programming, pages 193-230, November 1989.

[81] R. Hill. LUSH-Resolution and its Completeness. Dcl memo 78, Department of
Artificial Intelligence, University of Edinburgh, 1974.

[82] K. Horiuchi. Less Abstract Semantics for Abstract Interpretation of FGHC
Programs. In International Conference on Fifth Generation Computer Systems
1992, pages 897-906. ICOT, Tokyo, Japan, June 1992.

[83] D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable
Aliasing in Logic Programs. In Logic Programming Proceedings of the North
American Conference, 1989, pages 154-165. MIT Press, October 1989.

(84] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings
Fourtheenth Annual ACM Symposium on Principles of Programming Languages,
pages 111-119. "ACM”, 1987.

[85] J. Jaffar and S. Michaylov. Methodology and implementation of a CLP system.
In J.-L. Lassez, editor, Proceedings of the Fourth International Conference on
Logic Programming, MIT Press Series in Logic Programming, pages 196-218.
University of Melbourne, "MIT Press”, May 1987.

[86] S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel
Language. In Logic Programming: Proceedings of the International Logic
Programming Symposium, pages 167-186. MIT Press, October 1991.

[87] S. Janson and J. Montelius. Design of a Sequential Prototype Implementation
of the Andorra Kernel Language. Sics research report, in preparation, Swedish
Institute of Computer Science, 1992. ’

[88] G. Janssens. Deriving Run Time Properties of Logic Programs by Means of Ab-
stract Interpretation. PhD thesis, Department of Computer Science, Katholieke
Universiteit Leuven, March 1990.

[89] N. Jones and H. Sgndergaard. A semantics-based framework for the abstract
interpretation of PROLOG. In Abstract Interpretation of Declarative Languages,
chapter 6, pages 124-142. Ellis-Horwood, September 1987.

BIBLIOGRAPHY 240

[90] L. V. Kalé. The REDUCE OR process model for parallel execution of logic
programming. The Journal of Logic Programming, 11(1), July 1991.

[91] T. Kanamori. Abstract interpretation based on Alexander templates. The
Journal of Logic Programming, 15(1 & 2):31-54, January 1993.

[92] Y. Kimura and T. Chikayama. An Abstract KL1 Machine and its Instruction
Set. In International Symposium on Logic Programming, pages 468—4717. San
Francisco, IEEE Computer Society, August 1987.

(93] S. Kliger and E. Shapiro. A Decision Tree Compilation Algorithm for FCP(,:,?).
In Proceedings of the Fifth International Conference and Symposium on Logic
Programming, pages 1315-1336. MIT Press, August 1988.

[94] S. Kliger and E. Shapiro. From Decision Trees to Decision Graphs. In Proceed-
ings of the North American Conference on Logic Programming, pages 97-116.
MIT Press, October 1990.

[95] F. Kluzniak and S. Szpakowicz. Prolog for Programmers. Academic Press, 1985.

[96] M. Korsloot and E. Tick. Compilation Techniques for Nondeterminate Flat
Concurrent Logic Programming Languages. InK. Furukawa, editor, Proceedings
of the Eighth International Conference on Logic Programming. MIT Press, 1991.

[97] R. A. Kowalski. Logic for Problem Solving. Elsevier North-Holland Inc., 1979.

[98] B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A Generic Abstract
Interpretation Algorithm and its Complexity Analysis (extended abstract). In
Proceedings of the Eighth International Conference on Logic Programming,
pages 64-78. MIT Press, June 1991.

[99] J. W. Lloyd. Foundations of Logic Programming. - Springer-Verlag, second
edition, 1987.

[100] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. H. D. Warren,
A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, , A. Ciepelewski,
and B. Hausman. The Aurora or-parallel Prolog system. New Generation
Computing, 7(2,3):243-271, 1990. |

[101] M. J. Maher. Logic semantics for a class of committed-choice programs. In
J.-L. Lassez, editor, Proceedings of the Fourth International Conference on
Logic Programming, MIT Press Series in Logic Programming, pages 858-876.
University of Melbourne, "MIT Press”, May 1987.

