
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Acceleration of Applications with
FPGA-based Computing Machines:

New DSL

Daniel Alexandre Pimenta Lopes Fernandes

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: João Manuel Paiva Cardoso, PhD

July 25, 2019





Acceleration of Applications with FPGA-based
Computing Machines: New DSL

Daniel Alexandre Pimenta Lopes Fernandes

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: João Paulo de Castro Canas Ferreira, PhD

External Examiner: Ricardo Jorge Ferreira Nobre, PhD

Supervisor: João Manuel Paiva Cardoso, PhD

July 25, 2019





Abstract

Data analytics is often tackled by machine learning techniques. The algorithms involved fre-
quently need to deal with large datasets, leading to long execution times. This kind of applications
usually operates in domains where performance is critical. Developers have thus begun explor-
ing hardware accelerators, such as graphics processing units (GPUs) and field-programmable gate
arrays (FPGAs), to improve performance.

FPGAs provide a promising solution for hardware acceleration, configuration after manufac-
turing and reprogrammability. They are suitable targets for data analytics domains, providing
higher performance and energy efficiency, which is becoming increasingly important in many sys-
tems nowadays. However, programming FPGAs is a complex task, usually accomplished using
hardware description languages (HDLs), which require hardware design expertise. Several tools
have been developed to raise the abstraction level of FPGA programming such as Xilinx’s Vivado
HLS. However, developers still need to be familiar with the tool they are using and the hardware
they are targeting, in order to achieve efficient FPGA implementations. Therefore, if software
developers are to adopt them, additional efforts must be made in standardizing the programming
model, providing users with higher levels of abstraction.

One possible solution to this problem is the use of domain specific languages (DSLs), which
have been proposed in many application domains. DSLs have also been developed to address
the machine learning domain applied to Big Data. However, most of them do not target FPGAs.
This dissertation proposes a new DSL for data analytics to target FPGA-based systems. The DSL
compiler presented generates C code synthesizable by Vivado HLS for FPGA execution. The
code is enhanced with optimization directives to take advantage of these devices. The DSL is
evaluated using a human activity recognition (HAR) case study, taking into account performance,
resource usage and productivity. The results show that data analytics applications can effectively
be accelerated on FPGAs using a DSL approach. The main contributions of this work are towards
the FPGA and data analytics communities (especially the ones using machine learning), as the
developed DSL allows a new range of applications to be executed on FPGAs, thus achieving some
of their benefits.
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Resumo

A análise de dados é muitas vezes abordada utilizando algoritmos de aprendizagem computa-
cional. Estes algoritmos têm frequentemente de lidar com datasets muito grandes, o que leva a
tempos de execução demorados. Este tipo de aplicações opera normalmente em dominios onde
o desempenho é crítico. Os programadores começaram então a explorar aceleradores, como as
graphics processing units (GPUs) e os field-programmable gate arrays (FPGAs), para melhorar o
desempenho.

As FPGAs constituem uma solução promissora para a aceleração em hardware, configu-
ração após fabrico e reprogramabilidade. Estes dispositivos são plataformas alvo adequadas para
domínios de análise de dados, possibilitando níveis de desempenho e eficiência energética mel-
hores, o que é cada vez mais um importante aspeto a considerar nos sistemas da atualidade. No
entanto, programar FPGAs é uma tarefa complicada, normalmente concretizada utilizando lingua-
gens de descrição de hardware (HDLs), que requerem conhecimentos de desenho de hardware.
Diversas ferramentas foram desenvolvidas para melhorar o nivel de abstração da programação em
FPGAs, como por exemplo o Vivado HLS da Xilinx. No entanto, os programadores ainda neces-
sitam de estar familiarizados com a ferramenta e com a plataforma alvo, de modo a obterem im-
plementações em FPGA eficientes. Desta forma, para estes dispositivos serem adotados por mais
utilizadores, o modelo de programação terá de evoluir, a fim de aumentar o nivel de abstração.

Uma solução possível para este problema é o uso de linguagens de domínio específico (DSLs),
que foram propostas em diversas áreas. Diversas DSLs foram também desenvolvidas para o
domínio de aprendizagem computacional aplicada a Big Data. No entanto, a grande maioria não
permite a execução em FPGAs. Esta dissertação propõe uma nova DSL para a área da análise de
dados focando a execução em FPGAs. O compilador da DSL apresentado gera código C sinte-
tizável pela ferramenta Vivado HLS. O código é enriquecido com diretivas de otimização, de modo
a tirar partido da arquitetura destes dispositivos. A DSL é avaliada utilizando um caso de estudo de
um sistema de reconhecimento de atividade humana (HAR), tendo em conta desempenho, utiliza-
ção de recursos e produtividade. Os resultados demonstram que as aplicações de análise de dados
podem ser efetivamente aceleradas em FPGAs utilizando uma DSL. As principais contribuições
deste trabalho são direcionadas às areas das FPGAs e da análise de dados (especialmente aquelas
que utilizam aprendizagem computacional), uma vez que a DSL desenvolvida permite que um
novo leque de aplicações sejam executadas em FPGAs, tirando assim partido de algumas das suas
vantagens.
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“It would appear that we have reached the limits of what it is possible to achieve with computer
technology, although one should be careful with such statements, as they tend to sound pretty

silly in 5 years.”

John von Neumann
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Chapter 1

Introduction

This chapter introduces the dissertation. The context of the work is given first, followed by the

motivation and objectives of the dissertation. The last section provides a general outline of this

dissertation with a brief description of each chapter and its contents.

1.1 Context

Ever since John Von Neumann wrote his famous first draft of what came to be known as the Von

Neumann architecture [1, 2], computers have been, for the most part, developed following the

principles therein. In modern times, however, some domains are moving computation towards

hardware accelerators due to the constant need for better performance [3]. These devices attempt

to employ a different paradigm of computation, favoring high degrees of parallelism. The most

classic example is the computer graphics domain, which gave rise to the graphics processing

units (GPUs) so familiar to everyone today. These devices, named after the graphics domain,

were built to accelerate graphics processing. However, many more domains are embracing these

architectures nowadays to improve performance [4]. Additionally, other architectures such as

field-programmable gate arrays (FPGAs) are becoming more popular as well [5, 6, 7]. The parallel

nature of these devices makes them appealing to several domains where performance is critical

[8, 9]. Moreover, they also provide better energy efficiency than conventional central-processing

units (CPUs) [10]. This is a characteristic that is becoming increasingly important in modern

computing system, especially in embedded domains.

Data analytics [11] is the process of drawing conclusions based on thorough examination of

data. The concept is often attached to machine learning, as the latter provides mechanisms for

computers to analyze data, learn from it and thus be capable of making decisions based on the

experience attained. Machine learning algorithms [12] must often deal with large amounts of data

and the computations performed by them can become very complex. Problems arise when strict

timing constraints must be met, especially in real-time environments. The volume of data and

the inherent complexity of the algorithms significantly affect their performance. However, many

algorithms display a heavy amount of parallelism. They are therefore appealing to accelerators,
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such as FPGAs, as these devices can take advantage of such parallelism to improve performance.

Experiments have shown that targeting machine learning algorithms towards FPGAs can lead to

critical performance gains [13].

1.2 Motivation

FPGAs provide a potential solution to the problems inherent to data analytics. The performance

associated with the machine learning algorithms used in this domain can be significantly improved

with the use of these devices. However, FPGAs suffer from one key issue: programmability. FP-

GAs are usually programmed using hardware description languages (HDLs) [14] such as VHDL

or Verilog. These languages are hard to master for even expert software developers because they

require hardware expertise. Software developers are used to programming in high level languages

such as C or Java as these languages provide strong abstractions that allow them to efficiently

develop programs without the need to know the underlying hardware being targeted.

In an attempt to solve this problem, several parties have tried to improve the programmability

of FPGAs, introducing high-level synthesis toolsets such as Xilinx’s Vivado HLS [15] or Altera’s

OpenCL Compiler for FPGAs [16]. However, even these environments are difficult to use as they

require developers to be familiar with the tool they are using and the hardware they are targeting.

Multiple domain-specific languages (DSLs) have been proposed to target FPGAs (see, e.g., [17]).

One of the most popular domains is image processing, as this is an area that can also benefit

greatly from the use of accelerators. The restriction to a single domain allows DSL compilers to

more efficiently produce code that can be targeted for FPGA execution, because the compiler can

leverage its knowledge of the domain to perform domain-specific optimizations.

Multiple DSLs and frameworks exist in the machine learning domain applied to Big Data

[18, 19]. However, most of these do not target FPGAs and the same holds for many other DSLs and

frameworks in other domains. Programming FPGAs requires much more effort than programming

CPUs or even GPUs. Ultimately, the FPGA programming model needs to improve, in order for

these devices to be adopted by the community [20]. For now, however, DSLs remain a viable and

elegant solution to specific problems.

1.3 Objectives

Targeting FPGAs can be done using two different approaches, illustrated in Figure 1.1. The first

one uses the FPGA isolated. Inputs are sent in and out of the FPGA, so the entire program is

hardware accelerated. The second approach involves a mixed CPU-FPGA solution. In this case,

the CPU takes care of the main control flow of the program. The FPGA acts as a co-processor.

This dissertation proposes a new DSL for the data analytics domain targeting FPGA execution.

The DSL provides machine learning oriented abstractions to allow users to naturally express their

programs, hiding a number of implementation details. The main work includes the DSL compiler,

responsible for generating optimized C code, synthesizable by the Vivado HLS toolset. This code

2
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(a) Standalone FPGA scenario (b) Mixed CPU-FPGA scenario

Figure 1.1: Two different FPGA execution scenarios

can then be used to generate a bitstream for FPGA execution. Additionally, the DSL can also be

used to program mixed CPU-FPGA systems, using Xilinx’s SDSoC [21], as well as systems with

a CPU only, using an ordinary C compiler. The DSL workflow is shown in Figure 1.2.

Figure 1.2: DSL workflow

The evaluation process of the developed DSL uses a human activity recognition (HAR) case

study, taking into account both productivity and performance. For the performance evaluation, two

scenarios are considered. The first one focuses on the FPGA code, in order to understand what

sort of speedups can be obtained by targeting data analytics applications to a standalone FPGA.

The second one considers a hybrid software/hardware solution, where the CPU manages the main

control flow of the application, leaving the FPGA as a co-processor. The main goal of this work

is to allow developers to create data analytics systems in a simplified manner and execute them on

FPGAs, taking advantage of some of their benefits.

This dissertation’s main contributions are targeted at the data analytics and FPGA commu-

nities. Data analytics users can benefit from a new DSL for the domain to target FPGA-based

3
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systems. Likewise, the introduction of a new DSL capable of targeting FPGAs improves the pro-

grammability of these devices, allowing a new range of applications to take advantage of them.

As such, this dissertation aims to answer the following research questions:

A.1 Can data analytics applications benefit from standalone FPGA execution using HLS?

A.2 Can data analytics applications benefit from mixed CPU-FPGA execution using HLS?

B.1 Can data analytics applications be targeted to FPGAs using a DSL approach?

B.2 Can data analytics applications improve performance using a new DSL for FPGAs?

1.4 Outline

This dissertation is organized as follows. Chapter 1 introduces the dissertation, providing context

and motivation for the work proposed. Chapter 2 provides background into field-programmable

gate arrays and domain-specific languages. Chapter 3 reviews related work in domain-specific

languages and frameworks, with an emphasis on machine learning and FPGAs. Chapter 4 dives

into the DSL developed as part of the main work of this dissertation. Chapter 5 evaluates the DSL

and Chapter 6 concludes this dissertation.
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Chapter 2

Background

This chapter provides some background knowledge related to field-programmable gate arrays (FP-

GAs) and domain-specific languages (DSLs).

2.1 Field-programmable Gate Arrays

Field-programmable gate arrays (FPGAs) are integrated circuits designed for configuration after

manufacturing [10]. These circuits are composed as an array of logic blocks that can be configured

by the user to perform combinational functions. The blocks can then be connected to each other

with wires, thus allowing customers to create complex combinational circuits. FPGAs are usually

programmed using hardware description languages (HDLs) such as Verilog or VHDL. Users can

specify their circuits using these languages and use tools to synthesize bitstreams that can be fed

to the FPGA fabric for reconfiguration.

FPGAs can provide hardware acceleration that increases performance over CPUs (see, e.g.,

[5, 13]). This happens because FPGAs emphasize parallelization and customization, allowing

programs to be executed in a data-flow manner, as opposed to a control-oriented paradigm em-

ployed by traditional Von Neumann architectures [10].

2.1.1 Architecture

As mentioned earlier, FPGAs contain an array of logic blocks. The blocks are interconnected to

each other with wires and input/output blocks allow data to be sent to and from the FPGA. The

FPGA can therefore be seen as a grid of logic blocks, where each block can operate concurrently.

This provides huge benefits in terms of performance, because work can be distributed across the

FPGA fabric. Moreover, the fact that logic blocks can be connected to other blocks allows com-

putations to be deeply pipelined [22]. An overview of an FPGA architecture is shown in Figure

2.1.

FPGAs employ a data-flow computation paradigm, because all logic blocks can operate at the

same time. Therefore, despite having lower clock speeds than CPUs, these devices can achieve

even better performance in certain situations. They are, however, always limited by Amdahl’s
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Figure 2.1: FPGA architecture

Law [23], as the amount of parallel work always needs to be substantial for significant performance

gains to be achieved. If the problem at hand is highly sequential, a CPU will outperform an FPGA,

because the FPGA will not be able to take advantage of its architecture. For this reason, FPGAs

are commonly used as coprocessors, allowing highly parallel computations to be performed in the

FPGA fabric, leaving any sequential work to a CPU. The FPGA therefore takes a role similar to

that of a GPU, as the latter is also used as a coprocessor to perform parallel work.

Another key aspect that makes FPGAs so appealing is the mapping of instructions to hardware.

As mentioned earlier, conventional processing units adopt the Von Neumann architecture princi-

ples, because they follow a control flow paradigm, using memory to store and fetch instructions

for sequential execution. FPGAs, on the other hand, have no fetching of instructions because the

instructions are mapped into the circuit itself. Figure 2.2 shows the basic idea. Each node in the

computation graph can be a logic block (more than one logic block would be necessary for larger

operations, of course). Due to the flexibility of the FPGA, each block runs concurrently. Note that

if a certain operation is being performed multiple times, this type of architecture can pipeline the

execution, improving performance. In the case of Figure 2.2, all the nodes in the graph can execute

at the same time as long as the FPGA keeps receiving input values. For example, the last node in

the graph can be computing the multiplication of the values it receives in step (clock cycle) i while

the nodes in the previous layer are executing the subtraction and multiplication for the values they

receive in step i + 1. The last node would thus only need to wait 2 steps before receiving the first

input values. After that, it would execute indefinitely.

This lack of instruction fetching and decoding allows FPGAs to achieve even better perfor-

mance, because the circuit is tailored to a specific task. Of course, if a new algorithm is supposed

to be executed on the FPGA, the fabric will need to be reconfigured. However, this is not a prob-

lem, because FPGAs were built to deal with specific tasks. If a system needs flexibility, a CPU is
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Figure 2.2: Computation graph of G = ((A×B)− (C+D))× ((C+D)× (E −F))

used instead. Some FPGA vendors provide dynamic reconfiguration features, but these add extra

overhead and drive the FPGA into general purpose territory.

Each logic block usually contains a set of lookup tables (LUTs), flip-flops (FFs), digital signal

processors (DSPs) and multiplexers. Lookup tables allow the user to store the functions desired

while the flip-flops provide a mechanism for data to be persisted. The lookup tables can be con-

figured with any logic function if the number of inputs in the LUT is enough. More complex

functions might require the use of multiple LUTs or multiple logic blocks entirely. Current FP-

GAs also include on-chip memories distributed along the fabric [10].

2.1.2 History

FPGAs were developed in the 1980s to rival application-specific integrated circuits (ASICs).

ASICs, unlike FPGAs, cannot be reconfigured. FPGAs presented an elegant solution over ASICs

due to their reconfigurability. Although their performance was not quite as good as ASICs’, their

reconfigurability made them appealing to a wide range of markets. This rivalry still exists today,

but both FPGAs and ASICs have evolved a lot since then [24]. Modern FPGAs have evolved into

complex systems on a chip (SoCs) with several intellectual property (IP) cores attached to them

[10]. IP cores can range from memory controllers to complete microprocessors. Nowadays, in

fact, the reconfigurable part of the FPGA is usually less than half the entire fabric area. However,

it is still the reconfigurable section that makes these devices so appealing. Application-specific

standard products (ASSPs) have since showed up as well. These are like ASICs in that they pro-

vide specific features, but they tailor each solution to a wider audience.

2.1.3 Programming FPGAs

FPGAs are usually programmed using hardware description languages (HDLs). However, because

HDLs are difficult to master for even experienced software developers, researchers and FPGA

vendors started providing ways of programming these devices in more familiar languages such as
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C. This process became known as high level synthesis (HLS) [25]. This section dives into both

HDLs and HLS.

2.1.3.1 Hardware Description Languages

Hardware description languages are programming languages that describe hardware. Despite hav-

ing syntax very close to that of traditional general purpose programming languages, they differ in

several other aspects. Programs written using HDLs are essentially logic circuits, using logic gates

to express them. A key aspect that drifts HDLs apart from traditional programming languages is

the notion of time. The most most popular HDLs available are Verilog and VHDL [14], although

several others exist.

2.1.3.2 High Level Synthesis

While hardware description languages might be very convenient to map to hardware, they are

difficult to program in. Most software developers are not used to programming at such a low level.

Researchers and FPGA vendors thus started focusing on the concept of high level synthesis (HLS)

[25]. High level synthesis allows software developers to program FPGAs using familiar high level

languages such as C. The synthesis process usually generates HDL code, which can then be used

by FPGA tools to generate the bitstreams to configure the FPGA.

High level synthesis differs from traditional compilation processes in several ways. Mapping

a program to hardware is radically different than what compilers traditionally do. In essence,

the most important steps of high level synthesis are schedulling, allocation and binding [26, 27].

These are defined as follows:

• Schedulling - Assignment of operations to control steps;

• Allocation - Selection of resources used to implement the intended operations;

• Binding - Mapping of the operations to the hardware resources chosen during allocation.

All operations in a control step execute in the same clock cycle. It is thus important to maxi-

mize the number of operations executed in a control step to minimize the number of clock cycles

on execution.

In addition to the three main synthesis tasks, optimizations are also somewhat different when

synthesizing a hardware implementation. Even though certain optimizations, such as software

pipelining or code transformations are also used in traditional compilers, high level synthesis al-

lows additional hardware specific optimizations to be performed [25]. One common example is

the use of custom bit-widths for variables in code. Traditionally, variables stick to strict variable

types that have specific sizes. However, such sizes are not always adequate. For example, de-

velopers commonly use a 4 byte integer type for a loop counter, even when the loop runs very

few times. When mapping to hardware, this conceives additional overhead. Therefore, high level

synthesis can adjust the variables’ sizes to be more efficient.
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Several environments provide high level synthesis for FPGAs [28]. These range from com-

mercial tools to academic projects. Most of them focus on synthesizing high-level languages such

as C, C++ or Java.

Vivado High-Level Synthesis [15] is a high-level synthesis environment developed by Xilinx.

It allows programs written in C, C++ and SystemC to be synthesized for FPGA execution. Vivado

HLS comes with a full IDE as well as command line tools. This environment includes several

wizards and scripts to help developers create their projects as well as synthesize their solutions.

Vivado HLS also contains advanced features such as a debugger and an analysis perspective that

allows synthesis results to be thoroughly examined. Code within Vivado HLS can be simulated,

validated and synthesized as well as exported as an IP core. Moreover, the tool comes with a vast

documentation with several examples and tutorials on each of the features described.

Vivado HLS C or C++ code is enhanced with optimization directives in the form of pragmas

in the code. Directives can also be written to a separate file to provide developers with the op-

portunity to create multiple solutions in a project, each with its own directives. There are several

directives available in Vivado HLS. Some of the most common compiler optimizations, such as

loop pipelining and loop unrolling have their own directives. However, a number of Vivado HLS

directives provide memory optimizations that are very specific to FPGAs.

While Vivado HLS allows the generation of IP cores, sometimes users want to develop mixed

CPU-FPGA applications, using the FPGA as co-processor. Xilinx provides SDSoC [21] for these

use cases. SDSoC allows applications to be executed on a mixed system consisting of a CPU

and an FPGA. The application control flow is handled by the CPU, leaving parallel work to the

FPGA. Note that this requires data transfers between CPU and FPGA every time an accelerated

function is called. These transfers can be detrimental to the overall performance of the application.

Therefore, SDSoC provides additional optimization directives targeted at communication. These

allow the user to specify certain properties about the data transfers. For example, if an array is

accessed in a sequential order, the accelerated function can begin executing as soon as it obtains

the first element of the array. This access pattern can be configured using SDSoC optimization

directives.

MaxCompiler [29] is a compiler developed by Maxeler Technologies that allows the genera-

tion of hardware implementations for execution on FPGAs. Developing an application requires

users to create kernels, a manager wrapping those kernels and a host application [30]. The kernels

and the manager are written in MaxJ, a Java-based high-level language that adds operator over-

loading [31]. The kernels represent the computations to be accelerated in hardware. The manager

wraps the kernels and configures their interfaces to the host application. The host application is

usually written in C or C++ and it launches the kernels using interface functions generated by the

compiler. These functions are generated based on the kernel and manager code.
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2.2 Domain-specific languages

Domain-specific languages (DSLs) are languages focused on a given domain [32]. They differ

from general purpose programming languages in that they cannot handle a wide range of problems.

Instead, a DSL chooses to focus a given application domain, providing high level abstractions that

are useful to developers targeting that domain. Therefore, programs written in a domain-specific

language are usually very simple to develop and easy to read. The DSL attempts to hide anything

that is irrelevant to the domain itself, allowing the user to focus on the domain only.

One of the key advantages of using a DSL over a general purpose language is the opportunity

to obtain significant performance gains. Since DSLs are explicitly focusing on a particular do-

main, compilers can take advantage of such domain knowledge to generate more efficient target

implementations. Compilers are used to applying several optimizations to code generated, even

in general purpose languages. However, a DSL compiler can take certain domain-specific opti-

mizations that cannot be taken in a general-purpose context. This allows DSLs to achieve better

performance than general purpose languages.

In the context of FPGAs, DSLs are an elegant solution to the problems associated with pro-

gramming these devices. As mentioned in Section 2.1.3, programming FPGAs is usually done

using either hardware description languages (HDLs) or high-level synthesis (HLS) tools. HDLs

are very difficult to use for even experienced software programmers. FPGA vendors developed

HLS tools in an attempt to solve this problem. However, these tools are still rather difficult to use.

