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Optimizing autonomous underwater vehicle routes
with the aid of high resolution ocean models
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Abstract—In underwater vehicle operations in areas such as
estuaries, vehicles may face currents with magnitudes equal to
or exceeding the vehicle’s maximum forward speed. We propose
a method which generates vehicle routes taking into account
ocean current forecasts from high resolution ocean models, in
order to both take advantage of the ocean current velocity
and avoid its negative effects. We formulate the problem in
an optimal control setting and derive the associated Hamilton-
Jacobi-Bellman partial differential equation (PDE). We solve this
PDE using a parallelized C++ implementation of a numerical
method which allows us to obtain the solution in a few minutes on
a mainstream computer. After obtaining the solution of the PDE,
optimal trajectories with any initial condition can be computed
efficiently. The method is illustrated using data from high-
resolution ocean models of the Sado river estuary in Portugal.
Two mission scenarios are analyzed, which highlight the influence
of ocean currents on optimal trajectories and the benefits of
considering ocean current forecasts in mission planning.

Index Terms—underwater robotics, trajectory generation, con-
trol, ocean modeling

I. INTRODUCTION

Ocean currents play an important role in many underwater
vehicle operation scenarios, as they can have beneficial effects
such as an increase in speed and reduced energy expenditure,
but also hinder or make impossible the attainment of the
operational goal. This is particularly true in long duration
operations in regions with tidal-driven currents, such as
estuaries, where ocean current magnitudes can equal or exceed
the maximum forward speed of a typical underwater vehicle.
Mission planning and trajectory generation for autonomous
underwater vehicles (AUVs) should take ocean currents into
account, in order to obtain vehicle routes which take the most
advantage of the flow velocity while minimizing its negative
effects.

We consider the problem of planning an optimal planar route
for an underwater vehicle traveling from an initial position to
a target region. Independently of the metric used to evaluate
the quality of trajectories, the best direction of motion at a
given point depends not only on the value of the ocean current
at the given location and time, but on all future values of the
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ocean current along the vehicle’s trajectory. Note also that due
to the time-dependent nature of the ocean currents, the optimal
trajectory from any particular initial position will depend on
the deployment time.

A number of distinct approaches to this and related problems
have been considered in the literature, such as graph search
methods, level set methods, and optimal control methods. Our
paper fits into the latter set of approaches, as we employ a
simple kinematic model of the vehicle to formulate the problem
as an optimal control problem. By applying the principle
of optimality of dynamic programming, the optimal control
problem is converted to the problem of solving a first order
nonlinear partial differential equation known as the Hamilton-
Jacobi-Bellman Equation (HJBE).

It is well-known that most HJBEs arising from nontrivial
optimal control problems have no analytical solution, so one
must resort to numerical methods. Numerical methods for
dynamic programming, however, typically suffer from the so-
called ‘curse of dimensionality’, meaning that the complexity
increases significantly with the increase in the number of
dimensions. In a previous paper [11] we reported large
computation times (approx. 5 hours) for a realistic benchmark
problem, using a MATLAB software package. Here we show
that our parallelized C++ implementation of a fast sweeping
method [2], [9] drastically reduces the computation time.

The rest of the paper is organized as follows. Section II
introduces some notation and describes the problem. In
Section III, we review existing approaches to this and related
problems. Section IV discusses the approach and the numerical
method implementation. Two numerical examples using data
from ocean models of the Sado estuarine region in Portugal
are examined in Section V. Finally, Section VI presents the
conclusions and future research directions.

II. PROBLEM DESCRIPTION

In this paper we consider only planar trajectories, assuming
that the AUV travels at a known and constant depth. However,
the ideas apply just as well to planning in three-dimensional
environments.

