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Abstract

The luxury fashion industry presents itself as fast-paced, unpredictable and with ever increasing
competition. When integrating it in an e-commerce environment, the demanding customer ex-
pectations are especially linked to considerations regarding order to delivery time (Lead Time).
Looking at Farfetch as a case study, the main operational obstacles to meet these external require-
ments reside in its greatest virtue - the absence of stock ownership, and externalization of order
processing.

This project aims to tackle this marketplace’s complexity by performing an end-to-end analysis
over the Lead Time and its explanatory drivers, ending the current scattered vision on order cycle
performance, and identifying crucial opportunities to make it more agile and flexible. Through
data mining techniques, it was possible to aggregate all relevant data that was leveraged to build
a comprehensive monitoring tool. This way, a holistic view on the performance of each fulfill-
ment step was provided. Additionally, analytical methods were employed in developing predictive
models for the two main segments of Lead Time: one regarding partner processing and the other
concerning carrier delivery. These predictive instruments enable the quantification of each drivers’
importance on the different order cycle stages and the investigation of improvement scenarios.

From the insights generated along this research, three main improvement opportunities were
studied, the increase of fraud automation level, the alignment of the partner daily cutoff hour with
the respective pickup, and the boost of domestic routing. It was observed that optimizing these
multi-participant activities had a predicted reduction of Lead Time in order cycle processes of
more than 20%.

As a result, for the first time, order cycle stakeholders have access to Lead Time tools that en-
hance monitoring and support strategic decisions, paving the way for a better customer experience
through operational excellence.
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Resumo

Atualmente, a indústria da moda de luxo apresenta um ambiente de mudança constante, impre-
visivel e com grande concorrência. Integrando-a num contexto de e-commerce, as expectativas
dos consumidores enaltecem-se e prendem-se em grande parte com o tempo decorrido entre o
momento de encomenda e a entrega (Lead Time). Usando a Farfetch como caso de estudo, os
principais obstáculos operacionais para atingir as exigências dos consumidores estão refletidos
nas suas maiores virtudes - a ausência de controlo de stock, e a externalização do processamento
de encomendas.

Este projeto visa abordar a complexidade deste marketplace, realizando uma análise completa
sobre o Lead Time e as suas variáveis mais relevantes, acabando com a visão dispersa presente
atualmente sobre o desempenho do order cycle e identificando oportunidades para torná-lo mais
ágil e flexível. Através de técnicas de data mining, foi possível agregar todos os dados relevantes,
que foram aproveitados para construir uma ferramenta de monitorização. Desta forma, uma visão
holística sobre o desempenho de cada etapa do processo foi desenvolvida. Além disso, métodos
analíticos foram usados no desenvolvimento de modelos preditivos para os dois principais seg-
mentos do Lead Time: um referente ao tempo de processamento do parceiro e outro referente ao
tempo de entrega por parte do transportador. Estes instrumentos preditivos permitem quantificar a
importância de cada variável nas diferentes etapas do order cycle e a investigação de cenários de
melhoria.

A partir do conhecimento gerado ao longo desta pesquisa, três principais oportunidades de
melhoria foram estudadas, o aumento do nível de automação de fraudes, o alinhamento da hora
de término de processamento do parceiro com o respetivo pickup, e o aumento de rotas domésti-
cas. Observou-se que a otimização destes processos tem uma redução prevista de Lead Time em
processos do order cycle em mais de 20%.

Como resultado, pela primeira vez, os intervenientes do order cycle têm acesso a ferramentas
que aprimoram o monitoramento do order cycle e apoiam decisões estratégicas ligadas a Lead
Time, permitindo atingir uma melhor experiência para o cliente através de excelência operacional.
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Chapter 1

Introduction

This chapter focuses on providing an introductory context of the project. It presents the e-commerce

marketplace business setting used as a case study to investigate the operations behind an order-to-

delivery process. Moreover, the motivation for this thesis is understood and the goal of optimizing

the order cycle Lead Time is set. Finally, the main project stakeholders are identified and the

methodology followed throughout the document is displayed.

1.1 Company Description

This thesis will have its central point in the marketplace operations of Farfetch. This is the branch

of the Farfetch Group where luxury merchants across the world are faced with the opportunity to

sell luxury items to the millions of monthly website visitors. These high-end customers have the

possibility of browsing and acquiring the more than 300 000 items in the catalogue, and receiving

them wherever they prefer.

Farfetch focuses on connecting innovation with fashion industry stakeholders across the globe,

and consequently is positioned as one of the biggest players in the global fashion industry. This

means being able to cope with the increasing empowerment of luxury fashion customers, that

reveal themselves with high expectations, instant access to information and low switching costs,

as stated in Tauriello et al. (2016). These independent individualities are less prone to develop

specific brand loyalties, and thus the opportunity arises for small multi-brand boutiques to expand

their client reach without significant investment and know-how in e-commerce operations. Larger

luxury brands are also acknowledging the opportunity of a stronger digital presence, as the distress

of mainstream brand dilution is being re-evaluated - Arienti (2019).

Furthermore, since a stock-less business model is in place, Farfetch is responsible for the allo-

cation of customer orders to partner-owned stock points, which means it functions as an interme-

diary in the transaction, guaranteeing an effective communication between all parties involved and

streamlining all the processes. This business model allows the company to avoid the risk of own-

ing products that have high sales variability and seasonality. As of September of 2018, Farfetch is

a public company, with an ever-expanding geographic presence and business diversification.
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1.2 Motivation and Goals

Being a prominent player in the luxury fashion industry, Farfetch aims to provide the best customer

experience in its marketplace through operational excellence. This customer-centric approach has

its backbone in the order cycle, which is the workflow that defines the execution of daily orders,

connecting more than 50 supplying countries to around 200 customer countries.

The order cycle is as old as the company itself, with its idealization and implementation dating

back to 2008. It is composed of six steps that detail the operational journey beginning with the

customer purchase in Farfetch’s website and ending with a third party carrier being responsible

for picking and delivering the order to the final customer. Farfetch has no direct responsibility

over operations, and lacks the comprehensive visibility over performance that is crucial to have,

in order to adapt and streamline every process with all the different participants involved.

Furthermore, recent years have brought an increase in operational challenges, with the ex-

ponential growth in partners and number of orders, as shown in Figure 1.1. This complexity is

inflated if the number of steps and intervenients are taken into consideration since massive coordi-

nation is required. In addition, the intervenients themselves are sources of variability, due to their

different operating efficiencies and levels of integration with the internal systems. The absence of

adaptability in the process makes it under-optimized, with numerous improvement opportunities.

Figure 1.1: Evolution of number of partners and orders in Farfetch’s lifetime

Subsequently, the project presented in this thesis has two main goals. Firstly, to develop a tool

that accurately assesses the end-to-end performance of the order cycle in terms of lead time and its

variability - the Order Cycle Lead Time Dashboard. Secondly, to develop a Lead Time Predictive

Model that quantifies the impact of the variables identified in the assessment phase and to use that

model to test lead time improvement hypothesis, pinpointing the biggest opportunities to develop

current operations. In short, enhancing the order cycle efficiency makes Farfetch more flexible

and agile towards satisfying the high-end needs of luxury customers.
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1.3 Project Stakeholders

This project was developed by the Operations Strategy team, working in close relationship with

the Supply Chain and Fulfillment teams. These are the operational teams whose day-to-day deals

with the problems addressed in this thesis. Supply Chain focuses on monitoring every process

related to order management and coordinating all entities within the logistic environment of Far-

fetch. Fulfillment has responsibility over partner related issues. They are the contact point regard-

ing operational efficiency and perform continuous evaluations, to allow every kind of partner to

achieve its optimal execution capabilities. The Operations Strategy team has the support role of

articulating all the internal teams and helping in the development of innovating solutions.

The relevance of this project begins in building an end-to-end view over the lead time perfor-

mance of the order cycle. This way, the Supply Chain team manages to aggregate and standardize

lead time metric reporting for the first time, utilizing the tool developed in this project on a weekly

basis.

This project also enhances the ventures of the Fulfillment team. The Order Cycle Lead Time

Dashboard helps identifying pain points in partner order processing. Additionally, the Lead Time

Predictive Model unlocks the possibility of quantifying the impacts of new approaches. The main

improvement opportunities are studied around Farfetch and partners processes, considering that

these present the easier access points to facilitate future implementation.

1.4 Methodology

To better guide the project realization, the Cross-Industry Standard Process for Data Mining

(CRISP-DM) was followed - Wirth and Hipp (2000). This methodology draws the framework

for data mining projects, and this thesis goes through the proposed phases in Figure 1.2. This

approach matches the development of the two goals presented: the Order Cycle Dashboard and

the Lead Time Model.

The Order Cycle Dashboard development phase required an initial study of current operations,

through a series of inductions and interviews with several stakeholders across the organization.

This enabled a perception of the overall operational endeavours, as well as sharpened some specific

details, paving the way to map the current order cycle. Afterwards, it was necessary to organize

the data gathering procedures, since the information needed was sparse. This real sales data was

recovered from different databases using SQL, with the main ones regarding order and partner

information. The amount of data and its complexity forced an exhaustive preparation and treatment

steps, removing unnecessary or not accurate entries. With the data-set ready for use and the order

cycle already mapped, it was necessary to identify the most relevant drivers - for the global analysis

and each of the steps. Finally, taking advantage of Tableau - a data manipulation and visualization

tool - the Order Cycle Dashboard was developed iteratively, as constant feedback from several

stakeholders was always taken into consideration.

3



Figure 1.2: CRISP-DM Methodology. Source: Otaris (2011)

The Lead Time Model is built using the same data-set prepared earlier. By modelling the lead

time according to the investigated and prepared variables, it was possible to assess and quantify

their impact on the lead time performance, using Python 3.7 as the programming software. After

completing this phase, it was necessary to identify the different hypothesis to be tested using the

model, which means investigating how to change the different variables and measure its lead time

impact, completing a what-if analysis.

1.5 Thesis Outline

This document is organized in six chapters:

Chapter 1 gives the initial insights on the basis on which the project occurs, by presenting the

company situation, the motivation of the project, the end objective with its development and the

methodologies that were employed.

Chapter 2 evaluates the current state-of-the-art, regarding the industry the company is in-

serted in, as well as the way raw data can be treated and visualized to extract the most reliable

conclusions. Moreover, an introduction to predictive models is done.

Chapter 3 dissects the current order cycle, including analysis of every order cycle step. Ad-

ditionally, the monitoring and visualization tool is disclosed.

Chapter 4 introduces the use of machine learning to model the lead time, and the results

obtained.

Chapter 5 proposes optimizations opportunities and evaluates their impact.

Chapter 6 assesses the conclusions of the project and presents future research.
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Chapter 2

State-of-the-Art

The State-of-the-art chapter provides the theoretical background that helps understanding the con-

ditions surrounding the development of this project. This overview analyzes both external environ-

ment of the business and the tools and methodologies that support the technical aspects presented

further in the document.