Developers still require some knowledge regarding the hardware they are targeting. Moreover,

some familiarity with the tool itself is also required, in order to achieve efficient implementations.

DSLs provide an interesting solution to this problem and they have had extensive use in several

application domains targeting FPGAs [17]. These languages raise the level of abstraction on FP-

GAs because they rely on the compiler to deal with the FPGA specific issues, allowing the user to

focus solely on the domain itself.

2.3 Summary

This chapter provided an overview of the necessary background for this dissertation. The archi-

tecture, history and programmability of FPGAs was explained and the concept of DSLs was also

touched upon, in order to understand their relevance, especially for the FPGA domain.

It is clear that a DSL is a valid approach to program FPGAs, especially for developers unfa-

miliar with these devices. The learning curve of both HDLs and HLS environments drives most

software developers away from FPGAs, but DSLs can certainly be useful in fighting this issue,

allowing these devices to be used by more people. The adoption of FPGAs can benefit several

domains, as more applications can leverage the parallel nature of these devices to improve perfor-

mance. This is especially relevant for real time systems where strict timing constraints must be

met.
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Related Work

This chapter overviews related work in domain-specific languages (DSLs), focusing on accelera-

tors (GPUs and FPGAs) and machine learning. Furthermore, some machine learning frameworks

are also explored as these can provide interesting domain-specific abstractions as well.

3.1 DSLs targeting accelerators

This section details some of the most relevant work done in DSLs targeting accelerators. Most of

these DSLs target GPUs, but some approaches for FPGA execution are also described.

3.1.1 HIPACC

HIPACC [33] is a framework that allows users to develop image processing algorithms, generating

code targeting embedded GPUs. HIPACC uses a C++-based embedded domain-specific language

to specify image processing pipelines with useful abstractions. The HIPACC compiler then gen-

erates the necessary code for different target languages (C++, CUDA or OpenCL). Furthermore,

the framework has added support for Renderscript targets [34], allowing it to take advantage of

heterogeneous hardware in embedded devices. The target language is chosen by the user and the

resulting code can be executed on a GPU. This framework was originally built for medical im-

age processing [35]. However, its features allow it to be used for any sort of image processing

application.

The embedded DSL provides several interesting mechanisms that allow easier development

of image processing pipelines. In addition, the DSL basically consists of C++ template classes

provided by the HIPACC framework. These classes are fully operational, meaning the code can

be compiled using standard C++ compilers to run on a CPU. This can be used to compare results

between GPU and CPU implementations.

The HIPACC framework conceptualizes image processing algorithms in a dataflow manner. It

views algorithms as a set of kernels that have inputs and outputs. The outputs are stored in a buffer,

which in turn can be used as input to another kernel, forming complex pipelines.
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Listing 3.1 shows a simple custom filter, using HIPACC. Line 1 sets up the coefficients for this

filter using a matrix. This matrix contains the constants that will be used to make the calculations

inside the window. The image is loaded on line 10. Lines 12 and 13 set up boundary conditions.

Boundary conditions are useful when a kernel tries to access out of bounds pixels. For example,

if the operator uses a 5x5 window, it will access out of bounds pixels when it is in position (0,0).

The boundary condition allows the values out of bounds to be mapped. In this case, the condition

chosen was BOUNDARY_MIRROR, which means the values will be mirrored. Finally, the iteration

space for the output is created and the filter is built and executed. Executing the filter will call, for

each window in the iteration space, the kernel function inside the filter definition, shown in Listing

3.2.

1 const int coefMatrix[5][5] = { { 2, 1, 2, 1, 2 },

2 { 2, 3, 2, 3, 2 },

3 { 7, 2, 6, 2, 7 },

4 { 2, 3, 2, 3, 2 },

5 { 2, 1, 2, 1, 2 } };

6

7 Mask <int> mask(coefMatrix);

8

9 Image <uchar4> input(width, height);

10 input = image;

11

12 BoundaryCondition <uchar4> boundaryCondition(input, mask, BOUNDARY_MIRROR);

13 Accessor <uchar4> accessor(boundaryCondition);

14

15 Image <uchar4> output(width, height);

16 IterationSpace <uchar4> iterationSpace(output);

17

18 MyFilter myFilter(iterationSpace, accessor, mask);

19

20 myFilter.execute();

Listing 3.1: HIPACC custom filter based on an example taken from Oliver Reiche et al. [36]

1 void kernel() {

2 int4 total = { 0, 0, 0, 0 };

3 for (int y = 2; y >= -2; --y)

4 for (int x = 2; x >= -2; --x)

5 total += mask(x, y) * convert_int4(inputAccessor(x, y));

6 total = max(total, 0) ;

7 total = min(total, 255) ;

8 output() = convert_uchar4(total);

9 }

Listing 3.2: HIPACC Kernel based on an example taken from Oliver Reiche et al. [36]
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The kernel function is where the computations happen. For this filter, the values in the window

(5x5) are multiplied by their corresponding value in the coefficient matrix. The result is summed.

The sum is then normalized to obtain the value for the pixel, which is assigned to the output

function in line 8. Note that the traversal of the matrix is entirely hidden from the programmer.

All he/she has to do is write the kernel, which is what really matters in the algorithm. The traversal

is handled automatically using the framework classes.

Oliver Reiche et al. [36] extended the framework to allow the DSL code to be translated

to a form capable of being executed on an FPGA. The extension is focused on generating code

for Vivado HLS. It therefore takes the C++ embedded DSL code and generates C++ code that

can serve as input to the Vivado HLS suite. Note that the C++ code generated has additional

annotations (some of them in the form of pragmas) to allow Vivado HLS to generate better HDL

code and thus better FPGA implementations.

The framework is based on the Clang/LLVM compiler infrastructure [37]. The Clang frontend

is used to parse the DSL code and generate an Abstract Syntax Tree (AST). This intermediate

representation (IR) is then used to generate two kinds of code: the host code and the kernels. The

host code is the driver, managing the kernels, launching them and sending them data. The kernel

code contains the specified computations to run on the accelerator using the target language chosen

(CUDA, OpenCL, Renderscript). The generated AST from the Clang frontend is used to create

the necessary adjustments to the target code, so it can be compiled by Vivado HLS.

The host code is generated by obtaining a structural representation of the intended image pro-

cessing pipeline. This representation is built by traversing the AST looking for buffer allocations,

memory transfers and kernel executions. These are identifiable because they use compiler known

classes (part of the framework). The resulting representation is a graph that contains nodes for

processes (kernel executions) and space (buffers). The graph is traversed backwards in depth first

search (DFS) fashion. This way, irrelevant computations are rightfully pruned from the code. The

process nodes are translated into kernel executions and the buffers are used to create Vivado HLS

stream objects.

Several problems need to be dealt with to generate efficient C++ code. For example, the

embedded DSL uses masks to make calculations. When convolutions are calculated using the

mask constants, the resulting value range will need to be adjusted, depending on how the mask

constants are represented. If the constants are represented as integers, the convolution will require

the multiplications and a normalization step at the end. However, if floating point values are used

(and all of them add up to 1), then the normalization step at the end is not needed. It turns out that

on FPGAs, the former choice has the least impact on resource usage. HIPACC does not support

the use of floating-point values, so the values need to be converted to integers. Note that this

conversion requires the additional normalization step at the end.

To generate the device code (kernels), an image processing C++ library is used. Masks are

known at compile time (hence the use of constants). This is important to make the necessary

transformations to the mask, as described earlier. In addition, the constants can be propagated

throughout the code, further improving efficiency. Image dimensions need to be known at compile
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time as well, to take additional advantage of Vivado HLS and to achieve more efficient FPGA

implementations.

Finally, to take further advantage of the Vivado HLS suite, several optimizations are made.

Synthesis directives in Vivado can be placed in the code via pragmas or in a separate file. The

most common and obvious directives are placed in the code, while the others are put in a separate

file to allow users to manipulate them to better tune their designs. Loop counter variables are

automatically tuned by Vivado HLS, in order to avoid having to specify the exact necessary bit-

width. Note that changing the image dimensions would require changing the bit-width. This way,

Vivado HLS does it without help from the user. Vivado HLS uses assertions to infer the required

bit-widths. Vector types are also translated to C structures. Note that the motivation behind vector

types is that they are usually present in GPU programming models and they are actually a useful

way to represent data in image processing algorithms. However, to program FPGAs with Vivado

HLS, this choice is not available, so the vector types are translated to structures that can be easily

manipulated. Finally, some delays might occur in certain algorithms due to different window sizes

in local operators on a pipeline. The solution here is to enforce a delay on the faster operators.

The HIPACC implementation on an FPGA [36] was evaluated in comparison with implemen-

tations using the OpenCV library from Xilinx as well as expert implementations executing on

GPUs. The benchmarks used were the Laplacian filter, Harris Corner and the Optical Flow image

processing pipelines. The HIPACC extension was executed on a Xilinx Zynq 7045 FPGA. Other

implementations were executed on the Nvidia Tesla K20 GPU and the ARM Mali-T604 embedded

GPU. The HIPACC extension outperforms the Mali by factors of 3 for the Laplacian filter and 19

for the Harris Corner. It outperforms that same GPU for the Optical Flow pipeline by a factor of

456, but this pipeline took abnormally long on the Mali which makes its comparison less relevant.

The Tesla outperforms the FPGA by factors of 2 for the Optical Flow and 30 for the Laplacian

filter. Throughput shows equivalent values as this metric is highly influenced by performance.

Energy efficiency for the FPGA Laplace version is the highest of all the algorithms and it is 19

and 34 times higher than the equivalent Tesla and Mali versions, respectively. Resource usage is

better for the HIPACC extension than the OpenCV equivalents, with 24 times less used LUTs.

Özkan et al. [38] extended the framework even further with the addition of Altera FPGAs

through Altera’s OpenCL. The approach is somewhat similar to the one used for Vivado HLS,

generating a streaming pipeline for execution on the FPGA. Some of the optimizations used are

similar to the ones present in the previous extension, although the details of their implementation

differ. For example, the bit-width issue mentioned earlier was solved by Vivado HLS itself through

the use of arbitrary bit-widths. Although Altera’s OpenCL provides a similar mechanism, the

OpenCL standard does not. To avoid the loss of portability, this extension uses a bit-wise AND to

handle the bit-width issue.

Overall, HIPACC is one of the most complete image processing frameworks out there, as it

now provides support for CPUs (using C++), GPUs (using CUDA or OpenCL), Android (using

Renderscript), Altera’s FPGAs (using Altera’s OpenCL) and Xilinx’s FPGAs (using Vivado HLS)

[39].
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3.1.2 Halide

Halide [40] is a DSL that can be used to develop image processing pipelines. The Halide compiler

can generate code for both CPU execution, as well as for CPU + GPU runs. The language provides

several abstractions to aid in the development of image processing algorithms.

Image processing pipelines usually have several stages. Each stage operates on a given input.

The input can be an entire image or parts of it. The first stage gets the original image and sends

the results of its computation to the next stages and so on until the output is obtained on the last

stage. The operations performed by the stages can vary a lot. Some stages might perform stencil

computations while others might do resampling or even simple point-wise operations. The key

aspect here is that there is a lot of diversity in the type of operations that might be performed. For

this reason, choosing the best way to setup the algorithm to obtain the best performance is not a

trivial task. This task can be referred to as finding the algorithm’s schedule. The schedule speci-

fies the way in which operations are performed and what the storage constraints should be. There

are multiple strategies to enhance an algorithm’s performance. However, strategies are not always

compatible. Many image processing applications try to achieve good performance by making the

computations in a parallel fashion. Others might try to achieve better data reuse, because many

stages in a pipeline might operate on a window and can thus benefit from reducing redundant com-

putations. These techniques are usually incompatible, because to achieve data reuse, an ordering

needs to be enforced, thus sacrificing parallelization. Moreover, the schedule for one of the stages

should not be applied to all the other stages, because the proper schedule is stage dependent. That

is, a good schedule for one stage might be terrible for another. Additionally, the schedule for a

given stage is also dependent on the stages it uses values from. This is an important aspect, be-

cause finding the right schedule for the algorithm is not about finding the best schedule for each

stage. Ultimately, the key is finding the combination of stage schedules that achieves the best

overall algorithm performance. If one considers that some image processing applications have

hundreds of stages with a huge amount of different operations, then one can easily understand that

scheduling is a very demanding task.

Halide attempts to act on this problem by raising the level of abstraction. Its focus is to

decouple algorithms from schedules [41, 42]. The algorithms are the textual representation of

the image processing pipelines. This description makes no assumptions about the order in which

operations will be performed, nor does it care about storage concerns. The schedule specifies

all these characteristics. The DSL uses a function construct to represent a stage in the pipeline.

These functions can use other functions so, for the most part, all the stages in the pipeline can be

represented in almost the same number of lines. Halide also provides reduction operations. These

are represented with an initial value function and a recursive reduction function. They also need a

reduction domain, which specifies the order in which the reduction is performed. Reductions can

be helpful in operations like histogram equalization, for example.

Listing 3.3 shows a simple example of the Halide syntax. It shows a pipeline with 3 stages.

The first one blurs the image over x and the second does the same over y. The last stage is the
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output function and it multiplies the result from the previous stage by a constant. The syntax is

fairly straightforward. Note that this specification entails only the computations to be done. It

does not say anything regarding the schedule.

1 Func stage1(x, y) = input(x - 2, y) + input(x - 1, y) + input(x, y) + input(x + 1,

y) + input(x + 2, y)

2 Func stage2(x, y) = stage1(x, y - 2) + stage1(x, y - 1) + stage1(x, y) + stage1(x,

y + 1) + stage1(x, y + 2)

3 Func output(x, y) = stage2(x, y)*10

Listing 3.3: Halide example filter based on an example taken from Jonathan Ragan-Kelley et al.

[43]

The schedules in the Halide language are defined by telling the compiler when and where each

function is computed and where its results are stored. The function traversal can be sequential

or parallel. Dimensions with constant size can be unrolled or vectorized as well as reordered,

choosing either row or column-major ordering. Dimensions can additionally be split by a factor,

thus allowing the grid representing the image being processed to be decomposed as a set of tiles. In

the example above, for example, the output function dimensions can be split by a factor, effectively

tiling that dimension. The same can be done for x and this variable can even be vectorized.

The compilation works by first taking the Halide textual representation of the image processing

pipeline and creating a set of loops to execute the algorithm. In this stage, the bounds of the loops

and the sizes of the storage buffers are represented by symbolic constants. The second phase is

bounds inference. It is here that the bounds for the loops and the buffer sizes are inferred. The third

stage looks for sliding window optimizations and storage folding. The focus here is to find better

data reuse by looking at which functions use values computed by previous iterations. This avoids

redundant computation by sacrificing a bit of parallelism. Storage folding allows the buffers to be

shrinked, because many functions compute local operations. That is, many functions use only a

subset of the entire buffer (because they might only use the past few scanlines). For this reason, if a

function only needs the last 3 scanlines from a buffer, then the buffer can be of size 3, thus reducing

the peak memory use and working set size. The fourth stage flattens multi-dimensional loads,

stores and allocations into a single dimensional equivalent. Thus, the image is treated as if it were

a single line. The fifth stage performs loop unrolling and vectorization according to the schedule.

Finally, the Halide IR representation at this point is ran through standard constant folding and

dead code elimination passes before being lowered to LLVM IR. Additionally, functions can also

be scheduled to run on a GPU. This means that the functions are implemented as kernels that

execute on the GPU. If GPU code generation is specified in the schedule, the resulting code is a

hybrid implementation (CPU + GPU) of the image processing pipeline.

Previous versions of the Halide DSL required users to specify the schedules by hand. The

authors have since developed their own autotuner to aid in this process [43, 44, 45]. The auto

tuner applies stochastic search to the schedule search space to find a good schedule. Genetic
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algorithms are used for the search, with an initial population of 128 schedules. Some of the

starting schedules are selected by a weighted coin which chooses, for each function, one of two

schedules: a fully parallelized and tiled version or a parallelized over y version. Other starting

schedules are created applying breadth first schedules to functions (that is, compute and store at

the root outermost granularity). The algorithm then iteratively finds new schedules using elitism,

crossover, mutations and random individual generation.

The results were measured by developing Halide versions of several algorithms and comparing

them to expert implementations in other languages (namely C++). The Xeon W3520 x86 CPU

and the NVIDIA Tesla C2070 GPU were used to execute the implementations. The metrics used

were speedup and lines of code. GPU versions were also generated for some of the algorithms

to see how they perform. The benchmarks used were a blur filter, a camera pipeline, multi-scale

interpolation, bilateral grid and local Laplacian filters. The results show that the Halide algorithms

get better performance in all the benchmarks while at the same time providing the user with a better

experience, because each one requires fewer lines of code. The bilateral grid is by far the most

successful in terms of productivity with only 36 lines of code as opposed to the 158 of an expert

implementation. The speedup is 4.4 over the expert implementation, for this example, which is the

highest of all the speedups. However, all Halide versions have performance gains over the expert

implementations. Only one comparison was made to a GPU version, with a speedup of 2.3 for

the bilateral grid as well. Local Laplacian filters implemented in Halide for GPU execution have

a speedup of 9 over a CPU implementation of the same pipeline (no GPU expert implementation

was available). The auto tuner for the examples took between 2 hours to 2 days to find a schedule

for each algorithm, which makes it impractical in some real-world applications. However, the

performance benefit from using Halide is clear as it generates very fast implementations, which

can be useful in some cases (for example, if the input image is of fixed size over time).

Jing Pu et al. [46] developed an extension to Halide to target FPGAs. Their approach uses C

target code for Vivado HLS. Their compiler generates a hybrid implementation of the algorithms,

with some parts targeting the FPGA and others targeting the CPU. They take advantage of several

parts of the original Halide compiler, using the Halide IR to generate a data-flow graph. This graph

can then be used to generate hardware implementations of the kernels. For the software section,

they rely mostly on the Halide ARM backend, with additional passes to introduce the hardware

calls in the correct places. The extension was evaluated in comparison with HIPACC [36] and

an HLS video library. Their results show that their extension to Halide can obtain equivalent

results to the other two, saving 6% in BRAM when compared to the HIPACC for the Harris Corner

benchmark. When compared to GPUs, their extension exhibits 1.9x more throughput and 6.1x

higher energy efficiency. The results are even better on both metrics when evaluated against the

CPU implementations.

3.1.3 PolyMage

PolyMage [47] is a DSL used for image processing applications. It is an embedded DSL as it

uses Python as host language. The compiler generates C++ code using OpenMP to employ a
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shared memory model for execution on CPUs. Code is written in the form of image processing

stages. Each stage is defined as a function. Function declarations provide the inputs and the

definitions give a description of the computation to be made. PolyMage provides several high level

image processing related constructs that allow the user to write very complex image processing

applications with few lines of code [48].

An example of a kernel specification using the DSL is given in Listing 3.4. Note how the

definition of the pipeline is very simple as it uses predefined language constructs like Stencil. Since

image processing pipelines have several common operations well defined, these are all given their

very own constructs, which reduces development effort. For example, many image processing

pipelines use matrices to compute values. These matrices are passed to the Stencil construct in

this example, which in turn makes the actual calculations using the parameters it received, hiding

implementation details from the user.

1 stage = Function([w, x, y], [intervalWindow, IntervalXRow, IntervalXCol],

2 Float , "stage")

3 stage.defn = [Stencil(img(w, x, y), 4.5/20,

4 [[1], [2], [1]])]

Listing 3.4: PolyMage kernel based on an example taken from Nitin Chugh et al. [49]

Nitin Chugh et al. [49] provide an extension to the PolyMage compiler to allow execution

on FPGAs. The extension generates C++ code with Vivado HLS directives. It is therefore tar-

geted at the Vivado Design Suite and Xilinx FPGAs. Results show that this extension allows

FPGA implementations to reach speedups ranging from 1.05x to 15.60x when compared to CPU

optimized implementations. PolyMage FPGA implementations also achieve better performance

(1.45x to 1.59x) than Xilinx’s predefined OpenCV implementations of two of the algorithms used

as benchmarks (Harris Corner Detection and Unsharp Mask).

More recent work by Abhinav Jangda et al. [50, 51] provides an algorithm to improve loop

fusion. The case study used to apply the algorithm is PolyMage, although their focus is the image

processing domain in general. Therefore, their proposal could be adapted to other DSLs, such as

Halide [40]. Their results show improvements against both the original PolyMage and Halide’s

approaches towards loop fusion.

3.1.4 OpenSPL

OpenSPL [52] is a domain-specific language targeting the spatial computing domain. Its focus

is providing developers with strong abstractions that allow them to create complex hardware ac-

celerated programs from software defined descriptions, bridging the gap between software and

hardware.

The DSL contains a model of Spatial Computing Substrates (SCS), from which different hard-

ware technology can be targeted, from Dataflow Engines from Maxeler to Automata Processor
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Engines from Micron or even future Quantum Processing Units [53, 54]. They can thus target

FPGAs to allow users to take advantage of their parallel features.

The language extends MaxJ [30], providing additional hardware abstractions more useful to

software developers. Computations are done inside kernels. Inputs and outputs are managed using

functions, a paradigm already familiar to high level language programmers. A small example of a

kernel in OpenSPL is shown in Listing 3.5.

1 class MyKernel extends Kernel {

2 MyKernel() {

3 SCSVar input = io.input("input", scsFix(12));

4 SCSVar output = (input < 25) ? input + 2 : input - 2;

5 io.output("output", output, scsFix(13));

6 }

7 }

Listing 3.5: OpenSPL kernel based on an example taken from The OpenSPL White Paper [53]

This example shows how branching can be parallelized by mapping the branch to a set of

operations that execute in parallel, with their results being inputs to a multiplexer. The branch

condition can then be set as the multiplexer selection input to choose the appropriate result, that

is, the right branch based on the condition, as shown in Figure 3.1.

Figure 3.1: OpenSPL branch graph based on an example taken from The OpenSPL White Paper
[53]

This shows how the control flow of the kernel shown in Listing 3.5 is mapped into a data flow

in Figure 3.1. Moreover, bit widths can be set for each variable used, allowing stronger flexibility.

The OpenSPL compiler generates MaxJ code which can be fed to the MaxCompiler to produce

a VHDL description of the application [54]. The bitstream can then be generated for execution on

the FPGA.