Let x(t) ∈ R2 denote the horizontal position of the vehicle
at time t ∈ R. The vehicle departs from some x(t0) = x0 and
must reach an area of interest represented by the set Ω ∈ R2.
Since there will usually be more than one trajectory which the
vehicle can take from its starting position to the target area,



we consider the following cost function which allows us to
compare the trajectories:

J (x(·)) = q(x(T )) +

∫ T

τ0

g(x(τ))dτ

where T is the arrival time at the target region Ω, g : R2 →
R>0 and q : Ω → R≥0. If g is constant and q is zero
everywhere, then the cost function is the time taken to arrive
at the target.

The problem is then to find a trajectory from the vehicle’s
starting position to the target set which minimizes J , given a
forecast of the ocean currents over the operational area and a
given mission time window.

In most environments there will be geographic constraints
and other static obstacles which must be taken into account
so that the generated trajectories make sense. In that case the
trajectory should be chosen as the minimizer of J among
those trajectories which take into account those constraints.

III. RELATED WORK

In this section our focus is on algorithms for transit routes,
so we do not mention the large body of work on path planning
and trajectory generation for adaptive sampling, mapping or
obstacle avoidance, for instance. Additionally, we concentrate
on algorithms which take advantage of information about the
value of the ocean currents on the operational area.

Inanc et al. [3] consider an optimal control formulation of
the problem of generating a planar trajectory between two
fixed waypoints. The optimal control problem is converted to
a nonlinear programming problem via a spline parametrization.
Numerical examples are given using current data from HF radar
measurements. An improvement of this approach is presented
by Zhang et al. [5] to account for time-varying currents.

Kruger et al. [4] use a gradient descent algorithm to obtain an
optimal three-dimensional path between two waypoints which
minimizes a linear combination of the expended energy and
the traveling time, assuming a holonomic model. A numerical
example using a simulation of an estuarine flow is presented.

As the optimization problem which has to be solved in both
these approaches is nonconvex, there is no guarantee on the
global optimality of solutions, which can be a problem when
there are multiple paths around an obstacle, for instance. In
comparison, the approach presented in this paper finds the
global optimum even in the presence of obstacles.

Lolla et al. [8] present a level set method-based approach
to minimum-time trajectory generation, considering fixed
endpoints and starting time. The authors show that the optimal
trajectory can be recovered from the solution of a partial
differential equation.

A similar approach to ours is that of Rhoads et al. [7], who
solve the HJBE corresponding to a minimum time problem
using an extremal field method. The method has the drawback
that for targets with more than one connected component the
computation must be done separately for each component. The
authors report a computation time of two to three hours for a
realistic example using data from an ocean model.

IV. APPROACH

A. Dynamic Programming

In order to formulate the problem as an optimal control
problem, a motion model must be chosen, which determines
the set of admissible trajectories over which the minimization
of the cost function will be performed. We use a kinematic
model

ẋ(t) = u(t) + v(t,x(t)) (1)

where ẋ(t) ∈ R2 denotes the vehicle’s velocity, u(t) ∈ R2

is the velocity resulting from the vehicle’s propulsion system,
which satisfies |u(t)| < r, where r > 0 is the vehicle’s
maximum forward speed, and v is a time-varying vector field
representing the ocean current velocity.

Given an initial condition x(τ) = ξ and a control function
u, the resulting trajectory xτ,ξ,u is determined by (1). The
cost J can thus be rewritten as

J (τ, ξ,u) = J (xτ,ξ,u).

The value function V is then defined as the function which
assigns to each initial condition the cost of the optimal trajectory
with that initial condition, i.e.

V (τ, ξ) = inf {J (τ, ξ,u) | u ∈ Uτ}

where Uτ is the set of measurable functions u : [τ,+∞)→ R2

which satisfy |u(t)| < r almost everywhere.
Applying the principle of optimality, it can be shown [1]

that V satisfies the Hamilton-Jacobi-Bellman equation

r |Vξ| − (Vτ + Vξ · v) = g (2)

with the boundary condition

V (τ, ξ) = q(ξ), ξ ∈ Ω.