2.1 E-commerce luxury fashion industry

This project is set around the e-commerce luxury fashion industry, and so it is important to evaluate

its main features, in order to understand how the developments of this thesis fit with external

market requirements. First of all, this industry has been significantly evolving over the last 20

years, since it has been hard to unanimously define what is valuable in aesthetic terms - Djelic

and Ainamo (1999). Therefore, luxury fashion products are associated with intangible dimensions

of value such as power and exclusivity (Li et al. (2012)), which leads this industry to be highly

unpredictable, fast-changing and extremely competitive.

Despite the uncertainty associated with the fashion industry, its appeal has been steadily trans-

lated into growth in sales, especially in the luxury segment - Berg and Amed (2019). This fact

is confirmed by Figure 2.1, where the upward growth trend is clear for the upcoming years. This

figure also points out the increasing share of online sales. It is expected that by 2025, almost one

in every five sales will happen on online and digital channels.

Digital is not only having an impact on the retail channels, but it is also massively influencing

how luxury shoppers choose their goods - Marchessou et al. (2018). About 80% of luxury sales are

"digitally influenced", which means that there is an increasingly close connection between the of-

fline and online customer journey, in terms of inspiration, discovery and purchase. Consequently,

e-commerce is presenting itself as a reliable part of omnichannel solutions to the industry’s play-

ers, where e-tailers tuned for flexibility and technology have been emerging. Moreover, despite

mono-brand websites still having the majority of the market’s online sales, multi-brand market-

places as Farfetch.com are presenting a more acute growth.
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Figure 2.1: Luxury fashion industry sales evolution. Source: Marchessou et al. (2018)

The luxury fashion environment is being defined by the new generation of customers, who

are being described as HENRYs (High-Earners-Not-Rich-Yet) - Arienti (2019). Moved by instant

satisfaction, high information access and awareness, the industry is dealing with increasingly de-

manding consumers, who are seeking self-differentiating multi-brand experiences and thus, shift-

ing from the traditional approach of brand loyalty through heritage. This new type of shopper

is enabling the paradox of having a luxurious and customized experience through traditionally

undifferentiated e-channels - Okonkwo (2010).

Advances in more analytical methods, such as big data and machine learning, are empowering

businesses to develop a more customized relationship with the consumers, introducing the concept

of omni-personal luxury, where the personalization of customer demands plays a central role,

allowing for a more holistic experience - Socol (2018).

With the challenging environment imposed by consumers and competitors, every business

focuses on having order-winner operational features, translated mainly in fast order to delivery

times (Heim and Sinha (2001) and Sheng and Liu (2010)) and a wide product range. Giving

the customer what he wants, when he wants it, has a major impact on his retention, and thus an

increase in future revenue. This meets the investigation done in this project, as an efficient order

cycle with reduced lead time is a step towards satisfying customers.

Supported by what was previously stated, the luxury fashion industry presents itself as a high

potential opportunity for suiting contenders, that need to be extremely flexible and have a great

focus on customer-centricity. To achieve that, one can leverage this data-immerse environment and

continuously apply state-of-the-art analytic methods to generate the necessary business insights.

Marchessou et al. (2018) is inspired by Industry 4.0 to suggest the trend for a fully digitized luxury

fashion model - Luxury 4.0.

2.2 Big Data: Preparation and Visualization

Nowadays, information is an intrinsic part of the way our life and businesses operate, from its

generation to its accessibility and use - Khan and Khan (2011). Especially in e-commerce envi-

ronments, such as the one evaluated in this thesis, a great amount of data is being created from all
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the available customer touch-points and the relative absence of difficulty of gathering its outputs -

Chen et al. (2012). This massive amount of available data follows the HACE theorem - Big Data

starts with large-volume, Heterogeneous, Autonomous sources with distributed and decentralized

control, and seeks to explore Complex and Evolving relationships among data. This translates in

an estimate of doubled worldwide data volume every two years - Gantz and Reinsel (2011). In

the scope of this project, it is important to understand how to leverage all the potential data into

relevant insights.

As might be expected, this kind of disperse knowledge has a huge potential to be gathered

and applied to develop intelligence that can impact many different areas. Naturally, each area

collects its specific effects, but in general analysis, a good data understanding leads to higher

output efficiencies. Specifically, it is reveal that e-commerce companies have experienced a 5 to

6% productivity surplus through effective data analysis - Akter and Wamba (2016).

However, big data is accompanied by some setbacks. Among them is the inherent storage

problem for all the necessary information that needs a repository. Additionally, since it is difficult

to have a complete and in-detail comprehension of the data-set, redundancy and misrepresentation

can cause trouble. All this is complemented by the intrinsic high processing power required to

manipulate said data, and adjacent costs. Moreover, data in its raw state is not reliable, as it

can contain inaccurate entries that influence the outcome of the analysis, and therefore should be

removed or its occurrences minimized. Data pollution can arise mainly from two different sources:

data errors and data variability - Anscombe (1960). Data errors can be avoided by reducing the

utilization of manually introduced variables and maximizing the use of standardized and consistent

sources of information. Osborne and Overbay (2004) perform a deep dive in data error types and

their different causes.

Another key feature of data treatment is outlier detection and removal. Outliers are a source

of data variability and are defined by Hawkins (1980) as an observation that "deviates so much

from other observations as to arouse suspicions that it was generated by a different mechanism".

Although some authors claim outlier removal brings unwanted outcomes, the majority of the lit-

erature argues otherwise. Osborne and Overbay (2004) confirm this, as they show an increase in

accuracy and reduction in inference error by successfully dealing with outliers in their estimates.

Outlier identification depends heavily on the data statistical distribution and number of obser-

vations in the data-set. To address the most general of problems, one can use the Interquartile

Range Method (IQR). This method does not require a data-set with specific statistical distribution

and is not influenced by the mean and standard deviation - two parameters highly affected by out-

liers - Leys et al. (2013). This outlier removal procedure can be visualized in Figure 2.2 and works

as follows (Walfish (2006)):

1. Identify the 50th percentile (median), the 25th percentile (Q1) and the 75th percentile (Q3)

of the data-set.

2. Compute IQR as being the difference between Q3 and Q1.

3. Compute maximum as being (α*IQR) times greater than Q3.
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4. Compute minimum as being (α*IQR) times lesser than Q1.

5. Remove data that outside the boundaries set by the minimum and the maximum.

Figure 2.2: Interquartil Range for outlier identification. Source: Galarnyk (2018)

The parameter α is generally 1.5. However, this value can be adjusted given the specific

characteristics of each data-set, allowing the user to choose how conservative to be in the approach.

Once identified, one should try to recognize the root causes of the outliers. If a cause cannot be

assigned, the data-point should be kept for future evaluation with more data. If it is possible, one

has to decide if that root cause should be influencing the data-set or not.

To complement a good data structure one needs robust visualization methods to enhance data

analysis, decision-making and information sharing (Wang et al. (2015)). These techniques can be

thought of as the "front end of big data". To effectively apply them, one must guarantee that only

pertinent data must be displayed, and that this data must be well organized and easily perceptible

according to the available space. This ensures simplicity and enhances user comprehension.

The big data challenges presented previously continue to happen when analyzing visualization

techniques, translated in visual noise, information loss and high-performance requirements. These

can be mitigated by using specially designed software. In the context of the project presented in

this document, Tableau is used - a business intelligence software that supports interactive and

visual analysis of data - Wang et al. (2015). It is specialized in large-scale data-sets and is capa-

ble of providing a smooth user experience, due to its interactive architecture and effortless data

integration.

2.3 Predictive Models

After evaluating how data behaves in current state-of-the-art situations, it is fundamental to un-

derstand how one can use analytic methods to leverage it. Predictive models are an extremely

powerful analytic tool to infer future uncertainties from historical records, by analyzing the under-

lying structure of data and its patterns - Friedman (2006).

This project aims to build a model that is a supervised learning application to a regression

problem, since the data contains descriptive labels and the output variable is a continuous measure
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- Lead Time. These kind of predictive models are commonly generated by machine learning

algorithms, that can arise from two main approaches (Qiu et al. (2016)). Unsupervised learning,

where the algorithm aims to learn the data structure without knowing the inherent data labels. The

second one is supervised learning, where the model is being fed the data labels and the real outputs

to grasp patterns. Supervised learning models can broadly fall into two categories - classification

models, where the output variables are categories or a class; and regression models, where the

output variable is a continuous real-value (e.g. amount, quantity).

The programming tool that enabled all the investigation was Python. This open-source com-

puting language stands out for its accessibility and convenience - McKinney (2011). Its wide range

of stable numerical libraries and quality documentation provides a solid data analysis environment.

Sections 2.3.1 through 2.3.4 describe the necessary modelling steps to be followed, investigat-

ing which algorithms can be used in the studied case and how to perform its validation, evaluation

and hyperparameter tuning.

2.3.1 Model Validation

Predictive models have a goal of being able to generalize outputs from inputs that they have never

received. To effectively validate the results from the model, one has to divide the data-set in three

components. The training set is the data from which the model will learn and iterate its best fit.

The validation set is used to evaluate the training results and to tune parameters. Finally, the test

set is the data the model receives once is fully trained, to understand its behaviour in unforeseen

conditions. Figure 2.3 provides an intuitive understanding of this split. The training set consists of

the majority of the data set, and the validation and test sets are divided equally from the remaining

data. If this is not done, the model will be evaluated using data it was trained on, giving false

conclusions about its performance. This split is done in a sequential order, in order to capture the

temporal relationships between the observations.

Figure 2.3: Data-set split. Source: Patel (2018)
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2.3.2 Model Evaluation

Model evaluation techniques need to be comparable, measurable and reproducible across multiple

data-sets. To correctly assess the quality of the proposed regression model, one has to measure two

kinds of errors: in-sample errors (ISE) and out-of-sample errors (OSE). The evaluation metrics can

be equally applied to both errors and are done by comparing the real output to the predicted output.

The difference between them is the data used in the calculation: ISE uses the training set and OSE

uses the test set.

Prediction errors are originated by three factors, according to Singh (2018b):

• Noise - intrinsic difficulty of regression problems;

• Bias - how far away is the best learner from the correct one;

• Variance - how variable is the model predictions for a given data point.

High variance means the model is including too much noise from the data-set and ends being

too flexible in the predictions - commonly refered as over-fitting. High bias means the model is

predicting values significantly different from the real ones - also known as under-fitting -, caused

by an over-simplistic approach. The goal in model construction is to maximize the addition of

explanatory power without over adjusting to a limited set of data, which means achieving a low

bias and low variance. Figure 2.4 presents a visual representation of the above statements.

Figure 2.4: Model output impact of different types of prediction errors. Source: Singh (2018b)

Moreover, in chapter 1, for a model to be robust, it must be carefully evaluated. Hence, in

order to assess the proposed regression models, the three metrics presented in equations (2.1),

(2.2) and (2.3) are considered.