These are just some of the features available in OpenSPL. The language, while not as high

level as general-purpose programming languages like Java or C, still presents a big upgrade from

average HDLs such as Verilog or VHDL, which is a benefit for software developers wishing to

port their programs to hardware accelerators.
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3.2 DSLs and frameworks targeting machine learning

This section surveys some related work on DSLs and frameworks targeting machine learning.

None of the projects described here has any official support for FPGA execution. Nonetheless,

some solutions have been proposed to solve that problem and these are therefore also described

throughout each subsection.

3.2.1 OptiML

OptiML [55, 56] is a domain-specific language targeting the machine learning domain. It is em-

bedded in Scala and it can be executed on CPUs and Nvidia GPUs. The language uses several

machine learning abstractions, such as Image, TrainingSet, among others. Although these are

mapped to either matrices or vectors in the background, they convey certain domain-specific prop-

erties that allow the compiler to generate more efficient code. Some of the control structures built

into the language are shown in Listing 3.6.

1 // sums

2 val result = sum(lowerBound, upperBound){ i =>

3 <ith value to sum>

4 }

5

6 // creates a new vector

7 val newVector = (0::end) { i =>

8 <ith value of the new vector>

9 }

Listing 3.6: OptiML control structures taken from Arvind K. Sujeeth et al. [55]

These abstractions allow the users to specify their machine learning algorithms in a clear and

compact way. Listing 3.7 shows one of the steps in the k-means clustering algorithm.

1 // centroids is a matrix containing the centroids. Each row is a centroid (vector)

2 // x is a matrix containing the samples. Each row is a sample (vector)

3 val closestCentroids = (0::m){i =>

4 val distances = centroids mapRows { centroid =>

5 // distance from the current sample to the current centroid

6 ((x(i)-centroid)*(x(i)-centroid)).sum

7 }

8 distances.minIndex

9 }

Listing 3.7: OptiML k-means centroid calculation taken from Sujeeth et al. [55]
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This excerpt calculates the distance between each sample and each centroid and builds a vector

containing, for each element, the closest centroid. Vector closestCentroids thus contains, for each

entry i, the index into the centroid matrix that is the closest to sample i.

OptiML code is compiled using the Delite Compiler Framework and Runtime [57, 58, 59].

Delite allows the creation of implicitly parallel domain-specific languages that can be targeted to

heterogeneous platforms using the Delite runtime. Although Delite users need to make their DSLs

embedded in Scala, they can take advantage of certain features built into the framework. One of

the key aspects that DSLs take advantage of is the potential for domain-specific optimizations to

be performed, leveraging the knowledge the compiler has about the domain. Delite provides users

with a modular approach to implementing DSLs that allows users to create domain-specific opti-

mizations for their DSLs by extending certain classes existent in the framework [60]. Moreover,

since the framework comes with a variety of predefined compiler optimizations, DSL developers

can choose which ones to reuse and which ones to extend.

OptiML code fed to the Delite compiler is used to generate an execution graph: the Delite

Execution Graph (DEG). The compiler generates target code for each kernel in the DEG. Delite

attempts to generate code in Scala, C++ and CUDA, when possible. The runtime then chooses

which version to use during execution. This improves flexibility as it allows the runtime to sched-

ule the kernels in the DEG taking into account dynamic information such as resource availability

and input size [61].

While OptiML targets only CPUs and GPUs, George et al. [62] provide an approach to develop

FPGA implementations. Their extension targets Xilinx FPGAs using Vivado HLS. In addition to

the traditional generic optimizations provided by languages developed in Delite, this extension

adds loop unrolling, loop pipelining, as well as the introduction of local buffers and loop section-

ing, leveraging domain-specific knowledge.

The extension proposed by George et al. [62] has been evaluated using machine learning

benchmarks, such as Nearest Neighbor, Outlier Counter, 1-D Correlation and 1-D Normalization.

Versions were implemented in both OptiML and C++ using OpenMP. The former were executed

on FPGAs while the latter were exectuted on CPUs. The CPU versions outperform the FPGA

versions in performance, although the gap is more evident in the multi-threaded implementations.

In terms of energy efficiency, the single-threaded CPU versions spend between 1.8x and 4.4x

more energy in fixed point dominated applications than the OptiML FPGA implementations. The

multi-threaded CPU versions spend between 1.3x and 3.5x more energy than the OptiML versions

executing on FPGAs, on all fixed-point dominated applications.

3.2.2 TensorFlow

TensorFlow [63] is an open-source framework for machine learning. It was developed by Google

and it is largely based on their experience with the DistBelief system [64]. The framework focuses

mostly on neural networks and deep learning models [65], expressing such computations as data-

flow graphs. These graphs hold both the computations and the state on which these computations

operate on. The models usually perform computations on multi-dimensional arrays called tensors.
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TensorFlow can be targeted to a variety of platforms, including CPUs or GPUs [66]. The

framework also has support for clusters and mobile devices, allowing applications to be executed

on a wide range of computing systems. Despite not having official support for FPGA execution,

the framework provides tensor processing units (TPUs) [67] as a possible target platform. TPUs

are custom built ASICs targeted at machine learning applications using TensorFlow.

Stable TensorFlow APIs exist for both Python and C. Additionally, support for other languages

such as C++, Go, Java, JavaScript and Swift is present, although with no guarantees regarding API

backwards compatibility.

Deep neural networks [65] usually contain several layers, each with their own purpose. Ten-

sorFlow provides several abstractions to model these networks. An example is shown in Listing

3.8. This Python code creates a network containing 3 layers. The network is supposed to gather

images in a 2D format. That is, the input is a 2D array with size 40 in both dimensions. The

first layer flattens the array. This transformation basically turns the 2D array into a 1D array (with

size 40× 40 = 1600). The next layer computes the rectified linear of the features and it has 100

nodes. The last layer, with 50 nodes, computes the probability scores of each class to be used in

classification. The current image will belong to one of the classes based on the probability scores

returned by these nodes.

1 // Neural network example

2 model = keras.Sequential([

3 keras.layers.Flatten(input_shape=(40, 40)),

4 keras.layers.Dense(100, activation=tf.nn.relu),

5 keras.layers.Dense(50, activation=tf.nn.softmax)

6 ])

Listing 3.8: TensorFlow neural network Python example taken from [63]

Very little has been done regarding FPGA execution of TensorFlow applications. As men-

tioned earlier, no official support exists for such a target platform. However, a number of research

efforts have focused the FPGA implementation of TensorFlow applications. For example, LeFlow

[68] is an open-source tool whose purpose is to synthesize TensorFlow applications for FPGA

execution. The tool leverages Google’s XLA compiler to generate LLVM code based on a Tensor-

Flow specification. This IR is then subject to several transformations and the resulting IR is used

by the HLS tool LegUp [69] to generate a register-transfer level (RTL) implementation. Their

tool is capable of targeting TensorFlow applications to FPGAs. However, no experiments were

conducted to understand the impact on performance.

3.2.3 Theano

Theano [70] is a Python library that provides facilities for mathematical expressions to be com-

puted efficiently. It uses dynamic C code generation to provide fast execution of mathematically

intensive operations [71]. It is very popular in the machine learning community as it provides a
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number of useful abstractions for users in this domain. The library also supports GPU execution

using CUDA [72], allowing machine learning applications to be targeted to these devices.

Theano also uses tensors (multi-dimensional arrays) as these are the basis for the computations

performed in machine learning. In fact, Theano is based on the popular NumPy library, allowing

users already familiar with that library to quickly master Theano concepts. The compilation flow

provides several optimizations that allow fast execution times. The computations are also seen as

a form of data-flow graphs, although not quite like the ones used by TensorFlow. Some of the

optimizations employed by the framework simplify mathematical expressions in order to remove

irrelevant computations.

Theano provides support for parallelism in both GPUs and CPUs, taking advantage of multi-

core architectures [73]. As mentioned before, the framework uses CUDA to provide GPU exe-

cution. In the CPU, OpenMP is used in the C implementations of the main Theano operations,

allowing them to be parallelized to increase performance.

A simple 2D convolution in Theano can be computed using the code in Listing 3.9. This

particular convolution operates on a 7x7 image and uses a 5x5 window for the computations.

1 // Perform 2D convolution on input image

2 output = theano.tensor.nnet.conv2d(

3 input, filters, input_shape=(1, 1, 7, 7), filter_shape=(1, 1, 5, 5),

4 border_mode=(1, 1), subsample=(2, 2))

5 ])

Listing 3.9: Theano 2D convolution example taken from [70]

Similarly to TensorFlow, Theano provides a vast documentation with several examples ex-

plaining not only the framework but also machine learning in general to some extent. This allows

users with no experience in the domain to quickly learn and experiment with the library, mastering

machine learning concepts.

Not much has been done regarding FPGA execution for the Theano framework either. How-

ever, the FINN framework [74] provides a way for trained binarized neural networks (BNNs) to be

mapped to an FPGA using Theano. A Theano trained BNN is input to the framework, which gen-

erates a hardware implementation for execution on an FPGA. Much like most experiments done

in the FPGA domain, the target environment chosen for this framework is Vivado HLS, allowing

it to generate hardware implementations on Xilinx FPGAs.

3.3 Other DSLs and frameworks

The previous sections focused on a few DSLs and frameworks targeting both accelerators and the

machine learning domain. Additional DSLs and frameworks exist in these and other contexts and

some of them are briefly mentioned in this section.
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While TensorFlow [63] and Theano [70] are very popular frameworks in the machine learning

domain, other frameworks have been developed with somewhat the same purpose. Caffe [75] is a

framework focusing on deep learning, targeting CPUs and GPUs (using CUDA). Roberto DiCecco

et al. [76] provide an approach to target Caffe convolutional neural networks (CNNs) to an FPGA.

PyTorch [77] is a Python machine learning library focusing on both tensor operations and deep

learning. Like many others, this library provides both CPU and GPU target code generation.

Tensors have also been used in other contexts. One example is CFDlang [78], a DSL targeting

fluid dynamics making extensive use of tensors. In fact, these constructs have become so popular

that meta-languages focusing on tensors themselves have been proposed as well [79].

Other domains have also seen extensive use of DSLs. PPME [80, 81] is an environment for the

development of particle mesh simulations. It makes extensive use of equations and mathematical

formalisms, providing users with a more mathematically friendly interface. Darkroom [82] is a

DSL focusing image processing, targeting both FPGAs and CPUs. Much like the DSLs described

throughout Section 3.1, it views image processing algorithms as complex pipelines, containing

several stages, each with its own computations. RIPL [83] is another DSL focusing image pro-

cessing for FPGA targets. It is motivated by the requirements of the domain, viewing programs as

dataflow graphs as well. SPIRAL [84, 85] allows automatic generation of hardware implementa-

tions of digital signal processing algorithms, such as the Fast Fourier transform. DIF [86] is a DSL

focusing digital signal processing as well. Similarly to the previous DSLs showcased throughout

this chapter, it views programs as dataflow graphs. A number of DSLs and tools have also been

developed to automate the solution of differential equations [87, 88].

A popular trend among many of the languages shown in this chapter is the decomposition of

programs as a graph, where nodes usually represent computations. Many DSLs have been devel-

oped with this paradigm in mind, but targeted at other domains. Acme [89] is a DSL focusing the

software architecture domain. It decomposes systems as a set of components that are connected to

each other. LEDA [90] is another DSL targeting this domain as well, with an emphasis on dynamic

architectures. xBreeze/ADL [91] is a XML-based DSL also centered on software architecture and

specification. The concept of streaming has also seen extensive work, with DSLs proposed to

handle stream processing applications, some of which even target FPGAs [92, 93].

Chamberlain et al. conducted a study using crowdsourcing techniques to understand pref-

erences in language design [94]. Their approach considers two styles for streaming languages:

functional and literal. These styles (or parts of them) can be identified in all the languages de-

picted in this chapter. Moreover, the DSL developed in this dissertation is slightly inspired in the

literal style presented there.

3.4 Summary

The previous sections reviewed related work on both DSLs and frameworks, not only in the ma-

chine learning domain, but in other fields as well. Tables 3.1 and 3.2 overview the main DSLs

studied throughout this chapter.
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Table 3.1: DSLs properties overview

DSL Type Programming Target Domain
Other

OptimizationsModel Languages/Tools Computing
Devices

HIPACC [33]
Textual; Dataflow;

CPU/GPU

Mask transformations;

C++ Imperative; Altera OpenCL; Image Constant propagation;

Embedded Object Oriented Vivado HLS C++ Processing Loop counter tuning;
Vector type translation

Halide [40] Textual Dataflow Vivado HLS C CPU/GPU

Loop bounds inference;
Buffer size inference;
Sliding window opt.;

Image Storage folding;
Processing Flattening;

Vectorization;
Constant-folding;
Dead-code elimination

OpenSPL [52] Textual Dataflow MaxJ Spatial N/A N/AComputing

PolyMage [47] Dataflow Vivado HLS C++ CPU

Buffer allocation opt.;

Textual; Fusion;

Python Image Tiling;

Embedded Processing Data forwarding;
Mask transformations;
Arbitrary data types

OptiML [55] Imperative Vivado HLS C++ CPU/GPU

Common subexpression
elimination;
Constant propagation;

Textual; Machine Dead code elimination;
Scala Learning Code motion;
Embedded Loop unrolling;

Loop pipelining;
Loop sectioning;
Local buffers

It is fairly evident that image processing is by far one of the most popular domains when it

comes to DSLs for FPGA execution. Several DSLs exist in this domain and as such, users have

a wide range to choose from when they decide to target image processing applications to these

devices. Machine learning and data analytics are clearly missing more work regarding FPGA ex-

ecution. As mentioned throughout Section 3.2, machine learning DSLs and frameworks lack of-

ficial support for FPGA execution. Although several authors have proposed approaches to extend

both OptiML [55] and frameworks like TensorFlow [63] and Theano [70] for FPGA execution,

these are not official and can thus quickly get outdated. Therefore, no support is expected when

targeting these devices.

Another problem that is evident when one looks at the current state of the art in machine

learning frameworks is their focus on neural networks and deep learning. Machine learning is

a very vast domain. Including support for every single machine learning algorithm in a DSL

or framework is not a trivial task. Therefore, it is expected that many of the frameworks and

DSLs identified focus on a small subset of machine learning algorithms and models. However,

the development of new frameworks and DSLs focusing on other sub-domains other than neural

networks and deep learning would provide great contributions to the machine learning domain in

general.

Given the current state of the art in data analytics, it is clear that the development of a DSL

targeting this domain for FPGA execution would allow developers to more quickly build efficient
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Table 3.2: DSLs evaluation overview

DSL Benchmarks Evaluation

HIPACC [33]

Performance;
Laplacian filter; Throughput;
Harris corner; Energy;
Optical flow Power;

Resource usage (Slices, LUTs, FFs, DSPs, BRAM)

Halide [40]

Blur filter;
Camera pipeline; Performance;Multi-scale interpolation; ProductivityBilateral grid;
Local Laplacian filters

OpenSPL [52] N/A N/A

PolyMage [47]
Unsharp Mask; Performance;
Harris Corner Detection; Throughput;
Optical Flow Resource usage (Slices, LUTs, FFs, DSPs, BRAM)

OptiML [55]

Nearest neighbor; Performance;Outlier counter; Resource usage;1-D correlation; Energy1-D normalization

data analytics systems for execution on these devices. Allowing these applications to take advan-

tage of the FPGA architecture would ultimately contribute to both the FPGA and data analytics

communities.
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Chapter 4

A new DSL for Data Analytics

This chapter presents the developed DSL. A brief description of the DSL engineering process is

first given, explaining the though process behind some of its key features. These features are then

further explained using some representative examples to better demonstrate the most relevant use

cases. Details on the compilation process are also explored, with a special focus on targeting

FPGA-based systems.

4.1 DSL Engineering

This section details some of the main requirements for the new DSL for data analytics. Some key

issues are also discussed, to better understand the design decisions taken in the development of the

DSL.

4.1.1 The Data Analytics Domain

As mentioned earlier, data analytics systems often make extensive use of machine learning algo-

rithms. These algorithms are usually characterized by deep pipelines containing several stages.

Each stage in the pipeline usually does some computation on the input values it receives. The

output it produces is then communicated to another stage in the pipeline. The main idea is shown

in Figure 4.1.

This configuration is very similar to the one used in other application domains, such as image

processing. The fact that the algorithms can be decomposed in several stages is what makes the

entire domain appealing for FPGA execution after all, as this setting allows for massive amounts

of parallelism to be exploited. Moreover, the stages themselves often perform operations that can

be subject to parallelization, thus improving overall performance.

For these reasons, mapping this visual representation to a textual one within the DSL seems to

be the right approach to the problem at hand. Note that in addition to being able to map the visual

image of the pipeline to a textual representation, this configuration also allows the code to be more

structured and readable. Moreover, it promotes code reuse because stages can be used by different

pipelines and pipelines themselves could be integrated in a bigger pipeline.
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Figure 4.1: Machine learning pipeline

4.1.2 Targeting FPGAs

Targeting FPGAs can be done using either a hardware description language (HDL) or a high-level

language using high-level synthesis (HLS). One of the most popular HLS environments is Vivado

HLS [15]. This environment can produce FPGA bitstreams from C or C++ code. It is a tool

developed by Xilinx so it targets this vendor’s FPGAs. Therefore, targeting C code, synthesizable

by Vivado HLS is an interesting approach. This process was illustrated earlier in Chapter 1 in

Figure 1.2.

One important issue to take into consideration is whether or not the DSL should be coupled

with the FPGA target. That is, should the DSL be aware of the FPGA target? Taking into account

the fact that the DSL could ideally be extended to other platforms, making it aware of the FPGA

target seems unfitting. As such, the DSL could focus solely on CPUs, leaving any non conventional

targets to non conventional compilers. Therefore, instead of enforcing standard DSL compilers to

target FPGAs and interpret FPGA specific code, the DSL shall provide a mechanism to allow it

to be extended by other compilers. This shall be done using a concept already existent in many

other languages: pragmas. The language shall recognize any pragmas. However, it does not need

to interpret any of them. This is left to each specific compiler. Section 4.4 dives further into this

detail, showcasing a pragma that declares a region to be targeted to an FPGA.

4.1.3 The DSL requirements

The main DSL and compiler requirements are shown in Table 4.1.

One of the main goals with the DSL is to allow the graphical representation of a machine

learning pipeline to be textually specified using stages. The stages and interfaces between them

shall be decoupled, because this allows greater independence. Stages can thus be used multiple

times by the same pipeline. The order in which stages and interfaces are specified shall not matter

either. Therefore, the compiler shall infer the machine learning pipeline graph from the stages and

interfaces specified. The DSL shall also provide mechanisms to read data from a file. Another key
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Table 4.1: The main DSL and compiler requirements

Requirement Description
Stage composition The code shall be comprised of stages, each with their own

inputs, outputs and behaviors (the computation to be done by
the stage)

Stages and interfaces The stages and the interfaces shall be decoupled, allowing
decoupling the same stage to be used multiple times in the pipeline (by

different interfaces)
No stage ordering The compiler shall not require the stages to be specified in any

specific order. The computation pipeline shall be automati-
cally inferred

Input/Output Inputs and outputs for the first and last stages shall be simple
and easy to express, allowing users to send data to and out
of the pipeline in a simplified manner. Files shall be a valid
choice for input and output

Built-ins The DSL shall provide a set of built-ins for commons mathe-
matical and machine learning related operations

Overlapping mechanism The stages shall allow for an overlapping factor to be set
Heterogeneous execution The DSL compiler shall allow hybrid implementations, using

the CPU to manage the application control flow. The code in
the pipelines shall be targeted for FPGA execution

Pragmas The DSL shall provide pragmas, in order to allow specific
stages to be targeted to an FPGA

C integration The DSL shall allow C implementations to be integrated in
the pipeline as an additional stage, allowing users to specify
hybrid pipelines containing DSL and hand-tuned C code

aspect to be focused is the machine learning domain, so built-ins shall be provided for common

mathematical and machine learning operations. This eases the development effort. Additionally,

the fact that the compiler is aware of these constructs allows better optimizations to be applied.

Moreover, the stages shall allow for an overlapping factor to be set, thus making it possible to

overlap values from consecutive iterations of the same stage. This is very important because many

machine learning pipelines often use this feature. Heterogeneous execution is another relevant

topic for the compiler. Even though the DSL is not tied to the FPGA target, the compiler devel-

oped during this dissertation shall allow for FPGAs to be used, either standalone or in a hybrid

scenario (using a CPU as well). Finally, an interesting feature that could be explored as well is the

integration of C code into a DSL written program.

4.2 The new DSL

Taking the requirements noted in the previous section into account, this section presents the DSL.

Appendix A.1 contains the full grammar for the developed DSL and Listing 4.1 shows a simplified

version.
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1 <Program> -> <Decl>+

2 <Decl> -> <ConstDecl> | <AliasDecl> | <StageDecl> | <InterfaceDecl>

3 <StageDecl> -> ’stage’ <Identifier> (’with’ ’overlapping’ <OverlappingExpr>)? ’{’

4 <StageProp>+ ’}’

5 <OverlappingExpr> -> <Identifier> | <DecimalLiteral>

6 <StageProp> -> <Input> | <Output> | <Behavior> | <Setup>

7 <InterfaceDecl> -> ’interface’ ’{’ <From> <To> ’}’ ’;’?

8 <Input> -> ’input’ (<InputDecl> | ’{’ <InputDecl>+ ’}’ ’;’?)

9 <InputDecl> -> ’fillable’? <VariableDecl> ’;’

10 <Behavior> -> ’behavior’ (<Statement> | ’{’ <Statement>+ ’}’ ’;’?)

11 <Output> -> ’output’ (<OutputDecl> | ’{’ <OutputDecl>+ ’}’ ’;’?)

12 <OutputDecl> -> <VariableDecl> ’;’

13 <Setup> -> ’setup’ (<Statement> | ’{’ <Statement>+ ’}’ ’;’?)

14 <From> -> ’from’ (<FromFile> | <FromStage>) ’;’

15 <FromFile> -> ’file’ (<RootType>)? <StringLiteral> (’repeat’ | ’header’)?

16 <FromStage> -> ’stage’? <Identifier> (’.’ <Identifier>)? (’with’ ’overlapping’

17 <OverlappingExpr>)?

Listing 4.1: DSL grammar excerpt

4.2.1 Declarations

A program written in the DSL is a sequence of declarations. Declarations can be of four types:

constant, alias, stage or interface. Constant or alias declarations are fairly straightforward. They

are used to define constant variables and type aliases respectively (they are somewhat equivalent to

C’s define directive and typedefs). An example of const and alias declarations is shown in Listing

4.2.