The principle of optimality also shows that the optimal
control u(t) if the vehicle is at x(t) is

u(t) = −r Vξ(t,x(t))

|Vξ(t,x(t))|
.

Thus, if V is known, an optimal trajectory with initial condition
x(τ) = ξ can be obtained by integrating (1) with this choice
of u, starting from x(τ) = ξ and stopping when the the target
set Ω is reached. Note that this implies that after a single
computation of the value function we are able to compute
optimal trajectories starting from any position and at any
deployment time.

When there are obstacles in the operational area, they can
be included in the formulation in the following straightforward
way. If the obstacles are represented by a set K, we add K
to the target set, so that the new target set is K ∪ Ω, and set
q(ξ) = M, ξ ∈ K where M is a large value, so that if the
trajectory satisfying x(τ) = ξ enters the obstacle set we will
have V (τ, ξ) ≥M .



B. Numerical method

Equation 2 is a first order nonlinear partial differential
equation (PDE), so it has no analytical solution except in
very particular cases. In our case, since the values of the ocean
current v are given as numerical data, we have no choice but
to rely on a numerical method to approximate V .

Given the nature of (2), the iterative fast sweeping method de-
scribed in Kao et al. [2] is the most adequate. The computation
is limited to some hypercube (τ, ξ) ∈ R = [tmin, tmax] ×D,
where D is the operational area and [tmin, tmax] is the mission
time window. The computational domain R is discretized
into a regular grid by selecting appropriate resolutions for
each dimension. The PDE is discretized using first-order finite
differences and a Lax-Friedrichs artificial viscosity term. Using
this discretization one can derive a formula which updates the
value of a grid cell using the values of the neighboring grid
cells.

The numerical value function is initialized with an upper
bound for V . In our case, we have the upper bound

V (τ, ξ) ≤ Q+ (tmin − tmax) ·G (3)

where Q and G are upper bounds on q and g, respectively.
The value at grid cells which are inside the target set Ω is
initialized with the corresponding value of q, as that is the true
value of the solution.

In each iteration, the algorithm iterates through the gridpoints
in different orders, updating them using the aforementioned
formula. One can iterate through all the gridpoints in 23

different orders, according to whether one ascends or descends
in each dimension. The motivation for updating in all possible
orders is to capture all possible directions of motion of the
optimal trajectories.

The algorithm stops when the difference in the value between
two iterations on all the gridpoints is less than a given
threshold.

C. Implementation

We implemented a numerical solver based on this numerical
method in C++, using shared memory parallelism to speed up
the computation.

The fast sweeping algorithm is parallelized using the
hyperplane stepping method described in Detrixhe et al. [9].
This method is based on the observation that for first-order
finite differences there is a straightforward way to split the
gridpoints into a finite number of disjoint sets such that the
points in each set can be updated in parallel. As such, near
optimal speedup is achieved for large grids, i.e., the execution
time is approximately equal to the execution time of the serial
algorithm divided by the number of processors.

These sets are precalculated during program startup, and the
points in each set are divided between the available processors
in each iteration. A thread pool implementation based on the
multithreading facilities available in the C++ standard library1

is used to execute the parallel tasks.

1https://github.com/progschj/ThreadPool

Fig. 1. The Sado estuary3

The implementation is not coupled to our particular problem,
and can be used to solve any static first order Hamilton-Jacobi
equation. The source code is also independent of the number
of dimensions. However, the number of dimensions is set at
compilation time, which enables compiler optimizations such
as loop unrolling, and allows most arrays to be allocated on
the stack.

The data input and output is done using the HDF5 file format,
through a C++ API to the HDF5 C library2.

The solver source code is available at
https://github.com/mcpca/marlin, together
with usage examples.

V. NUMERICAL EXAMPLES

In this section we use data from the Sado estuary in Portugal
(Fig. 1) to plan trajectories for two mission scenarios:

• Mission 1 - the vehicle starts at sea and should enter the
estuary and stop at a safe zone inside the river;

• Mission 2 - the vehicle starts inside the river and should
exit towards the sea and reach a survey area in the sea.

