
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Robotic Simulator for the Tactode
Tangible Block Programming System

Márcia Alves

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Armando Sousa

Second Supervisor: Ângela Cardoso

October 20, 2019

c© Márcia Alves, 2019

Resumo

O desenvolvimento da tecnologia tem vindo a crescer. A procura por pessoas formadas nas áreas
da Ciência, Tecnologia, Engenharia e Matemática, em inglês Science, Technology, Engineering,
Mathematics (STEM) tem vindo a aumentar. De forma a acompanhar este crescimento procura-se
uma evolução da educação para que as crianças desenvolvam hábitos, técnicas e raciocínios mais
lógicos, para que possam entender e resolver problemas de carácter tecnológico. A este conjunto
de conceitos chamamos Pensamento Computacional, em inglês, Computional Thinking (CT).

A programação tangível por blocos transforma a programação numa atividade acessível e di-
reta, menos abstrata e compreendida com mais facilidade quando ligada à robótica. Usar robôs é
uma forma de ensinar de maneira divertida, ajudando a desenvolver o pensamento computacional
e aprendendo como funciona a tecnologia. Embora seja difícil para os professores incluírem novos
temas no programa escolar o objetivo é interligar a robótica com o sistema de educação STEM.
Um dos principais problemas para as escolas pode ser suportar o preço desse tipo de tecnologia
para todos os estudantes.

O Tactode foi anteriormente proposto como um sistema de programação tangível, que, aliado
a uma aplicação, permite programar robôs, semelhante a um jogo na sala de aula. Esta versão
do Tactode, baseia-se na programação por blocos tangíveis, como peças de um puzzle que os
estudantes têm de resolver. É possível criar um puzzle com peças tangíveis, tirar uma fotografia e
fazer o seu upload na aplicação. Na aplicação, o puzzle é transformado em código executável para
robô e é possível ver a sua execução num robô real.

O trabalho apresentado nesta dissertação adiciona um simulador ao Sistema de Programação
Tangível Tactode, usando Ionic Framework para a programação da aplicação Web, fazendo grande
uso da linguagem de programação TypeScript e da biblioteca Three.js. Desta forma, as crianças
conseguem ver, na aplicação, uma simulação do código, num robô virtual, antes de executar no
robô real. Podem também usar apenas como um jogo, brincando em qualquer lugar sem ter de
levar o robô.

O Tactode pode ser usado com vários robôs, Ozobot, Cozmo, Sphero e Robobo, e plataformas
não robóticas, Scratch e Python. Os movimentos no simulador estão limitados às funcionalidades
de cada um. A fotografia captada é processada, colocada numa posição favorável para a sua
visualização, executada no simulador ou enviada para a plataforma escolhida. Foram também
realizados um conjunto de desafios, envolvendo geometria, matemática, ciclos e sensores, a serem
ultrapassados pelos estudantes.

Posto isto, a sugestão é a utilização de um conjunto de peças de puzzle e um computador,
Tablet ou até mesmo um Smartphone a ser partilhado pelos alunos, sendo a utilização do robô
facultativa. Assim, permite-se uma redução de custos de equipamento e os estudantes podem usar
o simulador para executar os seus puzzles. Desta forma, as crianças são capazes de aprender sobre
robótica e ter uma lógica de programação, desde tenra idade, de uma forma divertida e também
aumentar a cooperação, trabalhando em grupo para resolver um problema.

i

ii

Abstract

The development of technology has been increasing. The demand for people trained in the areas of
Science, Technology, Engineering, and Mathematics (STEM) has been growing. In order to follow
this development, an evolution of education is believed so that children develop more logical
reasoning, habits and techniques to understand and solve technological problems.

Tangible block programming makes programming an accessible and direct activity, less ab-
stract and more easily understood when connected to robotics. Using robots is a fun way to teach,
helping students to develop computational thinking and learning how the technology works. Al-
though it is difficult for teachers to include new things in the regular curriculum, because of the
academic standards, the goal is to link robotics with the STEM education system. One of the main
problems for schools may be to support the price of technology for all students.

Tactode was previously proposed as a Tangible Programming System, which, combined with
an application, allows programming robots, similar to a game in the classroom. This version of
Tactode is based on Tangible Block programming, like a puzzle that students need to solve. They
can create a puzzle with tangible pieces, take a photo and upload it in the app. In the application,
the puzzle is compiled into executable code for robot and it is possible to see its execution in a real
robot.

The work presented in this dissertation adds simulation capabilities to the Tactode Tangible
Programming System. The project used ionic as a programming framework for web programming
and made extensive use of the TypeScript programming language and Three.js library. In this way,
children can see, in the app, a virtual robot, simulating the code, or send it to the real robot. This
is useful to test the program created, before execute in the real robot, or just to play anywhere
without having to carry the robot.

Tactode can be used with Ozobot, Cozmo, Sphero or Robobo robots, and non-robotic plat-
forms like Scratch and Python. The movements in the simulator are limited to the functionality of
each. The captured photograph is processed, placed in a favorable position for its visualization and
executed in the simulator or sent to the chosen platform. A set of challenges, involving geometry,
mathematics, loops, and sensors, were created to be overcome by students.

Hereupon, the suggestion is the use of a set of puzzle pieces, a robot and a computer, Tablet
or even a Smartphone to be shared by the students, so the use of the robot is optional. In this
way, kids are able to learn about technology and robotics, to develop a programming logic since a
young age, in a fun way. They are also able to improve team cooperation, working in a group to
solve a problem.

iii

iv

Agradecimentos

Primeiro, agraceder ao Professor Doutor Armando Jorge Sousa, professor da Faculdade de En-
genharia da Universidade do Porto e orientador desta dissertação, pelo apoio e preocupação dado
durante o meu percurso académico, incluindo este trabalho.

À Doutora Ângela Cardoso pela brilhante ideia do Tactode e por ser sempre tão prestável.
Aos meus pais por toda a paciência e por serem a voz da razão.
À Beatriz Cruz, ao Baltasar Aroso e ao João Costa por toda a amizade e apoio durante o meu

percurso académico e ao longo desta dissertação.
Aos restantes amigos e colegas de curso, que me acompanharam e ajudaram ao longo do meu

percurso académico.

Márcia Alves

v

vi

“Hands-on experience is the best way to learn about all the interdisciplinary aspects of robotics.”

Rodney Brooks

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Goals . 2
1.3 Contributions and Publications . 2
1.4 Previous Publications and Initial State of Project 3
1.5 Dissertation Structure . 4

2 Fundamentals and Literature Review 5
2.1 Block Programming . 5
2.2 Tangible Programming . 7
2.3 Three.js . 11
2.4 Programming Robotics in Elementary Schools 13

2.4.1 Programming in Portuguese Elementary Schools 14
2.4.2 Teachers Perception . 14
2.4.3 Logical Reasoning and Computation thinking 15
2.4.4 Increased Interest in Computer Science 16
2.4.5 Team Work . 16
2.4.6 Gender inequality . 16

2.5 Examples already tested . 17
2.5.1 Lego Mindstorm EV3 . 17
2.5.2 Ozobot . 17
2.5.3 Open Roberta Lab . 18
2.5.4 Blockly Games . 19
2.5.5 Scratch . 19

2.6 Conclusion . 21

3 Problem Statement and Technological Selection 23
3.1 Tactode 1 . 24
3.2 Tactode 2 . 25
3.3 Problem Definition . 26
3.4 Proposed Solution . 27
3.5 Development Technologies . 28

3.5.1 Web Programming . 28
3.5.2 TypeScript . 28

3.5.2.1 Promises . 29
3.5.3 Ionic Framework . 30
3.5.4 Three.js . 31

3.6 Conclusion . 31

ix

x CONTENTS

4 Tactode Application 33
4.1 Requirements . 33

4.1.1 Non-Functional Requirements . 33
4.1.2 Functional Requirements . 34

4.1.2.1 Sequence Diagram . 35
4.1.2.2 Happy Path . 36

4.2 Design of Interface . 37
4.2.1 Rotating image . 37
4.2.2 Split Screen . 39
4.2.3 Creating the robot . 40
4.2.4 Robot Movements . 41

4.3 Simulator . 42
4.3.1 Abstract Syntax Tree . 43
4.3.2 Implemented Blocks . 44

4.3.2.1 Numbers and Letters . 44
4.3.2.2 Operators . 45

Numerical Operators . 45
Logical Operators . 46
Comparison Operators . 47

4.3.2.3 Movements . 48
Go Forward . 49
Go Backward . 49
Turn Left . 50
Turn Right . 50

4.3.2.4 Control . 51
4.3.2.5 Variables . 52
4.3.2.6 Events . 53
4.3.2.7 Sensors . 53
4.3.2.8 Visual . 54

4.3.3 Challenges . 55
4.3.3.1 Regular polygon . 55
4.3.3.2 Obstacle Reaction . 56
4.3.3.3 Follow Line . 57

4.4 Conclusion . 58

5 Results and Experiments 59
5.1 Test Program 1 . 59
5.2 Test Program 2 . 62
5.3 Test Program 3 . 63
5.4 Conclusion . 66

6 Conclusion and Future Work 67
6.1 Future Work . 67

References 69

A Tactode Pieces 75

B Draft of conference paper 85

List of Figures

2.1 Blockly Games by Google. 6
2.2 MakeCode by Microsoft for micro:bit. 6
2.3 Scratch by MIT. 7
2.4 AlgoBlock [1]. 8
2.5 Electronic blocks [2]. 8
2.6 Cubelets [3]. 8
2.7 Code-a-Pillar [4]. 9
2.8 TagTile [5]. 9
2.9 Quetzal and Tern [6]. 9
2.10 T-Maze [7]. 10
2.11 Osmo Coding Family [8]. 10
2.12 Code Bits [9]. 10
2.13 Creating a Three.js Animation. 12
2.14 Three.js coordinate systems. 13
2.15 The Lego Mindstorms EV3 robot and its programming interface [10, 11]. 18
2.16 The Ozobot robot and OzoBlockly Editor [12]. 18
2.17 Open Roberta Lab. 19
2.18 Blockly Games. 20
2.19 Scratch. 20

3.1 Tactode 1 after uploaded the photo . 23
3.2 Tactode 2 after open Simulator . 24
3.3 Code of a polygon by using tangible pieces . 25
3.4 Code of a polygon by using Blockly Jr. 26

4.1 Use Case Diagram. 35
4.2 Sequence Diagram. 36
4.3 Happy Path. 37
4.4 Image before and after processing. 39
4.5 Canvas coordinate system. 39
4.6 Different positions of Simulator. 40
4.7 Turtle, scarab and ladybug. 40
4.8 The robot Tode. 41
4.9 The different coordinate systems used. 42
4.10 Tactode program that draws a square (AST in Figure 4.11). 43
4.11 AST of the example in Figure 4.10 . 44
4.12 Numbers. 45
4.13 Letters. 45

xi

xii LIST OF FIGURES

4.14 Numeric Operators. 46
4.15 Logical Operators. 46
4.16 Comparison Operators in Tactode. 47
4.17 Movement blocks in Tactode. 48
4.18 Stop. 51
4.19 Controls. 51
4.20 Variable number 0. 52
4.21 Create Variables and Set Values. 52
4.22 Flag. 53
4.23 Question and Answer. 54
4.24 Front Sensor. 54
4.25 Line Color, Way Forward and Line End. 54
4.26 Pen Down and Pen Up pieces. 54
4.27 Puzzle and simulation of a pentagon. 56
4.28 Puzzle and simulation of stopping in front of an obstacle. 56
4.29 Puzzle and simulation of running away of an obstacle. 57
4.30 Puzzle and simulation of a line follow. 57

5.1 Tactode Application Home Page. 59
5.2 No platform and Source selected. 60
5.3 Settings Tab. 60
5.4 Choose Platform, Source and Language. 61
5.5 Puzzle selected with no errors. 61
5.6 Downloaded file, after click button share. 61
5.7 Programs in database. 62
5.8 New settings. 62
5.9 Program with errors. 63
5.10 Correct Program. 63
5.11 Database with 2 programs. 64
5.12 Simulator opened. 64
5.13 After Flag clicked. 65
5.14 Simulation stopped. 65
5.15 End of Simulation. 66

List of Tables

4.1 Numerical Operators Children . 46
4.2 Absolute Block Children . 46
4.3 AND, OR and NOT Block Children . 47
4.4 Greater (equal) and Less (equal) Blocks Children 48
4.5 Different and Equal Block Children . 48
4.6 Children of Angle/Distance and Speed Blocks 49
4.7 If and Else Condition’s children . 52
4.8 While Condition’s children . 52
4.9 Repeat Condition’s children . 52
4.10 Value Block’s Children . 53

xiii

xiv LIST OF TABLES

Abbreviations and Symbols

API Application Programming Interface
App Application
AST Abstract Syntax Tree
CPR Programming and Robotics Clubs
CT Computational Thinking
SDK Software Development Kit
IDE Integrated Development Environment
PWA Progressive Web App
STEM Science, Technology, Engineering, and Mathematics
STEAM Science, Technology, Engineering, Arts and Mathematics
SVG Scalable Vector Graphics
UAC Using Arduino in the Classroom

xv

Chapter 1

Introduction

1.1 Context

Since the birth of the Internet, society has been changing and technology has been evolving [13]. A

change in education is necessary, so that it evolves according to the needs of society and industry.

According to Education at a Glance: OECD Indicators, in Portugal, [14] Science, Technology,

Engineering and Mathematics (STEM) education provides workers with higher salaries and lower

unemployment rates. Although one of the most popular broad fields of study among tertiary

graduates in Portugal is engineering, students are not usually successful and interested in these

subjects in school. The majority of the students considers math one of the hardest subjects in

school.

Since early, kids are becoming accustomed to new technologies and increasingly use them,

but the truth is that they do not realize what lies behind and what it takes to build it. Technology

is often given as a well-stock with which people do not even think about how it came up.

The tactode effort is that children begin to realize, in primary schools, how technology works

and what is the logical reasoning of an engineer in the construction of their projects, also motivat-

ing students to create, learn more and perhaps to follow their studies in these areas.

The proposal is to associate this project with a STEM-based education in study programs

of Portuguese primary schools. From 2015 to 2017, emerged the pilot project "Iniciação à Pro-

gramação" (Initiation to Programming), in the 1st cycle, involving more than seventy thousand

students. As a result of this project, the initiative "Programação e Robótica" (Programming and

Robotics) appeared in the academic year 2017/2018, extended to the 2nd and 3rd cycles of basic

education, which seeks to identify and contextualize what students are expected to develop, learn-

ing to program when creating stories, animations, and games and solving daily challenges through

programming and robotics, considering different scenarios of methodology and learning [15].

1

2 Introduction

1.2 Motivation and Goals

This dissertation focuses on motivating children, attending elementary school, for engineering

and programming, using a tangible programming system allied to a Web App and a Robot, so

they can understand how computer science works. Children can give orders to a real robot or to

a virtual robot, executing it on the simulator. This App should open in different platforms and be

compatible with different robots in order to be as general as possible.

It is also intended to stimulate teamwork and mutual aid, through forming working groups and

sharing equipment. In this way, there is the possibility of discussing ideas, all working towards

the same objective, thus contributing to personal development, without neglecting the values of

sharing and joint work. With the implementation of this project at a young age, children are

expected to become more interested in engineering and mathematics. The difference in the number

of people of the different genders who choose to study or work in technical and scientific subjects

is still quite pronounced [16].

The purpose of this dissertation is to motivate children between the ages of six and ten to areas

related to engineering and computer science, using the Tangible Block Programming System and

a Simulator. Tactode Block Programming System uses pieces to construct a tangible and visual

language that children can understand. Then, they can construct logical reasoning, similar to a

puzzle, in order to give instructions to a real robot. In an application they can take a photograph,

using a camera of the available device - smartphone, tablet or computer - the pieces are detected

using ArUco markers by image processing, detect and report errors. If no errors were found, the

application can finally generate the code that can be executed in real robot.

Thus, in this dissertation a Simulator for Tactode System is developed that allows virtual exe-

cution of a robot inside the application, having different functionalities with the option to choose

which robot the children wants to simulate.

This process requires a connection between the mobile device (mobile phone, tablet or com-

puter), the puzzle and the robot.

1.3 Contributions and Publications

The main contributions provided by this dissertation are:

• Help children to understand technology. The principal contribution with this work is

teaching children at a young age to understand how technology works by learning to pro-

gram and developing Computational Thinking.

• Affordable teaching materials. At this moment, the Tactode pieces are made by EVA

material and paper over the EVA with the instruction and the ArUco Tag. This kind of

material is cheap and easy to handle. However, it is a bit laborious when is needed to make

in big quantity, so this is possible to be changed in the future. The purpose is that kids can

be capable of building their pieces, for example, in handicraft classes with the supervision

1.4 Previous Publications and Initial State of Project 3

of a teacher or at home with the help of the parents. In this way, not only computer and

technology activities are improved, but also hands-on work.

• Versatile material. Tactode is compatible with several robotic and non-robotic platforms

like Cozmo, Ozobot, Sphero and Robobo, Scratch and Python in which the user can share

the code made by the puzzle. It is also compatible with different software like Android, iOS,

macOS, Windows, and browser, making it more generic.

• Different ways to use depending on user availability. Tactode can also be used without

a robot, so the child can use it without the obligation of buying a robot. The Tactode appli-

cation has a simulator with a virtual robot that can execute orders made in the puzzle. This

makes Tactode even more economic since the only need, besides the pieces, is a smartphone,

tablet or computer, with camera access, to run the application.