Mean Absolute Error =
1
N
×

N

∑
i=1
|yi− ŷi| (2.1)

The Mean Absolute Error (MAE) measures the average magnitude of the errors, without con-

sidering their direction. It compares the predicted value (ŷi) with the real one (yi), and averages all

the deviations. Additionally, it is an absolute measure, so it does not differ between negative and

positive errors. This makes sense in the models of this project, since it is not desirable to know if

the prediction is above or below the real value.
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Mean Absolute Percentual Error =
1
N
×

N

∑
i=1

∣∣∣∣yi− ŷi

yi

∣∣∣∣ (2.2)

The Mean Absolute Percentual Error (MAPE) presents similar characteristics and conclusions

to MAE. It quantifies the magnitude of the prediction error and not their orientation. Nonetheless,

it is a relative measure that facilitates comparisons of models with results with different magni-

tudes.

Root Mean Squared Error =

√
1
N
×

N

∑
i=1

(yi− ŷi)
2 (2.3)

The Root Mean Squared Error (RMSE) is the standard deviation of the prediction errors, which

discloses how spread the error is from the model fit. In accordance with MAE and MAPE, it is

indifferent to the direction of errors. Despite that, and unlike the previous ones, it is more sensitive

to outliers, as it gives a relatively high weight to large errors. One important advantage is that both

RMSE and MAE express the error in the same units as the model’s results.

2.3.3 Algorithms

Within the supervised learning and regression algorithms, Decision Trees are one of the most pop-

ular and intuitive predictive learning methods, where tree-like data structures are used to perform

binary decisions. Each tree consists of a root node, decision nodes and a terminal node - Chepenko

(2013). Figure 2.5 shows an example of the typical decision tree architecture. Starting from the

root node, all possible feature splits are calculated and the selection is made in a greedy manner -

it is chosen the one that maximizes loss function improvement. Subsequent splits are done based

on the previous ones, until there is a terminal node where the target variable is predicted.

Figure 2.5: Example of the inherent structure of a Decision Tree

No matter how many dimensions the predictor variable space has, the decision tree model can

be plotted and examined for interpretation. Moreover, there are no restriction in variable types,

since both numerical and categorical variables are supported.
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To develop a tree, one should study and decide which features to use in the splits, which

splitting conditions should be in place and the stopping conditions. Inherently to their constructing

nature, decision trees tend to be over-fitted, presented with low training error (ISE), but high test

error (OSE). Adequate stopping conditions, such as maximum number of leaves, maximum tree

depth and maximum iterations, can prevent this occurrence, by limiting the tree’s adaptability to a

specific part of the data-set.

To overcome the high model variance, ensemble methods were developed for decision trees.

The principle behind them is that a linear combination of several weak decision trees produce a

better predictive performance than a single low-bias, high-variance decision tree.

The models in this project are based in the decision trees ensemble algorithm named Gradient

Boosting. This is one of the most efficient ways to build ensemble models, with state-of-the-

art results in structured data applications - Ershov (2018). In an iterative way, the first tree is

set to minimize the training error, which is only slightly better than random chance. Then, the

subsequent trees optimize their learning by minimizing the error from the previous trees, using

gradient descent to optimize the loss function, i.e. looking at the derivatives of the function with

respect to each of its parameters, and seeing which step, via which parameter, is the next best step

to minimize the function. Considering that the previous tree is being iteratively evaluated, it is

possible to weight the observations accordingly, allowing the following trees to grow on weighted

data, as stated by Singh (2018a).

To implement the machine learning approach to gradient boosting on decision trees, this

project took advantage of an open source library named CatBoost. This algorithm thrives in huge

data-sets with diverse data-sources, and has an innovative approach to dealing with categorical

features that prevents the need for one-hot-encoding, a major challenge in machine learning prob-

lems. In Dorogush et al. (2018) a benchmark with other gradient boosting algorithms is made,

revealing that CatBoost has a superior performance in terms of accuracy and processing time.

For further study and curiosity, consider reading the article by Prokhorenkova et al. (2018), as it

explains in detail all the theoretical nuances of this algorithm.

In order to validate the use of gradient boosting in this project, it is necessary to study alterna-

tive approaches to solve regression problems. It is important to keep in mind that the data-set in

study has millions of data points, and its variables are mainly categorical. Therefore a benchmark

was made with other algorithms design for regression problems with continuous outputs.

Multiple Linear Regression is the method of discovering a linear equation that explains the

relationships between independent variables and a dependent one. It is a rather simplistic ap-

proach, as it only captures linear dependencies. Consequently it is not able to represent more

complex, non-linear associations. However, it can be a good alternative when the data has a lot of

features and low noise - Tranmer and Elliot (2008).

Random Forest is a decision trees algorithm, much like gradient boosting. The main differ-

ence is that Random Forest ensembles on fully grown decision tress, while in gradient boosting

new shallow and weak trees complement previous ones. This allows Gradient Boosting to achieve

better accuracy with less trees. Random Forest approaches are based on random portions of the
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data-set, which can lead to high model bias. Additionally, categorical variables are handled in a

way that the model is biased towards categories with more levels - Goel et al. (2017). Carvalho

(2016) used Farfetch as a case study to develop a conditional inference decision tree model for

each step of the order cycle processes. Her work will be used in further chapters as a comparison

to the models in this thesis.

Overall, Gradient Boosting provides a lot of flexibility, since it can optimize different loss

functions and provide several hyperparameter tuning alternatives. Moreover, no specific data pre-

processing is required for categorical variables and it easily handles missing data without requiring

imputation.

2.3.4 Hyperparameter Tuning

One of the challenges in predictive modelling is the correct tuning of the hyperparameters. This

is the process of optimizing the model’s configurations in order to get the best results possible.

These hyperparameters are used as models inputs (e.g. learning rate, search space), and can affect

the outputs. Since there are multiple possible alternatives for its values, this is an highly time-

consuming process. Manual ad hoc optimization heuristics augment this problem, specially in

awkward search spaces.

Grid Search and Randomized Search are more efficient methods and were evaluated. The

first assesses every possible combination of parameters. The latter chooses to analyze a reduced

amount of combinations and outputs the best one. There is an obvious trade-off between run time

and accuracy, that needs to be considered depending on the specific model application. On one

hand, Grid Search has a more extensive range, but exponentially grows computing time as the

dimensions increase. On the other hand, Randomized Search has a lower computing time and

generally outputs results close to optimal - Bergstra and Bengio (2012).

Probst et al. (2019) show various experiments on algorithms based on decision trees, and reveal

that tuned models perform better than models with the default settings. This configurations are

dependent on properties of the data-set at hand and are specially important to prevent overfitting,

a common problem in decision trees algorithms.

2.4 Final Considerations

The investigation presented in this chapter has a supportive role in the realization of this project.

Understanding the e-commerce luxury fashion industry reveals the importance of optimizing the

order cycle lead time, as to meet the customer’s requirements. After reinforcing the inherent

motivation, the study on big data was used in the diagnosis of the order cycle processes, aiding

in data gathering, manipulation and visualization. This way, there is an comprehensive baseline

to enable accurate insight generation. Finally, the investigation on predictive models is useful to

complement the big data processes previously described. Not only is it possible to define which

is the best model to use for this situation, but also there is an identification of the methodologies

needed to correctly develop a precise prediction tool.
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Chapter 3

Order Cycle Diagnosis

As discussed in the first chapter, Farfetch runs a marketplace business model, characterized by the

absence of stock ownership. Its customers’ expectations are a continuous challenge to company’s

operations, which means the responsible teams are permanently finding solutions to provide a

world-class experience to them. Throughout this document, the process beginning with the cus-

tomer purchase in Farfetch’s website and ending with the order delivery is named Order Cycle.

In the first section of this Chapter, it is presented a description of the order processing steps.

Subsequently, it is exhibited the data collection process and an exploratory analysis on the iden-

tified variables. The goal of this Chapter is fulfilled in the last section, where are the aggregated

information is used to develop a monitoring tool.

3.1 Order Processing

The operational architecture of Farfetch allows a customer to browse thousands of products in

one website and select several of them to make a purchase, even though they can be sourced by

different partners. When a customer places an order (Portal Order), multiple items can be chosen

- each one is a specific product order - and they can belong to different boutiques. Each boutique

that fulfills part of a Portal Order has a Boutique Order attribution. In the example of Figure 3.1,

the Portal Order is composed by three products, two of them coming from the same merchant and

the last from a different partner, meaning two Boutique Orders are placed.

There are two sequential algorithms responsible for the allocation of orders to partners, if there

are multiple stock points that can satisfy the same customer request. One decides the stock point

price to be displayed in the website, and the other selects the final stock point which will ship to

the customer. After the allocation, the order cycle process goes as seen in Figure 3.2. There are six

main steps in the order cycle process: Check Stock, Approve Payment, Decide Packaging, Create

AirWayBill, Send Parcel and In Transit. Each one will be subsequently presented.

Step 1 - Check Stock

The first baseline that the partner must meet, after having an order allocated, is ensuring stock

availability. This process depends on the integration the partner has with Farfetch. Either the
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Figure 3.1: Portal Order and Boutique Order distinction

information is manually introduced using the provided software - STORM, or is automatically

communicated though an Application Programming Interface (API). Smoother data synchroniza-

tion is achieved when partners have a higher degree of integration with the internal systems. If the

allocated partner does not comply with the stock solicitation, the algorithm re-allocates the order

to the next best partner, until stock is guaranteed. In case of no partner is able to satisfy the order,

the customer receives a refund, or a similar available item is suggested.

Step 2 - Approve Payment

At the same time the partner is validating the stock, there is an internal Farfetch process to

check if the purchase is fraudulent. Due to the high number of daily orders, this is mainly an auto-

matic process. There is a tool that classifies every order in one of three types: non-suspicious, sus-

picious or very suspicious. Non-suspicious and very-suspicious orders are automatically cleared

or refused, accordingly. Suspicious orders are passed to the internal Fraud team that further in-

vestigates them. Although Step 2 occurs simultaneously with Step 1, fraud validation is faster

in around 80% of orders and thus, Check Stock is the bottleneck in the initial order processing

phases.

Step 3 - Decide Packaging

After stock and fraud validations of the order, the partner is able to decide in which box the

order will be packed. Boxes are provided by Farfetch and there is a box recommendation algorithm

based on available stock and order size that the partner can choose to take into consideration.

Step 4 - Create AirWayBill

Subsequent to packaging, there is an automatic generation of the AirWayBill (AWB), that

contains shipping-related information to identify the parcel. Internal teams only intervene if there

is any missing or incorrect information, or if there is a pending legal matter.
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Step 5 - Send Parcel

As Step 4 is completed, the package is signalled as ready to be picked up by the courier.

Partners can either have ad hoc scheduled pickups, or more predictable pickups performed daily.