The operational area for the two missions is highlighted in
blue in Fig. 1, and it is roughly 12 km by 15 km in size.

The data used for these examples was produced by a high
resolution model of the area of the Sado river estuary in
September 2018. For a detailed description of the model
used to generate the data, see our previous paper [11] or
Ribeiro et al. [10]. The values of the ocean current velocity are
defined on a spatially curvilinear grid with a mean resolution
of 100 meters, with a temporal sampling rate of 10 minutes.
The data is given for various depth layers, but we use only
the topmost layer, as we assume the vehicle will travel at a
constant depth of around 1 meter. Since the solver expects a
regular grid, the data must be interpolated in space to a regular
grid before we can use the data, which we do using linear
interpolation. The value function was computed on a grid with
a 50 meter resolution in space and a temporal resolution of
10 minutes. Since the flow is tidal-driven, a time window of 12

2https://github.com/ess-dmsc/h5cpp
3Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap,

under ODbL.



(a) (b)

Fig. 2. Two optimal trajectories with different deployment positions - Mission 1

hours is considered for each mission. Hence the resulting grid
on which V is defined has approximately 5 million points.

The operational area contains land and shallow regions
which must be included in the formulation in order to exclude
trajectories entering these regions. Using the GSHHG shoreline
dataset4, an obstacle map can be created. There are also some
shallow regions which are not covered by the shoreline data.
To include these in the obstacle map, we use a naval chart
and manually approximate regions where the seafloor depth is
lower than 2 meters by polygons. Using the coordinates of the
vertices of the polygons one can check which grid cells are
inside the polygon.

For both Mission 1 and Mission 2, the integral cost
component g is constant and equal to 1, and q is identically
zero on the target set, so that the cost is equal to the time taken
to reach the target. The value of r (the maximum forward
speed of the vehicle) is taken to be 1 m/s.

The value function is computed on a laptop running Linux
with an Intel(R) CoreTM i7-8550U @ 1.80 GHz processor with
eight hardware threads. The solver was compiled using the
GCC C++ compiler version 9.1.0 with level 3 optimizations.
The computation of the value function takes approximately
two to four minutes of wall clock time in both cases.

A. Mission 1

The target set for the first mission is a sphere with a 100 me-
ter radius around the point with coordinates (38°N 28’ 37.73”,
8°W 52’ 12.57”).

Fig. 2 shows two optimal trajectories with different de-
ployment positions and the same deployment time. These are
calculated by integrating (1) using Euler’s method. The gradient
of the value function is calculated on the gridpoints using a

4https://www.soest.hawaii.edu/pwessel/gshhg/

finite difference formula, and interpolated to points off the grid.
The initial position is shown in blue, the arrival position at the
target is marked by the red star, arrows represent the values of
the ocean current velocity along the trajectory and points in the
obstacle map are colored green. Note that the two trajectories
are calculated from a single computation of the value function.

Fig. 3. Optimal trajectories for multiple deployment times - Mission 1

In Fig. 3, multiple trajectories departing from the same
position at different initial times are plotted. Note that the
trajectories departing at 02:02:00 and 02:32:00 are qualita-
tively different from the other five trajectories, as the two
groups of trajectories approach the obstacle at 38.448870° N,
8.961995° W from opposite sides. This shows the influence of
the ocean current on the optimal trajectories, and also suggests
that the trajectories are indeed globally optimal.

Most underwater vehicles cannot track trajectories with
arbitrarily low radius of curvature. Although the motion



(a) Values of V at high tide (b) Values of V two hours after high tide

Fig. 4. Visualization of the value function - Mission 1

model (1) does not take into account any motion constraints, the
generated trajectories do not have any sharp turns. For a LAUV
class vehicle, the minimum turning radius is approximately
5 m at 1 m/s [6], while the minimum radius of curvature of
the trajectories shown in Figures 2 and 3 is well above 100 m,
which implies that the generated trajectories will be feasible
for most underwater vehicles.