The image captured by the user is processed, making it easy to visualize, correcting un-

desired rotations and highlighting the puzzle pieces. During execution, just the principal

puzzle pieces are highlighting, according to which part of the puzzle is running. This way

the child can see which piece is being executed at the same time the robot is simulating.

• The Tactode Simulator also introduces some features to make it closer to reality. For

example, Ozobot has front sensors to detect obstacles and has different reactions to those

situations. The Simulator has a button to add an obstacle to the simulation and the robot can

stop in front of it or run away. Ozobot also has the function of following a line, so Simulator

also has the ability of draw a line to be followed. In a real life it is also possible to stop the

execution of the robot whenever is necessary by just getting the robot off the ground. In the

Simulator, there is a stop button so it is possible to stop the simulation when it is necessary.

The Simulator can also ask questions to the user according to the content of the puzzle and

receive an answer. That answer is then available to use during the program simulation.

A conference paper was accepted as a result of this dissertation: Web Based Robotic Simulator

for Tactode Tangible Block Programming System in ROBOT’2019: Fourth Iberian Robotics Con-

ference, ISEP, Porto, Portugal. The submitted version is attached at the end of this dissertation, in

Appendix B.

1.4 Previous Publications and Initial State of Project

This section presents some research projects which directly inspired and influenced this disserta-

tion. The two of them talk about Tactode as programming system based on tangible tiles. Using a

camera from a smartphone or tablet, a photo is taken and processed resulting in source code that

can be sent to several platforms.

4 Introduction

• A. Cardoso, A. Sousa, and H. Ferreira. Programming for young children using tangible tiles

and camera-enabled handheld devices. In ICERI2018 Proceedings, 11th annual Interna-

tional Conference of Education, Research and Innovation, pages 6389–6394. IATED, 12-14

November, 2018 [17].

• A. Cardoso, A. Sousa, and H. Ferreira. Easy robotics with camera devices and tangible tiles.

In ICERI2018 Proceedings, 11th annual International Conference of Education, Research

and Innovation, pages 6400–6406. IATED, 12-14 November, 2018 [18].

1.5 Dissertation Structure

Besides this Introduction chapter, there are six more chapters. The content of Chapter 2 is the

state of the art based on educational programming languages, robots and the impact of STEM

education in young age children. In Chapter 3, a problem to solve is detected and the different

solutions to achieve the Tactode goal are discussed. After choosing a solution, in Section 3.5

the different technologies and languages used to develop Tactode Application are presented. The

Simulator, how the robot came about, the requirements for a good functioning, how each piece of

the puzzle is implemented and the principal challenges that can be used in Tactode are explained

in the Chapter 4. Chapter 5 is about the experience that a child can have when navigating through

Tactode App. Finally, Chapter 6 talks about some conclusions and future work for this project.

Chapter 2

Fundamentals and Literature Review

Young people are starting being called as "digital natives" because they were born in the digital

age, with the internet, computers and smartphones always available. They are really comfortable

texting messages, playing online games, surf on social networks, etc. But can they understand

technology? Are they capable of creating their own games, animations [19]? It is time to make

children think about technology.

The involvement of a robot in learning from a very young age can be beneficial for the growth

and development of children’s skills in several aspects. The concept of 21st-century skills is asso-

ciated with the need to respond to the demands of today’s society and the future, where problem-

solving, decision-making, teamwork, ethical sense, project management and use of digital tech-

nologies are considered core competencies [15].

In this chapter, will be discussed how these values can be achieved in schools, using different

techniques, such as block-based, tangible or graphical programming languages. And what are the

benefits of using this techniques with robotics to catch the attention of children and improve char-

acteristics like teamwork, better logical reasoning, gender equality and future interest in STEM

areas, such as engineering and computer science.

2.1 Block Programming

Educational Programming languages should be easy to get started, in order to begin teaching

young children. They also need to create opportunities to develop increasingly complex projects

so children with differences interests do not get bored [19].

Some of the best software companies already developed educational programming language

like Blockly [20, 21, 22], Figure 2.1, created by Google, and MakeCode [23], Figure 2.2, created

by Microsoft.

Nowadays, Block-based languages are probably very influential in educational languages. As

the name implies, they contain a set of predefined blocks of code, which the user typically drags

and drops to form a program.

5

6 Fundamentals and Literature Review

Figure 2.1: Blockly Games by Google.

Figure 2.2: MakeCode by Microsoft for micro:bit.

The concept of block-based programming started around two decades ago, initially introduced

by the MIT Media Lab following the ideas of Seymour Papert on the need to enable students to

approach abstract concepts in a way that is meaningful for them. They created Scratch [19, 24],

Figure 2.3, one of the best-known example of a block-based language.

This kind of programming language allows students to create digital media such as simple

games and animations without typing a single line of code [25]. In this way, it makes computer

science accessible to young students, expressing their creativity in different aspects.

Block-based programming environments use a puzzle pieces metaphor. Each block provides

visual cues to the user on how and where the block can be used through the block’s shape, color

(which is associated with categories of similar blocks), and the use of a natural language label on

the block, to convey its meaning.

2.2 Tangible Programming 7

Figure 2.3: Scratch by MIT.

There are some characteristics that make these languages easy to use. According to the Wein-

trop’s study [26], students describe these languages as easy to read, the labels look less like a text

editor and closer to English than text-based languages. They recognize the block programming

similar to Java but in an English form, easier to understand. Students consider that the visual na-

ture of the blocks and the shapes can help to see where blocks could be used and how the puzzle

could be built. Another advantage is the ease to compose a program thanks to the act of drag and

drop commands and being less error-prone.

2.2 Tangible Programming

A tangible programming language is similar to a block-based or visual programming language but

instead of using a computer screen, physical objects are used to represent various programming

elements, commands, and flow-of-control structures. A tangible programming language is a block-

based language whose blocks can be physically grabbed and arranged by the programmer [6].

In 2015, Sapounidis et al. [27] made a study establishing many advantages of using tangible

interfaces to teach programming, specially for young children. They completed the tasks faster,

with higher complexity, fewer errors and more frequent teamwork. They also thought the tangi-

ble interface more attractive and easier to use, comparatively with the graphic ones. However,

the material for this kind of programming language can be expensive and limited compared to

block-based language. There are not many languages of this type and many are not commercially

available yet.

Some examples of tangible languages are AlgoBlock [1], Figure 2.4, Electronic [2], Figure

2.5, Cubelets [3, 28, 29], Figure 2.6, the physical robot version of the Fisher Price Think and

Learn Code-a-Pillar [30], Figure 2.7, TagTile [5], Figure 2.8, Quetzal and Tern [6], Figure 2.9,

T-Maze [31, 7], Figure 2.10, the Osmo Coding Family [32], Figure 2.11, and CodeBits [9], Figure

2.12.

8 Fundamentals and Literature Review

Figure 2.4: AlgoBlock [1].

Figure 2.5: Electronic blocks [2].

Figure 2.6: Cubelets [3].

2.2 Tangible Programming 9

Figure 2.7: Code-a-Pillar [4].

Figure 2.8: TagTile [5].

Figure 2.9: Quetzal and Tern [6].

10 Fundamentals and Literature Review

Figure 2.10: T-Maze [7].

Figure 2.11: Osmo Coding Family [8].

Figure 2.12: Code Bits [9].

2.3 Three.js 11

2.3 Three.js

Three.js can be useful for building robot simulations, quite similar to Blocky, MakeCode and

Scratch, mentioned in Section 2.1.

Three.js is a high-level JavaScript library and API used to create and display animated 3D

graphics in a web browser [33]. Three.js uses the WebGL API for connecting the browser to

graphics card, providing a lot more graphical processing power than is traditionally available on

a website. Three.js generally uses it for displaying 3D graphics, but it is equally good at 2D

graphics.

To use WebGL, a device and a browser that supports it are necessary. In these days, every

modern smartphone, tablet, PC or laptop has a graphics card capable of running at least a basic

scene [34]. Thus, the use of WebGL allows complex animations to be created without having to

use plugins.

The Web API provides some functions built-in to the browser, used in Three.js applications.

The Document Object Model (DOM) describes the way in which an HTML document is modelled

as a JavaScript object, transforming a simple HTML document into nested JavaScript objects. The

top-level object in the DOM is called window. Every object in JavaScript running in a web browser

is attached to the window object.

Since the Three.js script is included, it creates a keyword THREE that can be used to access

all the features of Three.js and it is also attached to the window object. Next level down is the

document object and it represents the actual HTML document that is loaded. This is useful for ex-

ample, for getting window dimensions - window.innerWidth, window.innerHeight - and accessing

HTML elements - document.body refers to <body> element in HTML document.

Every Three.js app has the following basic components:

• Create Scene that holds all the objects by calling the Scene constructor to create a scene

instance.

1 const scene = new THREE.Scene();

• Create Camera used to view the scene and determine how the object will be presented to the

viewer. In this case, the constructor PerspectiveCamera was used.

1 const camera = new THREE.PerspectiveCamera(fov, aspect, near, far);

• Create Mesh by creating geometry and material and add it to the scene. Geometry defines

the shape of our Mesh and Material defines the way that the surface of the Mesh looks.

1 const geometry = new THREE.BoxBufferGeometry(2, 2, 2);

2 const material = new THREE.MeshBasicMaterial();

3 const mesh = new THREE.Mesh(geometry, material);

4 scene.add(mesh);

12 Fundamentals and Literature Review

• Create the renderer that takes the Camera and the Scene as inputs and renders onto the

<canvas>. Once the page is drawn, it is necessary to fit onto the device’s physical screen.

1 const renderer = new THREE.WebGLRenderer();

2 renderer.setSize(container.clientWidth, container.clientHeight);

3 renderer.setPixelRatio(window.devicePixelRatio);

• Add canvas <canvas> element to the page. Appends the canvas as a child of the scene

container.

1 container.appendChild(render.domElement);

• Rendering the scene. Telling the renderer to take a still picture of the scene using the camera

and output that picture into the canvas element.

1 renderer.render(scene, camera);

Figure 2.13: Creating a Three.js Animation.

A very important method in Three.js is window.requestAnimationFrame, because, when used

in a periodically called way, it allows to set up an animation loop that will draw the scene every

time the screen is refreshed (typically 60 times per second).

This is visible only when adding movement to the object in each frame, for example, rotating

the object

1 mesh.rotation.x += 0.01;

2 mesh.rotation.y += 0.01;

Or as shown in the section before, Listing Code 3.1, with the function moveForward() where

the robot position is incremented.

2.4 Programming Robotics in Elementary Schools 13

Figure 2.14: Three.js coordinate systems.

These movements are made according to the Cartesian Axis defined by the Three.js, shown in

figure 2.14.

Three.js has different ways of creating an object, depending on the shape and geometry asked.

In the given example, a cube is created using BoxBufferGeometry(), but it is possible to create

a cylinder with CylinderBufferGeometry(), a sphere with SphereBufferGeometry(), etc. It is also

possible to join different objects to create a group of objects. Or load external objects using loaders

such as GLTFLoader() for binary format, OBJLoader() for .obj file format, ImageLoader() to load

texture images and SVGLoader() to load .svg file format.

In Tactode, the loader used was SVGLoader(). SVG tags were used to create the robot graph-

ics. SVG tags are used for visual shapes such as circles, rectangles, polygons, allowing embedded

<SVG>. So, it permits to design the object externally and export it to SVG file and use it in the

web. But it is not so simple when trying to do more complex objects. SVG elements have their

own DOM Element.

2.4 Programming Robotics in Elementary Schools

Despite the growing evolution of technology, it is difficult for students to choose classes related

to programming because of its complexity. For teachers not trained in this area, it also becomes

complicated to teach. In addition, there is also the budgetary difficulty of schools.

Paulo Freire, in his book "Pedagogy of Oppressed" [13], explains that currently teaching ex-

pects teachers to be simple narrators, who talk about reality as if it were static and predictable. And

so, students need to memorize this narrated content, were thus obliged to receive facts, memorize

them and repeat them.

Robotics in primary schools improves logic rationalization in an exciting way, students learn

to think deeply about technology and how it works in a fun way [13]. They are also encouraged

to share equipment, work as a team and grow values such as teamwork. For these reasons, it is

important to have a change in education [13].

14 Fundamentals and Literature Review

2.4.1 Programming in Portuguese Elementary Schools

The transformation and innovative updating of society’s technical activities should be reflected in

the content of school education, and education should focus on the formation of knowledge, skills,

and competencies, allowing the younger generation to be successfully integrated into modern so-

ciotechnical systems, to maintain and develop efficiently the scientific and technological potential

of society [35].

Portugal has some projects in order to involve technology in education. Starting from the

beginning, since 2010 Portugal has the Scratch Day, a competition to create with Scratch, through

the educational project EduScratch [36].

In the academic year 2014/2015, a National Network of Programming and Robotics Clubs

(CPR) was launched and achieved a significant projection in Portuguese schools. In January 2019

an inquiry was carried out, concluding that exists 296 clubs all over the country [37].

Another technological education program is Apps for Good, launched in Portugal as a pilot

project in January 2015. With an origin in London 2010, this program challenges students and

teachers to develop applications for smartphones or tablets, showing them the potential of tech-

nology in transforming the world and the communities in which they operate. With a design

methodology, students have the opportunity to experience the product development cycle. This

initiative count with 6698 students, 571 teachers, and 232 schools [38].

From 2015 to 2017, the pilot project "Iniciação à Programação" (Initiation to Programming)

in Portugal started in the 1st cycle, involving more than seventy thousand students. As a result of

this project, the "Programação e Robótica" (Programming and Robotics) appears, an initiative in

Basic Education - Probótica - appeared in 2017/2018, extended to the 2nd and 3rd cycles of basic

education. It seeks to identify and contextualize what students are expected to develop, learning

to program when creating stories, animations, and games and solving daily challenges through

programming and robotics, considering different scenarios of methodology and learning [15].

A pilot project was planned for the 2018/2019 school year - UAC - Using Arduino in the

Classroom. The project consists of the development of Arduino Learning Kits, to learn STEAM

subjects, of disciplinary or interdisciplinary scope. The development of these KITs is carried out

in an environment of continuous training of teachers, on the pedagogical applications of Arduino

technologies [39].

2.4.2 Teachers Perception

The world and its economy are changing, but education has maintained almost the same system

since the middle of the nineteenth century. Some specialists state that if teachers from nineteenth-

century time travel to actual schools, they would have no problem to teach the students. However,

the acceleration of the change in society is requiring a new set of skills, intellectual activities,

and ways of thinking to be a successful citizen. Accordingly to [13], Grabinger and Dunlap ob-

served teachers in conventional classrooms and concluded that they used examples and problems

decontextualized leading to an inadequate understanding of acquired knowledge.

2.4 Programming Robotics in Elementary Schools 15

Robotic is multidisciplinary and therefore integrates very well into the STEM education sys-

tem [40]. There are studies showing a STEM-based education is more efficient if it is started

in childhood as soon as possible, making it easier for students to understand technology, reduc-

ing the existing stereotypes in the area of engineering [41]. In the study carried out by Khanlari

[40], eleven teachers participated, revealing that robotics helps in learning related to science and

technology. However, some teachers do not have the expertise to teach such knowledge to their

students and therefore they are not sure whether robotics would be beneficial or not.

It is very difficult for teachers to include robotics in the regular curriculum because of the

heavy focus on standardized testing and pressure to accomplish academic standards. Robotics

technology has been more accessible not only for experts but also for teachers and students. How-

ever, educators need to consider innovation as a necessary focus of student learning of twenty-

first-century, requiring new learning environments to promote this innovation. Accordingly to

[13], some pioneer teachers like Bratzel and Kee addressed the standard education with robotics

activities, helping others to bring robotics into the classroom.

2.4.3 Logical Reasoning and Computation thinking

In a world that is becoming complex, is more important than ever for the young generation to be

equipped with knowledge and skills to solve hard problems. If education does not change, students

are learning concepts that they can not make connection between their learning and their life and

they are not acquiring essential skills for effective thinking and reasoning [13].

Robotics facilitates learning in many subjects such as mathematics, physics, electronics, en-

gineering, computing. It can be used to solve problems related to numbers such as proportions,

positive and negative numbers, square roots, algebraic equations, trigonometry, geometry, and es-

timation. In addition to problems with numbers, robotics helps to understand concepts related to

programming, logic, speed, direction, torque, acceleration, loops, sensors [40].

Besides, robotics can be very helpful in languages and arts, reading closely to determine what

the text says explicitly and to make logical inferences from it, interpret words and phrases as they

are used in a text.

Therefore, students develop Computational Thinking [13], a set of thinking skills, habits and

approaches, that are essential to solve problems using a computer [7].

Accordingly to [13], the International Society for Technology in Education (ISTE) and the

Computer Science Teachers Association (CSTA) consider that CT should be integral part of edu-

cation for school-age children because of its characteristics:

• Formulating problems in a way that enables us to use a computer and other tools to help

solve them.

• Logically organizing and analyzing data.

• Representing data through abstractions such as models and simulations.

• Automating solutions through algorithmic thinking.

16 Fundamentals and Literature Review

• Identifying, analyzing, and implementing possible solutions with the goal of achieving the

most efficient and effective combination of steps and resources.

• Generalizing and transferring this problem-solving process to a wide variety of problems.

In addition, children develop some skills like:

• Confidence in dealing with complexity.

• Persistence in working with difficult problems.

• Tolerance for ambiguity

• The ability to deal with open-ended problems.

• The ability to communicate and work with others to achieve a common goal or solution.

2.4.4 Increased Interest in Computer Science

Robotics in education is considered as a way to train engineering thinking in children, developing

their interest in technical creativity, focusing on opting for the engineering professions [35].