BIBLIOGRAPHY 241

L

[102] H. Mannila and E. Ukkonen. Flow Analysis of Prolog Programs (extended
abstract). In Proceedings 1987 Symposium on Logic Programming, pages 205
214. IEEE Computer Society, September 1987.

[103] A.Marién, G. Janssens, A. Mulkers, and M. Bruynooghe. The impact of abstract
interpretation: an experiment in code generation. In Proceedings of the Sixth
International Conference on Logic Programming, pages 33—47. MIT Press, June
1989.

[104] K. Marriot and H. Sgndergaard. Bottom-up Abstract Interpretation of Logic
Programs. In Proceedings of the Fifth International Conference and Symposium
on Logic Programming, pages 733-748. MIT Press, August 1988.

[105] K. Marriot and H. Sgndergaard. Analysis of Constraint Logic Programs. In
Logic Programming Proceedings of the 1990 North American Conference, pages
531-547. MIT Press, October 1990.

[106] H. Matsumoto. A Static Analysis of Prolog Programs. SIGPLAN Notices,
20(10):48-59, October 1985.

[107] M. Meier. Benchmarking of Prolog Procedures for Indexing purposes. In Pro-
ceedings of the International Conference on Fifth Generation Computer Systems,
pages 800-807. Institute for New Generation Computer Technology, November
1988.

[108] C. Mellish. Abstract interpretation of PROLOG programs. In Abstract Inter-
pretation of Declarative Languages, chapter 8, pages 181-198. Ellis-Horwood,
September 1987. ‘

[109] C. S. Mellish. The Automatic Generation of Mode Declarations for Prolog
Programs. DAI Research Paper 163, Department of Artificial Intelligence, Univ.
of Edinburgh, August 1981.

[110] C. S. Mellish. Some Global Optimizations for a Prolog Compiler. The Journal of
Logic Programming, 2(1), April 1985.

[111] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation. In Logic Pro-
gramming Proceedings of the North American Conference, 1 989, pages 166-185.
MIT Press, October 1989.

[112] K. Muthukumar and M. Hermenegildo. Efficient Methods for Supporting Side
Effects in Independent And-parallelism and Their Backtracking Semantics. In
Proceedings of the Sixth International Conference on Logic Programming, pages
80-97. MIT Press, June 1989.

BIBLIOGRAPHY 242

[y

(113] K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable
dependency using abstract interpretation. The Journal of Logic Programming,
13(1, 2, 3 and 4):315-347, 1992.

[114] K. Muthukumar and M. V. Hermenegildo. The CDG, UDG, and MEL Methods
for Automatic Compile-time Parallelization of Logic Programs for Independent
And-parallelism. In Proceedings of the Seventh International Conference on
Logic Programming, pages 221-237. MIT Press, June 1990.

[115] K. Muthukumar and M. V. Hermenegildo. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. In Pro-
ceedings of the Eighth International Conference on Logic Programming, pages
49-63. MIT Press, June 1991.

[116] A. Mycroft and R. A. O’Keefe. A Polymorphic Type System for Prolog. Artificial
Intelligence, 23(6):295-307, 1984.

[117] L. Naish. All Solutions Predicates in Prolog. In International Symposium on
Logic Programming, pages 73-78. IEEE Computer Society, July 1985.

{118] L. Naish. Automating Control of Logic Programs. The Journal of Logic Pro-
gramming, 2(3), October 1985.

[119] L. Naish. Negation and Control in Prolog. Lecture notes in Computer Science
238. Springer—Verlag, 1985.

[120] L. Naish. Parallelizing NU-Prolog. In Proceedings of the Fifth International
Conference and Symposium on Logic Programming, pages 1546-1564. MIT
Press, August 1988.