Considering that there is no complete visibility over the order preparation, there is shared respon-

sibility between the partner and the carrier to smoothen pickups. This step denotes the end of

partner interaction, whose time-span is referred as Speed of Sending (SoS). This metric is com-

puted as follows:

Speed o f Sending = max{Step1 Time, Step2 Time}+
5

∑
i=3

Stepi Time, (3.1)

where Stepi denotes the time taken by each processing Step i.

Step 6 - In Transit

Finally, Step 6 reflects Transit Time (TT) between the merchant location and the client’s de-

livery point. As around 70% of orders have to cross borders, there is time spent in customs added

to the actual time spent travelling. This means high variability, because border control authorities

are significantly different depending on the receiving country and the nature of the product being

dealt with.

Figure 3.2: Order Processing Steps

The order cycle process is thus concluded, and the Lead Time (LT) is calculated by equation

(3.2), differentiating the time spent processing the order in the partner and the time spent trans-

porting the order.

Lead Time = Speed o f Sending+Transit Time (3.2)
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3.2 Data

As it was introduced in Chapter 1, the data gathering process was based on internal databases’

information. In order to identify the correct data sources, several stakeholders were contacted

in order to assess impactful drivers of lead time and its data availability. In addition, due to the

amount of data to collect, several tools were used to extract and process it, including SQL, Python

and Tableau. The data regarding orders used in this project was collected at the Boutique Order

level, since significantly different operational behaviours are expected of orders that are fulfilled

by different partners, and each one of them follows an independent order cycle process.

To assemble the data-set, only completed orders were considered (i.e., no cancellations).

Moreover, the temporal data-range covers ten months, as to only include orders with full inte-

gration of the new fraud automation provider. Furthermore, only three different carriers supply

reliable information, so the rest of orders were discarded. The collected variables are presented in

Table 3.1, where there is a distinction between variables affecting the general process, variables

affecting the Speed of Sending and variables mainly influencing the Transit Time. These will be

further scrutinized in sections 3.2.1, 3.2.2 and 3.2.3.

Regarding data processing, all date-time fields were deconstructed into variables comprising

the corresponding hour, day, weekday, month and year. Moreover, extra data manipulation was

needed, considering that dates could be harvested in any timezone. Therefore, a normalization

was done, to enable dates to be analyzed in three different timezones: GMT (Greenwich Mean

Time), Partner Timezone and Customer Timezone.

Table 3.1: Collected variables regarding order processing

Variable Type Description

General Partner ID Categorical Identification number of each partner
Partner Country Categorical Country of the partner
Daily Pickup Categorical Indicator if the partner has a scheduled

daily pickup

SoS Order Step Date Numeric Date-time of each step of order processing
Approval Type Categorical Type of fraud validation

(Automatic vs Manual)

TT Order Pickup Date Numeric Date-time of pickup
Customer Country Categorical Country of customer
Customer Region Categorical Region of customer
Service Type Categorical Type of carrier service

(Express vs Standard)
Crossborder Categorical Route classification regarding

customs clearance

Considering that the end goal is to evaluate order cycle lead time - a continuous variable that

is supported by date time data-fields - , it is necessary to perform an outlier identification and
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removal, as introduced in Chapter 2. As described in Figure A.1 in Appendix A, this process was

applied to the main time interval variables: Lead Time, Speed of Sending and Transit Time, remov-

ing 1,16% of data-points. These were the chosen variables because of the impact they have in the

outcome of the analysis. Lead Time is the overall dependent variable; Speed of Sending and Tran-

sit Time represent a significant order processing segmentation, with mutually independent process

characteristics and dynamics. The values that were removed represented extremely unusual and

irrelevant situations that resulted from system failures or manually introduced data.

An overview of the descriptive statistics of the continuous variables is presented in Table 3.2.

The frequency distribution graphs in Figure 3.3 and in Appendix B endorses what is presented in

Table 3.2. For all measures, the median is lower than the mean, indicating a right skewed distri-

bution. Transit Time represents around 70% of Lead Time and has the major contribution to the

overall variation of results. This is a more dynamic process and thus, more prone to unpredictable

events.

Table 3.2: Global data-set descriptive statistics

Metric Median (days) Mean (days) Std. Dev. (days) Coef. Var.

Lead Time 4.1 4.6 2.5 0.5

Transit Time 2.6 3.2 2.4 0.7

Speed of Sending 1.0 1.4 1.1 0.8

Step1 0.4 0.6 0.7 1.2

Step2 0.0 0.1 0.4 4.0

Step3 0.0 0.2 0.5 2.5

Step4 0.0 0.0 0.1 8.5

Step5 0.3 0.5 0.8 1.6

Within the Speed of Sending steps, it is clear that the most time consuming steps are the ones

where there is the need for information flow or communication between the responsible entities

(Step 1 and Step 5), whereas the middle steps are substantially quicker (Step 2, Step 3 and Step

4). Step 1 takes the longest time because partners tend to accumulate orders to later perform batch

fulfillment. This way, they also maximize the probability of fraud validation being done before

they begin processing it. Step 5 duration reflects the pickup coordination complexity between

carrier and partners, as described in section 3.1. Step 4 has the lowest mean duration because it

is performed by the partner almost immediately after Step 3, removing all friction related with

coordination and communication. The most uncertain steps are 2 and 4, because although they

are generally automatic - low mean duration -, when there is a punctual disruption of the normal

motion of the process, the impacts are severe.

18



It is also important to note that these are overall calculations rounded at the decimal level, and

that performance depends highly on several variables that will be subsequently presented.

Figure 3.3: Lead Time frequency distribution (days)

3.2.1 General Variables

In this section, it is presented an exploratory analysis of the general variables influencing both

Speed of Sending and Lead Time - PartnerID, Partner Country and Daily Pickup.

PartnerID

Figure 3.4 demonstrates that there is significant differences in Lead Time between partners.

Each of them has an independent processing configurations and backlog control policies when

it comes to order fulfillment that influences their efficiency. Additionally, each unique set of

locations impacts the carrier routes, and consequently, the Transit Time.

Figure 3.4: Number of partners per average Lead Time
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Partner Country

Partner Country distribution - Figure 3.5 - reveals a great dependency with suppliers. Around

half of orders are satisfied by the most relevant country, and almost 90% of them are satisfied by

only 10 of supplying countries. Geography can be a significant indicator not only for working

hours, but also for carrier related optimizations, such as route and pickup timings.

Figure 3.5: Partner Country cumulative order distribution

Daily Pickup

Analyzing Table 3.3, one can observe no differences in Lead Time between partners that have

Daily Pickup and those who schedule ad hoc pickups. The low percentage of partners flagged

with Daily Pickup was not expected and may indicate a lack of update in the system databases.

Therefore, these numbers can me misleading and are analyzed critically.

Table 3.3: Daily Pickup descriptive statistics

Daily Pickup Frequency (%) Mean LT (days)

Yes 38% 4.6
No 62% 4.6

3.2.2 Speed of Sending Variables

After evaluating the overall settings, this section introduces specific variables that influence the

time partners take to fulfill an order. One is related to how payments are approved in Step 2

- Approval Type - and the others are associated with the order processing of each step - Order

Creation Date and Order Processing Date. Speed of Sending does not exceed five days in this

data-set, and more than 70% of orders is dispatched in less than two days, as seen in Figure B.2.
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Approval Type

As discussed in the Step 2 description, the customer payment can be processed in two possible

ways. It can be an automatic process, done by a third-party provider, or it can be a manual process,

concluded by Farfetch’s internal teams, depending on the uncertainty associated with the order.

Table 3.4 reveals the predominance of automatic fraud validations, with a significant impact

on performance. In manual approved orders, partners reveal a 60% delay in overall processing

efficiency.

Table 3.4: Approval Type descriptive statistics

Approval Type Frequency (%) Mean SoS (days)

Automatic 79% 1.3
Manual 21% 2.1

Order Creation Date

As stated previously, the date variables were dissected - in Hour, Day, Weekday, Month and

Year - to allow for better inferences. The Year component was abandoned, because the data range

has less than one year, so its impact cannot be expressed. From the remaining four, Day and

Month have a similar seasonality interpretation - see Figure C.1 in Appendix C. The main impact

is promotions and peak sales seasons, when demand rises and the workload is increased, leading

to an operational performance reduction. Finally, Weekday presents an evident and continuous

impact on Speed of Sending performance, as proven by Figure 3.6.

In this Figure one can understand that Monday is the weekday with the most processing needs,

opposed to the weekend, when some partners are absent of order processing. This can cause part-

ner processing delays, due to backlog accumulated from non-working weekdays. Other Weekday

influence results from carriers not being available in certain weekdays, limiting pickups. Thus, Fri-

day and weekend under-performance was expected. On the other hand, Monday through Thursday

present the optimal combination of backlog minimization and carrier availability maximization,

where the Speed of Sending is expected to be close to one day. The Order Creation Hour analysis

will be detailed in section 3.3.

Order Processing Date

Taking the previous date decomposition in consideration, one wonders the impact of step pro-

cessing dates on partner’s Speed of Sending performance. Every analysis in this section uses the

timezone of the partner, to guarantee actionable results.

Order Processing Day, Month and Weekday influence have similar interpretations as in Order

Creation. Moreover, in order to to assess the Order Processing Hour impact, the chosen method

was to measure, for every step, the time until fulfillment, as evidenced by equation (3.3). This

equation reveals how long it takes for the order to get picked by the carrier, depending on each

processing step.
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Figure 3.6: Speed of Sending weekday seasonality and order processing frequency

Time Until Ful f illmenti = Speed o f Sending −
i−1

∑
j=1

Step j Time (3.3)

This analysis was conducted only from Step 1 to Step 4, since Step 5 corresponds to the

fulfillment closure. Additionally, only hours containing significant records are considered. Figure

3.7 shows, as an example, the Step 3 influence on time until fulfillment - graphs for Step 1, 2 and

4 are exhibited in Appendix D.

Figure 3.7: Step 3 Hour impact on Time Until Fulfillment (hours)

In these graphs, it is important to evaluate the inflexion point, where the fulfillment time starts

rapidly escalating. Generally, this points to the daily threshold of order fulfillment, meaning that,
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on average, there is a time of the day that, for each step, the order will only be shipped in the next

day. This is tightly connected with pickup timings that are variable for each partner stock point.

For example, if Step 3 is concluded before 3pm, there is a large probability the order is shipped in

that day. The thresholds for each step are increasingly later in the day, as one would expect when

analyzing dependent and sequential processes.

Step 3 and 4 have similar conclusions, since most of the times these can be done almost simul-

taneously by the partner. There is no interaction needed between entities, reducing communication

friction and such entropies, leading to a smoother process.

3.2.3 Transit Time Variables

Regarding Transit Time, the performance can be affected by specific route characteristics - Cus-

tomer Country, Service Type and Crossborder - or by specific order characteristics - Order Pickup

Date. Since so many combinations can occur, it is expected that this step will have the greatest

contribution on LT variation, as proven by Figure B.1. There, one can observe that order trans-

portation can be concluded either in the same day it is expedited, or it can also take more than one

week.