Besides its role in optimal trajectory generation, the value
function can be useful for mission planning in multiple ways,
some of which we now explore.

Fig. 4a shows the values of V (τ, ·), where τ corresponds
to high tide. The color at each point indicates the value of
the optimal cost of a trajectory which departs from that point
at high tide. The target set is represented in blue. Fig. 4b is
similar, but with τ equal to two hours after high tide. Note

Fig. 5. Optimal deployment time as a function of the deployment position -
Mission 1

that no value is shown for some points in the southernmost
part of the operational area, which indicates that the target is
not reachable from those positions when the vehicle departs
two hours after high tide. We can see that the cost is not just
a function of the distance to the target, as the points on the
eastern side of the operational area are farther away from the
target than those on the western side, but the cost values are
similar.

Considering an operational scenario where an AUV is
deployed from a ship or from an unmanned aerial system
(UAS), this cost map allows operators to compare possible
deployment positions, taking into account any constraints on
the ship or the UAS’s reachable positions, when the deployment
time is fixed.

By minimizing V (·, ξ) for each ξ we can obtain a map of

Fig. 6. Velocity gain as a function of the deployment position - Mission 1
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Fig. 7. Optimal trajectories with different deployment times - Mission 2

the optimal deployment time as a function of the deployment
position. In Fig. 5, this map is shown for a subset of the
operational area, the set of considered deployment positions.
The deployment time is shown relative to the earliest possible
deployment time, indicated in the figure title.

The influence of the currents on the trajectory can be verified
by comparing the average velocity along the trajectory with
the nominal velocity r. The gain in velocity of a trajectory can
be calculated using the formula

g =
s

rT
− 1 (4)

where s is the total arc length of the trajectory and T is the
time taken to arrive at the target.

By calculating an optimal trajectory from each considered
initial position, starting at the optimal deployment time for
that position, we can get a map of the velocity gain over
the operational area, as in Fig. 6. The gain exceeds 60% for
most of the operational area, The discontinuity is the boundary

between groups of trajectories which avoid the same obstacle
from different sides.

B. Mission 2

In this mission scenario, the vehicle starts inside the river
(near the position of the target set in Mission 1) and should
reach a survey area at sea. The survey area is a rectangle whose
northernmost side is at latitude 38.3845° N, so we use this side
of the square as the target set, assuming that the vehicle can
enter the survey area at any point. If there is any preference
about where the vehicle enters the survey area, q can vary
along the target set to reflect that preference.

Fig. 7 shows four optimal trajectories with the same
deployment position and different deployment times. The target
set represented in black, the initial condition is indicated by
the blue circle and the arrival position is indicated by the red
star. There is a significant variation in the arrival position at the
target which is due to differences in the ocean current values.



As in the first mission, the radius of curvature of the
trajectories shown in Fig. 7 is adequate for tracking by most
underwater vehicles. The velocity gains (as defined by (4)) for
these trajectories are between 50% and 80%.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a trajectory generation method for underwater
vehicles using concepts from robotics, control and trajectory
generation. The method generates trajectories which are feasible
for most ocean vehicles, and can take into account any known
static obstacle in the operational area. The computation times
achieved using the method allow us to calculate the value
function in a few minutes.

After the value function has been calculated, optimal trajec-
tories can be obtained by integrating a differential equation, a
fairly simple computation which can be performed by the
vehicle’s onboard computer, allowing the vehicle to plan
trajectories on the fly.

The numerical results show that ocean currents can have a
significant influence on the optimal trajectories, and that using
current forecasts for planning can bring significant benefits. We
also showed how the value function, which is in some sense a
byproduct of our method, can be useful for planning certain
mission parameters such as the deployment time and position.

In the future we hope to test the method in the field and
study its applicability to multi-stage missions and long distance,
long duration missions.
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