A study demonstrates that showing young people that they can make a difference in the world

through the use of engineering and technology will encourage them to the areas of mathematics,

science, and programming [42]. Students learn new concepts better when they know it will be

useful not only to complete their class projects [40] but also to society.

2.4.5 Team Work

When working on making robotics activities, it is recommended that students work in small

groups. In this way, they obtain the skills needed for effective collaboration. They become excited

and motivated when sharing ideas, learning to cooperate by decision-making, improving criticism

and communication skills [13].

Formation of teams consists of members with different technical capabilities, cognitive styles

and prior experiences, which implies juxtaposing multiple perspectives that children need to deal

with and overcoming characteristics like egocentrism [43]. Team work also helps students with

low self esteem by discussing with other students with different skills.

2.4.6 Gender inequality

Both genders should be encouraged to learn programming and robotics. From the 1980s there was

a decline of female programmers, which is regrettable because they have skills that sometimes the

opposite sex does not have, such as attention to detail, being meticulous and the ability to find

bugs in a program [13].

2.5 Examples already tested 17

Happiness and well-being have been shown to positively influence learning, however, female

students tend to underestimate their abilities and eventually lose interest by taking a pragmatic ap-

proach to programming. Although males show more confidence in the programming area, they are

less structured and organized. The male greater interest is often related to the games industry [13].

There are many stereotypes about people who work in engineering, technology, and science

that innocently a child picks up, one of them being: a scientist usually is a Caucasian male, with

his hair disheveled, wearing glasses and white coats [44].

The threat of stereotype may have negative implications for how girls doubt their abilities

when evaluated in the areas of mathematics, physics, and programming, showing low perfor-

mances, even if they are academically talented. Women are most interested in people and are

more motivated by the opportunity to help others. This is a problem, given that professions such

as engineering and computer science are not seen as professions of that caliber.

However, all these stereotypes have been changing and disappearing, and women who have

chosen these areas for their future have begun to make way for other women.

A four-year study was conducted evaluating the performance of a women’s course at a school

where STEM-based learning was introduced. The results indicated that the scores of these students

improved in the areas of science and mathematics and that more of them chose to do engineering in

the future. In this study, STEM projects were found to improve the world and help the others [16].

2.5 Examples already tested

There are some products in the market that involve block and tangible programming and also

a robot. In this section, will be presented some of these products that use applications or web

browser to execute code, block-based or tangible, in some cases into real robots and, in other

cases into simulated robots.

2.5.1 Lego Mindstorm EV3

Lego Mindstorm EV3, represented in Figure 2.15, is a set of programmable robotics construction

for ages greater than 10 years. The aim is to build the own robot with Lego pieces, program and

command it. Seventeen different robots can be created from humanoid robot to a shooting scor-

pion or a walking dinosaur. The EV3 set includes bricks, motors, and sensors to build the robot and

make it walk, talk, move. It also comes with the necessary software and app that allow building,

program and control the robot from computer, tablet or smartphone. There is an On-Brick Pro-

gramming App where the robot can easily be programmed, with basic tasks. The communication

can be done by Bluetooth, Wi-Fi or USB cable [10].

2.5.2 Ozobot

Ozobot, represented in Figure 2.16, is a robot and can be coded online with OzoBlockly Applica-

tion or screen-free with Color Codes. The purpose is to inspire young minds to go from consuming

18 Fundamentals and Literature Review

Figure 2.15: The Lego Mindstorms EV3 robot and its programming interface [10, 11].

technology to creating it [12]. OzoBlocky can be used with an application or in a Web browser.

The application can be used in iOS or Android tablet, working with the Evo Robot. The browser

is also compatible with Evo Robot, while used with a computer, or compatible with Bit Robot for

a computer or tablet [45].

Figure 2.16: The Ozobot robot and OzoBlockly Editor [12].

2.5.3 Open Roberta Lab

The Open Roberta Lab, represented in Figure 2.17, is a free platform that makes programming

easy to learn, from the first steps, to program robots with multiple sensors and capabilities. It

can be used at any time without installation in any devices, computer or tablet, with an Internet

browser. Thanks to the programming language NEPO (graphic programming language developed

at Fraunhofer IAIS), simple programs can be created like puzzle pieces [46]. It is available in

14 languages and supports hardware like Lego Mindstorms EV3, Lego Mindstorms NXT and

micro:bit.

2.5 Examples already tested 19

Figure 2.17: Open Roberta Lab.

2.5.4 Blockly Games

Blockly Games, represented in Figure 2.18, is a free Google project with a series of educational

games that teach programming. There are different games, with different levels, so children who

have not had prior experience are ready to use conventional text-based languages by the end of

these games [22].

The different games, with different difficulties, are [47]:

• Puzzle is a quick introduction to Blocklys’ shapes;

• Maze is an introduction to loops and conditionals;

• Bird is a deep-dive into conditionals;

• Movie is an introduction to mathematical equations;

• Music is an introduction to functions;

• Pond Tutor introduces text-based programming;

• Pond is an open-ended contest to program the smartest duck.

2.5.5 Scratch

Scratch, represented in Figure 2.19, is made for children, between six and eight years old, to learn

how to code and implement strategies for solving problems, designing projects, and communicat-

ing ideas [48].

20 Fundamentals and Literature Review

Figure 2.18: Blockly Games.

Figure 2.19: Scratch.

In Scratch programming, the activity is mixing graphics, animations, photos, music, and

sound. Scratch has two design criteria: diversity, supporting different types of projects like sto-

ries, games, animations, simulations, so people are all able to work on projects they care about;

and personalization, people can personalize their Scratch projects by importing photos and music

clips, recording voices, and creating graphics [19]. In the end, the projects can be shared with

other users.

2.6 Conclusion 21

2.6 Conclusion

Taking into account what was said in this chapter, programming at a young age is really important

to the learning and growth in schools and allows children to have a better Computational Thinking.

After the study of some educational games in this area, it is now possible to set some goals for this

dissertation and try to solve some flaws by creating a robotics-related educational programming

language that is both intuitive and fun for children. Using that language for the construction of

tangible code, that can be executed in a robot, but also implement a simulator to see a simulation

of the robot. Therefore, in the next chapter, some proposals will be discussed, creating a more

useful and efficient project.

22 Fundamentals and Literature Review

Chapter 3

Problem Statement and Technological
Selection

The purpose of this dissertation is to have the possibility of creating a tangible puzzle and choose

between executing it virtually in the application, using a Simulator of the real robot, or a real

execution, using a real robot. For this, the application must be able to read the puzzle, recognize

the pieces used and compile this code into a code that various robots and platforms can execute,

including a simulator. This chapter is about the different options to develop this.

At the start of this work, the Tactode Programming System1 has 2 different applications, with

different functionalities. The aim is to have those different functionalities in one application.

The first (Tactode 1) uses tangible blocks to build a puzzle, in order to be executed by a real

robot, Figure 3.1. By taking a photograph, the application recognizes the pieces in the puzzle and

transpile the puzzle code into executable code for a robot. The second (Tactode 2) uses virtual

blocks to build the program and simulate robot actions online, Figure 3.2.

The main advantages or disadvantages of each one need to be defined and also decide in which

way they can be useful for this project.

Figure 3.1: Tactode 1 after uploaded the photo

1Tactode project webpage: fe.up.pt/asousa/tactode

23

https://sites.google.com/gcloud.fe.up.pt/asousa/tactode

24 Problem Statement and Technological Selection

Figure 3.2: Tactode 2 after open Simulator

3.1 Tactode 1

The Tactode 1 application was developed in a dissertation project. It uses tangible pieces that are

assembled like a puzzle. Each piece is composed by a title that summarizes the command state-

ment, an illustrative image of the command, and an ArUco tag, which is used by the application

to identify the pieces, an example is presented in Figure 3.3.

The ArUco tags represent ids, that the software can associate with programming language

commands. This is possible using a camera, taking a picture and then use a library that can

detect, organize and turn the ArUco markers into executable code, such as ArUco JavaScript

library. Marker detection and identification has the following steps: Image segmentation, contour

extraction and filtering, marker code extraction, sub-pixel corner refinement [49].

After the construction of the puzzle, the user can open the application and, using the camera

of the device, capture a photograph. The App recognizes the ArUco pieces and then compiles

the tangible program into executable code that the chosen platform can perceive. Currently, there

are four compatible robots - Cozmo, Ozobot, Sphero and Robobo - and Scratch and Python as

non-robotic platforms.

The application consists of a text box to write the project name and a button to capture a photo

of the code. After capturing the photo, the application compiles the code and, if there are no

errors, the user can export the code to the platform or save it in the cloud. The application also has

a settings page that allows the user to choose between taking a photo or loading an existing file

and also choose the platform or robot to use.

Its execution time depends on the implementation of each robot, for example, in the case of

the robot Cozmo, the code can be sent directly from the application of Tactode to the application

of Cozmo.

The app is compatible with Android, iOS, macOS, Windows and the browser. However, it

becomes complicated to use the application on small sized screens.

3.2 Tactode 2 25

Figure 3.3: Code of a polygon by using tangible pieces

3.2 Tactode 2

Tactode 2 is an application developed in a computing class. It was intended to be a Progressive

Web App (PWA), an application that runs in a browser, without internet connection, being acces-

sible anywhere in any device.

PWAs are apps that are [50]:

• Progressive - increase their functionality, conform to the capabilities of the device on which

they run, becoming more and more powerful as they are used.

• Web - are built using HTML, CSS, JavaScript and a new generation of JavaScript APIs.

• App - have all the most remarkable Apps features. Can be installed on mobile devices, have

apps look and feel, push notifications, etc.

However, in Tactode 2 internet connection is needed when uploading a photograph. So, Tac-

tode 2 runs in a browser with access to the internet. In its content there is a graphic editor, with

access to the blocks for programming, where the puzzle can be assembled and later simulated.

Kids have several options to create their puzzles, put them on the IDE and see their simulation.

The user can create a puzzle in one of these two ways:

• Tactode is prepared to create the puzzle directly in the browser.

• However, in order to reduce screen time, there is the possibility of making the puzzle with

tangible pieces.

And do the upload of the puzzle in these ways:

• Create the puzzle directly in the web and simulate it.

26 Problem Statement and Technological Selection

• Take a picture of the actual puzzle using the camera of the device where the application is

running.

• Upload a previously taken picture by searching the image on the device.

• Load an XML file of a previously saved puzzle.

In all these options it is always possible to visualize the puzzle in the IDE. The ArUco pieces are

not visible, as it is possible to see in Figure 3.4, which makes it less confusing for the children.

It is also possible to highlight the piece that is being executed, so it can be seen when some error

occurs.

Figure 3.4: Code of a polygon by using Blockly Jr.

3.3 Problem Definition

Programming by tangible blocks brings a lot of advantages for children’s learning. However,

older children prefer graphical interface than a tangible interface. It is also proven that it is more

appealing and funny for students to see in the real robot what was built by them, as it is applied to

a concrete example, making the tasks more concrete.

In order to please all the public, it would be interesting to have an application that does not

occupy memory in a device and that is as portable as possible to be able to use anywhere, accessing

just through a tablet or smartphone, without being dependent of extra material. However, it is

believed that learning is more productive when there is a purpose and it is applied to a real case,

so to be able to not only simulate the robot but actually test it.

What if a merger of the two was created? It would appear a lot of advantages but also disad-

vantages. In case of Tactode 1, a real good advantage is the fact that it is compatible with many

robots and platforms but, deploying an App available to all platforms - iOS, Android, macOS,

Windows - it has a cost. For example: Apple App Store requires a payment of 99$ per year [51];

3.4 Proposed Solution 27

in Google play is one-time payment of 25$ [52]; in Microsoft is also a one-time payment of 15$

for individuals and 99$ for companies and organizations[53].

Besides this, if a user wants to have the application in other devices, he needs to install the

App in each, and of course, this occupies memory.

Some of these problems can be solved with the Tactode 2, but some new disadvantages come.

Tactode 2 just needs a browser, so it is compatible with all devices and does not occupy memory.

A PWA only needs an Internet connection to open it and then it is supposed to not need any

connection to the internet. However, the Tactode 2 App requires connection to the internet when

the photograph is taken and sent to the server and then back to the IDE. Which does not make

Tactode 2 a real PWA.

Also, the blocks used, created by Blockly Jr, are not the best ones for this work. It is possible

to see in Figures 3.3 and 3.4 that the blocks of Blockly Jr, used in Tactode 2, are not similar to the

tangibles ones, used in Tactode 1, and it does not have the format of a puzzle when all the pieces

are connected, for example, in the use of conditions and loops. This causes that the students do not

have to think so much for them because this already is done by the app and the aim is for children

to learn the concepts and logic of programming. The solution here would be to create something

similar to Blockly, to be as closest as possible to the tangible ones with a Drag and Drop interface.

Another problem related to Tactode 2 is that it does not have a compiler, so a correct code can

not be sent to the robot. If the code has errors, the robot can react differently from what it was

supposed.

On the other hand, Tactode 1 has a compiler that translate the tangible code into multiple high

level languages, as many as the used platforms.

Considering the focus of this dissertation in teaching programming, there are also disadvan-

tages in Tactode 2. The features implemented in its robot simulator are reduced. Only the basic

robotic movements, like move forward or backward and turn right or left, were implemented. In

order to teach programming and robotics concepts to the children, sensors, variables, flow control

elements, such as while statements and if and else statements, need to be implemented.

So, the aim is to implement, in the simulator, all blocks implemented in reality, so that children

can take advantage most of the knowledge of robotics and programming.

3.4 Proposed Solution

The proposal is to create a Tactode 3 that can have a Simulator where can be seen the pieces of the

puzzle that are being executed. It is intended to be compatible with several robotic and non-robotic

platforms and the software to be the most generic as possible to any user can use at any moment

and anywhere, using any device he has available. At the same time, children can’t get stuck in

something virtual, so it is important to program with tangible pieces.

The Proposed solution is to implement in Tactode 1 what is made in the Tactode 2 in order

to create Tactode 3. So, the first goal of this dissertation is to implement a Simulator, with a

virtual robot, in the Tactode 1, so that children can simulate their codes before sending it to the

28 Problem Statement and Technological Selection

real robot. The Simulator needs to implement, not only the basic movements of moving forward,

backward, turn left and right, rotations, but also make use of the sensors of each robot, motion

sensors, and line followers. The second goal is to highlight, in the App, which piece is being

executed so children can easily make a connection from what they are seeing on the robot and

what piece corresponds to the movement. It is also important to turn the App more appealing for

young children in order to encourage use.

After proposing a solution, it is time to start thinking about implementation. The next section

talks about some technologies needed to develop the Tactode Application and its Simulator.

3.5 Development Technologies

The Tactode application aims to simulate the real robot in the application. In order to be accessible

for all users, it should be compatible with all platforms [54]. Nowadays, there are several options

to create multi-platform applications. Ionic Framework was used. It generates applications for

multiple systems from a single source code, using Angular and TypeScript [55]. Besides, Three.js

was used to develop the Simulator.

3.5.1 Web Programming

The Web has become the main platform for the information society [56].

Web programming is the act of writing and coding involved in web development. It includes

web content, client and server system and network security. It requires interdisciplinary knowledge

on application area, database technology and client and server scripting.

The most common languages used in Web Programming are HTML, PHP, CSS, JavaScript

and Perl 5. HTML is used to specify the content of web pages, CSS to specify the presentation of

web pages, and JavaScript to specify the behavior of web pages [57].

JavaScript was created at Netscape in the early days of the web and is a trademark licensed

from Sun Microsystems (now Oracle).

It derives its syntax from Java its first-class functions from Scheme, and its prototype based

inheritance from Self. It is high-level, dynamic, well-suited to object-oriented and functional

programming styles. This makes it a powerful, flexible and fast programming language now used

for increasingly complex web development and beyond [57, 58].

3.5.2 TypeScript

TypeScript has the same syntax and semantics of JavaScript. It is possible to use and incorporate

JavaScript code into TypeScript. It runs on any browser that supports ECMAScript 3 (or newer)

and includes JavaScript features like async functions and decorators. Types are optional but allow

the developer to use practices as code refactoring and define interfaces when developing JavaScript

applications [59].

3.5 Development Technologies 29

As JavaScript, TypeScript is synchronous, so it is necessary to make it asynchronous when

doing the Simulator since an action must finish before the next one is executed.

An asynchronous operation allows the computer to move on to other tasks while waiting for the

asynchronous operation to complete. To create this, it is necessary to implement async functions

and Promises.

3.5.2.1 Promises

Promises are objects that represent the eventual outcome of an asynchronous operation. A Promise

object can be in one of three states:

• Pending: It is the initial state, the operation has not completed yet.

• Fulfilled: The operation has completed successfully and the promise now has a resolved

value.

• Rejected: The operation has failed and the promise has a reason for the failure.

A promise is settled if it is no longer pending, it is either fulfilled or rejected.

Let’s take an example where the user wants to move the robot, in order to draw a square. The

robot needs to move forward some distance, then turn 90◦ and repeat this three more times. If

promises are not used, the robot moves forward and turns 90◦ at the same time.

The promises in the Tactode Simulator were implemented using Async-Await. Async write

functions that handle asynchronous operations and Await is an operator that returns the resolved

value of a promise. So, Await halts (or pauses) the execution of an Async function until a given

promise is resolved [60].

The code in Listing 3.1 has parts of the functions used to move forward and turn left. To move

forward, the promise only returns when the move distance achieves the distance given by the user,

which means that the robot reached the end of the distance established, resolving the promise of

the function simulateForward(), and now it can turn left. The same happens when turning left, the

angle is increasing until the angle established, then the promise of the function simulateLeft() is

resolved.