Customer Country

As the curve in Figure 3.8 demonstrates, there is a long tail of countries that contribute with

a small fraction of the orders. In fact, the top ten Customer Countries are responsible for 70% of

placed orders. This impacts order allocation to the partners, and consequently, the route the parcel

will travel.

Figure 3.8: Customer Country cumulative order distribution
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Crossborder

Depending on the Customer Country and Partner Country combination, the route can be clas-

sified in: Crossborder, if there is need for a customs clearance; Domestic, if it is an order fulfilled

within the country it was placed on; Intra-EU, if an order that will move across borders, but in-

side the European Union commercial space. Due to the worldwide combinational presence of

stock-points and clients, Crossborder routes are the most common, and at the same time, the most

time consuming, as evidenced by Table 3.5. This is caused not only by the large distances be-

tween the fulfillment points, but also by the need of customs clearance, that, depending on country

regulations, can cause considerable delays.

Table 3.5: Crossborder descriptive statistics

Crossborder Frequency (%) Mean TT (days)

Crossborder 86% 3.4
Domestic 4% 1.6
Intra-EU 10% 1.7

Service Type

When placing an order, every customer is empowered to select the urgency of delivery - either

Express or Standard. For each route, this influences the carrier that performs the parcel transporta-

tion. Table 3.6 reveals that most orders are fulfilled through Express services, since this is the only

applicable service for non-domestic routes. The mean difference of Transit Time is apparently not

very significant, but a deep-dive for each route discloses different conclusions. In the US-US route

there is an uplift of 76% of time efficiency by using the Express service - as seen on Figure E.1.

Table 3.6: Service Type descriptive statistics

Service Type Frequency (%) Mean TT (days)

Express 82% 3.1
Standard 18% 3.5

Order Pickup Date

Once again, time-driven order features should be investigated regarding their impact on Transit

Time. Thus, it is relevant to evaluate Step 5 information that corresponds to the carrier pickup. Or-

der Pickup Day and Month have similar seasonalities as in Order Creation and Order Processing,

as the main influence is demand fluctuations. More demand creates order accumulation that can

lead to extended waiting periods. Order Pickup Hour appears to have a reduced influence since it

remains mostly constant for every partner-carrier relationship. Weekday heavily impacts the num-

ber of pickups, specially because most carriers are not available on weekends. An order picked

up on Friday will take almost four days to reach the client, whereas one picked up on Monday
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takes on average 2.7 days - Figure 3.9. This relationship is similar to the one presented for Order

Creation Date, where Monday has the greatest amount of activity, and the time performance is

worse as processing is done later in the week.

Figure 3.9: Pickup weekday impact on Transit Time

3.3 Order Cycle Lead Time Dashboard

Being capable of defining and gathering all the data previously shown facilitates the dashboard

development phase. However, firstly, one needs to explicitly clarify the main purposes of this

tool. This visual representation allows an end-to-end overview of lead time performance, ag-

gregating knowledge that was previously scattered throughout several data-bases and individual

team reports. This way, there is an interactive method to expose and monitor time-related metrics,

scrutinized at the most detailed levels available. Additionally, this dashboard is a straightforward

technique to originate and test lead time optimization drivers and hypothesis.

Tableau was the software utilized for the dashboard construction. This tool fully integrates

with SQL servers, automating the data synchronization updates. Moreover, it provides an intuitive

and interactive environment that every user in Farfetch has access to. In Appendix H, the various

pages of this tool are displayed. All data can be filtered according to the parameters displayed in

Table 3.7. The two last parameters, Season and Partner Volume, were not found in any database,

and so had to be computed.

After describing the dynamic parameters, the visualization tool can be detailed. Figure 3.10

shows the main page, where one can have the general overview of the order cycle lead time and its

components, given the chosen filters. There is the possibility to evaluate their temporal behaviour,

absolute values and distribution. Additionally, there is a breakdown of lead time, where one can

assess the contribution of each step to the overall performance. Furthermore, an overview of the

Order Creation Hour impact on Speed of Sending is given, where it is reflected the daily threshold

for same day fulfillment. This way, every user can intuitively check each step’s absolute and
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relative impact on the order cycle. Finally, one can check which are the top partners (order volume

wise) and how they perform in terms of SoS. This provides a more strategic view, as users are able

to target specific partners to evaluate in further detail.

Table 3.7: Parameters available to filter data

Parameter Values Description

Time Range {date interval} Time range of order creation
Customer Geography {region list} Region of customer

{country list} Country of customer
Partner Country {country list} Country of partner
Partner Name {name list} Individual partner identifier
Daily Pickup Yes Has scheduled daily pickup

No Schedule ad hoc pickups
Season Peak Months with peak demand

Normal Months with normal demand
Partner Volume High Partner fulfills >10% of total orders

Medium Partner fulfills >1% and <10% of total orders
Low Partner fulfills <1% of total orders

Henceforward, the Order Cycle Dashboard dedicates one page to each one of the steps of the

order cycle - see Appendix H. They follow a similar structure, where a first descriptive presentation

is done - average step duration over time, weekday influence and hour impact on fulfillment. Then,

specific improvement hypothesis for each step can be monitored and tested.

The overview of Step 1 is presented in Figure H.2. One can evaluate how different processing

hours and processing volumes affect the fulfillment time. Additionally, it is possible to test differ-

ent demand timezones. The main purpose is to determine if orders are being assigned to partners

that are not in their working hours (9am - 6pm), and to assess the impact on fulfillment efficiency.

With the default filters, almost half of orders are placed after the partners are closed. Figure 3.11

shows an example of a screenshot of the hourly demand in the partner’s timezone, in one of the

most relevant customer regions. It is evident that most orders are allocated to partners that are not

within working hours.

Regarding Step 2, the same processing hours and volumes evaluation is done. This step is

performed simultaneously with the first one, so it is important to assess what step usually ends

faster. Figure H.3 monitors the percentage of times that Step 2 is quicker. This could be caused

by the greater automation of this step - which is also being monitored -, but also by the fact that

some partners choose not to do Step 1 without having fraud validation from Farfetch, since there

is a chance they are using resources in an order that will later be invalid. When Step 1 is faster, it

usually means that fraud validation is done manually, which translates in processing delays.
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Figure 3.10: Order Cycle overview dashboard page
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Figure 3.11: Demand by hour of the day (Partner Timezone) of one customer region.

Step 3 has many similarities to Step 4 in terms of efficiency analysis, so these steps are de-

scribed together. The most interesting part is understanding how partners deal with the end of

Step 2. Some are able to rapidly continue to Step 3. Others, due to a break in order responsibility,

concentrate their efforts on adjacent tasks, and only return to order fulfillment for the Farfetch

channel when it is more convenient to them.

Since the partner also has responsibility over Step 4, it usually happens immediately after

Step 3. However, there are problems that can occur with the AirWayBill (AWB) due to incorrect

shipping information. This way, it is vital to control how many orders cause these problems, and to

assess their impact on time efficiencies. AWB problems in the same Customer Geography tend to

have similar root causes, so having this data breakdown allows the internal teams to act promptly

to resolve any issues, specific to a certain area.

Step 5 is important because it sets the boundaries between the processing done by the partner,

and the transportation by the carrier. This is a friction point that needs careful investigation. One

interesting metric to evaluate is orders that are ready in a certain day, and are not expedited in

that same day. This Failed Pickup rate can have its root causes on the carrier, by changing the

regular pickup hour or by not accounting for the required volume of orders. At the same time,

partners can also contribute by not having the orders completely ready as the carrier arrives. The

internal teams have no clear indication from the partner that an order is already packed, there is

only information that all the conditions to pack are met, so the partner has the responsibility of

ensuring completion before pickup time. The optimal goal is for partners to ship every order in the

same day it is processed. Figure 3.12 evidences the struggle in pickup coordination faced by one

of the most relevant partners. In this example, the partner has the most of its pickups around 2pm,

although order preparation follows a somewhat regular pattern during the day. This will cause

an increase in orders that are ready, but are not shipped in that day. By not being In Transit as

soon as possible, the Lead Time delay could be greater than one day, specially if the pickup delay

pushes the order to be shipped close to the weekend. This analysis can alert partner facing teams

28



to optimize pickup timings, through scheduling later pickups or anticipating order fulfillment.

Figure 3.12: Comparison between hour of ’Ready to Send’ and hour of ’Pickup’

All analysis so far mostly concerned the partner and Farfetch’s internal teams. Figure H.6 is

the dashboard page on Step 6 that exclusively monitors carrier performance. One can assess the

seasonal trends of Transit Time, and the aforementioned weekday, service type and crossborder

influences. On top of that, it is possible to investigate the distribution of orders per TT duration.

To conclude, the top 20 Routes by order volume are presented. With the default filters, the top 3

routes account for around 20% of order volume. For each route, one can determine the Transit

Time breakdown in Time First Mile, Time in Customs and Time Last Mile. This can divide the

potential delays into two segments: delays regarding travelling distance and delays regarding cus-

toms processing. One can strategically analyze important routes and even redefine order allocation

and fulfillment accordingly.

After presenting all the explanatory analysis, the basis are set to quantify the Lead Time effects

of the described variables in the following chapter.
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Chapter 4

Lead Time Predictive Model

Building the Order Cycle Dashboard required the creation of an unified and consistent data-set

to effectively monitor the lead time performance of order processing. Having this structured data

available allows the use of analytical methods to model the operational behaviour of the Order

Cycle. This section reflects the creation of a model that is able to predict the Speed of Sending

and Transit Time values, from specific order events. The main goal is to achieve visibility in order

execution duration and to develop a tool that enables what-if analysis around the operational dy-

namics. The Lead Time Predictive Model chapter is divided to reflect data processing, modelling,

and results.

4.1 Data Processing

Recapping the methodology followed in section 3.2, data was gathered at the Boutique Order

level, which means the data-set is a table in which every row represents a different Boutique

Order, and the columns contain all the different features to evaluate. As not to damage the model’s

performance, all records containing manual inputs or non-trustworthy sources were removed, and

an outlier identification and removal was done to the three main time-related metrics - Lead Time,

Speed of Sending and Transit Time. Additionally, variable deconstruction was needed in date-time

fields, finalizing the data-set pre-composition with more than 4 million orders.

Moreover, in order to have a close evaluation of partner segmentation regarding backlog con-

trol performance, a new variable was introduced - Pipeline. This variable tracks, for each order,

in that specific partner, the number of additional orders currently being processed. The computing

is presented in Figure F.1 of Appendix F. This allows for the assessment of how different part-

ners deal with different levels of workload, and their efficiencies should be a reflection of their

fulfillment configurations. Figure 4.1 displays the distribution of Pipeline values. Most orders

are processed with less than 100 simultaneous orders, but there is an exponential difference to the

most extreme cases. There are partners that endure a pipeline of up to 7 000 synchronous orders.
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Figure 4.1: Boxplot of number of orders in Pipeline

Speed of Sending and Transit Time have significantly independent impacts on overall Lead

Time performance. Therefore, it is necessary to separately define the variables that impact each

one of the components. This will lead to the construction of different models, as to maximize

the output explanation through the selected variables. Table 3.1 contains the previously identified

data-set variables that can be relevant to model each of the components.