1 // Defines a constant with value 18.

2 const N = 18;

3

4 // Defines an alias for the double type.

5 alias double myType;

Listing 4.2: The const and alias keywords

A stage in a program is essentially a processing node, as depicted in Section 4.1. The stage

contains a set of inputs, outputs and a behavior. A stage is required to have at least one input

and one output. The behavior operates on the inputs and produces the outputs. Within the stage’s

behavior, variables may be declared and manipulated. The DSL allows statements within the

behavior block, similar to those used in other languages such as C. Appendix A.1 provides more

details about the statements supported. A simple stage is shown in Listing 4.3. This stage is

identified by the name mean and it contains two inputs: a and b. The output of the stage is an
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integer named result. The behavior tag identifies the computation done in the stage. In this case,

the result output is assigned the value of summing inputs a and b.

1 // Computes a + b.

2 stage mean {

3 input {

4 int a;

5 int b;

6 }

7 behavior result = a + b;

8 output int result;

9 }

Listing 4.3: A simple stage

Having stages allows one to describe what sort of computations are intended for a stage in

a given machine learning pipeline. However, the pipeline itself must also be specified. That is,

the pipeline graph must be described by the user. This is where interface declarations come in.

An interface declaration provides information about one or more edges in the pipeline graph.

An interface contains a source node and one or more destination nodes. In this manner, a user

specifies the edges in the pipeline using interface declarations. Listing 4.4 shows a simple interface

declaration that connects stage a to stage b.

1 // Describes an interface from stage a to stage b.

2 interface {

3 from a;

4 to b;

5 }

Listing 4.4: A simple interface

4.2.2 Input and Output

One thing that was left unexplained in the previous subsection is how the program gathers inputs

and what happens to the outputs. Machine learning algorithms often use datasets as input to

the pipeline. These datasets are usually read sequentially and the values obtained are fed to the

pipeline for classification. The developed DSL provides a way to read from a file directly into a

stage. This is done using an interface declaration, as shown in Listing 4.5. This example shows

several more details regarding interface declarations. The first one is the file keyword. This is

used here after from, meaning that the program will be reading from the file named "sample.dat".

Note that machine learning algorithms operate on one instance at a time. That is, the entire dataset

will not be fed to the pipeline all at once. As such, in many cases, the dataset will be sent to the

pipeline one line at a time. In this case, the values in the 4th, 5th and 6th columns of the file are

31



A new DSL for Data Analytics

being sent to three different stages. Listing 4.6 shows the mean stage, which computes the mean

of 3 values.

1 // Sends the contents in the 4th, 5th and 6th columns of file "sample.dat" to the

2 // "mean", "variance" and "signalMagnitude" stages.

3 interface {

4 from file "sample.dat";

5 to {

6 4, 5, 6 -> mean;

7 4, 5, 6 -> variance.points;

8 4, 5, 6 -> signalMagnitude;

9 }

10 }

Listing 4.5: An interface from a file

1 stage mean {

2 input double[3] points;

3 behavior result = avg(points);

4 output double result;

5 }

Listing 4.6: The mean stage

Notice how the mean stage has only one input: an array of size 3. The interface declaration

shown in Listing 4.5 specifies that columns 4, 5 and 6 of the file shall be input to the mean stage.

Note, however, that this does not send values from all three columns to the exact same instance of

that stage. The code in Listing 4.6 shows the declaration of the stage. In reality, the stage can be

used more than once in the same pipeline. As such, an instance of the stage is required for each

use. To make it simpler, the DSL does not require the user to handle instances explicitly. Instead,

they are implicitly created by the compiler. In this case, when the interface states that the 4th, 5th

and 6th column are sent to the mean stage, these are actually sent to different instances of that

stage. This means that this interface creates three new instances of the mean stage, one for each

column.

A key aspect of this stage is also how the input array is filled. When an interface declaration

is specified involving an array input (such as in the mean stage), the array is not actually filled all

at once. Instead, the array is filled one row at a time. In this case, a row is one value only (because

this is a 1D array). This means that for this stage in particular, the input array requires 3 iterations

to be filled. That is, three values are read from the file and fed to the stage. Therefore, the interface

provided in Listing 4.5 creates 3 new instances of the mean stage and each one computes the mean

of 3 values in that column. Note that the pipeline runs indefinitely (or at least until there is no

more input), so the stage is called for every three values read.
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Note that the interface in Listing 4.5 does not specify what input in the mean stage should the

values in the file be fed to. This is because the stage only has one input and as such, the compiler

looks for the first valid one it finds. Notice how the same interface states that the same values are

also sent to the variance stage. However, in this case, the input to send the values to is specified

(points). This is because that stage has more than one input, as shown in Listing 4.7. The variance

stage computes the variance of a set of points, taking into account their mean, which is also an

input to the stage. The stage’s behavior uses tensor operations and mathematical primitives to

express the variance computation. These operations and primitives are explained later.

1 stage variance {

2 input {

3 double[N] points;

4 double mean;

5 }

6 behavior result = sum((points - mean)^2)/N;

7 output double result;

8 }

Listing 4.7: The variance stage

Another important detail about inputs is present in the signalMagnitude stage (see Listing 4.8).

This stage has three array inputs. This raises an interesting point. What should the compiler do

when it finds the interface shown earlier in Listing 4.5? That interface specified that columns 4,

5 and 6 go to the signalMagnitude stage. For the mean stage, this introduced three new instances

of that stage. However, for this one, only one instance of signalMagnitude is created. This is

because the input to send the values to within the stage was not specified (as was done for the

variance stage). As such, the compiler tries to find a valid input for each column. It maps the 4th

column to the x input, the 5th column to the y input and the 6th column to the z input. Therefore,

only one instance is created, which is exactly what was intended. If, on the other hand, each

column required its own instance, then all that is needed is for the exact input to be specified in

the interface, just like it is done for the variance stage.

1 stage signalMagnitude {

2 input {

3 double[3] x;

4 double[3] y;

5 double[3] z;

6 }

7 behavior result = sqrt(x^2 + y^2 + z^2);

8 output double[3] result;

9 }

Listing 4.8: The signalMagnitude stage
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Note that this mechanism is the same used for the mean stage. The difference is that in the

mean stage, the compiler needs to create new instances because the instances already created are

full (i.e., have no inputs available).

A final relevant aspect regarding input and output is how one can print the results of the pro-

gram to check for errors. This is done using the stdout keyword, as shown in Listing 4.9. The

current version of the DSL does not support outputting to files, but future work could add this

feature, using a similar approach to how files are read (see Listing 4.5).

1 interface {

2 from classifier;

3 to stdout;

4 }

Listing 4.9: Interfacing to stdout

4.2.3 Mathematical primitives and operators

The stages shown in the previous subsection revealed a few more features in the DSL: the avg, sum

and sqrt mathematical primitives, and the ˆ operator. The DSL provides a few built-in primitives

and operators to handle common operations such as the square root. These are depicted in Table

4.2.

Table 4.2: DSL mathematical primitives and operators

Primitive/Operator Description
sum(tensor) Computes the sum of the values in the tensor. The tensor can

be of any rank
avg(tensor) Computes the average of the values in the tensor. The tensor

can be of any rank
sqrt(tensor) Computes the square root of the values in the tensor. The

tensor can be of any rank. The result is a tensor where each
element is the square root of the corresponding element in the
input tensor

aˆb Computes the power involving base tensor a and scalar b. The
base tensor can be of any rank. The result is a tensor where
each element is the result of computing the power of the corre-
sponding element in the original base tensor and the exponent

Another interesting aspect taken from these stages is the way tensor operations are performed.

Notice how the + operator is used in the signalMagnitude stage. Inputs x, y and z are all arrays.

This means that xˆ2 computes a new tensor where each value is squared. The same is done for

the two remaining inputs. The resulting tensors are then added, which corresponds to creating a

new tensor where each value is the sum of the values in the corresponding positions of the original

tensors. Thus, the stage computes the square root of an array of size 3, which itself outputs a new
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array, where each element is the square root of the element in the corresponding position of the

original array.

This type of computations is usually done on the target programming language (e.g., C) using

loops. This notation allows the loops to be completely left out. Note, however, that the compiler

can still generate loops to execute operations. They are just invisible to the user in the source code

of the DSL, which emphasizes readability.

4.2.4 Types

Something that has not been touched upon yet is the type system. The DSL only allows the use

of primitive types. These types are fully depicted in Appendix A.2. Table 4.3 shows the most

relevant ones with a simplified description.

Table 4.3: DSL main types

Type Description
boolean Boolean type. 1 byte long
char Character type. 1 byte long
short Signed short type. 2 bytes long
int Signed integer type. 4 bytes long
long Signed long type. 8 bytes long
float Floating point type. 4 bytes long
double Floating point type. 8 bytes long

Most of the types in the DSL are the ones present in C. Boolean is the only one that is not.

The boolean type is mapped by the compiler to a char in the target language.

4.2.5 Machine learning primitives

Other than the fact that the DSL allows one to build machine learning pipelines in a structured

manner, the features shown so far have not been too attached to the domain itself. The DSL

contains a set of additional features that are oriented towards machine learning based solutions.

The first one is the overlapping mechanism. As mentioned earlier, machine learning pipelines

are often composed as a set of stages. These pipelines often require an initial phase where features

are extracted. The operations to perform in either of these phases often involve the use of several

values from an input set. For example, one might want to read the input set and compute the

averages of every group of 3 values. However, one might wonder what 3 values to choose from.

Should the computation always be done with 3 new values or should some of them be overlapped

with the following iterations? This detail can be configured in the DSL using the with overlapping

O notation, as shown in Listing 4.10. Whenever this stage is used by an interface, only 1 new

value is required per iteration (except for the first one, of course). As such, the last 2 values in the

points array will be used in the following iteration of the stage. The default overlapping factor for

any stage is 0.
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1 const N = 3;

2 const O = 2;

3

4 // overlapping = 2

5 stage mean with overlapping O {

6 input double[N] points;

7 behavior result = avg(points);

8 output double result;

9 }

Listing 4.10: The mean stage with overlapping

Sometimes, the overlapping mechanism needs to be set specifically for an instance instead

of a stage in general. Listing 4.11 shows how the overlapping mechanism can be overridden for

one instance. This example uses the with overlapping 0 notation after a stage reference inside the

interface to specify that the stage shall use a different overlapping factor (in this case, 0).

1 interface {

2 from signalMagnitude;

3 to {

4 mean with overlapping 0;

5 variance with overlapping 0;

6 }

7 }

Listing 4.11: Overriding the overlapping factor of the mean and variance stages for a specific

instance

After feature extraction, a classifier is usually called to classify a feature vector. This process

often requires the use of a training set. The developed DSL provides builtin primitives to handle

these issues as well. Table 4.4 shows the machine learning primitives currently supported by the

DSL.

Table 4.4: DSL machine learning primitives

Primitive/Operator Description
readTrainingSet(file,n,w) Reads the training set present in file. The number of

samples is n and the number of columns is w. The last
column is the class ID

readTrainingSetToHeader(file,n,w) Similar to readTrainingSet but the file is read during
compilation and a static array is generated in a separate
header with its contents

knn(fv,ts,k,nc) Executes the k-nearest neighbors algorithm. The pa-
rameters are the feature vector fv, the training set ts, the
value of k and the number of classes nc
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To read a training set, the readTrainingSet primitive can be used. This primitive returns a

2D array with the contents of a file given in a parameter (the file contains the training set). The

classifier can then be called with the training set and the feature vector in order to find out the

class of the given instance. An example using the knn primitive is shown in Listing 4.12. This

code introduces several new details. First off, the setup block of a stage is being used. The setup

block in a stage is similar to the behavior block. The only difference is that the setup block is

only executed once. Hence, it is adequate for initialization code. This is important in this use

case, because we only need to read the training set once (in the beginning). Thus, we put the

readTrainingSet primitive inside the setup block in order for the the training set to be read once

before any executions begin.

Note that the readTrainingSet primitive returns a 2D array with the feature vectors for several

instances in addition to their IDs. As such, the length of the array is actually NUM_FEATURES+

1. Additional work could focus on separating this information in two different arrays: one for the

training set and another one for the IDs.

1 // Constants used.

2 const K = 3;

3 const NUM_FEATURES = 12;

4 const NUM_CLASSES = 25;

5 const NUM_TRAINING_SAMPLES = 529;

6

7 // The stage with the classifier.

8 stage classifier {

9 setup double[NUM_TRAINING_SAMPLES][NUM_FEATURES + 1] trainingSet =

readTrainingSet("trainingSet.dat", NUM_TRAINING_SAMPLES, NUM_FEATURES + 1);

10 input fillable double[NUM_FEATURES] featureVector;

11 behavior result = knn(featureVector, trainingSet, K, NUM_CLASSES);

12 output double result;

13 }

Listing 4.12: The classifier stage using the k-nearest neighbors (k-NN) algorithm

Another key aspect of the DSL introduced in Listing 4.12 is the fillable keyword. Recall that

any input array is filled one row at a time. That is, when an array is provided as input to a stage,

the compiler will assume that the array will require N iterations to be filled and be ready for use

by the stage. This is the desired behavior for many stages, like the mean or signalMagnitude

stages shown earlier. However, sometimes an input array should be filled with values coming

from different stages. In the case of the mean stage, the input array was always filled with values

coming from the same place (a column in the file). However, in this case, the featureVector input

is supposed to hold several values coming from different stages. For instance, the first element of

the array might be the result of calling stage mean with a given column. The second element might

correspond to the variance. Clearly, every element is unique in the sense that they could, in fact, all

have their own separate variables. However, such an approach would not be very flexible, which
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is why a feature vector is useful. After all, the order in which the elements appear is not really

relevant, as long as it remains the same throughout the execution of the pipeline (and the training

set feature vectors use that same order). With the fillable keyword, multiple stages can send their

outputs to the same input (the one marked fillable). This way, the featureVector array is filled with

the right contents. Note that the same could be achieved by considering the featureVector as a 2D

array with only one row and NUM_FEATURES columns. This would present the same behavior.

However, it could be very confusing. As such, the fillable keyword was introduced.

One final detail worth mentioning about the classifier stage is the classifier itself, in this case,

k-NN. The k-NN algorithm can be called using the builtin primitive knn. This primitive takes

four arguments: the feature vector, the training set, the value of k and the number of classes. The

primitive’s return value is a class ID.

4.2.6 Scope

One issue that has not been discussed yet is how the scope mechanism works within the DSL.

Every declaration written on the top level of the program is global. This means that any stages,

constants or aliases are accessible anywhere in the program after they have been declared. In

addition, any of these are also accessible within any stage. This means that a constant can actually

be defined at the very bottom of the program, as long as it is only used within a stage. Moreover,

the order in which the stages and interfaces are defined is irrelevant. A stage can be defined after

an interface that uses it. Additionally, interfaces do not need to follow any specific order. The

pipeline graph is automatically inferred based on the interfaces and stages provided.

4.2.7 Templates

Sometimes the type of the variables being used significantly impacts performance. Therefore, it

is important to have the ability within the DSL to choose the right types for each operation. For

simple operations such as addition, everything is implied from the types of the variables involved

(or by casts). For other operations, such as those requiring a read from a file, it is not as simple.

For these cases, the DSL allows users to select the types for each primitive being used. Examples

are shown in Listings 4.13 and 4.14. The default type used when reading from a file is double.

However, Listing 4.13 shows how an int can be used instead. If the same behavior is needed when

reading a training set, the readTrainingSet family of primitives also allows type templating, as

shown in line 3 of Listing 4.14.

1 interface {

2 from file<int> "sample.dat";

3 to {

4 4, 5, 6 -> mean;

5 }

6 }

Listing 4.13: Setting a type for the file constructor
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1 stage classifier {

2 setup int[NUM_TRAINING_SAMPLES][NUM_FEATURES + 1] trainingSet =

3 readTrainingSet<int>("trainingSet.dat", NUM_TRAINING_SAMPLES,

4 NUM_FEATURES + 1);

5 input fillable int[NUM_FEATURES] featureVector;

6 behavior result = knn(featureVector, trainingSet, K, NUM_CLASSES);

7 output int result;

8 }

Listing 4.14: Setting a type for the readTrainingSet primitive

4.2.8 Using header files

A perhaps unconventional feature present in the DSL is the ability to read files during compilation

and write them to a static array in a separate header file to be used by the target code. This is

supported both when reading from a file within an interface declaration or when a training set is

read. Both cases are shown in Listings 4.15 and 4.16. The first example uses the header keyword

to specify that the file should be read during compilation and written to a static array. The second

example uses the readTrainingSetToHeader primitive to achieve the same behavior when reading

from a training set.

1 interface {

2 from file "sample.dat" header; // Notice the "header" keyword.

3 to {

4 4, 5, 6 -> mean;

5 4, 5, 6 -> variance.points;

6 4, 5, 6 -> signalMagnitude;

7 }

8 }

Listing 4.15: The header keyword when reading from a file

1 stage classifier {

2 setup double[NUM_TRAINING_SAMPLES][NUM_FEATURES + 1] trainingSet =

readTrainingSetToHeader("trainingSet.dat", NUM_TRAINING_SAMPLES,

3 NUM_FEATURES + 1);

4 input fillable double[NUM_FEATURES] featureVector;

5 behavior result = knn(featureVector, trainingSet, K, NUM_CLASSES);

6 output double result;

7 }

Listing 4.16: Reading a training set to a header file
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Note that having the contents of the files in a static array prior to execution is useful for

prototyping. It is also worth noting that in a real scenario, the values would probably be coming

from sensors and the pipeline would run in an infinite loop. Such a scenario is not supported but

could be explored in future work.

4.3 Compilation Flow

This section focuses on the compilation flow of the DSL, explaining what each phase in the com-

piler does and how target code is generated. The DSL compiler follows the process shown in

Figure 4.2.

The following subsections go through each phase, explaining what is done at every step. The

compilation flow follows a structure familiar with other compilers, including lexical, syntax and

semantic analysis phases before code generation [95]. An optimization step is also included,

although this only applies to code targeted to FPGAs.

4.3.1 Lexical Analysis

As with most compilers, the first phase is the lexical analysis phase. This phase reads the input

source code and outputs a chain of tokens. This phase makes heavy use of regular expressions to

recognize the lexems of the language. The regular expressions used by the DSL can be consulted

on Appendix A.1. The output of this phase of the compiler is a stream of tokens that are input to

the syntax analysis stage.

4.3.2 Syntax Analysis

The tokens provided by the previous phase are used during the syntax analysis phase to parse the

program. This phase interprets the code. To do so, a grammar is used. The grammar for the

language can be consulted on Appendix A.1. A syntax tree is then formed and walked to build

an intermediate representation (IR) of the program. This IR contains a set of data structures that

represent the program pipeline. As such, it includes stages, interfaces and so on. This phase also

makes heavy use of a symbol table to generate symbol table entries for each declaration. As such,

certain semantic checks can be verified during this phase. For example, any top level declaration

that uses an undefined variable will throw an error here.

4.3.3 Semantic Analysis

The semantic analysis phase takes care of all remaining semantic checks. Note that not everything

can be checked by walking the parse tree once. This phase performs type checking, scope checking

and other domain-specific validations such as verifying that each stage contains at least one input

and one output. This phase makes extensive use of the intermediate representation built earlier. In

fact, that representation is enhanced, allowing the program to finally be complete.
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Figure 4.2: DSL compilation flow

Note that certain aspects within the DSL require the entire program to be parsed before the

full IR can be built. For example, to build the pipeline graph, the compiler needs to first read all

the interfaces and store them. It then needs to infer the graph based on the nodes they contain.

This process can be very tricky so an example can be of use here. Consider the code shown in

Listing 4.17. The code contains 5 interfaces. Note that the interfaces are in a user friendly order

to improve readability, but they could be placed in any order. For this reason, the compiler needs

to first read all the interfaces and only then can it start inferring the pipeline graph. The first step

in inferring the right graph is finding source nodes, that is, nodes that are not a destination in any
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interface. Once these have been found, the graph can be easily inferred using an iterative approach.

The resulting graph for the code below is shown in Figure 4.3.

1 interface {

2 from file "sample.dat";

3 to {

4 4, 5, 6 -> mean;

5 4, 5, 6 -> variance.points;

6 4, 5, 6 -> signalMagnitude;

7 }

8 }

9

10 interface {

11 from mean;

12 to {

13 classifier;

14 variance.mean;

15 standardDeviation.mean;

16 }

17 }

18

19 interface {

20 from variance;

21 to {

22 classifier;

23 standardDeviation.variance;

24 }

25 }

26

27 interface {

28 from standardDeviation;

29 to classifier;

30 }

31

32 interface {

33 from signalMagnitude;

34 to {

35 mean with overlapping 0;

36 variance with overlapping 0;

37 }

38 }

39

40 interface {

41 from classifier;

42 to stdout;

43 }

Listing 4.17: A set of interfaces within a program
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Figure 4.3: The block diagram resulting from the interfaces shown in Listing 4.17

There is one aspect that makes this process more complex. Note that Figure 4.3 shows only

one node for each stage, even though they are called upon several times within the pipeline. The

figure clearly illustrates how the pipeline works. However, the fact that stage instances are not

explicitly handled by the user within the DSL makes the job of the compiler more demanding. In

addition to inferring the graph, the compiler needs to be able to set up the instances automatically.

This is done by reserving each input in a stage. That is, when the compiler is trying to process a

connection between two nodes, it looks for a stage instance with the requested input free. If it does

not find one, a new instance is created. If a stage has multiple inputs and no input was specified,

then the compiler tries to match any input. Note that the behavior for fillable inputs is different,

as these allow multiple stages to fill them in the same iteration. As such, when a fillable input is

found, a new instance is not created, unless the input is already full (every element filled).

4.3.4 Code Optimization

This phase takes care of optimizations to the intermediate code. The IR is thoroughly examined

in order to find potential for optimizations. This phase of the compiler is optional and can be

triggered using a compiler flag. This dissertation focused FPGAs, so optimizations were only

made when the target is an FPGA. These optimizations are explained in Section 4.4. Note that the

FPGA target option is specific of the compiler developed. As explained in Section 4.1, the DSL is

completely unaware of the FPGA target.
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4.3.5 Code Generation

This is the last phase of the compiler. This phase gathers the intermediate representation built in

the previous phases (with or without optimizations) and generates code for it. The code generated

in this case is organized in two sections. One of the sections is the pipeline code while the other

is the stages code. Each stage is a C function. These functions are called by the pipeline function.

The pipeline function contains the main loop. This loop goes through the input samples (from a

file, for example) in an iterative fashion and calls the stages in the pipeline whenever ready.