Listing 3.1 Promises in Move Forward and Turn Left

1 simulateForward(forward: ForwardBlock): Promise<null> {

2 return new Promise<null>(resolve => {

3 this.forward = forward;

4 this.resolveForward = resolve;

5 })

6 }

8 simulateLeft(left: TurnLeftBlock): Promise<null> {

9 return new Promise<null>(resolve => {

10 this.turnLeft = left;

11 this.resolveLeft = resolve;

12 })

30 Problem Statement and Technological Selection

13 }

15 moveForward(){

16 var dist = this.forward.children[0].children[0].parsedNumber;

17 var speed = this.forward.children[1].children[0].parsedNumber;

19 this.robot.position.x += this.time * Math.cos(this.angle + Math.PI) *
Math.abs(this.speedRight - this.speedLeft);

20 this.robot.position.y += this.time * Math.sin(this.angle + Math.PI) *
Math.abs(this.speedRight - this.speedLeft);

22 this.currentDistance += this.time * Math.abs(this.speedRight -

this.speedLeft);

24 if(this.currentDistance >= dist){

25 this.resolveForward();

26 }

27 }

29 moveLeft(){

30 var angle = this.turnLeft.children[0].children[0].parsedNumber;

31 var speed = this.turnLeft.children[1].children[0].parsedNumber;

33 if (this.currentAngle + this.time * speed >= this.degToRad(angle)) {

34 this.turn(this.degToRad(angle) - this.currentAngle);

35 this.currentAngle = this.degToRad(angle);

36 } else {

37 this.turn(this.time * speed);

38 this.currentAngle += this.time * speed;

39 }

41 if(this.currentAngle >= this.degToRad(angle)){

42 this.resolveLeft();

43 }

44 }

3.5.3 Ionic Framework

Ionic is an open-source Software Development Kit (SDK) for building hybrid mobile and desktop

apps, using web technologies like HTML, CSS and Javascript. It is Cross-platform, with one code

base, which means that work across multiple platforms, being compatible with a variety of mobile

devices like iOS, Android, macOS, Windows and the web as a PWA. It is a Node Package Manager

(npm) module and requires Node.js.

It also uses Cordova to have access to host operating systems features such as Camera, GPS,

Flashlight, etc. It includes mobile components, typography, interactive paradigms, and an exten-

sible base theme [61]. In Tactode, the principal Cordova feature used is the Camera.

Although it is possible to choose several interface frameworks such as Angular, React, Preact

or Vue.js, Angular is the most commonly used. Core components have been written to work as

3.6 Conclusion 31

a standalone Web Component library, but the @ionic/angular package simplifies integration with

the Angular ecosystem. So, Tactode is build on top of Angular [55].

3.5.4 Three.js

Three.js is the JavaScript library used to create the Tactode Simulator. This library allows to create

and display animated 3D graphics in a browser. Its main operation was explained in Section 2.3

and basically it consists in a loop that it is always running, allowing animations (in the case, robot

movements) at 60 frames per second. The number of frames per second is set by the developer (it

is not predefined by Three.js).

3.6 Conclusion

After studying Three.js and how a scene is rendered, simple animations can be created. With

knowledge in promises, more complex animations can be done, waiting for one operation to com-

plete to start another one. In Chapter 4 it is possible to see in detail how this is implemented in the

Tactode pieces and how it works. It is also shown how the Tactode simulated robot is created and

some other preliminary stuff for better visualization and understanding.

32 Problem Statement and Technological Selection

Chapter 4

Tactode Application

This Chapter is about the development of the application, with focus on the subject of this disser-

tation - the Simulator. First it is possible to see the Requirements and the way user can interact

with the application and, in particular, with the Simulator.

Some preliminary points are discussed such as: the rotation of the image that contains the

program, to allow better visualization; the image processing and highlighting of the main pieces;

the division of the screen in two parts during the simulation, allowing to visualize the simulation

of the robot while seeing the blocks of code that are to being executed and the design of the virtual

robot and its movements.

Then the implementation of the Simulator in Three.js and the internal structure of the puzzle

are explained, detailing the implemented blocks and giving examples of some challenges that users

can overcome.

4.1 Requirements

In this section, the Non-Functional and Functional Requirements will be discussed, designed for

the proper functioning of this application and in particular the Simulator, taking into account

pleasant navigation and the needs of the users.

4.1.1 Non-Functional Requirements

Performance is a concern. A user does not want to spend most of the time waiting for something

to load. The Tactode Simulator needs to be fast and execute tasks quickly. Besides the simulation,

Tactode needs to process the image taken, and sometimes there are some large programs that

require more processing. So, it is somewhat acceptable that the user has to waits a few seconds

for this process.

On the other hand, security is not a big worry since sensitive and personal data are not used.

It just requires camera access and image files and only stores images with no program errors.

It must be intuitive. Users should understand how to work with the application without the

need for an instruction manual. In this way, the Tactode Application also must ensure reliability,

33

34 Tactode Application

since the young age of users can lead them to confusion if something does not run as expected

or an error occurs. It should have visual elements that guide the user of the application, giving

feedback about what is happening.

And last but not least, the user wants to use the application at any device, in this way, Tactode

App should be responsive to any device and screen dimensions.

4.1.2 Functional Requirements

To better describe the functional requirements for this project, a set of Use Cases will be enumer-

ated, followed by an explanation and a Use Case Diagram.

A group of basic Use Cases is needed for the simple operation of Tactode Application, without

thinking about the Simulator. The very first requirement is the need to build a Program with the

tangible puzzle pieces, open the application, name the program, open the camera and take a picture

of it or upload an existing one, see the highlighted code and the errors if any. If no error exists,

the program can be exported and/or shared to the target platform. The user can also see, delete or

export previous programs. This is shortly stated in Use Case (UC) 1.

UC 1. The user can Take/Upload a photograph of the program, wait until image processing and

export or share to the target platform.

The UC 2 follows the previous Use Case. The user can change the settings of the application

and choose different target platforms between Ozobot, Cozmo, Sphero, Robobo, Scratch, and

Python, select a photograph already taken, saved in the device, or take a new one at the moment.

The user can also pick a comfortable language for him.

UC 2. The user wants to configure the application, so he can select image source, target platform

and also an adequate idiom.

After the image processed, with no errors and set to the desired platform, the simulation can

finally be executed. The user wants to see the Simulator and the robot. He can click on the Flag

button, used to start simulation, (if required by the chosen target platform) and start the simulation

of the created program. This is stated in UC 3.

UC 3. The user wants to open Simulator (click the Flag button, depending on the target platform)

and see the robot starting the simulation.

Besides, the user wants to see what blocks are being executed during the simulation (UC 4). To

do that, when the robot is executing one task of the program, that piece of the puzzle is highlighted

and when moving to the next task, the corresponding one is highlighted and the first one is no

longer evidenced.

UC 4. The user wants to see what blocks are being executed during the simulation.

If the program created has a Forever in the code, or, for some reason, the user needs to stop

the simulation, a stop button is required so that the simulation stops. This is UC 5.

4.1 Requirements 35

UC 5. The user wants to click the Stop button and interrupt the simulation when he wants.

In order to take advantage of all functionalities of all platforms, depending on what the user

built in the puzzle, the robot can draw a line, run away from obstacles and follow a line. So, the user

can use the puzzle piece PenDown to draw the robot path. This is very useful when constructing,

for example, a polygon, in this way, the movement of the robot is more visual (UC 6). When the

robot sensors are turned on, the robot can detect an obstacle, so the users can click on obstacle

button and move the obstacle wherever they want. The robot can stop in front of the obstacle or

run away from it (UC 7). Another sensor used in the Simulator is the follow line sensor. When

used in the puzzle, the user can add a line to the Simulator and the robot can detect and follow that

line (UC 8).

UC 6. The user wants to see the robot’s path so that he can confirm visually its movement.

UC 7. The user wants to add an obstacle to the Simulator and see the robot’s reactions to it.

UC 8. The user wants to add a line to the Simulator and see the robot following that line.

In Figure 4.1 it is possible to see the Use Case diagram summarizing the use cases listed above.

Figure 4.1: Use Case Diagram.

4.1.2.1 Sequence Diagram

The following sequence diagram is based on the architecture of the Simulator. According to what

was explained in Section 3.5.2.1 about JavaScript Promises, the user creates the puzzle and uploads

36 Tactode Application

it to the Tactode application. The Simulator can only be opened if the puzzle has no errors. After

the Simulator reads the first instruction and executes it, the next instruction is waiting until the

first is finished. So, each Block in the Simulator that has visual simulation (like Move Forward,

Backward, Turn Left, Right, Question and Answer, etc) has a promise that only is resolved when

that action is finished. When there is no instruction to simulate or when the user clicks the Stop

button, the simulation stops. After this, the user can upload a new program.

Figure 4.2: Sequence Diagram.

4.1.2.2 Happy Path

Happy Path is a default scenario with no exceptional or error conditions, where the input is known

and the output is expected.

In Tactode, the users can build a puzzle with the tangible tiles, open the application, go to

the Settings Tab and select the desired Target Platform, the source of the image and the language

they are most comfortable with. After that, a previously taken photograph of the program can be

uploaded or a new one can be taken at the moment. The user can also go to the Previous Programs

Tab and see or export previous programs. Because a happy path considers that there are no errors

and the program created has correct syntax, the user can also export the actual program. If the

4.2 Design of Interface 37

intention of the users is only to export programs, they can finish the action now. If not, the user

can continue by opening the Simulator and starting the simulation of the puzzle. When there are no

tasks to execute, the simulation stops and the action is finished or the users can stop the simulation

whenever they want and the action also arrives at the end. This path is visually represented in

Figure 4.3, where the green circle is the beginning and the red is the end.

Figure 4.3: Happy Path.

4.2 Design of Interface

This section is about the primary tasks to do before starting to think about the Simulator. Although

this dissertation focuses on creating a Simulator for a robot, some adjustments were needed to be

made before starting this work. The first problem to solve was placing the image in the correct

orientation and position on the screen, to be easier for children to see the puzzle, and highlight

the pieces so they can understand what was done. All of this, working with different coordinate

systems and mathematical equations. The second task was dividing the screen into two responsive

sides so that the Simulator could be placed on the right side. And then, design a robot to use in the

simulation.

4.2.1 Rotating image

The first problem was rotating the image to the correct orientation, for a better visualization of

the pieces. If the child, after constructing the puzzle, takes the picture that is not aligned with the

puzzle, the result will be a rotated image.

In Figure 4.4, it is possible to see a picture taken with no image processing and another already

in the Tactode IDE after processing. The rotation of the image was done through canvas library

38 Tactode Application

functions. The main function is context.rotate(angle). This function rotates the image but the

rotation center point is the canvas origin which is not the center of the image. This has generated a

problem, where the image becomes displaced from the canvas. In order to solve it, it was necessary

to calculate the correct position of the image and draw it there.

The solution was a translation to the upper left corner of the canvas. This corner was calculated

by the point of the most left marker and the most top marker, multiplied by the ratio. The ArUco

code recognizes the position and corners of all puzzle pieces (markers). After that, using a loop

cycle, it is possible to find the left top corner (x, y) = (leftX, topY).

However, one more problem appeared. Some images exceed the width limits available by the

canvas area and some markers disappeared because of that. The solution was quite similar to the

first one. It was also necessary to find the bottom right corner (x, y) = (rightX, bottomY), limiting

width and height according to the left top corner and bottom right corner.

Listing 4.1 Width and height according to left top and bottom right corners

1 width = rightX - leftX;

2 height = bottomY - topY

The ratio is calculated by the input width of the real device screen and the width calculated

before. In the end, the image is placed where it should be. After all this calculated, it is possible

to draw the image, using the canvas function.

Listing 4.2 Function used to draw the image

1 context.drawImage(image, dx, dy, dWidth, dHeight)

Where dx and dy are the destination point (x, y) where the image should be placed.

According to the canvas coordinate system shown in Figure 4.5, and since coordinate system

is placed on the center of canvas, leftX and topY should be negative points.

Listing 4.3 drawImage applied to Tactode context

1 context.drawImage(image, -leftX * ratio, -topY * ratio, width * ratio, height *
ratio);

4.2 Design of Interface 39

Figure 4.4: Image before and after processing.

Figure 4.5: Canvas coordinate system.

4.2.2 Split Screen

The best way to place the Simulator is next to the puzzle, once the main tiles of the puzzle are

highlighting during the execution of the robot in the Simulator, because it is more intuitive for

children to understand what is happening and also know when something went wrong with their

reasoning. However, it is not always possible to split the screen in two horizontally and clearly

see both sides. Because of this, when the height is greater than the width, instead of dividing the

screen in two side by side halves, the Simulator is placed below the puzzle. In other words, the

goal is to make the Tactode application responsive to any device with any dimensions. Figure

4.6 shows Tactode Application with the Simulator on the right of the puzzle and also with the

Simulator below the puzzle.

40 Tactode Application

Figure 4.6: Different positions of Simulator.

The Simulator only appears when the button play is clicked. This positioning was achieved by

using properties of HTML5 and CSS. In the HTML code of the main page, defined the workspace

as a d-flex row and divide that row into two columns. The first one for the puzzle and the second

one for the Simulator. Then, in CSS, using media queries, change the width of the canvas left and

right according to the device size and its orientation.

4.2.3 Creating the robot

Since the purpose is to simulate a scene of the execution of a robot, it is necessary to create one.

When people see a real robot moving, normally it is on the ground and the person is looking from

above to the robot. Given this and after researching about simulations scene and robots, it was

concluded that the more intuitive way to represent the Simulator is a 2D scene which is viewed

from the top.

In this case, the robots compatible with Tactode, when viewed from above, are mostly circular

and, because users need to know the orientation of the robot, the idea was to create a robot with

spherical structure but with something that indicates in what direction it is moving. There are

many animals in nature with these characteristics like a turtle, a scarab or a ladybug, Figure 4.7.

Figure 4.7: Turtle, scarab and ladybug.

4.2 Design of Interface 41

The idea was to create something with the same meaning but related to robotics and Tactode

as a tangible block programming system. With more straight lines and hinges, typical color of a

robot and something related to puzzles.

The format used to create and implement the robot in Three.js was SVG and essentially it is

composed by: a large ellipse to draw the robot body and 4 small ellipses for the legs; two straight

line segments grouped to draw paws; a rectangle and a semicircle, drawn by a path, to build the

head; a three-sided polygon (triangle) plus a small rectangle and a small ellipse for the ears. The

SVG Tags implemented were:

Listing 4.4 SVG Tags used to build Tode.

1 <svg></svg> <!- Open and close SVG file Tag ->

2 <ellipse/> <!- Ellipse Tag ->

3 <path/> <!- Path Tag ->

4 <rect/> <!- Rectangle Tag ->

5 <polygon/> <!- Polygon Tag ->

6 <g></g> <!- Group Tag ->

This is how Tode, represented in Figure 4.8, is born. Tode, the simulated robot for Tactode

application.

Figure 4.8: The robot Tode.

4.2.4 Robot Movements

The robot also has axes. This is important to understand the movements direction. When con-

structing the robot movements, it was considered a robot with two wheels.

Figure 4.9 shows the two different coordinate systems. One defined by Three.js and the other

is the coordinated system of the robot based on its center. The movement equations are defined

by:

42 Tactode Application

xrt = xrt−1 + cos(θt)× v×∆tt

yrt = yrt−1 + sin(θt)× v×∆tt

θrt = θrt−1 +ω ×∆tt

Where:

- v is linear velocity.

- ω is angular velocity.

v =
v1 + v2

2

ω =
v1 − v2

dr

And:

- v1 and v2 are wheel speed of the robot.

- dr robot’s diameter.

Figure 4.9: The different coordinate systems used.

4.3 Simulator

This section is about the design and implementation of the Simulator. In order to better under-

stand how the Simulator is structured, it is necessary to know more about the architecture of the

application. Then it will be explained which blocks of the Tactode tangible block programming

4.3 Simulator 43

system were implemented in the Simulator and the challenges created with those blocks in order

to children solve them.

4.3.1 Abstract Syntax Tree

The Tactode programming language has many pieces (defined as blocks), but not all are compatible

with all platforms and robots. The tables shown in Appendix A. show all the pieces Tactode has

and their compatibility with the platforms and robots available. Figure 4.10 shows an example of

a square - a loop, running four times, that repeats move forward, with a fixed distance, and turn

right/left 90◦. The corresponding AST is shown in Figure 4.11.

Figure 4.10: Tactode program that draws a square (AST in Figure 4.11).

Every uploaded puzzle is processed as an Abstract Syntax Tree (AST). Each original piece has

a corresponding Block and each of them has an array of other Block objects (children) and also a

parent Block object. In this way, each object knows its parent and its children. However, there are

some extra elements in the AST that do not have a piece in Tactode, such as:

• RootBlock: special Block with no parent that serves as the root of the AST. Its children are

the command blocks that are not inside of any control flow block, which means that have no

indentation in the tangible language.

• BodyBlock: child of control flow blocks RepeatBlock, ForeverBlock, IfBlock, ElseBlock

or WhileBlock.

• ConditionBlock: child of RepeatBlock, IfBlock or WhileBlock and, as the name suggests,

it contains the condition to be verified by these control flow blocks.

44 Tactode Application

In case of Figure 4.11, Root Block has one child - Repeat Block - and this block has three

more children:

• Condition Block that usually has as child the number of repeats of the cycle.