Every described variable expresses a specific attribute of each order. However, not all of them

will have the same relevance as predictors of the models. Therefore, it is important to assess

the association between those variables, in order to determine if there is redundant information.

Avoiding redundant information increases the efficiency of the model, without hurting its explana-

tory power. Consequently, a correlation analysis was done for the non-categorical variables, using

the Pearson method. For categorical variables, the proposed method was the Chi-squared test.

Appendix G presents the final test results. In spite of Partner Country revealing a close rela-

tionship with Partner ID, the decision was to keep both variables, mainly to ease the final model

interpretation. Moreover, Daily Pickup was discarded due to its connection with Partner ID. This

was a rather specific attribute that was not adding predictive value to the model. Customer Country

is not only a good proxy for Customer Region, but also manages to contribute with more detailed

information, making the geographic Region irrelevant. Furthermore, Crossborder was eliminated

because its influence can be substituted by other route characteristics: Customer Country and

Service Type.

Regarding non-categorical variables, the only dependence was found between the different

Order Step Dates. This was already expected, since they represent sequential steps. With that in

mind, two different Speed of Sending models are developed. One that contains the Order Step

Dates, and other that only contains the Order Creation Date. Further explanation regarding this

division is given in section 4.2. Table 4.1 shows the final compilation of variables that were

considered in the development of the models of Speed of Sending and Transit Time.
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Table 4.1: Final variables considered to model Speed of Sending and Transit Time

Variable Type Description

General Partner ID Categorical Identification number of each partner

Partner Country Categorical Country of the partner

Pipeline Quantitative How many orders are being processed

at a certain time

SoS Order Step Date Numeric Date-time of each step of order processing

Approval Type Categorical Type of fraud validation

(Automatic vs Manual)

TT Order Pickup Date Numeric Date-time of pickup

Customer Country Categorical Country of customer

Service Type Categorical Type of carrier service

(Express vs Standard)

4.2 Modelling

Using the gradient boosting approach introduced in section 2.3.3, three different models were

developed: two regarding Speed of Sending and one related to Transit Time. The two Speed of

Sending models are not complementary, yet either one of them completes the Transit Time model

to predict the final Lead Time value. This section is divided to reflect the modelling methodology.

First, the different models are explained. Afterwards, the split validation, hyperparameter tuning

and evaluation are presented in sections 4.2.1, 4.2.2 and 4.2.3, respectively.

The main difference between the two SoS models resides in the variables used. The first one

leaves out the Order Step Date variable - model SoSNoLogs. The second one applies all the sig-

nificant variables discussed in the previous section - model SoSWithLogs. The goal is to capture

two distinct ways of making the prediction. SoSNoLogs mainly considers a priori information

available at the moment the order is placed, whereas SoSWithLogs predicts the outcomes using

information from each step that is updated throughout order processing. Order Step Date is ex-

pected to have a preponderant influence on predictions, so this distinction was made to capture

in greater detail the impact of the remaining variables. Basically, SoSNoLogs is more reliable as

an importance evaluator for the various variables, except Order Step Date, while SoSWithLogs

provides more accurate and complete predictions.

For each model, three pools were created, one for each of the three data-sets (training, valida-

tion and testing). A pool is a structure that can contain three features: the real output values; the

input variable data; and the identification of which variables are categorical. MAE is the measure

used as the regression loss function for the models. This loss function quantifies the failure of

achieving the desired result, and is minimized by the optimization algorithms, as to converge to

the most favourable solution.
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4.2.1 Model Split Validation

After setting the significant independent variables for the models, one has to structure the data-

set for future validation. As studied in section 2.3.1, the original data-set is divided in three

components. The first one, consisting of 60% to 90% of data is the training set. This set is used

to train the model, and should represent the majority of possible situations, for the model to have

a learning phase as broad as possible. The second and third ones are the validation set and the

testing set, that equally divide the remaining 10% to 40% of data. The validation set performs the

tuning of the model’s predictors. Finally, the testing set uses completely new and unseen data on

the model, to test how it applies the assumptions it was trained on. This data-set split is done in a

temporal sequence to capture seasonalities and dependencies between observations. Due to time

constraints, the Transit Time model was used to test the data-set split that was replicated in the

other models. This choice was made because this was the model anticipated to have the highest

error, and thus needed a careful assessment of the trade-off between training data-set size and

overfitting.

Different data-set splits were tested to evaluate the optimal division for the models. For each

combination, the performance was defined by how fast was the learning, and how significant was

the testing error. The training error (ISE) shows how the model is fitting with the training data,

and low values can indicate over-fitting. The testing error (OSE) measures how the mode applies

the trained assumptions. Analyzing Table 4.2, the 60-20-20 split is excluded, due to having the

highest testing error. From the remaining ones, that have significantly similar testing errors, the

70-15-15 split was chosen because it has the lowest running time and has the smallest gap between

training and testing error, meaning that it is less likely to overfit.

Data consistency was guaranteed across the created sets. There are no significant variable

differences that are expected to have a negative influence on the model’s outcomes. However, the

sets are not completely homogeneous because of the demand seasonality impact on operational

efficiency.

Table 4.2: Data-split sets performance

Splits (%) Training Error (hours) Testing Error (hours) Running Time (s)

60-20-20 10.1 13.0 3 286

70-15-15 10.2 10.4 2 129

80-10-10 9.0 10.1 4 417

90-5-5 7.8 10.0 23 646

4.2.2 Hyperparameter Tuning

Concentrating even further on model efficiency, it is relevant to define its optimal hyperparameters.

This process is called hyperparameter tuning and the expected outcome is the best combination of

model configurations to minimize the model’s error. The first move is to identify which parameters

to optimize. The selected ones are presented in Table 4.3.
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Table 4.3: Optimizable model parameters

Parameter Search Space Description

Iterations [1, +∞]
Maximum number of trees that

can be built

Learning Rate [0.01, 0.3]
Used to define the reduction

in gradient variation

Depth [6, 16]
Length of the longest path between

root node and leaf node

l2-leaf-reg [0, 100] Overfitting regulator

These are the parameters that govern the entire model training, so when evaluating them, one

has to consider the trade-off between time consumption and model accuracy. Normally, more

accuracy comes at the cost of greater processing times.

The number of iterations sets the limit of trials in the learning process. Generally a large

initialization value is given, to increase the chances of better results. However, it is important to

note that the marginal gain with each iteration reduces and computing time grows exponentially.

The learning rate is the weight given to corrections from new data. As these weights increase,

the model tens to converge quicker, but can lead to a sub-optimal solutions (overfitting). Lower

learning rates are dependent on more iterations to display better results. Depth controls how much

information about the data is captured. Increasing this value will make the model more complex

and more likely to overfit. L2-leaf-reg is an important parameter to balance the learning process,

as it is a coefficient that operates as a penalty term to the loss function. As this value increases, the

probability of underfitting grows, which means it will make the model more conservative.

The approach to define these values was common to the three models. Based on preliminary

computational experiments, the number of iterations was set to 10 000 and the learning rate to

0.1. These where the necessary initialization values. Using the HyperOpt (Bergstra et al. (2013))

package in Python, several tests were done to the models. In each test, a random search for each

parameter was performed, within the search space. The error minimization parameters for each

model are presented in Table 4.4.

Table 4.4: Optimal model hyperparameters

Parameter SoSNoLogs SoSWithLogs Transit Time

Iterations 1 000 2 000 5 000

Learning Rate 0.29 0.22 0.19

Depth 13 13 14

l2-leaf-reg 58.5 61.9 56.6

The Transit Time model has the highest iterations threshold. This indicates that the variables

used to explain the TT values lack explanatory power and it should take longer to converge. The

learning rate is intrinsically connected to the number of iterations. Lower learning rates need more
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iterations, leading the models to be more complex. These learning rates, together with high depth

values increase the tendency to over explain a limited set of data points. This is mitigated by large

regulation values (l2-leaf-reg).

As discussed in Probst et al. (2019), hyperparameter tuning translates in better model accuracy

and efficiency. In the developed models of this project, this optimization resulted in a reduction

of, on average, 6% in error.

4.2.3 Model Evaluation

Looking at the results in Table 4.5, one can conclude that the three different models appear to have

similar behaviours in the training and testing phases. SoSWithLogs presents the biggest error gap,

either in relative and absolute terms, but at the same time, the magnitude of the error itself is the

less significant. Translating the values from days to hours, this model has an expected value of

33 hours, while presenting an MAE of around 2 hours. SoSNoLogs has a higher associated error

than its SoS predictor counterpart. This model is basing its predictions on a reduced amount of

regressors, and so it is more prone to misattribute the values of certain unseen features.

The Transit Time model has the highest MAE. This is explained by the greater variability

associated with the process this model is trying to predict and its timespan preponderance relative

to the overall Lead Time. In this model, the OSE is smaller than the ISE, an occurrence that is

nothing but unusual. Possible explanations can arise from the data set split composition, where

unidentified noise could have passed unnoticed through the data processing phases, but overall

this is an indication that the proposed model has a good fit to the presented data. All in all, these

models present an estimate of the Lead Time with an associated error comprised between 0.9 and

1.3 days.

Table 4.5: Final model evaluation metrics using gradient boosting

SoSNoLogs SoSWithLogs Transit Time

Metric Train Test Train Test Train Test

MAE (days) 0.40 0.43 0.02 0.08 0.90 0.86

RMSE (days) - 0.82 - 0.20 - 1.86

MAPE (%) - 42% - 9% - 26%

As discussed in section 2.3.3, Carvalho (2016) also proposed a modelling methodology to

predict the delivery dates upon the customer order placement, using Farfetch as a case study. In

her work, a conditional inference decision trees model was developed to predict the timespan of

each step. When comparing Tables 4.5 and 4.6, it is revealed that the Speed of Sending predictions

are more robust using the approach in this project. Carvalho (2016) had the goal of predicting

the delivery date with a priori information, the same logic behind SoSNoLogs that performed

almost 50% better in terms of MAE. The Transit Time model has a slightly superior MAE, but

inferior MAPE, meaning the overall transit time prediction values are superior in the data-set used

in this project. These comparisons should be interpreter carefully, because the data collection and
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preparation was different for both models. Nevertheless, the gradient boosting approach brought

apparent improvements.