[121] U. Nilsson. Abstract Interpretation: A Kind of Magic. In LNCS 528, Program-
ming Language Implementation and Logic Programming 1991, pages 299-309.
Springer-Verlag, August 1991.

[122] R. A. O’Keefe. Finite Fixed-Point Problems. In J.-L. Lassez, editor, Proceedings
of the Fourth International Conference on Logic Programming, MIT Press Series

in Logic Programming, pages 729-743. University of Melbourne, "MIT Press”,
May 1987. '

[123] I. W. Olthof. An Optimistic AND-Parallel Prolog Implementation. Master’s
thesis, Department of Computer Science, University of Calgary, 1991.

[124] T. Ozawa, A. Hosoi, and A. Hattori. Generation Type Garbage Collection for
Parallel Logic Languages. In Proceedings of the North American Conference on
Logic Programming, pages 291-305. MIT Press, October 1990.

BIBLIOGRAPHY 243

[y

[125] D. Palmer. The DAM: A Parallel Implementation of the AKL. Presented at the
ILPS workshop on Parallel Logic Programming, October 1991.

[126] D. Palmer and L. Naish. NUA-Prolog: an Extension to the WAM for Parallel
Andorra. In K. Furukawa, editor, Proceedings of the Eighth International
Conference on Logic Programming. MIT Press, 1991..

[127] L. M. Pereira. Logic control with logic. In J. Campbell, editor, Implementations
of Prolog, pages 177-193. Ellis Horwood, 1984.

[128] L. M. Pereira, L. Monteiro, J. Cunha, and J. N. Aparicio. Delta Prolog: a
distributed backtracking extension with events. In E. Shapiro, editor, Third In-
ternational Conference on Logic Programming, London, pages 69-83. Springer-
Verlag, 1986. ‘

[129] L. M. Pereira and A. Porto. Intelligent Backtracking and Sidetracking in Horn
Clause Programs - the Theory. Report 2/79, Departamento de Informatica,
Universidade Nova de Lisboa, October 1979.

[130] A. Porto. Epilog: A language for extended programming in logic. In J. Campbell,
editor, Implementations of Prolog, pages 268—278. Ellis Horwood, 1984.

[131] B. Ramkumar and L. Kalé. Compiled Execution of the Reduce-OR Process Model
on Multiprocessors. In Proceedings of the North American Conference on Logic
Programming, pages 313-331. MIT Press, October 1989.

[132] L. Ricci. Compilation of Logic Programs for Massively Parallel Systems. PhD
thesis, dipartimento di informatica, universita di pisa, March 1990.

[133] J. A. Robinson. A Machine Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(23):23—41, January 1965.

[134] V. Santos Costa. Implementacdo de Prolog. Provas de aptiddo pedagégica e
capacidade cientifica, Universidade do Porto, Dezember 1988.

[135] V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel Prolog
System that Transparently Exploits both And- and Or-Parallelism. In Third
ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming
PPOPP, pages 83-93. ACM press, April 1991. SIGPLAN Notices vol 26(7), July
1991.

[136] V. Santos Costa, D. H. D. Warren, and R. Yang. The Andorra-I Engine: A
parallel implementation of the Basic Andorra model. In Proceedings of the
Eighth International Conference on Logic Programming, pages 825-839. MIT
Press, June 1991.

BIBLIOGRAPHY 244

[187] V. Santos Costa, D. H. D. Warren, and R. Yang. The Andorra-I Preprocessor:
Supporting full Prolog on the Basic Andorra model. In Proceedings of the Eighth
International Conference on Logic Programming, pages 443-456. MIT Press,
June 1991.

[138] V. A. Saraswat. Partial Correctness Semantics for CP(},],&,;]. In Proceedings
of the Foundations of Software Technology and Theoretical Computer Science
Conference, pages 347-368, Dezember 1985.

[139] V. A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis,
Carnegie-Mellon University, January 1989. Available as Technical Report CMU-
CS-89-108.