Listing 4.18 shows the generated code for the variance stage, which is a function containing

three loops, because this stage uses the sum primitive and operates on tensors. Note that additional

buffers are used to store intermediate results. In this case, the first loop calculates the points−
mean sub-expression used in the stage’s behavior. This result is then squared using the second

loop, which uses the math.h function pow (if floats were used, the powf function would be used

instead). Note that to optimize the code, the pow function can be substituted here by a mere

multiplication, because the exponent is known at compile time to be 2. This transformation is

applied when the compiler is called with optimizations, as shown in Section 4.4.3. The third loop

sums the values in the resulting tensor. Finally, the result of this sum is divided by N.

1 void variance(double points[N], double* mean, double* result) {

2 double buffer7[18];

3 for (int buffer6 = 0; buffer6 < 18; buffer6++) {

4 buffer7[buffer6] = points[buffer6] - *mean;

5 }

6 double buffer5[18];

7 for (int buffer4 = 0; buffer4 < 18; buffer4++) {

8 buffer5[buffer4] = pow((buffer7)[buffer4], 2);

9 }

10 double buffer3 = 0;

11 for (int buffer2 = 0; buffer2 < 18; buffer2++) {

12 buffer3 += buffer5[buffer2];

13 }

14 *result = buffer3 / N;

15 }

Listing 4.18: The generated code for the variance stage

Listing 4.19 displays a portion of the main pipeline loop. This loop starts by picking up values

coming from the file. The file is read before hand, so the contents of the file are in a buffer. This

buffer is used to copy the values in the requested columns to the buffers to be used by the stages.

The loop also uses additional buffers to know when to call each stage. For example, the mean

stage is only called here when a specific counter hits 18. This is because the size of the input

array to that stage is 18. As such, the stage can only be called when the inputs are filled. After

the stage call, additional buffers are filled with the stage’s outputs. These buffers are used by any

subsequent stages this stage connects to. Finally, the overlapping regions need to be updated. This
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is done using a loop that copies overlapping values to the correct positions. The stage counter is

updated according to the overlapping factor.

1 // ...

2 for (int buffer74 = 0; buffer74 < 100000 && buffer74 < buffer29; buffer74++) {

3 buffer27[buffer31] = buffer28[buffer74][4];

4 buffer31 = buffer31 + 1;

5 buffer41[buffer52] = buffer28[buffer74][4];

6 buffer52 = buffer52 + 1;

7 buffer33[buffer35] = buffer28[buffer74][5];

8 buffer35 = buffer35 + 1;

9 buffer43[buffer56] = buffer28[buffer74][5];

10 buffer56 = buffer56 + 1;

11 buffer37[buffer39] = buffer28[buffer74][6];

12 buffer39 = buffer39 + 1;

13 buffer45[buffer60] = buffer28[buffer74][6];

14 buffer60 = buffer60 + 1;

15 if (buffer31 == 18) {

16 mean(buffer27, &buffer30);

17 buffer47[buffer49] = buffer30;

18 buffer49 = buffer49 + 1;

19 buffer51 = buffer30;

20 buffer54 = buffer54 + 1;

21 for (int buffer32 = 0; buffer32 < O; buffer32++) {

22 buffer27[buffer32] = buffer27[buffer32 + 18 - O];

23 }

24 buffer31 = buffer31 - 18 + O;

25 }

26 // ...

27 }

Listing 4.19: An excerpt of the generated main loop code

4.4 Targeting FPGAs

Targeting FPGAs requires two steps. The first one is including a way to choose the target to

generate code for. The second is making sure the generated code is valid for that target. An

optional third step can be used to optimize the code to the target. In this dissertation, optimization

is only done for FPGA targets, as mentioned in Section 4.3.4.

4.4.1 Using pragmas

As mentioned earlier, the DSL is completely unaware of the FPGA target. However, the DSL

supports the use of pragmas. Pragmas are compiler directives that can be used to extend function-

ality within the language by certain compilers. In this case, pragmas are useful to choose a target
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for each stage. Note that a compiler flag can also be used to set the target to generate code for.

However, such an approach targets all the code to the same architecture, which is often not what

is intended. As such, this compiler interprets TARGET pragmas, as shown in Listing 4.20. In this

example, the variance stage uses the default target which is the CPU. The standardDeviation stage

explicitly chooses the CPU as target, while the signalMagnitude stage chooses the FPGA.

1 // Uses the default target (CPU).

2 stage variance with overlapping O {

3 input {

4 double[N] points;

5 double mean;

6 }

7 behavior result = sum((points - mean)^2)/N;

8 output double result;

9 }

10

11 #pragma TARGET CPU

12 stage standardDeviation {

13 input double variance;

14 behavior result = sqrt(variance);

15 output double result;

16 }

17

18 #pragma TARGET FPGA

19 stage signalMagnitude with overlapping O {

20 input {

21 double[N] x;

22 double[N] y;

23 double[N] z;

24 }

25 behavior result = sqrt(x^2 + y^2 + z^2);

26 output double[N] result;

27 }

Listing 4.20: Use cases of the TARGET pragma

4.4.2 Generating valid code

Generating valid code is a vital issue when targeting non conventional architectures such as FP-

GAs. For example, if no memory optimizations are used for an input or output array in a stage,

then the memcpy C function cannot use that array. The compiler uses memcpy for array assign-

ments when targeting the CPU. However, for FPGA targets, such an approach might not always

be possible, so adjustments must be made.

It should be noted that targeting FPGAs usually involves adding additional code to improve

performance. In the context of Vivado HLS [15], this means adding HLS pragmas. Note, however,
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that the code should be executable even without the pragmas and if the compiler is called without

optimizations, then no pragmas are generated.

4.4.3 Optimizations

Vivado HLS provides several performance optimization directives in the form of HLS pragmas

[96]. Some of the most common ones are shown in Table 4.5. These directives must be carefully

selected by the compiler when the FPGA target is chosen for a given stage. Note that assigning

pragmas to the code might increase the program performance but it might also significantly impact

the FPGA resource usage. As such, different time/space trade-offs can be achieved depending on

what pragmas are used.

Table 4.5: Common directives used in Vivado HLS

Directive Description
Pipeline Pipelines a region. The region can be a loop or a function. The

initiation interval is reduced, allowing subsequent iterations to
begin execution before previous ones finish. A target initiation
interval can be requested.
Example:

for (int i = 0; i < 10; i++) {
#pragma HLS PIPELINE II=1

Unrolling Unrolls a loop. Unrolling can be done partially (by specifying
a factor) or fully. Unroll decreases the number of iterations
in the loop, merging work from multiple iterations in a single
one.
Example:

for (int i = 0; i < 10; i++) {
#pragma HLS UNROLL FACTOR=2

Inline Inlines a function. This means the code of the function sub-
stitutes the function call, therefore minimizing function call
overhead.
Example:

void func() {
#pragma HLS INLINE

Dataflow Allows data to flow through a region, exploring task-level par-
allelism. Each task (loop or function) can execute at the same
time, and data is sent from one task to the other.
Example:

void func() {
#pragma HLS DATAFLOW

47



A new DSL for Data Analytics

Two of the most popular directives used are pipelining and unrolling. Both directives can be

applied to loops and pipelining can also be applied to functions. When applied to loops, both opti-

mizations allow the parallel execution of multiple iterations, although using different approaches.

Loop pipelining [95] minimizes the initiation interval of a loop, allowing a new iteration to start

executing before the previous one has finished. This is done by dividing the instructions inside the

loop, in order to make a pipeline. The data is sent through the pipeline and each node executes

some operation. This effectively exploits paralellism as several operations can be executing at

the same time. In the context of Vivado HLS [15], a target initiation interval can be set for this

optimization. However, sometimes it is impossible to achieve certain target intervals. As such,

Vivado HLS can sometimes fail to meet the target initiation interval. The default target initiation

interval is 1.

Loop unrolling [95] minimizes the number of iterations in a loop, by merging multiple itera-

tions into a single one. If an unrolling factor is used, the loop is partially unrolled, meaning the

number of iterations drops by the factor chosen. If no factor is used, the number of iterations is

dropped to 0. That is, the loop is fully unrolled. Loop unrolling can sometimes lead to better

results than loop pipelining. However, it is usually more costly, leading to higher resource usage.

Table 4.6 overviews the optimization strategy used by the compiler. The compiler uses both

loop unrolling and loop pipelining. Although they can both be used together, this use of the two

can lead to worse results, as shown in Chapter 5. As such, this compiler chooses to either pipeline

or unroll a loop. The target initiation interval set when loop pipelining is used is 1. When loops

are unrolled, no factor is used, meaning the loop is fully unrolled. Two levels of optimization

were considered. The first one (O1) focuses on space in addition to speed, while the second one

(O2) favours speed. For the first optimization level, loops with less than 5 iterations are unrolled,

leaving all the other loops pipelined. For the second optimization level, loops up to 50 iterations

are unrolled. All other loops are pipelined. When loop nests are present, the outer loop is usually

the one optimized, unless the inner loops include many iterations, in which case the inner loops are

optimized instead. Note that pipelining an outer loop automatically unrolls inner loops. Therefore,

care must be taken when optimizing loop nests.

In addition to these optimizations, the compiler also optimizes the math.h function pow, by

replacing it with multiplications when the exponent is known during compilation. This is done for

exponents below 10. Additional work could focus on finding the optimal value at which the use

of pow becomes more beneficial.

It should be noted that the compiler walks, for the most part, through the final IR instead of

the original one. That is, the code optimizer mostly handles IR nodes that are not specific of the

source language (in this case, the DSL). For example, if a stage uses a mathematical primitive that

requires loops, the loops will be examined instead of the primitive itself. This is motivated by

the fact that future work on optimizations could focus on code restructuring in addition to pragma

generation. As such, walking through a fine grained IR makes code manipulation easier. With this

approach, if loop merging was introduced to the compiler, this optimization could be performed

with less effort. Note that this is also possible using the original primitives, but from a compiler
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Table 4.6: Compiler optimization strategy

Statement Optimization Condition Optimization
Level Applied

For Loop

O1

Inner loops combined
Fully unroll the loopnumber of iterations < 5;

Number of iterations < 5
Inner loops combined

Pipeline the loop (II = 1)number of iterations < 5;
Number of iterations >= 5
Inner loops combined

Optimize inner loops
number of iterations >= 5

O2

Inner loops combined
Fully unroll the loopnumber of iterations < 50;

Number of iterations < 50
Inner loops combined

Pipeline the loop (II = 1)number of iterations < 50;
Number of iterations >= 50
Inner loops combined

Optimize inner loops
number of iterations >= 50

Pow O1 and O2 Exponent < 10
Replace the pow function
with a multiplication

design perspective, it’s easier to work with the loops, since these are all instances of the same

node (the loop). If the primitives themselves were walked by the compiler, adding a new primitive

would require much more work, because a new node in the IR would need to be handled by the

optimizer. Note that this approach is not always beneficial, however, since this is a DSL after all.

Certain domain-specific optimizations require knowledge about the actual primitives, so in those

cases, the code optimizer would use the primitive node of the IR, instead of any sub-nodes.

Listing 4.21 shows an excerpt of the generated code for the classifier stage when optimization

level O1 is used (recall that O1 optimizes for speed and space). The code contains two loops

that are generated by the knn primitive. The first one is a loop nest with two inner loops. This

loop computes the distances between the feature vectors in the training set and the input feature

vector. It also continuously updates the K best points array (in this case, buffer24). The inner

loops combined number of iterations is 16 (13+K), since K = 3. Therefore, the outer loop is not

optimized, and the inner loops are optimized instead. The first inner loop computes the distance

between two points. It is pipelined since it has 16 iterations. The second loop updates the array

with the K best points (buffer24), by finding the worst points and replacing them with better ones.

This is done taking into account the distance calculated in the previous loop. The loop is unrolled

since it only has 3 iterations. Recall that loops with less than 5 iterations are unrolled. The second

loop (after the loop nest) finds the class most training samples belong to. This loop contains no

inner loops and has NUM_CLASSES+1 iterations. Since NUM_CLASSES = 25 and 25 ≥ 5, this

loop is also pipelined.
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1 // ...

2 for (int buffer30 = 0; buffer30 < 529; buffer30++) {

3 double buffer31 = 0;

4 for (int buffer32 = 0; buffer32 < 13; buffer32++) {

5 #pragma HLS PIPELINE II=1

6 int buffer33 = 0;

7 if (buffer32 != 12) {

8 buffer31 += ((featureVector[buffer32 - buffer33] - trainingSet[buffer30][

buffer32 - buffer33]) * (featureVector[buffer32 - buffer33] - trainingSet

[buffer30][buffer32 - buffer33]));

9 } else {

10 buffer33 = 1;

11 }

12 }

13 double buffer34 = 0;

14 int buffer35 = 0;

15 for (int buffer36 = 0; buffer36 < K; buffer36++) {

16 #pragma HLS UNROLL

17 if (buffer24[buffer36] > buffer34) {

18 buffer34 = buffer24[buffer36];

19 buffer35 = buffer36;

20 }

21 }

22 if (buffer31 < buffer34) {

23 buffer24[buffer35] = buffer31;

24 buffer25[buffer35] = buffer30;

25 }

26 }

27 // ...

28 for (int buffer65 = 0; buffer65 < NUM_CLASSES + 1; buffer65++) {

29 #pragma HLS PIPELINE II=1

30 if (buffer52[buffer65] > buffer53) {

31 buffer53 = buffer65;

32 buffer54 = buffer65;

33 }

34 }

35 // ...

Listing 4.21: An excerpt of the generated code for the classifier stage using optimization level O1.

For this code, K = 3 and NUM_CLASSES = 25

Listing 4.22 shows an excerpt of the generated code for the classifier stage using the O2

optimization level (recall that O2 optimizes for speed). This time, since the inner loops’ combined

number of iterations is 16 and 16 < 50, the outer loop is optimized. Note that the outer loop

has 529 iterations. Therefore, the loop is pipelined (since 529 ≥ 50). Finally, the second loop is

unrolled since 26 < 50.
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1 // ...

2 for (int buffer30 = 0; buffer30 < 529; buffer30++) {

3 #pragma HLS PIPELINE II=1

4 double buffer31 = 0;

5 for (int buffer32 = 0; buffer32 < 13; buffer32++) {

6 int buffer33 = 0;

7 if (buffer32 != 12) {

8 buffer31 += ((featureVector[buffer32 - buffer33] - trainingSet[buffer30][

buffer32 - buffer33]) * (featureVector[buffer32 - buffer33] - trainingSet

[buffer30][buffer32 - buffer33]));

9 } else {

10 buffer33 = 1;

11 }

12 }

13 double buffer34 = 0;

14 int buffer35 = 0;

15 for (int buffer36 = 0; buffer36 < K; buffer36++) {

16 if (buffer24[buffer36] > buffer34) {

17 buffer34 = buffer24[buffer36];

18 buffer35 = buffer36;

19 }

20 }

21 if (buffer31 < buffer34) {

22 buffer24[buffer35] = buffer31;

23 buffer25[buffer35] = buffer30;

24 }

25 }

26 // ...

27 for (int buffer65 = 0; buffer65 < NUM_CLASSES + 1; buffer65++) {

28 #pragma HLS UNROLL

29 if (buffer52[buffer65] > buffer53) {

30 buffer53 = buffer65;

31 buffer54 = buffer65;

32 }

33 }

34 // ...

Listing 4.22: An excerpt of the generated code for the classifier stage using optimization level O2.

For this code, K = 3 and NUM_CLASSES = 25

Note that additional optimizations could be used, but the strategy chosen here is motivated

by the experiments conducted in Chapter 5. The results shown there explore more optimizations,

including ones involving code restructuring. Code restructuring, however, is much more complex

and requires a deeper understanding of the code. Introducing this in the compiler is therefore left

as future work.
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4.5 Implementation Details

This section discusses some details regarding the work developed with a focus on the implemen-

tation. The design of the DSL has required an engineering step explained throughout Section 4.1.

To develop the compiler and the DSL, several guidelines were taken to make sure the code was

ready to be extended. Several design patterns [97] were used, readability was emphasized and the

compiler was extensively tested. To make things simpler, a parser generator was used. Multiple

technologies were surveyed [98, 99, 100, 101], in order to select one that makes development eas-

ier. In the end, the technology chosen was ANTLR [98]. With ANTLR, the lexer and the parser

are automatically built from a grammar (the grammar shown on Appendix A.1). For details into

the compiler usage, consult Appendix A.3.

The current version of the compiler contains over 75,000 lines of code (including tests and

Javadoc annotations). About 5,000 of those lines are from the lexer and parser generated by

ANTLR. There are 217 classes used by the compiler (not counting the classes used by test cases).

There are also 1279 unit tests and 17 integration tests, making the code coverage of the entire

compiler close to 100% for most packages.

4.6 Summary

This chapter detailed the developed work of this dissertation. The DSL was introduced using

several examples to explain the most relevant features. The compiler was also discussed, with a

special focus on FPGA target optimizations.

It is clear that the DSL has many useful features to work on data analytics solutions. Its focus is

data analytics programs using machine learning algorithms and, as such, the presence of machine

learning primitives makes it a lot easier for developers to program their applications. The use

of several mathematical primitives that can operate on any tensor also improves the development

process, allowing complex operations to be expressed in a single line, as opposed to a few loops.

In addition, readability is also favoured, with the decomposition of stages being a decent bridge

between the textual and the graphical representations of the program pipeline.

In the end, the DSL has potential for improvements in several departments. The most relevant

one at the moment would be the pragma generation strategy, as the one currently implemented is

very simple. Models could be designed to have a better pragma selection policy, improving appli-

cation performance. Moreover, the optimization phase could take other factors into account, such

as communication. Code restructuring is also an effective mechanism to improve performance so

it would also be a good fit for future work on the compiler. Furthermore, the compiler could also

leverage the knowledge it has on the domain to perform additional domain-specific optimizations.

For example, machine learning algorithms are often evaluated according to their accuracy. The

accuracy, however, does not always need to be the absolute best. Small changes to a program can

lead to a small decrease in classifier accuracy, but a strong improvement in performance. This type

of domain specific analysis could be integrated into the compiler as well.
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The DSL itself could also be the focus of several additional improvements. The only machine

learning algorithm currently supported is k-NN [12] but new ones could be added. As machine

learning is a very vast growing field, adding new primitives may bring new challenges on its own,

as many algorithms are very different from each other.

Verification is another part that could be further addressed. Verification of machine learning

applications raises interesting questions and it can be difficult to debug faulty programs. As such,

adding program verification could be beneficial towards developers. For example, one common

mistake that can happen using the DSL in its current version is using an overlapping factor in

the wrong place, leading to inconsistent throughputs between stages. This kind of mistake can

be difficult to trace, so making the compiler aware of such situations would be valuable for the

developer.

The type system could be further explored as well. The addition of more fixed-point data

types could be an interesting avenue to pursue. Furthermore, the introduction of custom types

to handle domain-specific constructs could be a valuable addition to the language as well. For

example, the current machine learning primitives operate on tensors only, but future work could

focus on custom data types resembling popular machine learning structures such as a training set

or a feature vector.

One aspect that was depicted in the initial requirements of the DSL was the integration of C

code. Although there was no time to develop this feature, it would certainly be a very interesting

one to explore, as it has potential to make the DSL even more powerful and expressive.

Finally, as mentioned earlier, in a real scenario, the values to be used by the pipeline could be

coming from sensors, for example, instead of files. The files use case is needed for evaluation but

the DSL could be extended with features to support real embedded systems situations.
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Chapter 5

Evaluation

This chapter shows the experimental results obtained in order to evaluate the DSL and the com-

piler. First, an overview of the experimental setup is given, providing some context into the

benchmarks used as well as the CPU and FPGA specs. The DSL is then evaluated in terms of

productivity and performance. The performance results also dive into possible improvements that

could be made to the DSL. The chapter ends with a discussion on lessons learned based on the

results obtained.

5.1 Experimental Setup

To evaluate the DSL, the pipeline shown in Figure 4.3 was used. This pipeline represents a human

activity recognition (HAR) system [102] consisting of five stages. Four of them are part of feature

extraction, computing the mean, variance and standard deviation of three coordinates (x, y and z).

These operations are also performed on the result obtained from the signalMagnitude stage. The

classifier (k-NN) is then called, with k = 3 and a training set containing 529 samples, each belong-

ing to one of 25 classes. The input data corresponds to x, y and z values from an accelerometer

(data from the PAMAP2 Physical Activity Monitoring dataset [103] was used). The number of

features used in this example is 12, the size of the window during feature extraction is 18 and the

overlapping factor is 2.

The following sections address both productivity and performance for the sample pipeline just

described. It is worth to note that the generated code was manually modified to create certain

versions, in order to understand the impact of different optimizations.

For the performance evaluation, a Zedboard is used, which has a Xilinx Zynq-7000 AP SoC

XC7Z020-1CLG484C. The CPU experiments are done using the 667 MHz Dual-core ARM Cor-

tex A9 CPU present in the Zedboard. The FPGA clock frequency used for the experiments is 100

MHz. For the high-level synthesis estimates, Vivado HLS 2018.3 [15] is used. The mixed CPU-

FPGA versions are compiled using SDSoC 2018.3 [21]. For the CPU sections, the GCC compiler

with the -O3 compilation flag is used, in order to achieve the best performance.
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Table 5.1: DSL and generated C code statistics for the HAR example (using floats). A simplified
version of the HAR system (without the signalMagnitude stage) is also included

Version Source Code Generated
LOC Stages Interfaces Arrays LOC Functions Loops Arrays Pragmas

HAR CPU 95 5 6 8 380 7 29 27 0
HAR FPGA 95 5 6 8 382 7 30 27 0
HAR FPGA (w/ -O2) 95 5 6 8 397 7 30 27 15
Simplified HAR CPU 76 4 5 4 277 6 19 20 0
Simplified HAR FPGA 76 4 5 4 277 6 19 20 0
Simplified HAR FPGA 76 4 5 4 286 6 19 20 9(w/ -O2)

5.2 Productivity

Productivity is usually difficult to quantify. Therefore, it is not easy to evaluate the DSL in this

regard. However, Table 5.1 shows some statistics gathered for the source and generated code,

using multiple versions. The simplified HAR version shown here is the original one without the

signalMagnitude stage.

The DSL can clearly use less lines of code than C. The number of stages is almost the same

as the number of functions. As mentioned in Section 4.3.5, each stage is generated as a function

in the target code, leading to this similarity. Note that the source code has no loops (they are not

even supported in the DSL’s current version). However, the primitives used by the example make

extensive use of loops, leading to a significant loop count. In addition, the main loop also requires

additional loops to handle aspects such as the overlapping regions updates.