• Body Block where the main instructions are introduced. It has two children: Forward Block

and Turn Left Block. Forward Block has two more children - Distance and Speed - each

with Number block as children. Turn Left Block is similar but instead of distance, it has an

Angle Block.

• End Repeat Block only ends the repeat, as the name indicates.

Figure 4.11: AST of the example in Figure 4.10

Now that it is known how to read the puzzle program, it is time to implement the blocks in the

Simulator. As mentioned in Section 3.5.2.1, asynchronous functions and promises were used to

make one action wait for another.

4.3.2 Implemented Blocks

This section is organized by type of pieces and will show the blocks used in the Tactode Simu-

lator, describing how they are implemented and their compatibility with the different robots and

platforms.

4.3.2.1 Numbers and Letters

The AST concatenates digits as numbers into NumberBlock and letters as words into LetterBlock.

Tactode has a distinct piece for each digit and each letter and uses those pieces to form numbers

4.3 Simulator 45

and strings, respectively. The pieces used for the numbers are represented in Figure 4.12 and

for the letters in Figure 4.13. The AST has a single NumberBlock object for each sequence of

numbers in the tangible language, independently of the number of digits, where the sequence of

concatenated digits is stored. The same for strings, instead of storing individual letters, the AST

has a single LetterBlock object where the string of concatenated letters is stored.

Figure 4.12: Numbers.

Figure 4.13: Letters.

4.3.2.2 Operators

There are three different types of results for operators: Numerical, Logical and Comparison. Op-

erators such as addition, subtraction, division, multiplication, remainder and absolute return a

number and operators like and, different, equal, greater, greater equal, less, less equal, not and or

return true or false if the condition is or not verified.

However, the children of the operations are not always numbers or expressions true/false.

Numerical Operators children are usually numbers. Greater (equal) and Less (equal) Blocks have

the same children of Numerical Operators. The children of operators && (AND), || (OR) and

! (NOT) are Boolean expressions and Different and Equal Block can have both numerical and

Boolean children. For better understanding, let’s divide operators in three groups.

Numerical Operators

This group is about operators that return numbers as result. These operators are represented in

Figure 4.14.

46 Tactode Application

Figure 4.14: Numeric Operators.

Every operation (absolute, addiction, subtraction, multiplication, division or remainder) has

its own function, returning the result of that operation. In this way, when an operation occurs, the

Simulator will verify what is the type of operation, using a switch and call the function of that

operation, returning its result.

However, operators’ children are not always numbers. They can be, for example, the content of

a variable or an answer. Operations as addition, subtraction, division, multiplication and remainder

have 2 children but absolute only has one. Tables 4.1 and 4.2 show the children that each operator

can have.

Child 0 Child 1

Answer Answer

Answer Number

Number Number

Number Variable

Number Operation

Number Answer

Operation Number

Operation Operation

Variable Number

Variable Variable

Table 4.1: Numerical Operators Children

Child

Answer

Number

Operation

Variable

Table 4.2: Absolute Block Children

Logical Operators

These operators are represented in Figure 4.15.

Figure 4.15: Logical Operators.

4.3 Simulator 47

This group is about operators used to compare Boolean expressions and also returns a Boolean

value. Logical Operators are defined in the Simulator the same way of numerical operators, but

the returned value of each function is of type Boolean.

It returns true if the condition, represented by the operator, is verified or false if it is not.

The Table 4.3 shows the children that each operator can have.

Children 0 Children 1

Boolean Operator Boolean Operator

Table 4.3: AND, OR and NOT Block Children

Comparison Operators

These operators are represented in Figure 4.16.

Figure 4.16: Comparison Operators in Tactode.

This group is about operators used to compare numerical and also Boolean expressions. The

result of these operations is a Boolean value. Comparison Operators are defined in the Simulator

the same way of Logical Operators. It returns true if the condition is verified or false if it is not.

A simple example is checking if 4 is greater than three. If it is verified, return true, if not, return

false.

Tables 4.4, 4.5 show the children that each operator can have, where Boolean Operator is an

operation where the result is of type Boolean. Some of them are represented below in Comparison

Operators.

48 Tactode Application

Child 0 Child 1

Answer Answer

Answer Number

Number Number

Number Variable

Number Operation

Number Answer

Operation Number

Operation Operation

Variable Number

Variable Variable

Table 4.4: Greater (equal) and Less (equal)
Blocks Children

Child 0 Child 1

Answer Answer

Answer Number

Number Number

Number Variable

Number Operation

Number Answer

Operation Number

Operation Operation

Variable Number

Variable Variable

Boolean Operator Boolean Operator

Table 4.5: Different and Equal Block Chil-
dren

4.3.2.3 Movements

After defining numbers, letters and operations, it is time to create movements. The movements

in the Tactode Simulator are: move forward or backward and turn left or right. It is necessary

to be acquainted with robotics concepts to create movements in the Simulator (Section 4.2.4).

Figure 4.17 display the movement Blocks. Three.js allow movement from objects by increasing

(or decreasing) its position x (or y) and rotation.

Figure 4.17: Movement blocks in Tactode.

4.3 Simulator 49

The Go Forward and Go Backward Blocks has as children the distance and speed and Turn

Left and Right has as children the angle and speed. However, each child can be defined with other

Blocks such as Operations, variables, etc. This is defined in the next Table.

Angle/Distance Speed

Answer Answer

Number Number

Operation Operation

Variable Variable

Table 4.6: Children of Angle/Distance and Speed Blocks

Go Forward

To Go Forward it is necessary to increment robot position, considering the current position and

angle. For example, when constructing a Pentagon the robot will have different angles and, conse-

quently, different wheel speeds. So, taking into account the equations in Section 4.2.4, if the robot

has different wheel speeds, that means that the robot is rotating and the position is incremented,

using the time, angle and speed of the right and left wheels, as shown in Listing 4.5.

Listing 4.5 Simple code to Move Forward

1 this.robot.position.x += this.time * Math.cos(this.angle + Math.PI) * Math.abs(

this.speedRight - this.speedLeft);

2 this.robot.position.y += this.time * Math.sin(this.angle + Math.PI) * Math.abs(

this.speedRight - this.speedLeft);

3 this.currentDistance += this.time * Math.abs(this.speedRight - this.speedLeft);

In case of simulation, as the actual diameter of the robot is not known, this value is ignored.

So, x position is given by the previous position plus the time multiplied by the cosine of the angle

and by the difference of the speeds of the wheels. The same for y position but instead of a cosine,

the sine is used. In the end, it is necessary to update the robot’s current distance to know when the

user-defined distance is reached. If the wheel speed is equal, the expression is the same but it is

no longer necessary to subtract the value of the two speeds, using only one speed.

Go Backward

The backward movement is quite similar to forward. But instead of increasing the position, it is

decremented, Listing 4.6.

Listing 4.6 Simple code to Move Backward

1 this.robot.position.x -= this.time * Math.cos(this.angle + Math.PI) * .abs(

this.speedRight - this.speedLeft);

50 Tactode Application

2 this.robot.position.y -= this.time * Math.sin(this.angle + Math.PI) * Math.abs(

this.speedRight - this.speedLeft);

3 this.currentDistance -= this.time * Math.abs(this.speedRight - this.speedLeft);

Turn Left

To Turn Left it is necessary to increment robot rotation, considering the current angle and the

angle necessary to turn. The angle is in Radians. In order to do this, the rotation is incremented

according to the speed given by the user and the constant time defined as number of frames per

second. In this way, it is possible to visualize the movement in small increments until it reaches

the user-defined angle, instead of just turning to the requested angle.

Considering the previous Pentagon example, the robot will have a constant value of angle that

needs to turn. If the current angle plus the next bit of angle (time × speed) is equal or greater than

the angle defined by the user, it means that this angle has already been reached and then just need

to turn that difference between the fixed angle and the current angle. If not, the current angle needs

to continue to be increasing and turning a bit more angle. The corresponding code is represented

in Listing 4.7.

Listing 4.7 Simple code to Turn Left.

1 if(this.currentAngle + this.time * speed >= this.degToRad(angle)){

2 this.turn(this.degToRad(angle) - this.currentAngle);

3 this.currentAngle = this.degToRad(angle);

4 } else {

5 this.turn(this.time * speed);

6 this.currentAngle += this.time * speed;

7 }

Turn function in Listing 4.8 is where rotation is incremented:

Listing 4.8 turn function.

1 private turn(angleToTurn: number){

2 this.robot.rotation.z =+ angleToTurn;

3 }

Turn Right

The Turn Right is quite similar to Left, but instead of a turning with a positive values of angle, it

rotates with negative. This is because of the coordinate system of Three.js. Three.js uses positive

numbers for counterclockwise rotation and negative numbers for clockwise.

Listing 4.9 Simple code to Turn Right.

1 if(this.currentAngle - this.time * speed <= this.degToRad(angle)){

4.3 Simulator 51

2 this.turn(this.degToRad(angle) - this.currentAngle);

3 this.currentAngle = this.degToRad(angle);

4 } else {

5 this.turn(this.time * speed);

6 this.currentAngle -= this.time * speed;

7 }

Besides movements, the Stop Tag was also implemented, represented in Figure 4.18, to stop

any movement of the robot.

Figure 4.18: Stop.

4.3.2.4 Control

The control blocks implemented in Tactode are: Repeat, Forever, While, If and Else, represented

in Figure 4.19. These blocks need to verify a condition. If that condition is verified then the

body can execute its children. In case of loops like repeat, forever and while it is necessary to

always check the condition. The execution stops when the condition is no longer verified, with

the exception of Forever block, as the name suggest, the cycle never stops, so Tactode has a stop

button to stop the simulation when desired. The same happens with If and Else statement, but

instead of a condition verified in a loop, it only checks once and its children only execute once.

Figure 4.19: Controls.

So, the conditions of the controls Blocks can have different children. Repeat Block only needs

a Number of Repetitions, Table 4.9. Forever Block does not need a condition and If/Else and

While need conditions that return true or false, Tables 4.7 and 4.8. For example, 4 < 5 is a true

condition.

52 Tactode Application

Condition

Logical Operators

Comparison Operators

Table 4.7: If and Else Condition’s children

Condition

Logical Operators

Comparison Operators

Table 4.8: While Condition’s children

Condition

Answer

Number

Variable

Numerical Operators

Table 4.9: Repeat Condition’s children

4.3.2.5 Variables

Variables in Tactode are created using TypeScript dictionary. When the user wants to create a

variable in the puzzle, the Simulator program creates that variable internally, having the capability

of also updating its value. In Figure 4.21 it is possible to see the Create Block, where a name can

be set to a variable, and the Set Block, where a value can be set to a previously created variable.

There are 395 available variables in Tactode, Figure 4.20 shows the variable number 0.

Figure 4.20: Variable number 0.

Figure 4.21: Create Variables and Set Values.

4.3 Simulator 53

In this way, the Variable Create Block has two children, the first one is the Variable Block and

the second one is its name, so it can be a group of letters. Variable Set Block also has two children,

the first one is the Variable Block and the second one is the value set by the user. That value can be

a number, a Numerical Operator or defined by another variable, as shown in the next Table 4.10.

Value

Answer

Number

Variable

Numerical Operators

Table 4.10: Value Block’s Children

4.3.2.6 Events

The event implemented is Flag Event. Flag Event is defined for the platforms: Cozmo, Sphero,

Robobo and Scratch. When the Flag button is clicked, the simulation can start. This is useful, for

example, when it is needed to add an obstacle to the simulation. In this way, it is possible to open

the Simulator, introduce the obstacle anywhere and click Flag button to start simulation. The Flag

Block is represented in Figure 4.22 and doesn’t have any children. In order to implement Flag is

necessary to make a promise, so that the simulation waits until the button Flag is clicked. After

that, the promise is resolved.

Figure 4.22: Flag.

4.3.2.7 Sensors

There are different types of sensors. Proximity sensors, Line following sensors and Question-

Answer sensors.

The Question-Answer sensors, represented in Figure 4.23, are implemented like a variable.

When the Simulator detects the Question piece, a question followed by an input box appears, so

that, the user can write the answer. That answer in internally saved and can be used in other blocks

of the puzzle. In Figure 4.27, shown in the Regular Polygon Challenge section, it is possible to

see the question box followed by an input box. The question appears to the user in the Simulator

side and the simulation only continues after the user responds to the question. In the figure, the

number of sides introduced by the user was five and the robot drew a polygon with five sides.

54 Tactode Application

Figure 4.23: Question and Answer.

In Proximity Sensors there are several types. The proximity sensor implemented in the Sim-

ulator is the Front Sensor, represented in Figure 4.24. When an obstacle is detected, an action

chosen by the user and programmed in the puzzle is activated. It can be, for example, stop in front

of the obstacle or run away from it. Section 4.3.3.2 explains some of these, represented in Figures

4.28 and 4.29.

Figure 4.24: Front Sensor.

Line Following was also implemented. When the piece Line Color is detected, a line is drawn

and the robot can follow the line with the piece Way Forward and finish when the line is over. Line

Color, Way Forward and Line End are represented in the Figure 4.25.

Figure 4.25: Line Color, Way Forward and Line End.

4.3.2.8 Visual

The only visual piece used in the Simulator was PenDown. PenDown is used when the user wants

to see the path made by the robot.

Figure 4.26: Pen Down and Pen Up pieces.

4.3 Simulator 55

When Simulator detects this piece, the function drawLine() is called. This function draws

a line in the same position of the robot to look like a track. This is really useful when drawing

polygons because it is possible to truly visualize the shape.

Listing 4.10 Draw line function.

1 private drawLine(){

2 let geometryLine = new THREE.Geometry();

3 geometryLine.vertices.push(new THREE.Vector3(this.robot.position.x,

this.robot.position.y, 0));

4 geometryLine.vertices.push(new THREE.Vector3(this.robot.position.x +

this.time * Math.cos(this.angle) * this.speedRight,

this.robot.position.y + this.time * Math.sin(this.angle) *
this.speedLeft, 0));

5 this.line = new THREE.Line(geometryLine, this.materialLine);

6 this._SCENE.add(this.line);

7 }

When PenDown is no longer needed, the piece PenUp can be used and the robot stops drawing

the line.

4.3.3 Challenges

For each target platform, a set of challenges was designed for experiments. These challenges are

detailed in this section. There are many possibilities to program each target. Challenges were

designed to improve educational value. Kids will improve math concepts by using operators such

as addition, subtraction, division, multiplication, and tact to move using velocity and sensors.

They can also program flow control, such as repeat, forever, while, if, and else. There are four

main challenges: regular polygon construction, two types of obstacle reaction and line follow.

4.3.3.1 Regular polygon

This challenge is intuitive for children understand. They need to know some concepts about regular

polygons. Regular Polygons have all sides with the same length and their internal and external

angles have the same amplitude. There are n regular polygons with n sides where the amplitude

that the robot needs to turn is 360◦/n.

In Figure 4.27 it is possible to see a program for building a pentagon and its simulation. Note

that, the Tag Pen Down is only available for platform scratch, so this program only works when

the platform scratch is selected. Another exception is that Ozobot does not implement events like

the Tag Flag. So, this program can be built without pen down tag in Cozmo, Shero, Robobo, and

Ozobot (without flag). In Scratch and Robobo, it is also feasible to ask the user a question like

how many sides the user wants. After the question, the program waits to the answer and uses it to

build the polygon, like Figure 4.27 shows.

56 Tactode Application

Figure 4.27: Puzzle and simulation of a pentagon.

4.3.3.2 Obstacle Reaction

The obstacle reaction and sensors are for Ozobot. In these examples, the robot can stop or run

away when facing an obstacle. The obstacle can be placed anywhere and moved around the scene.

In Figures 4.28 and 4.29 different robot reactions to that situations can be seen. In both cases,

the robot is given instructions to move in order to draw a square. The robot tries to complete the

orders but in Figure 4.28 it stops when the obstacle is in front of it and, in Figure 4.29, the robot

pick back direction, running away from the obstacle.

Figure 4.28: Puzzle and simulation of stopping in front of an obstacle.

4.3 Simulator 57

Figure 4.29: Puzzle and simulation of running away of an obstacle.

4.3.3.3 Follow Line

This functionality only works in Ozobot, as it is the only one with line detection capabilities. The

line is generated randomly when the button line is clicked. The figure 4.30 shows that while the

robot sees a black line, it follows it. When the line ends, the robot no longer sees the line and the

while loop ends, stopping the movement.

Figure 4.30: Puzzle and simulation of a line follow.

58 Tactode Application

4.4 Conclusion

The application together with the Simulator have an important role in the Tactode tangible lan-

guage. The children are not limited to the usage of a robot to see what they created in the puzzle,

they can execute the program in the Simulator. It allows freedom of movement. The users do not

need to carry the tangible pieces if they already have the photographs of the programs, they just

need to upload the photograph in the application and see its simulation. A set of Tactode pieces

were implemented in the Simulator and a collection of challenges were presented as suggestions

to be used, for example, in classrooms. However, the Simulator implementation can be improved.

More pieces can be implemented such as more sensors, colors and sound pieces.

Chapter 5

Results and Experiments

In this chapter, the main functionalities will be demonstrated, according to the requirements de-

fined in the Section 4.1. It will be divided in three tests with different programs. Test Program 1

is focused on the general functionality, Test Program 2 on an incorrect puzzle and Test Program 3

on the Simulator.

5.1 Test Program 1

Starting from the beginning, Figure 5.1 shows the home page.

Figure 5.1: Tactode Application Home Page.

When the application is opened for the first time and the user tries to click the camera button,

ticked as red in Figure 5.1, it shows a message that no platform and source was selected.