[140] M. Sato and A. Goto. Evaluation of the KL1 Parallel System on a Shared
Memory Multiprocessor. In IFIP Working Conference on Parallel Processing,
pages 305-318. Pisa, North Holland, May 1988.

[141] M. Sato, H. Shimizu, A. Matsumoto, K. Rokusawa, and A. Goto. KL1 Execution
Model for PIM Cluster with Shared Memory. In J.-L. Lassez, editor, Proceedings
of the Fourth International Conference on Logic Programming, MIT Press Series
in Logic Programming, pages 338-355. University of Melbourne, "MIT Press”,
May 1987.

[142] T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs.
Theoretical Computer Science, 34(1,2):227-240, November 1984.

{143] E. Shapiro. A Subset of Concurrent Prolog and Its Interpreter. In E. Shapiro,
editor, Concurrent Prolog: Collected Papers, pages 27-83. MIT Press, Cambridge
MA, 1987.

[144] E. Shapiro. Concurrent Prolog: Collected Papers. MIT Press, 1987.

" [145] E. Shapiro. An Or-Parallel Execution Algorithm for Prolog and its FCP imple-
mentation. In Proceedings of the Fifth International Conference and Symposium
on Logic Programming, pages 311-337. MIT Press, August 1988.

[146] E. Shapiro. The family of Concurrent Logic Programming Languages. ACM
computing surveys, 21(3):412-510, 1989.

[147] K. Shen. Studies of AND/OR Parallelism in Prolog. PhD thesis, University of
Cambridge, 1992. ’

[148] R. Sindaha. The Dharma Scheduler — Definitive Scheduling in Aurora on
Multiprocessors Architecture. In PDP 92, pages 296-303. IEEE, November
1992,

BIBLIOGRAPHY 245

[149] Z. Somogyi, K. Ramamohanarao, and J. Vaghani. A Stream AND-Parallel
Execution Algorithm with Backtracking. In R. A. Kowalski and K. A. Bowen,
editors, Logic Programming: Proceedings of the Fifth International Conference
and Symposium, Volume 2, pages 1142-1159. The MIT Press, 1988.

[150] H. Sgndergaard. An Application of Abstract Interpretation of Logic Programs:
Occur Check Reduction. In LNCS 213, Proceedings 1st. European Symposium
on Programming (ESOP 86), pages 327-338. Springer-Verlag, 1986.

(151] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[152] P. Szeredi. Performance analysis of the Aurora or-parallel Prolog system. In
Proceedings of the North American Conference on Logic Programming, pages
713-732. MIT Press, October 1989. '

[153] P. Szeredi, M. Carlsson, and R. Yang. Interfacing Engines and Schedulers in
OR-Parallel Prolog Systems. In PARLE91: Conference on Parallel Architectures
and Languages Europe, volume 2, pages 439—453. Springer Verlag, June 1991.

[154] A. Takeuchi. Parallel Logic Programming. PhD thesis, University of Tokyo,
July 1990.

[155] J. Tan and L. I-Peng. Compiling Dataflow Analysis of Logic programs. In
Proceedings of the ACM SIGPIAN’92 Conference on Programming Language
Design and Implementation, pages 106-115, June 1992.

[156] J. Tanaka, K. Ueda, T. Miyazaki, A. Takeuchi, Y. Matsumoto, and K. Furukawa.
Guarded Horn Clauses and Experiences with Parallel Programming. In 1986
Proceedings Fall Joint Computer Conference, pages 948-954. IEEE Computer
Society Press, November 1986.

[157] R. Tarjan. Depth-first search and linear graph algorifhms. SIAM Journal of
Computing, 1(2):146-160, 1972.

[158] A. Taylor. Removal of Dereferencing and Trailing in Prolog Compilation. In
Proceedings of the Sixth International Conference on Logic Programming, pages
49-60. MIT Press, June 1989.