Table 4.6: Best model results from Carvalho (2016)

Metric Speed of Sending Transit Time

MAE (days) 0.8 0.7

MAPE (%) - 30%

4.3 Results

After the construction and evaluation of the models, it is necessary to assess its outputs. Thus,

this section is dedicated to identifying and analyzing the main drivers of variability in each one

of three models. Section 4.3.1 for model SoSNoLogs, section 4.3.2 for model SoSWithLogs and

section 4.3.3 for model TransitTime. Each section is supported estimations of relative and absolute

importance of features to be done - Feature Importances and SHAP Values.

SHAP Values is a technique that explains individual impacts of each feature. Basically, it

evaluates the importance of each value of the features, in comparison to its baseline values - Wild

(2018). Figure F.2 in Appendix F demonstrates an example, where the base value for the SoS

prediction was around 26 hours, but the predicted output value was 36 hours. This difference is

given by a combination of influences from the explanatory variables. The attributes in the variables

in red are increasing the SoS prediction (in hours) and the blue ones are contributing for a reduction

in SoS. For example, Manual Approval Type is causing a significant delay in this order, whereas

Monday as the Order Creation Weekday is leading to lower SoS forecasts.

4.3.1 Speed of Sending - No Logs

This is the Speed of Sending model that disregards Order Processing Dates. As seen in Table

4.7, the variables represent the information existent at the moment the order is placed. The main

evident driver of Speed of Sending is the Weekday of Order Creation, with a relative importance of

58%. Remembering Figure 3.6, from Monday until Thursday, orders are typically dispatched by

partners in around one day, although these are the days with greater order processing frequency.

From Friday until Sunday, on average, the SoS doubles.

Order Creation Hour appears as the second most important feature. Consulting Figure 4.2, its

influence on Speed of Sending is not linear, but one can conclude that has the order is placed later

in the day, its fulfillment time increases. This could be caused by two reasons. First, orders may

be allocated to partners that are not within working hours - monitored in Figure 3.11. Second,

orders that are placed earlier are naturally going to be processed first, since most partners follow a

First-In-First-Out (FIFO) policy.
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Table 4.7: SoSNoLogs feature importances

Feature Importance

OrderCreation_Weekday 58%

OrderCreation_Hour 16%

SiteID 8%

Pipeline 5%

OrderCreation_Month 4%

Site Country 3%

OrderCreation_Day 3%

Approval Type 3%

Figure 4.2: SoSNoLogs SHAP Values

In this model, Site ID is confirming the premise that different partners have distinct processing

configurations. Although its relative impact is not large, Figure 4.2 reveals that the absolute impact

is almost as important as the Weekday.

Each one of the rest of the features presents less that 5% of relative importance. Order Cre-

ation Month and Day are a proxy for demand seasonality impacts. Store Country presents a well

distributed impact, and its contained results may be caused by the close correlation with Site ID.

Approval Type and Pipeline disclose significant absolute importances, despite its relative ones.

The positive impact of automation in fraud validation was already assessed in section 3.2.2.

Pipeline presents curious results. High pipeline values can both have a positive or a negative

impact on Speed of Sending. This is explained by the dependence of this variable with Site ID.

Some partners are used to dealing with high volumes of orders, and are not affected by an amount

of order variation that for other partners would be problematic.
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4.3.2 Speed of Sending - With Logs

In this model, all processing information was considered, performing an evaluation over a total

of 28 features. For interpretation purposes, only the top ten are presented in Table 4.8. Order

Creation Weekday and Hour are once again among the most relevant variable, but its relative

preponderance is less significant, when comparing with the model in section 4.3.1. Order Pickup

Weekday and Hour follow as the next most important features. Together with the Order Creation

information, these fields determine the timespan of the SoS, justifying its high prediction value.

This premise is validated by Figure 4.3, where it is possible to understand the absolute impact of

these features. However, the SHAP values do not provide clear indication of the linearity of their

relationship with the Speed of Sending values.

The relative impact of the remaining variables has a low significance. However, one can

note the sequential importance of the fulfillment steps in Speed of Sending. Additionally, when

considering these impacts, one has mainly to evaluate the Hour in which the steps are made. This

way, it can be concluded that the time Farfetch concludes Step 2 (Approve Payment) and the

partner prints the shipping label (Step 4) are contributing more than the partner’s Hour of Step 1

and Step 3. This relative importance exists on one hand because Step 2 is a processing milestone

that signals the partner that it can continue with fulfillment. On the other hand, Step 4 is an

indication of when the order is ready to be collected by the partner. Consequently, the Hour of

these two steps is a determinant factor on whether the order is shipped in the pickup of that day.

It is important to note that in the top 10 most important features listed in Table 4.8, only Site

ID is not related with order processing dates. The impact of Pipeline, Approval Type and Site

Country is substituted by the absolute times of the processing steps they influence. This leads to

another relevant conclusion. This model is affected by the correlation between processing steps,

due to their sequential nature. Hence, the main potential of this analysis lies with the evaluation

of relative importance between fulfillment steps.

Table 4.8: SoSWithLogs top 10 feature importances

Feature Importance

OrderCreation_Weekday 27%

OrderPickUp_Weekday 20%

OrderPickUp_Hour 14%

OrderCreation_Hour 13%

OrderStep4_Hour 6%

OrderStep2_Hour 6%

SiteID 4%

OrderStep2_Weekday 2%

OrderStep3_Hour 2%

OrderStep1_Hour 2%
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Figure 4.3: SoSWithLogs SHAP Values

4.3.3 Transit Time

Table 4.9 displays the relative importance of the Transit Times features. Analyzing that table, one

can differentiate between two kinds of features that impact Transit Time. On the one hand there are

route specific features, such as Customer Country, Store Country and Service Type, that determine

the distance the parcel will travel and the customs clearance needed to import the item. On the

other hand, there are Order Pickup Date specific features that define when an order is picked up

at the partner. Especial relevancy is given to Weekday, whereas Month, Day and Hour present

decreased importance. The relative dominance of Weekday is due to carriers’ limited weekend

processing frequency. For example, an order that is shipped on Friday will, on average, have a

one day delay when compared to orders shipped on Tuesday - as seen in Figure 3.9. Figure 4.4

corroborates this explanation, as high values for the Weekday feature are related with an increase

with the overall Transit Time.

Site ID has a relevant importance and it is not straightforward to interpret. The most viable

hypothesis is that the model is using this feature as a proxy to detail different Transit Times within

the same Partner Country, being used like a Partner City variable.

Pipeline has an almost non-existent significance, which insinuates that its impact is mostly

on partner performance that only indirectly influences Transit Time. This indirect influence is
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transmitted through the capacity of each partner to have the order ready to be picked up as soon as

possible.

Table 4.9: Transit Time feature importances

Feature Importance

Customer Country 27%

OrderPickUp_Weekday 24%

Store Country 13%

SiteID 13%

Service Type 10%

OrderPickUp_Month 5%

OrderPickUp_Day 4%

OrderPickUp_Hour 3%

Pipeline 1%

Figure 4.4: Transit Time SHAP Values
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Chapter 5

Improvement Opportunities

The previous chapters presented a deep explanatory analysis over Farfetch’s order cycle, and its

prominent lead time drivers. Over this journey, several insights were gathered from each of the

steps. In this chapter, all the aggregated knowledge is applied in identifying which opportunities

throughout the order cycle have the most potential. Complementary to its identification, the Lead

Time models developed in Chapter 4 enables the quantification of these scenarios.

Looking at the predictive features found in the previous chapter, it is not clear how the most

influencing ones could be manipulated in order to achieve more efficient processes. For example,

in Speed of Sending, Order Creation Weekday and Order Creation Hour appear as the most rel-

evant variables. However, one cannot explicitly control the demand generation and distribution,

which makes any recommendation regarding these variables not actionable and of little interest.

This way, after evaluating the preliminary analysis of Chapter 3 and the feature importances of

Chapter 4.2, three main actions to refine Lead Time performance are proposed and displayed in

Table 5.1. These are the opportunities that are influenced by variables that can be manipulated and

present a significant impact.

Table 5.1: Main Improvement Opportunities

Opportunity Main Stakeholder

Approval Automation Farfetch
Pickup Alignment Carrier/Partner
Domestic Routing Farfetch

Regarding Speed of Sending, the most straightforward influencing factor of efficiency is Ap-

proval Type. Despite not showing as a preponderant predictive feature in the models, it is perceived

as an impactful indirect factor in partner’s operations, as it is an external requirement that partners

have in order to continue their fulfillment. It is of overall interest that Fraud Validation occurs

smoothly and is as automated as possible. Additionally, the automation level is an internally con-

trolled parameter that can be adjusted within certain thresholds.
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Another opportunity arises when studying pickups. This is a process that requires alignment

between both partners and the carriers, and it was proven to be a friction point in the order cycle

flow. Pickup Alignment is guaranteeing that partners are synchronizing their processing cut-off

with the arrival of the carrier, maximizing the orders that are expedited in each day. Lastly, it is

proposed an evaluation of the impact of having more domestic order allocation. Having supply

closer to customers enables shorter Transit Time by diminishing distance between partner and cus-

tomer and avoiding the need for customs clearance, the two critical factors in Step 6 performance.

5.1 Approval Automation

The order Approval Type is Farfetch’s main touch-point in the order cycle. The inherent premise

is that a fast and automated fraud validation enables partners to proceed more smoothly with order

fulfillment, reducing SoS. To support this claim, a simple methodology using the Speed of Sending

models was done. The goal is to feed the model with different testing data-sets, that only differed

in the amount of orders that were automatically approved. This way, any variation in the output is

generated by the proposed manipulation. The SoSNoLogs model was used, in spite of its inferior

accuracy in predictions. SoSWithLogs was discarded because it considers the dates of each step.

Thus, when changing the Approval Type, one would have to adjust the following step dates to

reflect this manipulation. However, this procedure is not straightforward to replicate.

This way, 4 testing data-sets were created, each with a different Approval Automation percent-

age, and were fed to the model. Table 5.2 reflects the outputs of the predictions. It is clear that

incrementing the automation levels has a positive impact on reducing partner fulfillment time. This

means that minimizing the time Farfetch intervenes in order processing causes a more continuous

process on the partner side, maximizing efficiency. Currently, the process stands around 85% au-

tomation mark. This means that there is still an estimate of at least 8% worth of SoS improvement

that can be achieved by increasing the approval automation to 95%.