59

60 Results and Experiments

Figure 5.2: No platform and Source selected.

When clicked button "OK", a new PopUp window will appear with all platforms available to

choose, Figure 5.4, letter B, and, followed by another PopUp window to select the source of the

image, Figure 5.4, letter C. If the user goes to Settings Tab, by clicking in button A, in Figure 5.3,

without selecting Platform and Source, they will see empty Platform and Source. The language is

set, by default, to English but it can be changed to Portuguese.

Figure 5.3: Settings Tab.

When clicked Platform, the PopUp Platform window mentioned before will come up and the

user can select one from Cozmo, Ozobot, Robobo, Scratch, Sphero and Python. This is presented

in Figure 5.4 by letter B.

The user also needs to select the image source, Figure 5.4, letter C, where option "File" is a

photograph that already exists in the device and "Camera" is to take a new picture.

5.1 Test Program 1 61

Figure 5.4: Choose Platform, Source and Language.

The settings selected were Cozmo as Platform, File as Image Source and the Language is

English. Now, the user is able to proceed, he can write a Name to their program. Because "File"

was selected as source, the user can choose a puzzle created before. Figure 5.5 shows Application

after file uploaded.

Figure 5.5: Puzzle selected with no errors.

Because this is a correct puzzle, the user is able to share the program to the platform selected

or simulate. So when they click the button marked with the red arrow, in Figure 5.5, a file will be

downloaded. This file has the transpiled code to the platform language selected, Figure 5.6.

Figure 5.6: Downloaded file, after click button share.

62 Results and Experiments

In the Programs Tab, this correct puzzle is now available, Figure 5.7.

Figure 5.7: Programs in database.

5.2 Test Program 2

If the user try to upload a program that has errors or that some pieces that do not exist for that

platform, errors will be shown and the share and simulate buttons are no longer available, as is the

case of Figure 5.9. In this case, the Platform property was changed for what it is in the Figure 5.8.

Figure 5.8: New settings.

As Scratch platform does not support the Line Color Tag, the first error is about the platform

type. Since this tag is not acceptable, it is not possible to use a Tag Color. Follow line piece is also

5.3 Test Program 3 63

not defined to Scratch. The space marked with red boxes, in Figure 5.9, is the space of share and

simulate button.

Figure 5.9: Program with errors.

5.3 Test Program 3

Lets see what happen if the user tries to upload a new program, now with no errors and compatible

with the target platform, Figure 5.10.

Figure 5.10: Correct Program.

Verifying the content of the programs database, it is possible to check that now exists 2 pro-

grams with different target platforms, Figure 5.11.

64 Results and Experiments

Figure 5.11: Database with 2 programs.

This time, instead of clicking in Share button, the user click on the Simulator button to open

it. The Figure 5.12 shows the Simulator scenario.

Figure 5.12: Simulator opened.

To better understand what is happening next, it is important to explain the content of the puzzle

uploaded. This puzzle only starts when button Flag is clicked, marked with a red circle and arrow

(Figure 5.13). The goal is to build a square. For that, a repeat cycle that will repeat four times

(one per each side of the square) is used. The sides are made by moving forwarding and turning

left ninety (360 / 4 = 90) degrees. When Figure 5.13 was captured, the robot was halfway through

the second repetition, moving Forward as pointed with the red arrow.

5.3 Test Program 3 65

Figure 5.13: After Flag clicked.

Now, the user can stop the simulation, by clicking in the Stop button, marked with a red circle

and arrow, in Figure 5.14, or simply wait until the end of the simulation, Figure 5.15. When the

stop button is clicked, the tile, where the robot stops, continues highlighted, to the user know in

which action stopped. When the simulation ends, no tiles are highlighted.

Figure 5.14: Simulation stopped.

66 Results and Experiments

Figure 5.15: End of Simulation.

5.4 Conclusion

In this Chapter it was possible to see how Tactode Application works and its functionalities. The

simulator should allow a pleasant to the users and easy to understand. In the future, several groups

of students, with different ages, should test the Simulator, in order to figure out what is missing

and the existing problems.

Chapter 6

Conclusion and Future Work

The Tactode Tangible Programming System is focused on motivating children, attending elemen-

tary education, to understand how programming and how computer science work. Using robotics

and a Simulator to encourage an evolution in the children’s Computational Thinking, so they can

understand and solve technological problems.

The Tactode System after this work allows robot programming and now users can give orders

to a virtual robot, run it on the Simulator, that also can execute orders made in the puzzle, and

possibly later test on a real robot. This makes Tactode independent of a real robot, so the users do

not need to buy any robot to use Tactode, only tangible pieces.

The Simulator is easy to understand, since the pieces that are being executed, by the virtual

robot, are highlight during the execution.

The Simulator also introduces some features to make it closer to reality, like front sensors to

detect obstacles and has different reactions to those situations, follow a line, question and answer

interaction with the users and a stop button to stop simulation whenever is necessary.

The simulation was built with web programming tools and tested with several devices, being

responsive at any screen.

6.1 Future Work

To be accessible to more people, it would be interesting if the applications could be a Progressive

Web App (PWA), which runs on any browser with Internet access. The PWA only needs internet

to open the application and then it can run offline. Another attractive improvement would be the

possibility of drag and drop Tactode pieces, similar to Scratch, in order to build the puzzle directly

into the App. This implies creating a set of online puzzle pieces, similar to Blockly.

In this way, Tactode can be more general and accessible to society anytime, anywhere. More

challenges could be created, a labyrinth, for example, and the current ones could be improved. An

interesting improvement would be if it were possible to paint the line to be followed, with different

colors. Another could be to choose what kind of reactions the robot might have when facing an

obstacle, such as approaching the obstacle instead of running away and being available on all sides

67

68 Conclusion and Future Work

(/sensors) of the robot (front, left frontal, right frontal and back). In terms of results, it would be

interesting if tested with more groups of students with different ages.

References

[1] H. Suzuki and H Kato. Algoblock: a tangible programming language,
a tool for collaborative learning. In Proceedings of the 4th European
logo conference, pages 297–393, 1993. URL: https://mafiadoc.
com/queue/algoblock-a-tangible-programming-language_
59d157681723dd2a0293242f.html.

[2] P. Wyeth and H. Purchase. Designing technology for children: moving from the computer
into the physical world with electronic blocks. Information Technology in Childhood Edu-
cation Annual, 2002(1):219–244, 2002. URL: http://eprints.gla.ac.uk/14107/.

[3] Global STEAM solutions. Cubelets. Available at https://www.
globalsteamsolutions.com.br/cubelets/, 2019.

[4] Fisher Price. Think & learn code-a-pillar applica-
tion. Available at https://www.walmart.ca/en/ip/
fisher-price-think-learn-code-a-pillar-learning-toy/
6000196194493.

[5] KUBO Robotics. KUBO. Available at https://kubo.education/bundles/, 2017.

[6] M. S. Horn and R. J. K. Jacob. Designing tangible programming languages for classroom use.
In Proceedings of the 1st International Conference on Tangible and Embedded Interaction,
TEI ’07, pages 159–162, New York, NY, USA, 2007. ACM. URL: http://doi.acm.
org/10.1145/1226969.1227003, doi:10.1145/1226969.1227003.

[7] D. Wang, T. Wang, and Z. Liu. A tangible programming tool for children to cultivate com-
putational thinking. The Scientific World Journal, 2014, 2014. doi:10.1155/2014/
428080.

[8] The Windy Side. Osmo adds steam to kids’ coding with new music cre-
ator system. Available at https://thewindyside.com/2017/10/04/
osmo-adds-steam-to-kids-coding-with-new-music-creator-system/,
2019.

[9] S. Goyal, R. S. Vijay, C. Monga, and P. Kalita. Code bits: An inexpensive tangible com-
putational thinking toolkit for k-12 curriculum. In Proceedings of the TEI ’16: Tenth In-
ternational Conference on Tangible, Embedded, and Embodied Interaction, TEI ’16, pages
441–447, New York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/
2839462.2856541, doi:10.1145/2839462.2856541.

[10] LEGO group. Support - mindstorms. Available at https://www.lego.com/en-us/
mindstorms/support, 2018.

69

https://mafiadoc.com/queue/algoblock-a-tangible-programming-language_59d157681723dd2a0293242f.html
https://mafiadoc.com/queue/algoblock-a-tangible-programming-language_59d157681723dd2a0293242f.html
https://mafiadoc.com/queue/algoblock-a-tangible-programming-language_59d157681723dd2a0293242f.html
http://eprints.gla.ac.uk/14107/
https://www.globalsteamsolutions.com.br/cubelets/
https://www.globalsteamsolutions.com.br/cubelets/
https://www.walmart.ca/en/ip/fisher-price-think-learn-code-a-pillar-learning-toy/6000196194493
https://www.walmart.ca/en/ip/fisher-price-think-learn-code-a-pillar-learning-toy/6000196194493
https://www.walmart.ca/en/ip/fisher-price-think-learn-code-a-pillar-learning-toy/6000196194493
https://kubo.education/bundles/
http://doi.acm.org/10.1145/1226969.1227003
http://doi.acm.org/10.1145/1226969.1227003
http://dx.doi.org/10.1145/1226969.1227003
http://dx.doi.org/10.1155/2014/428080
http://dx.doi.org/10.1155/2014/428080
https://thewindyside.com/2017/10/04/osmo-adds-steam-to-kids-coding-with-new-music-creator-system/
https://thewindyside.com/2017/10/04/osmo-adds-steam-to-kids-coding-with-new-music-creator-system/
http://doi.acm.org/10.1145/2839462.2856541
http://doi.acm.org/10.1145/2839462.2856541
http://dx.doi.org/10.1145/2839462.2856541
https://www.lego.com/en-us/mindstorms/support
https://www.lego.com/en-us/mindstorms/support

70 REFERENCES

[11] DoPlay! Robótica. avanzado. lego mindstorms ev3. Available at https://www.doplay.
es/product/robotica-nivel-avanzado/, 2019.

[12] Ozobot. About us. Available at https://ozobot.com/about-us.

[13] Amy Eguchi. Bringing Robotics in Classrooms, pages 3–31. Springer International Pub-
lishing, Cham, 2017. URL: https://doi.org/10.1007/978-3-319-57786-9_1,
doi:10.1007/978-3-319-57786-9_1.

[14] OECD (2019). Education at a glance 2019: Oecd indicators. 2019. URL: https://dx.
doi.org/10.1787/f8d7880d-en.

[15] Ana Pedro, João Filipe Matos, João Piedade, Nuno Dorotea. Probótica - Programação
e Robótica no Ensino Básico. URL: http://www.erte.dge.mec.pt/sites/
default/files/probotica_\protect\discretionary{\char\hyphenchar\
font}{}{}_linhas_orientadoras_2017.pdf, 2017.

[16] Robert M. Capraro & Mary Margaret Capraro Peter Boedeker, Sandra Nite. Women in
STEM: The Impact of STEM PBL Implementation on Performance, Attrition, and Course
Choice of Women. 2015 IEEE Frontiers in Education Conference (FIE), 2015.

[17] A. Cardoso, A. Sousa, and H. Ferreira. Programming for young children using tangible
tiles and camera-enable handheld devices. pages 6389–6394, 11 2018. doi:10.21125/
iceri.2018.2504.

[18] A. Cardoso, A. Sousa, and H. Ferreira. Easy robotics with camera devices and tangible tiles.
pages 6400–6406, 11 2018. doi:10.21125/iceri.2018.2506.

[19] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Mill-
ner, E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai. Scratch: Programming for all.
Communications of the ACM, 52(11):60–67, November 2009. URL: http://doi.acm.
org/10.1145/1592761.1592779, doi:10.1145/1592761.1592779.

[20] N. Fraser. Ten things we’ve learned from blockly. In 2015 IEEE Blocks and Beyond Work-
shop (Blocks and Beyond), pages 49–50, October 2015. doi:10.1109/BLOCKS.2015.
7369000.

[21] E. Pasternak, R. Fenichel, and A. N. Marshall. Tips for creating a block language with
blockly. In 2017 IEEE Blocks and Beyond Workshop (B B), pages 21–24, October 2017.
doi:10.1109/BLOCKS.2017.8120404.

[22] Google for Education. Blockly. Available at https://developers.google.com/
blockly/.

[23] Microsoft. Makecode. Available at https://makecode.com.

[24] Lifelong Kindergarten Group at the MIT Media Lab. Scratch. Available at https://
scratch.mit.edu, 2005.

[25] Stavros Christodoulakis Charalampos Kyfonidis, Nektarios Moumoutzis. Block-c: A block-
based programming teaching tool to facilitate introductory c programming courses. IEEE
Global Engineering Education Conference, 2017.

https://www.doplay.es/product/robotica-nivel-avanzado/
https://www.doplay.es/product/robotica-nivel-avanzado/
https://ozobot.com/about-us
https://doi.org/10.1007/978-3-319-57786-9_1
http://dx.doi.org/10.1007/978-3-319-57786-9_1
https://dx.doi.org/10.1787/f8d7880d-en
https://dx.doi.org/10.1787/f8d7880d-en
http://www.erte.dge.mec.pt/sites/default/files/probotica_\protect \discretionary {\char \hyphenchar \font }{}{}_linhas_orientadoras_2017.pdf
http://www.erte.dge.mec.pt/sites/default/files/probotica_\protect \discretionary {\char \hyphenchar \font }{}{}_linhas_orientadoras_2017.pdf
http://www.erte.dge.mec.pt/sites/default/files/probotica_\protect \discretionary {\char \hyphenchar \font }{}{}_linhas_orientadoras_2017.pdf
http://dx.doi.org/10.21125/iceri.2018.2504
http://dx.doi.org/10.21125/iceri.2018.2504
http://dx.doi.org/10.21125/iceri.2018.2506
http://doi.acm.org/10.1145/1592761.1592779
http://doi.acm.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1109/BLOCKS.2015.7369000
http://dx.doi.org/10.1109/BLOCKS.2015.7369000
http://dx.doi.org/10.1109/BLOCKS.2017.8120404
https://developers.google.com/blockly/
https://developers.google.com/blockly/
https://makecode.com
https://scratch.mit.edu
https://scratch.mit.edu

REFERENCES 71

[26] Uri Wilensky David Weintrop. To block or not to block, that is the question: Students’
perceptions of blocks-based programming. 14th International Conference on Interaction
Design and Children, IDC 2015 - Boston, United States, 2015.

[27] T. Sapounidis, S. Demetriadis, and I. Stamelos. Evaluating children performance with graph-
ical and tangible robot programming tools. Personal and Ubiquitous Computing, 19(1):225–
237, January 2015. URL: https://doi.org/10.1007/s00779-014-0774-3, doi:
10.1007/s00779-014-0774-3.

[28] Nikolaus Correll, Chris Wailes, and Scott Slaby. A one-hour curriculum to engage middle
school students in robotics and computer science using cubelets. In M. Ani Hsieh and Gre-
gory Chirikjian, editors, Distributed Autonomous Robotic Systems, pages 165–176, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[29] B. Wohl, B. Porter, and S. Clinch. Teaching computer science to 5-7 year-olds: An initial
study with scratch, cubelets and unplugged computing. In Proceedings of the Workshop
in Primary and Secondary Computing Education, WiPSCE ’15, pages 55–60, New York,
NY, USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2818314.2818340,
doi:10.1145/2818314.2818340.

[30] Fisher Price. Think & learn code-a-pillar. Available at https:
//fisher-price.mattel.com/shop/en-us/fp/think-learn/
think-learn-code-a-pillar-dkt39.

[31] D. Wang, C. Zhang, and H. Wang. T-maze: A tangible programming tool for children. In
Proceedings of the 10th International Conference on Interaction Design and Children, IDC
’11, pages 127–135, New York, NY, USA, 2011. ACM. URL: http://doi.acm.org/
10.1145/1999030.1999045, doi:10.1145/1999030.1999045.

[32] Osmo. Osmo coding family. Available at https://www.playosmo.com/en/
coding-family/.

[33] Threejs. Three.js. Available at https://threejs.org/, 2019.

[34] Lewy Blue. DISCOVER three.js. URL: https://discoverthreejs.com/, 2019.

[35] Ospennikova E., M. Ershov, and I. Iljin. Educational robotics as an inovative educational
technology. Procedia - Social and Behavioral Sciences, 214:18 – 26, 2015. World-
wide trends in the development of education and academic research, Sofia, Bulgaria,
15-18 June,2015. URL: http://www.sciencedirect.com/science/article/
pii/S1877042815059431, doi:https://doi.org/10.1016/j.sbspro.2015.
11.588.

[36] Scratch - Divulgar, Formar, Partilhar. UAC - Using Arduíno in the Classroom. URL: http:
//eduscratch.dge.mec.pt/.

[37] ERTE - Equipa de Recursos e Tecnologias Educativas - Ministério da Educação.
Clubes de Programação e Robótica. URL: http://www.erte.dge.mec.pt/
clubes-de-programacao-e-robotica.