[159] A. Taylor. LIPS on a MIPS: Results from a Prolog Compiler for a RISC. In
Proceedings of the Seventh International Conference on Logic Programming,
pages 174-185. MIT Press, June 1990.

[160] H. Tebra. Optimistic And-Parallelism in Prolog. In PARLE: Parallel Architec-
tures and Languages Europe, Volume II, pages 420—431. Springer-Verlag, 1987.
Published as Lecture Notes in Computer Science 259.

BIBLIOGRAPHY 246

[161] J. Thom and J. Zobel. NU-Prolog reference manual, version 1.3. Technical Report
86/10, Department of Computer Science, University of Melbourne, Melbourne,
Australia, 1988.

[162] E. Tick. Prolog Memory-Referencing Behavior. Technical Report CSL-TR-85-
281, Computer Systems Laboratory, Stanford University, Stanford, CA 94305,
September 1985.

[163] E. Tick. Parallel Logic Programming. MIT Press, 1991.

[164] E. Tick and J. A. Crammond. Comparison of Two Shared-Memory Emulators
for Flat Committed—Choice Logic Programs. In International Conference on
Parallel Processing, volume 2, pages 236-242, Penn State, August 1990.

[165] H. Touati and A. Despain. An Empirical Study of the Warren Abstract Ma-
chine. In International Symposium on Logic Programming, pages 114—124. San
Francisco, IEEE Computer Society, August 1987.

[166] K. Ueda. Making Exhaustive Search Programs Deterministic. In E. Shapiro,
editor, Third International Conference on Logic Programming, London, pages
270-282. Springer-Verlag, 1986.

[167] K. Ueda. Guarded Horn Clauses. In E. Shapiro, editor, Concurrent Prolog:
Collected Papers, pages 140-156. MIT Press, Cambridge MA, 1987.

[168] K. Ueda and M. Morita. A New Implementation Technique for Flat GHC. In
Proceedings of the Seventh International Conference on Logic Programming,
pages 3-17. MIT Press, June 1990. '

[169] J. D. Ullman. Database and Knowledge-Base Systems. Computer Science Press,
Maryland, 1988.

[170] H. Van Acker, R. Moolenaar, and B. Demoen. A parallel implementation of AKL.
Presented at the ILPS workshop on Parallel Logic Programming, October 1991.

[171] M. H. van Emdem and G. J. de Lucena Filho. Predicate Logic as a Language
for Parallel Programming. In K. L. Clark and S. A. Té4rnlund, editors, Logic
Programming, pages 189-198. Academic Press, London, 1982.

[172] M. H. van Emden and R. A. Kowalski. The Semantics of Predicate Logic as a
Programming Language. Journal of the ACM, 23(4):733-742, October 1976.

[173] P. Van Hentenryck. Constraint Satisfation in Logic programming. MIT Press,
1989.

BIBLIOGRAPHY 247

[y

(174] P. Van Roy. Can Logic Programming Execute as Fast as Imperative Program-
ming? PhD thesis, University of California at Berkeley, November 1990.

[175] P. Van Roy, B. Demoen, and Y. D. Willems. Improving the execution speed of
compiled Prolog with modes, clause selection and determinism. In TAPSOFT'87,
pages 111-125. Springer Verlag, 1987.

[176] P. Van Roy and A. M. Despain. The Benefits of Global Dataflow Analysis for
an Optimizing Prolog Compiler. In Logic Programming Proceedings of the 1990
North American Conference, pages 501-515. MIT Press, October 1990.

[177] A. Waern. An Implementation Technique for the Abstract Interpretation of
Prolog. In Proceedings of the Fifth International Conference and Symposium on
Logic Programming, pages 700-710. MIT Press, August 1988.

[178] D. H. D. Warren. WARPLAN: a System for Generating Plans. DCL Memo 76,
University of Edinburgh, June 1974.