Table 5.2: Variation of Speed of Sending (days) with Approval Automation (%)

Approval Automation (%) SoS predicted (days)

80 1.29
85 1.24
90 1.19
95 1.13

In practical terms, improving the automation depends on the quality and integration of fraud

providers and the internally developed tools. As this is close control of Farfetch, the goals set in

the previous scenarios are attainable. However, it is necessary to take into account that the increase

in automation must be achieved sustainably, minimizing the risks of false positive evaluations -

rejecting a legitimate order or accepting a fraudulent one.
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5.2 Pickup Alignment

The model results in chapter 4 appoint the Order Pickup Date as a feature with high relevancy in

predicting the outcome of both Speed of Sending and Transit Time. Special importance is given

to the Weekday and Hour of pickups. For most partners, the pickups are performed regularly on

a daily basis, which invalidates trying to directly adjust pickup Weekday to obtain a better perfor-

mance. However, pickup Hour is a specific characteristic that can have evidence different values

according to each stock-point. The intrinsic hypothesis is that partners can maximize the orders

they process and ship if the pickup is done later in the day. This would increase the number of

orders that are dispatched within a daily processing cycle, reducing Speed of Sending. Addition-

ally, since most orders are processed early in the week, this can have a waterfall consequence of

anticipating the Order Pickup Weekday, decreasing Transit Time. To test this theory’s impact, one

has to alter the pickup data. A new testing data-set was built on the assumption that every time

Step 4 was performed before a pre-determined cut-off hour, the pickup was performed in the same

day, to simulate the ideal processing scenario. The SoSWithLogs model was used.

Results for a 5pm cut-off are given in Table 5.3. As expected, with the reduction of failed

pickups, more orders were dispatched within the daily order fulfillment cycle, leading to a reduc-

tion of 23% in Speed of Sending. This way, the average would be around one day, closing the

gap to same day fulfillment - dispatching an order in the same day it is placed. Regarding Transit

Time, the expected impact was not reproduced. Although the more favourable pickup weekdays

had more orders, its Transit Time impact was balanced by adjacent drivers, such as increase in less

beneficial routes and weekdays.

Table 5.3: LT impact of Pickup Alignment

Pickup Alignment SoS predicted (days) TT predicted (days)

No 1.3 2.6
Yes 1.0 2.6

Variation -23% 0%

To implement these procedures, Farfetch has to be in close relationship with both the carrier

and the partner. On one hand, partners need to be convinced to restructure and standardize their

fulfillment timings. On the other hand, carriers might need to adjust their own picking routes, and

guarantee that postponing the pickup hour does not interfere with subsequent legs of transporta-

tion (e.g. catching an international flight in the same day). As several stakeholders are in play,

executing this hypothesis requires precise coordination among every party involved.

5.3 Domestic Routing

The results regarding the Transit Time model reveal that the most relevant driver in this Lead Time

section are the route characteristics. This includes Customer Country, Store Country and Service
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Type. As analyzed in Chapter 3, Express services lead to a shorter Lead Time. Additionally, the

relative geography of partners and customers influences not only the distance travelled by the

parcel, but also the necessity of customs clearance. In absolute measures, these two conditions

are the ones with the most Lead Time impact. In an ideal scenario, the customer would be served

from his own location, minimizing the distance In Transit and eliminating the need for customs

clearance. This way, the goal is to evaluate the impact of having a closer supplying partner in each

of the top three Customer Countries in terms of order volume. These were the chosen countries

as they are the common destination of the top five routes, making up 41% of total orders. A test

data-set was generated, that attributed the same value to Partner Country and Customer Country

(if that Customer Country belongs to the top three). The assumption behind this scenario is that

the Speed of Sending for the orders would remain constant with the new allocation.

Running the Transit Time model delivered the results presented in Table 5.4. It is clear that

most of the orders are fulfilled from border crossing routes, that suffer significant improvements

with the domestic routing strategy. Managing to shorten the gap between supply and demand

is a driver of Transit Time efficiency, specially in routes that have Customer Countries requiring

thorough customs clearance (Routes 1 and 3). Avoiding this bureaucratic process can reproduce

improvements of up to 30% in Transit Time.

Table 5.4: Domestic Routing impact

Before After Variation

Route 1 TT (days) 1.85 1.29 -30%
%Domestic Orders 0.94% 100%

Route 2 TT (days) 2.77 2.59 -6%
% Domestic Orders 10.62% 100%

Route 3 TT (days) 3.45 2.53 -27%
% Domestic Orders 0.03% 100%

Guaranteeing this type of stock availability requires the expansion of the partner network to

numbers and locations that are not in line with what is the present situation. Although this scenario

is not attainable in the short term, it could be an indication of a future growth strategy, if domestic

partners guarantee strategic routes (e.g. are not located in remote locations).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This project investigated the Lead Time repercussions of a multi-step and multi-participant order

cycle, set in a e-commerce environment. The main goals were to provide an unified overview of

the process that enhanced its monitoring and to develop tools that support strategic decisions. This

unprecedented control over the order cycle allows for more proactive actions towards inefficien-

cies, instead of the reactive approach previously in place.

The first phase was to consolidate all the segregated knowledge regarding all the order pro-

cessing steps. The subsequent exploratory analysis showed each fulfillment step’s relevancy when

assessing Lead Time. This evaluation reflects their specific operational characteristics, meaning it

is possible to quantify different activities and their interactions. Furthermore, all activities’ impact

were attributed to pre-identified variables.

It is inferred that Speed of Sending is mainly influenced by the Order Creation Weekday and

Hour, Approval Type and the partner’s processing configuration, proxied by variables Site ID

and Step Processing Hour. Regarding Transit Time, the main impacts arise from route length,

customs verification, Pickup Weekday and Service Type. Furthermore, it was observed that 35%

of orders are fulfilled from the same nine routes. This supply and demand dependency leads to

the conclusion that one has to be have a strategical focus when approaching any improvement

decisions. This way, one of the proposed scenarios consisted in manipulating the order allocation

to increase the number of domestic routes. This strategy can reduce the Transit Time by 30%, in

routes where customs clearance was previously needed.

Furthermore, it is inferred that delays can be caused by different process stakeholders. Partners

are supported and encouraged to have an optimized processing configuration and efficient backlog

control. For example, managing an efficient pickup coordination with the carrier is of great im-

portance as to maximize the number of orders dispatched in a daily processing cycle, which has a

predictive reduction of 23% in overall Speed of Sending. From Farfetch’s side, the main objective

is to minimize disturbance in partner order processing, achieved by increasing the automation in

the only internal order touch-point - fraud validation. A 10% increment in the number of orders
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automatically processed has a predictive reduction of 8% in overall Speed of Sending. To com-

plement the previous results, it is important to refer that the processing weekday seasonality plays

an important and difficult to exploit role in determining the Lead Time outcome, so it is crucial to

evaluate the indirect impacts of every proposed opportunity in these patterns.

All these insights were gathered from the analytical tools developed in the course of this thesis

- a monitoring dashboard, and a compilation of predictive models based on gradient boosting.

A key factor in their continuous scalability is the constant update of both tools to better define

requirements proposed by stakeholders, to enable ever increasing order cycle understanding.

In conclusion, the Lead Time patterns identified in this analysis can bring a significant upside

to the operational performance of the order cycle. Additionally, it is important to assess their im-

plications on eventual implementations, as it is crucial to align all the main involved stakeholders

to iteratively define the new execution procedures.

6.2 Future Work

Along the development of this project, some limitations of the proposed approach were identified,

and are interesting to be tackled in further investigations.

Firstly, the gathered information will be enhanced by integrating data from returned orders,

that were not considered due to time implications. Additionally, all the analysis were only cen-

tered around Lead Time, but it should also be relevant to assess the impact of the improvement

opportunities in other metrics, such as cost (impact on shipping costs and duties) or customer

experience (amount of stock-outs and contacts to customer service). An obvious next step is join-

ing this research with the quantification of Lead Time gains in terms of revenue. Establishing a

faster order cycle may have short-term and direct costs, but it also drives customer retention, and

therefore increasing the customer lifetime value and generating long-term benefits.

With the continuous maintenance of the proposed tools, there are further opportunities to ex-

plore other variable implications on Lead Time, leading to the development of new projects based

on the work presented in this thesis. Some examples might be the evaluation of new routes or

of new carriers on Transit Time performance, or even the assessment of new partner processing

configurations on Speed of Sending execution.
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Appendix A

Outlier Removal code

Figure A.1: Outlier Removal Python code
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Appendix B

Speed of Sending and Transit Time
frequency distribution (days)

Figure B.1: Transit Time frequency distribution (days)

Figure B.2: Speed of Sending frequency distribution (days)
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Appendix C

Lead Time seasonality

Figure C.1: Lead Time seasonality in data-set time range
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Appendix D

Step Time Until Fulfillment

Figure D.1: Step 2 Time Until Fulfillment (hours)
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Figure D.2: Step 1 Time Until Fulfillment (hours)

Figure D.3: Step 4 Time Until Fulfillment (hours)
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Appendix E

Express vs Standard Transit Time
comparison

Table E.1: Express vs Standard TT comparison - Random Routes

Partner Country Customer Country Express vs Standard TT uplift (%)

Australia Australia 67%
France Portugal 229%
Italy United Kingdom 265%

United Kingdom Italy 175%
United States United States 76%
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Appendix F

Pipeline variable creation code and
SHAP Values visualization

Figure F.1: Pipeline variable creation Python code

56



Figure F.2: SHAP Value example in model SoSNoLogs
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Appendix G

Correlation analysis

G.1 Pearson Correlation

The Pearson correlation coefficient quantifies the linear dependencies between two continuous
variables. It indicates how the collected data fits in a modeled line of their association. Equation
(G.1) presents the Pearson correlation coefficient between variables X and Y, in a sample of size
m.

rXY =
∑

n
i=1(Xi−X)(Yi−Y )))√

∑
n
i=1(Xi−X)2

√
∑

n
i=1(Yi−Y )2

(G.1)

This test is based on the assumption that the observations are independent. The normality of
data distribution assumption can be skipped, due to the sample size. The results are presented in
figures G.1 and G.2.

G.2 Chi-squared Test

The Chi-squared test evaluates if there is a significant relationship between categorical variables.
To do that two hypothesis are established:

• H0: The two categorical variables are independent

• H1: H0 is false

For each pair of categorical variables, the p-value is calculated. Table G.1 presents the final
results. Once a variable was identified as dependent, no further tests were done with it.
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Table G.1: P-values for the Chi-squared test regarding categorical variables

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Partner ID (1) - 0.00 0.02 0.55 0.63 0.00 0.51 0.34 0.33
Partner Tier (2) - - - - - - - - -

Partner Country (3) - - - - - - - - -
Customer Country (4) - - 0.47 - 0.00 - 0.43 0.21 0.03
Customer Region (5) - - - - - - - - -

Daily Pick Up (6) - - - - - - - - -
Approval Type (7) - - - - - - - 0.28 0.47
ServiceType (8) - - - - - - - - 0.01
Crossborder (9) - - - - - - - - -
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Figure G.1: Pearson Correlation Analysis results - TT
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Figure G.2: Pearson Correlation Analysis results - SoS
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Appendix H

Order Cycle Lead Time Dashboard

Figure H.1: Step 3 overview dashboard page
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Figure H.2: Step 1 overview dashboard page
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Figure H.3: Step 2 overview dashboard page

64



Figure H.4: Step 4 overview dashboard page
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Figure H.5: Step 5 overview dashboard page
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Figure H.6: Step 6 overview dashboard page
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