[38] CDi - Portugal. Apps for Good. URL: http://cdi.org.pt/apps-for-good/.

https://doi.org/10.1007/s00779-014-0774-3
http://dx.doi.org/10.1007/s00779-014-0774-3
http://dx.doi.org/10.1007/s00779-014-0774-3
http://doi.acm.org/10.1145/2818314.2818340
http://dx.doi.org/10.1145/2818314.2818340
https://fisher-price.mattel.com/shop/en-us/fp/think-learn/think-learn-code-a-pillar-dkt39
https://fisher-price.mattel.com/shop/en-us/fp/think-learn/think-learn-code-a-pillar-dkt39
https://fisher-price.mattel.com/shop/en-us/fp/think-learn/think-learn-code-a-pillar-dkt39
http://doi.acm.org/10.1145/1999030.1999045
http://doi.acm.org/10.1145/1999030.1999045
http://dx.doi.org/10.1145/1999030.1999045
https://www.playosmo.com/en/coding-family/
https://www.playosmo.com/en/coding-family/
https://threejs.org/
https://discoverthreejs.com/
http://www.sciencedirect.com/science/article/pii/S1877042815059431
http://www.sciencedirect.com/science/article/pii/S1877042815059431
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2015.11.588
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2015.11.588
http://eduscratch.dge.mec.pt/
http://eduscratch.dge.mec.pt/
http://www.erte.dge.mec.pt/clubes-de-programacao-e-robotica
http://www.erte.dge.mec.pt/clubes-de-programacao-e-robotica
http://cdi.org.pt/apps-for-good/

72 REFERENCES

[39] ERTE - Equipa de Recursos e Tecnologias Educativas - Ministério da Educação.
UAC - Using Arduíno in the Classroom. URL: http://erte.dge.mec.pt/
uac-using-arduino-classroom/.

[40] Fatemeh Mansour Kiaie Ahmad Khanlari. Using Robotics for STEM Education in Prima-
ry/Elementary Schools: Teachers’ Perceptions. The 10th International Conference on Com-
puter Science & Education (ICCSE 2015), 2015.

[41] M. Mattis R. Burke. Developing career commitment in STEM-related fields: myth versus
reality. Women and minorities in science, technology, engineering and mathematics: Upping
the numbers, 2007.

[42] National Academy of Engineering. How to Attract Young People to Engineering:
Make a Difference’ Message is Key. Available at http://www.sciencedaily.com/
releases/2008/06/080624145221.htm, 2008.

[43] Christina Chalmers and Rod Nason. Systems Thinking Approach to Robotics
Curriculum in Schools, pages 33–57. Springer International Publishing, Cham,
2017. URL: https://doi.org/10.1007/978-3-319-57786-9_1, doi:10.
1007/978-3-319-57786-9_1.

[44] Linda Rae Markert. Gender Related to Success in Science and Technology. The Journal of
Technology Studies, pages 21–29, 1996.

[45] Ozobot. Getting started guide. Available at https://files.ozobot.com/
stem-education/ozoblockly-getting-started.pdf.

[46] Roberta. Learning to program intuitively in the open roberta lab. Available at https:
//www.roberta-home.de/en/lab/.

[47] Blockly games : About. Available at https://blockly-games.appspot.com/
about?lang=en.

[48] Scratch. About scratch. Available at https://scratch.mit.edu/about.

[49] Francisco Romero Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-Carnicer. Speeded
up detection of squared fiducial markers. Image and Vision Computing, 76, 2018.

[50] Upplication. Progressive web app - the new way of understanding apps.
https://www.upplication.com/images/pwa/upplication_PWA_2018_en-EN.pdf, 2018.

[51] Apple. Developer - Support. URL: https://developer.apple.com/support/
compare-memberships/, 2019.

[52] Google. How to use the Play Console. URL: https://support.google.com/
googleplay/android-developer/answer/6112435?hl=en, 2019.

[53] Microsof. Account types, locations, and fees. URL: https://docs.microsoft.com/
pt-pt/windows/uwp/publish/account-types-locations-and-fees, 2018.

[54] Ionic. Browser Support. URL: https://ionicframework.com/docs/intro/
browser-support/, 2019.

[55] Ionic. What is Ionic Framework? URL: https://ionicframework.com/docs/
intro, 2019.

http://erte.dge.mec.pt/uac-using-arduino-classroom/
http://erte.dge.mec.pt/uac-using-arduino-classroom/
http://www.sciencedaily.com/releases/2008/06/080624145221.htm
http://www.sciencedaily.com/releases/2008/06/080624145221.htm
https://doi.org/10.1007/978-3-319-57786-9_1
http://dx.doi.org/10.1007/978-3-319-57786-9_1
http://dx.doi.org/10.1007/978-3-319-57786-9_1
https://files.ozobot.com/stem-education/ozoblockly -getting-started.pdf
https://files.ozobot.com/stem-education/ozoblockly -getting-started.pdf
https://www.roberta-home.de/en/lab/
https://www.roberta-home.de/en/lab/
https://blockly-games.appspot.com/about?lang=en
https://blockly-games.appspot.com/about?lang=en
https://scratch.mit.edu/about
https://developer.apple.com/support/compare-memberships/
https://developer.apple.com/support/compare-memberships/
https://support.google.com/googleplay/android-developer/answer/6112435?hl=en
https://support.google.com/googleplay/android-developer/answer/6112435?hl=en
https://docs.microsoft.com/pt-pt/windows/uwp/publish/account-types-locations-and-fees
https://docs.microsoft.com/pt-pt/windows/uwp/publish/account-types-locations-and-fees
https://ionicframework.com/docs/intro/browser-support/
https://ionicframework.com/docs/intro/browser-support/
https://ionicframework.com/docs/intro
https://ionicframework.com/docs/intro

REFERENCES 73

[56] N. Ahmadi, F. Lelli, and M. Jazayeri. Supporting domain-specific programming in web 2.0:
A case study of smart devices. In 2010 21st Australian Software Engineering Conference,
pages 215–223, April 2010. doi:10.1109/ASWEC.2010.36.

[57] David Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, Inc., 1005
Gravenstein Highway North, Sebastopol, CA 95472., 2011. URL: http://www.
wowebook.pw/book/javascript-the-definitive-guide-6th-edition,
doi:10.17226/9824.

[58] Codecademy. Intruduction to JavaScript. URL: https://www.
codecademy.com/courses/introduction-to-javascript/lessons/
introduction-to-javascript/exercises/intro?action=resume_
content_item, 2019.

[59] TypeScript. TypeScript. Available at https://www.typescriptlang.org/, 2019.

[60] Codecademy. JAVASCRIPT PROMISES. URL: https://www.codecademy.com/
courses/introduction-to-javascript/lessons/promises/exercises/
introduction?action=resume_content_item, 2019.

[61] Ionic creator. Custom Code Editing. URL: https://docs.usecreator.com/docs/
custom-code-editing, 2019.

http://dx.doi.org/10.1109/ASWEC.2010.36
http://www.wowebook.pw/book/javascript-the-definitive-guide-6th-edition
http://www.wowebook.pw/book/javascript-the-definitive-guide-6th-edition
http://dx.doi.org/10.17226/9824
https://www.codecademy.com/courses/introduction-to-javascript/lessons/introduction-to-javascript/exercises/intro?action=resume_content_item
https://www.codecademy.com/courses/introduction-to-javascript/lessons/introduction-to-javascript/exercises/intro?action=resume_content_item
https://www.codecademy.com/courses/introduction-to-javascript/lessons/introduction-to-javascript/exercises/intro?action=resume_content_item
https://www.codecademy.com/courses/introduction-to-javascript/lessons/introduction-to-javascript/exercises/intro?action=resume_content_item
https://www.typescriptlang.org/
https://www.codecademy.com/courses/introduction-to-javascript/lessons/promises/exercises/introduction?action=resume_content_item
https://www.codecademy.com/courses/introduction-to-javascript/lessons/promises/exercises/introduction?action=resume_content_item
https://www.codecademy.com/courses/introduction-to-javascript/lessons/promises/exercises/introduction?action=resume_content_item
https://docs.usecreator.com/docs/custom-code-editing
https://docs.usecreator.com/docs/custom-code-editing

74 REFERENCES

Appendix A

Tactode Pieces

75

1 Numbers

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

0 number 0

1 number 1

...
...

...
...

...
...

...
...

...

9 number 9

Table 1: Tactode number pieces

2 Colors

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

50 color black

51 color blue

52 color cyan

53 color green

54 color magenta

55 color orange

56 color red

57 color white

58 color yellow

Table 2: Tactode color pieces

76

3 Letters

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

100 letter A

101 letter B

...
...

...
...

...
...

...
...

...

125 letter Z

132 letter a

132 letter b

...
...

...
...

...
...

...
...

...

157 letter z

Table 3: Tactode letter pieces

4 Operators

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

200 addition operator

201 subtraction operator

202 multiplication op.

203 division operator

204 remainder operator

205 left parenthesis

206 right parenthesis

77

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

207 negation operator

208 disjunction operator

209 conjunction operator

210 equality operator

211 inequality operator

212 less than operator

213 less than or eq. op.

214 greater than operator

215 greater than or eq. op.

218 absolute value op.

Table 4: Tactode operator pieces

5 Variables

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

300 variable 300

301 variable 301

...
...

...
...

...
...

...
...

...

394 variable 394

78

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python
399 create variable

398 a variable, 300-394

397 variable name, string

396 set variable value

398 a variable, 300-394

395 value, numerical exp.

Table 5: Tactode variable pieces

6 Events

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

400 when flag clicked event

Table 6: Tactode event pieces

7 Control

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

502 repeat a number of times

503 end of repeat

504 repeat forever

79

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

505 end of forever

506 execute if cond. true

507 execute if cond. false

508 end of if

509 repeat while cond. true

510 end of while

511 break out of loop

Table 7: Tactode control pieces

8 Sensors

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

600 front left prox. sensor

601 front right prox. sensor

602 back left prox. sensor

603 back right prox. sensor

604 front far left prox.

605 front far right prox.

606 front center prox.

80

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

607 back center prox.

612 is there line on left

613 is there line on right

614 is there line forward

615 is this the line end

616 get color of line

618 ask a question, string

619 user answer to quest.

Table 8: Tactode sensor pieces

9 Movement

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

700 stop wheels

701 set wheel speed

702 left wheel, num. exp.

703 right wheel, num. exp.

81

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python
704 move forward

708 distance, num. exp.

710 speed, num. exp.

705 move backward

708 distance, num. exp.

710 speed, num. exp.

706 turn left

709 angle, num. exp.

710 speed, num. exp.

707 turn right

709 angle, num. exp.

710 speed, num. exp.

704 move forward

708 distance, num. exp.

705 move backward

708 distance, num. exp.

82

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python
706 turn left

709 angle, num. exp.

707 turn right

709 angle, num. exp.

711 follow line

712 pick left direction

713 pick right direction

714 pick forward direction

715 pick back direction

Table 9: Tactode movement pieces

10 Sound

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

800 say a phrase, string

801 think a phrase, string

Table 10: Tactode sound pieces

11 Visual

83

Piece Tag Function Ozobot Cozmo Sphero Robobo Scratch Python

900 erase screen content

901 put pen down to write

902 lift pen to stop writing

Table 11: Tactode visual pieces

84

Appendix B

Draft of conference paper

85

Web Based Robotic simulator for Tactode
Tangible Block Programming System

Márcia Alves1, Armando Sousa2, and Ângela Cardoso3

1 FEUP
2 INESC-TEC & FEUP

3 INEGI

Abstract. Nowadays, with the increase of technology, it is important
to adapt children and their education to this development. This article
proposes programming blocks for young students to learn concepts re-
lated to math and technology in an easy and funny way, using a Web
Application and a robot.
The students can build a puzzle, with tangible tiles, giving instructions
for the robot execute. Then, it is possible to take a photograph of the
puzzle and upload it on the application. This photograph is processed
and converted in executable code for the robot that can be simulated in
the app by the virtual robot or performed in the real robot.

Keywords: Education, Programming, Technology for education, Tan-
gible system, Web Application, ArUco, Simulator.

1 Introduction

Since the birth of the internet, the development of technology has been increas-
ing. With this growth, education also has to change and evolve [1]. Computa-
tional thinking (CT) is a set of thinking skills, habits, and approaches that are
essential to solving problems using a computer [2] and has to be more present
in education. However, students are reluctant to choose computer programming
as a subject due to its perceived difficulty. But, it is well known that children
that are introduced to computer programming will finish graduates in computer
science in the future [1].

Tangible programming makes programming an activity that is accessible to
the hands and minds by making it more direct, less abstract [2] and easy to
understand when connected to robotics. Robotics apply and content knowledge
in a meaningful and exciting way [1], so students are able to improve CT and
think deeply, therefore they learn how the technology works.

Although it is difficult for teachers to include new things in the regular cur-
riculum, because of the academic standards, the aim is to connect robotics with
STEM (Science, Technology, Engineering, Mathematics) standards. Besides, it
is also difficult for schools, support the price of that kind of technology for all
students. [3]

86

2 Márcia Alves, Armando Sousa, and Ângela Cardoso

Howsoever, the propose is Tactode as a Web Application, to program robots
like a game in the classroom, based on programming blocks with tiles, similar
to a puzzle that children need to solve. It is possible to create the puzzle, with
tangible tiles, take a photograph and upload it in the application. In this way,
children can see, in the app, a virtual robot simulating the code or send it to
the real robot. This is useful to test the code created before execute in the real
robot, or just to play in anywhere without having to carry the robot.

Hereupon, the suggestion is just a set of puzzle pieces and one computer,
tablet or even a smartphone per group of students. In this way, the kids are able
to learn about robotics and have a programming logic since a young age in a fun
way and also improve team cooperation, working in a group to solve a problem
[4]. Even for the teachers is easier to manage a small group of equipment than
equipment for each student.

2 State Of the Art

2.1 Programming Education

When teaching programming to children and young adolescents there are clear
advantages in starting with an educational language [5], because it should have
a simpler syntax, lower entry-level requirements and sometimes already provide
activities aimed at grabbing the attention of the young. Also, it is getting easier
everyday to have access to an educational language for every situation, particu-
larly with development of educational programming languages by giant software
companies such as Apple (Swift Playgrounds [6]), Google (Blockly [7–9]) and
Microsoft (MakeCode [10]).

Block based languages are probably the most influential educational lan-
guages of today. As the name implies, they contain a set of predefined blocks
of code, which the user typically drags and drops to form a program. Examples
of this kind of languages are Scratch [5][11], Snap! [12], Stencyl [13], Blockly,
MakeCode, Alice [14–16] and Etoys [17]. While Scratch drew inspiration from
the precursors Alice and Etoys, it has since influenced most of the others.

2.2 Tangible Blocks Programming Language

A programming language is considered visual when it is mostly text indepen-
dent, relying on icons and images to represent its elements. This is not, however,
the consensus, as all the languages above use text in their blocks and yet they
are typically considered visual. Examples of visual languages are ScratchJr [18],
Kodu [19], the Lego block based visual programming language designed to pro-
gram their EV3 [20] robot, Lightbot [21], the Fisher Price Think & Learn Code-
a-Pillar [22] in its tablet application format, Coding Safari [23], SpriteBox [24]
and codeSpark [25]. All these languages allow younger children, even before they
can read, to learn programming concepts while playing.

A tangible programming language is a block-based language whose blocks
can be physically grabbed and arranged by the programmer. In their 2015 study,

87

Title Suppressed Due to Excessive Length 3

Sapounidis et al. [26] established many advantages of using tangible interfaces to
teach programming, particularly for children up to ten years old. The children
completed the tasks faster, with fewer errors, more debugging of the errors they
made, better collaboration, using a wider set of different blocks and, in some
cases, achieving higher complexity. [27][3] Also, they considered the tangible
interface more attractive, more enjoyable and, for the younger ones, easier to
use.

As for disadvantages, tangible languages are more expensive and less portable,
due to their physical aspect. However, these issues can be mitigated by using
less expensive materials and make it possible for schools to manufacturing the
tangible blocks themselves.

Examples of tangible languages are AlgoBlock [28], Electronic [29], Cubelets [30–
32], the physical robot version of the Fisher Price Think & Learn Code-a-
Pillar [33], TagTile [34], Quetzal and Tern [35], T-Maze [36, 2], the Osmo Coding
Family [37], and CodeBits [38].

The more recent tangible languages are replacing electronic components with
image processing to execute their programs, unless they need the electronics be-
cause the language is simultaneously a robot, which is what happens in Cubelets
and Code-a-Pillar.

2.3 Similar Projects

In order to understand the similar projects mentioned before, this section ex-
plains briefly some of them.

Lego Mindstorm EV3 is a set of programmable robotics construction for
ages greater than 10 years. The aim is to build the own robot with Lego pieces,
program and command it. The EV3 set includes bricks, motors, and sensors to
build the robot and make it walk, talk, move. It also comes with the necessary
software and App, where the robot can be easily programmed and controlled,
with basic tasks, from PC, Mac, tablet or smartphone. [39]

Fig. 1. The Lego Mindstorms EV3 programming interface and robot.

88

4 Márcia Alves, Armando Sousa, and Ângela Cardoso

Ozobot has two ways to code their robots. They can be coded online with
OzoBlockly or screen-free with Color Codes. The purpose is to inspire young
minds to go from consuming technology to creating it. [40] OzoBlocky can be
used with an application or in a Web browser. The application can be used in iOS
or Android tablet, working with the Evo robot. The browser is also compatible
with Evo robot, while used with a computer, or compatible with bit robot for a
computer or tablet. [41]

Fig. 2. The OzoBlockly Editor and Ozobot robot.

Open Roberta Lab is a free platform that makes learning programming easy
from the first steps to program robots with multiple sensors and capabilities. It
can be used at any time without installation by any devices, PC, Mac or tablet,
with an Internet browser. Thanks to the programming language NEPO (a graph-
ical programming language developed at Fraunhofer IAIS), simple programs can
be created like puzzle pieces [42].

Fig. 3. Open Roberta Lab.

Blockly Games is a free Google project with a series of educational games that
teach programming. There are different games, with different levels, so children

89

Title Suppressed Due to Excessive Length 5

who have not had prior experience are ready to use conventional text-based
languages by the end of these games. [43]

Fig. 4. Blockly Games.