The generated code uses a lot more arrays than the source code. This is due to the pipeline.

The source code versions only use arrays within stages. The generated versions, on the other hand,

require additional arrays to send data from one stage to the other. Moreover, the primitives used

by the DSL sometimes require additional buffers to store intermediate results.

The simplified HAR versions present a significant decrease in lines of code, loops and arrays.

This happens because the signalMagnitude stage is removed in this version. The signalMagnitude

stage uses a number of mathematical primitives and tensor operations, which leads to an increase

in the number of loops to compute the intermediate results (from 19 to 30), and the number of

arrays to store them (from 20 to 27).

Finally, the optimized versions add pragmas to all the loops inside stages (note that the stages

were all targeted to an FPGA in those versions), in order to improve performance, which increases

the lines of code slightly. As mentioned in Section 4.4.3, code restructuring was not used when

optimizing the code. If such an approach was taken, the generated code would suffer a lot more

changes, as loops would get merged and intermediate buffers would be eliminated.

It is worth noting that the compiler relies on a rather generic approach to generate the C code.

As such, certain sections of the code could be very different if the versions were manually devel-

oped from scratch. For example, the number of loops could naturally be reduced since many of

them can be merged. This would make the code easier to understand. In addition, it would reduce

the number of arrays used, since less intermediate results would need to be stored. Note, however,
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Table 5.2: Contributions of each stage to the entire pipeline (using floats). These values are
obtained executing the stages on the CPU using timers

Stage Notes Clock cycles Contribution (%)
Mean - 294714 0.99
Variance - 894750 3.01
Standard Deviation - 120418 0.41
Signal Magnitude - 587206 1.98
Classifier - 27157360 91.38

Feature Extraction Grouped 1591686 5.40
Grouped. Merging sub-functions 836060 2.90

Global
- 29719078 -
Grouping feature extraction 29488614 -
Grouping feature extraction. Merging sub-functions 28801918 -

that this sort of approach doesn’t necessarily lead to better results in terms of performance, as

shown in Section 5.3. Another aspect that would most likely be very different in a manually devel-

oped version is the number of buffers used to send values from one stage to another. The current

version of the compiler creates a buffer for every connection. This leads to multiple buffers hold-

ing the same values. A developer would most likely create a single buffer in these situations and

use it on several stages. Although some of these changes can effectively be made by a compiler

using optimizations, a manual version would most likely still use less loops and buffers than a

generated one. This advantage could, however, come at a cost in flexibility, because if the C code

is too attached to the use case in place, changing the tiniest detail might require a lot more effort

than when using the DSL.

5.3 Performance

Performance on an FPGA is affected by the accelerator code and the communication between

the accelerator and other components (e.g., CPU). The accelerator code can be improved using

high-level synthesis (HLS) directives, as mentioned earlier. The communication section requires

communication directives. As mentioned earlier, the compiler currently only adds HLS directives

to the code. However, the results shown in this section explore both accelerator code and commu-

nication, showing what speedups can be obtained when the right optimizations are used. Future

work could be done on the pragma generation strategy to include communication directives, based

on the results obtained here.

5.3.1 Stage contributions

Before targeting a stage to a hardware accelerator, it is worth exploring the potential for perfor-

mance improvements for each of the stages in the pipeline. Table 5.2 shows the contributions of

each stage to the pipeline when executing on the CPU. For completeness, additional versions were

created where the feature extraction phase is grouped in a single stage. One of those versions also

merges the sub-functions used by the feature extraction phase.

The results demonstrate that the classifier is by far the most important stage, taking 91.38%

of the execution time of the entire pipeline. Even when all the feature extraction functions are
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Table 5.3: High level synthesis performance estimates for each stage with floats. Best speedups
are shown in bold

Stage Notes Clock Clock Execution SpeedupCycles Period (ns) Time (ms)

Mean
Without directives 142 7.26 1.03 -
Pipeline loops (O1) 108 7.26 0.78 1.31
Unroll loops (O2) 107 9.38 1.00 1.03

Variance

Without directives 684 9.39 6.42 -
Pipeline loops 174 9.39 1.63 3.93
Pipeline loops. Replace pow (O1) 157 8.02 1.26 5.10
Pipeline loops. Unroll loops (f = 2). Replace pow 122 14.51 1.77 3.63
Unroll loops. Replace pow (O2) 116 9.49 1.10 5.83
Merge loops. Pipeline resulting loop. Replace pow 117 7.26 0.85 7.56

Signal
Magnitude

Without directives 1789 9.39 16.79 -
Pipeline loops. Replace pow (O1) 174 8.13 1.41 11.87
Unroll loops. Replace pow (O2) 35 9.20 0.32 52.18
Dataflow function. Unroll loops. Replace pow 44 8.13 0.36 46.95
Merge loops. Pipeline resulting loop. Replace pow 46 8.13 0.37 44.91

Classifier

Without directives 238839 9.63 2300.97 -
Pipeline loops. Replace pow 37638 15.21 572.47 4.02
Unroll loops. Replace pow 38674 9.63 372.59 6.18
Pipeline nested loop. Unroll other loops. Replace pow (O2) 3298 9.63 31.77 71.42
O1 37101 15.21 564.31 4.08

Feature
Extraction
Grouped

Without directives 3745 9.39 35.15 -
Best combination of functions. Replace pow 693 9.80 6.79 5.17
Merging functions. Replace pow 284 9.90 2.81 12.50

grouped, these can only take 5.40% of the pipeline’s time and this happens without merging the

sub-functions. It is therefore expected that the classifier will be the one that can benefit the most

from hardware acceleration.

The remaining stages have such a low contribution to the pipeline that accelerating them might

not be worth while. This is especially true if the stages require a lot of data transfers, making them

communication intensive. As such, the best stages for hardware acceleration are the computation

intensive ones, where several operations are done on little amounts of data (meaning less data

needs to be transferred from the CPU).

5.3.2 High-Level Synthesis

Table 5.3 shows the main HLS performance estimates obtained by Vivado HLS [15]. Appendix

B.1 includes a table with additional results. These estimates use different versions of each function,

applying different optimizations and code restructuring as well. The versions that are automati-

cally generated by the compiler are identified by the optimization level used to generate them (O1

or O2). The type used for these experiments was float and the target clock period selected was 10

ns. Note that some functions use the math.h function pow (or powf when floats are used). This

function can have a significant impact on performance and resource usage, so versions without

pow were also developed (note that the exponent is always 2, so the function can just be replaced

by a mere multiplication). The standardDeviation stage is not included in this table, because it

merely computes a square root. Since it does not use any loops, no optimizations were applied

(although the estimates are still available in Appendix B.1).
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Most of the versions shown here use loop pipelining or loop unrolling. For all the versions

using loop pipelining, the target initiation interval (II) set was 1. Most loops were able to achieve

this target, but there were a few exceptions. For details about the initiation intervals achieved,

consult Appendix B.1.

Loop unrolling usually leads to better results, as is the case in both the variance and signal-

Magnitude stages. The mean stage achieves better performance with loop pipelining, obtaining

a 1.31 speedup over the baseline. The variance and signalMagnitude stages also explore code

restructuring, with a version that merges the loops. Note that despite taking more clock cycles to

complete than the unrolling versions, the clock period is lower. This leads to better performance

in the variance case (7.56 speedup). For the signalMagnitude one, however, unrolling all loops is

still better, leading to a 71.42 speedup. The table also shows the impact of the pow function. The

variance stage with loop pipelining increases the speedup obtained from 3.93 to 5.10 when the

pow (in this case, powf, since floats are used) function is removed.

The classifier stage takes a lot more clock cycles to complete than any other function. For

this classifier in particular (k-NN), versions were once again developed pipelining and unrolling

loops. This stage, however, is rather different, because there is a loop nest. As mentioned in

Section 4.4.3, loop nests require more care during optimization, as using Vivado HLS pipelining

on an outer loop will unroll the inner loops. For this classifier in particular, the inner loops are not

that long, so pipelining the outer loop is feasible. Performing this optimization, along with loop

unrolling on all the other loops led to the best version for k-NN. The speedup compared to the

baseline is 71.42. The remaining classifier versions left the outer loop in the loop nest unchanged,

applying optimizations to the inner loops instead. This leads to worse results, although still much

better than the baseline.

For completeness once again, the feature extraction phase is grouped in a single stage to un-

derstand the performance gains that can be achieved. The versions developed here combine the

best versions of each of the feature extraction stages together. Additionally, another version is

considered by merging the functions when possible. This is a much trickier optimization to be

done automatically. Nonetheless, it provides a significant speedup (12.50) when compared to the

baseline. As such, it would be very interesting for the compiler to be able to do this sort of analysis

and optimize stages using this approach.

The results shown here also include versions where other directives were used (such as the

dataflow directive [104]). These, however, lead to worse results. The signalMagnitude stage

contains a version using the dataflow directive, exlining all the loops into their own sub-functions.

This version does not perform as well as the one with all loops unrolled, but the speedup obtained

is still better than all the other versions.

Some versions also explore the use of loop pipelining and unrolling together, but the results

are also worse than the ones obtained for the other versions. The unrolling factor in this case was

2, leading to a loop with half the number of iterations, but also pipelined. While the number of

clock cycles obtained was decent, the execution time was severely impacted by the clock period,

which was significantly higher than usual.
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Table 5.4: High level synthesis resource usage estimates for each stage with floats. Estimates
exceeding the FPGA capacity are shown in bold

Stage Notes BRAM (%) DSP (%) FF (%) LUT (%)

Mean
Without directives 0.00 0.91 1.00 2.90
Pipeline loops (O1) 0.00 0.91 1.00 2.93
Unroll loops (O2) 0.00 0.91 1.07 3.73

Variance

Without directives 4.64 7.27 4.05 8.48
Pipeline loops 4.64 7.27 4.29 8.64
Pipeline loops. Replace pow (O1) 0.00 2.27 1.59 4.19
Pipeline loops. Unroll loops (f = 2). Replace pow 1.43 4.55 2.02 5.76
Unroll loops. Replace pow (O2) 0.00 2.27 1.27 4.51
Merge loops. Pipeline resulting loop. Replace pow 0.00 2.27 1.26 3.67

Signal
Magnitude

Without directives 4.64 7.27 4.15 8.61
Pipeline loops. Replace pow (O1) 0.00 2.27 2.13 4.49
Unroll loops. Replace pow (O2) 0.00 11.82 3.82 10.75
Dataflow function. Unroll loops. Replace pow 0.00 106.36 25.87 100.00
Merge loops. Pipeline resulting loop. Replace pow 0.00 5.91 1.51 4.70

Classifier

Without directives 4.64 7.73 4.22 11.23
Pipeline loops. Replace pow 0.00 2.73 2.03 8.14
Unroll loops. Replace pow 0.71 4.55 3.31 18.97
Pipeline nested loop. Unroll other loops. Replace pow (O2) 0.71 7.73 5.25 21.58
O1 0.00 3.64 1.98 10.05

Feature
Extraction
Grouped

Without directives 13.93 23.64 13.04 32.33
Best combination of functions. Replace pow 0.71 18.18 9.04 26.20
Merging functions. Replace pow 0.71 15.00 7.14 22.79

The resource usage results for the versions shown in Table 5.3 are shown in Table 5.4. Ap-

pendix B.1 contains additional results. As expected, the unrolling versions require more resources

than the ones using loop pipelining. Notice also how removing the pow function impacts the

amount of resources needed for the variance stage. Another detail worth noting is how code re-

structuring affects resource usage. Code restructuring can reduce the amount of resources used,

because loops are usually merged and this can lead to a more cost effective solution. This hap-

pened, for example, in one of the versions with feature extraction grouped.

Another key note is the fact that all the versions using the O1 optimization level required less

resources than the ones using O2. This is expected, as O1 favours speed and space, while O2

favours only speed. Therefore, despite achieving lower speedups, these versions are atractive if

space is a concern.

The dataflow directive used in the signalMagnitude stage severely impacted the resource us-

age, with the estimates exceeding the FPGA DSP capacity. The results are even worse when the

pow function is used in that case (see Appendix B.1).

The type being used also impacts both performance and resource usage. Tables 5.5 and 5.6

show the performance and resource usage results when doubles are used instead of floats. The per-

formance and resource usage pattern is similar to the one found with floats. However, operations

with doubles naturally take up more resources and require more cycles to complete. Note that in

this case, the version grouping feature extraction without optimizations does not even fit in the

FPGA (according to the estimates). The versions using the dataflow directive together with loop

unrolling suffer from the same problem, especially when the pow function is used (see Appendix

B.1).

The mean stage achieves a 1.28 speedup when the loops are pipelined. This value is close
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Table 5.5: High level synthesis performance estimates for each stage with doubles. Best speedups
are shown in bold

Stage Notes Clock Clock Execution SpeedupCycles Period (ns) Time (ms)

Mean
Without directives 157 8.62 1.35 -
Pipeline loops (O1) 123 8.62 1.06 1.28
Unroll loops (O2) 122 10.36 1.26 1.07

Variance

Without directives 1545 9.51 14.70 -
Pipeline loops 236 9.51 2.25 6.55
Pipeline loops. Replace pow (O1) 176 8.62 1.52 9.69
Pipeline loops. Unroll loops (f = 2). Replace pow 141 16.46 2.32 6.33
Unroll loops. Replace pow (O2) 133 10.47 1.39 10.56
Merge loops. Pipeline resulting loop. Replace pow 134 8.62 1.16 12.72

Signal
Magnitude

Without directives 4669 9.51 44.42 -
Pipeline loops. Replace pow (O1) 205 8.62 1.17 25.13
Unroll loops. Replace pow (O2) 57 9.40 0.54 82.88
Dataflow function. Unroll loops. Replace pow 66 8.62 0.57 78.05
Merge loops. Pipeline resulting loop. Replace pow 68 8.62 0.59 75.76

Classifier

Without directives 555736 9.63 5353.96 -
Pipeline loops. Replace pow 39226 17.95 703.91 7.61
Unroll loops. Replace pow 39750 10.36 411.61 13.01
Pipeline nested loop. Unroll other loops. Replace pow (O2) 3318 9.63 31.97 167.49
O1 38689 17.95 694.27 7.71

Feature
Extraction
Grouped

Without directives 9366 9.51 89.11 -
Best combination of functions. Replace pow 748 9.40 7.03 12.67
Merging functions. Replace pow 381 9.77 3.72 23.95

Table 5.6: High level synthesis resource usage estimates for each stage with doubles. Estimates
exceeding the FPGA capacity are shown in bold

Stage Notes BRAM (%) DSP (%) FF (%) LUT (%)

Mean
Without directives 0.00 1.36 3.60 9.44
Pipeline loops (O1) 0.00 1.36 3.60 9.47
Unroll loops (O2) 0.00 1.36 3.67 10.27

Variance

Without directives 25.36 33.18 18.10 25.80
Pipeline loops 25.36 33.18 18.34 25.74
Pipeline loops. Replace pow (O1) 0.00 6.36 4.42 11.19
Pipeline loops. Unroll loops (f = 2). Replace pow 2.86 12.73 5.57 14.70
Unroll loops. Replace pow (O2) 0.00 6.36 4.16 11.63
Merge loops. Pipeline resulting loop. Replace pow 0.00 6.36 4.08 10.70

Signal
Magnitude

Without directives 28.21 33.18 17.30 24.68
Pipeline loops. Replace pow (O1) 4.29 6.36 3.98 9.24
Unroll loops. Replace pow (O2) 0.00 35.45 12.01 26.18
Dataflow function. Unroll loops. Replace pow 0.00 319.09 71.50 231.57
Merge loops. Pipeline resulting loop. Replace pow 0.00 17.73 4.17 12.06

Classifier

Without directives 23.93 33.64 16.53 25.19
Pipeline loops. Replace pow 0.00 6.82 3.25 12.31
Unroll loops. Replace pow 0.71 9.09 5.37 28.70
Pipeline nested loop. Unroll other loops. Replace pow (O2) 7.86 16.82 8.15 34.05
O1 0.00 7.73 3.17 15.97

Feature
Extraction
Grouped

Without directives 76.79 102.27 64.78 103.82
Best combination of functions. Replace pow 1.43 50.91 29.88 71.87
Merging functions. Replace pow 1.43 43.18 24.52 55.86
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to the speedup obtained when using floats. The variance stage’s best version is again the one

merging the loops and pipelining the resulting loop. This version achieves a 12.72 speedup, which

is considerably higher than the one obtained for floats (7.56). The signalMagnitude stage obtains

a 82.88 speedup when all loops are unrolled. This is the same optimization applied for the version

using floats, but the speedup is significantly higher. The best version grouping feature extraction

achieves a 23.95 speedup, which is almost double what the best version using floats achieved.

Perhaps one of the most interesting notes to take from these results is the speedup obtained by

the best classifier version. The best version of the classifier stage actually does not require many

clock cycles, when compared to the best version using floats. This led to an impressive 167.49

speedup when compared to the baseline. This speedup is highly affected by the baseline itself. The

baseline for the stage using doubles requires many more clock cycles than the one using floats. As

such, the gap between the worst and best versions is higher when doubles are used, leading to this

increase in speedup.

The clock period is overall higher when doubles are used, with some versions even failing to

meet the timing constraints. Recall that the designs targeted a 10 ns clock period. Even the versions

that are below the target require a significantly higher clock period than their float counterparts.

Nonetheless, the overall performance and resource usage patterns remain the same, with the best

versions using floats performing best when doubles are used as well.

One detail that might go unnoticed on a first look is the scale of the speedups obtained. The

speedups were on average much higher when doubles were used, making the optimizations more

effective.

Finally, perhaps the most important piece of information these tables provide is that optimiz-

ing the stages is not as trivial as it might seem. Notice how different stages achieved the best

results using different optimization approaches. The mean stage achieved the best results with

loop pipelining, while the signalMagnitude behaved better with loop unrolling. The variance

stage achieved the best performance with the loops merged and the classifier stage required a mix

of both pipelining and unrolling to obtain the best speedups. This clearly suggests that implement-

ing a pragma generation strategy is not a simple task, requiring a sophisticated analysis into how

optimizations should be applied. After all, the compiler has no insight into what the absolute best

strategy is for each stage, so it must use one that obtains a decent result on most cases (even if not

optimal). This is, according to the results, a reasonable approach, since the versions generated by

the compiler (the ones annotated with O1 and O2) achieved decent speedups, even if not optimal

for their respective stage.

All of the versions shown in this section were compared with the FPGA baseline versions.

Table 5.7 shows the speedups obtained for each of the best versions and the versions generated

by the compiler when compared to the CPU implementations. All versions are able to achieve a

speedup, with the signalMagnitude and classifier stages achieving the best ones. Note that most

of the versions using floats obtain better speedups than the equivalent versions using doubles. The

most obvious exception is present in the classifier stage because, as mentioned earlier, the best

FPGA versions for this stage using floats were very similar to the ones using doubles. As such,
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Table 5.7: Comparison between the best HLS versions and the CPU implementations, for each
stage. The best speedups are shown in bold

Stage Type Notes Clock SpeedupCycles

Mean

float
CPU 139 -
FPGA - Pipeline loops (O1) 108 1.29
FPGA - Unroll loops (O2) 107 1.30

double
CPU 154 -
FPGA - Pipeline loops (O1) 123 1.25
FPGA - Unroll loops (O2) 122 1.26

Variance

float

CPU 422 -
FPGA - Pipeline loops. Replace pow (O1) 139 3.04
FPGA - Unroll loops. Replace pow (O2) 116 3.64
FPGA - Merge loops. Pipeline resulting loop. Replace pow 117 3.61

double

CPU 451 -
FPGA - Pipeline loops. Replace pow (O1) 201 2.24
FPGA - Unroll loops. Replace pow (O2) 133 3.39
FPGA - Merge loops. Pipeline resulting loop. Replace pow 134 3.37

Standard Deviation
float CPU 56 -

FPGA - No directives (O1 and O2) 11 5.09

double CPU 65 -
FPGA - No directives (O1 and O2) 30 2.17

Signal Magnitude

float
CPU 1110 -
FPGA - Pipeline loops. Replace pow (O1) 174 6.38
FPGA - Unroll loops. Replace pow (O2) 35 31.71

double
CPU 1449 -
FPGA - Pipeline loops. Replace pow (O1) 205 7.07
FPGA - Unroll loops. Replace pow (O2) 57 25.42

Classifier

float
CPU 51337 -
FPGA - Pipeline nested loop. Unroll other loops. Replace pow (O2) 3298 15.57
FPGA - O1 37101 1.38

double
CPU 81054 -
FPGA - Pipeline nested loop. Unroll other loops. Replace pow (O2) 3318 24.43
FPGA - O1 38689 2.10

Feature Extraction

float

CPU - Best combination of functions. Replace pow 3008 -
FPGA - Best combination of functions. Replace pow 626 4.81
CPU - Merging functions. Replace pow 1580 -
FPGA - Merging functions. Replace pow 284 5.56

double

CPU - Best combination of functions. Replace pow 3593 -
FPGA - Best combination of functions. Replace pow 748 4.80
CPU - Merging functions. Replace pow 2171 -
FPGA - Merging functions. Replace pow 381 5.70

since the CPU implementation using doubles requires many more clock cycles to complete than

the equivalent float version, the gap is significantly higher when doubles are used.

5.4 Hybrid Execution

The high-level synthesis estimates reveal the performance gains each stage can have. However,

actually targeting the stage to an FPGA requires more than accelerator code optimization. Com-

munication is a key element in the equation. As such, it also requires optimizations on its own.

Given the contributions of each stage to the overall pipeline, it is important to understand what the

best theoretical speedup would be for each stage if they were to be targeted to an FPGA. Table

5.8 shows the estimated speedups obtained for each stage, when the stage’s time is assumed to be

zero. Additionally, the kernel and communication time estimates are provided for the classifier

stage, the signalMagnitude stage and the stage grouping feature extraction. These estimates are

63



Evaluation

Table 5.8: Estimated and real speedups. The theoretical speedups take into account kernel (K) and
communication (C) estimated clock cycles. Positive speedups are shown in bold

Accelerated Notes Type
Estimates (clock cycles) Speedup

Function Kernel Communication K = 0 K = 0 K = Est K = Est RealC = 0 C = Est C = 0 C = Est
Mean - float - - 1.01 - - - -
Variance - float - - 1.03 - - - -
Standard Deviation - float - - 1.00 - - - -
Signal Magnitude - float 18515 6011556 1.02 0.85 1.02 0.85 -

Classifier - float 1744642 28040174 11.60 0.97 1.34 0.59 1.05
double 20466481 50432215 15.26 0.86 1.95 0.62 1.58

Feature Extraction

Grouped float 331154 6012085 1.06 0.87 1.04 0.86 0.88
double 395692 6003621 1.04 0.92 1.03 0.91 0.91

Grouped. float 150236 6012085 1.03 0.85 1.02 0.84 0.89
Merging
sub-functions double 201549 6003621 1.03 0.90 1.02 0.90 0.92

used to compute three more speedups. The first one uses the communication time estimate and

assumes the kernel code time to be zero. The second one does the opposite while the third uses

both estimates. Note that the estimates given are a worst case scenario. Finally, the real times

obtained when targeting the classifier and feature extraction versions to an FPGA are given.