[179] D. H. D. Warren. Implementing Prolog - Compiling Predicate Logic Programs.
Technical Report 39 and 40, Department of Artificial Intelligence, University of
Edinburgh, 1977.

[180] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, 1983.

(181] D. H. D. Warren. Prolog Engine. Technical report, Artificial Intelligence Center,
SRI International, 333 Ravenswood Ave, Menlo Park CA 94025, April 1983.
Unpublished draft.

(182] D. H. D. Warren. The SRI model for or-parallel execution of Prolog—abstract
design and implementation issues. In Proceedings of the 1987 Symposium on
Logic Programming, pages 92-102, 1987. '

- [183] D. H. D. Warren. The Andorra model. Presented at Gigalips Project workshop,
University of Manchester, March 1988.

[184] D. H. D. Warren. Extended Andorra model. PEPMA Project workshop, Univer-
sity of Bristol, October 1989. '

[185] D. H. D. Warren and S. Haridi. Data Diffusion Machine~a scalable shared
virtual memory multiprocessor. In International Conference on Fifth Generation
Computer Systems 1988. ICOT, 1988.

(186] D. H.D. Warren and F. C. N. Pereira. An Efficient, Easily Adaptable System For
Interpreting Natural Language Queries. American Journal of Computational
Linguistics, 8(3-4):110-122, 1982.

BIBLIOGRAPHY 248

[187] D. H.D. Warren, L. M. Pereira, and F. C. N. Pereira. Prolog—The Language and
its Implementation Compared with Lisp. ACM SIGPLAN Notices, 12(8):109—
115, 1977.

[188] D. S. Warren. Efficient Prolog Memory Management for Flexible Control
Strategies. New Generation Computing, 2:361-369, 1984.

[189] D. S. Warren, editor. Proceedings of the Tenth International Conference on Logic
Programming, Budapest, Hungary, 1993. The MIT Press.

[190] R. Warren and M. V. Hermenegildo. On the Practicality of Global Flow Analysis
of Logic Programs. In Proceedings of the Fifth International Conference and
Symposium on Logic Programming, pages 684-699. MIT Press, August 1988.

[191] W. H. Winsborough. Path-Dependent Reachability Analysis for Multiple Special-
ization. In Logic Programming Proceedings of the North American Conference,
1989, pages 133-153. MIT Press, October 1989.

{192] R. Yang. P-Prolog a Parallel Logic Programming Language. World Scientific,
. 1987.

[193] R. Yang. Solving Simple Substitution Ciphers in Andorra-I. In Proceedings of
the Sixth International Conference on Logic Programming, pages 113-128. MIT
Press, June 1989.

[194] R. Yang and H. Aiso. P-Prolog: a Parallel Logic Language Based on Exclu-
sive Relation. In E. Shapiro, editor, Third International Conference on Logic
Programming, London, pages 255-269. Springer-Verlag, July 1986.

[195] R. Yang, T. Beaumont, I. Dutra, V. Santos Costa, and D. H. D. Warren.
Performance of the Compiler-based Andorra-I System. In Proceedings of the
Tenth International Conference on Logic Programming, pages 150-166. MIT
Press, June 1993.

[196] N.-F. Zhou, T. Takagi, and U. Kazuo. A Matching Tree Oriented Abstract
Machine for Prolog. In D. Warren and P. Szeredi, editors, Proceedings of the
Seventh International Conference on Logic Programming, pages 158-173. MIT
Press, 1990.

	Capa
	Abstract
	Contents
	List of figures
	List of tables
	1. Introduction
	2. Logic programming languages
	3. Parallelism in logic programs
	4. An introduction to the basic Andorra model and to Andorra-I
	5. Executing prolog programs under the basic Andorra model
	6. The sequencer
	7. Abstract interpretation
	8. Andorra-I prolog
	9. The determinacy analyser
	10. Compiler-based Andorra-I implementation and performance
	11. Related work
	12. Conclusions and future work
	Appendix A
	Bibliography