Scratch is made for children between six and eight years old learn how to code
and important strategies for solving problems, designing projects, and commu-
nicating ideas. [44] The activity is mixing graphics, animations, photos, music,
and sound, supporting different types of projects like stories, games, animations,
simulations, so people are all able to work on projects they care about. [5]

Fig. 5. Scratch.

2.4 Development tools

The Tactode application aims to simulate the real robot into the application. In
order to be accessible for all users, the Tactode application should be compatible
with all platforms. [45] Nowadays, exist several options to create that. It was
used Ionic Framework, that generates applications for multiple systems from a

90

6 Márcia Alves, Armando Sousa, and Ângela Cardoso

single source code, using AngularJs and TypeScript. [46] Besides, it was used
Threejs to develop the simulator. Ionic uses Cordova to have access to host
operating systems features such as Camera, GPS, Flashlight, etc. It includes
mobile components, typography, interactive paradigms, and an extensible base
theme. [47] In Tactode, the principal feature used is Camera. Threejs is a high-
level JavaScript library and Application Programming Interface used to create
and display animated 3D graphics in web browser. The use of WebGL allows
complex animations to be created without having to use plugins. [48]

3 Tactode programming system

Tactode Programming System is made for elementary school children with the
aim of teaching them how to program in a fun and interactive way, by building
puzzles that represent a chain of commands which a robot will follow, so they
can see how it reacts to the different puzzle compositions. The mobile device will
capture a photograph of the tangible puzzle, process it, create the commands for
the robot and show the results in a simulator. The focus is the simulation of the
robot and, in this section, will be addressed the requirements for this simulator,
its architecture and possible challenges that children can create.

3.1 Requirements

The purpose of Tactode Programming System is to be easy to understand for
the users, so they can immediately see how Tactode works and easy to use and
install. It has a Web App prepared to process the tangible puzzle directly in the
browser.

There are two ways to upload a puzzle on the app:

– Upload a previous photo by searching an image on the device.
– Take a photo directly, using a hand-held camera device where the application

is running.

After uploading the photo, children have two options to see the execution.

– Simulating in the application, seeing a virtual robot execution.
– Real execution, using a real robot.

3.2 Architecture

This section will explain how Tactode pieces are defined and built in the sim-
ulator. Every uploaded puzzle is processed as Abstract Syntax Tree Structure
(AST). Each original piece has a corresponding Block and each of them has an
array of other Block objects (children) and also a parent Block object. In this
way, each object knows the parent and the children. However, there are some
extra elements in the AST that do not have a piece in Tactode, such as:

91

Title Suppressed Due to Excessive Length 7

– RootBlock: special Block with no parent that serves as the root of the AST.
Its children are the command blocks that are not inside of any control flow
block, which means that have no indentation in the tangible language.

– BodyBlock: child of control flow blocks RepeatBlock, ForeverBlock, IfBlock,
ElseBlock or WhileBlock.

– ConditionBlock: child of RepeatBlock, IfBlock or WhileBlock and as the
name suggests, it contains the condition to be verified by these control flow
blocks;

Figure 6 shows an example of a square - a loop, running four times, that
inside move forward, with a fixed distance, and turn right/left 90◦.

In this case, Root Block has one child - Repeat Block - and this block has
three more children:

– Condition Block that usually has a child the number of repeats of the cycle.
– Body Block where are introduced the main instructions. It has two children:

Forward Block and Turn Left Block. Forward Block has two more children -
Distance and Speed - each with Number block as children. Turn Left Block
is similar but instead of distance, it has Angle Block.

– End Repeat Block only ends the repeat, as the name indicates.

Fig. 6. AST of a square.

4 Challenges

For each target platform, a set of challenges is designed for experiments. These
challenges are detailed in this section. There are many possibilities to program
each target. Challenges were designed to improve educational value. Kids will
improve math concepts by using operators such as addition, subtraction, divi-
sion, multiplication, and tact to move using velocity and sensors. They can also

92

8 Márcia Alves, Armando Sousa, and Ângela Cardoso

program flow control, such as repeat, forever, while, if, and else. There are four
main challenges: regular polygon construction, two types of obstacle reaction
and line follow.

4.1 Regular polygon

This challenge is intuitive for children understand. They need to know some
concepts about regular polygons. Regular Polygons have all sides with the same
length and their internal and external angles have the same amplitude. There
are n regular polygons with n sides where the amplitude of each angle the robot
needs to turn is 360◦/n.

In Figure 7 it is possible to see a program for building a pentagon and its
simulation. Note that, the tag pen down is only available for platform scratch, so
this program only works when the platform scratch is selected. Another exception
is that Ozobot does not implement events like the tag Flag. So, this program can
be built without pen down tag in Cozmo, Shero, Robobo, and Ozobot (without
flag). In Scratch and Robobo, it is also feasible to ask the user a question like
how many sides the user wants. After the question, the program waits to the
answer and uses that to build the polygon, like Figure 7 shows.

Fig. 7. Puzzle and simulation of a pentagon.

4.2 Obstacle Reaction

The obstacle reaction and sensors are for Ozobot. In these examples, the robot
can stop or running away when facing an obstacle. The obstacle can be placed
anywhere and moved around the scene. In Figure 8 and 9 can be seen different
robot reactions to that situations. In both cases, it is told to the robot to build a
square. The robot tries to complete the orders but in Figure 8 it stops when the

93

Title Suppressed Due to Excessive Length 9

Fig. 8. Puzzle and simulation of stopping in front of an obstacle.

obstacle is in front of it and, in Figure 9, the robot pick back direction, running
away from the obstacle.

Fig. 9. Puzzle and simulation of running away of an obstacle.

4.3 Follow Line

This functionality only works in Ozobot because it is the only one with line
detection capabilities. The line is generated randomly when the button line is
clicked. The figure 10 shows that while the robot sees a black line, it follows it.
When the line ends, the robot no longer sees the line and the while loop ends,
stopping the movement.

94

10 Márcia Alves, Armando Sousa, and Ângela Cardoso

Fig. 10. Puzzle and simulation of a line follow.

5 Conclusion

This project focuses on motivating children, attending elementary education,
engineering, and programming, using an application and robotics, so they can
understand how computer science works. Children can give orders to a virtual
robot, run it on the simulator or a real robot. To be accessible to more people, it
would be interesting if the applications could be a Progressive Web App (PWA),
which runs on any browser with Internet access. The PWA only needs internet
to open the application and then it can run offline. In this way, Tactode can be
more general and accessible to society anytime, anywhere. More challenges could
be created, a labyrinth, for example, and the current ones could be improved.
An interesting improvement would be if it were possible to paint to be followed,
with different colors. Another could be to choose what kind of reactions the robot
might have when facing an obstacle, such as approaching the obstacle instead
of running away and being available on all sides (/ sensors) of the robot (front,
left frontal, right frontal and back).

References

1. Eguchi A.: Bringing Robotics in Classrooms. In: Khine M. (eds) Robotics in
STEM Education. pp 3?31. Springer International Publishing, Cham (2017).
doi:10.1007/978-3-319-57786-9_1

2. Danli Wang, Tingting Wang, and Zhen Liu: A Tangible Programming Tool for
Children to Cultivate Computational Thinking. In: The Scientific World Journal.
vol. 2014 (2014). doi:10.1155/2014/428080

3. Cardoso, A. and Sousa, A. and Ferreira, H.: Programming for young children using
tangible tiles and camera-enable handheld devices. In: 11th annual International
Conference of Education, Research and Innovation. pp 6389?6394 (2018). doi:

10.21125/iceri.2018.2504

95

Title Suppressed Due to Excessive Length 11

4. Chetty, J.: Combatting the War Against Machines: An Innovative Hands-on Ap-
proach to Coding. In: Khine M. (eds) Robotics in STEM Education: Redesign-
ing the Learning Experience. pp 59?83. Springer International Publishing, Cham
(2017). doi:10.1007/978-3-319-57786-9_3

5. Resnick, M. and Maloney, J. and Monroy-Hernández, A. and Rusk, N. and East-
mond, E. and Brennan, K. and Millner, A. and Rosenbaum, E. and Silver, J. and
Silverman, B. and Kafai, Y.: Scratch: Programming for All. In: Communications
of the ACM. pp 60?67 (2009). doi:10.1145/1592761.1592779

6. Apple: Swift Playgrounds. https://www.apple.com/swift/playgrounds
7. Fraser, N.: Ten things we’ve learned from Blockly. In: 2015 IEEE Blocks and

Beyond Workshop (Blocks and Beyond). pp 49?50 (2015). doi:10.1109/BLOCKS.
2015.7369000

8. Pasternak, E. and Fenichel, R. and Marshall, A. N.: Tips for creating a block
language with Blockly. In: 2017 IEEE Blocks and Beyond Workshop (B B). pp
21?24 (2017). doi:10.1109/BLOCKS.2017.8120404

9. Google for Education: Blockly. https://developers.google.com/blockly
10. Microsoft: MakeCode. https://makecode.com
11. Lifelong Kindergarten Group at the MIT Media Lab: Scratch (2005). https://

scratch.mit.edu

12. Mönig, J.: Snap!. http://snap.berkeley.edu/about.html
13. Chung, J.: Stencyl. http://stencyl.com
14. Pausch, R. and Burnette, T. and Capehart, A. C. and Conway, M. and Cosgrove,

D. and DeLine, R. and Durbin, J. and Gossweiler, R. and Koga, S. and White, J.:
Alice: Rapid Prototyping for Virtual Reality. In: IEEE Computer Graphics and
Applications. vol. 15, pp 8?11. IEEE Computer Society Press, Los Alamitos, CA,
USA (1995). doi:10.1109/38.376600

15. Cooper, Stephen and Dann, Wanda and Pausch, Randy: Alice: A 3-D Tool for In-
troductory Programming Concepts. In: Journal of Computing Sciences in Colleges.
vol. 15, pp 107?116. Consortium for Computing Sciences in Colleges, USA (2000).
http://dl.acm.org/citation.cfm?id=364133.364161

16. Carnegie Mellon University: Alice. https://www.alice.org
17. Alan Kay et. al.:Squeakland. http://www.squeakland.org
18. Lifelong Kindergarten Group at the MIT Media Lab: ScratchJr. https://www.

scratchjr.org

19. Microsoft Research: Koduv (2009) https://www.kodugamelab.com

20. Lego: Mindstorms: Learn To Program (2013). https://www.lego.com/en-us/

mindstorms/learn-to-program

21. Yaroslavski, D.: LightBot (2017). http://lightbot.com
22. Fisher Price: Think & Learn Code-a-Pillar Application. https://www.

fisher-price.com/en_US/brands/think-and-learn/learning-apps/index.

html

23. Hopster: Coding Safari. https://www.hopster.tv/coding-safari/
24. SpriteBox LLC: SpriteBox. http://spritebox.com/hour.html
25. codeSpark: codeSpark Academy: Kids Coding. https://codespark.com
26. Sapounidis, T. and Demetriadis, S. and Stamelos, I.: Evaluating children

performance with graphical and tangible robot programming tools. In: Per-
sonal and Ubiquitous Computing. vol. 19, pp. 225?237 (2015). doi:10.1007/

s00779-014-0774-3

27. Cardoso, A. and Sousa, A. and Ferreira, H.: Easy Robotics with Camera Devices
and Tangible Tiles. In: 11th annual International Conference of Education, Re-
search and Innovation. pp. 6400?6406 (2018). doi:10.21125/iceri.2018.2506

96

12 Márcia Alves, Armando Sousa, and Ângela Cardoso

28. Suzuki, H. and Kato, H: AlgoBlock: a tangible programming language, a tool for
collaborative learning. In: Proceedings of the 4th European logo conference. pp.
297?393 (1993)

29. Wyeth, P. and Purchase, H.: Designing technology for children: moving from the
computer into the physical world with electronic blocks. In: Information Tech-
nology in Childhood Education Annual. vol. 2002, pp. 219?244 (2002). http:

//eprints.gla.ac.uk/14107/
30. Modular Robotics: Cubelets (2012). https://www.modrobotics.com/cubelets/
31. Correll, Nikolaus and Wailes, Chris and Slaby, Scott: A One-Hour Curriculum to

Engage Middle School Students in Robotics and Computer Science Using Cubelets.
In: Ani Hsieh, M. and Chirikjian, Gregory (eds) Distributed Autonomous Robotic
Systems. pp. 165?176. Springer Berlin Heidelberg, Berlin, Heidelberg (2014). doi:
10.1007/978-3-642-55146-8

32. Wohl, B. and Porter, B. and Clinch, S.: Teaching Computer Science to 5-7 Year-
olds: An Initial Study with Scratch, Cubelets and Unplugged Computing. In: Pro-
ceedings of the Workshop in Primary and Secondary Computing Education. pp.
55?60. ACM, New York, NY, USA. doi:10.1145/2818314.2818340

33. Fisher Price: Think & Learn Code-a-Pillar. https://fisher-price.mattel.com/
shop/en-us/fp/think-learn/think-learn-code-a-pillar-dkt39

34. KUBO Robotics: KUBO (2017). https://kubo-robot.com
35. Horn, M. S. and Jacob, R. J. K.: Designing Tangible Programming Languages for

Classroom Use. In: Proceedings of the 1st International Conference on Tangible
and Embedded Interaction. pp. 159?162. ACM, New York, NY, USA (2007). doi:
10.1145/1226969.1227003

36. Wang, D. and Zhang, C. and Wang, H.: T-Maze: A Tangible Programming Tool
for Children. In: Proceedings of the 10th International Conference on Interaction
Design and Children. pp. 127?135. ACM, New York, NY, USA (2011). doi:10.
1145/1999030.1999045

37. Osmo: Osmo Coding Family. https://www.playosmo.com/en/coding-family/
38. Goyal, S. and Vijay, R. S. and Monga, C. and Kalita, P.: Code Bits: An In-

expensive Tangible Computational Thinking Toolkit For K-12 Curriculum. In:
Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embed-
ded, and Embodied Interaction. pp. 441?447. ACM, New York, NY, USA (2016).
doi:10.1145/2839462.2856541

39. LEGO group: Support - Mindstorms (2018). https://www.lego.com/en-us/

mindstorms/support
40. Ozobot: About us. https://ozobot.com/about-us
41. Ozobot: Getting Started Guide https://files.ozobot.com/stem-education/

ozoblockly-getting-started.pdf
42. Roberta: Learning to program intuitively in the Open Roberta Lab https://www.

roberta-home.de/en/lab/
43. Google for Education: Blockly Games : About. https://blockly-games.appspot.

com/about?lang=en
44. Scratch: About Scratch. https://scratch.mit.edu/about
45. Ionic: Browser Support (2019). https://ionicframework.com/docs/intro/

browser-support/
46. Ionic: What is Ionic Framework? (2019). https://ionicframework.com/docs/

intro
47. Ionic creator: Custom Code Editing (2019) https://docs.usecreator.com/docs/

custom-code-editing
48. Threejs: Three.js (2019) https://threejs.org/

97

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Goals
	1.3 Contributions and Publications
	1.4 Previous Publications and Initial State of Project
	1.5 Dissertation Structure

	2 Fundamentals and Literature Review
	2.1 Block Programming
	2.2 Tangible Programming
	2.3 Three.js
	2.4 Programming Robotics in Elementary Schools
	2.4.1 Programming in Portuguese Elementary Schools
	2.4.2 Teachers Perception
	2.4.3 Logical Reasoning and Computation thinking
	2.4.4 Increased Interest in Computer Science
	2.4.5 Team Work
	2.4.6 Gender inequality

	2.5 Examples already tested
	2.5.1 Lego Mindstorm EV3
	2.5.2 Ozobot
	2.5.3 Open Roberta Lab
	2.5.4 Blockly Games
	2.5.5 Scratch

	2.6 Conclusion

	3 Problem Statement and Technological Selection
	3.1 Tactode 1
	3.2 Tactode 2
	3.3 Problem Definition
	3.4 Proposed Solution
	3.5 Development Technologies
	3.5.1 Web Programming
	3.5.2 TypeScript
	3.5.2.1 Promises

	3.5.3 Ionic Framework
	3.5.4 Three.js

	3.6 Conclusion

	4 Tactode Application
	4.1 Requirements
	4.1.1 Non-Functional Requirements
	4.1.2 Functional Requirements
	4.1.2.1 Sequence Diagram
	4.1.2.2 Happy Path

	4.2 Design of Interface
	4.2.1 Rotating image
	4.2.2 Split Screen
	4.2.3 Creating the robot
	4.2.4 Robot Movements

	4.3 Simulator
	4.3.1 Abstract Syntax Tree
	4.3.2 Implemented Blocks
	4.3.2.1 Numbers and Letters
	4.3.2.2 Operators
	Numerical Operators
	Logical Operators
	Comparison Operators

	4.3.2.3 Movements
	Go Forward
	Go Backward
	Turn Left
	Turn Right

	4.3.2.4 Control
	4.3.2.5 Variables
	4.3.2.6 Events
	4.3.2.7 Sensors
	4.3.2.8 Visual

	4.3.3 Challenges
	4.3.3.1 Regular polygon
	4.3.3.2 Obstacle Reaction
	4.3.3.3 Follow Line

	4.4 Conclusion

	5 Results and Experiments
	5.1 Test Program 1
	5.2 Test Program 2
	5.3 Test Program 3
	5.4 Conclusion

	6 Conclusion and Future Work
	6.1 Future Work

	References
	A Tactode Pieces
	B Draft of conference paper