As expected, the classifier stage is the best choice for hardware acceleration. It is the only one

capable of achieving any speedup at all. Notice how the versions using doubles can reach even

higher speedups than the ones using floats. This is especially true for the classifier stage. Recall

from Section 5.3.2 that the HLS estimates obtained for the best versions of this stage were very

close to each other, leading to a much higher speedup for the one using doubles. The CPU version

using doubles takes a lot longer to complete, which is why a bigger speedup is achieved when this

data type is used.

It should also be noted that the classifier stage has one big flaw: communication. The stage

requires a training set to be sent as a function parameter, which means it is transferred from the

CPU to the FPGA on every invocation. Note that this transfer is motivated by the fact that the

training set can be initialized once in the beginning, possibly using a file. As such, it needs to be

used by both the CPU and the FPGA. The data transfers associated with moving the training set

to the FPGA impact the performance of the accelerator, because the number of training samples is

usually high. Were it not for this amount of communication, the stage had the potential to achieve

an even higher speedup. Future work could also focus on improving this aspect, e.g., moving the

training set closer to the computation units (i.e., the FPGA).

Note that this sort of analysis is needed in the context of hardware acceleration, because

thought should be put into choosing what to accelerate. After all, some of the stages shown here

contribute so little to the entire pipeline that accelerating them might not be worthwhile. Their

theoretical speedups are very close to 1.00, which makes them bad choices for hardware accelera-

tion. The classifier, however, provided a much more promising theoretical speedup, even when the

high-level synthesis estimates were taken into account. It was therefore expected that this stage

would be the only one to achieve a speedup in a real execution.

In the end, communication is a key factor in this equation and no matter how optimized it
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might be, the overall performance can still take a huge hit if too many data transfers are required

between CPU and FPGA. If a stage is too communication intensive then chances are it will not be

good for hardware acceleration, no matter how much optimizing efforts are focused in this sec-

tion of the application. Analyzing the communication and computation intensity is vital towards

understanding what to accelerate. The communication patterns are also an interesting detail to

investigate, as these might help in deciding whether or not a stage is worth accelerating.

5.5 Summary

The previous sections showed results for several experiments in order to assert the quality of the

DSL in terms of performance and productivity. It is clear that regarding productivity, the DSL

does help in development. Small changes to a pipeline can be made in a couple of minutes using

the DSL. Using a general purpose language, this work might take much longer. The fact that loops

are left out of the DSL is also a benefit, as the code becomes a lot easier to read.

The performance of the DSL is what deserves more attention at this moment, however. As

mentioned, accelerating FPGA-based applications requires optimizing the accelerator code and

the CPU-FPGA data transfers (communication). The accelerator code can be improved using

pragmas, which is already done by the compiler. However, as depicted earlier, code restructuring

could also be used together with pragmas to obtain better designs with even less resources. As

such, future work could focus on this aspect. It should, however, be made clear that the most

detrimental factor in performance when targeting the CPU-FPGA system provided by SDSoC

[21] at the moment is communication. The communication aspect is not taken care of at all by the

compiler so any future work should focus on this.

Communication is tricky, because it sometimes requires some code restructuring on its own, as

some of the communication directives supported by SDSoC [21] have certain requirements. One of

the most important optimizations when it comes to communication is the streaming access pattern

[105]. This pattern can be used on arrays to effectively allow the accelerator to begin execution

as soon as it obtains the first element in the array marked with the pattern. This optimization,

however, has certain requirements (the values must only be accessed once, for example). As such,

some code transformations might be needed to apply this optimization.

This kind of analysis is difficult to execute even by hand, so implementing it in the compiler re-

quires sophisticated analysis. Even the code transformations performed to improve the accelerator

code are sometimes complex, so implementing them might not be straightforward. Despite this,

the fact that the compiler knows about the domain being worked upon could facilitate this process.

Some assumptions based on the data analytics domain can be taken, allowing code transformations

to be performed more easily.

The communication section can also be improved by moving certain variables closer to the

computation units (i.e., the FPGA). A candidate for this type of optimization is the training set in

the classifier stage, as mentioned earlier.
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The grouping of the feature extraction stages in a single stage showcases another important

detail that could be focused in the future. Many stages contribute too little to the overall pipeline,

so merging them and accelerating a group of stages is usually better. This is an interesting feature

that could be supported by developing a new pragma in the compiler.

The compiler could even go as far as having a mode where it decides on its own what is worth

accelerating. This sort of analysis could take both accelerator code and communication overhead

into account, making sure only the best stages are accelerated. This would also allow stages to be

grouped automatically, without burdening the developer with such tasks.

One other detail that could be explored is constraint relaxation. Many classifiers in machine

learning can improve performance significantly if certain constraints are relaxed. For example,

the size of the window during feature extraction in the example used throughout this chapter was

18. An interesting avenue to pursue would be to see how changing this value (to 16, for instance)

would impact the overall performance. Note that this sort of code transformation may decrease the

classifier accuracy. However, this decrease is often marginal, making the optimization appealing

due to the performance increase.

Although the FPGA is the focus of this research, the CPU versions themselves could also

be improved. This would allow for a better comparison to be made since more effort was put

in optimizing the FPGA in these experiments. A better approach would be to use a manually

optimized CPU version, instead of the one generated by the compiler. Moreover, the compiler

itself could be enhanced with CPU optimizations, using OpenMP, for example.

Overall, the results have shown that for this domain, hardware acceleration can be effective.

However, much work needs to be done in optimization. The introduction of a new DSL is good

on that regard, because the compiler can take care of the optimizations, leaving the developer out

of it. Moreover, even if the developer is not entirelly happy with the generated code, it can act

as a skeleton on which more optimizations can be introduced. As such, even if the DSL does not

always generate the most efficient solutions, it helps in creating a baseline to optimize on. This

can be very helpful when a developer is still prototyping a pipeline, as the most simple changes to

the program might require hours of work using a general purpose language.
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Conclusions

This chapter concludes this dissertation. A brief review on the goals achieved is given, providing

answers to the proposed research questions as well. The chapter ends with a discussion on future

work.

6.1 Goals

The main goal of this dissertation was to develop a new DSL for data analytics, capable of targeting

FPGA-based systems. A case study was used to guide the development of the DSL, allowing it

to be oriented towards the data analytics domain. The DSL developed contains several domain-

specific constructs that improve the development process, especially in the prototyping phase, as

small changes in a given program require little effort, as opposed to what usually happens using a

general purpose language.

The compiler developed is also able to target FPGAs via HLS, which was the main goal after

all. The compiler is additionally capable of optimizing code to run on the hardware accelerator,

allowing data analytics systems to benefit from the performance levels associated with FPGA

execution.

6.2 Research Questions

Four research questions were identified in Chapter 1. This section provides answers to those

questions.

A.1 Can data analytics applications benefit from standalone FPGA execution using HLS?

Taking into account the results presented in Chapter 5, data analytics applications (at least

in the context of human activity recognition) can certainly benefit from standalone FPGA execu-

tion using HLS. The amount of parallel work is significant, allowing these devices to exploit it to

improve performance. The case study used for the evaluation was a human activity recognition
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(HAR) system and the HLS performance experiments show that significant speedups can be ob-

tained, even when compared to the CPU implementations. As such, in the context of HAR, the use

of a standalone FPGA seems beneficial. To better understand how data analytics systems behave

in general in this scenario, additional experiments would need to be made, not just in the context

of HAR, but in other contexts as well.

A.2 Can data analytics applications benefit from mixed CPU-FPGA execution using HLS?

As mentioned in Chapter 5, mixed CPU-FPGA execution is highly affected by the amount of

communication performed. In a standalone FPGA scenario, performance is affected essentially

by the hardware accelerator itself. In a mixed CPU-FPGA, communication is an additional factor

that requires optimization on its own, in order to improve performance. The results in Chapter 5

show that despite the communication factor, CPU-FPGA solutions using HLS can still outperform

the CPU (in the context of HAR), although this does not happen nearly as often as it did for

standalone FPGA solutions. Communication is the key element here, as it can be detrimental to the

overall performance in the pipeline, even when optimized. If a stage has too many data transfers,

this significantly hurts performance, making the stage less appealing for hardware acceleration.

Nonetheless, the stage with the highest contribution in the case study used for evaluation was able

to achieve speedups when it was hardware accelerated. As such, HAR systems seem like a good

fit for mixed CPU-FPGA execution. Again, to understand the behavior of data analytics systems

in general, additional experiments using different case studies would need to be made.

It should also be mentioned that for the evaluated implementations, the CPU executes at 667

MHz, while the hardware accelerator executes at 100 MHz. Therefore, better improvements might

be achieved with the hardware accelerator using higher clock frequencies.

B.1 Can data analytics applications be targeted to FPGAs using a DSL approach?

As shown throughout this dissertation, a DSL can effectively be used to program data analytics

systems on a mixed CPU-FPGA system. The DSL developed is capable of accelerating stages to

an FPGA, providing valid C code that can be input to Vivado HLS. Moreover, the DSL leaves

any hardware specific details away from the user, allowing quick algorithm prototyping. This is

certainly a plus as it allows software developers with little to no knowledge on hardware design to

target their data analytics applications to an FPGA-based system.

B.2 Can data analytics applications improve performance using a new DSL for FPGAs?

Based on the results obtained in Chapter 5, data analytics applications (at least in the context of

HAR) can certainly improve performance when targeted to an FPGA. The question is whether or

not this performance gain can be obtained without burdening the developer with hardware specific

details. That is, to answer this question, one needs to understand whether or not a compiler would

be able to generate good enough versions for the performance to be better on an FPGA.
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The results shown throughout Chapter 5 clearly indicate that designing a pragma generation

strategy capable of generating the best stages every time is most likely impossible, because differ-

ent stages require different optimizations most of the time. However, as long as the compiler is

capable of finding a decent version for every stage, the results will most likely be good enough.

The current strategy implemented in the compiler is not very robust. However, the HLS ex-

periments conducted on the HAR case study showed that even though achieving the best versions

for each stage seems too difficult, most of the other versions can still acquire significant speedups

when compared to the baselines. As such, it is expected that using a DSL for FPGAs is a feasible

solution to improve the performance of data analytics applications.

6.3 Future Work

Although the developed DSL is capable of targeting FPGAs, much work can still be done on both

the compiler and the DSL itself. The pragma generation strategy currently supported is rather sim-

ple, leading to less than optimal results. Despite the performance improvement already achieved,

much more can be done, especially regarding communication. As mentioned, the DSL compiler

currently focuses only on the accelerator code, generating HLS pragmas to improve performance.

However, the data transfers can sometimes be detrimental to the overall performance. As such,

future work on the compiler could focus on generating communication directives to optimize data

transfers. Moreover, the accelerator code itself can be further optimized if a more robust pragma

generation policy is developed. Code restructuring techniques can be used for this purpose, al-

lowing the accelerator code to not only achieve better performance, but perhaps fewer resources

used.

The DSL itself can also be extended with new features. As mentioned in Chapter 4, the

DSL currently supports only one classifier: k-NN. New classifiers could be introduced and these

would bring new challenges, as many algorithms throughout machine learning have very different

characteristics. The ability to train models for algorithms that require this step could also be

an interesting enhancement to the DSL. Finally, the DSL could turn its focus to more realistic

scenarios. The current version is focused on prototyping solutions, allowing data to be read from

files. In a real embedded system, however, data might come from sensors. Support for this type

of real world situations would also be an interesting avenue to pursue, allowing data analytics

systems to be entirely written using the DSL.
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Appendix A

DSL and Compiler details

This appendix contains additional information about the DSL, including the grammar and the

types supported.

A.1 Grammar

The DSL grammar is shown in Listing A.1.

1 <Program> -> <Declaration>+

2 <Declaration> -> <ConstDeclaration>

3 | <AliasDeclaration>

4 | <StageDeclaration>

5 | <InterfaceDeclaration>

6 <ConstDeclaration> -> ’const’ <Identifier> ’=’ <Expression> ’;’

7 <AliasDeclaration> -> ’alias’ <RootType> <Identifier> ’;’

8 <StageDeclaration> -> ’stage’ <Identifier> (’with’ ’overlapping’ <

OverlappingExpression>)? ’{’ <StageProperty>+ ’}’

9 <OverlappingExpression> -> <Identifier>

10 | <DecimalLiteral>

11 <StageProperty> -> <Input>

12 | <Output>

13 | <Behavior>

14 | <Setup>

15 <InterfaceDeclaration> -> ’interface’ ’{’ <From> <To> ’}’ ’;’?

16 <Input> -> ’input’ <InputDeclaration>

17 | ’input’ ’{’ <InputDeclaration>+ ’}’ ’;’?

18 <InputDeclaration> -> ’fillable’? <VariableDeclaration> ’;’

19 <Behavior> -> ’behavior’ <Statement>

20 | ’behavior’ ’{’ <Statement>+ ’}’ ’;’?

21 <Output> -> ’output’ <OutputDeclaration>

22 | ’output’ ’{’ <OutputDeclaration>+ ’}’ ’;’?

23 <OutputDeclaration> -> <VariableDeclaration> ’;’

24 <Setup> -> ’setup’ <Statement>

25 | ’setup’ ’{’ <Statement>+ ’}’ ’;’?
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26 <From> -> ’from’ <SimplePipelineNodeFrom> ’;’

27 <To> -> ’to’ <SimplePipelineNodeTo> ’;’

28 | ’to’ ’{’ <PipelineNodeTo>+ ’}’ ’;’?

29 <PipelineNodeTo> -> (<SourceIndexes> ’->’)? <SimplePipelineNodeTo> ’;’

30 <SourceIndexes> -> DecimalLiteral (’..’ <DecimalLiteral>)? (’,’ <SourceIndexes>)?

31 <SimplePipelineNodeFrom> -> <InterfaceFile>

32 | <InterfaceStage>

33 <SimplePipelineNodeTo> -> <InterfaceFile>

34 | <InterfaceStage>

35 | ’stdout’

36 <InterfaceFile> -> ’file’ <FileReadTemplateArguments>? <StringLiteral> FileReadMode

?

37 <FileReadTemplateArguments> -> ’<’ <RootType> ’>’

38 <FileReadMode> -> ’repeat’

39 | ’header’

40 <InterfaceStage> -> ’stage’? <Identifier> (’.’ <Identifier>) (’with’ ’overlapping’

<OverlappingExpression>)?

41 <Statement> -> <VariableDeclarationWithOptionalDefinition>

42 | <Expression> ’;’

43 <Expression> -> <AssignmentExpression>

44 <AssignmentExpression> -> <ConditionalExpression>

45 | <UnaryExpression> <AssignmentOperator> <

AssignmentExpression>

46 <AssignmentOperator> -> ’=’

47 | ’*=’

48 | ’/=’

49 | ’%=’

50 | ’+=’

51 | ’-=’

52 | ’<<=’

53 | ’>>=’

54 | ’&=’

55 | ’^=’

56 | ’|=’

57 <ConditionalExpression> -> <LogicalOrExpression> (’?’ <Expression> ’:’ <

ConditionalExpression>)?

58 <LogicalOrExpression> -> <LogicalAndExpression>

59 | <LogicalOrExpression> ’||’ <LogicalAndExpression>

60 <LogicalAndExpression> -> <InclusiveOrExpression>

61 | <LogicalAndExpression> ’&&’ <InclusiveOrExpression>

62 <InclusiveOrExpression> -> <ExclusiveOrExpression>

63 | <InclusiveOrExpression> ’|’ <ExclusiveOrExpression>

64 <ExclusiveOrExpression> -> <AndExpression>

65 | <ExclusiveOrExpression> ’(+)’ <AndExpression>

66 <AndExpression> -> <EqualityExpression>

67 | <AndExpression> ’&’ <EqualityExpression>

68 <EqualityExpression> -> <RelationalExpression>

69 | <EqualityExpression> ’==’ <RelationalExpression>

70 | <EqualityExpression> ’!=’ <RelationalExpression>
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71 <RelationalExpression> -> <ShiftExpression>

72 | <RelationalExpression> ’<’ <ShiftExpression>

73 | <RelationalExpression> ’>’ <ShiftExpression>

74 | <RelationalExpression> ’<=’ <ShiftExpression>

75 | <RelationalExpression> ’>=’ <ShiftExpression>

76 <ShiftExpression> -> <AdditiveExpression>

77 | <ShiftExpression> ’<<’ <AdditiveExpression>

78 | <ShiftExpression> ’>>’ <AdditiveExpression>

79 <AdditiveExpression> -> <MultiplicativeExpression>

80 | <AdditiveExpression> ’+’ <MultiplicativeExpression>

81 | <AdditiveExpression> ’-’ <MultiplicativeExpression>

82 <MultiplicativeExpression> -> <CastExpression>

83 | <MultiplicativeExpression> ’*’ <CastExpression>

84 | <MultiplicativeExpression> ’/’ <CastExpression>

85 | <MultiplicativeExpression> ’%’ <CastExpression>

86 <CastExpression> -> <UnaryExpression>

87 | ’(’ <Type> ’)’ <CastExpression>

88 <UnaryExpression> -> <PostfixExpression>

89 | ’++’ <UnaryExpression>

90 | ’--’ <UnaryExpression>

91 | <UnaryOperator> <CastExpression>

92 <UnaryOperator> -> ’-’

93 | ’!’

94 | ’~’

95 <PostfixExpression> -> <MainExpression>

96 | <PostfixExpression> ’[’ <Expression> ’]’

97 | <PostfixExpression> ’++’

98 | <PostfixExpression> ’--’

99 <MainExpression> -> <Identifier>

100 | <Literal>

101 | ’(’ <Expression> ’)’

102 | ’sum’ ’(’ <Expression> ’)’

103 | ’avg’ ’(’ <Expression> ’)’

104 | ’sqrt’ ’(’ <Expression> ’)’

105 | <MainExpression> ’^’ <MainExpression>

106 | ’readTrainingSet’ <ReadTrainingSetTemplateArguments>? ’(’ <

StringLiteral> ’,’ <Expression> ’,’ <Expression> ’)’

107 | ’readTrainingSetToHeader’ <ReadTrainingSetTemplateArguments>?

’(’ <StringLiteral> ’,’ <Expression> ’,’ <Expression> ’)’

108 | ’knn’ ’(’ <Expression> ’,’ <Expression> ’,’ <Expression> ’,’ <

Expression> ’)’

109 <ReadTrainingSetTemplateArguments> -> ’<’ <RootType> ’>’

110 <VariableDeclaration> -> <Type> <Identifier>

111 <VariableDeclarationWithOptionalDefinition> -> <Type> <Identifier> (’=’ <Expression

>)? ’;’

112 <Type> -> <RootType> (’[’ <Expression> ’]’)*

113 <RootType> -> <PrimitiveType>

114 | <Identifier>

115 <PrimitiveType> -> (’signed’? ’integer’ | ’signed’)
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116 | (’unsigned’? ’integer’)

117 | (’long’ ’integer’? | ’signed’ ’long’ ’integer’?)

118 | (’unsigned’ ’long’ ’integer’?)

119 | (’short’ ’integer’? | ’signed’ ’short’ ’integer’?)

120 | (’unsigned’ ’short’ ’integer’?)

121 | ’float’

122 | ’double’

123 | ’char’

124 | ’signed’ ’char’

125 | ’unsigned’ ’char’

126 | ’boolean’

127 <Literal> -> <DecimalLiteral>

128 | <FloatLiteral>

129 | <BooleanLiteral>

130 | <CharacterLiteral>

131 <BooleanLiteral> -> ’true’

132 | ’false’

133 <Identifier> -> <Letter> <LetterOrDigit>*

134 <DecimalLiteral> -> Digit+

135 <FloatLiteral> -> <Digit>+ ’.’ <Digit>+

136 <CharacterLiteral> -> ’’’ <CharacterLiteralContent> ’’’

137 <StringLiteral> -> ’"’ <StringLiteralContent>* ’"’

138 <Letter> -> [a-zA-Z_]

139 <Digit> -> [0-9]

140 <LetterOrDigit> -> <Letter>

141 | <Digit>

142 <CharacterLiteralContent> -> [^’\\\r\n]

143 | <EscapeSequence>

144 <StringLiteralContent> -> [^"\\\r\n]

145 | <EscapeSequence>

146 | ’\\\r\n’

147 | ’\\\n’

148 <EscapeSequence> -> ’\\’ [’"?abfnrtv\\]

Listing A.1: DSL Grammar

A.2 Types

The DSL types are shown in Table A.1. These types resemble most of the C types, with the

exception of the boolean type. The boolean type is mapped to a C char. The remaining types are

mapped to their C counterparts.

A.3 DSL Compiler Usage

The DSL Compiler can be invoked using the command in Listing A.2. There are also a few options

that can be used. These are showcased in Table A.2.
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Table A.1: DSL types

Type Description
boolean Boolean type. 1 byte long. Maps to a C char
unsigned char Unsigned character type. 1 byte long
signed char Signed character type. Can be either signed or unsigned. 1

byte long
char Character type. 1 byte long
unsigned short Unsigned short type. 2 bytes long
short Signed short type. 2 bytes long
unsigned int Unsigned integer type. 4 bytes long
int Signed integer type. 4 bytes long
unsigned long Unsigned long type. 8 bytes long
long Signed long type. 8 bytes long
float Floating point type. 4 bytes long
double Floating point type. 8 bytes long

1 java -jar MyDSLCompiler.jar [options] <filename>

Listing A.2: DSL Compiler invocation

Table A.2: DSL compiler options

Option Long Arguments DescriptionAlternative
-h –help N/A Display help information. This in-

cludes a description of the available
options

-t –target chosenTarget={CPU,FPGA} Sets the target. The choice can be
either CPU or FPGA

-m –measure N/A Adds time measuring code to the
generated pipeline

-O0 N/A N/A Use no optimizations
-O1 N/A N/A Optimize for speed and space
-O2 N/A N/A Optimize for speed only
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Appendix B

Full Experimental Results

This appendix contains experimental results that are not fully shown in Chapter 5. As some of the

tables used throughout that chapter were simplified, the full tables are shown here.

B.1 High-Level Synthesis

Tables B.1 and B.2 show the full performance results when floats are used. This includes all the

versions developed. Table B.3 displays the initiation intervals obtained for the loops in the versions

that used loop pipelining. Table B.4 shows the resource usage estimates for all the versions.

Tables B.5 and B.6 show the performance results for the versions using doubles. The initiation

intervals obtained for these versions are shown in Table B.7. Finally, Table B.8 displays the

resource usage estimates obtained for these versions.
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Table B.1: High level synthesis performance estimates for the mean, variance, standardDeviation
and signalMagnitude stages with floats

Stage Notes
Latency Interval Clock Execution Speedup(Clock cycles) (Clock cycles) Period Time (ms)

Min Max Min Max (ms) Min Max Min Max

Mean

No directives 142 142 142 142 7.26 1.03 1.03 - -
Pipeline loops (O1) 108 108 108 108 7.26 0.78 0.78 1.31 1.31
Pipeline loops. 107 107 107 107 9.38 1.00 1.00 1.03 1.03Unroll loops (f=2)
Unroll loops (O2) 107 107 107 107 9.38 1.00 1.00 1.03 1.03

Variance

No directives 684 684 684 684 9.39 6.42 6.42 - -
Pipeline loops 174 174 174 174 9.39 1.63 1.63 3.93 3.93
Pipeline loops. 157 157 157 157 8.02 1.26 1.26 5.10 5.10Replace pow (O1)
Pipeline loops. 139 139 139 139 14.51 2.02 2.02 3.18 3.18Unroll loops (f=2)
Pipeline loops.

122 122 122 122 14.51 1.77 1.77 3.63 3.63Unroll loops (f=2)
Replace pow
Unroll loops 132 132 132 132 9.50 1.25 1.25 5.12 5.12
Unroll loops. 116 116 116 116 9.49 1.10 1.10 5.83 5.83Replace pow (O2)
Dataflow function. 177 177 109 109 9.39 1.66 1.66 3.86 3.86Pipeline loops
Dataflow function.

159 159 109 109 8.02 1.28 1.28 5.03 5.03Pipeline loops.
Replace pow
Dataflow function. 141 141 106 106 9.39 1.32 1.32 4.85 4.85Unroll loops
Dataflow function.

124 124 106 106 9.38 1.16 1.16 5.52 5.52Unroll loops.
Replace pow
Merge loops. 134 134 134 134 9.39 1.26 1.26 5.10 5.10Pipeline resulting loop
Merge loops.

117 117 117 117 7.26 0.85 0.85 7.56 7.56Pipeline resulting loop.
Replace pow

Standard
Deviation

No directives
(O1 and O2) 11 11 11 11 8.13 0.09 0.09 - -

Signal
Magnitude

No directives 1789 1789 1789 1789 9.39 16.79 16.79 - -
Pipeline loops 225 225 225 225 9.39 2.11 2.11 7.95 7.95
Pipeline loops. 174 174 174 174 8.13 1.41 1.41 11.87 11.87Replace pow (O1)
Pipeline loops. 162 162 162 162 9.39 1.52 1.52 11.04 11.04Unroll loops (f=2)
Pipeline loops.

111 111 111 111 8.13 0.90 0.90 18.61 18.61Unroll loops (f=2)
Replace pow
Unroll loops 51 51 51 51 9.80 0.50 0.50 33.58 33.58
Unroll loops. 35 35 35 35 9.20 0.32 0.32 52.18 52.18Replace pow (O2)
Dataflow function. 150 150 42 42 9.39 1.41 1.41 11.93 11.93Pipeline loops
Dataflow function.

132 132 34 34 8.13 1.07 1.07 15.65 15.65Pipeline loops.
Replace pow
Dataflow function. 61 61 31 31 9.39 0.57 0.57 29.33 29.33Unroll loops
Dataflow function.

44 44 14 14 8.13 0.36 0.36 46.95 46.95Unroll loops.
Replace pow
Merge loops. 62 62 62 62 9.39 0.58 0.58 28.85 28.85Pipeline resulting loop
Merge loops.

46 46 46 46 8.13 0.37 0.37 44.91 44.91Pipeline resulting loop.
Replace pow

86



Full Experimental Results

Table B.2: High level synthesis performance estimates for the classifier stage and the stage with
feature extraction grouped with floats

Stage Notes
Latency Interval Clock Execution Speedup(Clock cycles) (Clock cycles) Period Time (ms)

Min Max Min Max (ms) Min Max Min Max

Classifier

No directives 18775 238839 18775 238839 9.63 180.88 2300.97 - -
Pipeline loops 46631 46631 46631 46631 16.28 759.20 759.20 0.24 3.03
Pipeline loops. 37638 37638 37638 37638 15.21 572.47 572.47 0.32 4.02Replace pow
Pipeline loops. 51367 51367 51367 51367 16.93 869.64 869.64 0.21 2.65Unroll loops (f=2)
Pipeline loops.

42903 42903 42903 42903 16.93 726.35 726.35 0.25 3.17Unroll loops (f=2)
Replace pow
Unroll loops 47667 47667 47667 47667 9.63 459.22 459.22 0.39 5.01
Unroll loops. 38674 38674 38674 38674 9.63 372.59 372.59 0.49 6.18Replace pow
Pipeline nested 3315 3315 3315 3315 9.63 31.94 31.94 5.66 72.05loop. Unroll rest
Pipeline nested.

3298 3298 3298 3298 9.63 31.77 31.77 5.69 72.42loop. Unroll rest.
Replace pow (O2)
O1 37101 37101 37101 37101 15.21 564.31 564.31 0.32 4.08

Feature
Extraction
Grouped

No directives 3745 3745 3745 3745 9.39 35.15 35.15 - -
Best combination 693 693 693 693 9.80 6.79 6.79 5.17 5.17
Best combination. 626 626 626 626 9.20 5.76 5.76 6.11 6.11Replace pow
Best combination.

284 284 284 284 9.90 2.81 2.81 12.50 12.50Merging functions.
Replace pow

Table B.3: Initiation intervals obtained for all the versions that used loop pipelining with floats

Stage Notes Initiation Intervals

Mean Pipeline loops (O1) 5
Pipeline loops. Unroll loops (f=2) 8

Variance

Pipeline loops 1, 1, 5
Pipeline loops. Replace pow (O1) 1, 1, 5
Pipeline loops. Unroll loops (f=2) 1, 1, 8
Pipeline loops. Unroll loops (f=2). Replace pow 1, 1, 8
Dataflow Function. Pipeline loops 1, 1, 5
Dataflow Function. Pipeline loops. Replace pow 1, 1, 5
Merge loops. Pipeline resulting loop 5
Merge loops. Pipeline resulting loop. Replace pow 5

Signal Magnitude

Pipeline loops 1, 1, 1, 1, 1, 1, 1
Pipeline loops. Replace pow (O1) 1, 1, 1, 1, 1, 1, 1
Pipeline loops. Unroll loops (f=2) 1, 1, 1, 1, 1, 1, 1
Pipeline loops. Unroll loops (f=2). Replace pow 1, 1, 1, 1, 1, 1, 1
Dataflow Function. Pipeline loops 1, 1, 1, 1, 1, 1, 1
Dataflow Function. Pipeline loops. Replace pow 1, 1, 1, 1, 1, 1, 1
Merge loops. Pipeline resulting loop 1
Merge loops. Pipeline resulting loop. Replace pow 1

Classifier

Pipeline loops 1, 4, 1, 1, 2, 1
Pipeline loops. Replace pow 1, 4, 1, 1, 2, 1
Pipeline loops. Unroll loops (f=2) 1, 8, 1, 1, 4, 1
Pipeline loops. Unroll loops (f=2). Replace pow 1, 8, 1, 1, 4, 1
Pipeline nested loop. Unroll rest 6
Pipeline nested loop. Unroll rest. Replace pow (O2) 6
O1 4, 1, 1
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Table B.4: High level synthesis resource usage estimates for all the stages with floats

Stage Notes BRAM (%) DSP (%) FF (%) LUT (%)

Mean

No directives 0.00 0.91 1.00 2.90
Pipeline loops (O1) 0.00 0.91 1.00 2.93
Pipeline loops. Unroll loops (f=2) 0.00 0.91 1.03 3.03
Unroll loops (O2) 0.00 0.91 1.07 3.73

Variance

No directives 4.64 7.27 4.05 8.48
Pipeline loops 4.64 7.27 4.29 8.64
Pipeline loops. Replace pow (O1) 0.00 2.27 1.59 4.19
Pipeline loops. Unroll loops (f = 2) 10.71 14.55 7.40 14.66
Pipeline loops. Unroll loops (f = 2). Replace pow 1.43 4.55 2.02 5.76
Unroll loops 4.64 8.18 4.13 9.85
Unroll loops. Replace pow (O2) 0.00 2.27 1.27 4.51
Dataflow function. Pipeline loops 5.36 8.18 4.60 9.44
Dataflow function. Pipeline loops. Replace pow 0.00 3.18 1.91 4.97
Dataflow function. Unroll loops 96.43 131.82 56.34 113.19
Dataflow function. Unroll loops. Replace pow 0.00 41.82 8.80 32.66
Merge loops. Pipeline resulting loop 4.64 7.27 3.91 8.13
Merge loops. Pipeline resulting loop. Replace pow 0.00 2.27 1.26 3.67

Standard
Deviation No directives (O1 and O2) 0.00 0.00 0.39 1.26

Signal
Magnitude

No directives 4.64 7.27 4.15 8.61
Pipeline loops 4.64 7.27 4.86 8.90
Pipeline loops. Replace pow (O1) 0.00 2.27 2.13 4.49
Pipeline loops. Unroll loops (f = 2) 13.57 14.55 8.49 16.44
Pipeline loops. Unroll loops (f = 2). Replace pow 4.29 4.55 3.08 7.61
Unroll loops 27.86 41.82 19.73 37.54
Unroll loops. Replace pow (O2) 0.00 11.82 3.82 10.75
Dataflow function. Pipeline loops 16.07 20.91 10.71 20.02
Dataflow function. Pipeline loops. Replace pow 0.00 5.91 2.64 6.62
Dataflow function. Unroll loops 289.29 376.36 169.61 336.60
Dataflow function. Unroll loops. Replace pow 0.00 106.36 25.87 100.00
Merge loops. Pipeline resulting loop 13.93 20.91 9.48 18.17
Merge loops. Pipeline resulting loop. Replace pow 0.00 5.91 1.51 4.70

Classifier

No directives 4.64 7.73 4.22 11.23
Pipeline loops 4.64 7.73 4.98 12.44
Pipeline loops. Replace pow 0.00 2.73 2.03 8.14
Pipeline loops. Unroll loops (f = 2) 5.36 8.18 6.32 16.80
Pipeline loops. Unroll loops (f = 2). Replace pow 0.71 3.18 3.58 12.55
Unroll loops 5.36 9.55 6.01 23.29
Unroll loops. Replace pow 0.71 4.55 3.31 18.97
Pipeline nested loop. Unroll other loops 10.00 17.73 10.37 29.90
Pipeline nested loop. Unroll other loops. Replace pow (O2) 0.71 7.73 5.25 21.58
O1 0.00 3.64 1.98 10.05

Feature
Extraction
Grouped

No directives 13.93 23.64 13.04 32.33
Best combination of functions 37.86 58.18 30.27 61.91
Best combination of functions. Replace pow 0.71 18.18 9.04 26.20
Best combination. Merging functions. Replace pow 0.71 15.00 7.14 22.79
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Table B.5: High level synthesis performance estimates for the mean, variance, standardDeviation
and signalMagnitude stages with doubles

Stage Notes
Latency Interval Clock Execution Speedup(Clock cycles) (Clock cycles) Period Time (ms)

Min Max Min Max (ms) Min Max Min Max

Mean

No directives 157 157 157 157 8.62 1.35 1.35 - -
Pipeline loops (O1) 123 123 123 123 8.62 1.06 1.06 1.28 1.28
Pipeline loops. 106 106 106 106 16.46 1.75 1.75 0.78 0.78Unroll loops (f=2)
Unroll loops (O2) 122 122 122 122 10.36 1.26 1.26 1.07 1.07

Variance

No directives 1545 1545 1545 1545 9.51 14.70 14.70 - -
Pipeline loops 236 236 236 236 9.51 2.25 2.25 6.55 6.55
Pipeline loops. 176 176 176 176 8.62 1.52 1.52 9.69 9.69Replace pow (O1)
Pipeline loops. 201 201 201 201 16.46 3.31 3.31 4.44 4.44Unroll loops (f=2)
Pipeline loops.

141 141 141 141 16.46 2.32 2.32 6.33 6.33Unroll loops (f=2)
Replace pow
Unroll loops 194 194 194 194 10.87 2.11 2.11 6.97 6.97
Unroll loops. 133 133 133 133 10.47 1.39 1.39 10.56 10.56Replace pow (O2)
Dataflow function. 239 239 124 124 9.51 2.27 2.27 6.46 6.46Pipeline loops
Dataflow function.

178 178 124 124 8.62 1.53 1.53 9.58 9.58Pipeline loops.
Replace pow
Dataflow function. 203 203 121 121 10.36 2.10 2.10 6.99 6.99Unroll loops
Dataflow function.

141 141 121 121 10.36 1.46 1.46 10.07 10.07Unroll loops.
Replace pow
Merge loops. 195 195 195 195 9.51 1.86 1.86 7.92 7.92Pipeline resulting loop
Merge loops.

134 134 134 134 8.62 1.16 1.16 12.72 12.72Pipeline resulting loop.
Replace pow

Standard
Deviation

No directives
(O1 and O2) 30 30 30 30 8.62 0.26 0.26 - -

Signal
Magnitude

No directives 4669 4669 4669 4669 9.51 44.42 44.42 - -
Pipeline loops 385 385 385 385 9.51 3.66 3.66 12.13 12.13
Pipeline loops. 205 205 205 205 8.62 1.77 1.77 25.13 25.13Replace pow (O1)
Pipeline loops. 322 322 322 322 9.51 3.06 3.06 14.50 14.50Unroll loops (f=2)
Pipeline loops.

142 142 142 142 8.62 1.22 1.22 36.28 36.28Unroll loops (f=2)
Replace pow
Unroll loops 118 118 118 118 9.92 1.17 1.17 37.94 37.94
Unroll loops. 57 57 57 57 9.40 0.54 0.54 82.88 82.88Replace pow (O2)
Dataflow function. 216 216 89 89 9.51 2.06 2.06 21.62 21.62Pipeline loops
Dataflow function.

155 155 53 53 8.62 1.34 1.34 33.24 33.24Pipeline loops.
Replace pow
Dataflow function. 128 128 78 78 9.51 1.22 1.22 36.48 36.48Unroll loops
Dataflow function.

66 66 31 31 8.62 0.57 0.57 78.05 78.05Unroll loops.
Replace pow
Merge loops. 129 129 129 129 9.51 1.23 1.23 36.19 36.19Pipeline resulting loop
Merge loops.

68 68 68 68 8.62 0.59 0.59 75.76 75.76Pipeline resulting loop.
Replace pow
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Table B.6: High level synthesis performance estimates for the classifier stage and the stage with
feature extraction grouped with doubles

Stage Notes
Latency Interval Clock Execution Speedup(Clock cycles) (Clock cycles) Period Time (ms)

Min Max Min Max (ms) Min Max Min Max

Classifier

No directives 19330 555736 19330 555736 9.63 186.23 5353.96 - -
Pipeline loops 72024 72024 72024 72024 18.23 1313.21 1313.21 0.14 4.08
Pipeline loops. 39226 39226 39226 39226 17.95 703.91 703.91 0.26 7.61Replace pow
Pipeline loops. 76759 76759 76759 76759 18.57 1425.26 1425.26 0.13 3.76Unroll loops (f=2)
Pipeline loops.

43432 43432 43432 43432 18.57 806.45 806.45 0.23 6.64Unroll loops (f=2)
Replace pow
Unroll loops 72019 72019 72019 72019 10.36 745.76 745.76 0.25 7.18
Unroll loops. 39750 39750 39750 39750 10.36 411.61 411.61 0.45 13.01Replace pow
Pipeline nested 3379 3379 3379 3379 9.63 32.55 32.55 5.72 164.47loop. Unroll rest
Pipeline nested.

3318 3318 3318 3318 9.63 31.97 31.97 5.83 167.49loop. Unroll rest.
Replace pow (O2)
O1 38689 38689 38689 38689 17.95 694.27 694.27 0.27 7.71

Feature
Extraction
Grouped

No directives 9366 9366 9366 9366 9.51 89.11 89.11 - -
Best combination 992 992 992 992 9.92 9.84 9.84 9.05 9.05
Best combination. 748 748 748 748 9.40 7.03 7.03 12.67 12.67Replace pow
Best combination.

381 381 381 381 9.77 3.72 3.72 23.95 23.95Merging functions.
Replace pow

Table B.7: Initiation intervals obtained for all the versions that used loop pipelining with doubles

Stage Notes Initiation Intervals

Mean Pipeline loops (O1) 5
Pipeline loops. Unroll loops (f=2) 8

Variance

Pipeline loops 1, 1, 5
Pipeline loops. Replace pow (O1) 1, 1, 5
Pipeline loops. Unroll loops (f=2) 1, 1, 8
Pipeline loops. Unroll loops (f=2). Replace pow 1, 1, 8
Dataflow Function. Pipeline loops 1, 1, 5
Dataflow Function. Pipeline loops. Replace pow 1, 1, 5
Merge loops. Pipeline resulting loop 5
Merge loops. Pipeline resulting loop. Replace pow 5

Signal Magnitude

Pipeline loops 1, 1, 1, 1, 1, 1, 1
Pipeline loops. Replace pow (O1) 1, 1, 1, 1, 1, 1, 1
Pipeline loops. Unroll loops (f=2) 1, 1, 1, 1, 1, 1, 1
Pipeline loops. Unroll loops (f=2). Replace pow 1, 1, 1, 1, 1, 1, 1
Dataflow Function. Pipeline loops 1, 1, 1, 1, 1, 1, 1
Dataflow Function. Pipeline loops. Replace pow 1, 1, 1, 1, 1, 1, 1
Merge loops. Pipeline resulting loop 1
Merge loops. Pipeline resulting loop. Replace pow 1

Classifier

Pipeline loops 1, 4, 1, 1, 2, 1
Pipeline loops. Replace pow 1, 4, 1, 1, 2, 1
Pipeline loops. Unroll loops (f=2) 1, 8, 1, 1, 4, 1
Pipeline loops. Unroll loops (f=2). Replace pow 1, 8, 1, 1, 4, 1
Pipeline nested loop. Unroll rest 6
Pipeline nested loop. Unroll rest. Replace pow (O2) 6
O1 4, 1, 1
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Table B.8: High level synthesis resource usage estimates for all the stages with doubles

Stage Notes BRAM (%) DSP (%) FF (%) LUT (%)

Mean

No directives 0.00 1.36 3.60 9.44
Pipeline loops (O1) 0.00 1.36 3.60 9.47
Pipeline loops. Unroll loops (f=2) 0.00 1.36 3.67 9.58
Unroll loops (O2) 0.00 1.36 3.67 10.27

Variance

No directives 25.36 33.18 18.10 25.80
Pipeline loops 25.36 33.18 18.34 25.74
Pipeline loops. Replace pow (O1) 0.00 6.36 4.42 11.19
Pipeline loops. Unroll loops (f = 2) 50.71 66.36 33.35 43.72
Pipeline loops. Unroll loops (f = 2). Replace pow 2.86 12.73 5.57 14.70
Unroll loops 23.93 33.18 18.08 26.41
Unroll loops. Replace pow (O2) 0.00 6.36 4.16 11.63
Dataflow function. Pipeline loops 26.07 34.55 18.94 27.55
Dataflow function. Pipeline loops. Replace pow 2.14 7.73 4.91 13.32
Dataflow function. Unroll loops 430.71 598.64 272.66 328.69
Dataflow function. Unroll loops. Replace pow 0.00 155.91 19.97 75.74
Merge loops. Pipeline resulting loop 23.93 33.18 18.01 25.08
Merge loops. Pipeline resulting loop. Replace pow 0.00 6.36 4.08 10.70

Standard
Deviation No directives (O1 and O2) 0.00 0.00 1.75 4.37

Signal
Magnitude

No directives 28.21 33.18 17.30 24.68
Pipeline loops 28.21 33.18 18.01 24.13
Pipeline loops. Replace pow (O1) 4.29 6.36 3.98 9.24
Pipeline loops. Unroll loops (f = 2) 56.43 66.36 35.36 46.82
Pipeline loops. Unroll loops (f = 2). Replace pow 8.57 12.73 7.47 17.31
Unroll loops 143.57 196.36 93.78 112.12
Unroll loops. Replace pow (O2) 0.00 35.45 12.01 26.18
Dataflow function. Pipeline loops 76.07 98.18 73.30 56.44
Dataflow function. Pipeline loops. Replace pow 4.29 17.73 5.20 13.76
Dataflow function. Unroll loops 1292.14 1767.27 830.69 990.98
Dataflow function. Unroll loops. Replace pow 0.00 319.09 71.50 231.57
Merge loops. Pipeline resulting loop 71.79 98.18 45.99 55.42
Merge loops. Pipeline resulting loop. Replace pow 0.00 17.73 4.17 12.06

Classifier

No directives 23.93 33.64 16.53 25.19
Pipeline loops 23.93 33.64 18.33 26.20
Pipeline loops. Replace pow 0.00 6.82 3.25 12.31
Pipeline loops. Unroll loops (f = 2) 24.64 34.09 19.65 32.32
Pipeline loops. Unroll loops (f = 2). Replace pow 0.71 7.27 5.30 18.43
Unroll loops 24.64 35.91 19.29 42.99
Unroll loops. Replace pow 0.71 9.09 5.37 28.70
Pipeline nested loop. Unroll other loops 55.71 70.45 35.40 61.66
Pipeline nested loop. Unroll other loops. Replace pow (O2) 7.86 16.82 8.15 34.05
O1 0.00 7.73 3.17 15.97

Feature
Extraction
Grouped

No directives 76.79 102.27 64.78 103.82
Best combination of functions 192.86 265.45 141.29 190.68
Best combination of functions. Replace pow 1.43 50.91 29.88 71.87
Best combination. Merging functions. Replace pow 1.43 43.18 24.52 55.86
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